
MQSeries®

Application Programming Guide

SC33-0807-10

IBM

MQSeries®

Application Programming Guide

SC33-0807-10

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix G.
Notices” on page 523.

Eleventh edition (March 2000)

This edition applies to the following products:
v MQSeries for AIX® V5.1
v MQSeries for AS/400® V5.1
v MQSeries for AT&T GIS UNIX® V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS, V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX), V2.2.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/390® V2.1
v MQSeries for OS/2® Warp V5.1
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA™ V2.1
v MQSeries for Windows® V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT® V5.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|

|

|

Contents

Figures xi

Tables xiii

About this book xv
Who this book is for xv
What you need to know to understand this book. . xv
How to use this book xvi

Appearance of text in this book xvi
Terms used in this book xvi

Summary of changes xix
Changes for this edition (SC33-0807-10) xix
Changes for the tenth edition (SC33-0807-09) . . . xix
Changes for the ninth edition (SC33-0807-08) . . . xx

Part 1. Designing applications that
use MQSeries 1

Chapter 1. Introduction to message
queuing 3
What is message queuing?. 3
What is a message? 4

Message descriptor 4
Message channel agent 4

What is a message queue? 4
What is a queue manager?. 5
What is a cluster?. 5
What is an MQSeries client? 6
Main features of message queuing 6

MQSeries clients and servers 8
Benefits of message queuing to the application
designer and developer 9
What can you do with MQSeries products? 9

MQSeries for OS/390 9
MQSeries for non-OS/390 platforms 10

Chapter 2. Overview of application
design 11
Planning your design 11
Using MQSeries objects 12
Designing your messages 13
MQSeries techniques 14

Waiting for messages 14
Correlating replies 14
Setting and using context information 14
Starting MQSeries programs automatically . . . 14
Generating MQSeries reports 15
Clusters and message affinities 15

Application programming 15
Call interface 15
Design for performance - hints and tips 16
Programming platforms 16

Applications for more than one platform . . . 18
Testing MQSeries applications 18

Chapter 3. MQSeries messages 19
Message descriptor 20
Types of message 20

Datagrams. 20
Request messages 20
Reply messages 21
Report messages. 21
Reports and segmented messages 23

Format of message control information and message
data 25

Format of message control information 25
Format of message data 26
Application data conversion 26

Message priorities 28
Message groups 28
Message persistence 30
Selecting messages from queues 30
Messages that fail to be delivered 31
Messages that are backed out 31
Reply-to queue and queue manager 32
Message context 32

Identity context 33
Origin context 33

Chapter 4. MQSeries objects 35
Queue managers 35

Attributes of queue managers 35
Queue managers and workload management . . 36

Queues 36
Types of queue 37
Attributes of queues 38
Remote queues 39
Alias queues 40
Model queues 40
Dynamic queues. 41
Transmission queues 42
Initiation queues. 43
Dead-letter (undelivered-message) queues . . . 43
System command queues 43
System default queues. 43

Namelists 43
Process definitions 44
Channels 44
Storage classes 44
Rules for naming MQSeries objects 45

Queue names. 45
Process definition and namelist names 46
Channel names 46
Reserved object names. 46

Chapter 5. Handling program errors . . 47
Locally determined errors 47

© Copyright IBM Corp. 1993, 2000 iii

Failure of an MQI call 47
System interruptions 47
Messages containing incorrect data 49

Using report messages for problem determination 49
Creating report messages 49

Remotely determined errors 50
Problems delivering a message 50
Using the dead-letter (undelivered-message)
queue 51

Part 2. Writing an MQSeries
application 55

Chapter 6. Introducing the Message
Queue Interface 59
What is in the MQI? 59

Calls. 60
Syncpoint calls 61
Data conversion 62
Structures 62
Elementary data types 62
MQSeries data definitions 63
MQSeries stub programs and library files . . . 63

Parameters common to all the calls 68
Using connection and object handles 68
Understanding return codes 68

Specifying buffers 69
Programming language considerations 69

Coding in C 70
Coding in COBOL 72
Coding in System/390® assembler language . . 73
Specifying the form of a structure 74
Coding in RPG 76
Coding in PL/I 76
Coding in TAL 77

OS/390 batch considerations 77
UNIX signal handling on MQSeries Version 5
products 78

Unthreaded applications 79
Threaded applications 79
Fastpath (trusted) applications 80
MQI function calls within signal handlers . . . 80
Signals during MQI calls 81
User exits and installable services 81

Chapter 7. Connecting and
disconnecting a queue manager 83
Connecting to a queue manager using the
MQCONN call 84

Scope of MQCONN 85
Connecting to a queue manager using the
MQCONNX call 86

MQCNO_STANDARD_BINDING 86
MQCNO_FASTPATH_BINDING 86
Restrictions 86
Environment variable 88

Disconnecting programs from a queue manager
using MQDISC 88

Authority checking 89

Chapter 8. Opening and closing objects 91
Opening objects using the MQOPEN call 92

Scope of an object handle. 92
Identifying objects (the MQOD structure) . . . 93
Name resolution. 93
Using the options of the MQOPEN call 95

Creating dynamic queues. 98
Opening remote queues 98
Closing objects using the MQCLOSE call 99

Chapter 9. Putting messages on a
queue 101
Putting messages on a local queue using the
MQPUT call 101

Specifying handles 102
Defining messages using the MQMD structure 102
Specifying options using the MQPMO structure 102
The data in your message 105

Putting messages on a remote queue 106
Controlling context information 106

Passing identity context 106
Passing all context. 107
Setting identity context 107
Setting all context 107

Putting one message on a queue using the
MQPUT1 call 107
Distribution lists 109

Opening distribution lists 110
Putting messages to a distribution list 112

Some cases where the put calls fail 114

Chapter 10. Getting messages from a
queue 115
Getting messages from a queue using the MQGET
call 115

Specifying connection handles 116
Describing messages using the MQMD structure
and the MQGET call 116
Specifying MQGET options using the MQGMO
structure 116
Specifying the size of the buffer area 119

The order in which messages are retrieved from a
queue 120

Priority 120
Logical and physical ordering 120

Getting a particular message 127
Type of index 128
Handling large messages 129

Increasing the maximum message length . . . 129
Message segmentation 130
Reference messages 133

Waiting for messages 135
Signaling 136

To set a signal 136
When the message arrives 137

Skipping backout 138
Application data conversion 141

Conversion of EBCDIC newline characters . . 142
Browsing messages on a queue 143

The browse cursor. 143

iv MQSeries Application Programming Guide

Browsing messages when message length
unknown 144
Removing a message you have browsed . . . 145

Browsing messages in logical order 145
Browsing messages in groups 146

Some cases where the MQGET call fails 148

Chapter 11. Writing data-conversion
exits 149
Invoking the data-conversion exit 150

Data conversion on OS/390 150
Writing a data-conversion exit program 151

Skeleton source file 151
Convert characters call 152
Utility for creating conversion-exit code . . . 152
Valid syntax 153

Writing a data-conversion exit program for
MQSeries for AS/400 155
Writing a data-conversion exit for MQSeries for
OS/2 Warp 156
Writing a data-conversion exit program for
MQSeries for OS/390. 158
Writing a data-conversion exit for MQSeries for
Tandem NonStop Kernel 159

Reusing data-conversion exit programs 159
Writing a data-conversion exit for MQSeries on
UNIX systems and Compaq (DIGITAL) OpenVMS . 160

UNIX environment 161
Compiling data-conversion exits on Digital
OpenVMS 162
Compiling data-conversion exits on UNIX. . . 162

Writing a data-conversion exit for MQSeries for
Windows NT 165

Chapter 12. Inquiring about and
setting object attributes 167
Inquiring about the attributes of an object 168
Some cases where the MQINQ call fails 169
Setting queue attributes 169

Chapter 13. Committing and backing
out units of work 171
Syncpoint considerations in MQSeries applications 172
Syncpoints in MQSeries for OS/390 applications 173

Syncpoints in CICS Transaction Server for
OS/390 and CICS for MVS/ESA applications. . 173
Syncpoints in IMS applications 174
Syncpoints in OS/390 batch applications . . . 174

Syncpoints in CICS for AS/400 applications . . . 176
Syncpoints in MQSeries for OS/2 Warp, MQSeries
for Windows NT, MQSeries for AS/400, and
MQSeries on UNIX systems 176

Local units of work 177
Global units of work 177
Interfaces to external syncpoint managers . . . 179

Interfaces to the AS/400 external syncpoint
manager 181
Syncpoints in MQSeries for Tandem NonStop
Kernel applications 182
General XA support 183

Chapter 14. Starting MQSeries
applications using triggers 185
What is triggering? 185
Prerequisites for triggering 189
Conditions for a trigger event 191
Controlling trigger events 195

Example of the use of trigger type EVERY. . . 196
Example of the use of trigger type FIRST . . . 196
Example of the use of trigger type DEPTH . . 196
Special case of trigger type FIRST 197

Designing an application that uses triggered
queues 197

Trigger messages and units of work 197
Getting messages from a triggered queue . . . 198

Trigger monitors 199
MQSeries for OS/390 trigger monitors 199
MQSeries for OS/2 Warp, Digital OpenVMS,
Tandem NSK, UNIX systems, AS/400, and
Windows NT trigger monitors. 200
MQSeries for AS/400 trigger monitors 202

Properties of trigger messages 202
Persistence and priority of trigger messages . . 202
Queue manager restart and trigger messages 202
Trigger messages and changes to object
attributes 202
Format of trigger messages 203

When triggering does not work 204
How CKTI detects errors 204
How CSQQTRMN detects errors 204
How RUNMQTRM detects errors 204

Chapter 15. Using and writing
applications on MQSeries for OS/390 . 207
Environment-dependent MQSeries for OS/390
functions 207
Program debugging facilities 208
Syncpoint support 208
Recovery support 208
The MQSeries for OS/390 interface with the
application environment. 209

The batch adapter 209
RRS batch adapter. 209
The CICS adapter 210
The IMS adapter 211

Writing OS/390 OpenEdition® applications . . . 212
The API-crossing exit for OS/390 213

Using the API-crossing exit 213
Writing your own exit program 214
The sample API-crossing exit program,
CSQCAPX 216
Preparing and using the API-crossing exit . . . 216

Writing MQSeries-CICS bridge applications . . . 217
Structure of the MQSeries message 217
Handling a unit of work 220
Programming considerations for running 3270
transactions 220
Scenarios 221

Writing MQSeries-IMS bridge applications . . . 225
How the MQSeries-IMS bridge deals with
messages 225

Contents v

|
||

Writing your program 229
Writing IMS applications using MQSeries 230

Syncpoints in IMS applications 231
MQI calls in IMS applications 231

MQSeries Workflow 234

Chapter 16. Object-oriented
programming with MQSeries 237
What is in the MQSeries Object Model? 237

Classes 237
Object references 238
Return codes 238

Programming language considerations 238
Coding in C++ 238
Coding in Java 239
Coding in LotusScript 239
Coding in ActiveX. 239

Part 3. Building an MQSeries
application 241

Chapter 17. Building your application
on AIX 243
Preparing C programs 243

Linking libraries 243
Preparing COBOL programs 244

Preparing COBOL programs using IBM COBOL
SET for AIX 245
Preparing COBOL programs using Micro Focus
COBOL 245

Preparing PL/I programs 245
Preparing CICS programs 245

CICS on Open Systems support 246

Chapter 18. Building your application
on AS/400 249
Preparing C programs 249
Preparing COBOL programs 249
Preparing CICS programs 251
Preparing RPG programs 251
SQL programming considerations 251
AS/400 programming considerations 252

QMQM activation group 252

Chapter 19. Building your application
on AT&T GIS UNIX 253
Preparing C programs 253

C compiler flags 253
Linking libraries 253

Chapter 20. Building your application
on Digital OpenVMS 255
Preparing C programs 255

C compiler version 255
C compiler flags 255
Linking libraries 255

Preparing COBOL programs 256
COBOL compiler flags 256

Linking libraries 256

Chapter 21. Building your application
on Digital UNIX 257
Preparing C programs 257

Linking libraries 257

Chapter 22. Building your application
on HP-UX 259
Preparing C programs 259

Preparing C programs on HP-UX V10.20 . . . 259
Preparing C programs on HP-UX V11.00 . . . 259
Linking libraries 260

Preparing COBOL programs 261
Programs to run in the MQSeries client
environment. 261

Preparing CICS programs 262
CICS on Open Systems support 262

Chapter 23. Building your application
on OS/390 263
Preparing your program to run 263

Building OS/390 batch applications 264
Building CICS applications 265
Building IMS (BMP or MPP) applications . . . 266

Dynamically calling the MQSeries stub 267
Debugging your programs 272

Debugging CICS programs 272
Debugging TSO programs 274

Chapter 24. Building your application
on OS/2 Warp 275
Preparing C programs 275

Preparing CICS and Transaction Server
programs 276

Preparing COBOL programs 277
Preparing Transaction Server programs 278

Preparing PL/I programs 278

Chapter 25. Building your application
on SINIX or DC/OSx 279
Preparing C programs 279

C compiler flags 279
Preparing COBOL programs 280

Compiling COBOL programs 280
Preparing CICS programs 281

CICS on Open Systems support 281
CICS sample transaction. 281

Linking libraries 282

Chapter 26. Building your application
on Sun Solaris 283
Preparing C programs 283

Linking libraries 284
Preparing COBOL programs 284
Preparing CICS programs 285

CICS on Open Systems support 285

vi MQSeries Application Programming Guide

||

||

|
||
||
||

||

Chapter 27. Building your application
on Tandem NSK 287
Unit of work (transaction) management 287

General design considerations 287
MQGMO_BROWSE_* with MQGMO_LOCK 287
Triggered applications 287

Compiling and binding applications 288
Running applications 288

Chapter 28. Building your application
on VSE/ESA 291
Linking library 291
Using the batch interface 291
Preparing C programs 291
Preparing COBOL programs 291
Preparing PL/I programs 291

Chapter 29. Building your application
on Windows 293
Linking libraries 293
Preparing Visual Basic programs 293

Chapter 30. Building your application
on Windows NT 295
Preparing C programs 295

Preparing CICS and Transaction Server
programs 296

Preparing COBOL programs 297
Preparing CICS and Transaction Server
programs 298

Preparing PL/I programs 299
Preparing Visual Basic programs 299

Chapter 31. Using lightweight
directory access protocol services
with MQSeries for Windows NT . . . 301
What is a directory service? 301
What is LDAP?. 301
Using LDAP with MQSeries 302
LDAP sample program 303

Building the sample program 303
Configuring the directory 303
Configuring the IBM eNetwork LDAP server 304
Configuring the Netscape directory server. . . 305
Running the sample program 306
Program design 306

Part 4. Sample MQSeries
programs 309

Chapter 32. Sample programs (all
platforms except OS/390) 311
Features demonstrated in the sample programs . . 312

Samples for Compaq (DIGITAL) OpenVMS and
UNIX systems 312
Samples for OS/2 Warp and Windows NT . . 314

PL/I samples for AIX, OS/2 Warp, and
Windows NT 316
Visual Basic samples for Windows NT 316
Samples for AS/400 316
Samples for Tandem NonStop Kernel 318
Samples for VSE/ESA 318

Preparing and running the sample programs . . . 319
AS/400 319
UNIX systems 319
Digital OpenVMS 320
OS/2 and Windows NT 320
Tandem NSK 321
Windows 323
Running the sample programs. 323

The Put sample programs 325
Running the amqsput and amqsputc samples 325
Running the amqsputw sample 325
Running the amq0put sample 326
Running the AMQSPUT4 C sample 326
Running the AMQ0PUT4 COBOL sample . . . 327
Design of the Put sample program 327

The Distribution List sample program 327
Running the Distribution List sample, amqsptl0 327
Design of the Distribution List sample 328

The Browse sample programs 328
OS/2, UNIX systems, Digital OpenVMS, and
Windows NT 328
AS/400 329
Design of the Browse sample program 329

The Browser sample program 330
The Get sample programs 330

Running the amqsget and amqsgetc samples 330
Running the amqsgetw sample 331
Running the amq0get sample 331
Running the AMQSGET4 and the AMQ0GET4
samples 331
Design of the Get sample program 332

The Reference Message sample programs 332
Notes for AS/400 users 333
Running the Reference Message samples . . . 334
Design of the Put Reference Message sample
(amqsprma.c, AMQSPRM4). 338
Design of the Reference Message Exit sample
(amqsxrma.c, AMQSXRM4). 338
Design of the Get Reference Message sample
(amqsgrma.c, AMQSGRM4) 340

The Request sample programs. 340
Running the amqsreq0.c, amqsreq, and
amqsreqc samples 340
Running the amq0req0.cbl sample 340
Running the AMQSREQ4 sample. 341
Running the AMQ0REQ4 sample 341
Running the Request sample using triggering 341
Design of the Request sample program 344

The Inquire sample programs 346
Design of the Inquire sample program 347

The Set sample programs 347
Design of the Set sample program 348

The Echo sample programs. 349
Design of the Echo sample programs 349

The Data-Conversion sample program 350

Contents vii

Design of the data-conversion sample 350
The Triggering sample programs 350

Running the amqstrg0.c, amqstrg, and amqstrgc
samples 350
Running the AMQSTRG4 sample 351
Design of the triggering sample 351
Running the AMQSERV4 sample 351
Design of the trigger server 352
Ending the triggering sample programs on
AS/400 352

Running the samples using remote queues . . . 352
Database coordination samples 352

Creating the databases and tables 354
Precompiling, compiling, and linking the
samples 355
Running the samples 357

The CICS transaction sample 359
TUXEDO samples 359

Building the server environment 359
Server sample program for TUXEDO 367
Put sample program for TUXEDO 368
Get sample for TUXEDO 368

Encina sample program 369
Building the AMQSXAE0.C sample 369

Dead-letter queue handler sample 370
The Connect sample program 370

Running the amqscnxc sample 370

Chapter 33. Sample programs for
MQSeries for OS/390 373
Features demonstrated in the sample applications 373

Put samples 373
Get samples 374
Browse sample 374
Print Message sample 374
Queue Attributes sample 375
Mail Manager sample 375
Credit Check sample 375
The Message Handler sample 376
Distributed queuing exit samples 376
Data-conversion exit samples 377

Preparing and running sample applications for the
batch environment 377

Names of the sample batch applications . . . 378
Preparing sample applications for the TSO
environment. 378

Names of the sample TSO applications 379
Preparing the sample applications for the CICS
environment. 380

QLOP abend 381
Names of the sample CICS applications . . . 381

Preparing the sample application for the IMS
environment. 383

Names of the sample IMS application 384
The Put samples 384

Design of the Put sample 384
The Put samples for the batch environment . . 385
The Put samples for the CICS environment . . 386

The Get samples 386
Design of the Get sample 387
The Get samples for the CICS environment . . 388

The Browse sample 389
Design of the Browse sample 390
Language-dependent design considerations . . 391

The Print Message sample 391
Design of the sample 393

The Queue Attributes sample 395
Design of the sample 395

The Mail Manager sample 396
Preparing the sample 396
Running the sample 397
Design of the sample 399

The Credit Check sample 403
Preparing and running the Credit Check sample 404
Design of the sample 405
Design considerations 412
The Credit Check sample with multiple queue
managers. 414
The IMS extension to the Credit Check sample 414

The Message Handler sample 415
Preparing and running the sample 416
Using the sample 416
Design of the sample 418

Part 5. Appendixes 421

Appendix A. Language compilers and
assemblers 423

Appendix B. C language examples 427
Connecting to a queue manager 428
Disconnecting from a queue manager 429
Creating a dynamic queue 430
Opening an existing queue 431
Closing a queue 433
Putting a message using MQPUT. 434
Putting a message using MQPUT1 435
Getting a message 436
Getting a message using the wait option 438
Getting a message using signaling 439
Inquiring about the attributes of an object 442
Setting the attributes of a queue 444

Appendix C. COBOL examples 447
Connecting to a queue manager 448
Disconnecting from a queue manager 448
Creating a dynamic queue 449
Opening an existing queue 451
Closing a queue 453
Putting a message using MQPUT. 454
Putting a message using MQPUT1 456
Getting a message 458
Getting a message using the wait option 459
Getting a message using signaling 461
Inquiring about the attributes of an object 465
Setting the attributes of a queue 467

Appendix D. System/390
assembler-language examples 471
Connecting to a queue manager 472

viii MQSeries Application Programming Guide

Disconnecting from a queue manager 473
Creating a dynamic queue 474
Opening an existing queue 475
Closing a queue 477
Putting a message using MQPUT. 478
Putting a message using MQPUT1 480
Getting a message 482
Getting a message using the wait option 484
Getting a message using signaling 486
Inquiring about and setting the attributes of a
queue 490

Appendix E. PL/I examples 495
Connecting to a queue manager 496
Disconnecting from a queue manager 496
Creating a dynamic queue 497
Opening an existing queue 499
Closing a queue 499
Putting a message using MQPUT. 500
Putting a message using MQPUT1 502
Getting a message 504
Getting a message using the wait option 505
Getting a message using signaling 507
Inquiring about the attributes of an object 511
Setting the attributes of a queue 513

Appendix F. MQSeries data definition
files 515
C language include files 516
Visual Basic module files 516
COBOL copy files 517
System/390 assembler-language macros 520
PL/I include files 520

Appendix G. Notices 523
Programming interface information 524
Trademarks 525

Glossary of terms and abbreviations 527

Bibliography 539
MQSeries cross-platform publications 539
MQSeries platform-specific publications 541
Softcopy books 542

BookManager format 542
HTML format 542
Portable Document Format (PDF) 542
PostScript format 542
Windows Help format 542

MQSeries information available on the Internet . . 542
Related publications 542

CICS 542
IMS 543
MVS/ESA 543
Design 543
C 543
C++ 543
COBOL 543
LDAP 543
RPG 543

Index 545

Sending your comments to IBM . . . 557

Contents ix

||

x MQSeries Application Programming Guide

Figures

1. Message queuing compared with traditional
communication. 7

2. Representation of a message 19
3. Group of logical messages 29
4. Segmented messages 29
5. How distribution lists work 110
6. Opening a distribution list in C 112
7. Opening a distribution list in COBOL 112
8. Putting a message to a distribution list in C 113
9. Putting a message to a distribution list in

COBOL 114
10. Logical order on a queue 121
11. Physical order on a queue 122
12. Skipping backout using

MQGMO_MARK_SKIP_BACKOUT 140
13. Sample JCL used to invoke the CSQUCVX

utility 153
14. Flow of application and trigger messages 187
15. Relationship of queues within triggering 189
16. Setting of key fields for a single CICS user

program in a unit of work, or
non-conversational 3270 transaction 221

17. Setting of key fields for many CICS user
programs in a unit of work 222

18. Setting of key fields: MQSeries -
conversational 3270 transaction 223

19. User program abends (only program in the
unit of work) 224

20. Fragments of JCL to link-edit the object
module in the batch environment, using
single-phase commit 264

21. Fragments of JCL to link-edit the object
module in the batch environment, using
two-phase commit 265

22. Fragments of JCL to link-edit the object
module in the CICS environment 266

23. Fragments of JCL to link-edit the object
module in the IMS environment 267

24. Dynamic linking using COBOL in the batch
environment 268

25. Dynamic linking using COBOL in the CICS
environment 269

26. Dynamic linking using COBOL in the IMS
environment 269

27. Dynamic linking using assembler language in
the batch environment 270

28. Dynamic linking using assembler language in
the CICS environment 270

29. Dynamic linking using assembler language in
the IMS environment 270

30. Dynamic linking using C language in the
batch environment 270

31. Dynamic linking using C language in the
CICS environment 271

32. Dynamic linking using C language in the IMS
environment 271

33. Dynamic linking using PL/I in the batch
environment 271

34. Dynamic linking using PL/I in the IMS
environment 272

35. Running the reference message samples 334
36. Request and Inquire samples using triggering 342
37. Sample Client/Server (Echo) program

flowchart 346
38. The database coordination samples 353
39. Example of ubbstxcx.cfg file for UNIX

systems 364
40. Example of ubbstxcn.cfg file for Windows NT 366
41. Sample TUXEDO makefile for MQSeries for

Windows NT 367
42. How TUXEDO samples work together 368
43. Example of a report from the Print Message

sample application 392
44. Programs and panels for the TSO versions of

the Mail Manager 399
45. Programs and panels for the CICS version of

the Mail Manager 400
46. Example of a panel showing a list of waiting

messages 401
47. Example of a panel showing the contents of a

message 402
48. Immediate Inquiry panel for the Credit Check

sample application 404
49. Programs and queues for the Credit Check

sample application (COBOL programs only) . 406
50. Initial screen for Message Handler sample 416
51. Message list screen for Message Handler

sample 417
52. Chosen message is displayed 418
53. Using the MQCONN call (C language) 428
54. Using the MQDISC call (C language) 429
55. Using the MQOPEN call to create a dynamic

queue (C language) 430
56. Using the MQOPEN call to open an existing

queue (C language) 432
57. Using the MQCLOSE call (C language) 433
58. Using the MQPUT call (C language) 434
59. Using the MQPUT1 call (C language) 435
60. Using the MQGET call (C language) 437
61. Using the MQGET call with the wait option

(C language) 438
62. Using the MQGET call with signaling (C

language) 440
63. Using the MQINQ call (C language) 442
64. Using the MQSET call (C language) 444
65. Using the MQCONN call (COBOL) 448
66. Using the MQDISC call (COBOL) 449
67. Using the MQOPEN call to create a dynamic

queue (COBOL). 450
68. Using the MQOPEN call to open an existing

queue (COBOL). 452
69. Using the MQCLOSE call (COBOL) 454

© Copyright IBM Corp. 1993, 2000 xi

70. Using the MQPUT call (COBOL) 455
71. Using the MQPUT1 call (COBOL). 456
72. Using the MQGET call (COBOL) 458
73. Using the MQGET call with the wait option

(COBOL) 460
74. Using the MQGET call with signaling

(COBOL) 462
75. Using the MQINQ call (COBOL) 466
76. Using the MQSET call (COBOL) 468
77. Using the MQCONN call (Assembler

language) 472
78. Using the MQDISC call (Assembler language) 473
79. Using the MQOPEN call to create a dynamic

queue (Assembler language) 474
80. Using the MQOPEN call to open an existing

queue (Assembler language) 476
81. Using the MQCLOSE call (Assembler

language) 477
82. Using the MQPUT call (Assembler language) 479
83. Using the MQPUT1 call (Assembler language) 481
84. Using the MQGET call (Assembler language) 483

85. Using the MQGET call with the wait option
(Assembler language) 484

86. Using the MQGET call with signaling
(Assembler language) 487

87. Using the MQINQ and MQSET calls
(Assembler language) 491

88. Using the MQCONN call (PL/I) 496
89. Using the MQDISC call (PL/I) 497
90. Using the MQOPEN call to create a dynamic

queue (PL/I). 498
91. Using the MQOPEN call to open an existing

queue (PL/I). 499
92. Using the MQCLOSE call (PL/I) 500
93. Using the MQPUT call (PL/I) 501
94. Using the MQPUT1 call (PL/I). 503
95. Using the MQGET call (PL/I) 504
96. Using the MQGET call with the wait option

(PL/I) 506
97. Using the MQGET call with signaling (PL/I) 508
98. Using the MQINQ call (PL/I) 512
99. Using the MQSET call (PL/I) 513

xii MQSeries Application Programming Guide

Tables

1. Visual Basic equivalents of the C elementary
data types 62

2. Environment variable 88
3. Resolving queue names when using MQOPEN 94
4. How queue attributes and options of the

MQOPEN call affect access to queues 96
5. Using message and correlation identifiers 127
6. Using the group identifier 127
7. Skeleton source files 151
8. Linking MQSeries for OS/2 Warp with CICS

Version 3 applications. 180
9. Essential Code for CICS applications 183

10. OS/390 environmental features 208
11. Mapping MQSeries messages to IMS

transaction types 226
12. Essential Code for CICS applications (AIX) 245
13. Example of CRTPGM in the nonthreaded

environment 249
14. Example of CRTPGM in the threaded

environment 249
15. Essential Code for CICS applications (HP-UX) 262
16. Call names for dynamic linking 267
17. CICS adapter trace entries 272
18. Essential Code for CICS applications (SINIX) 281
19. Essential Code for CICS applications (Sun

Solaris). 285
20. MQSeries on UNIX and Digital OpenVMS

sample programs demonstrating use of the
MQI 312

21. MQSeries for OS/2 Warp and Windows NT
sample programs demonstrating use of the
MQI 314

22. MQSeries for AIX, OS/2 Warp, and Windows
NT sample programs demonstrating use of
the MQI 316

23. MQSeries for Windows NT sample programs
demonstrating use of the MQI 316

24. MQSeries for AS/400 sample programs
demonstrating use of the MQI 316

25. MQSeries for Tandem NonStop Kernel C and
COBOL sample programs demonstrating use
of the MQI 318

26. MQSeries for Tandem NonStop Kernel TAL
sample programs demonstrating use of the
MQI 318

27. MQSeries for VSE/ESA COBOL sample
programs demonstrating use of the MQI . . 318

28. Where to find the samples for MQSeries on
UNIX systems 319

29. Where to find the samples for MQSeries for
Compaq (DIGITAL) OpenVMS. 320

30. Where to find the samples for MQSeries for
OS/2 Warp and MQSeries for Windows NT . 320

31. Client/server sample program details 345
32. Source for the distributed queuing exit

samples 376
33. Source for the data conversion exit samples

(Assembler language only) 377
34. Source and JCL for the Put and Get samples 378
35. Source and JCL for the Browse sample 378
36. Source for the Print Message sample (C

language only) 378
37. Source and JCL for the Mail Manager (TSO)

sample 379
38. Source for the Message Handler sample 380
39. Source and JCL for the Put and Get samples 381
40. Source for the Queue Attributes sample 382
41. Source and JCL for the Mail Manager (CICS)

sample (COBOL only). 382
42. Source and JCL for the Credit Check CICS

sample 382
43. Source and JCL for the Credit Check IMS

sample (C only) 384
44. Language compilers and assemblers 423
45. C include files for MQSeries 516
46. Visual Basic module files for MQSeries for

Windows V2.0 516
47. Visual Basic module files for MQSeries for

Windows V2.1 517
48. Visual Basic module files for MQSeries for

Windows NT, V5.1 517
49. COBOL copy files 518
50. System/390 assembler-language macros 520
51. PL/I include files 521

© Copyright IBM Corp. 1993, 2000 xiii

|
||
|
||

xiv MQSeries Application Programming Guide

About this book

This book introduces the concepts of messages and queues, and shows you in detail
how to design and write applications that use the services that MQSeries provides.

The IBM MQSeries Level 2 products comprise:
v MQSeries for AIX
v MQSeries for AS/400 (formerly known as MQSeries for OS/400®)
v MQSeries for AT&T GIS UNIX®1

v MQSeries for Compaq (DIGITAL) OpenVMS
v MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)
v MQSeries for HP-UX
v MQSeries for OS/390 (formerly known as MQSeries for MVS/ESA™)
v MQSeries for OS/2 Warp
v MQSeries for SINIX and DC/OSx
v MQSeries for Sun Solaris
v MQSeries for Tandem NonStop Kernel
v MQSeries for VSE/ESA
v MQSeries for Windows
v MQSeries for Windows NT

They are referred to in this book collectively as MQSeries. They provide
application programming services that enable you to write applications in which
the constituent programs communicate with each other using message queues.

For a full description of the MQSeries programming interface, see the MQSeries
Application Programming Reference manual for your platform. The manuals are:
v MQSeries Application Programming Reference manual, SC33-1673
v MQSeries for AS/400 Application Programming Reference (ILE RPG), SC 34-5559

For information on the use of C++, see the MQSeries Using C++ book.

IBM ships sample programs with IBM MQSeries which are explained in “Part 4.
Sample MQSeries programs” on page 309.

“Chapter 32. Sample programs (all platforms except OS/390)” on
page 311“Chapter 33. Sample programs for MQSeries for OS/390” on page 373 You
may find it useful to refer to these.

Who this book is for
This book is for the designers of applications that use message queuing techniques,
and for the programmers who have to implement those designs.

What you need to know to understand this book
To write message queuing applications using MQSeries, you need to know how to
write programs in at least one of the programming languages that MQSeries
supports. “Appendix A. Language compilers and assemblers” on page 423 contains
details of supported compilers and assemblers listed by MQSeries platform.

1. This platform has become NCR UNIX SVR4 MP-RAS, R3.0.

© Copyright IBM Corp. 1993, 2000 xv

|

If the applications you are writing will run within a CICS® or IMS™ system, you
must also be familiar with CICS or IMS, and their application programming
interfaces.

To understand this book, you do not need to have written message queuing
programs before.

How to use this book
This book contains guidance information to help you design an application, and
procedural information to help you to write an application.

The book is divided into five parts:

“Part 1. Designing applications that use MQSeries” on page 1
Introduces the message queuing style of application design, describes
MQSeries messages and queues, and shows how to design a message
queuing application.

“Part 2. Writing an MQSeries application” on page 55
Describes how to use the IBM Message Queue Interface (MQI) to write the
programs that comprise a message queuing application. The chapters guide
you through the coding of each MQI call, showing you what information
to supply as input and what returns to expect. These chapters first describe
simple uses of the MQI calls, then go on to describe how to use all the
features of each call.

Read “Part 1. Designing applications that use MQSeries” on page 1 to
understand the concepts involved when designing MQSeries applications.
The second part is self-contained: use an individual chapter when you are
performing the task described in it.

“Part 3. Building an MQSeries application” on page 241
Explains how to build your MQSeries application on each platform.

“Part 4. Sample MQSeries programs” on page 309
Lists and explains how the sample programs work, for all platforms.

The appendixes
Contain examples of how to use the MQI calls in each of the programming
languages supported by MQSeries.

Appearance of text in this book
This book uses the following type style:

CompCode
Example of the name of a parameter of a call, or the attribute of an object

Terms used in this book
In the body of this book, the following shortened names are used for these
products and a qualifier:

CICS CICS for AS/400, CICS for MVS/ESA, CICS for VSE/ESA, CICS
Transaction Server for OS/2, CICS Transaction Server for OS/390, TXSeries
for AIX, TXSeries for HP-UX, TXSeries for Sun Solaris, and TXSeries for
Windows NT products.

IMS The IMS/ESA® product.

About this book

xvi MQSeries Application Programming Guide

MQSeries
MQSeries for AIX, MQSeries for AS/400, MQSeries for AT&T GIS UNIX,
MQSeries for Compaq (DIGITAL) OpenVMS, MQSeries for DIGITAL UNIX
(Compaq Tru64 UNIX), MQSeries for HP-UX, MQSeries for OS/2 Warp,
MQSeries for OS/390, MQSeries for SINIX and DC/OSx, MQSeries for Sun
Solaris, MQSeries for Tandem NonStop Kernel, MQSeries for VSE/ESA,
MQSeries for Windows, and MQSeries for Windows NT.

MQSeries on UNIX systems
MQSeries for AIX, MQSeries for AT&T GIS UNIX, MQSeries for DIGITAL
UNIX (Compaq Tru64 UNIX), MQSeries for HP-UX, MQSeries for SINIX
and DC/OSx, and MQSeries for Sun Solaris.

MQSeries Version 5 products
V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT.

OS/390
The OS/390 System Product.

thlqual
The high-level qualifier of the installation library on OS/390.

About this book

About this book xvii

|
|
|
|
|
|

|
|
|

About this book

xviii MQSeries Application Programming Guide

Summary of changes

This section describes changes to this edition of MQSeries Application Programming
Guide. Changes since the previous edition of the book are marked by vertical lines
to the left of the changes.

Changes for this edition (SC33-0807-10)
The main change to this edition of the Application Programming Guide is the
enhancement of MQSeries for AS/400 bringing it to the same level of function as
the other MQSeries Version 5 Release 1 products.

Also included in this edition is a section regarding SQL programming
considerations on MQSeries for AS/400. There is a new section about building
CICS applications on MQSeries for AS/400. See “Chapter 18. Building your
application on AS/400” on page 249 for these new sections.

Table 24 on page 316 has been expanded to include information on RPG samples
for MQSeries for AS/400.

Changes for the tenth edition (SC33-0807-09)
In this edition, the book has been updated to reflect the new function in the
following new versions of the MQSeries products:
v V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
v V2.1 of MQSeries for OS/390, MQSeries for VSE/ESA, and MQSeries for

Windows
v V4R2M1 of MQSeries for AS/400

The changes to the book include:
v Queue manager clusters (applicable to the V5.1 products, and MQSeries for

OS/390 only). There are many references throughout the book to this new
function.

v Recoverable resource services (applicable to MQSeries for OS/390 in the
Batch/TSO environment). This provides two-phase syncpoint support.
“Chapter 15. Using and writing applications on MQSeries for OS/390” on
page 207 contains information about it.

v UNIX signal handling on MQSeries Version 5 products. “UNIX signal handling
on MQSeries Version 5 products” on page 78 explains the changes to signal
handling in threaded and non-threaded environments in MQSeries for AIX,
MQSeries for HP-UX, and MQSeries for Sun Solaris.

v Writing MQSeries-CICS bridge applications (aplicable to MQSeries for OS/390
only). “Writing MQSeries-CICS bridge applications” on page 217 provides
information.

v MQSeries Workflow is how MQSeries supports the OS/390 workoad manager
(WLM). “MQSeries Workflow” on page 234 provides information.

v Object-oriented programming with MQSeries. A new chapter, “Chapter 16.
Object-oriented programming with MQSeries” on page 237, gives an introduction
to the MQSeries object model and the base classes. There are further references
to language-specific information.

© Copyright IBM Corp. 1993, 2000 xix

|
|
|

|
|
|

|
|
|
|

|
|

v Using lightweight directory access protocol services (LDAP) with MQSeries for
Windows NT. A new chapter, “Chapter 31. Using lightweight directory access
protocol services with MQSeries for Windows NT” on page 301, is an
introduction to LDAP and contains an example of an MQSeries application
using an LDAP directory.

v A new chapter, “Chapter 28. Building your application on VSE/ESA” on
page 291 is included.

Changes for the ninth edition (SC33-0807-08)
Changes for edition number SC33-0807-08 include:
v A new release of:

– MQSeries for AS/400 V4R2
v Inclusion of a new MQSeries product:

– MQSeries for Tandem NonStop Kernel, V2.2

Changes

xx MQSeries Application Programming Guide

Part 1. Designing applications that use MQSeries

Chapter 1. Introduction to message queuing . . . 3
What is message queuing?. 3
What is a message? 4

Message descriptor 4
Message channel agent 4

What is a message queue? 4
What is a queue manager?. 5
What is a cluster?. 5
What is an MQSeries client? 6
Main features of message queuing 6

MQSeries clients and servers 8
Benefits of message queuing to the application
designer and developer 9
What can you do with MQSeries products? 9

MQSeries for OS/390 9
MQSeries for non-OS/390 platforms 10

Chapter 2. Overview of application design . . . 11
Planning your design 11
Using MQSeries objects 12
Designing your messages 13
MQSeries techniques 14

Waiting for messages 14
Correlating replies 14
Setting and using context information 14
Starting MQSeries programs automatically . . . 14
Generating MQSeries reports 15
Clusters and message affinities 15

Application programming 15
Call interface 15
Design for performance - hints and tips 16
Programming platforms 16
Applications for more than one platform . . . 18

Testing MQSeries applications 18

Chapter 3. MQSeries messages 19
Message descriptor 20
Types of message 20

Datagrams. 20
Request messages 20
Reply messages 21
Report messages. 21

Types of report message 21
Report message options 22

Reports and segmented messages 23
MQSeries-generated reports 23
Application-generated reports 24
Retrieval of reports 24
Back-level queue managers 25

Format of message control information and message
data 25

Format of message control information 25
Format of message data 26
Application data conversion 26

Conversion at the sending queue manager . . 27
Conversion at the receiving queue manager 27

Coded character sets 27
Message priorities 28
Message groups 28
Message persistence 30
Selecting messages from queues 30
Messages that fail to be delivered 31
Messages that are backed out 31
Reply-to queue and queue manager 32
Message context 32

Identity context 33
Origin context 33

Chapter 4. MQSeries objects 35
Queue managers 35

Attributes of queue managers 35
Queue managers and workload management . . 36

Queues 36
Types of queue 37

Types of local queue 38
Attributes of queues 38
Remote queues 39
Alias queues 40
Model queues 40
Dynamic queues. 41

Properties of temporary dynamic queues . . 41
Properties of permanent dynamic queues . . 41
Uses of dynamic queues 42
Recommendations for uses of dynamic queues 42

Transmission queues 42
Initiation queues. 43
Dead-letter (undelivered-message) queues . . . 43
System command queues 43
System default queues. 43

Namelists 43
Process definitions 44
Channels 44
Storage classes 44
Rules for naming MQSeries objects 45

Queue names. 45
Process definition and namelist names 46
Channel names 46
Reserved object names. 46

Chapter 5. Handling program errors 47
Locally determined errors 47

Failure of an MQI call 47
System interruptions 47
Messages containing incorrect data 49

Using report messages for problem determination 49
Creating report messages 49

Requesting and receiving (MQGET) report
messages 50

Remotely determined errors 50
Problems delivering a message 50

Retry message delivery 51
Return message to sender 51

© Copyright IBM Corp. 1993, 2000 1

Using the dead-letter (undelivered-message)
queue 51

Dead-letter queue processing 52

2 MQSeries Application Programming Guide

Chapter 1. Introduction to message queuing

The MQSeries products enable programs to communicate with one another across
a network of unlike components – processors, operating systems, subsystems and
communication protocols – using a consistent application programming interface.

Applications designed and written using this interface are known as message
queuing applications, as they use the messaging and queuing style:

Messaging
Programs communicate by sending each other data in messages rather
than calling each other directly.

Queuing
Messages are placed on queues in storage, allowing programs to run
independently of each other, at different speeds and times, in different
locations, and without having a logical connection between them.

This chapter introduces messaging and queuing concepts, under these headings:
v “What is message queuing?”
v “What is a message?” on page 4
v “What is a message queue?” on page 4
v “What is a queue manager?” on page 5
v “What is a cluster?” on page 5
v “What is an MQSeries client?” on page 6
v “Main features of message queuing” on page 6
v “Benefits of message queuing to the application designer and developer” on

page 9
v “What can you do with MQSeries products?” on page 9

What is message queuing?
Message queuing has been used in data processing for many years. It is most
commonly used today in electronic mail. Without queuing, sending an electronic
message over long distances requires every node on the route to be available for
forwarding messages, and the addressees to be logged on and conscious of the fact
that you are trying to send them a message. In a queuing system, messages are
stored at intermediate nodes until the system is ready to forward them. At their
final destination they are stored in an electronic mailbox until the addressee is
ready to read them.

Even so, many complex business transactions are processed today without
queuing. In a large network, the system might be maintaining many thousands of
connections in a ready-to-use state. If one part of the system suffers a problem,
many parts of the system become unusable.

You can think of message queuing as being electronic mail for programs. In a
message queuing environment, each program from the set that makes up an
application suite is designed to perform a well-defined, self-contained function in
response to a specific request. To communicate with another program, a program
must put a message on a predefined queue. The other program retrieves the
message from the queue, and processes the requests and information contained in
the message. So message queuing is a style of program-to-program communication.

© Copyright IBM Corp. 1993, 2000 3

Queuing is the mechanism by which messages are held until an application is
ready to process them. Queuing allows you to:
v Communicate between programs (which may each be running in different

environments) without having to write the communication code.
v Select the order in which a program processes messages.
v Balance loads on a system by arranging for more than one program to service a

queue when the number of messages exceeds a threshold.
v Increase the availability of your applications by arranging for an alternative

system to service the queues if your primary system is unavailable.

What is a message?
In message queuing, a message is simply a collection of data sent by one program
and intended for another program.

MQSeries defines four types of message:

Datagram A simple message for which no reply is expected
Request A message for which a reply is expected
Reply A reply to a request message
Report a message that describes an event such as the occurrence of an error

See “Types of message” on page 20 for more information about these messages.

Message descriptor
An MQSeries message consists of control information and application data. The
control information is defined in a message descriptor structure (MQMD) and
contains such things as:
v The type of the message
v An identifier for the message
v The priority for delivery of the message

The structure and content of the application data is determined by the
participating programs, not by MQSeries.

Message channel agent
A message channel agent moves messages from one queue manager to another.
References are made to them in this book when dealing with report messages and
you will need to consider them when designing your application. See the MQSeries
Intercommunication book for more information.

What is a message queue?
A message queue, known simply as a queue, is a named destination to which
messages can be sent. Messages accumulate on queues until they are retrieved by
programs that service those queues.

Queues reside in, and are managed by, a queue manager (see “What is a queue
manager?” on page 5). The physical nature of a queue depends on the operating
system on which the queue manager is running. A queue can either be a volatile
buffer area in the memory of a computer, or a data set on a permanent storage
device (such as a disk). The physical management of queues is the responsibility of
the queue manager and is not made apparent to the participating application
programs.

Definition of terms

4 MQSeries Application Programming Guide

Programs access queues only through the external services of the queue manager.
They can open a queue, put messages on it, get messages from it, and close the
queue. They can also set, and inquire about, the attributes of queues.

What is a queue manager?
A queue manager is a system program that provides queuing services to
applications. It provides an application programming interface so that programs
can put messages on, and get messages from, queues. A queue manager provides
additional functions so that administrators can create new queues, alter the
properties of existing queues, and control the operation of the queue manager.

For MQSeries message queuing services to be available on a system, there must be
a queue manager running:
v On OS/400, OS/390, OS/2, Windows NT, Digital OpenVMS, and UNIX systems,

you can have more than one queue manager running on a single system (for
example, to separate a test system from a “live” system). To an application, each
queue manager is identified by a connection handle (Hconn).

v On the VSE/ESA and Windows platforms, you can have only one queue
manager running on a single system. Hconn is still used, but only to give
compatibility with other MQSeries platforms.

Many different applications can make use of the queue manager’s services at the
same time and these applications can be entirely unrelated. For a program to use
the services of a queue manager, it must establish a connection to that queue
manager.

For applications to be able to send messages to applications that are connected to
other queue managers, the queue managers must be able to communicate among
themselves. MQSeries implements a store-and-forward protocol to ensure the safe
delivery of messages between such applications.

What is a cluster?
A cluster is a network of queue managers that are logically associated in some way.
Clustering is available to queue managers on the following platforms:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V2.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another
it must have defined a transmission queue, a channel to the remote queue
manager, and a remote queue definition for every queue to which it wants to send
messages.

If you group queue managers in a cluster, the queue managers can make the
queues that they host available to every other queue manager in the cluster. Then,
assuming you have the necessary network infrastructure in place, any queue

Definition of terms

Chapter 1. Introduction to message queuing 5

|
|
|
|

|
|
|

|

manager can send a message to any other queue manager in the same cluster
without the need for explicit channel definitions, remote queue definitions, or
transmission queues.

There are two quite different reasons for using clusters: to reduce system
administration and to improve availability and workload balancing.

As soon as you establish even the smallest cluster you will benefit from simplified
system administration. Queue managers that are part of a cluster need fewer
definitions and so the risk of making an error in your definitions is reduced.

For details of all aspects of clustering, see the MQSeries Queue Manager Clusters
book, SC34-5349.

What is an MQSeries client?
An MQSeries client is an independently installable component of an MQSeries
product. It allows you to run MQSeries applications, by means of a
communications protocol, to interact with one or more Message Queue Interface
(MQI) servers on other platforms and to connect to their queue managers.

For full details on how to install the MQSeries client component and use the
environment, see the MQSeries Clients book.

Main features of message queuing
The main features of applications that use message queuing techniques are:
v There are no direct connections between programs.
v Communication between programs can be time-independent.
v Work can be carried out by small, self-contained programs.
v Communication can be driven by events.
v Applications can assign a priority to a message.
v Security.
v Data integrity.
v Recovery support.

No direct connections between programs
Message queuing is a technique for indirect program-to-program
communication. It can be used within any application where programs
communicate with each other. Communication occurs by one program
putting messages on a queue (owned by a queue manager) and another
program getting the messages from the queue.

Programs can get messages that were put on a queue by other programs.
The other programs can be connected to the same queue manager as the
receiving program, or to another queue manager. This other queue
manager might be on another system, a different computer system, or even
within a different business or enterprise.

There are no physical connections between programs that communicate
using message queues. A program sends messages to a queue owned by a
queue manager, and another program retrieves messages from the queue
(see Figure 1 on page 7).

Definition of terms

6 MQSeries Application Programming Guide

As with electronic mail, the individual messages that may be part of a
transaction, travel through a network on a store-and-forward basis. If a
link between nodes fails, the message is kept until the link is restored, or
the operator or program redirects the message.

The mechanism by which a message moves from queue to queue is hidden
from the programs. Therefore the programs are simpler.

Time-independent communication
Programs requesting others to do work do not have to wait for the reply to
a request. They can do other work, and process the reply either when it
arrives or at a later time. When writing a messaging application, you need
not know (or be concerned) when a program sends a message, or when the
target is able to receive the message. The message is not lost; it is retained
by the queue manager until the target is ready to process it. The message
stays on the queue until it is removed by a program.

Small programs
Message queuing allows you to exploit the advantages of using small,
self-contained programs. Instead of a single, large program performing all
the parts of a job sequentially, you can spread the job over several smaller,
independent programs. The requesting program sends messages to each of
the separate programs, asking them to perform their function; when each
program is complete, the results are sent back as one or more messages.

Program A Program B

Traditional communication between programs

Comms code Comms code

Networking software

Program BProgram A

MQSeries

Comms code

(Queue Manager)

Communication by message queuing

Networking software

Figure 1. Message queuing compared with traditional communication

Main features

Chapter 1. Introduction to message queuing 7

Event-driven processing
Programs can be controlled according to the state of queues. For example,
you can arrange for a program to start as soon as a message arrives on a
queue, or you can specify that the program does not start until there are,
for example, 10 messages above a certain priority on the queue, or 10
messages of any priority on the queue.

Message priority
A program can assign a priority to a message when it puts the message on
a queue. This determines the position in the queue at which the new
message is added.

Programs can get messages from a queue either in the order in which the
messages appear in the queue, or by getting a specific message. (A
program may want to get a specific message if it is looking for the reply to
a request it sent earlier.)

Security
Authorization checks are carried out on each resource, using the tables that
are set up and maintained by the MQSeries administrator.
v RACF® or other external security managers may be used within

MQSeries for OS/390.
v There is no authorization checking within MQSeries for OS/2 Warp;

however, an interface is provided to enable you to build and install your
own.

v Within MQSeries on UNIX systems, AS/400, Compaq (DIGITAL)
OpenVMS, Tandem NonStop Kernel, and Windows NT, a security
manager, the Object Authority Manager (OAM), is provided as an
installable service. By default, the OAM is active.

v On VSE/ESA, security is provided by CICS.

Data integrity
Data integrity is provided via units of work. The synchronization of the
start and end of units of work is fully supported as an option on each
MQGET/MQPUT, allowing the results of the unit of work to be committed
or rolled back. Syncpoint support operates either internally or externally to
MQSeries depending on the form of syncpoint coordination selected for the
application.

Recovery support
For recovery to be possible, all persistent MQSeries updates are logged.
Hence, in the event that recovery is necessary, all persistent messages will
be restored, all in-flight transactions will be rolled back and any syncpoint
commit and backouts will be handled in the normal way of the syncpoint
manager in control. For more information on persistent messages, see
“Message persistence” on page 30.

MQSeries clients and servers
A server application will not have to be changed to be able to support additional
MQSeries clients on new platforms.

Similarly, the MQSeries client will, without change, be able to function with
additional types of server. See the MQSeries Clients book for more information.

Main features

8 MQSeries Application Programming Guide

Benefits of message queuing to the application designer and
developer

Some of the benefits of message queuing are:
v You can design applications using small programs that you can share between

many applications.
v You can quickly build new applications by reusing these building blocks.
v Applications written to use message queuing techniques are not affected by

changes in the way queue managers work.
v You do not need to use any communication protocols. The queue manager deals

with all aspects of communication for you.
v Programs that receive messages need not be running at the time messages are

sent to them. The messages are retained on queues.

Designers can reduce the cost of their applications because development is faster,
fewer developers are needed, and demands on programming skill are lower than
those for applications that do not use message queuing.

What can you do with MQSeries products?
MQSeries products are queue managers and application enablers. They support the
IBM Message Queue Interface (MQI) through which programs can put messages
on a queue and get messages from a queue.

MQSeries for OS/390
With MQSeries for OS/390 you can write applications that:
v Use message queuing within CICS or IMS.
v Send messages between batch, CICS, and IMS applications, selecting the most

appropriate environment for each function.
v Send messages to applications that run on other MQSeries platforms.
v Process several messages together as a single unit of work that can be

committed or backed out.
v Send messages to and interact with IMS applications by means of the IMS

bridge.
v Participate in units of work coordinated by RRS.

See “Appendix A. Language compilers and assemblers” on page 423 for details of
the supported programming languages.

Each environment within OS/390 has its own characteristics, advantages, and
disadvantages. The advantage of MQSeries for OS/390 is that applications are not
tied to any one environment, but can be distributed to take advantage of the
benefits of each environment. For example, you can develop end-user interfaces
using TSO or CICS, you can run processing-intensive modules in OS/390 batch,
and you can run database applications in IMS or CICS. In all cases, the various
parts of the application can communicate using messages and queues.

Designers of MQSeries applications must be aware of the differences and
limitations imposed by these environments. For example:
v MQSeries provides facilities that allow intercommunication between queue

managers (this is known as distributed queuing).

Benefits of message queuing

Chapter 1. Introduction to message queuing 9

v Methods of committing and backing out changes differ between the batch and
CICS environments.

v MQSeries for OS/390 provides support in the IMS environment for online
message processing programs (MPPs), interactive fast path programs (IFPs), and
batch message processing programs (BMPs). If you are writing batch DL/I
programs, follow the guidance given in this book for OS/390 batch programs.

v Although multiple instances of MQSeries for OS/390 can exist on a single
OS/390 system, a CICS region can connect to only one queue manager at a time.
However, more than one CICS region can be connected to the same queue
manager. In the IMS and OS/390 batch environments, programs can connect to
more than one queue manager.

The differences between the supported environments, and their limitations, are
discussed further in “Chapter 15. Using and writing applications on MQSeries for
OS/390” on page 207.

MQSeries for non-OS/390 platforms
With MQSeries for non-OS/390 platforms you can write applications that:
v Send messages to other applications running under the same operating systems.

The applications can be on either the same or another system.
v Send messages to applications that run on other MQSeries platforms.
v Use message queuing from within CICS Transaction Server for OS/2, CICS for

AS/400, TXSeries for AIX, TXSeries for HP-UX, CICS for Siemens Nixdorf
SINIX, TXSeries for Sun Solaris, and TXSeries for Windows NT, DOS, and
Windows 3.1 applications.

v Use message queuing from within Encina for AIX, HP-UX, SINIX, Sun Solaris,
and Windows NT.

v Use message queuing from within Sybase for AIX, Sun Solaris, and Windows
NT.

v Use message queuing from within Tuxedo for AIX, AT&T, HP-UX, SINIX and
DC/OSx, Sun Solaris, and Windows NT.

v MQSeries can act as a transaction manager, and will coordinate updates made
by external resource managers within MQSeries units of work. These external
resource managers must comply to the X/OPEN XA interface.

v Process several messages together as a single unit of work that can be
committed or backed out.

v Run from a full MQSeries environment, or run from an MQSeries client
environment on the following platforms:
– AS/400
– Digital OpenVMS
– DOS
– OS/2
– UNIX systems
– VM/ESA®

– Windows NT
– Windows 3.1
– Windows 95 and Windows 98

See “Appendix A. Language compilers and assemblers” on page 423 for details of
the supported programming languages.

Uses of MQSeries

10 MQSeries Application Programming Guide

Chapter 2. Overview of application design

This chapter introduces the design of MQSeries applications, under these headings:
v “Planning your design”
v “Using MQSeries objects” on page 12
v “Designing your messages” on page 13
v “MQSeries techniques” on page 14
v “Application programming” on page 15
v “Testing MQSeries applications” on page 18

These subjects are discussed in greater detail in the remaining chapters of this
book.

Planning your design
When you have decided how your applications are able to take advantage of the
platforms and environments available to you, you need to decide how to use the
features offered by MQSeries. Some of the key aspects are:

What types of queue should you use?
Do you want to create a queue each time you need one, or do you want to
use queues that have already been set up? Do you want to delete a queue
when you have finished using it, or is it going to be used again? Do you
want to use alias queues for application independence? To see what types
of queues are supported, refer to “Queues” on page 36.

What types of message should you use?
You may want to use datagrams for simple messages, but request messages
(for which you expect replies) for other situations. You may want to assign
different priorities to some of your messages.

How can you control your MQSeries programs?
You may want to start some programs automatically or make programs
wait until a particular message arrives on a queue, (using the MQSeries
triggering feature, see “Chapter 14. Starting MQSeries applications using
triggers” on page 185). Alternatively, you may want to start up another
instance of an application when the messages on a queue are not getting
processed fast enough (using the MQSeries instrumentation events feature as
described in the MQSeries Programmable System Management book).

Will your application run on an MQSeries client?
The full MQI is supported in the client environment and this enables
almost any MQSeries application to be relinked to run on an MQSeries
client. Link the application on the MQSeries client to the MQIC library,
rather than to the MQI library. The exceptions are:
v An application that needs syncpoint coordination with other resource

managers.
v Get(signal) on OS/390 is not supported.

Note: An application running on an MQSeries client may connect to more
than one queue manager concurrently, or use a queue manager
name with an asterisk (*) on an MQCONN or MQCONNX call. The

© Copyright IBM Corp. 1993, 2000 11

application will have to be changed if you want to link to the queue
manager libraries instead of the client libraries, as this function will
not be available.

See the MQSeries Clients book for more information.

How can you secure your data and maintain its integrity?
You can use the context information that is passed with a message to test
that the message has been sent from an acceptable source. You can use the
syncpointing facilities provided by MQSeries or your operating system to
ensure that your data remains consistent with other resources (see
“Chapter 13. Committing and backing out units of work” on page 171 for
further details). You can use the persistence feature of MQSeries messages to
assure the delivery of important messages.

How should you handle exceptions and errors?
You need to consider how to process messages that cannot be delivered,
and how to resolve error situations that are reported to you by the queue
manager. For some reports, you must set report options on MQPUT.

The remainder of this chapter introduces the features and techniques that
MQSeries provides to help you answer questions like these.

Using MQSeries objects
The MQI uses the following types of object:
v Queue managers
v Queues
v Namelists (MQSeries for OS/390 and MQSeries Version 5.1 products only)
v Process definitions
v Channels
v Storage classes (OS/390 only)

These objects are discussed in “Chapter 4. MQSeries objects” on page 35.

Each object is identified by an object descriptor (MQOD), which you use when you
write MQSeries programs. However, with the exception of dynamic queues, these
objects must be defined to the queue manager before you can work with them.

You define objects using:
v The PCF commands described in the MQSeries Programmable System Management

book (not on OS/390 or VSE/ESA)
v The MQSC commands described in the MQSeries Command Reference manual (not

on VSE/ESA)
v The MQSeries for OS/390 operations and control panels, described in the

MQSeries for OS/390 System Management Guide

v The MQSeries Explorer or MQSeries Web Administration (Windows NT only)
v The MQSeries Master Terminal (MQMT) transaction (VSE/ESA only)

You can also display or alter the attributes of objects, or delete the objects.

Alternatively, for sequences of MQSeries for OS/390 commands that you use
regularly, you can write administration programs that create messages containing
commands and that put these messages on the system-command input queue. The
queue manager processes the messages on this queue in the same way that it
processes commands entered from the command line or from the operations and

Planning your design

12 MQSeries Application Programming Guide

control panels. This technique is described in the MQSeries for OS/390 System
Management Guide, and demonstrated in the Mail Manager sample application
delivered with MQSeries for OS/390. For a description of this sample, see
“Chapter 33. Sample programs for MQSeries for OS/390” on page 373.

For sequences of MQSeries for AS/400 commands you use regularly you can write
CL programs.

For sequences of MQSeries commands on OS/2, Windows NT, and UNIX systems,
you can use the MQSC facility to run a series of commands held in a file. For
information on how to use this facility, see the MQSeries Command Reference
manual.

Designing your messages
You create a message when you use an MQI call to put the message on a queue.
As input to the call, you supply some control information in a message descriptor
(MQMD) and the data that you want to send to another program. But at the
design stage, you need to consider the following questions, because they affect the
way you create your messages:

What type of message should I use?
Are you designing a simple application in which you can send a message,
then take no further action? Or are you asking for a reply to a question? If
you are asking a question, you may include in the message descriptor the
name of the queue on which you want to receive the reply.

Do you want your request and reply messages to be synchronous? This
implies that you set a timeout period for the reply to answer your request,
and if you do not receive the reply within that period, it is treated as an
error.

Or would you prefer to work asynchronously, so that your processes do
not have to depend upon the occurrence of specific events, such as
common timing signals?

Another consideration is whether you have all your messages inside a unit
of work.

Should I assign different priorities to some of the messages I create?
You can assign a priority value to each message, and define the queue so
that it maintains its messages in order of their priority. If you do this,
when another program retrieves a message from the queue, it always gets
the message with the highest priority. If the queue does not maintain its
messages in priority order, a program that retrieves messages from the
queue will retrieve them in the order in which they were added to the
queue.

Programs can also select a message using the identifier that the queue
manager assigned when the message was put on the queue. Alternatively,
you can generate your own identifiers for each of your messages.

Will my messages be discarded when the queue manager restarts?
The queue manager preserves all persistent messages, recovering them
when necessary from the MQSeries log files, when it is restarted.
Nonpersistent messages and temporary dynamic queues are not preserved.
Any messages that you do not want discarded must be defined as
persistent at the time they are created. When writing an application for
MQSeries for OS/2 Warp, MQSeries for Windows NT, or MQSeries on

Using MQSeries objects

Chapter 2. Overview of application design 13

|
|

UNIX systems, make sure that you know how your system has been set up
in respect of log file allocation to reduce the risk of designing an
application that will run to the log file limits.

Do I want to give information about myself to the recipient of my messages?
Normally, the queue manager sets the user ID, but suitably authorized
applications can also set this field, so that you can include your own user
ID and other information that the receiving program can use for
accounting or security purposes.

MQSeries techniques
For a simple MQSeries application, you need to decide which MQSeries objects to
use in your application, and which types of message you want to use. For a more
advanced application, you may want to use some of the techniques introduced in
the following sections.

Waiting for messages
A program that is serving a queue can await messages by:
v Making periodic calls on the queue to see whether a message has arrived

(polling).
v Waiting until either a message arrives, or a specified time interval expires (see

“Waiting for messages” on page 135).
v Setting a signal so that the program is informed when a message arrives

(MQSeries for OS/390 and MQSeries for Windows V2.1 only). For information
about this, see “Signaling” on page 136.

Correlating replies
In MQSeries applications, when a program receives a message that asks it to do
some work, the program usually sends one or more reply messages to the
requester. To help the requester to associate these replies with its original request,
an application can set a correlation identifier field in the descriptor of each message.
Programs should copy the message identifier of the request message into the
correlation identifier field of their reply messages.

Setting and using context information
Context information is used for associating messages with the user who generated
them, and for identifying the application that generated the message. Such
information is useful for security, accounting, auditing, and problem determination.

When you create a message, you can specify an option that requests that the queue
manager associates default context information with your message.

For more information on using and setting context information, see “Message
context” on page 32.

Starting MQSeries programs automatically
MQSeries triggering enables a program to be started automatically when messages
arrive on a queue. You can set trigger conditions on a queue so that a program is
started to process that queue:
v Every time a message arrives on the queue
v When the first message arrives on the queue
v When the number of messages on the queue reaches a predefined number

Message design

14 MQSeries Application Programming Guide

For more information on triggering, see “Chapter 14. Starting MQSeries
applications using triggers” on page 185.

Note: Triggering is just one way of starting a program automatically. For example,
you can start a program automatically on a timer using non-MQSeries
facilities.

Generating MQSeries reports
You can request the following reports within an application:
v Exception reports
v Expiry reports
v Confirm-on-arrival (COA) reports
v Confirm-on-delivery (COD) reports
v Positive action notification (PAN) reports
v Negative action notification (NAN) reports

These are described in “Report messages” on page 21.

Clusters and message affinities
Before starting to use clusters with multiple definitions for the same queue, you
must examine your applications to see whether there are any that require an
exchange of related messages. Within a cluster, a message may be routed to any
queue manager that hosts an instance of the appropriate queue. Therefore, the
logic of applications with message affinities may be upset.

For example, you may have two applications that rely on a series of messages
flowing between them in the form of questions and answers. It may be important
that all the questions are sent to the same queue manager and that all the answers
are sent back to the other queue manager. In this situation, it is important that the
workload management routine does not send the messages to any queue manager
that just happens to host an instance of the appropriate queue.

You should attempt, where possible, to remove the affinities. Removing message
affinities improves the availability and scaleability of applications.

For more information see the MQSeries Queue Manager Clusters book.

Application programming
MQSeries supports the IBM Message Queue Interface (MQI). The MQI includes a
set of calls with which you can send and receive messages, and manipulate
MQSeries objects.

Call interface
The MQI calls allow you to:
v Connect programs to, and disconnect programs from, a queue manager
v Open and close objects (such as queues, queue managers, namelists, and

processes)
v Put messages on queues
v Receive messages from a queue, or browse them (leaving them on the queue)
v Inquire about the attributes (or properties) of MQSeries objects, and set some of

the attributes of queues

MQSeries techniques

Chapter 2. Overview of application design 15

v Commit and back out changes made within a unit of work, in environments
where there is no natural syncpoint support, for example, OS/2 and UNIX
systems

v Coordinate queue manager updates and updates made by other resource
managers

The MQI provides structures (groups of fields) with which you supply input to,
and get output from, the calls. It also provides a large set of named constants to
help you supply options in the parameters of the calls. The definitions of the calls,
structures, and named constants are supplied in data definition files for each of the
supported programming languages. Also, default values are set within the MQI
calls.

Design for performance - hints and tips
Here are a few ideas to help you design efficient applications:
v Design your application so that processing goes on in parallel with a user’s

thinking time:
– Display a panel and allow the user to start typing while the application is still

initializing.
– Don’t be afraid to get the data you need in parallel from different servers.

v Keep connections and queues open if you are going to reuse them instead of
repeatedly opening and closing, connecting and disconnecting.

Note: However, a server application which is putting only one message should
use MQPUT1.

v Keep your messages within a unit of work, so that they can be committed or
backed out simultaneously.

v Use the nonpersistent option for messages that do not need to be recoverable.

Programming platforms
MQSeries for OS/390

MQSeries for OS/390 operates under OS/390 Version 2.4 and subsequent
compatible releases. You can run MQSeries for OS/390 programs in the
CICS Transaction Server for OS/390, CICS for MVS/ESA, IMS/ESA, and
OS/390 environments. See “Appendix A. Language compilers and
assemblers” on page 423 for details of the programming languages
supported by MQSeries for OS/390.

UNIX systems
MQSeries for AIX operates under AIX Version 4.2, Version 4.3.x, and
subsequent compatible releases. You can run MQSeries for AIX programs
from within CICS for AIX, TXSeries for AIX, Encina for AIX, and Tuxedo
for AIX. Applications using threads are supported by MQSeries for AIX.

MQSeries for AT&T GIS UNIX operates under AT&T GIS UNIX Version 3 2

and subsequent compatible releases. You can run MQSeries for AT&T GIS
UNIX programs from within Tuxedo for AT&T.

MQSeries for Compaq (DIGITAL) OpenVMS operates under VMS Version
6.2 and VMS Version 7.1.

2. This platform has become NCR UNIX SVR4 MP-RAS, R3.0.

Application programming

16 MQSeries Application Programming Guide

MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX) operates under
DIGITAL UNIX Version 4.0.D, or later 4.0.x. Applications using threads are
supported by MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX).

MQSeries for HP-UX operates under HP-UX Version 10.20 and Version
11.0. You can run MQSeries for HP-UX programs from within TXSeries,
Encina, and Tuxedo for HP-UX. Applications using threads are supported
by MQSeries for HP-UX.

MQSeries for SINIX and DC/OSx operates under SINIX and DC/OSx
Version 2.1 and subsequent compatible releases. You can run MQSeries for
SINIX and DC/OSx programs from within CICS for Siemens Nixdorf
SINIX, and Tuxedo for SINIX and DC/OSx. You can also run MQSeries for
SINIX programs from within Encina for SINIX.

MQSeries for Sun Solaris operates under Sun Solaris Version 2.6 (with
patches 105210-13 and 105568-10), Version 7, and subsequent compatible
releases. You can run MQSeries for Sun Solaris programs from within
CICS, TXSeries, Encina, and Tuxedo for Sun Solaris. Applications using
threads are supported by MQSeries for Sun Solaris.

See “Appendix A. Language compilers and assemblers” on page 423 for
details of the programming languages supported by MQSeries on UNIX
systems.

MQSeries for AS/400
MQSeries for AS/400 operates under OS/400 Version 4 Release 4 and
subsequent compatible releases. You can run MQSeries for AS/400
programs in the CICS for AS/400 environment. See “Appendix A.
Language compilers and assemblers” on page 423 for details of the
programming languages supported by MQSeries for AS/400. Applications
using threads are supported by MQSeries for AS/400.

MQSeries for OS/2 Warp
MQSeries for OS/2 Warp operates under OS/2 Warp Version 4.0, OS/2
Warp Server V4.0, OS/2 Warp Server Advanced SMP feature, OS/2
Workspace On-Demand, OS/2 e-business Server, and subsequent
compatible releases. You can run MQSeries for OS/2 Warp programs in the
CICS and CICS Transaction Server environment. See “Appendix A.
Language compilers and assemblers” on page 423 for details of the
programming languages supported by MQSeries for OS/2 Warp.

MQSeries for Tandem NonStop Kernel
MQSeries for Tandem NonStop Kernel operates under Tandem NSK
operating system version D3x, D4x, G02, or later G0x with TMF and
PATHWAY. See “Appendix A. Language compilers and assemblers” on
page 423 for details of the programming languages supported by MQSeries
for Tandem NonStop Kernel.

MQSeries for VSE/ESA
MQSeries for VSE/ESA V2.1 operates under VSE/ESA V2.3 and
subsequent compatible releases, with CICS for VSE/ESA V2.3. See
“Appendix A. Language compilers and assemblers” on page 423 for details
of the programming languages supported by MQSeries for VSE/ESA.

MQSeries for Windows
MQSeries for Windows V2.0 operates under Windows Version 3.1,
Windows 95, and the WIN-OS/2 environment within OS/2. MQSeries for
Windows V2.1 operates under Windows 95, Windows 98, and Windows

Application programming

Chapter 2. Overview of application design 17

|
|
|

|
|
|
|
|
|

|
|
|
|
|

NT V4. See “Appendix A. Language compilers and assemblers” on
page 423 for details of the programming languages supported by MQSeries
for Windows.

MQSeries for Windows NT
MQSeries for Windows NT operates under Windows NT Version 4.0
(service pack 4) and subsequent compatible releases. You can run MQSeries
for Windows NT programs from within CICS, TXSeries, Encina, and
Tuxedo for Windows NT. See “Appendix A. Language compilers and
assemblers” on page 423 for details of the programming languages
supported by MQSeries for Windows NT.

Applications for more than one platform
Will your application run on more than one platform? Do you have a strategy to
move to a different platform from the one you use today? If the answer to either of
these questions is “yes,” you need to make sure that you code your programs for
platform independence.

If you are using C, make sure that you code in ANSI standard C. Use a standard C
library function rather than an equivalent platform-specific function even if the
platform-specific function is faster or more efficient. The exception is when
efficiency in the code is paramount, when you should code for both situations
using #ifdef. For example:
#ifdef _OS2

OS/2 specific code
#else

generic code
#endif

When the time comes to move the code to another platform, you can now search
the source for #ifdef with the platform specific identifiers, in this example _OS2,
and add or change code as necessary.

It is worth considering keeping portable code in separate source files from the
platform-specific code, and using a simple naming convention to split the
categories.

Testing MQSeries applications
The application development environment for MQSeries programs is no different
from that for any other application, so you can use the same development tools as
well as the MQSeries trace facilities. This is most noticeable on OS/2 and UNIX
systems where there is a wide selection.

When testing CICS applications with MQSeries for OS/390, you can use the CICS
Execution Diagnostic Facility (CEDF). CEDF traps the entry and exit of every MQI
call as well as calls to all CICS services. Also, in the CICS environment, you can
write an API-crossing exit program to provide diagnostic information before and
after every MQI call. For information on how to do this, see “Chapter 15. Using
and writing applications on MQSeries for OS/390” on page 207.

When testing AS/400 applications, you can use the Extended Program Model
Debugger. To start this, use the STRDBG command.

Application programming

18 MQSeries Application Programming Guide

Chapter 3. MQSeries messages

An MQSeries message consists of two parts:
v Message descriptor
v Application data

Figure 2 represents a message and shows how it is logically divided into message
data and application data.

The application data carried in an MQSeries message is not changed by a queue
manager unless data conversion is carried out on it. Also, MQSeries does not put
any restrictions on the content of this data. The length of the data in each message
cannot exceed the value of the MaxMsgLength attribute of both the queue and queue
manager. In MQSeries for AIX, MQSeries for AS/400, MQSeries for HP-UX,
MQSeries for OS/2 Warp, MQSeries for Sun Solaris, and MQSeries for Windows
NT, the MaxMsgLength defaults to 100 MB (104 857 600 bytes). In MQSeries for
AT&T GIS UNIX, MQSeries for Compaq (DIGITAL) OpenVMS, MQSeries for
DIGITAL UNIX (Compaq Tru64 UNIX), MQSeries for OS/390, MQSeries for SINIX
and DC/OSx, MQSeries for Tandem NonStop Kernel, MQSeries for VSE/ESA,
16-bit Windows, and 32-bit Windows, the MaxMsgLength defaults to 4 MB (4 194
304 bytes). However, you should make your messages slightly shorter than the
value of the MaxMsgLength attribute in some circumstances. See “The data in your
message” on page 105 for more information.

You create a message when you use the MQPUT or MQPUT1 MQI call. As input
to these calls, you supply the control information (such as the priority of the
message, and the name of a reply queue) and your data. These calls put the
message on a queue. See the MQSeries Application Programming Reference manual
for more information on these calls.

This chapter introduces MQSeries messages, under these headings:
v “Message descriptor” on page 20
v “Types of message” on page 20
v “Format of message control information and message data” on page 25
v “Message priorities” on page 28
v “Message groups” on page 28
v “Message persistence” on page 30
v “Selecting messages from queues” on page 30
v “Messages that fail to be delivered” on page 31
v “Messages that are backed out” on page 31
v “Reply-to queue and queue manager” on page 32
v “Message context” on page 32

Message ID Control information . . . Name Account name

Message descriptor Application data
(MQMD)

Amount requested . . .

Figure 2. Representation of a message

© Copyright IBM Corp. 1993, 2000 19

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Message descriptor
You can access message control information using the MQMD structure, which
defines the message descriptor. For a full description of the MQMD structure, see the
MQSeries Application Programming Reference manual.

See “Message context” on page 32 for a description of how to use the fields within
the MQMD that contain information about the origin of the message.

Additional information for grouping and segmenting messages (see “Message
groups” on page 28) is provided in Version 2 of the Message Descriptor (or the
MQMDE). This is the same as the Version 1 Message Descriptor but has additional
fields as described in the MQSeries Application Programming Reference manual.

Types of message
There are four types of message defined by MQSeries:
v Datagram
v Request
v Reply
v Report

Applications can use the first three types of messages to pass information between
themselves. The fourth type, report, is for applications and queue managers to use
to report information about events such as the occurrence of an error.

Each type of message is identified by an MQMT_* value. You can also define your
own types of message. For the range of values you can use, see the description of
the MsgType field in the MQSeries Application Programming Reference manual.

Datagrams
You should use a datagram when you do not require a reply from the application
that receives the message (that is, gets the message from the queue).

An example of an application that could use datagrams is one that displays flight
information in an airport lounge. A message could contain the data for a whole
screen of flight information. Such an application is unlikely to request an
acknowledgement for a message because it probably does not matter if a message
is not delivered. The application will send an update message after a short period
of time.

Request messages
You should use a request message when you want a reply from the application that
receives the message.

An example of an application that could use request messages is one that displays
the balance of a checking account. The request message could contain the number
of the account, and the reply message would contain the account balance.

If you want to link your reply message with your request message, there are two
options:
v You can give your application the responsibility of ensuring that it puts

information into the reply message that relates to the request message.

Message descriptor

20 MQSeries Application Programming Guide

v You can use the report field in the message descriptor of your request message
to specify the content of the MsgId and CorrelId fields of the reply message:
– You can request that either the MsgId or the CorrelId of the original message

is to be copied into the CorrelId field of the reply message (the default action
is to copy MsgId).

– You can request that either a new MsgId is generated for the reply message, or
that the MsgId of the original message is to be copied into the MsgId field of
the reply message (the default action is to generate a new message identifier).

Reply messages
You should use a reply message when you reply to another message.

When you create a reply message, you should respect any options that were set in
the message descriptor of the message to which you are replying. Report options
specify the content of the message identifier (MsgId) and correlation identifier
(CorrelId) fields. These fields allow the application that receives the reply to
correlate the reply with its original request.

Report messages
Report messages inform applications about events such as the occurrence of an error
when processing a message. They can be generated by:
v A queue manager,
v A message channel agent (for example, if they cannot deliver the message),

or
v An application (for example, if it cannot use the data in the message).

Note that report messages can be generated at any time, and they may arrive on a
queue when your application is not expecting them.

Types of report message
When you put a message on a queue, you can select to receive:
v An exception report message. This is sent in response to a message that had the

exceptions flag set. It is generated by the message channel agent (MCA) or the
application.

v An expiry report message. This indicates that an application attempted to retrieve
a message that had reached its expiry threshold; the message is marked to be
discarded. This type of report is generated by the queue manager.

v A confirmation of arrival (COA) report message. This indicates that the message has
reached its target queue. It is generated by the queue manager.

v A confirmation of delivery (COD) report message. This indicates that the message
has been retrieved by a receiving application. It is generated by the queue
manager.

v A positive action notification (PAN) report message. This indicates that a request has
been successfully serviced (that is, the action requested in the message has been
performed successfully). This type of report is generated by the application.

v A negative action notification (NAN) report message. This indicates that a request
has not been successfully serviced (that is, the action requested in the message
has not been performed successfully). This type of report is generated by the
application.

Note: Each type of report message contains one of the following:

Types of message

Chapter 3. MQSeries messages 21

v The entire original message
v The first 100 bytes of data in the original message
v No data from the original message

You may request more than one type of report message when you put a message
on a queue. If you select the delivery confirmation report message and the
exception report message options, in the event that the message fails to be
delivered, you will receive an exception report message. However, if you select
only the delivery confirmation report message option and the message fails to be
delivered, you will not get an exception report message.

The report messages you request, when the criteria for generating a particular
message are met, are the only ones you will receive.

Report message options
You have the option to discard a message after an exception has arisen. If you
select the discard option, and have requested an exception report message, the
report message goes to the ReplyToQ and ReplyToQMgr, and the original message is
discarded.

Note: A benefit of this is you can reduce the number of messages going to the
dead-letter queue. However, it does mean that your application, unless it
sends only datagram messages, has to deal with returned messages. When
an exception report message is generated, it inherits the persistence of the
original message.

If a report message cannot be delivered (if the queue is full, for instance), the
report message will be placed on the dead-letter queue.

If you wish to receive a report message, you must specify the name of your
reply-to queue in the ReplyToQ field; otherwise the MQPUT or MQPUT1 of your
original message will fail with MQRC_MISSING_REPLY_TO_Q.

You can use other report options in the message descriptor (MQMD) of a message
to specify the content of the MsgId and CorrelId fields of any report messages that
are created for the message:
v You can request that either the MsgId or the CorrelId of the original message is

to be copied into the CorrelId field of the report message. The default action is
to copy the message identifier. MQRO_COPY_MSG_ID_TO_CORRELID should
be used because it enables the sender of a message to correlate the reply or
report message with the original message. The correlation identifier of the reply
or report message will be identical to the message identifier of the original
message.

v You can request that either a new MsgId is generated for the report message, or
that the MsgId of the original message is to be copied into the MsgId field of the
report message. The default action is to generate a new message identifier.
MQRO_NEW_MSG_ID should be used because it ensures that each message in
the system has a different message identifier, and therefore can be distinguished
unambiguously from all other messages in the system.

v Specialized applications may need to use MQRO_PASS_MSG_ID and, or
MQRO_PASS_CORREL_ID. However, the application that reads the messages
from the queue may need careful design in order to ensure that it will work
correctly. In particular when the queue contains multiple messages with the
same message identifier.

Types of message

22 MQSeries Application Programming Guide

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

Server applications should check the settings of these flags in the request
message, and set the MsgId and CorrelId fields in the reply or report message
appropriately.
Applications which act as intermediaries between a requester application and a
server application should not need to check the settings of these flags. This is
because these applications usually need to forward the message to the server
application with the MsgId, CorrelId, and Report fields unchanged. This allows
the server application to copy the MsgId from the original message in the
CorrelId field of the reply message.

When generating a report about a message, server applications should test to see if
any of these options have been set.

For more information on how to use report messages, see the description of the
Report field in the MQSeries Application Programming Reference manual.

To indicate the nature of the report, queue managers use a range of feedback
codes. They put these codes in the Feedback field of the message descriptor of a
report message. Queue managers can also return MQI reason codes in the Feedback
field. MQSeries defines a range of feedback codes for applications to use.

For more information on feedback and reason codes, see the description of the
Feedback field in the MQSeries Application Programming Reference manual.

An example of a program that could use a feedback code is one that monitors the
work loads of other programs serving a queue. If there is more than one instance
of a program serving a queue, and the number of messages arriving on the queue
no longer justifies this, such a program could send a report message (with the
feedback code MQFB_QUIT) to one of the serving programs to indicate that the
program should terminate its activity. (A monitoring program could use the
MQINQ call to find out how many programs are serving a queue.)

Reports and segmented messages
Segmented messages are supported on MQSeries Version 5 products only.

If a message is segmented (see “Message segmentation” on page 130 for a
description of this) and you ask for reports to be generated, you may receive more
reports than you would have done had the message not been segmented.

MQSeries-generated reports
If you segment your messages or allow the queue manager to do so, there is only
one case in which you can expect to receive a single report for the entire message.
This is when you have requested only COD reports, and you have specified
MQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports;
usually one for each segment.

Note: If you segment your messages, and you need only the first 100 bytes of the
original message data to be returned, you must change the setting of the
report options to ask for reports with no data for segments that have an
offset of 100 or more. If you do not do this, and you leave the setting so that
each segment requests 100 bytes of data, and you retrieve the report
messages with a single MQGET specifying MQGMO_COMPLETE_MSG, the
reports assemble into a large message containing 100 bytes of read data at

Types of message

Chapter 3. MQSeries messages 23

|
|
|

|
|
|
|
|
|

|

each appropriate offset. If this happens, you need a large buffer or you need
to specify MQGMO_ACCEPT_TRUNCATED_MSG.

Application-generated reports
If your application generates reports, you should always copy the MQSeries
headers that are present at the start of the original message data to the report
message data. Then add none, 100 bytes, or all of the original message data (or
whatever other amount you would normally include) to the report message data.

You can recognize the MQSeries headers that must be copied by looking at the
successive Format names, starting with the MQMD and continuing through any
headers present. The following Format names indicate these MQSeries headers:
v MQMDE
v MQDLH
v MQXQH
v MQIIH
v MQH*

MQH* means any name starting with the characters MQH.

The Format name occurs at specific positions for MQDLH and MQXQH, but for the
other MQSeries headers it occurs at the same position. The length of the header is
contained in a field that also occurs at the same position for MQMDE, MQIMS and
all MQH* headers.

If you are using a Version 1 of the MQMD, and you are reporting on a segment, or
a message in a group, or a message for which segmentation is allowed, the report
data must start with an MQMDE. You should set the OriginalLength field to the
length of the original message data excluding the lengths of any MQSeries headers
that you find.

Retrieval of reports
If you ask for COA or COD reports, you can ask for them to be reassembled for
you with MQGMO_COMPLETE_MSG. An MQGET with
MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single
type, for example COA, and with the same GroupId) are present on the queue to
represent one complete original message. This is true even if the report messages
themselves do not contain the complete original data; the OriginalLength field in
each report message gives the length of original data represented by that report
message, even if the data itself is not present.

This technique can be used even if there are several different report types present
on the queue (for example, both COA and COD), because an MQGET with
MQGMO_COMPLETE_MSG reassembles report messages only if they have the
same Feedback code. Note, however, that you cannot normally use the technique
for exception reports, since in general these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has
arrived. However, in most circumstances you need to cater for the possibility that
some segments arrive while others may generate an exception (or expiry, if you
have allowed this). You cannot use MQGMO_COMPLETE_MSG in this case
because in general you may get different Feedback codes for different segments
and, as noted above, you may get more than one report for a given segment. You
can, however, use MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you may need to retrieve reports as they arrive, and build up a
picture in your application of what happened to the original message. You can use

Types of message

24 MQSeries Application Programming Guide

the GroupId field in the report message to correlate reports with the GroupId of the
original message, and the Feedback field to identify the type of each report
message. The way in which you do this depends on your application requirements.

One approach is as follows:
v Ask for COD reports and exception reports.
v After a specific time, check whether a complete set of COD reports has been

received using MQGMO_COMPLETE_MSG. If so, your application knows that
the entire message has been processed.

v If not, and exception reports relating to this message are present, the problem
should be handled just as for unsegmented messages, though provision must
also be made for ‘orphan’ segments to be cleaned up at some point.

v If there are segments for which there are no reports of any kind, the original
segments (or the reports) may be waiting for a channel to be reconnected, or the
network might be overloaded at some point. If no exception reports at all have
been received (or if you think that the ones you have may be temporary only),
you may decide to let your application wait a little longer.
As before, this is similar to the considerations you have when dealing with
unsegmented messages, except that you must also consider the possibility of
‘orphan’ segments which have to be cleaned up.

If the original message is not critical (for example, if it is a query, or a message that
can be repeated later), set an expiry time to ensure that orphan segments are
removed.

Back-level queue managers
When a report is generated by a queue manager that supports segmentation, but is
received on a queue manager that does not support segmentation, the MQMDE
structure (which identifies the Offset and OriginalLength represented by the
report) is always included in the report data, in addition to zero, 100 bytes, or all
of the original data in the message.

However, if a segment of a message passes through a queue manager that does not
support segmentation, you should be aware that if a report is generated there, the
MQMDE structure in the original message will be treated purely as data. It will
not therefore be included in the report data if zero bytes of the original data have
been requested. Without the MQMDE, the report message may not be useful.

You should therefore request at least 100 bytes of data in reports if there is a
possibility that the message might travel through a back-level queue manager.

Format of message control information and message data
The queue manager is only interested in the format of the control information
within a message, whereas applications that handle the message are interested in
the format of both the control information and the data.

Format of message control information
Control information in the character-string fields of the message descriptor must be
in the character set used by the queue manager. The CodedCharSetId attribute of
the queue manager object defines this character set. Control information must be in
this character set because when applications pass messages from one queue
manager to another, message channel agents that transmit the messages use the
value of this attribute to determine what data conversion they must perform.

Types of message

Chapter 3. MQSeries messages 25

Format of message data
You can specify any of the following:
v The format of the application data
v The character set of the character data
v The format of numeric data

To do this, use these fields:

Format This indicates to the receiver of a message the format of the application
data in the message.

When the queue manager creates a message, in some circumstances it uses
the Format field to identify the format of that message. For example, when
a queue manager cannot deliver a message, it puts the message on a
dead-letter (undelivered-message) queue. It adds a header (containing
more control information) to the message, and changes the Format field to
show this.

The queue manager has a number of built-in formats with names beginning
“MQ”, for example MQFMT_STRING. If these do not meet your needs,
you must define your own formats (user-defined formats), but you should
not use names beginning with “MQ” for these.

When you create and use your own formats, you must write a
data-conversion exit to support a program getting the message using
MQGMO_CONVERT.

CodedCharSetId
This defines the character set of character data in the message. If you want
to set this character set to that of the queue manager, you can set this field
to the constant MQCCSI_Q_MGR.

When you get a message from a queue, you should compare the value of
the CodedCharSetId field with the value that your application is expecting.
If the two values differ, you may need to convert any character data in the
message or use a data-conversion message exit if one is available.

Encoding
This describes the format of numeric message data that contains binary
integers, packed-decimal integers, and floating point numbers. It is usually
encoded according to the particular machine on which the queue manager
is running.

When you put a message on a queue, you should normally specify the
constant MQENC_NATIVE in the Encoding field. This means that the
encoding of your message data is the same as that of the machine on
which your application is running.

When you get a message from a queue, you should compare the value of
the Encoding field in the message descriptor with the value of the constant
MQENC_NATIVE on your machine. If the two values differ, you may need
to convert any numeric data in the message or use a data-conversion
message exit if one is available.

Application data conversion
Application data may need to be converted to the character set and the encoding
required by another application where different platforms are concerned. It may be
converted at the sending queue manager, or at the receiving queue manager. If the
library of built-in formats does not meet your needs, you must define your own.

Message format

26 MQSeries Application Programming Guide

The type of conversion depends on the message format which is specified in the
format field of the message descriptor, MQMD.

Conversion at the sending queue manager
You must set the CONVERT channel attribute to YES if you need the sending
message channel agent (MCA) to convert the application data.

The conversion is performed at the sending queue manager for certain built-in
formats and for user-defined formats if a suitable user exit is supplied.

Built-in formats: These include:
v Messages that are all characters (using the format name MQFMT_STRING)
v MQSeries defined messages, for example Programmable Command Formats

MQSeries uses Programmable Command Format messages for administration
messages and events (the format name used is MQFMT_ADMIN in this case).
You can use the same format (using the format name MQFMT_PCF) for your
own messages, and take advantage of the built-in data conversion.

Note: Messages with MQFMT_NONE specified are not converted.

The queue manager built-in formats all have names beginning with MQFMT. They
are listed and described in the MQSeries Application Programming Reference manual
under the Format field of the Message descriptor (MQMD).

Application-defined formats: For user-defined formats, application data
conversion must be performed by a data-conversion exit program (for more
information, see “Chapter 11. Writing data-conversion exits” on page 149). In a
client-server environment, the exit is loaded at the server and conversion takes
place there.

Conversion at the receiving queue manager
Application message data may be converted by the receiving queue manager for
the built-in formats and user-defined formats. The conversion is performed during
the processing of an MQGET call if the MQGMO_CONVERT option is specified.
For details, see the MQSeries Application Programming Reference manual.

Coded character sets
MQSeries products support the coded character sets that are provided by the
underlying operating system.

When you create a queue manager, the queue manager coded character set ID
(CCSID) used is based on that of the underlying environment. If this is a mixed
code page, MQSeries uses the SBCS part of the mixed code page as the queue
manager CCSID.

For general data conversion, if the underlying operating system supports DBCS
code pages then MQSeries is able to use it.

See the documentation for your operating system for details of the coded character
sets that it supports.

You need to consider application data conversion, format names, and user exits
when writing applications that span multiple platforms. For details of the MQGET
call, the Convert characters call, the MQGMO_CONVERT option, and the built-in
formats, see the MQSeries Application Programming Reference manual. See

Message format

Chapter 3. MQSeries messages 27

“Chapter 11. Writing data-conversion exits” on page 149 for information about
invoking and writing data-conversion exits.

Message priorities
You set the priority of a message (in the Priority field of the MQMD structure)
when you put the message on a queue. You can set a numeric value for the
priority, or you can let the message take the default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on
the queue are stored in FIFO (first in, first out) sequence, or in FIFO within priority
sequence. If this attribute is set to MQMDS_PRIORITY, messages are enqueued
with the priority specified in the Priority field of their message descriptors; but if
it is set to MQMDS_FIFO, messages are enqueued with the default priority of the
queue. Messages of equal priority are stored on the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages
being put on that queue. This value is set when the queue is created, but it can be
changed afterwards. Alias queues, and local definitions of remote queues, may
have different default priorities from the base queues to which they resolve. If
there is more than one queue definition in the resolution path (see “Name
resolution” on page 93), the default priority is taken from the value (at the time of
the put operation) of the DefPriority attribute of the queue specified in the open
command.

The value of the MaxPriority attribute of the queue manager is the maximum
priority that you can assign to a message processed by that queue manager. You
cannot change the value of this attribute. In MQSeries, the attribute has the value
9; you can create messages having priorities between 0 (the lowest) and 9 (the
highest).

Message groups
Message groups are supported on MQSeries Version 5 products only.

Messages can occur within groups. This allows ordering of messages (see “Logical
and physical ordering” on page 120), and segmentation of large messages (see
“Message segmentation” on page 130) within the same group.

The hierarchy within a group is as follows:

Group This is the highest level in the hierarchy and is identified by a GroupId. It
consists of one or more messages that contain the same GroupId. These
messages can be stored anywhere on the queue.

Note: The term “message” is used here to denote one item on a queue,
such as would be returned by a single MQGET that does not specify
MQGMO_COMPLETE_MSG.

Figure 3 on page 29 shows a group of logical messages:

Message format

28 MQSeries Application Programming Guide

|

Logical message
Logical messages within a group are identified by the GroupId and
MsgSeqNumber fields. The MsgSeqNumber starts at 1 for the first message
within a group, and if a message is not in a group, the value of the field is
1.

Logical messages within a group can be used to:
v Ensure ordering (if this is not guaranteed under the circumstances in

which the message is transmitted).
v Allow applications to group together similar messages (for example,

those that must all be processed by the same server instance).

Each message within a group consists of one physical message, unless it is
split into segments. Each message is logically a separate message, and only
the GroupId and MsgSeqNumber fields in the MQMD need bear any
relationship to other messages in the group. Other fields in the MQMD are
independent; some may be identical for all messages in the group whereas
others may be different. For example, messages in a group may have
different format names, CCSIDs, encodings, and so on.

Segment
Segments are used to handle messages that are too large for either the
putting or getting application or the queue manager (including intervening
queue managers through which the message passes). For more information
about this, see “Message segmentation” on page 130.

A segment of a message is identified by the GroupId, MsgSeqNumber, and
Offset fields. The Offset field starts at zero for the first segment within a
message.

Each segment consists of one physical message that may or may not
belong to a group (4 shows an example of messages within a group). A
segment is logically part of a single message, so only the MsgId, Offset,
and SegmentFlag fields in the MQMD should differ between separate
segments of the same message.

Figure 4 shows a group of logical messages, some of which are segmented:

Group

LOGMSG2LOGMSG1 LOGMSG3

Figure 3. Group of logical messages

Group

LOGMSG2LOGMSG1 LOGMSG3

SEG1 SEG3SEG2SEG1 SEG2

Figure 4. Segmented messages

Message groups

Chapter 3. MQSeries messages 29

For a description of logical and physical messages, see “Logical and physical
ordering” on page 120. For further information about segmenting messages, see
“Message segmentation” on page 130.

Message persistence
Persistent messages are written out to logs and queue data files. If a queue
manager is restarted after a failure, it recovers these persistent messages as
necessary from the logged data. Messages that are not persistent are discarded if a
queue manager stops, whether the stoppage is as a result of an operator command
or because of the failure of some part of your system.

When you create a message, if you initialize the message descriptor (MQMD)
using the defaults, the persistence for the message will be taken from the
DefPersistence attribute of the queue specified in the MQOPEN command.
Alternatively, you may set the persistence of the message using the Persistence
field of the MQMD structure to define the message as persistent or not persistent.

The performance of your application is affected when you use persistent messages;
the extent of the effect depends on the performance characteristics of the machine’s
I/O subsystem and how you use the syncpoint options on each platform:
v A persistent message, outside the current unit of work, is written to disk on

every put and get operation. See “Chapter 13. Committing and backing out units
of work” on page 171.

v In MQSeries on UNIX systems, MQSeries for Compaq (DIGITAL) OpenVMS,
MQSeries for OS/390, MQSeries for OS/2 Warp, MQSeries for VSE/ESA, and
MQSeries for Windows NT, a persistent message within the current unit of work
is logged only when the unit of work is committed (and the unit of work could
contain many queue operations).

Nonpersistent messages can be used for fast messaging if retrieved outside
syncpoint. See the MQSeries Application Programming Reference and the MQSeries
Intercommunication books for further information about fast messages.

Selecting messages from queues
To get a particular message from a queue, you need to use the MsgId and CorrelId
fields of the message descriptor. If you specify Version 2 of the MQMD, the
GroupId can also be used. (See “Getting a particular message” on page 127.)

The message identifier is usually generated by the queue manager when the
message is put on a queue. The queue manager tries to ensure that message
identifiers are unique. However, an MQSeries application can specify a particular
value for the message identifier.

You can use the correlation identifier in any way you like. However, an intended
use of this field is for applications to copy the message identifier of a request
message into the CorrelId field of a reply message.

The group identifier is usually generated by the queue manager when the first
message of a group is put onto a queue. The MsgSeqNumber field identifies the
position of the message within the group and the Offset field identifies the
segments within the message.

Message groups

30 MQSeries Application Programming Guide

Where more than one message meets the combined selection criteria, the
MsgDeliverySequence attribute of the queue determines whether messages are
selected in FIFO (first in, first out) or priority order. When messages have equal
priority, they are selected in FIFO order. For more information, see “The order in
which messages are retrieved from a queue” on page 120.

For an example of an application that uses correlation identifiers, see “The Credit
Check sample” on page 403.

Messages that fail to be delivered
When a queue manager is unable to put a message on a queue, you have various
options. You can:
v Attempt to put the message on the queue again.
v Request that the message is returned to the sender.
v Put the message on the dead-letter queue.

See “Chapter 5. Handling program errors” on page 47 for more information.

Messages that are backed out
When processing messages from a queue under the control of a unit of work, the
unit of work could consist of one or more messages. If a backout occurs, the
messages which were retrieved from the queue are reinstated on the queue, and
they can be processed again in another unit of work. If the processing of a
particular message is causing the problem, the unit of work is backed out again.
This could cause a processing loop. Messages which were put to a queue are
removed from the queue.

An application can detect messages that are caught up in such a loop by testing
the BackoutCount field of MQMD. The application can either correct the situation,
or issue a warning to an operator.

In MQSeries for OS/390, to ensure that the back-out count survives restarts of the
queue manager, set the HardenGetBackout attribute to
MQQA_BACKOUT_HARDENED; otherwise, if the queue manager has to restart, it
does not maintain an accurate back-out count for each message. Setting the
attribute this way adds the penalty of extra processing.

In MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for Windows NT,
MQSeries for Compaq (DIGITAL) OpenVMS, and MQSeries on UNIX systems, the
back-out count always survives restarts of the queue manager. Any change to the
HardenGetBackout attribute is ignored.

Note: In MQSeries for VSE/ESA, the BackoutCount field is reserved and so cannot
be used as described here.

For more information on committing and backing out messages, see “Chapter 13.
Committing and backing out units of work” on page 171.

Message selection

Chapter 3. MQSeries messages 31

Reply-to queue and queue manager
There are occasions when you may receive messages in response to a message you
send:
v A reply message in response to a request message
v A report message about an unexpected event or expiry
v A report message about a COA (Confirmation Of Arrival) or a COD

(Confirmation Of Delivery) event
v A report message about a PAN (Positive Action Notification) or a NAN

(Negative Action Notification) event

Using the MQMD structure, specify the name of the queue to which you want
reply and report messages sent, in the ReplyToQ field. Specify the name of the
queue manager that owns the reply-to queue in the ReplyToQMgr field.

If you leave the ReplyToQMgr field blank, the queue manager sets the contents of
the following fields in the message descriptor on the queue:

ReplyToQ
If ReplyToQ is a local definition of a remote queue, the ReplyToQ field is set
to the name of the remote queue; otherwise this field is not changed.

ReplyToQMgr
If ReplyToQ is a local definition of a remote queue, the ReplyToQMgr field is
set to the name of the queue manager that owns the remote queue;
otherwise the ReplyToQMgr field is set to the name of the queue manager to
which your application is connected.

Note: You can request that a queue manager makes more than one attempt to
deliver a message, and you can request that the message is discarded if it
fails. If the message, after failing to be delivered, is not to be discarded, the
remote queue manager puts the message on its dead-letter
(undelivered-message) queue (see “Using the dead-letter
(undelivered-message) queue” on page 51).

Message context
Message context information allows the application that retrieves the message to
find out about the originator of the message. The retrieving application may want
to:
v Check that the sending application has the correct level of authority
v Perform some accounting function so that it can charge the sending application

for any work it has to perform
v Keep an audit trail of all the messages it has worked with

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can
specify that the queue manager is to add some default context information to the
message descriptor. Applications that have the appropriate level of authority can
add extra context information. For more information on how to specify context
information, see “Controlling context information” on page 106.

All context information is stored in the eight context fields of the message
descriptor. The type of information falls into two categories: identity and origin
context information.

Message response

32 MQSeries Application Programming Guide

Identity context
Identity context information identifies the user of the application that first put the
message on a queue:
v The queue manager fills the UserIdentifier field with a name that identifies the

user—the way that the queue manager can do this depends on the environment
in which the application is running.

v The queue manager fills the AccountingToken field with a token or number that
it determined from the application that put the message.

v Applications can use the ApplIdentityData field for any extra information that
they want to include about the user (for example, an encrypted password).

Suitably authorized applications may set the above fields.

A Windows NT security identifier (SID) is stored in the AccountingToken field
when a message is created under MQSeries for Windows NT. The SID can be used
to supplement the UserIdentifier field and to establish the credentials of a user.

For information on how the queue manager fills the UserIdentifier and
AccountingToken fields, see the descriptions of these fields in the MQSeries
Application Programming Reference manual.

Applications that pass messages from one queue manager to another should also
pass on the identity context information so that other applications know the
identity of the originator of the message.

Origin context
Origin context information describes the application that put the message on the
queue on which the message is currently stored. The message descriptor contains
the following fields for origin context information:

PutApplType
The type of application that put the message (for example, a CICS
transaction).

PutApplName
The name of the application that put the message (for example, the name
of a job or transaction).

PutDate
The date on which the message was put on the queue.

PutTime
The time at which the message was put on the queue.

ApplOriginData
Any extra information that an application may want to include about the
origin of the message. For example, it could be set by suitably authorized
applications to indicate whether the identity data is trusted.

Origin context information is usually supplied by the queue manager. Greenwich
Mean Time (GMT) is used for the PutDate and PutTime fields. See the descriptions
of these fields in the MQSeries Application Programming Reference manual.

Within MQSeries for OS/2 Warp only, the TZ environment variable is used to
calculate the GMT PutDate and PutTime of a message.

Message context

Chapter 3. MQSeries messages 33

An application with enough authority can provide its own context. This allows
accounting information to be preserved when a single user has a different user ID
on each of the systems that process a message they have originated.

Message context

34 MQSeries Application Programming Guide

Chapter 4. MQSeries objects

The MQSeries objects are:
v Queue managers
v Queues
v Namelists (MQSeries for OS/390 and MQSeries Version 5.1 products only)
v Process definitions
v Channels
v Storage classes (MQSeries for OS/390 only)

Queue managers define the properties (known as attributes) of these objects. The
values of these attributes affect the way in which these objects are processed by
MQSeries. From your applications, you use the Message Queue Interface (MQI) to
control these objects. Each object is identified by an object descriptor (MQOD) when
addressed from a program.

When you use MQSeries commands to define, alter, or delete objects, for example,
the queue manager checks that you have the required level of authority to perform
these operations. Similarly, when an application uses the MQOPEN call to open an
object, the queue manager checks that the application has the required level of
authority before it allows access to that object. The checks are made on the name
of the object being opened.

This chapter introduces MQSeries objects, under these headings:
v “Queue managers”
v “Queues” on page 36
v “Namelists” on page 43
v “Process definitions” on page 44
v “Channels” on page 44
v “Storage classes” on page 44
v “Rules for naming MQSeries objects” on page 45

Queue managers
A queue manager supplies an application with MQSeries services. A program must
have a connection to a queue manager before it can use the services of that queue
manager. A program can make this connection explicitly (using the MQCONN
call), or the connection might be made implicitly (this depends on the platform
and the environment in which the program is running).

Queues belong to queue managers, but programs can send messages to queues
that belong to any queue manager.

Attributes of queue managers
Associated with each queue manager is a set of attributes (or properties) that
define its characteristics. Some of the attributes of a queue manager are fixed when
it is created; you can change others using the MQSeries commands. You can
inquire about the values of all the attributes using the MQINQ call.

The fixed attributes include:
v The name of the queue manager
v The platform on which the queue manager runs (for example, AS/400)

© Copyright IBM Corp. 1993, 2000 35

v The level of system control commands that the queue manager supports
v The maximum priority that you can assign to messages processed by the queue

manager
v The name of the queue to which programs can send MQSeries commands
v The identifier of the character set the queue manager uses for character strings

when it processes MQI calls (this can be changed in OS/390 using the system
parameters)

v The maximum length of messages the queue manager can process
v Whether the queue manager supports syncpointing when programs put and get

messages

The changeable attributes include:
v A text description of the queue manager
v The time interval that the queue manager uses to restrict the number of trigger

messages
v The name of the queue manager’s dead-letter (undelivered-message)queue
v The name of the queue manager’s default transmission queue
v The maximum number of open handles for any one connection
v The enabling and disabling of various categories of event reporting
v The maximum number of uncommitted messages within a unit of work

For a full description of all the attributes, see the MQSeries Application Programming
Reference manual.

Queue managers and workload management
You can set up a cluster of queue managers that has more than one definition for
the same queue (for example, the queue managers in the cluster could be clones of
each other). Messages for a particular queue can be handled by any queue
manager which hosts an instance of the queue. A workload-management algorithm
decides which queue manager handles the message and so spreads the workload
between your queue managers. See the MQSeries Queue Manager Clusters book for
further information.

Queues
An MQSeries queue is a named object on which applications can put messages, and
from which applications can get messages. Messages are stored on a queue, so if
the putting application is expecting a reply to its message, it is free to do other
work while waiting for that reply. Applications access a queue by using the
Message Queue Interface (MQI), described in “Chapter 6. Introducing the Message
Queue Interface” on page 59.

Before a message can be put on a queue, the queue must have already been
created. A queue is owned by a queue manager, and that queue manager can own
many queues. However, each queue must have a name that is unique within that
queue manager.

A queue is maintained through a queue manager. Queues are managed physically
by their queue managers but this is transparent to an application program.

Queue managers

36 MQSeries Application Programming Guide

To create a queue you can use MQSeries commands (MQSC), PCF commands, or
platform-specific interfaces such as the MQSeries for OS/390 operations and
control panels.

On all platforms except MQSeries for VSE/ESA, you can create local queues for
temporary jobs “dynamically” from your application. For example, you can create
reply-to queues (which are not needed after an application ends). For more
information, see “Dynamic queues” on page 41.

Before using a queue, you must open the queue, specifying what you want to do
with it. For example, you can open a queue:
v For browsing messages only (not retrieving them)
v For retrieving messages (and either sharing the access with other programs, or

with exclusive access)
v For putting messages on the queue
v For inquiring about the attributes of the queue
v For setting the attributes of the queue

For a complete list of the options you can specify when you open a queue, see the
description of the MQOPEN call in the MQSeries Application Programming Reference
manual.

Types of queue
The types of queue that MQSeries supports for applications to use are:

Local and remote queues
A queue is known to a program as local if it is owned by the queue
manager to which the program is connected; the queue is known as remote
if it is owned by a different queue manager. The important difference
between these two types of queue is that you can get messages only from
local queues. (You can put messages on both types of queue.)

The queue definition object, created when you define a local queue, will
hold the definition information of the queue as well as the physical
messages put on the queue. The queue definition object, created when you
‘define’ a remote queue, will only hold the information necessary for the
local queue manager to be able to locate the queue to which you want
your message to go. This object is known as the local definition of a remote
queue. All the attributes of the remote queue are held by the queue
manager that owns it, because it is a local queue to that queue manager.

Alias queues
To your program, an alias queue appears to be a queue, but it is really an
MQSeries object that you can use to access another queue. This means that
more than one program can work with the same queue, accessing it using
different names.

Model and dynamic queues
A model queue is a template of a queue definition used only when you
want to create a dynamic local queue.

You can create a local queue dynamically from an MQSeries program,
naming the model queue you wish to use as the template for the queue
attributes. You may now, if you wish, change some attributes of the new
queue. However, you cannot change the DefinitionType. If, for example, you
require a permanent queue, you must select a model queue with the
definition type set to permanent. Some conversational applications could

Queues

Chapter 4. MQSeries objects 37

|
|
|
|

make use of dynamic queues to hold replies to their queries because they
probably would not need to maintain these queues after they have
processed the replies.

Cluster queues
A cluster queue is a queue that is hosted by a cluster queue manager and
made available to other queue managers in the cluster.

The cluster queue manager makes a local queue definition for the queue
specifying the name of the cluster that the queue is to be available in. This
definition has the effect of advertising the queue to the other queue
managers in the cluster. The other queue managers in the cluster can put
messages to a cluster queue without needing a corresponding
remote-queue definition. A cluster queue can be advertised in more than
one cluster. See “What is a cluster?” on page 5 and the MQSeries Queue
Manager Clusters book for further information.

Types of local queue
Each queue manager can have some local queues that it uses for special purposes:

Transmission queues
A transmission queue is a local queue which holds messages destined for a
remote queue. The messages are forwarded to their destination queue by
MQSeries when a communication program and link are available.

Initiation queues
An initiation queue is a local queue on which the queue manager puts a
message for the purpose of automatically starting an application when
certain conditions (such as more than 10 messages arriving, for example)
are met on a local queue.

Dead-letter (undelivered-message) queue
The dead-letter queue is a local queue on which the queue manager and
applications put messages they cannot deliver. You should plan to process
any messages that arrive on this queue.

System command queue
The system command queue is a queue to which suitably authorized
applications can send MQSeries commands.

System default queues
When you create a queue (other than a dynamic queue), MQSeries uses the
queue definitions stored in the system default queues.

Channel queues
Channel queues are used for distributed queue management.

Event queues
Event queues hold event messages. These messages are reported by the
queue manager or a channel.

These special queues are described in greater detail in the following sections.

Attributes of queues
Some of the attributes of a queue are specified when the queue is defined, and
may not be changed afterwards (for example, the type of the queue). Other
attributes of queues can be grouped into those that can be changed:
v By the queue manager during the processing of the queue (for example, the

current depth of a queue)
v Only by commands (for example, the text description of the queue)

Queues

38 MQSeries Application Programming Guide

v By applications, using the MQSET call (for example, whether or not put
operations are allowed on the queue)

You can find the values of all the attributes using the MQINQ call.

The attributes that are common to more than one type of queue are:

QName Name of the queue

QType Type of the queue

QDesc Text description of the queue

InhibitGet
Whether or not programs are allowed to get messages from the queue
(although you can never get messages from remote queues)

InhibitPut
Whether or not programs are allowed to put messages on the queue

DefPriority
Default priority for messages put on the queue

DefPersistence
Default persistence for messages put on the queue

Scope (not supported on OS/390 or VSE/ESA)
Controls whether an entry for this queue also exists in a name service

For a full description of these attributes, see the MQSeries Application Programming
Reference manual.

Remote queues
To a program, a queue is remote if it is owned by a different queue manager to the
one to which the program is connected. Where a communication link has been
established, it is possible for a program to send a message to a remote queue. A
program can never get a message from a remote queue.

When opening a remote queue, to identify the queue you must specify either:
v The name of the local definition that defines the remote queue.

To create a local definition of a remote queue use the DEFINE QREMOTE
command; in MQSeries for AS/400, alternatively use the CRTMQMQ command;
in MQSeries for Tandem NonStop Kernel, you can use the MQM screen-based
interface; in MQSeries for VSE/ESA, you can use the MQMT transaction.
From the viewpoint of an application, this is the same as opening a local queue.
An application does not need to know if a queue is local or remote.

v The name of the remote queue manager and the name of the queue as it is
known to that remote queue manager.

Local definitions of remote queues have three attributes in addition to the common
attributes described in “Attributes of queues” on page 38. These are RemoteQName
(the name that the queue’s owning queue manager knows it by), RemoteQMgrName
(the name of the owning queue manager), and XmitQName (the name of the local
transmission queue that is used when forwarding messages to other queue
managers). For a fuller description of these attributes, see the MQSeries Application
Programming Reference manual.

Queues

Chapter 4. MQSeries objects 39

|
|

If you use the MQINQ call against the local definition of a remote queue, the
queue manager returns the attributes of the local definition only, that is the remote
queue name, the remote queue manager name and the transmission queue name,
not the attributes of the matching local queue in the remote system.

See also “Transmission queues” on page 42.

Alias queues
An alias queue is an MQSeries object that you can use to access another queue. The
queue resulting from the resolution of an alias name (known as the base queue)
can be either a local queue or the local definition of a remote queue. It can also be
either a predefined queue or a dynamic queue, as supported by the platform.

Note: An alias cannot resolve to another alias.

An example of the use of alias queues is for a system administrator to give
different access authorities to the base queue name (that is, the queue to which the
alias resolves) and to the alias queue name. This would mean that a program or
user could be authorized to use the alias queue, but not the base queue.

Alternatively, authorization can be set to inhibit put operations for the alias name,
but allow them for the base queue.

In some applications, the use of alias queues means that system administrators can
easily change the definition of an alias queue object without having to get the
application changed.

MQSeries makes authorization checks against the alias name when programs try to
use that name. It does not check that the program is authorized to access the name
to which the alias resolves. A program can therefore be authorized to access an
alias queue name, but not the resolved queue name.

In addition to the general queue attributes described in “Attributes of queues” on
page 38, alias queues have a BaseQName attribute. This is the name of the base
queue to which the alias name resolves. For a fuller description of this attribute,
see the MQSeries Application Programming Reference manual.

The InhibitGet and InhibitPut attributes (see “Attributes of queues” on page 38)
of alias queues belong to the alias name. For example, if the alias-queue name
ALIAS1 resolves to the base-queue name BASE, inhibitions on ALIAS1 affect
ALIAS1 only and BASE is not inhibited. However, inhibitions on BASE also affect
ALIAS1.

The DefPriority and DefPersistence attributes also belong to the alias name. So,
for example, you can assign different default priorities to different aliases of the
same base queue. Also, you can change these priorities without having to change
the applications that use the aliases.

Model queues
A model queue is a template of a queue definition, that you use when creating a
dynamic queue. You specify the name of a model queue in the object descriptor
(MQOD) of your MQOPEN call. Using the attributes of the model queue, the
queue manager dynamically creates a local queue for you.

Queues

40 MQSeries Application Programming Guide

You can specify a name (in full) for the dynamic queue, or the stem of a name (for
example, ABC) and let the queue manager add a unique part to this, or you can let
the queue manager assign a complete unique name for you. If the queue manager
assigns the name, it puts it in the MQOD structure.

You can not issue an MQPUT1 call directly to a model queue, however, once a
model queue has been opened, you can issue an MQPUT1 to the dynamic queue.

The attributes of a model queue are a subset of those of a local queue. For a fuller
description, see the MQSeries Application Programming Reference manual.

Dynamic queues
On all platforms except for MQSeries for VSE/ESA, when an application program
issues an MQOPEN call to open a model queue, the queue manager dynamically
creates an instance of a local queue with the same attributes as the model queue.
Depending on the value of the DefinitionType field of the model queue, the queue
manager creates either a temporary or permanent dynamic queue (See “Creating
dynamic queues” on page 98).

Properties of temporary dynamic queues
Temporary dynamic queues have the following properties:
v They hold nonpersistent messages only.
v They are non-recoverable.
v They are deleted when the queue manager is started
v They are deleted when the application that issued the MQOPEN call which

resulted in the creation of the queue closes the queue or terminates.
– If there are any committed messages on the queue, they will be deleted.
– If there are any uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding

against the queue at this time, the queue is marked as being logically deleted,
and is only physically deleted (after these calls have been committed) as part
of close processing, or when the application terminates.

– If the queue happens to be in use at this time (by the creating, or another
application), the queue is marked as being logically deleted, and is only
physically deleted when closed by the last application using the queue.

– Attempts to access a logically deleted queue (other than to close it) fail with
reason code MQRC_Q_DELETED.

– MQCO_NONE, MQCO_DELETE and MQCO_DELETE_PURGE are all treated
as MQCO_NONE when specified on an MQCLOSE call for the corresponding
MQOPEN call that created the queue.

Properties of permanent dynamic queues
Permanent dynamic queues have the following properties:
v They hold persistent or nonpersistent messages.
v They are recoverable in the event of system failures.
v They are deleted when an application (not necessarily the one that issued the

MQOPEN call which resulted in the creation of the queue) successfully closes
the queue using the MQCO_DELETE, or the MQCO_DELETE_PURGE option.
– A close request with the MQCO_DELETE option fails if there are any

messages (committed or uncommitted) still on the queue. A close request with
the MQCO_DELETE_PURGE option succeeds even if there are committed
messages on the queue (the messages being deleted as part of the close), but
fails if there are any uncommitted MQGET, MQPUT, or MQPUT1 calls
outstanding against the queue.

Queues

Chapter 4. MQSeries objects 41

– If the delete request is successful, but the queue happens to be in use (by the
creating, or another application), the queue is marked as being logically
deleted and is only physically deleted when closed by the last application
using the queue.

v They can not be deleted by an application closing the queue, unless it was the
application that issued the MQOPEN which created the queue. Authorization
checks are performed against the user identifier (or alternate user identifier if
MQOO_ALTERNATE_USER_AUTHORITY was specified) which was used to
validate the corresponding MQOPEN call.

v They can be deleted in the same way as a normal queue.

Uses of dynamic queues
You can use dynamic queues for:
v Applications that do not require queues to be retained after the application has

terminated.
v Applications that require replies to messages to be processed by another

application can dynamically create a reply-to queue by opening a model queue.
For example, a client application could:
1. Create a dynamic queue.
2. Supply its name in the ReplyToQ field of the message descriptor structure of

the request message.
3. Place the request on a queue being processed by a server.

The server could then place the reply message on the reply-to queue. Finally, the
client could process the reply, and close the reply-to queue with the delete option.

Recommendations for uses of dynamic queues
You should consider the following points when using dynamic queues:
v In a client-server model, each client should create and use its own dynamic

reply-to queue. If a dynamic reply-to queue is shared between more than one
client, the deletion of the reply-to queue may be delayed because there is
uncommitted activity outstanding against the queue, or because the queue is in
use by another client. Additionally, the queue might be marked as being
logically deleted, and hence inaccessible for subsequent API requests (other than
MQCLOSE).

v If your application environment requires that dynamic queues must be shared
between applications, you should ensure that the queue is only closed (with the
delete option) when all activity against the queue has been committed. This
should be by the last user preferably. This ensures that deletion of the queue is
not delayed, and should minimize the period that the queue is inaccessible
because it has been marked as being logically deleted.

Transmission queues
When an application sends a message to a remote queue, the local queue manager
stores the message in a special local queue, called a transmission queue.

A message channel agent (channel program) will be associated with the transmission
queue and the remote queue manager, and it is this that deals with the
transmitting of the message. When the message has been transmitted, it is deleted
from the transmission queue.

The message may have to pass through many queue managers (or nodes) on its
journey to its final destination. There must be a transmission queue defined at each
queue manager along the route, each holding messages waiting to be transmitted

Queues

42 MQSeries Application Programming Guide

to the next node. There can be several transmission queues defined at a particular
queue manager. A given transmission queue holds messages whose next
destination is the same queue manager, although the messages may have different
eventual destinations. There may also be several transmission queues for the same
remote queue manager, with each one being used for a different type of service, for
example.

Transmission queues can be used to trigger a message channel agent to send
messages onward. For information about this, see “Chapter 14. Starting MQSeries
applications using triggers” on page 185. These attributes are defined in the
transmission queue definition (for triggered channels) or the process definition
object (see “Process definitions” on page 44).

Initiation queues
An initiation queue is a local queue on which the queue manager puts a trigger
message when a trigger event occurs on an application queue. A trigger event is an
event (for example, more than 10 messages arriving) that an application designer
intends the queue manager to use as a cue, or trigger, to start a program that will
process the queue. For more information on how triggering works, see
“Chapter 14. Starting MQSeries applications using triggers” on page 185.

Dead-letter (undelivered-message) queues
A dead-letter (undelivered-message) queue is a local queue on which the queue
manager puts messages it cannot deliver.

When the queue manager puts a message on the dead-letter queue, it adds a
header to the message. This includes such information as the intended destination
of the original message, the reason the queue manager put the message on the
dead-letter queue, and the date and time it did this.

Applications can also use the queue for messages they cannot deliver. For more
information, see “Using the dead-letter (undelivered-message) queue” on page 51.

System command queues
System command queues are not supported on MQSeries for VSE/ESA.

These queues receive the PCF, MQSC, and CL commands, as supported on your
platform, in readiness for the queue manager to action them. In MQSeries for
OS/390 the queue is known as the SYSTEM.COMMAND.INPUT.QUEUE and
accepts MQSC commands. On other platforms it is known as the
SYSTEM.ADMIN.COMMAND.QUEUE and the commands accepted vary by
platform. See the MQSeries Programmable System Management book for details.

System default queues
The system default queues contain the initial definitions of the queues for your
system. When you create a new queue, the queue manager copies the definition
from the appropriate system default queue.

Namelists
Namelists are supported on MQSeries for OS/390 and MQSeries Version 5.1 products
only.

Queues

Chapter 4. MQSeries objects 43

A namelist is an MQSeries object that contains a list of cluster names or queue
names. In a cluster, it can be used to identify a list of clusters for which the queue
manager holds the repositories.

You can define and modify namelists using only the commands or operations and
control panels of MQSeries for OS/390 or the MQSC of MQSeries Version 5.1
products.

Programs can use the MQI to find out which queues are included in these
namelists. The organization of the namelists is the responsibility of the application
designer and system administrator.

For a full description of the attributes of namelists, see the MQSeries Application
Programming Reference manual.

Process definitions

Note: Process definition objects are not supported on VSE/ESA.

To allow an application to be started without the need for operator intervention
(described in “Chapter 14. Starting MQSeries applications using triggers” on
page 185), the attributes of the application must be known to the queue manager.
These attributes are defined in a process definition object.

The ProcessName attribute is fixed when the object is created; you can change the
others using the MQSeries commands or the MQSeries for OS/390 operations and
control panels. You can inquire about the values of all the attributes using the
MQINQ call.

For a full description of the attributes of process definitions, see the MQSeries
Application Programming Reference manual.

Channels
A channel is a communication link used by distributed queue managers. There are
two categories of channel in MQSeries:
v Message channels, which are unidirectional, and transfer messages from one

queue manager to another.
v MQI channels, which are bidirectional, and transfer MQI calls from an MQSeries

client to a queue manager, and responses from a queue manager to an MQSeries
client.

These need to be considered when designing your application, but a program will
be unaware of MQSeries channel objects. For more information, see the MQSeries
Intercommunication and MQSeries Clients books.

Storage classes
Storage classes are supported on MQSeries for OS/390 only.

A storage class maps one or more queues to a page set. This means that messages
for that queue are stored (subject to buffering) on that page set.

For further information about storage classes, see the MQSeries for OS/390 System
Management Guide.

Namelists

44 MQSeries Application Programming Guide

Rules for naming MQSeries objects
An MQSeries queue, process definition, namelist, and channel can all have the
same name. However, an MQSeries object cannot have the same name as any other
object of the same type. Names in MQSeries are case sensitive.

The character set that can be used for naming all MQSeries objects is as follows:
v Uppercase A–Z
v Lowercase a–z (but there are restrictions on the use of lowercase letters for

OS/390 console support)
On systems using EBCDIC Katakana you cannot use lowercase characters.

v Numerics 0–9
v Period (.)
v Forward slash (/)
v Underscore (_)
v Percent sign (%)

Notes:

1. Leading or embedded blanks are not allowed.
2. You should also avoid using names with leading or trailing underscores,

because they cannot be handled by the MQSeries for OS/390 operations and
control panels.

3. Any name that is less than the full field length can be padded to the right with
blanks. All short names that are returned by the queue manager are always
padded to the right with blanks.

4. Any structure to the names (for example, the use of the period or underscore)
is not significant to the queue manager.

5. On AS/400 systems lowercase a-z, forward slash (/), and percent (%) are
special characters. If you use any of these characters in a name, the name must
be enclosed in quotation marks. Lowercase a-z characters are changed to
uppercase if the name is not enclosed in quotation marks.

6. The qshell environment is case sensitive.

Queue names
The name of a queue has two parts:
v The name of a queue manager
v The local name of the queue as it is known to that queue manager

Each part of the queue name is 48 characters long.

To refer to a local queue, you can omit the name of the queue manager (by
replacing it with blank characters or using a leading null character). However, all
queue names returned to a program by MQSeries contain the name of the queue
manager.

To refer to a remote queue, a program must include the name of the queue
manager in the full queue name, or there must be a local definition of the remote
queue.

Note that when an application uses a queue name, that name can be either the
name of a local queue (or an alias to one) or the name of a local definition of a
remote queue, but the application does not need to know which, unless it needs to

Naming objects

Chapter 4. MQSeries objects 45

get a message from the queue (when the queue must be local). When the
application opens the queue object, the MQOPEN call performs a name resolution
function to determine on which queue to perform subsequent operations. The
significance of this is that the application has no built-in dependency on particular
queues being defined at particular locations in a network of queue managers.
Therefore, if a system administrator relocates queues in the network, and changes
their definitions, the applications that use those queues do not need to be changed.

Process definition and namelist names
Process definitions and namelists can have names up to 48 characters long.

Channel names
Channels can have names up to 20 characters long. See the MQSeries
Intercommunication book for further information on channels.

Reserved object names
Names that start with SYSTEM. are reserved for objects defined by the queue
manager.

Naming objects

46 MQSeries Application Programming Guide

Chapter 5. Handling program errors

Your application may encounter errors associated with its MQI calls either when it
makes a call or when its message is delivered to its final destination:
v Whenever possible, the queue manager returns any errors as soon as an MQI

call is made. These are locally determined errors.
v When sending messages to a remote queue, errors may not be apparent when

the MQI call is made. In this case, the queue manager that identifies the errors
reports them by sending another message to the originating program. These are
remotely determined errors.

This chapter gives advice on how to handle both types of error, under these
headings:
v “Locally determined errors”
v “Using report messages for problem determination” on page 49
v “Remotely determined errors” on page 50

Locally determined errors
The three most common causes of errors that the queue manager can report
immediately are:
v Failure of an MQI call; for example, because a queue is full
v An interruption to the running of some part of the system on which your

application is dependent; for example, the queue manager
v Messages containing data that cannot be processed successfully

Failure of an MQI call
The queue manager can report immediately any errors in the coding of an MQI
call. It does this using a set of predefined return codes. These are divided into
completion codes and reason codes.

To show whether or not a call is successful, the queue manager returns a completion
code when the call completes. There are three completion codes, indicating success,
partial completion, and failure of the call. The queue manager also returns a reason
code which indicates the reason for the partial completion or the failure of the call.

The completion and reason codes for each call are listed with the description of
that call in the MQSeries Application Programming Reference manual. You will also
find further information (including some ideas for corrective action) for each
completion and reason code, in the MQSeries Application Programming Reference
manual. You should design your programs to handle all the return codes that
could arise from each call.

System interruptions
Your application may be unaware of any interruption if the queue manager to
which it is connected has to recover from a system failure. However, you must
design your application to ensure that your data is not lost if such an interruption
occurs.

© Copyright IBM Corp. 1993, 2000 47

The methods you can use to make sure that your data remains consistent depends
on the platform on which your queue manager is running:

OS/390
In the CICS and IMS environments, you can make MQPUT and MQGET
calls within units of work that are managed by CICS or IMS. In the batch
environment, you can make MQPUT and MQGET calls in the same way,
but you must declare syncpoints by using the MQSeries for OS/390
MQCMIT and MQBACK calls (see “Chapter 13. Committing and backing
out units of work” on page 171), or you can use the OS/390 Transaction
Management and Recoverable Resource Manager Services (RRS) to provide
two-phase syncpoint support. RRS allows you to update both MQSeries
and other RRS-enabled product resources, such as DB2® stored procedure
resources, within a single logical unit of work. For information on RRS
syncpoint support see “Transaction management and recoverable resource
manager services” on page 175.

AS/400
You can make your MQPUT and MQGET calls within global units of work
that are managed by OS/400 commitment control. You can declare
syncpoints by using the native OS/400 COMMIT and ROLLBACK
commands or the language-specific commands. Local units of work are
managed by MQSeries via the MQCMIT and MQBACK calls.

Digital OpenVMS, DOS, OS/2, UNIX systems, Windows NT, and Windows 3.1
In these environments, you can make your MQPUT and MQGET calls in
the normal way, but you must declare syncpoints by using the MQCMIT
and MQBACK calls (see “Chapter 13. Committing and backing out units of
work” on page 171). In the CICS environment, MQCMIT and MQBACK
commands are disabled as you can make your MQPUT and MQGET calls
within units of work that are managed by CICS.

Tandem NSK
You can make your MQPUT and MQGET calls within units of work that
are managed by Tandem’s TM/MP product.

VSE/ESA
CICS controls the unit of work in the VSE/ESA environment. If the system
fails and is restarted, the logical unit of work rollback occurs automatically.

You should use persistent messages for carrying all data you cannot afford to lose.
Persistent messages are reinstated on queues if the queue manager has to recover
from a failure. With MQSeries on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, note that an MQGET or MQPUT call within your
application will fail at the point of filling up all the log files, with the message
MQRC_RESOURCE_PROBLEM. For more information on log files, see the
MQSeries System Administration Guide for MQSeries for AIX, HP-UX, OS/2, Sun
Solaris, and Windows NT; for other platforms, see the appropriate System
Management Guide.

If the queue manager is stopped by an operator while an application is running,
the quiesce option is normally used. The queue manager enters a quiescing state in
which applications can continue to do work, but they should terminate as soon as
it is convenient. Small, quick applications can probably ignore the quiescing state
and continue until they terminate as normal. Longer running applications, or ones
that wait for messages to arrive, should use the fail if quiescing option when they
use the MQCONN, MQPUT, MQPUT1, and MQGET calls. These options mean that
the calls fail when the queue manager quiesces, but the application may still have

Locally determined errors

48 MQSeries Application Programming Guide

|
|
|
|
|

time to terminate cleanly by issuing calls that ignore the quiescing state. Such
applications could also commit, or back out, changes they have made, and then
terminate.

If the queue manager is forced to stop (that is, stop without quiescing),
applications will receive the MQRC_CONNECTION_BROKEN reason code when
they make MQI calls. At this point you must exit the application or, alternatively,
on MQSeries for AS/400, MQSeries on UNIX systems, MQSeries for OS/2 Warp,
and MQSeries for Windows NT, you can issue an MQDISC call.

Messages containing incorrect data
When you use units of work in your application, if a program cannot successfully
process a message that it retrieves from a queue, the MQGET call is backed out.
The queue manager maintains a count (in the BackoutCount field of the message
descriptor) of the number of times this happens. It maintains this count in the
descriptor of each message that is affected. This count can provide valuable
information about the efficiency of an application. Messages whose backout counts
are increasing over time are being repeatedly rejected—you should design your
application so that it analyzes the reasons for this and handles such messages
accordingly.

In MQSeries for OS/390, to make the backout count survive restarts of the queue
manager, set the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED;
otherwise, if the queue manager has to restart, it does not maintain an accurate
backout count for each message. Setting the attribute this way adds the penalty of
extra processing.

In MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for Windows NT,
and MQSeries on UNIX systems, the backout count always survives restarts of the
queue manager.

Also, in MQSeries for OS/390, when you remove messages from a queue within a
unit of work, you can mark one message so that it is not made available again if
the unit of work is backed out by the application. The marked message is treated
as if it has been retrieved under a new unit of work. You mark the message that is
to skip backout using the MQGMO_MARK_SKIP_BACKOUT option (in the
MQGMO structure) when you use the MQGET call. See “Skipping backout” on
page 138 for more information about this technique.

Note: In MQSeries for VSE/ESA, BackoutCount is a reserved field. It cannot be
used as described in this section.

Using report messages for problem determination
The remote queue manager cannot report errors such as failing to put a message
on a queue when you make your MQI call, but it can send you a report message
to say how it has processed your message.

Within your application you can create (MQPUT) report messages as well as select
the option to receive them (in which case they will be sent by either another
application or by a queue manager).

Creating report messages
Report messages provide a mechanism for an application to inform another
application that it is unable to deal with the message that was sent. However, the

Locally determined errors

Chapter 5. Handling program errors 49

Report field must initially be analyzed to determine whether or not the application
that sent the message is interested in being informed of any problems. Having
determined that a report message is required, you have to decide:
v Whether you want to include all the original message (not an option on

OS/390), just the first 100 bytes of data, or none of the original message.
v What to do with the original message. You can discard it or let it go to the

dead-letter queue.
v Whether the content of the MsgId and CorrelId fields are needed as well.

Use the Feedback field to indicate the reason for the report message being
generated. Put your report messages on an application’s reply-to queue. Refer to
the MQSeries Application Programming Reference manual for further information.

Requesting and receiving (MQGET) report messages
When you send a message to another application, you will not be informed of any
problems unless you complete the Report field to indicate the feedback you
require. The options available to you are in the MQSeries Application Programming
Reference manual.

Queue managers always put report messages on an application’s reply-to queue
and it is recommended that your own applications do the same. When you use the
report message facility you must specify the name of your reply-to queue in the
message descriptor of your message; otherwise, the MQPUT call fails.

Your application should contain procedures that monitor your reply-to queue and
process any messages that arrive on it. Remember that a report message can
contain all the original message, the first 100 bytes of the original message, or none
of the original message.

The queue manager sets the Feedback field of the report message to indicate the
reason for the error; for example, the target queue does not exist. Your programs
should do the same.

For more information on report messages, see “Report messages” on page 21.

Remotely determined errors
When you send messages to a remote queue, even when the local queue manager
has processed your MQI call without finding an error, other factors can influence
how your message is handled by a remote queue manager. For example, the queue
you are targeting may be full, or may not even exist. If your message has to be
handled by other intermediate queue managers on the route to the target queue,
any of these could find an error.

Problems delivering a message
When an MQPUT call fails, you have the choice of attempting to put the message
on the queue again, returning it to the sender, or putting it on the dead-letter
queue.

Each option has its own merits, but you may not want to retry putting a message
if the reason that the MQPUT failed was because the destination queue was full. In
this instance, putting it on the dead-letter queue allows you to deliver it to the
correct destination queue later on.

Report messages for error handling

50 MQSeries Application Programming Guide

Retry message delivery
Before the message is put on a dead-letter queue, a remote queue manager
attempts to put the message on the queue again if the attributes MsgRetryCount
and MsgRetryInterval have been set for the channel, or if there is a retry exit
program for it to use (the name of which is held in the channel attribute
MsgRetryExitId field).

If the MsgRetryExitId field is blank, the values in the attributes MsgRetryCount and
MsgRetryInterval are used.

If the MsgRetryExitId field is not blank, the exit program of this name runs. For
more information on using your own exit programs, see the MQSeries
Intercommunication book.

Return message to sender
You return a message to the sender by requesting a report message to be generated
to include all of the original message. See “Report messages” on page 21 for details
on report message options.

Using the dead-letter (undelivered-message) queue
When a queue manager cannot deliver a message, it attempts to put the message
on its dead-letter queue. This queue should be defined when the queue manager is
installed.

Your programs can use the dead-letter queue in the same way that the queue
manager uses it. You can find the name of the dead-letter queue by opening the
queue manager object (using the MQCONN call) and inquiring about the
DeadLetterQName attribute (using the MQINQ call).

When the queue manager puts a message on this queue, it adds a header to the
message, the format of which is described by the dead-letter header (MQDLH)
structure, in the MQSeries Application Programming Reference manual. This header
includes the name of the target queue and the reason the message was put on the
dead-letter queue. It must be removed and the problem must be resolved before
the message is put on the intended queue. Also, the queue manager changes the
Format field of the message descriptor (MQMD) to indicate that the message
contains an MQDLH structure.

MQDLH structure
You are recommended to add an MQDLH structure to all messages that you
put on the dead-letter queue; however, if you intend to use the dead-letter
handler provided by certain MQSeries products, you must add an MQDLH
structure to your messages.

The addition of the header to a message may make the message too long for the
dead-letter queue, so you should always make sure that your messages are shorter
than the maximum size allowed for the dead-letter queue, by at least the value of
the MQ_MSG_HEADER_LENGTH constant. The maximum size of messages
allowed on a queue is determined by the value of the MaxMsgLength attribute of the
queue. For the dead-letter queue, you should make sure that this attribute is set to
the maximum allowed by the queue manager. If your application cannot deliver a
message, and the message is too long to be put on the dead-letter queue, follow
the advice given in the description of the MQDLH structure.

Remotely determined errors

Chapter 5. Handling program errors 51

You need to ensure that the dead-letter queue is monitored, and that any messages
arriving on it get processed. A dead-letter queue handler is provided by MQSeries
on all platforms except OS/390 and VSE/ESA. It runs as a batch utility and can be
used to perform various actions on selected messages on the dead-letter queue. If
you have a queue manager on one of the platforms that does not provide a
dead-letter queue handler, you will need to provide your own. The program could
be triggered, or run at regular intervals. For further details, see the MQSeries
System Administration Guide for MQSeries for AIX, HP-UX, OS/2, Sun Solaris, and
Windows NT; for other platforms, see the appropriate System Management Guide.

If data conversion is necessary, the queue manager converts the header information
when you use the MQGMO_CONVERT option on the MQGET call. If the process
putting the message is an MCA, the header is followed by all the text of the
original message.

You should be aware that messages put on the dead-letter queue may be truncated
if they are too long for this queue. A possible indication of this situation is the
messages on the dead-letter queue being the same length as the value of the
MaxMsgLength attribute of the queue.

Dead-letter queue processing
The rest of this chapter contains general-use programming interface information.

Dead-letter queue processing is dependent on local system requirements, but you
should consider the following when you draw up the specification:
v The message can be identified as having a dead-letter queue header because the

value of the format field in the MQMD, is MQFMT_DEAD_LETTER_HEADER.
v In MQSeries for OS/390 using CICS, if an MCA puts this message to the

dead-letter queue, the PutApplType field is MQAT_CICS, and the PutApplName
field is the ApplId of the CICS system followed by the transaction name of the
MCA.

v The reason for the message to be routed to the dead-letter queue is contained in
the Reason field of the dead-letter queue header.

v The dead-letter queue header contains details of the destination queue name and
queue manager name.

v The dead-letter queue header contains fields that have to be reinstated in the
message descriptor before the message is put to the destination queue. These
are:
1. Encoding
2. CodedCharSetId
3. Format

v The message descriptor is the same as PUT by the original application, except
for the three fields shown above.

Your dead-letter queue application should do one or more of the following:
v Examine the Reason field. A message may have been put by an MCA for the

following reasons:
– The message was longer than the maximum message size for the channel

The reason will be MQRC_MSG_TOO_BIG_FOR_CHANNEL (or
MQRC_MSG_TOO_BIG_FOR_Q_MGR if you are using CICS for distributed
queuing on MQSeries for OS/390)

– The message could not be put to its destination queue

Remotely determined errors

52 MQSeries Application Programming Guide

The reason will be any MQRC_* reason code that can be returned by an
MQPUT operation

– A user exit has requested this action
The reason code will be that supplied by the user exit, or the default
MQRC_SUPPRESSED_BY_EXIT

v Try to forward the message to its intended destination, where this is possible.
v Retain the message for a certain length of time before discarding when the

reason for the diversion is determined, but not immediately correctable.
v Give instructions to administrators for the correction of problems where these

have been determined.
v Discard messages that are corrupted or otherwise not processible.

There are two ways that you deal with the messages you have recovered from the
dead-letter queue:
1. If the message is for a local queue, you should:
v Carry out any code translations required to extract the application data
v Carry out code conversions on that data if this is a local function
v Put the resulting message on the local queue with all the detail of the

message descriptor restored
2. If the message is for a remote queue, put the message on the queue.

For information on how undelivered messages are handled in a distributed
queuing environment, see the MQSeries Intercommunication book.

Remotely determined errors

Chapter 5. Handling program errors 53

Changes

54 MQSeries Application Programming Guide

Part 2. Writing an MQSeries application

Chapter 6. Introducing the Message Queue
Interface 59
What is in the MQI? 59

Calls. 60
Syncpoint calls 61

MQSeries for OS/390 calls 61
OS/400 calls 61
MQSeries for Tandem NonStop Kernel calls 61
MQSeries for VSE/ESA calls. 61
MQSeries calls on other platforms 61

Data conversion 62
Structures 62
Elementary data types 62
MQSeries data definitions 63
MQSeries stub programs and library files . . . 63

MQSeries for OS/390 63
MQSeries for AS/400 64
MQSeries for OS/2 Warp 64
MQSeries for Windows 65
MQSeries for Windows NT 65
MQSeries for AIX 65
MQSeries for AT&T GIS UNIX 66
MQSeries for Compaq (DIGITAL) OpenVMS 66
MQSeries for DIGITAL UNIX (Compaq Tru64
UNIX) 66
MQSeries for HP-UX 66
MQSeries for SINIX and DC/OSx 67
DOS and Windows 3.1 clients 67
MQSeries for Sun Solaris 68
MQSeries for VSE/ESA 68
MQSeries for Tandem NonStop Kernel . . . 68

Parameters common to all the calls 68
Using connection and object handles 68
Understanding return codes 68

Specifying buffers 69
Programming language considerations 69

Coding in C 70
Parameters of the MQI calls 70
Parameters with undefined data type. . . . 70
Data types. 71
Manipulating binary strings 71
Manipulating character strings 71
Initial values for structures 71
Initial values for dynamic structures 72
Use from C++ 72

Coding in COBOL 72
Named constants 73

Coding in System/390® assembler language . . 73
Names 73
Using the MQI calls 73
Declaring constants 74
Specifying the name of a structure. 74

Specifying the form of a structure 74
Controlling the listing 75
Specifying initial values for fields 75
Writing reenterable programs 75

Using CEDF 76
Coding in RPG 76
Coding in PL/I 76

Structures 76
Named constants 76

Coding in TAL 77
OS/390 batch considerations 77
UNIX signal handling on MQSeries Version 5
products 78

Unthreaded applications 79
Threaded applications 79

Synchronous signals 79
Asynchronous signals 80
MQSeries use of SIGALRM 80
Threaded client applications - additional
considerations 80

Fastpath (trusted) applications 80
MQI function calls within signal handlers . . . 80
Signals during MQI calls 81
User exits and installable services 81

Chapter 7. Connecting and disconnecting a
queue manager 83
Connecting to a queue manager using the
MQCONN call 84

Scope of MQCONN 85
Connecting to a queue manager using the
MQCONNX call 86

MQCNO_STANDARD_BINDING 86
MQCNO_FASTPATH_BINDING 86
Restrictions 86
Environment variable 88

Disconnecting programs from a queue manager
using MQDISC 88

Authority checking 89

Chapter 8. Opening and closing objects 91
Opening objects using the MQOPEN call 92

Scope of an object handle. 92
Identifying objects (the MQOD structure) . . . 93
Name resolution. 93
Using the options of the MQOPEN call 95

MQOPEN option for cluster queue 95
MQOPEN option for putting messages . . . 96
MQOPEN option for browsing messages . . 96
MQOPEN options for removing messages . . 96
MQOPEN options for setting and inquiring
about attributes 97
MQOPEN options relating to message context 97
MQOPEN option for alternate user authority 97
MQOPEN option for queue manager
quiescing 97

Creating dynamic queues. 98
Opening remote queues 98
Closing objects using the MQCLOSE call 99

© Copyright IBM Corp. 1993, 2000 55

|
||

Chapter 9. Putting messages on a queue . . . 101
Putting messages on a local queue using the
MQPUT call 101

Specifying handles 102
Defining messages using the MQMD structure 102
Specifying options using the MQPMO structure 102
The data in your message 105

Putting messages on a remote queue 106
Controlling context information 106

Passing identity context 106
Passing all context. 107
Setting identity context 107
Setting all context 107

Putting one message on a queue using the
MQPUT1 call 107
Distribution lists 109

Opening distribution lists 110
Using the MQOD structure 110
Using the MQOR structure 110
Using the MQRR structure 112
Using the MQOPEN options 112

Putting messages to a distribution list 112
Using the MQPMR structure 113
Using MQPUT1 114

Some cases where the put calls fail 114

Chapter 10. Getting messages from a queue 115
Getting messages from a queue using the MQGET
call 115

Specifying connection handles 116
Describing messages using the MQMD structure
and the MQGET call 116
Specifying MQGET options using the MQGMO
structure 116
Specifying the size of the buffer area 119

The order in which messages are retrieved from a
queue 120

Priority 120
Logical and physical ordering 120

Grouping logical messages 123
Putting and getting a group that spans units
of work 124

Getting a particular message 127
Type of index 128
Handling large messages 129

Increasing the maximum message length . . . 129
Message segmentation 130

Segmentation and reassembly by queue
manager 130
Application segmentation 131
Application segmentation of logical messages 132
Putting and getting a segmented message
that spans units of work. 132

Reference messages 133
Using the MQRMH and MQMD structures 134

Waiting for messages 135
Signaling 136

To set a signal 136
When the message arrives 137

Skipping backout 138
Application data conversion 141

Conversion of EBCDIC newline characters . . 142
Browsing messages on a queue 143

The browse cursor. 143
Queues in FIFO (first in, first out) sequence 143
Queues in priority sequence 144
Uncommitted messages 144
Change to queue sequence 144

Browsing messages when message length
unknown 144
Removing a message you have browsed . . . 145

Browsing messages in logical order 145
Browsing messages in groups 146

Browsing and retrieving destructively . . . 147
Some cases where the MQGET call fails 148

Chapter 11. Writing data-conversion exits . . . 149
Invoking the data-conversion exit 150

Data conversion on OS/390 150
Writing a data-conversion exit program 151

Skeleton source file 151
Convert characters call 152
Utility for creating conversion-exit code . . . 152

Invoking the CSQUCVX utility on OS/390 153
Data definition statements 153
Error messages in OS/2, Windows NT, and
UNIX systems 153

Valid syntax 153
Example of valid syntax for the input data
set 154

Writing a data-conversion exit program for
MQSeries for AS/400 155
Writing a data-conversion exit for MQSeries for
OS/2 Warp 156
Writing a data-conversion exit program for
MQSeries for OS/390. 158
Writing a data-conversion exit for MQSeries for
Tandem NonStop Kernel 159

Reusing data-conversion exit programs 159
Writing a data-conversion exit for MQSeries on
UNIX systems and Compaq (DIGITAL) OpenVMS . 160

UNIX environment 161
Non-threaded environment 161
Threaded environment 161

Compiling data-conversion exits on Digital
OpenVMS 162
Compiling data-conversion exits on UNIX. . . 162

On AIX 4.2 162
On AIX 4.3 163
On AT&T GIS UNIX 163
On DIGITAL UNIX 163
On HP-UX Version 10.20 163
On HP-UX Version 11.00 163
On SINIX. 164
On DC/OSx 164
On Sun Solaris 164

Writing a data-conversion exit for MQSeries for
Windows NT 165

Chapter 12. Inquiring about and setting object
attributes 167
Inquiring about the attributes of an object 168

56 MQSeries Application Programming Guide

||

||

Some cases where the MQINQ call fails 169
Setting queue attributes 169

Chapter 13. Committing and backing out units
of work 171
Syncpoint considerations in MQSeries applications 172
Syncpoints in MQSeries for OS/390 applications 173

Syncpoints in CICS Transaction Server for
OS/390 and CICS for MVS/ESA applications. . 173
Syncpoints in IMS applications 174
Syncpoints in OS/390 batch applications . . . 174

Committing changes using the MQCMIT call 174
Backing out changes using the MQBACK call 175
Transaction management and recoverable
resource manager services 175

Syncpoints in CICS for AS/400 applications . . . 176
Syncpoints in MQSeries for OS/2 Warp, MQSeries
for Windows NT, MQSeries for AS/400, and
MQSeries on UNIX systems 176

Local units of work 177
Global units of work 177

Internal syncpoint coordination 177
External syncpoint coordination 178

Interfaces to external syncpoint managers . . . 179
Interfaces to the AS/400 external syncpoint
manager 181
Syncpoints in MQSeries for Tandem NonStop
Kernel applications 182
General XA support 183

Chapter 14. Starting MQSeries applications
using triggers 185
What is triggering? 185
Prerequisites for triggering 189
Conditions for a trigger event 191
Controlling trigger events 195

Example of the use of trigger type EVERY. . . 196
Example of the use of trigger type FIRST . . . 196
Example of the use of trigger type DEPTH . . 196
Special case of trigger type FIRST 197

Designing an application that uses triggered
queues 197

Trigger messages and units of work 197
Getting messages from a triggered queue . . . 198

Trigger monitors 199
MQSeries for OS/390 trigger monitors 199
MQSeries for OS/2 Warp, Digital OpenVMS,
Tandem NSK, UNIX systems, AS/400, and
Windows NT trigger monitors. 200

For CICS:. 201
MQSeries for AS/400 trigger monitors 202

Properties of trigger messages 202
Persistence and priority of trigger messages . . 202
Queue manager restart and trigger messages 202
Trigger messages and changes to object
attributes 202
Format of trigger messages 203

When triggering does not work 204
How CKTI detects errors 204
How CSQQTRMN detects errors 204
How RUNMQTRM detects errors 204

Chapter 15. Using and writing applications on
MQSeries for OS/390 207
Environment-dependent MQSeries for OS/390
functions 207
Program debugging facilities 208
Syncpoint support 208
Recovery support 208
The MQSeries for OS/390 interface with the
application environment. 209

The batch adapter 209
RRS batch adapter. 209

Migration 210
The CICS adapter 210

Adapter trace points 210
Abends 210
Using the CICS Execution Diagnostic Facility 211

The IMS adapter 211
Writing OS/390 OpenEdition® applications . . . 212
The API-crossing exit for OS/390 213

Using the API-crossing exit 213
Defining the exit program 213
How the exit is invoked 213
Communicating with the exit program . . . 214

Writing your own exit program 214
Usage notes 215

The sample API-crossing exit program,
CSQCAPX 216

Design of the sample exit program 216
Preparing and using the API-crossing exit . . . 216

Writing MQSeries-CICS bridge applications . . . 217
Structure of the MQSeries message 217

MQMD attributes 218
Using the MQCIH header 219
Messages returned from the CICS bridge . . 219
Error handling by the CICS bridge 219

Handling a unit of work 220
Programming considerations for running 3270
transactions 220
Scenarios 221

Writing MQSeries-IMS bridge applications . . . 225
How the MQSeries-IMS bridge deals with
messages 225

Mapping MQSeries messages to IMS
transaction types 226
If the message cannot be put to the IMS
queue 226
IMS bridge feedback codes 227
Reply messages from IMS 227
Message segmentation 228
Data conversion 228

Writing your program 229
Dealing with unsolicited messages from IMS 230
Writing MQSeries applications to invoke IMS
conversational transactions 230
Triggering 230

Writing IMS applications using MQSeries 230
Syncpoints in IMS applications 231
MQI calls in IMS applications 231

Server applications 231
Enquiry applications 234

MQSeries Workflow 234

Part 2. Writing an MQSeries application 57

|
||

Chapter 16. Object-oriented programming with
MQSeries 237
What is in the MQSeries Object Model? 237

Classes 237
Object references 238
Return codes 238

Programming language considerations 238
Coding in C++ 238
Coding in Java 239
Coding in LotusScript 239
Coding in ActiveX. 239

58 MQSeries Application Programming Guide

Chapter 6. Introducing the Message Queue Interface

This chapter introduces the features of the Message Queue Interface (MQI).

The remaining chapters in this part of the book describe how to use these features.
Detailed descriptions of the calls, structures, data types, return codes, and
constants are given in the MQSeries Application Programming Reference manual.

The MQI is introduced under these headings:
v “What is in the MQI?”
v “Parameters common to all the calls” on page 68
v “Specifying buffers” on page 69
v “Programming language considerations” on page 69
v “OS/390 batch considerations” on page 77
v “UNIX signal handling on MQSeries Version 5 products” on page 78

What is in the MQI?
The Message Queue Interface comprises the following:
v Calls through which programs can access the queue manager and its facilities
v Structures that programs use to pass data to, and get data from, the queue

manager
v Elementary data types for passing data to, and getting data from, the queue

manager

MQSeries for OS/390 also supplies:
v Two extra calls through which OS/390 batch programs can commit and back out

changes.
v Data definition files (sometimes known as copy files, macros, include files, and

header files) that define the values of constants supplied with MQSeries for
OS/390.

v Stub programs to link-edit to your applications.
v A suite of sample programs that demonstrate how to use the MQI on the

OS/390 platform. For further information about these samples, see “Chapter 33.
Sample programs for MQSeries for OS/390” on page 373.

MQSeries for AS/400 also supplies:
v Data definition files (sometimes known as copy files, macros, include files, and

header files) that define the values of constants supplied with MQSeries for
AS/400.

v Three stub programs to link-edit to your ILE C, ILE COBOL, and ILE RPG
applications.

v A suite of sample programs that demonstrate how to use the MQI on the
AS/400 platform. For further information about these samples, see “Chapter 32.
Sample programs (all platforms except OS/390)” on page 311.

MQSeries for OS/2 Warp, MQSeries for Windows NT, MQSeries for Compaq
(DIGITAL) OpenVMS, and MQSeries on UNIX systems also supply:

© Copyright IBM Corp. 1993, 2000 59

v Calls through which MQSeries for OS/2 Warp, MQSeries for Windows NT,
MQSeries for AS/400, and MQSeries on UNIX systems programs can commit
and back out changes.

v Include files that define the values of constants supplied on these platforms.
v Library files to link your applications.
v A suite of sample programs that demonstrate how to use the MQI on these

platforms.
v Sample source and executable code for bindings to external transaction

managers.

MQSeries for Tandem NonStop Kernel also supplies:
v Include files that define the values of constants supplied with MQSeries for

Tandem NonStop Kernel.
v Library files to link your applications.
v A suite of sample programs that demonstrate how to use the MQI on the

Tandem NSK platform.

MQSeries for VSE/ESA also supplies:
v Include files that define the values of constants supplied with MQSeries for

VSE/ESA.
v A suite of sample programs that demonstrate how to use the MQI on the

VSE/ESA platform.

MQSeries for Windows provides a subset of the MQI. For more information, see
the following:
v MQSeries for Windows V2.0 User’s Guide.
v MQSeries for Windows V2.1 User’s Guide.

Calls
The calls in the MQI can be grouped as follows:

MQCONN, MQCONNX, and MQDISC
Use these calls to connect a program to (with or without options), and
disconnect a program from, a queue manager. If you write CICS programs
for OS/390, or VSE/ESA, you do not need to use these calls. However, you
are recommended to use them if you want your application to be portable
to other platforms.

MQOPEN and MQCLOSE
Use these calls to open and close an object, such as a queue.

MQPUT and MQPUT1
Use these calls to put a message on a queue.

MQGET
Use this call to browse messages on a queue, or to remove messages from
a queue.

MQINQ
Use this call to inquire about the attributes of an object.

MQSET
Use this call to set some of the attributes of a queue. You cannot set the
attributes of other types of object.

MQBEGIN, MQCMIT, and MQBACK
Use these calls when MQSeries is the coordinator of a unit of work.
MQEBGIN starts the unit of work. MQCMIT and MQBACK end the unit

MQI contents

60 MQSeries Application Programming Guide

|
|
|
|
|

of work, either committing or rolling back the updates made during the
unit of work. OS/400 committment controller is used to coordinate global
units of work on AS/400. Native start commitment control, commit, and
rollback commands are used.

The MQI calls are described fully in the MQSeries Application Programming Reference
manual.

Syncpoint calls
Syncpoint calls are available as follows:

MQSeries for OS/390 calls
MQSeries for OS/390 provides the MQCMIT and MQBACK calls. Use these calls
in OS/390 batch programs to tell the queue manager that all the MQGET and
MQPUT operations since the last syncpoint are to be made permanent (committed)
or are to be backed out. To commit and back out changes in other environments:

CICS Use commands such as EXEC CICS SYNCPOINT and EXEC CICS
SYNCPOINT ROLLBACK.

IMS Use the IMS syncpoint facilities, such as the GU (get unique) to the IOPCB,
CHKP (checkpoint), and ROLB (rollback) calls.

RRS Use MQCMIT and MQBACK or SRRCMIT and SRRBACK as appropriate.
(See “Transaction management and recoverable resource manager services”
on page 175.)

Note: SRRCMIT and SRRBACK are ‘native’ RRS commands, they are not
MQI calls.

For backward compatibility, the CSQBCMT and CSQBBAK calls are available as
synonyms for MQCMIT and MQBACK. These are described fully in the MQSeries
Application Programming Reference manual.

OS/400 calls
MQSeries for AS/400 provides the MQCMIT and MQBACK commands. You can
also use the OS/400 COMMIT and ROLLBACK commands, or any other
commands or calls that initiate the OS/400 commitment control facilities (for
example, EXEC CICS SYNCPOINT).

MQSeries for Tandem NonStop Kernel calls
The default SYNCPOINT option for the MQPUT and MQGET calls is
SYNCPOINT, rather than NO_SYNCPOINT. To use the default (SYNCPOINT)
option for MQPUT, MQGET and MQPUT1 operations, the application must have
an active TM/MP Transaction that defines the unit of work to be committed.

MQSeries for VSE/ESA calls
Use CICS commands such as EXEC CICS SYNCPOINT and EXEC CICS
SYNCPOINT ROLLBACK. The batch interface and server support the MQCMIT
and MQBACK calls which are translated into the CICS commands EXEC CICS
SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK respectively. Use these
calls in programs to tell the queue manager that all the MQGET and MQPUT
operations since the last syncpoint are to be made permanent (committed) or are to
be backed out.

MQSeries calls on other platforms
The following products provide the MQCMIT and MQBACK calls:
v MQSeries for OS/2 Warp

MQI contents

Chapter 6. Introducing the Message Queue Interface 61

|
|
|

|
|
|
|

v MQSeries for Windows
v MQSeries for Windows NT
v MQSeries for Compaq (DIGITAL) OpenVMS
v MQSeries on UNIX systems

Use syncpoint calls in programs to tell the queue manager that all the MQGET and
MQPUT operations since the last syncpoint are to be made permanent (committed)
or are to be backed out. To commit and back out changes in the CICS environment,
use commands such as EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT
ROLLBACK.

Data conversion
The MQXCNVC - convert characters call is used only from a data-conversion exit.
This call converts message character data from one character set to another.

See the MQSeries Application Programming Reference manual for the syntax used
with the MQXCNVC call, and “Chapter 11. Writing data-conversion exits” on
page 149 for guidance on writing and invoking data conversion exits.

Structures
Structures, used with the MQI calls listed in “Calls” on page 60, are supplied in
data definition files for each of the supported programming languages. MQSeries
for OS/390 and MQSeries for AS/400 supply files that contain constants for you to
use when filling in some of the fields of these structures. For more information on
these, see “MQSeries data definitions” on page 63.

All the structures are described fully in the MQSeries Application Programming
Reference manual.

Elementary data types
For the C language, the MQI provides the following elementary data types or
unstructured fields:

MQBYTE A single byte of data
MQBYTEn A string of 16, 24, 32, 40, or 64 bytes
MQCHAR One single-byte character
MQCHARn A string of 4, 8, 12, 16, 20, 28, 32, 48, 64, 128, or 256 single-byte

characters
MQHCONN A connection handle (this data is 32 bits long)
MQHOBJ An object handle (this data is 32 bits long)
MQLONG A 32-bit signed binary integer
PMQLONG A pointer to data of type MQLONG

These data types are described fully in the MQSeries Application Programming
Reference manual.

Table 1 shows the Visual Basic equivalents of the C elementary data types.

Table 1. Visual Basic equivalents of the C elementary data types

C data type Visual Basic data type

MQBYTE String * 1

MQBYTEn String * n

MQCHAR String * 1

MQI contents

62 MQSeries Application Programming Guide

Table 1. Visual Basic equivalents of the C elementary data types (continued)

C data type Visual Basic data type

MQCHARn String * n

MQHCONN Long

MQHOBJ Long

MQLONG Long

PMQLONG No equivalent

For COBOL, assembler, PL/I, or RPG, use the equivalent declarations shown in the
relevant native language manual.

MQSeries data definitions
MQSeries for OS/390 supplies data definitions in the form of COBOL copy files,
assembler-language macros, a single PL/I include file, a single C language include
file, and C++ language include files.

MQSeries for AS/400 supplies data definitions in the form of COBOL copy files,
RPG copy files, C language include files, and C++ language include files.

MQSeries for VSE/ESA supplies data definitions in the form of a C language
include file, COBOL copy files, and PL/I include files.

The data definition files supplied with MQSeries contain:
v Definitions of all the MQSeries constants and return codes
v Definitions of the MQSeries structures and data types
v Constant definitions for initializing the structures
v Function prototypes for each of the calls (for PL/I and the C language only)

For a full description of MQSeries data definition files, see “Appendix F. MQSeries
data definition files” on page 515.

MQSeries stub programs and library files
The stub programs and library files provided are listed here, for each platform.

For more information about how to use stub programs and library files when you
build an executable application, see “Part 3. Building an MQSeries application” on
page 241. For information about linking to C++ library files, see the MQSeries Using
C++ book.

MQSeries for OS/390
Before you can run an MQSeries for OS/390 program, you must link-edit it to the
stub program supplied with MQSeries for OS/390 for the environment in which
you are running the application. The stub program provides the first stage of the
processing of your calls into requests that MQSeries for OS/390 can process.

MQSeries for OS/390 supplies the following stub programs:

CSQBSTUB Stub program for OS/390 batch programs
CSQBRRSI Stub program for OS/390 batch programs using RRS via the MQI
CSQBRSTB Stub program for OS/390 batch programs using RRS directly
CSQCSTUB Stub program for CICS programs
CSQQSTUB Stub program for IMS programs

MQI contents

Chapter 6. Introducing the Message Queue Interface 63

CSQXSTUB Stub program for distributed queuing non-CICS exits
CSQASTUB Stub program for data-conversion exits

Note: If you use the CSQBRSTB stub program you must link-edit with ATRSCSS
from SYS1.CSSLIB. (SYS1.CSSLIB is also known as the “Callable Services
Library”). For more information about RRS see “Transaction management
and recoverable resource manager services” on page 175.

Alternatively, you can dynamically call the stub from within your program. This
technique is described in “Dynamically calling the MQSeries stub” on page 267.

In IMS, you may also need to use a special language interface module that is
supplied by MQSeries.

MQSeries for AS/400
In MQSeries for AS/400, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

For non-threaded 4.2.1 applications:

AMQZSTUB Server service program provided for compatibilty with previous
releases

AMQVSTUB Data conversion service program provided for compatibility with
previous releases. For a non-threaded application:

LIBMQM Server service program
LIBMQIC Client service program
IMQB23I4 C++ base service program
IMQS23I4 C++ server service program
LIBMQMZF Installable exits for C

In a threaded application:

LIBMQM_R Server service program
IMQB23I4_R C++ base service program
IMQS23I4_R C++ server service program
LIBMQMZF_R Installable exits for C

If you are using MQSeries for AS/400 you can write your applications in C++. To
see how to link your C++ applications, and for full details of all aspects of using
C++, see the MQSeries Using C++ manual.

MQSeries for OS/2 Warp
In MQSeries for OS/2 Warp, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

MQM.LIB Server for 32-bit C
MQIC.LIB Client for C
MQMXA.LIB Static XA interface for C
MQMCICS.LIB CICS for OS/2 V2 exits for C
MQMCICS3.LIB CICS Transaction Server for OS/2, V4 exits
MQMZF.LIB Installable services exits for C

MQI contents

64 MQSeries Application Programming Guide

|
|
|

|

|

||
||
||
|

|

|||
||
||
||
|

|

MQICCB16.LIB Client for 16-bit Micro Focus COBOL
MQMCB16.LIB Server for 16-bit Micro Focus COBOL
MQMCBB.LIB Server for 32-bit IBM VisualAge® COBOL
MQMCB32.LIB Server for 32-bit Micro Focus COBOL
MQICCBB.LIB Client for 32-bit IBM VisualAge COBOL
MQICCB32.LIB Client for 32-bit Micro Focus COBOL
IMQ*.LIB Server for C++

MQSeries for Windows
In MQSeries for Windows, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

MQM16.LIB Server for 16-bit C
MQM.LIB Server for 32-bit C

MQSeries for Windows NT
In MQSeries for Windows NT, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

MQM.LIB Server for 32-bit C
MQIC.LIB Client for 16-bit C
MQIC32.LIB Client for 32-bit C
MQMXA.LIB Static XA interface for C
MQMCICS.LIB CICS for Windows NT V2 exits for C
MQMCICS4.LIB TXSeries for Windows NT, V4 exits for C
MQMZF.LIB Installable services exits for C
MQMCBB.LIB Server for 32-bit IBM COBOL
MQMCB32 Server for 32-bit Micro Focus COBOL
MQICCBB.LIB Client for 32-bit IBM COBOL
MQICCB32 Client for 32-bit Micro Focus COBOL
IMQ*.LIB Server for C++
MQMENC.LIB Dynamic XA interface in C for Encina
MQMTUX.LIB Dynamic XA interface in C for Tuxedo

MQSeries for AIX
In MQSeries for AIX, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

In a non-threaded application:

libmqm.a Server for C
libmqic.a Client for C
libmqmzf.a Installable service exits for C
libmqmxa.a XA interface for C
libmqmcbrt.o MQSeries run-time library for Micro Focus COBOL support
libmqmcb.a Server for COBOL
libmqicb.a Client for COBOL
libimq*.a Client for C++

MQI contents

Chapter 6. Introducing the Message Queue Interface 65

In a threaded application:

libmqm_r.a Server for C
libmqmzf_r.a Installable service exits for C
libmqmxa_r.a XA interface for C
libimq*_r.a Client for C++
libmqmxa_r.a For Encina

MQSeries for AT&T GIS UNIX
In MQSeries for AT&T GIS UNIX, you must link your program to the MQI library
files supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C

MQSeries for Compaq (DIGITAL) OpenVMS
In MQSeries for Compaq (DIGITAL) OpenVMS, you must link your program to
the MQI library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system:

mqm.exe Server for C
mqic.exe Client for C
mqmzf.exe Installable service exits for C
mqmxa.exe XA interface for C
mqcbrt.exe MQSeries COBOL run-time
mqmcb.exe Server for COBOL
mqicb.exe Client for COBOL

MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)
In MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX), you must link your
program to the MQI library files supplied for the environment in which you are
running your application, in addition to those provided by the operating system:

In a non-threaded application:

libmqm.so Server for C
libmqic.so Client for C
libmqmzf.sl Installable service exits for C

MQSeries for HP-UX
In MQSeries for HP-UX, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

In a non-threaded application:

libmqm.sl Server for C
libmqic.sl Client for C
libmqmzf.sl Installable service exits for C
libmqmxa.sl XA interface for C

MQI contents

66 MQSeries Application Programming Guide

|
|
|
|

|

|||
||
||
|

|

libmqmcbrt.o MQSeries run-time library for Micro Focus COBOL support
libmqmcb.sl Server for COBOL
libmqicb.sl Client for COBOL

In a threaded application:

libmqm_r.sl Server for C
libmqmzf_r.sl Installable service exits for C
libmqmxa_r.sl XA interface for C

MQSeries for SINIX and DC/OSx
In MQSeries for SINIX and DC/OSx, you must link your program to the MQI
library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system.

In a non-threaded application:

libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C
libmqmcbrt.o MQSeries COBOL run-time
libmqmcb.so Server for COBOL
libmqicb.so Client for COBOL

In a threaded application:

libmqm_r.so For C
libmqmcs_r.so For C
libmqmcics_r.so For CICS
libmqmxa_r.a For XA interface in C

DOS and Windows 3.1 clients
In DOS and Windows 3.1, you must link your program to the MQIC.LIB library
file (or imq*vw.lib for C++), followed by the protocol libraries, indicating the
protocol you do and do not want.

mqicn.lib NetBIOS required
mqicdn.lib NetBIOS not required
mqict.lib TCP/IP required
mqicdt.lib TCP/IP not required

libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C
imq*.so C++

MQI contents

Chapter 6. Introducing the Message Queue Interface 67

MQSeries for Sun Solaris
In MQSeries for Sun Solaris, you must link your program to the MQI library files
supplied for the environment in which you are running your application in
addition to those provided by the operating system.

libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C
imq*.so C++

MQSeries for VSE/ESA
In MQSeries for VSE/ESA you must link your program to the install sublibrary
PRD2.MQSERIES (this is its default name). This sublibrary contains all the required
object decks.

MQSeries for Tandem NonStop Kernel
In MQSeries for Tandem NonStop Kernel, you must link your program to the MQI
library files supplied for the environment in which you are running your
application in addition to those provided by the operating system.

mqmlibc For C, non-native
mqmlibt For TAL or COBOL, non-native
mqmlibnc For native C
mqmlibnt For native TAL or COBOL

Parameters common to all the calls
There are two types of parameter common to all the calls: handles and return
codes.

Using connection and object handles
For a program to communicate with a queue manager, the program must have a
unique identifier by which it knows that queue manager. This identifier is called a
connection handle. For CICS programs, the connection handle is always zero. For all
other platforms or styles of programs, the connection handle is returned by the
MQCONN or MQCONNX call when the program connects to the queue manager.
Programs pass the connection handle as an input parameter when they use the
other calls.

For a program to work with an MQSeries object, the program must have a unique
identifier by which it knows that object. This identifier is called an object handle.
The handle is returned by the MQOPEN call when the program opens the object to
work with it. Programs pass the object handle as an input parameter when they
use subsequent MQPUT, MQGET, MQINQ, MQSET, or MQCLOSE calls.

Understanding return codes
A completion code and a reason code are returned as output parameters by each
call. These are known collectively as return codes.

To show whether or not a call is successful, each call returns a completion code
when the call is complete. The completion code is usually either MQCC_OK or

MQI contents

68 MQSeries Application Programming Guide

MQCC_FAILED, showing success and failure, respectively. Some calls can return
an intermediate state, MQCC_WARNING, indicating partial success.

Each call also returns a reason code that shows the reason for the failure, or partial
success, of the call. There are many reason codes, covering such circumstances as a
queue being full, get operations not being allowed for a queue, and a particular
queue not being defined for the queue manager. Programs can use the reason code
to decide how to proceed. For example, they could prompt the user of the program
to make changes to his input data, then make the call again, or they could return
an error message to the user.

When the completion code is MQCC_OK, the reason code is always
MQRC_NONE.

The completion and reason codes for each call are listed with the description of
that call in the MQSeries Application Programming Reference

You will also find further information (including some ideas for corrective action)
for each completion and reason code, in the MQSeries Application Programming
Reference manual.

Specifying buffers
The queue manager refers to buffers only if they are required. If you do not
require a buffer on a call or the buffer is zero in length, you can use a null pointer
to a buffer.

Always use datalength when specifying the size of the buffer you require.

When you use a buffer to hold the output from a call (for example, to hold the
message data for an MQGET call, or the values of attributes queried by the
MQINQ call), the queue manager attempts to return a reason code if the buffer
you specify is not valid or is in read-only storage. However, it may not be able to
return a reason code in some situations.

Programming language considerations
MQSeries provides support for the following programming languages:
v C.
v C++ (MQSeries for AIX, AS/400, HP-UX, OS/2, OS/390, Sun Solaris, and

Windows NT only). See the MQSeries Using C++ book for information about
coding MQSeries programs in C++.

v Visual Basic (MQSeries for Windows and Windows NT only). See the MQSeries
for Windows Version 2.0 User’s Guide and the MQSeries for Windows Version 2.1
User’s Guide for information about coding MQSeries programs in Visual Basic.

v COBOL (not MQSeries Digital Unix (Compac Tru64 Unix) V2.2.1
v Assembler language (MQSeries for OS/390 only).
v RPG (MQSeries for AS/400 only).
v PL/I (MQSeries for OS/390, AIX, OS/2 Warp, VSE/ESA, and Windows NT

only).
v TAL (MQSeries for Tandem NonStop Kernel only).

The call interface, and how you can code the calls in each of these languages, is
described in the MQSeries Application Programming Reference manual.

MQI common parameters

Chapter 6. Introducing the Message Queue Interface 69

MQSeries provides data definition files to assist you with the writing of your
applications. For a full description, see “Appendix F. MQSeries data definition
files” on page 515.

If you can choose which language to code your programs in, you should consider
the maximum length of the messages that your programs will process. If your
programs will process only messages of a known maximum length, you can code
them in any of the supported programming languages. But if you do not know the
maximum length of the messages the programs will have to process, the language
you choose will depend on whether you are writing a CICS, IMS, or batch
application:

IMS and batch
Code the programs in C, PL/I, or assembler language to use the facilities
these languages offer for obtaining and releasing arbitrary amounts of
memory. Alternatively, you could code your programs in COBOL, but use
assembler language, PL/I, or C subroutines to get and release storage.

CICS Code the programs in any language supported by CICS. The EXEC CICS
interface provides the calls for managing memory, if necessary.

Coding in C
See “Appendix A. Language compilers and assemblers” on page 423 for the
compilers that you can use to process your C programs.

Note the information in the following sections when coding MQSeries programs in
C.

Parameters of the MQI calls
Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG
are passed by value; for all other parameters, the address of the parameter is passed
by value.

Not all parameters that are passed by address need to be specified every time a
function is invoked. Where a particular parameter is not required, a null pointer
can be specified as the parameter on the function invocation, in place of the
address of the parameter data. Parameters for which this is possible are identified
in the call descriptions.

No parameter is returned as the value of the function; in C terminology, this means
that all functions return void.

The attributes of the function are defined by the MQENTRY macro variable; the
value of this macro variable depends on the environment.

Parameters with undefined data type
The MQGET, MQPUT, and MQPUT1 functions each have one parameter that has
an undefined data type, namely the Buffer parameter. This parameter is used to
send and receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is
valid to declare the parameters in this way, but it is usually more convenient to
declare them as the particular structure that describes the layout of the data in the
message. The function parameter is declared as a pointer-to-void, and so the
address of any sort of data can be specified as the parameter on the function
invocation.

Programming language considerations

70 MQSeries Application Programming Guide

Data types
All data types are defined by means of the typedef statement. For each data type,
the corresponding pointer data type is also defined. The name of the pointer data
type is the name of the elementary or structure data type prefixed with the letter
“P” to denote a pointer. The attributes of the pointer are defined by the
MQPOINTER macro variable; the value of this macro variable depends on the
environment. The following illustrates how pointer data types are declared:
#define MQPOINTER /* depends on environment */
...
typedef MQLONG MQPOINTER PMQLONG; /* pointer to MQLONG */
typedef MQMD MQPOINTER PMQMD; /* pointer to MQMD */

Manipulating binary strings
Strings of binary data are declared as one of the MQBYTEn data types. Whenever
you copy, compare, or set fields of this type, use the C functions memcpy, memcmp, or
memset:
#include <string.h>
#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /* set "MsgId" field to nulls */
MQMI_NONE, /* ...using named constant */
sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /* set "CorrelId" field to nulls */
0x00, /* ...using a different method */
sizeof(MQBYTE24));

Do not use the string functions strcpy, strcmp, strncpy, or strncmp because these
do not work correctly with data declared as MQBYTE24.

Manipulating character strings
When the queue manager returns character data to the application, the queue
manager always pads the character data with blanks to the defined length of the
field. The queue manager does not return null-terminated strings, but you can use
them in your input. Therefore, when copying, comparing, or concatenating such
strings, use the string functions strncpy, strncmp, or strncat.

Do not use the string functions that require the string to be terminated by a null
(strcpy, strcmp, and strcat). Also, do not use the function strlen to determine the
length of the string; use instead the sizeof function to determine the length of the
field.

Initial values for structures
The include file <cmqc.h> defines various macro variables that may be used to
provide initial values for the structures when instances of those structures are
declared. These macro variables have names of the form MQxxx_DEFAULT, where
MQxxx represents the name of the structure. Use them like this:
MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields, the MQI defines particular values that are valid (for
example, for the StrucId fields or for the Format field in MQMD). For each of the
valid values, two macro variables are provided:
v One macro variable defines the value as a string whose length, excluding the

implied null, matches exactly the defined length of the field. For example, (the
symbol b represents a blank character):

Programming language considerations

Chapter 6. Introducing the Message Queue Interface 71

#define MQMD_STRUC_ID "MDbb"
#define MQFMT_STRING "MQSTRbbb"

Use this form with the memcpy and memcmp functions.
v The other macro variable defines the value as an array of char; the name of this

macro variable is the name of the string form suffixed with “_ARRAY”. For
example:
#define MQMD_STRUC_ID_ARRAY 'M','D','b','b'
#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','b','b','b'

Use this form to initialize the field when an instance of the structure is declared
with values different from those provided by the MQMD_DEFAULT macro
variable.

Initial values for dynamic structures
When a variable number of instances of a structure are required, the instances are
usually created in main storage obtained dynamically using the calloc or malloc
functions. To initialize the fields in such structures, the following technique is
recommended:
1. Declare an instance of the structure using the appropriate MQxxx_DEFAULT

macro variable to initialize the structure. This instance becomes the “model” for
other instances:
MQMD ModelMsgDesc = {MQMD_DEFAULT};

/* declare model instance */

The static or auto keywords can be coded on the declaration in order to give
the model instance static or dynamic lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of
the structure:
PMQMD InstancePtr;
InstancePtr = malloc(sizeof(MQMD));

/* get storage for dynamic instance */

3. Use the memcpy function to copy the model instance to the dynamic instance:
memcpy(InstancePtr,&ModelMsgDesc,sizeof(MQMD));

/* initialize dynamic instance */

Use from C++
For the C++ programming language, the header files contain the following
additional statements that are included only when a C++ compiler is used:
#ifdef __cplusplus
extern "C" {

#endif

/* rest of header file */

#ifdef __cplusplus
}

#endif

Coding in COBOL
See “Appendix A. Language compilers and assemblers” on page 423 for the
compilers that you can use to process your COBOL programs.

Note the information in the following sections when coding MQSeries programs in
COBOL.

Programming language considerations

72 MQSeries Application Programming Guide

Named constants
In this book, the names of constants are shown containing the underscore character
(_) as part of the name. In COBOL, you must use the hyphen character (-) in place
of the underscore.

Constants that have character-string values use the single quotation mark character
(') as the string delimiter. To make the compiler accept this character, use the
compiler option APOST.

The copy file CMQV contains declarations of the named constants as level-10
items. To use the constants, declare the level-01 item explicitly, then use the COPY
statement to copy in the declarations of the constants:
WORKING-STORAGE SECTION.
01 MQM-CONSTANTS.

COPY CMQV.

However, this method causes the constants to occupy storage in the program even
if they are not referred to. If the constants are included in many separate programs
within the same run unit, multiple copies of the constants will exist—this may
result in a significant amount of main storage being used. You can avoid this
situation by adding the GLOBAL clause to the level-01 declaration:
* Declare a global structure to hold the constants
01 MQM-CONSTANTS GLOBAL.

COPY CMQV.

This causes storage to be allocated for only one set of constants within the run
unit; the constants, however, can be referred to by any program within the run
unit, not just the program that contains the level-01 declaration.

Coding in System/390 ® assembler language
System/390 assembler is supported on OS/390 only.

See “Appendix A. Language compilers and assemblers” on page 423 for the
assemblers that you can use to process your assembler-language programs.

Note the information in the following sections when coding MQSeries for OS/390
programs in assembler language.

Names
In this book, the names of parameters in the descriptions of calls, and the names of
fields in the descriptions of structures are shown in mixed case. In the
assembler-language macros supplied with MQSeries, all names are in uppercase.

Using the MQI calls
The MQI is a call interface, so assembler-language programs must observe the OS
linkage convention. In particular, before they issue an MQI call,
assembler-language programs must point register R13 at a save area of at least 18
full words. This save area is to provide storage for the called program. It stores the
registers of the caller before their contents are destroyed, and restores the contents
of the caller’s registers on return.

Note: This is of particular importance for CICS assembler-language programs that
use the DFHEIENT macro to set up their dynamic storage, but that choose
to override the default DATAREG from R13 to other registers. When the
CICS Resource Manager Interface receives control from the stub, it saves the
current contents of the registers at the address to which R13 is pointing.

Programming language considerations

Chapter 6. Introducing the Message Queue Interface 73

Failing to reserve a proper save area for this purpose gives unpredictable
results, and will probably cause an abend in CICS.

Declaring constants
Most constants are declared as equates in macro CMQA. However, the following
constants cannot be defined as equates, and these are not included when you call
the macro using default options:

MQACT_NONE
MQCI_NONE
MQFMT_NONE
MQFMT_ADMIN
MQFMT_COMMAND_1
MQFMT_COMMAND_2
MQFMT_DEAD_LETTER_HEADER
MQFMT_EVENT
MQFMT_IMS
MQFMT_IMS_VAR_STRING
MQFMT_PCF
MQFMT_STRING
MQFMT_TRIGGER
MQFMT_XMIT_Q_HEADER
MQMI_NONE

To include them, add the keyword EQUONLY=NO when you call the macro.

CMQA is protected against multiple declaration, so you can include it many times.
However, the keyword EQUONLY takes effect only the first time the macro is
included.

Specifying the name of a structure
To allow more than one instance of a structure to be declared, the macro that
generates the structure prefixes the name of each field with a user-specifiable string
and an underscore character (_). Specify the string when you invoke the macro. If
you do not specify a string, the macro uses the name of the structure to construct
the prefix:
* Declare two object descriptors

CMQODA Prefix used="MQOD_" (the default)
MY_MQOD CMQODA Prefix used="MY_MQOD_"

The structure declarations in the MQSeries Application Programming Reference
manual show the default prefix.

Specifying the form of a structure
The macros can generate structure declarations in one of two forms, controlled by
the DSECT parameter:

DSECT=YES An assembler-language DSECT instruction is used to start a new data
section; the structure definition immediately follows the DSECT
statement. No storage is allocated, so no initialization is possible. The
label on the macro invocation is used as the name of the data section; if
no label is specified, the name of the structure is used.

DSECT=NO Assembler-language DC instructions are used to define the structure at
the current position in the routine. The fields are initialized with values,
which you can specify by coding the relevant parameters on the macro
invocation. Fields for which no values are specified on the macro
invocation are initialized with default values.

DSECT=NO is assumed if the DSECT parameter is not specified.

Programming language considerations

74 MQSeries Application Programming Guide

Controlling the listing
You can control the appearance of the structure declaration in the
assembler-language listing by means of the LIST parameter:

LIST=YES The structure declaration appears in the assembler-language listing.
LIST=NO The structure declaration does not appear in the assembler-language

listing. This is assumed if the LIST parameter is not specified.

Specifying initial values for fields
You can specify the value to be used to initialize a field in a structure by coding
the name of that field (without the prefix) as a parameter on the macro invocation,
accompanied by the value required.

For example, to declare a message descriptor structure with the MsgType field
initialized with MQMT_REQUEST, and the ReplyToQ field initialized with the
string MY_REPLY_TO_QUEUE, you could use the following code:
MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X

REPLYTOQ=MY_REPLY_TO_QUEUE

If you specify a named constant (or equate) as a value on the macro invocation,
you must use the CMQA macro to define the named constant. You must not
enclose in single quotation marks (‘ ’) values that are character strings.

Writing reenterable programs
MQSeries uses its structures for both input and output. If you want your program
to remain reenterable, you should:
1. Define working storage versions of the structures as DSECTs, or define the

structures inline within an already-defined DSECT. Then copy the DSECT to
storage that is obtained using:
v For batch and TSO programs, the STORAGE or GETMAIN OS/390

assembler macros
v For CICS, the working storage DSECT (DFHEISTG) or the EXEC CICS

GETMAIN command

To correctly initialize these working storage structures, copy a constant version
of the corresponding structure to the working storage version.

Note: The MQMD and MQXQH structures are each more than 256 bytes long.
To copy these structures to storage, you will have to use the MVCL
assembler instruction.

2. Reserve space in storage by using the LIST form (MF=L) of the CALL macro.
When you use the CALL macro to make an MQI call, use the EXECUTE form
(MF=E) of the macro, using the storage reserved earlier, as shown in the example
under “Using CEDF” on page 76. For more examples of how to do this, see the
assembler language sample programs as shipped with MQSeries.

Use the assembler language RENT option to help you determine if your program
is reenterable.

For information on writing reenterable programs, see the MVS/ESA Application
Development Guide: Assembler Language Programs, GC28-1644.

Programming language considerations

Chapter 6. Introducing the Message Queue Interface 75

Using CEDF
If you want to use the CICS-supplied transaction, CEDF (CICS Execution
Diagnostic Facility) to help you to debug your program, you must add the ,VL
keyword to each CALL statement, for example:

CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

The above example is reenterable assembler-language code where PARMAREA is an
area in the working storage you specified.

Coding in RPG
RPG is supported on OS/400 only.

See “Appendix A. Language compilers and assemblers” on page 423 for the
compilers that you can use to process your RPG programs.

In this book, the parameters of calls, the names of data types, the fields of
structures, and the names of constants are described using their long names. In
RPG, these names are abbreviated to six or fewer uppercase characters. For
example, the field MsgType becomes MDMT in RPG. For more information, see the
MQSeries for AS/400 Application Programming Reference (ILE RPG) manual.

Coding in PL/I
PL/I is supported on AIX, OS/390, OS/2 Warp, VSE/ESA, and Windows NT only.

See “Appendix A. Language compilers and assemblers” on page 423 for the
compilers that you can use to process your PL/I programs.

Note the information in the following sections when coding MQSeries for OS/390
programs in PL/I.

Structures
Structures are declared with the BASED attribute, and so do not occupy any
storage unless the program declares one or more instances of a structure.

An instance of a structure can be declared by using the like attribute, for example:
dcl my_mqmd like MQMD; /* one instance */
dcl my_other_mqmd like MQMD; /* another one */

The structure fields are declared with the INITIAL attribute; when the like
attribute is used to declare an instance of a structure, that instance inherits the
initial values defined for that structure. Thus it is necessary to set only those fields
where the value required is different from the initial value.

PL/I is not sensitive to case, and so the names of calls, structure fields, and
constants can be coded in lowercase, uppercase, or mixed case.

Named constants
The named constants are declared as macro variables; as a result, named constants
which are not referenced by the program do not occupy any storage in the
compiled procedure. However, the compiler option which causes the source to be
processed by the macro preprocessor must be specified when the program is
compiled.

Programming language considerations

76 MQSeries Application Programming Guide

|
|

All of the macro variables are character variables, even the ones which represent
numeric values. Although this may seem counter intuitive, it does not result in any
data-type conflict after the macro variables have been substituted by the macro
processor, for example:
%dcl MQMD_STRUC_ID char;
%MQMD_STRUC_ID = '''MD ''';

%dcl MQMD_VERSION_1 char;
%MQMD_VERSION_1 = '1';

Coding in TAL
TAL is supported on Tandem NonStop Kernel only.

See “Appendix A. Language compilers and assemblers” on page 423 for the
compilers that you can use to process your TAL programs.

Note the following when coding MQSeries for Tandem NonStop Kernel programs
in TAL:
v The MQI library (bound into the application process) does not open $RECEIVE

and does not open $TMP (TM/MP transaction pseudo-file) itself, so you may
code your application to use these features.

v The MQI library uses a SERVERCLASS_SEND_() call in initial communication
with the Queue Manager. While connected, it maintains two process file opens
(with the LINKMON process and a Local Queue Manager Agent) and a small
number of disk file opens (fewer than 10).

OS/390 batch considerations
OS/390 batch programs that call the MQI can be in either supervisor or problem
state. However, they must meet the following conditions:
v They must be in task mode, not service request block (SRB) mode.
v They must be in Primary address space control (ASC) mode (not Access Register

ASC mode).
v They must not be in cross-memory mode. The primary address space number

(ASN) must be equal to the secondary ASN and the home ASN.
v No OS/390 locks can be held.
v There can be no function recovery routines (FRRs) on the FRR stack.
v Any program status word (PSW) key can be in force for the MQCONN call

(provided the key is compatible with using storage that is in the TCB key), but
subsequent calls that use the connection handle returned by MQCONN:
– Must have the same PSW key that was used on the MQCONN call
– Must have parameters accessible (for write, where appropriate) under the

same PSW key
– Must be issued under the same task (TCB), but not in any subtask of the task

v They can be in either 24-bit or 31-bit addressing mode. However, if 24-bit
addressing mode is in force, parameter addresses must be interpreted as valid
31-bit addresses.

If any of these conditions is not met, a program check may occur. In some cases
the call will fail and a reason code will be returned.

Programming language considerations

Chapter 6. Introducing the Message Queue Interface 77

UNIX signal handling on MQSeries Version 5 products
In general, UNIX and AS/400 systems have moved from a nonthreaded (process)
environment to a multithreaded environment. In the nonthreaded environment,
some functions could be implemented only by using signals, though most
applications did not need to be aware of signals and signal handling. In the
multithreaded environment, thread-based primitives support some of the functions
that used to be implemented in the nonthreaded environments using signals. In
many instances, signals and signal handling, although supported, do not fit well
into the multithreaded environment and various restrictions exist. This can be
particularly problematic when you are integrating application code with different
middleware libraries (running as part of the application) in a multithreaded
environment where each is trying to handle signals. The traditional approach of
saving and restoring signal handlers (defined per process), which worked when
there was only one thread of execution within a process, does not work in a
multithreaded environment: many threads of execution could be trying to save and
restore a process-wide resource, with unpredictable results.

For a standard application, MQSeries supports both nonthreaded and threaded
application environments on AIX, AS/400, and HP-UX.

MQSeries for AS/400 uses ILE/C condition and cancel handlers as its exception
processing mechanisms. Because of this, applications must not use the ILE/C
signal() API when connected to MQSeries. The signal() API is implemented by ILE
to handle ILE/C conditions as if they were signals, and can interfere with the
ILE/C condition handlers used by MQSeries.

Sigaction() and sigwait() are safe to use with MQSeries, because they do not
interact with ILE conditions at all. The ILE condition and cancel handler APIs are
also safe to use in all circumstances. These APIs, when used together, will handle
the same combination of exception conditions as signal().

All MQSeries applications in the Sun Solaris environment are threaded. MQSeries
for Sun Solaris V2.2 supported only single-threaded applications (though there was
no way to enforce this) and, because there was only one thread of execution, was
able to make use of the traditional signal handling functions. In MQSeries for Sun
Solaris, V5.0, and subsequent releases, true multithreaded applications are
supported and so the signal behavior has changed.

The library libmqm is provided for migration of nonthreaded applications from
Version 2 of MQSeries for AIX or MQSeries for HP-UX to Version 5. The goal of
this library is to maintain the Version 2 behavior (including signals) for
nonthreaded applications. Within an application in this environment there is only
one thread of execution, which means that signal handlers can be saved and
restored safely across MQSeries API calls (as can any middleware library that is
part of the application). Therefore, if you have an application suite on V2 of
MQSeries for AIX or MQSeries for HP-UX that uses signals, and you do not want
to move to the threaded environment, the suite should run unchanged on V5 using
the nonthreaded library, libmqm.

The library libmqm_r is provided for threaded applications on MQSeries for AIX
or MQSeries for HP-UX. On AS/400 libmqm_r is provided as a service program.
However, the behavior, particularly for signals, is different:
v As in the nonthreaded environment, MQSeries still establishes signal handlers

for synchronous terminating signals (SIGBUS, SIGFPE, SIGSEGV).

UNIX signal handling

78 MQSeries Application Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

v MQSeries must run some clean-up code during abnormal termination. This is
achieved by setting up a sigwait thread to handle terminating, asynchronous
signals. While this approach is suitable for an application that does not handle
signals, it can cause problems when the signals being trapped on the MQSeries
sigwait thread overlap with signals that an application wishes to intercept.

v Even in the threaded environment MQSeries needs a signal for its internal
processing. As was stated earlier, use of signals in a threaded environment may
cause problems when you are integrating a middleware stack. (With many
threads all independently trying to handle signals, saving and restoring signal
handlers, results are unpredictable.) MQSeries must use one signal: SIGALRM.

Note: Some system functions may use signals internally (for example, SIGALRM
in a nonthreaded environment). For a particular operating system, some
of these functions may have thread-safe equivalents or it may be stated
that they are not multithread safe. Any non-thread-safe operating system
call should be replaced if moving to a multithreaded environment.

Unthreaded applications
Each MQI function sets up its own signal handler for the signals:

SIGALRM
SIGBUS
SIGFPE
SIGSEGV

Users’ handlers for these are replaced for the duration of the MQI function call.
Other signals can be caught in the normal way by user-written handlers. If you do
not install a handler, the default actions (for example, ignore, core dump, or exit)
are left in place.

Note: On Sun Solaris all applications are threaded even if they use a single thread.

Threaded applications
A thread is considered to be connected to MQSeries from MQCONN (or
MQCONNX) until MQDISC.

Synchronous signals
Synchronous signals arise in a specific thread. UNIX safely allows the setting up of
a signal handler for such signals for the whole process. However, MQSeries sets up
its own handler for the following signals, in the application process, while any
thread is connected to MQSeries:

SIGBUS
SIGFPE
SIGSEGV

If you are writing multithreaded applications, you should note that there is only
one process-wide signal handler for each signal. MQSeries alters this signal
handler when the application is connected to MQSeries. If one of these signals
occurs while not on a thread connected to MQSeries, MQSeries attempts to call the
signal handler that was in effect at the time of the first MQSeries connection within
the process. Application threads must not establish signal handlers for these signals
while there is any possibility that another thread of the same process is also
connected to MQSeries.

UNIX signal handling

Chapter 6. Introducing the Message Queue Interface 79

Asynchronous signals
Asynchronous signals arise outside the whole process. UNIX does not guarantee
predictable behavior for handling asynchronous signals, in certain situations, when
running multithreaded. MQSeries must perform clean-up of thread and process
resources as part of the termination from these asynchronous signals:

SIGCHLD
SIGHUP
SIGINT
SIGQUIT
SIGTERM

MQSeries establishes a sigwait thread in the application process to intercept these
signals.

These signals must not be used by the application when running multithreaded
and when any thread is within an MQSeries connection. These signals should not
be unmasked within any application thread; be aware of the default status of the
signal mask for threads that do not make MQSeries calls.

MQSeries use of SIGALRM
For communication purposes MQSeries needs a signal for its internal use. This
signal should not be used by the application while any thread is within an
MQSeries connection.

Threaded client applications - additional considerations
MQSeries handles the following signals during I/O to a server. These signals are
defined by the communications stack. The application should not establish a signal
handler for these signals while a thread of the process is making an MQSeries call:
SIGPIPE

(for TCP/IP)
SIGUSR1

(for LU 6.2)

Fastpath (trusted) applications
Fastpath applications run in the same process as MQSeries and so are running in
the multithreaded environment. In this environment the application should not use
any signals or timer interrupts. If a Fastpath application intercepts such an event,
the queue manager must be stopped and restarted, or it may be left in an
undefined state. For a full list of the restrictions for Fastpath applications under
MQCONNX see “Connecting to a queue manager using the MQCONNX call” on
page 86.

MQI function calls within signal handlers
While you are in a signal handler, you cannot call an MQI function. If you call an
MQI function, while another MQI function is active, MQRC_CALL_IN_PROGRESS
is returned. If you call an MQI function, while no other MQI function is active, it is
likely to fail because of the operating system restrictions on which calls can be
issued from within a handler.

In the case of C++ destructor methods, which may be called automatically during
program exit, you may not be able to stop the MQI functions from being called.
Therefore, ignore any errors about MQRC_CALL_IN_PROGRESS. If a signal
handler calls exit(), MQSeries backs out uncommitted messages in syncpoint as
normal and closes any open queues.

UNIX signal handling

80 MQSeries Application Programming Guide

Signals during MQI calls
MQI functions do not return the code EINTR or any equivalent to application
programs. If a signal occurs during an MQI call, and the handler calls ‘return’, the
call continues to run as if the signal had not happened. In particular, MQGET
cannot be interrupted by a signal to return control immediately to the application.
If you want to break out of an MQGET, set the queue to GET_DISABLED;
alternatively, use a loop around a call to MQGET with a finite time expiry
(MQGMO_WAIT with gmo.WaitInterval set), and use your signal handler (in a
nonthreaded environment) or equivalent function in a threaded environment to set
a flag which breaks the loop.

In the AIX environment, MQSeries requires that system calls interrupted by signals
are restarted. You must establish the signal handler with sigaction(2) and set the
SA_RESTART flag in the sa_flags field of the new action structure. The default
behavior is that calls are not restarted (the SA_RESTART flag is not set).

User exits and installable services
User exits and installable services that run as part of an MQSeries process in a
multithreaded environment have the same restrictions as for Fastpath applications.
They should be considered as permanently connected to MQSeries and so not use
signals or non-threadsafe operating system calls.

UNIX signal handling

Chapter 6. Introducing the Message Queue Interface 81

|
|
|
|

Changes

82 MQSeries Application Programming Guide

Chapter 7. Connecting and disconnecting a queue manager

To use MQSeries programming services, a program must have a connection to a
queue manager. The way this connection is made depends on the platform and the
environment in which the program is operating:

OS/390 batch, MQSeries for AS/400, MQSeries for Compaq (DIGITAL)
OpenVMS, MQSeries for OS/2 Warp, MQSeries for Tandem NonStop Kernel,
MQSeries on UNIX systems, MQSeries for Windows, and MQSeries for
Windows NT

Programs that run in these environments can use the MQCONN MQI call
to connect to, and the MQDISC call to disconnect from, a queue manager.
Alternatively, MQSeries on UNIX systems (with the exception of MQSeries
for DIGITAL UNIX (Compaq Tru64 UNIX)), MQseries for AS/400,
MQSeries for OS/2 Warp, and MQSeries for Windows NT can use the
MQCONNX call. This chapter describes how writers of such programs
should use these calls.

OS/390 batch programs can connect, consecutively or concurrently, to
multiple queue managers on the same TCB.

IMS The IMS control region is connected to one or more queue managers when
it starts. This connection is controlled by IMS commands. (For information
on how to control the IMS adapter of MQSeries for OS/390, see the
MQSeries for OS/390 System Management Guide.) However, writers of
message queuing IMS programs must use the MQCONN MQI call to
specify the queue manager to which they want to connect. They can use
the MQDISC call to disconnect from that queue manager. This chapter
describes how writers of such programs should use these calls. Before the
IMS adapter processes a message for another user following a Get Unique
call from the IOPCB, or one implied by a checkpoint call, the adapter
ensures that the application closes handles and disconnects from the queue
manager.

IMS programs can connect, consecutively or concurrently, to multiple
queue managers on the same TCB.

CICS Transaction Server for OS/390 and CICS for MVS/ESA
CICS programs do not need to do any work to connect to a queue
manager because the CICS system itself is connected. This connection is
usually made automatically at initialization, but you can also use the
CQKC transaction, which is supplied with MQSeries for OS/390. CQKC is
discussed in the MQSeries for OS/390 System Management Guide.

CICS tasks can connect only to the queue manager to which the CICS
region, itself, is connected.

Note: CICS programs can also use the MQI connect and disconnect calls
(MQCONN and MQDISC). You may want to do this so that you can
port these applications to non-CICS environments with a minimum
of recoding. Be warned, though, that these calls always complete
successfully in a CICS environment. This means that the return code
may not reflect the true state of the connection to the queue
manager.

© Copyright IBM Corp. 1993, 2000 83

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

TXSeries for Windows NT and Open Systems
These programs do not need to do any work to connect to a queue
manager because the CICS system itself is connected. Therefore, only one
connection at a time is supported. CICS applications must issue an
MQCONN call to obtain a connection handle, and should issue an
MQDISC call before they exit.

MQSeries for VSE/ESA
In your VSE/ESA application, make an explicit call to MQCONN to
establish a connection to the VSE/ESA queue manager. Ensure that your
application issues an MQDISC call to disconnect. The performance of your
application is better if you connect and disconnect as infrequently as
possible.

This chapter introduces connecting to and disconnecting from a queue manager,
under these headings:
v “Connecting to a queue manager using the MQCONN call”
v “Connecting to a queue manager using the MQCONNX call” on page 86
v “Disconnecting programs from a queue manager using MQDISC” on page 88

Connecting to a queue manager using the MQCONN call
In general, you can connect either to a specific queue manager, or to the default
queue manager:
v For MQSeries for OS/390, in the batch environment, the default queue manager

is specified in the CSQBDEFV module.
v For MQSeries for AS/400, MQSeries for Compaq (DIGITAL) OpenVMS,

MQSeries for OS/2 Warp, MQSeries for Tandem NonStop Kernel, and MQSeries
on UNIX systems, the default queue manager is specified in the mqs.ini file.

v For MQSeries for Tandem NonStop Kernel, the default queue manager is
specified in the MQSINI file, resident in the ZMQSSYS subvolume.

v For MQSeries for Windows NT, the default queue manager is specified in the
registry.

v MQSeries for Windows allows only one queue manager to run at a time; it uses
the running queue manager as its default.

v MQSeries for VSE/ESA allows only one queue manager to run at a time; its
name is specified in the Global System Definition of the System Management
Facility (SMF). Your application can specify the name or use the default value.

The queue manager you connect to must be local to the task. This means that it
must belong to the same system as the MQSeries application.

In the IMS environment, the queue manager must be connected to the IMS control
region and to the dependent region that the program uses. The default queue
manager is specified in the CSQQDEFV module when MQSeries for OS/390 is
installed.

With the CICS on Open Systems environment, and TXSeries for Windows NT and
AIX, the queue manager must be defined as an XA resource to CICS.

To connect to the default queue manager, call MQCONN, specifying a name
consisting entirely of blanks or starting with a null (X'00') character.

Within MQSeries on UNIX systems, an application must be authorized for it to
successfully connect to a queue manager. For more information, see the MQSeries

Connecting and disconnecting

84 MQSeries Application Programming Guide

|
|
|

|
|

System Administration Guide for MQSeries for AIX, HP-UX, and Sun Solaris; for
other platforms, see the appropriate System Management Guide.

The output from MQCONN is:
v A connection handle
v A completion code
v A reason code

You will need to use the connection handle on subsequent MQI calls.

If the reason code indicates that the application is already connected to that queue
manager, the connection handle that is returned is the same as the one that was
returned when the application first connected. So the application probably should
not issue the MQDISC call in this situation because the calling application will
expect to remain connected.

The scope of the connection handle is the same as that for the object handle (see
“Opening objects using the MQOPEN call” on page 92).

Descriptions of the parameters are given in the description of the MQCONN call in
the MQSeries Application Programming Reference manual.

The MQCONN call fails if the queue manager is in a quiescing state when you
issue the call, or if the queue manager is shutting down.

Scope of MQCONN
Within MQSeries for AS/400, MQSeries for Compaq (DIGITAL) OpenVMS,
MQSeries for OS/2 Warp, MQSeries on UNIX systems, MQSeries for Windows,
and MQSeries for Windows NT, the scope of an MQCONN call is the thread that
issued it. That is, the connection handle returned from an MQCONN call is valid
only within the thread that issued the call. Only one call may be made at any one
time using the handle. If it is used from a different thread, it will be rejected as
invalid. If you have multiple threads in your application and each wishes to use
MQSeries calls, each one must individually issue MQCONN.

Each thread can connect to a different queue manager on OS/2 and Windows NT,
but not on OS/400 or UNIX.

If your application is running as a client, it may connect to more than one queue
manager within a thread. This does not apply if your application is not running as
a client.

OS/2 has a limit of 4095 active threads in a system. However, the default is 64.
This value may be controlled by the THREADS=xxxx parameter in CONFIG.SYS.
Limitations on the number of concurrent MQCONN calls that can be made within
a system are dependent on this value, although other factors to consider are disk
space availability for the swapper.dat file and shared memory availability.

On MQSeries for Windows, the scope of an MQCONN call is the application
process.

On MQSeries for VSE/ESA, there is a maximum of 1000 concurrently-connected
tasks. The connection handle is unique to the ID of the transaction that is executing
and only valid for the duration of that transaction.

Using MQCONN

Chapter 7. Connecting and disconnecting a queue manager 85

|
|
|
|
|
|
|
|

|
|

Connecting to a queue manager using the MQCONNX call
MQCONNX is not supported on Compaq (DIGITAL) OpenVMS, DIGITAL UNIX,
OS/390, Tandem NonStop Kernel, and VSE/ESA.

The MQCONNX call is similar to the MQCONN call, but includes options to
control the way that the call actually works.

As input to MQCONNX, you must supply a queue manager name. The output
from MQCONNX is:
v A connection handle
v A completion code
v A reason code

You will need to use the connection handle on subsequent MQI calls.

A description of all of the parameters of MQCONNX is given in the MQSeries
Application Programming Reference manual. The Options field allows you to set
STANDARD_BINDING or FASTPATH_BINDING:

MQCNO_STANDARD_BINDING
By default, MQCONNX (like MQCONN) implies two logical threads where the
MQSeries application and the local queue manager agent run in separate processes.
The MQSeries application performs the MQSeries operation and the local queue
manager agent performs the application operation. This is defined by the
MQCNO_STANDARD_BINDING option on the MQCONNX call.

Note: This default maintains the integrity of the queue manager (that is, it makes
the queue manager immune to errant programs), but impairs the
performance of the MQI calls.

MQCNO_FASTPATH_BINDING
Trusted applications imply that the MQSeries application and the local queue
manager agent become the same process. Since the agent process no longer needs
to use an interface to access the queue manager, these applications become an
extension of the queue manager. This is defined by the
MQCNO_FASTPATH_BINDING option on the MQCONNX call.

You need to link trusted applications to the threaded MQSeries libraries. For
instructions on how to set up an MQSeries application to run as trusted, see the
MQSeries Application Programming Reference manual.

Note: This option compromises the integrity of the queue manager as there is
no protection from overwriting its storage. This also applies if the
application contains errors which can be exposed to messages and other
data in the queue manager too. These issues must be considered before
using this option.

Restrictions
The following restrictions apply to trusted applications:
v On MQSeries on UNIX systems, it is necessary to use mqm as the effective

userID and groupID for all MQI calls. You may change these IDs before making
a non-MQI call requiring authentication (for example, opening a file), but you
must change it back to mqm before making the next MQI call.

Using MQCONNX

86 MQSeries Application Programming Guide

|
|

v On MQSeries on UNIX systems, trusted applications must run in threaded
processes but only one thread can be connected at a time.

v On MQSeries for AS/400 trusted applications must be run under the QMQM
user profile. It is not sufficient that the user profile be member of the QMQM
group or that the program adopt QMQM authority. It may not be possible, or
desirable, for the QMQM user profile to be used to sign on to interactive jobs, or
be specified in the job description for jobs running trusted applications. In this
case one approach is to use the OS/400 profile swapping API functions,
QSYGETPH, QWTSETP and QSYRLSPH to temporarily change the current user
of the job to QMQM while the MQ programs run. Details of these functions
together with an example of their use is provided in the Security APIs section of
the AS/400 System API Reference.

v On MQSeries for OS/2 Warp and MQSeries for Windows NT, a thread within a
trusted application cannot connect to a queue manager while another thread in
the same process is connected to a different queue manager.

v You must explicitly disconnect trusted applications from the queue manager.
v You must stop trusted applications before ending the queue manager with the

endmqm command.
v You must not use asynchronous signals and timer interrupts (such as sigkill)

with MQCNO_FASTPATH_BINDING.
v On MQSeries for AS/400 trusted applications must not be cancelled through the

use of System-Request Option 2, or by the jobs in which they are running being
ended using ENDJOB.

v On MQSeries for AIX, trusted applications cannot be compiled using the PL/I
programming language.

v On MQSeries for AIX, there are restrictions on the use of shared memory
segments:
MQSeries uses a single “shmat()” command to connect to shared memory
resources. However, on AIX, one process cannot attach to more than 10 memory
segments.
MQSeries uses two additional shared memory segments for trusted applications,
reducing the amount of shared storage available. Therefore, it is important that
your applications do not connect to too many shared segments, causing a failure
in the application code.
Here is a breakdown of the memory segments:

Segment Use

0 Reserved for AIX
1 Reserved for AIX
2 Stack and heap
3 CICS MQSeries (trusted applications only)
4 DB2 and DT/6000
5
6
7 MQSeries (trusted applications only)
8 MQSeries
9 CICS
A CICS
B CICS
C DB2
D Reserved for AIX
E Reserved for AIX
F Reserved for AIX

Using MQCONNX

Chapter 7. Connecting and disconnecting a queue manager 87

|
|
|
|
|
|
|
|
|
|

|
|
|

This also implies that trusted applications cannot use the maxdata binder option
to specify a greater user data area: this conflicts with the queue manager use of
shared memory within the application process as it causes the program data to
be placed in shared memory segment 3.

Environment variable
On MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for Windows NT,
and MQSeries on UNIX systems, the environment variable, MQ_CONNECT_TYPE,
can be used in combination with the type of binding specified in the Options field.
This environment variable allows you to execute the application with the
STANDARD_BINDING if any problems occur with the FASTPATH_BINDING. If
the environment variable is specified, it should have the value FASTPATH or
STANDARD to select the type of binding required. However, the FASTPATH
binding is used only if the connect option is appropriately specified as shown in
Table 2:

Table 2. Environment variable

MQCONNX Environment variable Result

STANDARD UNDEFINED STANDARD

FASTPATH UNDEFINED FASTPATH

STANDARD STANDARD STANDARD

FASTPATH STANDARD STANDARD

STANDARD FASTPATH STANDARD

FASTPATH FASTPATH FASTPATH

So, to run a trusted application, either:
1. Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and

the FASTPATH environment variable,

or
2. Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and

leave the environment variable undefined.

If neither MQCNO_STANDARD_BINDING nor MQCNO_FASTPATH_BINDING is
specified, you can use MQCNO_NONE, which defaults to
MQCNO_STANDARD_BINDING.

Disconnecting programs from a queue manager using MQDISC
When a program that has connected to a queue manager using the MQCONN call
has finished all interaction with the queue manager, it must break the connection
using the MQDISC call.

On CICS Transaction Server for OS/390 applications, the call is optional.

After MQDISC is called, the connection handle (Hconn) is no longer valid, and you
cannot issue any further MQI calls until you call MQCONN again. MQDISC does
an implicit MQCLOSE for any objects that are still open using this handle.

In MQSeries for AS/400, when you sign off from the operating system, an implicit
MQDISC call is made.

Using MQCONNX

88 MQSeries Application Programming Guide

|

As input to the MQDISC call, you must supply the connection handle (Hconn) that
was returned by MQCONN when you connected to the queue manager.

The output from this call is a completion code and a reason code, with the
connection handle set to the value MQHC_UNUSABLE_HCONN.

On MQSeries for VSE/ESA, if your application does not issue the MQDISC call
explicitly, the MQSeries for VSE/ESA housekeeping routine issues the MQDISC
call on its behalf and unwanted messages appear in the SYSTEM.LOG queue.

Descriptions of the parameters are given in the description of the MQDISC call in
the MQSeries Application Programming Reference manual.

Authority checking
The MQCLOSE and MQDISC calls usually perform no authority checking. In the
normal course of events a job which has the authority to open or connect to an
MQSeries object will close or disconnect from that object. Even if the authority of a
job that has connected to, or opened an MQSeries object is revoked, the MQCLOSE
and MQDISC calls are accepted.

Using MQDISC

Chapter 7. Connecting and disconnecting a queue manager 89

Changes

90 MQSeries Application Programming Guide

Chapter 8. Opening and closing objects

To perform any of the following operations, you must first open the relevant
MQSeries object:
v Put messages on a queue
v Get (browse or retrieve) messages from a queue
v Set the attributes of an object
v Inquire about the attributes of any object

Use the MQOPEN call to open the object, using the options of the call to specify
what you want to do with the object. The only exception is if you want to put a
single message on a queue, then close the queue immediately. In this case, you can
bypass the “opening” stage by using the MQPUT1 call (see “Putting one message
on a queue using the MQPUT1 call” on page 107).

Before you open an object using the MQOPEN call, you must connect your
program to a queue manager. This is explained in detail, for all environments, in
“Chapter 7. Connecting and disconnecting a queue manager” on page 83.

There are four types of MQSeries object that can be opened:
v Queue
v Namelist (MQSeries for OS/390 and MQSeries Version 5.1 products only)
v Process definition
v Queue manager

You open all of these objects in a similar way using the MQOPEN call. For more
information about MQSeries objects, see “Chapter 4. MQSeries objects” on page 35.

You can open the same object more than once, and each time you get a new object
handle. You might want to browse messages on a queue using one handle, and
remove messages from the same queue using another handle. This saves using up
resources to close and reopen the same object. You can also open a queue for
browsing and removing messages at the same time.

Moreover, you can open multiple objects with a single MQOPEN and close them
using MQCLOSE. See “Distribution lists” on page 109 for information about how
to do this.

When you attempt to open an object, the queue manager checks that you are
authorized to open that object for the options you specify in the MQOPEN call.

Objects are closed automatically when a program disconnects from the queue
manager. In the IMS environment, disconnection is forced when a program starts
processing for a new user following a GU (get unique) IMS call. On the AS/400
platform, objects are closed automatically when a job ends.

It is good programming practice to close objects you have opened. Use the
MQCLOSE call to do this.

This chapter introduces opening and closing MQSeries objects, under these
headings:
v “Opening objects using the MQOPEN call” on page 92
v “Creating dynamic queues” on page 98

© Copyright IBM Corp. 1993, 2000 91

v “Opening remote queues” on page 98
v “Closing objects using the MQCLOSE call” on page 99

Opening objects using the MQOPEN call
As input to the MQOPEN call, you must supply:
v A connection handle. For CICS applications, you can specify the constant

MQHC_DEF_HCONN (which has the value zero), or use the connection handle
returned by the MQCONN call. For other programs, always use the connection
handle returned by the MQCONN call.

v A description of the object you want to open, using the object descriptor
structure (MQOD).

v One or more options that control the action of the call.

The output from MQOPEN is:
v An object handle that represents your access to the object. Use this on input to

any subsequent MQI calls.
v A modified object-descriptor structure, if you are creating a dynamic queue (and

it is supported on your platform).
v A completion code.
v A reason code.

Namelists can be opened only on AIX, OS/400, HP-UX, OS/2 Warp, OS/390, Sun
Solaris, and Windows NT.

Scope of an object handle
The scope of an object handle is the same as the scope of a connection handle,
however there are variations between platforms:

CICS In a CICS program, you can use the handle only within the same CICS
task from which you made the MQOPEN call.

IMS and OS/390 batch
In the IMS and batch environments, you can use the handle within the
same task, but not within any subtasks.

MQSeries for AS/400
In an MQSeries for AS/400 program, you can use the handle only within
the same job from which you made the MQOPEN call.

MQSeries for OS/2 Warp
In the MQSeries for OS/2 Warp environment, you can use the same handle
within the same thread.

MQSeries for Windows NT
In the MQSeries for Windows NT environment, you can use the same
handle within the same thread.

MQSeries on Tandem NonStop Kernel
In this environment, you can use the same handle within the same process.

MQSeries on UNIX systems
In these environments, you can use the same handle within the same
thread.

DOS In the DOS environment, there are no restrictions on where you can use
the handle.

Opening and closing

92 MQSeries Application Programming Guide

|
|
|
|

|
|

|
|
|

|
|

MQSeries for VSE/ESA
In the VSE/ESA environment, you can use the handle only within the
same application transaction from which you made the MQOPEN call.

Windows 3.1
In the Windows 3.1 environment, you can use the handle in the same
Windows 3.1 instance.

Descriptions of the parameters of the MQOPEN call are given in the MQSeries
Application Programming Reference manual.

The following sections describe the information you must supply as input to
MQOPEN.

Identifying objects (the MQOD structure)
Use the MQOD structure to identify the object you want to open. This structure is
an input parameter for the MQOPEN call. (The structure is modified by the queue
manager when you use the MQOPEN call to create a dynamic queue.)

For full details of the MQOD structure see the MQSeries Application Programming
Reference manual.

For information about using the MQOD structure for distribution lists, see Using
the MQOD structure under “Distribution lists” on page 109.

Name resolution

Note: A Queue manager alias is a remote queue definition without an RNAME field.

When you open an MQSeries queue, the MQOPEN call performs a name
resolution function on the queue name you specify. This determines on which
queue the queue manager performs subsequent operations. This means that when
you specify the name of an alias queue or a remote queue in your object descriptor
(MQOD), the call resolves the name either to a local queue or to a transmission
queue. If a queue is opened for any type of input, browse, or set, it resolves to a
local queue if there is one, and fails otherwise. It resolves to a nonlocal queue only
if it is opened for output only, inquire only, or output and inquire only. See Table 3
on page 94 for an overview of the name resolution process. Note that the name

you supply in ObjectQMgrName is resolved before that in ObjectName.

Table 3 on page 94 also shows how you can use a local definition of a remote
queue to define an alias for the name of a queue manager. This allows you to
select which transmission queue is used when you put messages on a remote
queue, so you could, for example, use a single transmission queue for messages
destined for many remote queue managers.

To use the following table, first read down the two left-hand columns, under the
heading ’Input to MQOD’, and select the appropriate case. Then read across the
corresponding row, following any instructions. Following the instructions in the
’Resolved names’ columns, you can either return to the ’Input to MQOD’ columns
and insert values as directed, or you can exit the table with the results supplied.
For example, you may be required to input ObjectName.

Using MQOPEN

Chapter 8. Opening and closing objects 93

|

|

|
|
|
|
|
|

Table 3. Resolving queue names when using MQOPEN

Input to MQOD Resolved names

ObjectQMgrName ObjectName ObjectQMgrName ObjectName Transmission queue

Blank or local queue
manager

Local queue
with no
CLUSTER
attribute

Local queue manager Input
ObjectName

Not applicable (local
queue used)

Blank queue manager Local queue
with CLUSTER
attribute

Workload management
selected cluster queue
manager or specific
cluster queue manager
selected on PUT

Input
ObjectName

SYSTEM.CLUSTER.
TRANSMIT.QUEUE and
local queue used

Local queue manager Local queue
with CLUSTER
attribute

Local queue manager Input
ObjectName

Not applicable (local
queue used)

Blank or local queue
manager

Model queue Local queue manager Generated name Not applicable (local
queue used)

Blank or local queue
manager

Alias queue with
or without
CLUSTER
attribute

Perform name resolution
again with
ObjectQMgrName
unchanged, and input
ObjectName set to the
BaseQName in the alias
queue definition object.
Must not resolve to an
alias queue

Blank or local queue
manager

Local definition
of a remote
queue with or
without
CLUSTER
attribute

Perform name resolution
again with
ObjectQMgrName set to
RemoteQMgrName, and
ObjectName set to
RemoteQName. Must not
resolve remote queues

Name of XmitQName
attribute, if non-blank;
otherwise
RemoteQMgrName in the
remote queue definition
object

Blank queue manager No matching
local object;
cluster queue
found

Workload management
selected cluster queue
manager or specific
cluster queue manager
selected on PUT

Input
ObjectName

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

Blank or local queue
manager

No matching
local object;
cluster queue
not found

Error, queue not
found

Not applicable

Name of a local
transmission queue

(Not resolved) Input ObjectQMgrName Input
ObjectName

Input ObjectQMgrName

Queue manager alias
definition
(RemoteQMgrName may be
the local queue manager)

(Not resolved,
remote queue)

Perform name resolution
again with
ObjectQMgrName set to
RemoteQMgrName. Must
not resolve to remote
queues

Input
ObjectName

Name of XmitQName
attribute, if non-blank;
otherwise
RemoteQMgrName in the
remote queue definition
object

Queue manager is not
the name of any local
object; cluster queue
managers or queue
manager alias found

(Not resolved) ObjectQMgrName or
specific cluster queue
manager selected on PUT

Input
ObjectName

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

Using MQOPEN

94 MQSeries Application Programming Guide

|

Table 3. Resolving queue names when using MQOPEN (continued)

Queue manager is not
the name of any local
object; no cluster objects
found

(Not resolved) Input ObjectQMgrName Input
ObjectName

DefXmitQName attribute of
the queue manager.
Where DefXmitQName is
supported

Notes:

1. BaseQName is the name of the base queue from the definition of the alias queue.
2. RemoteQName is the name of the remote queue from the local definition of the

remote queue.
3. RemoteQMgrName is the name of the remote queue manager from the local

definition of the remote queue.
4. XmitQName is the name of the transmission queue from the local definition of

the remote queue.

Opening an alias queue also opens the base queue to which the alias resolves, and
opening a remote queue also opens the transmission queue. Therefore you cannot
delete either the queue you specify or the queue to which it resolves while the
other one is open.

The resolved queue name and the resolved queue manager name are stored in the
ResolvedQName and ResolvedQMgrName fields in the MQOD.

For more information about name resolution in a distributed queuing environment
see the MQSeries Intercommunication book.

Using the options of the MQOPEN call
In the Options parameter of the MQOPEN call, you must choose one or more
options to control the access you are given to the object you are opening. With
these options you can:
v Open a queue and specify that all messages put to that queue must be directed

to the same instance of it
v Open a queue to allow you to put messages on it
v Open a queue to allow you to browse messages on it
v Open a queue to allow you to remove messages from it
v Open an object to allow you to inquire about and set its attributes (but you can

set the attributes of queues only)
v Associate context information with a message
v Nominate an alternate user identifier to be used for security checks
v Control the call if the queue manager is in a quiescing state

MQOPEN option for cluster queue
To specify that all messages MQPUT to a queue are to be routed to the same queue
manager by the same route use the MQOO_BIND_ON_OPEN option on the
MQOPEN call. To specify that a destination is to be selected at MQPUT time, that
is, on a message-by-message basis, use the MQOO_BIND_NOT_FIXED option on
the MQOPEN call. If you specify neither of these options the default,
MQOO_BIND_AS_Q_DEF, is used. In this case the binding used for the queue
handle is taken from the DefBind queue attribute, which can take the value
MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED. If the queue you
open is not a cluster queue the MQOO_BIND_* options are ignored. If you specify
the name of the local queue manager in the MQOD the local instance of the cluster

Using MQOPEN

Chapter 8. Opening and closing objects 95

queue is selected. If the queue manager name is blank, any instance can be
selected. See the MQSeries Queue Manager Clusters book for more information.

MQOPEN option for putting messages
To open a queue in order to put messages on it, use the MQOO_OUTPUT option.

MQOPEN option for browsing messages
To open a queue so that you can browse the messages on it, use the MQOPEN call
with the MQOO_BROWSE option. This creates a browse cursor that the queue
manager uses to identify the next message on the queue. For more information, see
“Browsing messages on a queue” on page 143.

Notes:

1. You cannot browse messages on a remote queue. Therefore you cannot open a
remote queue using the MQOO_BROWSE option.

2. You cannot specify this option when opening a distribution list. For further
information about distribution lists, see “Distribution lists” on page 109.

MQOPEN options for removing messages
There are three options that control the opening of a queue in order to remove
messages from it. You can use only one of them in any MQOPEN call. These
options define whether your program has exclusive or shared access to the queue.
Exclusive access means that, until you close the queue, only you can remove
messages from it. If another program attempts to open the queue to remove
messages, its MQOPEN call fails. Shared access means that more than one program
can remove messages from the queue.

The most advisable approach is to accept the type of access that was intended for
the queue when the queue was defined. The queue definition involved the setting
of the Shareability and the DefInputOpenOption attributes. To accept this access,
use the MQOO_INPUT_AS_Q_DEF option. Refer to Table 4 to see how the setting
of these attributes affects the type of access you will be given when you use this
option.

Table 4. How queue attributes and options of the MQOPEN call affect access to queues

Queue attributes Type of access with MQOPEN options

Shareability DefInputOpenOption AS_Q_DEF SHARED EXCLUSIVE

SHAREABLE SHARED shared shared exclusive

SHAREABLE EXCLUSIVE exclusive shared exclusive

NOT_SHAREABLE* SHARED* exclusive exclusive exclusive

NOT_SHAREABLE EXCLUSIVE exclusive exclusive exclusive

Note: * Although you can define a queue to have this combination of attributes, the
default input open option is overridden by the shareability attribute.

Alternatively:
v If you know that your application can work successfully even if other programs

can remove messages from the queue at the same time, use the
MQOO_INPUT_SHARED option. Table 4 shows how, in some cases you will be
given exclusive access to the queue, even with this option.

v If you know that your application can work successfully only if other programs
are prevented from removing messages from the queue at the same time, use the
MQOO_INPUT_EXCLUSIVE option.

Using MQOPEN

96 MQSeries Application Programming Guide

Notes:

1. You cannot remove messages from a remote queue. Therefore you cannot open
a remote queue using any of the MQOO_INPUT_* options.

2. You cannot specify this option when opening a distribution list. For further
information, see “Distribution lists” on page 109.

MQOPEN options for setting and inquiring about attributes
To open a queue so that you can set its attributes, use the MQOO_SET option. You
cannot set the attributes of any other type of object (see “Chapter 12. Inquiring
about and setting object attributes” on page 167).

To open an object so that you can inquire about its attributes, use the
MQOO_INQUIRE option.

Note: You cannot specify this option when opening a distribution list.

MQOPEN options relating to message context
If you want to be able to associate context information with a message when you
put it on a queue, you must use one of the message context options when you
open the queue.

The options allow you to differentiate between context information that relates to
the user who originated the message, and that which relates to the application that
originated the message. Also, you can opt to set the context information when you
put the message on the queue, or you can opt to have the context taken
automatically from another queue handle.

For more information about the subject of message context, see “Message context”
on page 32.

MQOPEN option for alternate user authority
This is not supported on MQSeries for Windows.

When you attempt to open an object using the MQOPEN call, the queue manager
checks that you have the authority to open that object. If you are not authorized,
the call fails.

However, server programs may want the queue manager to check the
authorization of the user on whose behalf they are working, rather than the
server’s own authorization. To do this, they must use the
MQOO_ALTERNATE_USER_AUTHORITY option of the MQOPEN call, and
specify the alternate user ID in the AlternateUserId field of the MQOD structure.
Typically, the server would get the user ID from the context information in the
message it is processing.

MQOPEN option for queue manager quiescing
This is not supported on MQSeries for Windows.

In the CICS environment, if you use the MQOPEN call when the queue manager is
in a quiescing state, the call always fails. In other OS/390 environments, AS/400,
OS/2, Windows NT, and in UNIX systems environments, the call fails when the
queue manager is quiescing only if you use the MQOO_FAIL_IF_QUIESCING
option of the MQOPEN call.

Using MQOPEN

Chapter 8. Opening and closing objects 97

Creating dynamic queues
Dynamic queues are supported on MQSeries for AS/400, MQSeries for OS/2 Warp,
MQSeries for OS/390, MQSeries for Tandem NonStop Kernel, MQSeries on UNIX
systems, and MQSeries for Windows NT only.

You should use a dynamic queue for those cases where you do not need the queue
after your application ends. For example, you may want to use a dynamic queue
for your “reply-to” queue. You specify the name of the reply-to queue in the
ReplyToQ field of the MQMD structure when you put a message on a queue (see
“Defining messages using the MQMD structure” on page 102).

To create a dynamic queue, you use a template known as a model queue, together
with the MQOPEN call. You create a model queue using the MQSeries commands
or the operations and control panels. The dynamic queue you create takes the
attributes of the model queue.

When you call MQOPEN, specify the name of the model queue in the ObjectName
field of the MQOD structure. When the call completes, the ObjectName field is set
to the name of the dynamic queue that is created. Also, the ObjectQMgrName field is
set to the name of the local queue manager.

There are three ways to specify the name of the dynamic queue you create:
v Give the full name you want in the DynamicQName field of the MQOD structure.
v Specify a prefix (fewer than 33 characters) for the name, and allow the queue

manager to generate the rest of the name. This means that the queue manager
generates a unique name, but you still have some control (for example, you may
want each user to use a certain prefix, or you may want to give a special
security classification to queues with a certain prefix in their name). To use this
method, specify an asterisk (*) for the last non-blank character of the
DynamicQName field. Do not specify a single asterisk (*) for the dynamic queue
name.

v Allow the queue manager to generate the full name. To use this method, specify
an asterisk (*) in the first character position of the DynamicQName field.

For more information about these methods, see the description of the DynamicQName
field in the MQSeries Application Programming Reference manual.

There is more information on dynamic queues in “Dynamic queues” on page 41.

Opening remote queues
A remote queue is a queue owned by a queue manager other than the one to
which the application is connected.

To open a remote queue, use the MQOPEN call as for a local queue, but there are
two ways you can specify the name of the queue:
1. In the ObjectName field of the MQOD structure, specify the name of the remote

queue as known to the local queue manager.
2. In the ObjectName field of the MQOD structure, specify the name of the remote

queue, as known to the remote queue manager. In the ObjectQMgrName field,
specify either:
v The name of the transmission queue that has the same name as the remote

queue manager.

Creating dynamic queues

98 MQSeries Application Programming Guide

v The name of an alias queue object that resolves to the transmission queue
that has the same name as the remote queue manager.

This tells the queue manager the destination of the message as well as the
transmission queue it needs to be put on to get there.

3. If DefXmitQname is supported, in the ObjectName field of the MQOD structure,
specify the name of the remote queue as known by the remote queue manager.

Only local names are validated when you call MQOPEN; the last check is for the
existence of the transmission queue to be used.

These three methods are summarized in Table 3 on page 94.

Closing objects using the MQCLOSE call
To close an object, you use the MQCLOSE call. If the object is a queue, you should
note the following:
v There is no need to empty a temporary dynamic queue before you close it.

When you close a temporary dynamic queue, the queue is deleted, along with
any messages that may still be on it. This is true even if there are uncommitted
MQGET, MQPUT, or MQPUT1 calls outstanding against the queue.

v In MQSeries for OS/390, if you have any MQGET requests with an
MQGMO_SET_SIGNAL option outstanding for that queue, they are canceled.

v If you opened the queue using the MQOO_BROWSE option, your browse cursor
is destroyed.

Namelists can be closed only on AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun
Solaris, and Windows NT.

In MQSeries for VSE/ESA, ensure that your application issues a matching
MQCLOSE call for each MQOPEN call. If your application does not issue the
MQCLOSE call, the MQSeries for VSE/ESA housekeeping routine issues the
MQCLOSE call on its behalf and unwanted messages appear in the SYSTEM.LOG
queue.

Closure is unrelated to syncpoint, so you can close queues before or after
syncpoint.

As input to the MQCLOSE call, you must supply:
v A connection handle. Use the same connection handle used to open it, or

alternatively, for CICS applications, you can specify the constant
MQHC_DEF_HCONN (which has the value zero).

v The handle of the object you want to close. Get this from the output of the
MQOPEN call.

v MQCO_NONE in the Options field (unless you are closing a permanent
dynamic queue).

v The control option to determine whether the queue manager should delete the
queue even if there are still messages on it (when closing a permanent dynamic
queue).

Opening remote queues

Chapter 8. Opening and closing objects 99

|
|

|
|
|

The output from MQCLOSE is:
v A completion code
v A reason code
v The object handle, reset to the value MQHO_UNUSABLE_HOBJ

Descriptions of the parameters of the MQCLOSE call are given in the MQSeries
Application Programming Reference manual.

Using MQCLOSE

100 MQSeries Application Programming Guide

Chapter 9. Putting messages on a queue

Use the MQPUT call to put messages on the queue. You can use MQPUT
repeatedly to put many messages on the same queue, following the initial
MQOPEN call. Call MQCLOSE when you have finished putting all your messages
on the queue.

If you want to put a single message on a queue and close the queue immediately
afterwards, you can use the MQPUT1 call. MQPUT1 performs the same functions
as the following sequence of calls:
v MQOPEN
v MQPUT
v MQCLOSE

Generally however, if you have more than one message to put on the queue, it is
more efficient to use the MQPUT call. This depends on the size of the message and
the platform you are working on.

This chapter introduces putting messages to a queue, under these headings:
v “Putting messages on a local queue using the MQPUT call”
v “Putting messages on a remote queue” on page 106
v “Controlling context information” on page 106
v “Putting one message on a queue using the MQPUT1 call” on page 107
v “Distribution lists” on page 109
v “Some cases where the put calls fail” on page 114

Putting messages on a local queue using the MQPUT call
As input to the MQPUT call, you must supply:
v A connection handle (HCONN).
v A queue handle (HObj).
v A description of the message you want to put on the queue. This is in the form

of a message descriptor structure (MQMD).
v Control information, in the form of a put-message options structure (MQPMO).
v The length of the data contained within the message (MQLONG).
v The message data itself.

The output from the MQPUT call is
v A reason code (MQLONG)
v A completion code (MQLONG)

If the call completes successfully, it also returns your options structure and your
message descriptor structure. The call modifies your options structure to show the
name of the queue and the queue manager to which the message was sent. If you
request that the queue manager generates a unique value for the identifier of the
message you are putting (by specifying binary zero in the MsgId field of the
MQMD structure), the call inserts the value in the MsgId field before returning this
structure to you. This value must be reset before you issue another MQPUT.

There is a description of the MQPUT call in the MQSeries Application Programming
Reference manual.

© Copyright IBM Corp. 1993, 2000 101

The following sections describe the information you must supply as input to the
MQPUT call.

Specifying handles
For the connection handle (Hconn) in CICS on OS/390 applications, you can specify
the constant MQHC_DEF_HCONN (which has the value zero), or you can use the
connection handle returned by the MQCONN call. For other applications, always
use the connection handle returned by the MQCONN call.

Whatever environment you are working in, use the same queue handle (Hobj) that
is returned by the MQOPEN call.

Defining messages using the MQMD structure
The message descriptor structure (MQMD) is an input/output parameter for the
MQPUT and MQPUT1 calls. You use it to define the message you are putting on a
queue.

If MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF is
specified for the message and the queue is a cluster queue the values used will be
those of the queue the MQPUT resolves to. If that queue is disabled for MQPUT
the call will fail. See the MQSeries Queue Manager Clusters book for more
information.

Note: You must reset the MsgId and CorrelId to null prior to putting a new
message in order to ensure they are unique. The values in these fields are
returned on a successful MQPUT. However, if you set the Version field of
the MQMD structure to 2, you can use the MQMO_MATCH_MSG_ID and
MQMO_MATCH_CORREL_ID flags instead of resetting.

There is an introduction to the message properties that MQMD describes in
“Chapter 3. MQSeries messages” on page 19, and there is a description of the
structure itself in the MQSeries Application Programming Reference manual.

Specifying options using the MQPMO structure
You use the MQPMO (Put Message Option) structure to pass options to the
MQPUT and MQPUT1 calls.

The following sections give you help on filling in the fields of this structure. There
is a description of the structure in the MQSeries Application Programming Reference
manual.

The fields of the structure include:
v StrucId
v Version
v Options
v Context
v ResolvedQName
v ResolvedQMgrName

These fields are described below.

StrucId
This identifies the structure as a put-message options structure. This is a
4-character field. Always specify MQPMO_STRUC_ID.

MQPUT to local queue

102 MQSeries Application Programming Guide

|
|
|
|

Version
This describes the version number of the structure. The default is
MQPMO_VERSION_1. If you enter MQPMO_VERSION_2, you can use
distribution lists (see “Distribution lists” on page 109). If you enter
MQPMO_CURRENT_VERSION, your application is set always to use the
most recent level.

Options
This controls the following:
v Whether the put operation is included in a unit of work
v How much context information is associated with a message
v Where the context information is taken from
v Whether the call fails if the queue manager is in a quiescing state
v Whether grouping and, or segmentation is allowed
v Generation of a new message identifier and correlation identifier
v The order in which messages and segments are put on a queue

If you leave the Options field set to the default value (MQPMO_NONE),
the message you put has default context information associated with it.

Also, the way that the call operates with syncpoints is determined by the
platform. The syncpoint control default is ‘yes’ in OS/390; for other
platforms, it is ‘no’.

Context
This states the name of the queue handle that you want context
information to be copied from (if requested in the Options field).

For an introduction to message context, see “Message context” on page 32.
For information about using the MQPMO structure to control the context
information in a message, see “Controlling context information” on
page 106.

ResolvedQName
This contains the name (after resolution of any alias name) of the queue
that was opened to receive the message. This is an output field.

ResolvedQMgrName
This contains the name (after resolution of any alias name) of the queue
manager that owns the queue in ResolvedQName. This is an output field.

The MQPMO can also accommodate fields required for distribution lists (see
“Distribution lists” on page 109). If you wish to use this facility, Version 2 of the
MQPMO structure is used. This includes the following fields:

Version
This field describes the version number of the structure. For distribution
lists, you are required to specify MQPMO_VERSION_2.

RecsPresent
This field contains the number queues in the distribution list. That is the
number of Put Message Records (MQPMR) and corresponding Response
Records (MQRR) present.

The value you enter can be the same as the number of Object Records
provided at MQOPEN. However, if the value is less than the number of
Object Records provided on the MQOPEN call (or if no Put Message
Records are provided), the values of the queues that are not defined are
taken from the default values provided by the message descriptor. Also, if

MQPUT to local queue

Chapter 9. Putting messages on a queue 103

the value is greater than the number of Object Records provided, the
excess Put Message Records are ignored.

You are recommended to do one of the following:
v If you want to receive a report or reply from each destination, enter the

same value as appears in the MQOR structure and use MQPMRs
containing MsgId fields. Either initialize these MsgId fields to zeros or
specify MQPMO_NEW_MSG_ID.
When you have put the message to the queue, MsgId values that the
queue manager has created become available in the MQPMRs; you can
use these to identify which destination is associated with each report or
reply.

v If you do not want to receive reports or replies, choose one of the
following:
1. If you want to identify destinations that fail immediately, you may

still want to enter the same value in the RecsPresent field as appears
in the MQOR structure and provide MQRRs to identify these
destinations. Do not specify any MQPMRs.

2. If you do not want to identify failed destinations, enter zero in the
RecsPresent field and do not provide MQPMRs nor MQRRs.

Note: If you are using MQPUT1, the number of Response Record Pointers
and Response Record Offsets must be zero.

For a full description of Put Message Records (MQPMR) and Response
Records (MQRR), see the MQSeries Application Programming Reference
manual.

PutMsgRecFields
This indicates which fields are present in each Put Message Record
(MQPMR). For a list of these fields, see “Using the MQPMR structure” on
page 113.

PutMsgRecOffset and PutMsgRecPtr
Pointers (typically in C) and offsets (typically in COBOL) are used to
address the Put Message Records (see “Using the MQPMR structure” on
page 113 for an overview of the MQPMR structure).

Use the PutMsgRecPtr field to specify a pointer to the first Put Message
Record, or the PutMsgRecOffset field to specify the offset of the first Put
Message Record. This is the offset from the start of the MQPMO.
Depending on the PutMsgRecFields field, enter a nonnull value for either
PutMsgRecOffset or PutMsgRecPtr.

ResponseRecOffset and ResponseRecPtr
You also use pointers and offsets to address the Response Records (see
“Using the MQRR structure” on page 112 for further information about
Response Records).

Use the ResponseRecPtr field to specify a pointer to the first Response
Record, or the ResponseRecOffset field to specify the offset of the first
Response Record. This is the offset from the start of the MQPMO structure.
Enter a nonnull value for either ResponseRecOffset or ResponseRecPtr.

Note: If you are using MQPUT1 to put messages to a distribution list,
ResponseRecPtr must be null or zero and ResponseRecOffset must
be zero.

MQPUT to local queue

104 MQSeries Application Programming Guide

Additional information for putting to a distribution list (see “Distribution lists” on
page 109) is provided in Version 2 of the Put Message Option structure (MQPMR).
This is described in the MQSeries Application Programming Reference manual.

The data in your message
Give the address of the buffer that contains your data in the Buffer parameter of
the MQPUT call. You can include anything in the data in your messages. The
amount of data in the messages, however, affects the performance of the
application that is processing them.

The maximum size of the data is determined by:
v The MaxMsgLength attribute of the queue manager
v The MaxMsgLength attribute of the queue on which you are putting the message
v The size of any message header added by MQSeries (including the Dead-letter

header, MQDLH and the Distribution list header, MQDH)

The MaxMsgLength attribute of the queue manager holds the size of message that
the queue manager can process. This has a default of 4 MB (1 MB=1048576 bytes).
To determine the value of this attribute, use the MQINQ call on the queue
manager object. For large messages, you can change this value.

The MaxMsgLength attribute of a queue determines the maximum size of message
you can put on the queue. If you attempt to put a message with a size larger than
the value of this attribute, your MQPUT call fails. If you are putting a message on
a remote queue, the maximum size of message that you can successfully put is
determined by the MaxMsgLength attribute of the remote queue, of any intermediate
transmission queues that the message is put on along the route to its destination,
and of the channels used.

For an MQPUT operation, the size of the message must be smaller than or equal to
the MaxMsgLength attribute of both the queue and the queue manager. The values of
these attributes are independent, but you are recommended to set the
MaxMsgLength of the queue to a value less than or equal to that of the queue
manager.

MQSeries adds header information to messages in the following circumstances:
v When you put a message on a remote queue, MQSeries adds a transmission

header, MQXQH, structure to the message. This structure includes the name of
the destination queue and its owning queue manager.

v If MQSeries cannot deliver a message to a remote queue, it attempts to put the
message on the dead-letter (undelivered-message) queue. It adds an MQDLH
structure to the message. This structure includes the name of the destination
queue and the reason the message was put on the dead-letter
(undelivered-message) queue.

v If you want to send a message to multiple destination queues, MQSeries adds an
MQDH header to the message. This describes the data that is present in a
message, belonging to a distribution list, on a transmission queue. This point
should be considered when choosing an optimum value for the maximum
message length.

These structures are described in the MQSeries Application Programming Reference
manual.

MQPUT to local queue

Chapter 9. Putting messages on a queue 105

|
|
|
|

If your messages are of the maximum size allowed for these queues, the addition
of these headers means that the put operations fail because the messages are now
too big. To reduce the possibility of the put operations failing:
v Make the size of your messages smaller than the MaxMsgLength attribute of the

transmission and dead-letter (undelivered-message) queues. Allow at least the
value of the MQ_MSG_HEADER_LENGTH constant (more for large distribution
lists).

v Make sure that the MaxMsgLength attribute of the dead-letter
(undelivered-message) queue is set to the same as the MaxMsgLength of the queue
manager that owns the dead-letter queue.

The attributes for the queue manager and the message queuing constants are
described in the MQSeries Application Programming Reference manual.

For information on how undelivered messages are handled in a distributed
queuing environment, see the MQSeries Intercommunication book.

Putting messages on a remote queue
When you want to put a message on a remote queue (that is, a queue owned by a
queue manager other than the one to which your application is connected) rather
than a local queue, the only extra consideration is how you specify the name of the
queue when you open it. This is described in “Opening remote queues” on
page 98. There is no change to how you use the MQPUT or MQPUT1 call for a
local queue.

For more information on using remote and transmission queues, see the MQSeries
Intercommunication book.

Controlling context information
To control context information, you use the Options field in the MQPMO structure.

If you don’t, the queue manager will overwrite context information that may
already be in the message descriptor with the identity and context information it
has generated for your message. This is the same as specifying the
MQPMO_DEFAULT_CONTEXT option. You may want this default context
information when you create a new message (for example, when processing user
input from an inquiry screen).

If you want no context information associated with your message, use the
MQPMO_NO_CONTEXT option.

Passing identity context
In general, programs should pass identity context information from message to
message around an application until the data reaches its final destination.
Programs should change the origin context information each time they change the
data. However, applications that want to change or set any context information
must have the appropriate level of authority. The queue manager checks this
authority when the applications open the queues; they must have authority to use
the appropriate context options for the MQOPEN call.

If your application gets a message, processes the data from the message, then puts
the changed data into another message (possibly for processing by another

MQPUT to local queue

106 MQSeries Application Programming Guide

application), the application should pass the identity context information from the
original message to the new message. You can allow the queue manager to create
the origin context information.

To save the context information from the original message, you must use the
MQOO_SAVE_ALL_CONTEXT option when you open the queue for getting the
message. This is in addition to any other options you use with the MQOPEN call.
Note, however, that you cannot save context information if you only browse the
message.

When you create the second message, you must:
v Open the queue using the MQOO_PASS_IDENTITY_CONTEXT option (in

addition to the MQOO_OUTPUT option).
v In the Context field of the put-message options structure, give the handle of the

queue from which you saved the context information.
v In the Options field of the put-message options structure, specify the

MQPMO_PASS_IDENTITY_CONTEXT option.

Passing all context
If your application gets a message, and puts the message data (unchanged) into
another message, the application should pass both the identity and the origin
context information from the original message to the new message. An example of
an application that might do this is a message mover, which moves messages from
one queue to another.

Follow the same procedure as for passing identity context, except you use the
MQOPEN option MQOO_PASS_ALL_CONTEXT and the put-message option
MQPMO_PASS_ALL_CONTEXT.

Setting identity context
If you want to set the identity context information for a message, leaving the
queue manager to set the origin context information:
v Open the queue using the MQOO_SET_IDENTITY_CONTEXT option.
v Put the message on the queue, specifying the

MQPMO_SET_IDENTITY_CONTEXT option. In the message descriptor, specify
whatever identity context information you require.

Setting all context
If you want to set both the identity and the origin context information for a
message:
v Open the queue using the MQOO_SET_ALL_CONTEXT option.
v Put the message on the queue, specifying the MQPMO_SET_ALL_CONTEXT

option. In the message descriptor, specify whatever identity and origin context
information you require.

Appropriate authority is needed for each type of context setting.

Putting one message on a queue using the MQPUT1 call
Use the MQPUT1 call when you want to close the queue immediately after you
have put a single message on it. For example, a server application is likely to use
the MQPUT1 call when it is sending a reply to each of the different queues.

MQPUT context information

Chapter 9. Putting messages on a queue 107

MQPUT1 is functionally equivalent to calling MQOPEN followed by MQPUT,
followed by MQCLOSE. The only difference in the syntax for the MQPUT and
MQPUT1 calls is that for MQPUT you must specify an object handle, whereas for
MQPUT1 you must specify an object descriptor structure (MQOD) as defined in
MQOPEN (see “Identifying objects (the MQOD structure)” on page 93). This is
because you need to give information to the MQPUT1 call about the queue it has
to open, whereas when you call MQPUT, the queue must already be open.

As input to the MQPUT1 call, you must supply:
v A connection handle.
v A description of the object you want to open. This is in the form of an object

descriptor structure (MQOD).
v A description of the message you want to put on the queue. This is in the form

of a message descriptor structure (MQMD).
v Control information in the form of a put-message options structure (MQPMO).
v The length of the data contained within the message (MQLONG).
v The address of the message data.

The output from MQPUT1 is:
v A completion code
v A reason code

If the call completes successfully, it also returns your options structure and your
message descriptor structure. The call modifies your options structure to show the
name of the queue and the queue manager to which the message was sent. If you
request that the queue manager generate a unique value for the identifier of the
message you are putting (by specifying binary zero in the MsgId field of the
MQMD structure), the call inserts the value in the MsgId field before returning this
structure to you.

Note: You cannot use MQPUT1 with a model queue name; however, once a model
queue has been opened, you can issue an MQPUT1 to the dynamic queue.

The six input parameters for MQPUT1 are:

Hconn This is a connection handle. For CICS applications, you can specify the
constant MQHC_DEF_HCONN (which has the value zero), or use the
connection handle returned by the MQCONN call. For other programs,
always use the connection handle returned by the MQCONN call.

ObjDesc
This is an object descriptor structure (MQOD).

In the ObjectName and ObjectQMgrName fields, give the name of the queue
on which you want to put a message, and the name of the queue manager
that owns this queue.

The DynamicQName field is ignored for the MQPUT1 call because it cannot
use model queues.

Use the AlternateUserId field if you want to nominate an alternate user
identifier that is to be used to test authority to open the queue.

MsgDesc
This is a message descriptor structure (MQMD). As with the MQPUT call,
use this structure to define the message you are putting on the queue.

Using MQPUT1

108 MQSeries Application Programming Guide

PutMsgOpts
This is a put-message options structure (MQPMO). Use it as you would for
the MQPUT call (see “Specifying options using the MQPMO structure” on
page 102).

When the Options field is set to zero, the queue manager uses your own
user ID when it performs tests for authority to access the queue. Also, the
queue manager ignores any alternate user identifier given in the
AlternateUserId field of the MQOD structure.

BufferLength
This is the length of your message.

Buffer This is the buffer area that contains the text of your message.

When you use clusters, MQPUT1 operates as though MQOO_BIND_NOT_FIXED
is in effect. Applications must use the resolved fields in the MQPMO structure
rather than the MQOD structure to determine where the message was sent. See the
MQSeries Queue Manager Clusters book for more information.

There is a description of the MQPUT1 call in the MQSeries Application Programming
Reference manual.

Distribution lists
These are supported on MQSeries Version 5 products.

Distribution lists allow you to put a message to multiple destinations in a single
MQPUT or MQPUT1 call. Multiple queues can be opened using a single MQOPEN
and a message can then be put to each of those queues using a single MQPUT.
Some generic information from the MQI structures used for this process can be
superseded by specific information relating to the individual destinations included
in the distribution list.

When an MQOPEN call is issued, generic information is taken from the Object
Descriptor (MQOD). If you specify MQOD_VERSION_2 in the Version field and a
value greater than zero in the RecsPresent field, the Hobj can be defined as a
handle of a list (of one or more queues) rather than of a queue. In this case,
specific information is given through the object records (MQORs), which give
details of destination (that is, ObjectName and ObjectQMgrName).

The object handle (Hobj) is passed to the MQPUT call, allowing you to put to a list
rather than to a single queue.

When a message is put on the queues (MQPUT), generic information is taken from
the Put Message Option structure (MQPMO) and the Message Descriptor
(MQMD). Specific information is given in the form of Put Message Records
(MQPMRs).

Response Records (MQRR) can receive a completion code and reason code specific
to each destination queue.

Figure 5 on page 110 shows how distribution lists work:

Using MQPUT1

Chapter 9. Putting messages on a queue 109

|

Opening distribution lists
Use the MQOPEN call to open a distribution list, and use the options of the call to
specify what you want to do with the list.

As input to MQOPEN, you must supply:
v A connection handle (see “Chapter 9. Putting messages on a queue” on page 101

for a description)
v Generic information in the Object Descriptor structure (MQOD)
v The name of each queue you want to open, using the Object Record structure

(MQOR)

The output from MQOPEN is:
v An object handle that represents your access to the distribution list
v A generic completion code
v A generic reason code
v Response Records (optional), containing a completion code and reason for each

destination

Using the MQOD structure
Use the MQOD structure to identify the queues you want to open. To define a
distribution list, you must specify MQOD_VERSION_2 in the Version field, a value
greater than zero in the RecsPresent field, and MQOT_Q in the ObjectType field.
See the MQSeries Application Programming Reference manual for a description of all
the fields of the MQOD structure.

Using the MQOR structure
An MQOR structure must be provided for each destination. The structure contains
the destination queue and queue manager names. The ObjectName and
ObjectQMgrName fields in the MQOD are not used for distribution lists. There must

QMgr2

Remote1
queue

Remote2
queue

Empty queue

Remote

S
et

up

QMgr1

Local2
queue

Local1
queueXmit2

Local

1 message transmitted
through channel

Queue containing one message

Remote1 Remote2

MQDH

XmitQ

Local1

Local2

MQOpen

MQORs

QName QMgrName

local1

local2

remote1

remote2

QMgr2

QMgr2

P
ut

to
di

st
rib

ut
io

n
lis

t

Key:

Figure 5. How distribution lists work. This diagram shows that one message is transmitted
through the channel and can be put on more than one remote queue.

Distribution lists

110 MQSeries Application Programming Guide

be one or more object records. If the ObjectQMgrName is left blank, the local queue
manager is used. See the MQSeries Application Programming Reference manual for
further information about these fields.

You can specify the destination queues in two ways:
v By using the offset field ObjectRecOffset.

In this case, the application should declare its own structure containing an
MQOD structure, followed by the array of MQOR records (with as many array
elements as are needed), and set ObjectRecOffset to the offset of the first
element in the array from the start of the MQOD. Care must be taken to ensure
that this offset is correct.
Use of built-in facilities provided by the programming language is
recommended, if these are available in all of the environments in which the
application must run. The following illustrates this technique for the COBOL
programming language:
01 MY-OPEN-DATA.

02 MY-MQOD.
COPY CMQODV.

02 MY-MQOR-TABLE OCCURS 100 TIMES.
COPY CMQORV.

MOVE LENGTH OF MY-MQOD TO MQOD-OBJECTRECOFFSET.

Alternatively, the constant MQOD_CURRENT_LENGTH can be used if the
programming language does not support the necessary built-in facilities in all of
the environments concerned. The following illustrates this technique:
01 MY-MQ-CONSTANTS.

COPY CMQV.
01 MY-OPEN-DATA.

02 MY-MQOD.
COPY CMQODV.

02 MY-MQOR-TABLE OCCURS 100 TIMES.
COPY CMQORV.

MOVE MQOD-CURRENT-LENGTH TO MQOD-OBJECTRECOFFSET.

However, this will work correctly only if the MQOD structure and the array of
MQOR records are contiguous; if the compiler inserts skip bytes between the
MQOD and the MQOR array, these must be added to the value stored in
ObjectRecOffset.

Using ObjectRecOffset is recommended for programming languages that do not
support the pointer data type, or that implement the pointer data type in a way
that is not portable to different environments (for example, the COBOL
programming language).

v By using the pointer field ObjectRecPtr.
In this case, the application can declare the array of MQOR structures separately
from the MQOD structure, and set ObjectRecPtr to the address of the array. The
following illustrates this technique for the C programming language:
MQOD MyMqod;
MQOR MyMqor[100];
MyMqod.ObjectRecPtr = MyMqor;

Using ObjectRecPtr is recommended for programming languages that support
the pointer data type in a way that is portable to different environments (for
example, the C programming language).

Distribution lists

Chapter 9. Putting messages on a queue 111

Whichever technique is chosen, one of ObjectRecOffset and ObjectRecPtr must be
used; the call fails with reason code MQRC_OBJECT_RECORDS_ERROR if both
are zero, or both are nonzero.

Using the MQRR structure
These structures are destination specific as each Response Record contains a
CompCode and Reason field for each queue of a distribution list. You must use this
structure to enable you to distinguish where any problems lie.

For example, if you receive a reason code of MQRC_MULTIPLE_REASONS and
your distribution list contains five destination queues, you will not know which
queues the problems apply to if you do not use this structure. However, if you
have a completion code and reason code for each destination, you can locate the
errors more easily.

See the MQSeries Application Programming Reference manual for further information
about the MQRR structure.

Figure 6 shows how you can open a distribution list in C:

Figure 7 shows how you can open a distribution list in COBOL:

Using the MQOPEN options
The following options can be specified when opening a distribution list:
v MQOO_OUTPUT
v MQOO_FAIL_IF_QUIESCING (optional)
v MQOO_ALTERNATE_USER_AUTHORITY (optional)
v MQOO_*_CONTEXT (optional)

See “Chapter 8. Opening and closing objects” on page 91 for a description of these
options.

Putting messages to a distribution list
To put messages to a distribution list, you can use MQPUT or MQPUT1. As input,
you must supply:
v A connection handle (see “Chapter 9. Putting messages on a queue” on page 101

for a description).

MQRR

CompCode

CompCode

CompCode

Reason

Reason

Reason

0

n-1

MQOR

0

n-1

Q

Q

Q

QMgr

QMgr

QMgr

MQOD n ptr ptr2

Figure 6. Opening a distribution list in C. The MQOD uses pointers to the MQOR and MQRR
structures.

2 Comp
CodeMQOD n offset offset Q QMgr Q QMgr Comp

Code Reason R

x y

0 x 0 n-1 y

Figure 7. Opening a distribution list in COBOL. The MQOD uses offsets in COBOL.

Distribution lists

112 MQSeries Application Programming Guide

v An object handle. If a distribution list is opened using MQOPEN, the Hobj
allows you only to put to the list.

v A message descriptor structure (MQMD). See the MQSeries Application
Programming Reference manual for a description of this structure.

v Control information in the form of a put-message option structure (MQPMO).
See “Specifying options using the MQPMO structure” on page 102 for
information about filling in the fields of the MQPMO structure.

v Control information in the form of Put Message Records (MQPMR).
v The length of the data contained within the message (MQLONG).
v The message data itself.

The output is:
v A completion code
v A reason code
v Response Records (optional)

Using the MQPMR structure
This structure is optional and gives destination-specific information for some fields
that you may want to identify differently from those already identified in the
MQMD. For a description of these fields, see the MQSeries Application Programming
Reference manual.

The content of each record depends on the information given in the
PutMsgRecFields field of the MQPMO. For example, in the sample program
AMQSPTL0.C (see “The Distribution List sample program” on page 327 for a
description) showing the use of distribution lists, the sample chooses to provide
values for MsgId and CorrelId in the MQPMR. This section of the sample program
looks like this:

typedef struct
{
MQBYTE24 MsgId;
MQBYTE24 CorrelId;
} PutMsgRec;...
/**********************
MQLONG PutMsgRecFields=MQPMRF_MSG_ID | MQPMRF_CORREL_ID;

This implies that MsgId and CorrelId are provided for each destination of a
distribution list. The Put Message Records are provided as an array.

Figure 8 shows how you can put a message to a distribution list in C:

Figure 9 on page 114 shows how you can put a message to a distribution list in
COBOL:

MQRR

CompCode

CompCode

CompCode

Reason

Reason

Reason

MQPMR

e.g. ,MsgId CorrelId

MQPMO ptr ptr2 f n

(depending
on f)

Figure 8. Putting a message to a distribution list in C. The MQPMO uses pointers to the
MQPMR and MQRR structures.

Putting messages to a distribution list

Chapter 9. Putting messages on a queue 113

Using MQPUT1
If you are using MQPUT1, consider the following:
1. The values of the ResponseRecOffset and ResponseRecPtr fields must be null or

zero.
2. The Response Records, if required, must be addressed from the MQOD.

Some cases where the put calls fail
If certain attributes of a queue are changed using the FORCE option on a
command during the interval between you issuing an MQOPEN and an MQPUT
call, the MQPUT call fails and returns the MQRC_OBJECT_CHANGED reason
code. The queue manager marks the object handle as being no longer valid. This
also happens if the changes are made while an MQPUT1 call is being processed, or
if the changes apply to any queue to which the queue name resolves. The
attributes that affect the handle in this way are listed in the description of the
MQOPEN call in the MQSeries Application Programming Reference manual. If your
call returns the MQRC_OBJECT_CHANGED reason code, close the queue, reopen
it, then try to put a message again.

If put operations are inhibited for a queue on which you are attempting to put
messages (or any queue to which the queue name resolves), the MQPUT or
MQPUT1 call fails and returns the MQRC_PUT_INHIBITED reason code. You may
be able to put a message successfully if you attempt the call at a later time, if the
design of the application is such that other programs change the attributes of
queues regularly.

Further, if the queue that you are trying to put your message on is full, the
MQPUT or MQPUT1 call fails and returns MQRC_Q_FULL.

If a dynamic queue (either temporary or permanent) has been deleted, MQPUT
calls using a previously acquired object handle fail and return the
MQRC_Q_DELETED reason code. In this situation, it is good practice to close the
object handle as it is no longer of any use to you.

In the case of distribution lists, multiple completion codes and reason codes can
occur in a single request. These cannot be handled using only the CompCode and
Reason output fields on MQOPEN and MQPUT.

When distribution lists are used to put messages to multiple destinations, the
Response Records contain the specific CompCode and Reason for each destination. If
you receive a completion code of MQCC_FAILED, no message is put on any
destination queue successfully. If the completion code is MQCC_WARNING, the
message is successfully put on one or more of the destination queues. If you
receive a return code of MQRC_MULTIPLE_REASONS, the reason codes are not
all the same for every destination. Therefore, it is recommended to use the MQRR
structure so that you can determine which queue or queues caused an error and
the reasons for each.

MQPMO 2 f n offset1 offset2 MQPMR MQRR
x y

x y

Figure 9. Putting a message to a distribution list in COBOL. The MQPMO uses offsets in
COBOL.

Putting messages to a distribution list

114 MQSeries Application Programming Guide

Chapter 10. Getting messages from a queue

You can get messages from a queue in two ways:
1. You can remove a message from the queue so that other programs can no

longer see it.
2. You can copy a message, leaving the original message on the queue. This is

known as browsing. You can easily remove the message once you have browsed
it.

In both cases, you use the MQGET call, but first your application must be
connected to the queue manager, and you must use the MQOPEN call to open the
queue (for input, browse, or both). These operations are described in “Chapter 7.
Connecting and disconnecting a queue manager” on page 83 and “Chapter 8.
Opening and closing objects” on page 91.

When you have opened the queue, you can use the MQGET call repeatedly to
browse or remove messages on the same queue. Call MQCLOSE when you have
finished getting all the messages you want from the queue.

This chapter introduces getting messages from a queue, under these headings:
v “Getting messages from a queue using the MQGET call”
v “The order in which messages are retrieved from a queue” on page 120
v “Getting a particular message” on page 127
v “Type of index” on page 128
v “Handling large messages” on page 129
v “Waiting for messages” on page 135
v “Signaling” on page 136
v “Skipping backout” on page 138
v “Application data conversion” on page 141
v “Browsing messages on a queue” on page 143
v “Browsing messages in logical order” on page 145
v “Some cases where the MQGET call fails” on page 148

Getting messages from a queue using the MQGET call
The MQGET call gets a message from an open local queue. It cannot get a message
from a queue on another system.

As input to the MQGET call, you must supply:
v A connection handle.
v A queue handle.
v A description of the message you want to get from the queue. This is in the

form of a message descriptor (MQMD) structure.
v Control information in the form of a Get Message Options (MQGMO) structure.
v The size of the buffer you have assigned to hold the message (MQLONG).
v The address of the storage in which the message must be put.

The output from MQGET is:
v A reason code
v A completion code

© Copyright IBM Corp. 1993, 2000 115

v The message in the buffer area you specified, if the call completes successfully
v Your options structure, modified to show the name of the queue from which the

message was retrieved
v Your message descriptor structure, with the contents of the fields modified to

describe the message that was retrieved
v The length of the message (MQLONG)

There is a description of the MQGET call in the MQSeries Application Programming
Reference manual.

The following sections describe the information you must supply as input to the
MQGET call.

Specifying connection handles
For CICS on OS/390 and VSE/ESA applications, you can specify the constant
MQHC_DEF_HCONN (which has the value zero), or use the connection handle
returned by the MQCONN call. For other applications, always use the connection
handle returned by the MQCONN call.

Use the queue handle (Hobj) that is returned when you call MQOPEN.

Describing messages using the MQMD structure and the
MQGET call

To identify the message you want to get from a queue, use the message descriptor
structure (MQMD). This is an input/output parameter for the MQGET call. There
is an introduction to the message properties that MQMD describes in “Chapter 3.
MQSeries messages” on page 19, and there is a description of the structure itself in
the MQSeries Application Programming Reference manual.

If you know which message you want to get from the queue, see “Getting a
particular message” on page 127.

If you do not specify a particular message, MQGET retrieves the first message in
the queue. “The order in which messages are retrieved from a queue” on page 120
describes how the priority of a message, the MsgDeliverySequence attribute of the
queue, and the MQGMO_LOGICAL_ORDER option determine the order of the
messages in the queue.

Note: If you want to use MQGET more than once (for example, to step through
the messages in the queue), you must set the MsgId and CorrelId fields of
this structure to null after each call. This clears these fields of the identifiers
of the message that was retrieved.

However, if you want to group your messages, the GroupId should be the
same for messages in the same group, so that the call will look for a
message having the same identifiers as the previous message in order to
make up the whole group.

Specifying MQGET options using the MQGMO structure
The MQGMO structure is an input/output variable for passing options to the
MQGET call.

Using MQGET

116 MQSeries Application Programming Guide

|
|
|
|

The following sections give you help on filling in some of the fields of this
structure. There is a description of the structure in the MQSeries Application
Programming Reference manual.

StrucId
StrucId is a 4-character field used to identify the structure as a
get-message options structure. Always specify MQGMO_STRUC_ID.

Version
Version describes the version number of the structure.
MQGMO_VERSION_1 is the default. If you wish to use the Version 2
fields or retrieve messages in logical order, specify MQGMO_VERSION_2.
If you wish to use the Version 3 fields or retrieve messages in logical order,
specify MQGMO_VERSION_3. MQGMO_CURRENT_VERSION sets your
application to use the most recent level.

Options
Within your code, you can select the options in any order as each option is
represented by a bit in the Options field.

The Options field controls:
v Whether the MQGET call waits for a message to arrive on the queue

before it completes (see “Waiting for messages” on page 135)
v Whether the get operation is included in a unit of work.
v Whether a nonpersistent message is retrieved outside syncpoint,

allowing fast messaging
v In MQSeries for OS/390, whether the message retrieved is marked as

skipping backout (see “Skipping backout” on page 138)
v Whether the message is removed from the queue, or merely browsed
v Whether to select a message by using a browse cursor or by other

selection criteria
v Whether the call succeeds even if the message is longer than your buffer
v In MQSeries for OS/390, whether to allow the call to complete, but set a

signal to indicate that you want to be notified when a message arrives
v Whether the call fails if the queue manager is in a quiescing state
v On OS/390, whether the call fails if the connection is in a quiescing state
v Whether application message data conversion is required (see

“Application data conversion” on page 141)
v On MQSeries Version 5 products, the order in which messages and

segments are retrieved from a queue
v On MQSeries Version 5 products, whether complete, logical messages

only are retrievable
v On MQSeries Version 5 products, whether messages in a group can be

retrieved only when all messages in the group are available
v On MQSeries Version 5 products, whether segments in a logical message

can be retrieved only when all segments in the logical message are
available

If you leave the Options field set to the default value
(MQGMO_NO_WAIT), the MQGET call operates this way:
v If there is no message matching your selection criteria on the queue, the

call does not wait for a message to arrive, but completes immediately.
Also, in MQSeries for OS/390, the call does not set a signal requesting
notification when such a message arrives.

Using MQGET

Chapter 10. Getting messages from a queue 117

|
|

|
|

|
|

|
|
|

v The way that the call operates with syncpoints is determined by the
platform:

Platform Under syncpoint control

AS/400 No

UNIX systems No

OS/390 Yes

OS/2 No

Tandem NSK Yes

VSE/ESA Yes

Windows NT No

Windows No

v In MQSeries for OS/390, the message retrieved is not marked as
skipping backout.

v The selected message is removed from the queue (not browsed).
v No application message data conversion is required.
v The call fails if the message is longer than your buffer.

WaitInterval
The WaitInterval field specifies the maximum time (in milliseconds) that
the MQGET call waits for a message to arrive on the queue when you use
the MQGMO_WAIT option. If no message arrives within the time specified
in WaitInterval, the call completes and returns a reason code showing that
there was no message that matched your selection criteria on the queue.

In MQSeries for OS/390, if you use the MQGMO_SET_SIGNAL option, the
WaitInterval field specifies the time for which the signal is set.

For more information on these options, see “Waiting for messages” on
page 135 and “Signaling” on page 136.

Signal1
Signal1 is supported on MQSeries for OS/390, MQSeries for Tandem NonStop
Kernel, and MQSeries for Windows Version 2.1 only.

If you have chosen to use the MQGMO_SET_SIGNAL option to request
that your application is notified when a suitable message arrives, you must
specify the type of signal in the Signal1 field. In MQSeries on all other
platforms, the Signal1 field is reserved and its value is not significant.

For more information, see “Signaling” on page 136.

Signal2
On MQSeries for Windows Version 2.1 this specifies an identifier for the
signal message. The Signal2 field is reserved on all other platforms and its
value is not significant.

For more information, see “Signaling” on page 136.

ResolvedQName
ResolvedQName is an output field in which the queue manager returns the
name of the queue (after resolution of any alias) from which the message
was retrieved.

MatchOptions
MatchOptions controls the selection criteria for MQGET.

Using MQGET

118 MQSeries Application Programming Guide

GroupStatus
GroupStatus indicates whether the message you have retrieved is in a
group.

SegmentStatus
SegmentStatus indicates whether the item you have retrieved is a segment
of a logical message.

Segmentation
Segmentation indicates whether segmentation is allowed for the message
retrieved.

MsgToken
MsgToken is supported on MQSeries for OS/390 only.

MsgToken uniquely identifies a message.

For more information, see “MQSeries Workflow” on page 234.

ReturnedLength
ReturnedLength is an output field in which the queue manager returns the
length of message data returned (in bytes).

Specifying the size of the buffer area
In the BufferLength parameter of the MQGET call, specify the size of the buffer
area you want to use to hold the message data that you retrieve. There are three
ways to decide how big this should be:
1. You may already know what length of messages to expect from this program. If

so, specify a buffer of this size.
However, you can use the MQGMO_ACCEPT_TRUNCATED_MSG option in
the MQGMO structure if you want the MQGET call to complete even if the
message is too big for the buffer. In this case:
v The buffer is filled with as much of the message as it can hold
v The call returns a warning completion code
v The message is removed from the queue (discarding the remainder of the

message), or the browse cursor is advanced (if you are browsing the queue)
v The real length of the message is returned in DataLength

Without this option, the call still completes with a warning, but it does not
remove the message from the queue (or advance the browse cursor).

2. Estimate a size for the buffer (or even specify a size of zero bytes) and do not
use the MQGMO_ACCEPT_TRUNCATED_MSG option. If the MQGET call fails
(for example, because the buffer is too small), the length of the message is
returned in the DataLength parameter of the call. (The buffer is still filled with
as much of the message as it can hold, but the processing of the call is not
completed.) Store the MsgId of this message, then repeat the MQGET call,
specifying a buffer area of the correct size, and the MsgId you noted from the
first call.
If your program is serving a queue that is also being served by other programs,
one of those other programs may remove the message you want before your
program can issue another MQGET call. Your program could waste time
searching for a message that no longer exists. To avoid this, first browse the
queue until you find the message you want, specifying a BufferLength of zero
and using the MQGMO_ACCEPT_TRUNCATED_MSG option. This positions
the browse cursor under the message you want. You can then retrieve the
message by calling MQGET again, specifying the
MQGMO_MSG_UNDER_CURSOR option. If another program removes the

Using MQGET

Chapter 10. Getting messages from a queue 119

message between your browse and removal calls, your second MQGET fails
immediately (without searching the whole queue), because there is no message
under your browse cursor.

3. The MaxMsgLength queue attribute determines the maximum length of messages
accepted for that queue′ and the MaxMsgLength queue manager attribute
determines the maximum length of messages accepted for that queue manager.
If you do not know what length of message to expect, you can inquire about
the MaxMsgLength attribute (using the MQINQ call), then specify a buffer of this
size.
For further information about the MaxMsgLength attribute, see “Increasing the
maximum message length” on page 129.

The order in which messages are retrieved from a queue
You have control over the order in which you retrieve messages from a queue. This
section looks at the options.

Priority
A program can assign a priority to a message when it puts the message on a queue
(see “Message priorities” on page 28). Messages of equal priority are stored in a
queue in order of arrival, not the order in which they are committed.

The queue manager maintains queues either in strict FIFO (first in, first out)
sequence, or in FIFO within priority sequence. This depends on the setting of the
MsgDeliverySequence attribute of the queue. When a message arrives on a queue, it
is inserted immediately following the last message that has the same priority.

Programs can either get the first message from a queue, or they can get a
particular message from a queue, ignoring the priority of those messages. For
example, a program may want to process the reply to a particular message that it
sent earlier. For more information, see “Getting a particular message” on page 127.

If an application puts a sequence of messages on a queue, another application can
retrieve those messages in the same order that they were put, provided:
v The messages all have the same priority
v The messages were all put within the same unit of work, or all put outside a

unit of work
v The queue is local to the putting application

If these conditions are not met, and the applications depend on the messages being
retrieved in a certain order, the applications must either include sequencing
information in the message data, or establish a means of acknowledging receipt of
a message before the next one is sent.

On MQSeries for OS/390, the queue attribute, IndexType, can be used to increase
the speed of MQGET operations on the queue. For more information, see “Type of
index” on page 128.

Logical and physical ordering
Logical and physical ordering is supported on MQSeries Version 5 products only.

Messages on queues can occur (within each priority level) in physical or logical
order:

Using MQGET

120 MQSeries Application Programming Guide

Order Meaning

Physical
This is the order in which messages arrive on a queue.

Logical
This is when all of the messages and segments within a group are in their
logical sequence, adjacent to each other, in the position determined by the
physical position of the first item belonging to the group.

For a description of groups, messages, and segments, see “Message groups” on
page 28. These physical and logical orders may differ because:
v Groups can arrive at a destination at similar times from different applications,

therefore losing any distinct physical order.
v Even within a single group, messages may get out of order due to rerouting or

delay of some of the messages in the group.

For example, the logical order might look like Figure 10:
These messages would appear in the following logical order on a queue:

1. Message A (not in a group)
2. Logical message 1 of group Y
3. Logical message 2 of group Y
4. Segment 1 of (last) logical message 3 of group Y
5. (Last) segment 2 of (last) logical message 3 of group Y
6. Logical message 1 of group Z
7. (Last) logical message 2 of group Z
8. Message B (not in a group)

A

Y

Z

B

Y1

Y2

Y3 (last)

Z1

Z2 (last)

Group Message Segment

Y3.1

Y3.2

Figure 10. Logical order on a queue

MQGET retrieval sequence

Chapter 10. Getting messages from a queue 121

The physical order, however, might be entirely different. As stated on page 120, the
physical position of the first item within each group determines the logical
position of the whole group. For example, if groups Y and Z arrived at similar
times, and message 2 of group Z overtook message 1 of the same group, the
physical order would look like Figure 11:

These messages appear in the following logical order on the queue:
1. Message A (not in a group)
2. Logical message 1 of group Y
3. Logical message 2 of group Z
4. Logical message 2 of group Y
5. Segment 1 of (last) logical message 3 of group Y
6. (Last) segment 2 of (last) logical message 3 of group Y
7. Logical message 1 of group Z
8. Message B (not in a group)

When getting messages, you can specify MQGMO_LOGICAL_ORDER to retrieve
messages in logical rather than physical order.

If you issue an MQGET call with MQGMO_BROWSE_FIRST and
MQGMO_LOGICAL_ORDER, subsequent MQGET calls with
MQGMO_BROWSE_NEXT must also specify this option. Conversely, if the
MQGET with MQGMO_BROWSE_FIRST does not specify
MQGMO_LOGICAL_ORDER, neither must the following MQGETs with
MQGMO_BROWSE_NEXT.

A

Y

Z

Y

Z

B

Y1

Z2 (last)

Y2

Y3 (last)

Z1

Group Message Segment

Y3.1

Y3.2

Figure 11. Physical order on a queue

MQGET retrieval sequence

122 MQSeries Application Programming Guide

The group and segment information that the queue manager retains for MQGET
calls that browse messages on the queue is separate from the group and segment
information that the queue manager retains for MQGET calls that remove
messages from the queue. When MQGMO_BROWSE_FIRST is specified, the queue
manager ignores the group and segment information for browsing, and scans the
queue as though there were no current group and no current logical message.

Note: Special care is needed if an MQGET call is used to browse beyond the end of
a message group (or logical message not in a group) when
MQGMO_LOGICAL_ORDER is not specified. For example, if the last
message in the group happens to precede the first message in the group on
the queue, using MQGMO_BROWSE_NEXT to browse beyond the end of
the group, specifying MQMO_MATCH_MSG_SEQ_NUMBER with
MsgSeqNumber set to 1 (to find the first message of the next group) would
return again the first message in the group already browsed. This could
happen immediately, or a number of MQGET calls later (if there are
intervening groups).

The possibility of an infinite loop can be avoided by opening the queue twice for
browse:
v Use the first handle to browse only the first message in each group.
v Use the second handle to browse only the messages within a specific group.
v Use the MQMO_* options to move the second browse cursor to the position of

the first browse cursor, before browsing the messages in the group.
v Do not use the MQGMO_BROWSE_NEXT browse beyond the end of a group.

For further information about this, see the MQSeries Application Programming
Reference manual.

For most applications you will probably choose either logical or physical ordering
when browsing. However, if you want to switch between these modes, remember
that when you first issue a browse with MQGMO_LOGICAL_ORDER, your
position within the logical sequence is established.

If the first item within the group is not present at this time, the group you are in is
not considered to be part of the logical sequence.

Once the browse cursor is within a group, it can continue within the same group,
even if the first message is removed. Initially though, you can never move into a
group using MQGMO_LOGICAL_ORDER where the first item is not present.

Grouping logical messages
There are two main reasons for using logical messages in a group:
v The messages may need to be processed in the correct order
v Each of the messages in a group may need to be processed in a related way.

In either case, retrieval of the entire group must be carried out by the same getting
application instance.

For example, assume that the group consists of four logical messages. The putting
application looks like this:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQGET retrieval sequence

Chapter 10. Getting messages from a queue 123

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

MQCMIT

The getting application chooses not to start processing any group until all of the
messages within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is therefore
specified for the first message in the group; the option is ignored for subsequent
messages within the group.

Once the first logical message of the group is retrieved,
MQGMO_LOGICAL_ORDER is used to ensure that the remaining logical messages
of the group are retrieved in order.

So, the getting application looks like this:
/* Wait for the first message in a group, or a message not in a group */
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_LOGICAL_ORDER
do while (GroupStatus == MQGS_MSG_IN_GROUP)

MQGET
/* Process each remaining message in the group */
···

MQCMIT

For further examples of grouping messages, see “Application segmentation of
logical messages” on page 132 and “Putting and getting a group that spans units of
work”.

Putting and getting a group that spans units of work
In the previous case, messages or segments cannot start to leave the node (if its
destination is remote) or start to be retrieved until all of the group has been put
and the unit of work is committed. This may not be what you want if it takes a
long time to put the whole group, or if queue space is limited on the node. To
overcome this, the group can be put in several units of work.

If the group is put within multiple units of work, it is possible for some of the
group to commit even when a failure of the putting application occurs. The
application must therefore save status information, committed with each unit of
work, which it can use after a restart to resume an incomplete group. The simplest
place to record this information is in a STATUS queue. If a complete group has
been successfully put, the STATUS queue is empty.

If segmentation is involved, the logic is similar. In this case, the StatusInfo must
include the Offset.

Here is an example of putting the group in several units of work:
PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

/* First UOW */

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

/* Next and subsequent UOWs */
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQGET retrieval sequence

124 MQSeries Application Programming Guide

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

/* Last UOW */
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
MQCMIT

If all the units of work have been committed, the entire group has been put
successfully, and the STATUS queue is empty. If not, the group must be resumed at
the point indicated by the status information. MQPMO_LOGICAL_ORDER cannot
be used for the first put, but can thereafter.

Restart processing looks like this:
MQGET (StatusInfo from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)

/* Proceed to normal processing */
···

else
/* Group was terminated prematurely */
Set GroupId, MsgSeqNumber in MQMD to values from Status message
PMO.Options = MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

/* Now normal processing is resumed.
Assume this is not the last message */

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

From the getting application, you may want to start processing the messages in a
group before the whole group has arrived. This improves response times on the
messages within the group, and also means that storage is not required for the
entire group.

For recovery reasons, each message must be retrieved within a unit of work.
However, in order to realize the above benefits, several units of work must be used
for each group of messages.

As with the corresponding putting application, this requires status information to
be recorded somewhere automatically as each unit of work is committed. Again,
the simplest place to record this information is on a STATUS queue. If a complete
group has been successfully processed, the STATUS queue is empty.

Note: For intermediate units of work, you can avoid the MQGET calls from the
STATUS queue by specifying that each MQPUT to the status queue is a
segment of a message (that is, by setting the MQMF_SEGMENT flag),
instead of putting a complete new message for each unit of work. In the last
unit of work, a final segment is put to the status queue specifying
MQMF_LAST_SEGMENT, and then the status information is cleared with an
MQGET specifying MQGMO_COMPLETE_MSG.

MQGET retrieval sequence

Chapter 10. Getting messages from a queue 125

During restart processing, instead of using a single MQGET to get a possible
status message, browse the status queue with MQGMO_LOGICAL_ORDER
until you reach the last segment (that is, until no further segments are
returned). In the first unit of work after restart, also specify the offset
explicitly when putting the status segment.

In the following example, we consider only messages within a group. It is assumed
that the application’s buffer is always large enough to hold the entire message,
whether or not the message has been segmented. MQGMO_COMPLETE_MSG is
therefore specified on each MQGET. The same principles apply if segmentation is
involved (in this case, the StatusInfo must include the Offset).

For simplicity, we assume that a maximum of 4 messages should be retrieved
within a single UOW:

msgs = 0 /* Counts messages retrieved within UOW */
/* Should be no status message at this point */

/* Retrieve remaining messages in the group */
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/* Process up to 4 messages in the group */
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

MQGET
msgs = msgs + 1
/* Process this message */
···

/* end while

/* Have retrieved last message or 4 messages */
/* Update status message if not last in group */
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)

StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

MQCMIT
msgs = 0

/* end while

if (msgs > 0)
/* Come here if there was only 1 message in the group */
MQCMIT

If all of the units of work have been committed, then the entire group has been
retrieved successfully, and the STATUS queue is empty. If not, then the group must
be resumed at the point indicated by the status information.
MQGMO_LOGICAL_ORDER cannot be used for the first retrieve, but can
thereafter.

Restart processing looks like this:
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)

/* Proceed to normal processing */
···

else
/* Group was terminated prematurely */
/* The next message on the group must be retrieved by matching

the sequence number and group id with those retrieved from the
status information. */

GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT

MQGET retrieval sequence

126 MQSeries Application Programming Guide

MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID | MQMO_MATCH_MSG_SEQ_NUMBER,
MQMD.GroupId = value from Status message,
MQMD.MsgSeqNumber = value from Status message plus 1

msgs = 1
/* Process this message */
···

/* Now normal processing is resumed */
/* Retrieve remaining messages in the group */
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/* Process up to 4 messages in the group */
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

MQGET
msgs = msgs + 1
/* Process this message */
···

/* Have retrieved last message or 4 messages */
/* Update status message if not last in group */
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)

StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

MQCMIT
msgs = 0

Getting a particular message
To get a particular message from a queue, use the MsgId and CorrelId fields of the
MQMD structure. Note, however, that applications can explicitly set these fields, so
the values you specify may not identify a unique message. Table 5 shows which
message is retrieved for the possible settings of these fields. These fields are
ignored on input if you specify MQGMO_MSG_UNDER_CURSOR in the
GetMsgOpts parameter of the MQGET call.

Table 5. Using message and correlation identifiers

To retrieve ... MsgId CorrelId

First message in the queue MQMI_NONE MQCI_NONE

First message that matches MsgId Nonzero MQCI_NONE

First message that matches CorrelId MQMI_NONE Nonzero

First message that matches both MsgId and CorrelId Nonzero Nonzero

In each case, first means the first message that satisfies the selection criteria (unless
MQGMO_BROWSE_NEXT is specified, when it means the next message in the
sequence satisfying the selection criteria).

On return, the MQGET call sets the MsgId and CorrelId fields to the message and
correlation identifiers (respectively) of the message returned (if any).

If you set the Version field of the MQMD structure to 2 or 3, you can use the
GroupId, MsgSeqNumber, and Offset fields. Table 6 on page 128 shows which
message is retrieved for the possible settings of these fields.

MQGET retrieval sequence

Chapter 10. Getting messages from a queue 127

Table 6. Using the group identifier

To retrieve ... Match options

First message in the queue MQMO_NONE

First message that matches MsgId MQMO_MATCH_MSG_ID

First message that matches CorrelId MQMO_MATCH_CORREL_ID

First message that matches GroupId MQMO_MATCH_GROUP_ID

First message that matches MsgSeqNumber MQMO_MATCH_MSG_SEQ_NUMBER

First message that matches MsgToken MQMO_MATCH_MSG_TOKEN

First message that matches Offset MQMO_MATCH_OFFSET

Notes:

1. MQMO_MATCH_XXX implies that the XXX field in the MQMD structure is set to the
value to be matched.

2. The MQMO flags can be used in combination. For example,
MQMO_MATCH_GROUP_ID, MQMO_MATCH_MSG_SEQ_NUMBER, and
MQMO_MATCH_OFFSET can be used together to give the segment identified by the
GroupId, MsgSeqNumber, and Offset fields.

3. If you specify MQGMO_LOGICAL_ORDER, the message you are trying to retrieve is
affected because the option depends on state information controlled for the queue
handle. For information about this, see “Logical and physical ordering” on page 120
and the MQSeries Application Programming Reference manual.

4. MQMO_MATCH_MSG_TOKEN is used only on queues managed by the OS/390
workload manager.

5. MQSeries for OS/390 does not support MQMO_MATCH_GROUP_ID,
MQMO_MATCH_MSG_SEQ_NUMBER, or MQMO_MATCH_OFFSET.

Notes:

1. The MQGET call usually retrieves the first message from a queue. If you
specify a particular message when you use the MQGET call, the queue
manager has to search the queue until it finds that message. This can affect the
performance of your application.

2. If you are using Version 2 or 3 of the MQMD structure, you can use the
MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID flags. This
avoids having to reset the MsgId and CorrelId fields between MQGETs.

On MQSeries for OS/390, the queue attribute, IndexType, can be used to increase
the speed of MQGET operations on the queue. For more information, see “Type of
index”.

Type of index
This is supported on MQSeries for OS/390 only.

The queue attribute, IndexType, specifies the type of index that the queue manager
maintains in order to increase the speed of MQGET operations on the queue.

You have four options:

Value Description

NONE
No index is maintained. Use this when messages are retrieved sequentially
(see “Priority” on page 120).

Getting a specific message

128 MQSeries Application Programming Guide

MSGID
An index of message identifiers is maintained. Use this when messages are
retrieved using the MsgId field as a selection criterion on the MQGET call
(see “Getting a particular message” on page 127).

MSGTOKEN
An index of message tokens is maintained. Use this when messages are
retrieved using the MsgToken field as a selection criterion on the MQGET
call (see “MQSeries Workflow” on page 234).

CORRELID
An index of correlation identifiers is maintained. Use this when messages
are retrieved using the CorrelId field as a selection criterion on the
MQGET call (see “Getting a particular message” on page 127).

Notes:

1. If you are indexing using the MSGID option or CORRELID option, set the
relative MsgId or CorrelId parameters in the MQMD. It is not beneficial to set
both.

2. Indexes are ignored when browsing messages on a queue (see “Browsing
messages on a queue” on page 143 for more information).

3. Avoid queues (indexed by MsgId or CorrelId) containing thousands of
messages because this affects restart time. (This does not apply to nonpersistent
messages as they are deleted at restart.)

4. MSGTOKEN is used to define queues managed by the OS/390 workload
manager.

For a full description of the IndexType attribute, see the MQSeries Application
Programming Reference manual. For conditions needed to change the IndexType
attribute, see the MQSeries Command Reference manual.

Handling large messages
This is supported on MQSeries Version 5 products only.

Messages can be too large for the application, queue, or queue manager. MQSeries
provides three ways of dealing with large messages:
1. Increase the queue and queue manager MaxMsgLength attributes.
2. Use segmented messages. (Messages can be segmented by either the application

or the queue manager.)
3. Use reference messages.

Each of these approaches is described in the remainder of this section.

Increasing the maximum message length
The MaxMsgLength queue manager attribute defines the maximum length of a
message that can be handled by a queue manager. Similarly, the MaxMsgLength
queue attribute is the maximum length of a message that can be handled by a
queue. The default maximum message length supported depends on the
environment in which you are working.

If you are handling large messages, you can alter these attributes independently.
The attribute value can be set between 32768 bytes and 100 MB.

After changing one or both of the MaxMsgLength attributes, restart your applications
and channels to ensure that the changes take effect. When these changes are made,

Index type

Chapter 10. Getting messages from a queue 129

|

|

|
|

the message length must be less than or equal to both the queue and the queue
manager MaxMsgLength attributes. However, existing messages may be longer than
either attribute.

If the message is too big for the queue, MQRC_MSG_TOO_BIG_FOR_Q is
returned. Similarly, if the message is too big for the queue manager,
MQRC_MSG_TOO_BIG_FOR_Q_MGR is returned.

This method of handling large messages is easy and convenient. However,
consider the following factors before using it:
v Uniformity among queue managers is reduced. The maximum size of message

data is determined by the MaxMsgLength for each queue (including transmission
queues) on which the message will be put. This value is often defaulted to the
queue manager’s MaxMsgLength, especially for transmission queues. This makes it
difficult to predict whether a message is too large when it is to travel to a
remote queue manager.

v Usage of system resources is increased. For example, applications need larger
buffers, and on some platforms, there may be increased usage of shared storage.
Note that queue storage should be affected only if actually required for larger
messages.

v Channel batching is affected. A large message still counts as just one message
towards the batch count but needs longer to transmit, thereby increasing
response times for other messages.

Message segmentation
Increasing the maximum message length as discussed on page 129 has some
negative implications. Also, it could still result in the message being too large for
the queue or queue manager. In these cases, a message can be segmented. For
information about segments, see “Message groups” on page 28.

The next sections look at common uses for segmenting messages. For putting and
destructively getting, it is assumed that the MQPUT or MQGET calls always
operate within a unit of work. It is strongly recommended that this technique is
always used, to reduce the possibility of incomplete groups being present in the
network. Single-phase commit by the queue manager is assumed, but of course
other coordination techniques are equally valid.

Also, in the getting applications, it is assumed that if multiple servers are
processing the same queue, each server executes similar code, so that one server
never fails to find a message or segment that it expects to be there (because it had
specified MQGMO_ALL_MSGS_AVAILABLE or
MQGMO_ALL_SEGMENTS_AVAILABLE earlier).

Segmentation and reassembly by queue manager
This is the simplest scenario, in which one application puts a message to be
retrieved by another. The message may be large: not too large for either the putting
or the getting application to handle in a single buffer, but possibly too large for the
queue manager or a queue on which the message is to be put.

The only changes necessary for these applications are for the putting application to
authorize the queue manager to perform segmentation if necessary,

PMO.Options = (existing options)
MQPUT MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED

Handling large messages

130 MQSeries Application Programming Guide

and for the getting application to ask the queue manager to reassemble the
message if it has been segmented:

GMO.Options = MQGMO_COMPLETE_MSG | (existing options)
MQGET

The application buffer must be large enough to contain the reassembled message
(unless the MQGMO_ACCEPT_TRUNCATED_MSG option is included).

If data conversion is necessary, it may have to be done by the getting application
specifying MQGMO_CONVERT. This should be straightforward because the data
conversion exit is presented with the complete message. Attempting to do data
conversion in a sender channel will not be successful if the message is segmented,
and the format of the data is such that the data-conversion exit cannot carry out
the conversion on incomplete data.

Application segmentation
This example shows how to segment a single large message

Application segmentation is used for two main reasons:
1. Queue-manager segmentation alone is not adequate because the message is too

large to be handled in a single buffer by the applications.
2. Data conversion must be performed by sender channels, and the format is such

that the putting application needs to stipulate where the segment boundaries
are to be in order for conversion of an individual segment to be possible.

However, if data conversion is not an issue, or if the getting application always
uses MQGMO_COMPLETE_MSG, queue-manager segmentation can also be
allowed by specifying MQMF_SEGMENTATION_ALLOWED. In our example, the
application segments the message into four segments:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_SEGMENT

MQCMIT

If you do not use MQPMO_LOGICAL_ORDER, the application must set the Offset
and the length of each segment. In this case, logical state is not maintained
automatically.

The getting application cannot, or chooses not to, guarantee to have a buffer that
will hold any reassembled message. It must therefore be prepared to process
segments individually.

For messages that are segmented, this application does not want to start processing
one segment until all of the segments that constitute the logical message are
present. MQGMO_ALL_SEGMENTS_AVAILABLE is therefore specified for the first
segment. If you specify MQGMO_LOGICAL_ORDER and there is a current logical
message, MQGMO_ALL_SEGMENTS_AVAILABLE is ignored.

Once the first segment of a logical message has been retrieved,
MQGMO_LOGICAL_ORDER is used to ensure that the remaining segments of the
logical message are retrieved in order.

Handling large messages

Chapter 10. Getting messages from a queue 131

No consideration is given to messages within different groups. If such messages do
occur, they are processed in the order in which the first segment of each message
appears on the queue.

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_SEGMENTS_AVAILABLE | MQGMO_WAIT

do while (SegmentStatus == MQSS_SEGMENT)
MQGET
/* Process each remaining segment of the logical message */
···

MQCMIT

Application segmentation of logical messages
The messages must be maintained in logical order in a group, and some or all of
them may be so large that they require application segmentation.

In our example, a group of four logical messages is to be put. All but the third
message are large, and require segmentation which is performed by the putting
application:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQCMIT

In the getting application, MQGMO_ALL_MSGS_AVAILABLE is specified on the
first MQGET. This means that no messages or segments of a group are retrieved
until the entire group is available. When the first physical message of a group has
been retrieved, MQGMO_LOGICAL_ORDER is used to ensure that the segments
and messages of the group are retrieved in order:

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_MESSAGES_AVAILABLE | MQGMO_WAIT

do while ((GroupStatus != MQGS_LAST_MSG_IN_GROUP) ||
(SegmentStatus != MQGS_LAST_SEGMENT))

MQGET
/* Process a segment or complete logical message. Use the GroupStatus

and SegmentStatus information to see what has been returned */
···

MQCMIT

Note: If you specify MQGMO_LOGICAL_ORDER and there is a current group,
MQGMO_ALL_MSGS_AVAILABLE is ignored.

Putting and getting a segmented message that spans units of
work
You can put and get a segmented message that spans a unit of work in a similar
way to “Putting and getting a group that spans units of work” on page 124.

Handling large messages

132 MQSeries Application Programming Guide

You cannot, however, put or get segmented messages in a global unit of work.

Reference messages
This method allows a large object to be transferred from one node to another
without the need for the object to be stored on MQSeries queues at either the
source or the destination nodes. This is of particular benefit where the data already
exists in another form, for example, for mail applications.

To do this, you need to specify a message exit at both ends of a channel. For
information on how to do this, see the MQSeries Intercommunication book.

MQSeries defines the format of a reference message header (MQRMH). See the
MQSeries Application Programming Reference manual for a description of this. This is
recognized by means of a defined format name and may or may not be followed
by actual data.

To initiate transfer of a large object, an application can put a message consisting of
a reference message header with no data following it. As this message leaves the
node, the message exit retrieves the object in an appropriate way and appends it to
the reference message. It then returns the message (now larger than before) to the
sending Message Channel Agent for transmission to the receiving MCA.

Another message exit is configured at the receiving MCA. When this message exit
sees one of these messages, it creates the object using the object data that was
appended and passes on the reference message without it. The reference message
can now be received by an application and this application knows that the object
(or at least the portion of it represented by this reference message) has been
created at this node.

The maximum amount of object data that a sending message exit can append to
the reference message is limited by the negotiated maximum message length for
the channel. The exit can only return a single message to the MCA for each
message that it is passed, so the putting application can put several messages to
cause one object to be transferred. Each message must identify the logical length
and offset of the object that is to be appended to it. However, in cases where it is
not possible to know the total size of the object or the maximum size allowed by
the channel, the sending message exit can be designed so that the putting
application just puts a single message, and the exit itself puts the next message on
the transmission queue when it has appended as much data as it can to the
message it has been passed.

Before using this method of dealing with large messages, consider the following:
v The MCA and the message exit run under an MQSeries user ID. The message

exit (and therefore, the user ID) needs to access the object to either retrieve it at
the sending end or create it at the receiving end; this may only be feasible in
cases where the object is universally accessible. This raises a security issue.

v If the reference message with bulk data appended to it must travel through
several queue managers before reaching its destination, the bulk data is present
on MQSeries queues at the intervening nodes. However, no special support or
exits need to be provided in these cases.

v Designing your message exit is made difficult if rerouting or dead-letter queuing
is allowed. In these cases, the portions of the object may arrive out of order.

v When a reference message arrives at its destination, the receiving message exit
creates the object. However, this is not synchronized with the MCA’s unit of

Handling large messages

Chapter 10. Getting messages from a queue 133

|

work, so if the batch is backed out, another reference message containing this
same portion of the object will arrive in a later batch, and the message exit may
attempt to recreate the same portion of the object. If the object is, for example, a
series of database updates, this might be unacceptable. If so, the message exit
must keep a log of which updates have been applied; this may require the use
of an MQSeries queue.

v Depending on the characteristics of the object type, the message exits and
applications may need to cooperate in maintaining use counts, so that the object
can be deleted when it is no longer needed. An instance identifier may also be
required; a field is provided for this in the reference message header (see the
MQSeries Application Programming Reference manual).

v If a reference message is put as a distribution list, the object must be retrievable
for each resulting distribution list or individual destination at that node. You
may need to maintain use counts. Also consider the possibility that a given node
may be the final node for some of the destinations in the list, but an
intermediate node for others.

v Bulk data is not normally converted. This is because conversion takes place
before the message exit is invoked. For this reason, conversion should not be
requested on the originating sender channel. If the reference message passes
through an intermediate node, the bulk data is converted when sent from the
intermediate node, if requested.

v Reference messages cannot be segmented.

Using the MQRMH and MQMD structures
See the MQSeries Application Programming Reference manual for a description of the
fields in the reference message header and the message descriptor.

In the MQMD structure, the Format field must be set to
MQFMT_REF_MSG_HEADER. The MQHREF format, when requested on MQGET,
is converted automatically by MQSeries along with any bulk data that follows.

Here is an example of the use of the DataLogicalOffset and DataLogicalLength
fields of the MQRMH:

A putting application might put a reference message with:
v No physical data
v DataLogicalLength = 0 (this message represents the entire object)
v DataLogicalOffset = 0.

Assuming that the object is 70,000 bytes long, the sending message exit sends the
first 40,000 bytes along the channel in a reference message containing:
v 40,000 bytes of physical data following the MQRMH
v DataLogicalLength = 40,000
v DataLogicalOffset = 0 (from the start of the object).

It then places another message on the transmission queue containing:
v No physical data
v DataLogicalLength = 0 (to the end of the object). You could specify a value of

30,000 here.
v DataLogicalOffset = 40,000 (starting from this point).

When this message exit is seen by the sending message exit, the remaining 30,000
bytes of data is appended, and the fields are set to:
v 30,000 bytes of physical data following the MQRMH

Handling large messages

134 MQSeries Application Programming Guide

v DataLogicalLength = 30,000
v DataLogicalOffset = 40,000 (starting from this point).

The MQRMHF_LAST flag is also set.

For a description of the sample programs provided for the use of reference
messages, see “Chapter 32. Sample programs (all platforms except OS/390)” on
page 311.

Waiting for messages
If you want a program to wait until a message arrives on a queue, specify the
MQGMO_WAIT option in the Options field of the MQGMO structure. Use the
WaitInterval field of the MQGMO structure to specify the maximum time (in
milliseconds) that you want an MQGET call to wait for a message to arrive on a
queue.

If the message does not arrive within this time, the MQGET call completes with
the MQRC_NO_MSG_AVAILABLE reason code.

You can specify an unlimited wait interval using the constant MQWI_UNLIMITED
in the WaitInterval field. However, events outside your control could cause your
program to wait for a long time, so use this constant with caution. IMS
applications should not specify an unlimited wait interval because this would
prevent the IMS system terminating. (When IMS terminates, it requires all
dependent regions to end.) Instead, IMS applications should specify a finite wait
interval; then, if the call completes without retrieving a message after that interval,
issue another MQGET call with the wait option.

In the Windows 3.1 environment, while your application is waiting for an MQGET
to return, MQSeries will still recover Windows messages to allow the application
and the rest of Windows to function normally. You must ensure that your code that
processes Windows program messages does not assume that the MQGET call
returns data to the application immediately. If it attempts to access data that is not
yet available, errors can easily occur. Also, if you attempt to make other MQI calls
while the MQGET call is waiting, MQRC_CALL_IN_PROGRESS is returned to
show that another call is busy.

Note: If more than one program is waiting on the same shared queue to remove a
message, only one program is activated by a message arriving. However, if
more than one program is waiting to browse a message, all the programs
can be activated. For more information, see the description of the Options
field of the MQGMO structure in the MQSeries Application Programming
Reference manual.

Handling large messages

Chapter 10. Getting messages from a queue 135

If the state of the queue or the queue manager changes before the wait interval
expires, the following actions occur:
v If the queue manager enters the quiescing state, and you used the

MQGMO_FAIL_IF_QUIESCING option, the wait is canceled and the MQGET
call completes with the MQRC_Q_MGR_QUIESCING reason code. Without this
option, the call remains waiting.

v On OS/390, if the connection (for a CICS or IMS application) enters the
quiescing state, and you used the MQGMO_FAIL_IF QUIESCING option, the
wait is canceled and the MQGET call completes with the
MQRC_CONN_QUIESCING reason code. Without this option, the call remains
waiting.

v If the queue manager is forced to stop, or is canceled, the MQGET call completes
with either the MQRC_Q_MGR_STOPPING or the
MQRC_CONNECTION_BROKEN reason code.

v If the attributes of the queue (or a queue to which the queue name resolves) are
changed so that get requests are now inhibited, the wait is canceled and the
MQGET call completes with the MQRC_GET_INHIBITED reason code.

v If the attributes of the queue (or a queue to which the queue name resolves) are
changed in such a way that the FORCE option is required, the wait is canceled
and the MQGET call completes with the MQRC_OBJECT_CHANGED reason
code.

If you want your application to wait on more than one queue, use the signal
facility of MQSeries for OS/390 (see “Signaling”). For more information about the
circumstances in which these actions occur, see the MQSeries Application
Programming Reference manual.

Signaling
Signaling is supported only on MQSeries for OS/390, MQSeries for Tandem NonStop
Kernel, and MQSeries for Windows Version 2.1.

Signaling is an option on the MQGET call to allow the operating system to notify
(or signal) a program when an expected message arrives on a queue. This is similar
to the “get with wait” function described on page 135 because it allows your
program to continue with other work while waiting for the signal. However, if you
use signaling, you can free the application thread and rely on the operating system
to notify the program when a message arrives.

To set a signal
To set a signal, do the following in the MQGMO structure that you use on your
MQGET call:
1. Set the MQGMO_SET_SIGNAL option in the Options field.
2. Set the maximum life of the signal in the WaitInterval field. This sets the

length of time (in milliseconds) for which you want MQSeries to monitor the
queue. Use the MQWI_UNLIMITED value to specify an unlimited life.

Note: IMS applications should not specify an unlimited wait interval because
this would prevent the IMS system from terminating. (When IMS
terminates, it requires all dependent regions to end.) Instead, IMS
applications should examine the state of the ECB at regular intervals (see
step 3). A program can have signals set on several queue handles at the
same time:

Waiting for messages

136 MQSeries Application Programming Guide

3. On MQSeries for Tandem NonStop Kernel, specify an application tag in the
Signal1 field. This can be used by an application to associate the IPC
notification message with a particular MQGET call (see “When the message
arrives”). On MQSeries for Windows Version 2.1, specify the handle of the
window to which you want the signal sent in the Signal1 field. On MQSeries
for OS/390, specify the address of the Event Control Block (ECB) in the Signal1
field. This notifies you of the result of your signal. The ECB storage must
remain available until the queue is closed.

4. On MQSeries for Windows Version 2.1, specify an identifier for the signal
message in the Signal2 field. This specifies the Windows message that you
receive when a suitable message arrives. Use a RegisterWindow message to
find a suitable identifier.

Note: You cannot use the MQGMO_SET_SIGNAL option in conjunction with the
MQGMO_WAIT option.

When the message arrives
When a suitable message arrives, the following occurs:
v On MQSeries for Tandem NonStop Kernel An Inter-Process Communication

(IPC) message is sent to the $RECEIVE queue of the process that made the
MQGET call.

v On MQSeries for Windows Version 2.1, MQSeries sends a Windows message
(identified in step 4) to the window you specified in your Signal1 field. It also
puts a completion code in the WPARAM field of the Windows message.

v On MQSeries for OS/390, a completion code is returned to the ECB.

The completion code describes one of the following:
v The message you set the signal for has arrived on the queue. The message is not

reserved for the program that requested a signal, so the program must issue an
MQGET call again to get the message.

Note: Another application could get the message in the time between you
receiving the signal and you issuing another MQGET call.

v The wait interval you set has expired and the message you set the signal for did
not arrive on the queue. MQSeries has canceled the signal.

v The signal has been canceled. This happens, for example, if the queue manager
stops or the attribute of the queue is changed so that MQGET calls are no longer
allowed.

When a suitable message is already on the queue, the MQGET call completes in
the same way as an MQGET call without signaling. Also, if an error is detected
immediately, the call completes and the return codes are set.

When the call is accepted and no message is immediately available, control is
returned to the program so that it can continue with other work. None of the
output fields in the message descriptor are set, but the CompCode and Reason
parameters are set to MQCC_WARNING and
MQRC_SIGNAL_REQUEST_ACCEPTED, respectively.

For information on what MQSeries can return to your application when it makes
an MQGET call using signaling, see the MQSeries Application Programming Reference
manual.

Signaling

Chapter 10. Getting messages from a queue 137

On MQSeries for OS/390, if the program has no other work to do while it is
waiting for the ECB to be posted, it can wait for the ECB using:
v For a CICS Transaction Server for OS/390 program, the EXEC CICS WAIT

EXTERNAL command
v For batch and IMS programs, the OS/390 WAIT macro

If the state of the queue or the queue manager changes while the signal is set (that
is, the ECB has not yet been posted), the following actions occur:
v If the queue manager enters the quiescing state, and you used the

MQGMO_FAIL_IF_QUIESCING option, the signal is canceled. The ECB is
posted with the MQEC_Q_MGR_QUIESCING completion code. Without this
option, the signal remains set.

v If the queue manager is forced to stop, or is canceled, the signal is canceled. The
signal is delivered with the MQEC_WAIT_CANCELED completion code.

v If the attributes of the queue (or a queue to which the queue name resolves) are
changed so that get requests are now inhibited, the signal is canceled. The signal
is delivered with the MQEC_WAIT_CANCELED completion code.

Notes:

1. If more than one program has set a signal on the same shared queue to remove
a message, only one program is activated by a message arriving. However, if
more than one program is waiting to browse a message, all the programs can
be activated. The rules that the queue manager follows when deciding which
applications to activate are the same as those for waiting applications: for more
information, see the description of the Options field of the MQGMO structure
in the MQSeries Application Programming Reference manual.

2. If there is more than one MQGET call waiting for the same message, with a
mixture of wait and signal options, each waiting call is considered equally. For
more information, see the description of the Options field of the MQGMO
structure in the MQSeries Application Programming Reference manual.

3. Under some conditions, it is possible both for an MQGET call to retrieve a
message and for a signal (resulting from the arrival of the same message) to be
delivered. This means that when your program issues another MQGET call
(because the signal was delivered), there could be no message available. You
should design your program to test for this situation.

For information about how to set a signal, see the description of the
MQGMO_SET_SIGNAL option and the Signal1 field in the MQSeries Application
Programming Reference manual.

Skipping backout
Skipping backout is supported only on MQSeries for OS/390.

As part of a unit of work, an application program can issue one or more MQGET
calls to get messages from a queue. If the application program detects an error, it
can back out the unit of work. This restores all the resources updated during that
unit of work to the state they were in before the unit of work started, and
reinstates the messages retrieved by the MQGET calls.

Once reinstated, these messages are available to subsequent MQGET calls issued
by the application program. In many cases, this does not cause a problem for the
application program. However, in cases where the error leading to the backout

Signaling

138 MQSeries Application Programming Guide

cannot be circumvented, having the message reinstated on the queue can cause the
application program to enter an ‘MQGET–error–backout’ loop.

To avoid this problem, specify the MQGMO_MARK_SKIP_BACKOUT option on
the MQGET call. This marks the MQGET request as not being involved in
application-initiated backout; that is, it should not be backed out. Use of this
option means that when a backout occurs, updates to other resources are backed
out as required, but the marked message is treated as if it had been retrieved
under a new unit of work. The application program can then perform exception
handling, such as informing the originator that the message has been discarded,
and then commit the new unit of work, causing the message to be removed from
the queue. If the new unit of work is backed out (for any reason) the message is
reinstated on the queue.

Within a unit of work, there can be only one MQGET request marked as skipping
backout; however, there can be several other messages that are not marked as
skipping backout. Once a message has been marked as skipping backout, any
further MQGET calls within the unit of work that specify
MQGMO_MARK_SKIP_BACKOUT will fail with reason code
MQRC_SECOND_MARK_NOT_ALLOWED.

Notes:

1. The marked message only skips backout if the unit of work containing it is
terminated by an application request to back it out. If the unit of work is
backed out for any other reason, the message is backed out on to the queue in
the same way that it would be if it was not marked to skip backout.

2. Skip backout is not supported within DB2 stored procedures participating in
units of work controlled by RRS. For example, an MQGET call with the
MQGMO_MARK_SKIP_BACKOUT option will fail with the reason code
MQRC_OPTION_ENVIRONMENT_ERROR.

Skipping backout

Chapter 10. Getting messages from a queue 139

Figure 12 illustrates a typical sequence of steps that an application program might
contain when an MQGET request is required to skip backout:

Step 1 Initial processing occurs within the transaction, including an MQOPEN call
to open the queue (specifying one of the MQOO_INPUT_* options in order
to get messages from the queue in Step 2).

Step 2 MQGET is called, with MQGMO_SYNCPOINT and
MQGMO_MARK_SKIP_BACKOUT. MQGMO_SYNCPOINT is required

Step 1.

In it ia l p rocess ing , inc lud ing

MQOPEN of queue specifying

one MQOO INPUT * option

Step 2.

MQGET message, specifying

MQGMO MARK SKIP BACKOUT

and MQGMO SYNCPOINT

Step 9.

Commit (message

removed from queue)

Step 10.

Applica tion requests

backout (message

re insta ted on queue)

Step 4.

Commit (message

removed from queue)

Step 5.

Applica tion requests

backout

Step 6.

Updates from Step 3

backed out

Step 7.

M essage re tr ieved at

Step 2 skips backout

and enters new un it

o f work

Step 8.

Exception hand ling

OK?

OK?

Ye s No

NoYe s

START-OF-UOW2

END-OF-UOW2

START-OF-UOW1

END-OF-UOW1

Step 3.

O ther resource updates made

for UOW1

Figure 12. Skipping backout using MQGMO_MARK_SKIP_BACKOUT

Skipping backout

140 MQSeries Application Programming Guide

because MQGET must be within a unit of work for
MQGMO_MARK_SKIP_BACKOUT to be effective. In Figure 12 on page 140
this unit of work is referred to as UOW1.

Step 3 Other resource updates are made as part of UOW1. These may include
further MQGET calls (issued without MQGMO_MARK_SKIP_BACKOUT).

Step 4 All updates from Steps 2 and 3 complete as required. The application
program commits the updates and UOW1 ends. The message retrieved in
Step 2 is removed from the queue.

Step 5 Some of the updates from Steps 2 and 3 do not complete as required. The
application program requests that the updates made during these steps are
backed out.

Step 6 The updates made in Step 3 are backed out.

Step 7 The MQGET request made in Step 2 skips backout and becomes part of a
new unit of work, UOW2.

Step 8 UOW2 performs exception handling in response to UOW1 being backed
out. (For example, an MQPUT call to another queue, indicating that a
problem occurred that caused UOW1 to be backed out.)

Step 9 Step 8 completes as required, the application program commits the activity,
and UOW2 ends. As the MQGET request is part of UOW2 (see Step 7), this
commit causes the message to be removed from the queue.

Step 10
Step 8 does not complete as required and the application program backs
out UOW2. Because the get message request is part of UOW2 (see Step 7),
it too is backed out and reinstated on the queue. It is now available to
further MQGET calls issued by this or another application program (in the
same way as any other message on the queue).

Application data conversion
When necessary, MCAs convert the message descriptor data into the required
character set and encoding. Either end of the link (that is, the local MCA or the
remote MCA) may do the conversion.

When an application puts messages on a queue, the local queue manager adds
control information to the message descriptors to facilitate the control of the
messages when they are processed by queue managers and MCAs. Depending on
the environment, the message header data fields will be created in the character set
and encoding of the local system.

When you move messages between systems, it is necessary, on some occasions, to
convert the application data into the character set and encoding required by the
receiving system. This can be done either from within application programs on the
receiving system or by the MCAs on the sending system. If data conversion is
supported on the receiving system, it is recommended to use application programs
to convert the application data, rather than depending on the conversion having
already occurred at the sending system.

Application data is converted within an application program when the
MQGMO_CONVERT option is specified in the Options field of the MQGMO
structure passed to an MQGET call, and all of the following are true:

Skipping backout

Chapter 10. Getting messages from a queue 141

v The CodedCharSetId or Encoding fields set in the MQMD structure associated
with the message on the queue differ from the CodedCharSetId or Encoding fields
set in the MQMD structure specified on the MQGET call.

v The Format field in the MQMD structure associated with the message is not
MQFMT_NONE.

v The BufferLength specified on the MQGET call is not zero.
v The message data length is not zero.
v The queue manager supports conversion between the CodedCharSetId and

Encoding fields specified in the MQMD structures associated with the message
and the MQGET call. See the MQSeries Application Programming Reference manual
for details of the coded character set identifiers and machine encodings
supported.

v The queue manager supports conversion of the message format. If the Format
field of the MQMD structure associated with the message is one of the built-in
formats, the queue manager is able to convert the message. If the Format is not
one of the built-in formats, you need to write a data-conversion exit to convert
the message.

If the sending MCA is to convert the data, the CONVERT(YES) keyword must be
specified on the definition of each sender or server channel for which conversion is
required. If the data conversion fails, the message is sent to the DLQ at the sending
queue manager and the Feedback field of the MQDLH structure indicates the
reason. If the message cannot be put on the DLQ, the channel will close and the
unconverted message will remain on the transmission queue. Data conversion
within applications rather than at sending MCAs avoids this situation.

As a general rule, data in the message that is described as “character” data by the
built-in format or data-conversion exit is converted from the coded character set
used by the message to that requested, and “numeric” fields are converted to the
encoding requested.

For further details of the conversion processing conventions used when converting
the built-in formats, and for information about writing your own data-conversion
exits, see “Chapter 11. Writing data-conversion exits” on page 149. See also the
MQSeries Application Programming Reference manual for information about the
language support tables and about the supported machine encodings.

Conversion of EBCDIC newline characters
If you need to ensure that the data you send from an EBCDIC platform to an
ASCII one is identical to the data you receive back again, you must control the
conversion of EBCDIC newline characters. This can be done using a
platform-dependent switch that forces MQSeries to use the unmodified conversion
tables but you must be aware of the inconsistent behavior that may result.

The problem arises because the EBCDIC newline character is not converted
consistently across platforms or conversion tables. As a result, if the data is
displayed on an ASCII platform, the formatting may be incorrect. This would make
it difficult, for example, to administer an AS/400 remotely from an ASCII platform
using RUNMQSC.

See the MQSeries System Administration book for further information about
converting EBCDIC-format data to ASCII format.

MQGET data conversion

142 MQSeries Application Programming Guide

Browsing messages on a queue
To use the MQGET call to browse the messages on a queue:
1. Call MQOPEN to open the queue for browsing, specifying the

MQOO_BROWSE option.
2. To browse the first message on the queue, call MQGET with the

MQGMO_BROWSE_FIRST option. To find the message you want, you can call
MQGET repeatedly with the MQGMO_BROWSE_NEXT option to step through
many messages.
You must set the MsgId and CorrelId fields of the MQMD structure to null after
each MQGET call in order to see all messages.

3. Call MQCLOSE to close the queue.

The browse cursor
When you open (MQOPEN) a queue for browsing, the call establishes a browse
cursor for use with MQGET calls that use one of the browse options. You can think
of the browse cursor as a logical pointer that is positioned before the first message
on the queue.

You can have more than one browse cursor active (from a single program) by
issuing several MQOPEN requests for the same queue.

When you call MQGET for browsing, use one of the following options in your
MQGMO structure:

MQGMO_BROWSE_FIRST
Gets a copy of the first message that satisfies the conditions specified in
your MQMD structure.

MQGMO_BROWSE_NEXT
Gets a copy of the next message that satisfies the conditions specified in
your MQMD structure.

In both cases, the message remains on the queue.

When you open a queue, the browse cursor is positioned logically just before the
first message on the queue. This means that if you make your MQGET call
immediately after your MQOPEN call, you can use the MQGMO_BROWSE_NEXT
option to browse the first message; you do not have to use the
MQGMO_BROWSE_FIRST option.

The order in which messages are copied from the queue is determined by the
MsgDeliverySequence attribute of the queue. (For more information, see “The order
in which messages are retrieved from a queue” on page 120.)

Queues in FIFO (first in, first out) sequence
The first message in a queue in this sequence is the message that has been on the
queue the longest.

Use MQGMO_BROWSE_NEXT to read the messages sequentially in the queue.
You will see any messages put to the queue while you are browsing, as a queue in
this sequence will have messages placed at the end. When the cursor has
recognized that it has reached the end of the queue, the browse cursor will stay
where it is and return with MQRC_NO_MSG_AVAILABLE. You may then either
leave it there waiting for further messages or reset it to the beginning of the queue
with a MQGMO_BROWSE_FIRST call.

Browsing messages

Chapter 10. Getting messages from a queue 143

Queues in priority sequence
The first message in a queue in this sequence is the message that has been on the
queue the longest and has the highest priority at the time the MQOPEN call is
issued.

Use MQGMO_BROWSE_NEXT to read the messages in the queue.

The browse cursor will point to the next message, working from the priority of the
first message to finish with the message at the lowest priority. It will browse any
messages put to the queue during this time as long as they are of equal or lower
priority to the message identified by the current browse cursor.

Any messages put to the queue of higher priority can only be browsed by:
v Opening the queue for browse again, at which point a new browse cursor is

established
v Using the MQGMO_BROWSE_FIRST option

Uncommitted messages
An uncommitted message is never visible to a browse, the browse cursor skips
past it. Messages within a unit-of-work cannot be browsed until the unit-of-work is
committed.

Change to queue sequence
If the message delivery sequence is changed from priority to FIFO while there are
messages on the queue, the order of the messages that are already queued is not
changed. Messages added to the queue subsequently take the default priority of
the queue.

Browsing messages when message length unknown
To browse a message when you do not know the size of the message, and you do
not wish to use the MsgId, CorrelId, or GroupId fields to locate the message, you
can use the MQGMO_BROWSE_MSG_UNDER_CURSOR option (not supported on
OS/390):
1. Issue an MQGET with:
v Either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option
v The MQGMO_ACCEPT_TRUNCATED_MSG option
v Buffer length zero

Note: If another program is likely to get the same message, consider using the
MQGMO_LOCK option as well.
MQRC_TRUNCATED_MSG_ACCEPTED should be returned.

2. Use the returned DataLength to allocate the storage needed.
3. Issue an MQGET with the MQGMO_BROWSE_MSG_UNDER_CURSOR.

The message pointed to is the last one that was retrieved; the browse cursor will
not have moved. You can choose either to lock the message using the
MQGMO_LOCK option, or to unlock a locked message using MQGMO_UNLOCK
option.

The call fails if no MQGET with either the MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT options has been issued successfully since the queue
was opened.

Browsing messages

144 MQSeries Application Programming Guide

Restriction
MQGMO_LOCK and MQGMO_UNLOCK are not available on MQSeries for
Tandem NonStop Kernel and MQSeries for OS/390.

Removing a message you have browsed
You can remove from the queue a message you have already browsed provided
you have opened the queue for removing messages as well as for browsing. (You
must specify one of the MQOO_INPUT_* options, as well as the MQOO_BROWSE
option, on your MQOPEN call.)

To remove the message, call MQGET again, but in the Options field of the
MQGMO structure, specify MQGMO_MSG_UNDER_CURSOR. In this case, the
MQGET call ignores the MsgId, CorrelId, and GroupId fields of the MQMD
structure.

In the time between your browsing and removal steps, another program may have
removed messages from the queue, including the message under your browse
cursor. In this case, your MQGET call returns a reason code to say that the
message is not available.

Browsing messages in logical order
Browsing messages in logical order is supported on MQSeries Version 5 products only.

“Logical and physical ordering” on page 120 discusses the difference between the
logical and physical order of messages on a queue. This distinction is particularly
important when browsing a queue, because, in general, messages are not being
deleted and browse operations do not necessarily start at the beginning of the
queue. If an application browses through the various messages of one group (using
logical order), it is important that logical order should be followed to reach the
start of the next group, since the last message of one group may occur physically
after the first message of the next group. The MQGMO_LOGICAL_ORDER option
ensures that logical order is followed when scanning a queue.

MQGMO_ALL_MSGS_AVAILABLE (or MQGMO_ALL_SEGMENTS_AVAILABLE)
needs to be used with care for browse operations. Consider the case of logical
messages with MQGMO_ALL_MSGS_AVAILABLE. The effect of this is that a
logical message is available only if all of the remaining messages in the group are
also present. If they are not, the message is passed over. This can mean that when
the missing messages arrive subsequently, they will not be noticed by a
browse-next operation.

For example, if the following logical messages are present,
Logical message 1 (not last) of group 123
Logical message 1 (not last) of group 456
Logical message 2 (last) of group 456

and a browse function is issued with MQGMO_ALL_MSGS_AVAILABLE, the first
logical message of group 456 is returned, leaving the browse cursor on this logical
message. If the second (last) message of group 123 now arrives,

Browsing messages

Chapter 10. Getting messages from a queue 145

|

Logical message 1 (not last) of group 123
Logical message 2 (last) of group 123
Logical message 1 (not last) of group 456 <=== browse cursor
Logical message 2 (last) of group 456

and the same browse-next function is issued, it will not be noticed that group 123
is now complete, because the first message of this group is before the browse
cursor.

In some cases (for example, if messages are retrieved destructively when the group
is present in its entirety), it may be acceptable to use
MQGMO_ALL_MSGS_AVAILABLE together with MQGMO_BROWSE_FIRST.
Otherwise, the browse scan must be repeated in order to take note of newly
arrived messages that have been missed; just issuing MQGMO_WAIT together
with MQGMO_BROWSE_NEXT and MQGMO_ALL_MSGS_AVAILABLE does not
take account of them. (This also happens to higher-priority messages that might
arrive after scanning the messages is complete.)

The next sections look at browsing examples that deal with unsegmented
messages; segmented messages follow similar principles.

Browsing messages in groups
In this example, the application browses through each message on the queue, in
logical order.

Messages on the queue may either be grouped or not. For grouped messages, the
application does not want to start processing any group until all of the messages
within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is therefore specified
for the first message in the group; for subsequent messages in the group, this
option is unnecessary.

MQGMO_WAIT is used in this example. However, although the wait can be
satisfied if a new group arrives, for the reasons in “Browsing messages in logical
order” on page 145, it will not be satisfied if the browse cursor has already passed
the first logical message in a group, and the remaining messages now arrive.
Nevertheless, waiting for a suitable interval ensures that the application does not
constantly loop while waiting for new messages or segments.

MQGMO_LOGICAL_ORDER is used throughout, to ensure that the scan is in
logical order. This contrasts with the destructive MQGET example, where because
each group is being removed, MQGMO_LOGICAL_ORDER is not used when
looking for the first (or only) message in a group.

It is assumed that the application’s buffer is always large enough to hold the entire
message, whether or not the message has been segmented.
MQGMO_COMPLETE_MSG is therefore specified on each MQGET.

The following gives an example of browsing logical messages in a group:
/* Browse the first message in a group, or a message not in a group */
GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_WAIT
MQGET GMO.MatchOptions = MQMO_MATCH_MSG_SEQ_NUMBER, MD.MsgSeqNumber = 1
/* Examine first or only message */
···

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

Browsing messages in logical order

146 MQSeries Application Programming Guide

do while (GroupStatus == MQGS_MSG_IN_GROUP)
MQGET
/* Examine each remaining message in the group */
···

The above group is repeated until MQRC_NO_MSG_AVAILABLE is returned.

Browsing and retrieving destructively
In this example, the application browses each of the logical messages within a
group, before deciding whether to retrieve that group destructively.

The first part of this example is similar to the previous one. However in this case,
having browsed an entire group, we may decide to go back and retrieve it
destructively.

As each group is removed in this example, MQGMO_LOGICAL_ORDER is not
used when looking for the first or only message in a group.

The following gives an example of browsing and then retrieving destructively:
GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

| MQGMO_ALL_MESSAGES_AVAILABE | MQGMO_WAIT
do while (GroupStatus == MQGS_MSG_IN_GROUP)

MQGET
/* Examine each remaining message in the group (or as many as

necessary to decide whether or not to get it destructively) */
···

if (we want to retrieve the group destructively)

if (GroupStatus == ' ')
/* We retrieved an ungrouped message */
GMO.Options = MQGMO_MSG_UNDER_CURSOR | MQGMO_SYNCPOINT
MQGET GMO.MatchOptions = 0
/* Process the message */
···

else
/* We retrieved one or more messages in a group. The browse cursor */
/* will not normally be still on the first in the group, so we have */
/* to match on the GroupId and MsgSeqNumber = 1. */
/* Another way, which works for both grouped and ungrouped messages,*/
/* would be to remember the MsgId of the first message when it was */
/* browsed, and match on that. */
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID

| MQMO_MATCH_MSG_SEQ_NUMBER,
(MQMD.GroupId = value already in the MD)
MQMD.MsgSeqNumber = 1

/* Process first or only message */
···

GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
| MQGMO_LOGICAL_ORDER

do while (GroupStatus == MQGS_MSG_IN_GROUP)
MQGET
/* Process each remaining message in the group */
···

Browsing messages in logical order

Chapter 10. Getting messages from a queue 147

Some cases where the MQGET call fails
If certain attributes of a queue are changed using the FORCE option on a
command between issuing an MQOPEN and an MQGET call, the MQGET call fails
and returns the MQRC_OBJECT_CHANGED reason code. The queue manager
marks the object handle as being no longer valid. This also happens if the changes
apply to any queue to which the queue name resolves. The attributes that affect
the handle in this way are listed in the description of the MQOPEN call in the
MQSeries Application Programming Reference manual. If your call returns the
MQRC_OBJECT_CHANGED reason code, close the queue, reopen it, then try to
get a message again.

If get operations are inhibited for a queue from which you are attempting to get
messages (or any queue to which the queue name resolves), the MQGET call fails
and returns the MQRC_GET_INHIBITED reason code. This happens even if you
are using the MQGET call for browsing. You may be able to get a message
successfully if you attempt the MQGET call at a later time, if the design of the
application is such that other programs change the attributes of queues regularly.

If a dynamic queue (either temporary or permanent) has been deleted, MQGET
calls using a previously acquired object handle fail and return the
MQRC_Q_DELETED reason code.

MQGET failure

148 MQSeries Application Programming Guide

Chapter 11. Writing data-conversion exits

Data-conversion exits are not supported on MQSeries for Windows or VSE/ESA.

The Message Descriptor of a message is created by your application when you do
an MQPUT. Because MQSeries needs to be able to understand the contents of the
MQMD regardless of the platform it is created on, it is converted automatically by
the system.

Application data, however, is not converted automatically. If character data is being
exchanged between platforms where the CodedCharSetId and Encoding fields differ,
for example, between ASCII and EBCDIC, it is the responsibility of the application
to arrange for conversion of the message. Application data conversion may be
performed by the queue manager itself or by a user exit program, referred to as a
data-conversion exit. This chapter discusses the data-conversion exit facility that
MQSeries provides.

Control may be passed to the data-conversion exit during an MQGET call. This
avoids converting across different platforms before reaching the final destination.
However, if the final destination is a platform that does not support data
conversion on the MQGET, you must specify CONVERT(YES) on the sender
channel that sends the data to its final destination. This ensures that MQSeries
converts the data during transmission. In this case, your data-conversion exit must
reside on the system where the sender channel is defined.

The MQGET call can be issued directly by an application. Set the CodedCharSetId
field of the MQMD to MQCCSI_DEFAULT to pick up the default CCSID of the
queue manager. This ensures that MQSeries knows the correct target CCSID.

The conditions required for the data-conversion exit to be called are defined for the
MQGET call in the MQSeries Application Programming Reference manual.

For a description of the parameters that are passed to the data-conversion exit, and
detailed usage notes, see the MQSeries Application Programming Reference manual
for the MQ_DATA_CONV_EXIT call and the MQDXP structure.

Programs that convert application data between different machine encodings and
CCSIDs must conform to the MQSeries data conversion interface (DCI).

This chapter introduces data-conversion exits, under these headings:
v “Invoking the data-conversion exit” on page 150
v “Writing a data-conversion exit program” on page 151
v “Writing a data-conversion exit program for MQSeries for AS/400” on page 155
v “Writing a data-conversion exit for MQSeries for OS/2 Warp” on page 156
v “Writing a data-conversion exit program for MQSeries for OS/390” on page 158
v “Writing a data-conversion exit for MQSeries for Tandem NonStop Kernel” on

page 159
v “Writing a data-conversion exit for MQSeries on UNIX systems and Compaq

(DIGITAL) OpenVMS” on page 160
v “Writing a data-conversion exit for MQSeries for Windows NT” on page 165

© Copyright IBM Corp. 1993, 2000 149

Invoking the data-conversion exit
A data-conversion exit is a user-written exit that receives control during the
processing of an MQGET call. The exit is invoked if the following are true:
v The MQGMO_CONVERT option is specified on the MQGET call.
v The CodedCharSetId or Encoding fields in the MQMD structure associated with

the message on the queue differ from the CodedCharSetId or Encoding fields in
the MQMD structure specified on the MQGET call (see the code page support
tables in the MQSeries Application Programming Reference manual).

v The Format field in the MQMD structure associated with the message is not
MQFMT_NONE (MQFMT_STRING indicates that the message consists entirely
of character data).

v The BufferLength specified on the MQGET call is not zero.
v The message data length is not zero.
v Either the message format is not one that can be handled by one of the built-in

conversion routines, or its format can be handled by one of the built-in
conversion routines but the routine is unable to convert the message itself. The
conversion routines supplied with the product always attempt to convert the
built-in format messages first; user-written routines are called only if these
product-supplied routines fail to convert.

There are some other conditions, described fully in the usage notes of the
MQ_DATA_CONV_EXIT call in the MQSeries Application Programming Reference
manual.

See the MQSeries Application Programming Reference manual for details of the
MQGET call. Data-conversion exits cannot use MQI calls, other than MQXCNVC.

A new copy of the exit is loaded when an application attempts to retrieve the first
message that uses that Format since the application connected to the queue
manager. A new copy may also be loaded at other times if the queue manager has
discarded a previously-loaded copy.

The data-conversion exit runs in an environment similar to that of the program
which issued the MQGET call. As well as user applications, the program can be an
MCA (message channel agent) sending messages to a destination queue manager
that does not support message conversion. The environment includes address
space and user profile, where applicable. The exit cannot compromise the queue
manager’s integrity, since it does not run in the queue manager’s environment.

In a client-server environment, the exit is loaded at the server, and conversion
takes place there.

Data conversion on OS/390
On OS/390, you must also be aware of the following:
v Exit programs can be written in assembler language only.
v Exit programs must be re-entrant, and capable of running anywhere in storage.
v Exit programs must restore the environment on exit to that at entry, and must

free any storage obtained.
v Exit programs must not WAIT, or issue ESTAEs or SPIEs.
v Exit programs are normally invoked as if by OS/390 LINK in:

– Non-authorized problem program state
– Primary address space control mode

data-conversion exit invocation

150 MQSeries Application Programming Guide

– Non cross-memory mode
– Non access-register mode
– 31 bit addressing mode
– TCB-PRB mode

v When used by a CICS application, the exit is invoked by EXEC CICS LINK, and
should conform to the CICS programming conventions. The parameters are
passed by pointers (addresses) in the CICS communication area (COMMAREA).
Although not recommended, user exit programs can also make use of CICS API
calls, with the following caution:
– Do not issue syncpoints, as the results could influence units of work declared

by the MCA.
– Do not update any resources controlled by a resource manager other than

MQSeries for OS/390, including those controlled by CICS Transaction Server
for OS/390.

v For distributed queuing without CICS, the exit is loaded from the data set
referenced by the CSQXLIB DD statement. In other environments, the exit is
loaded from the same place as application programs.

v For distributed queuing using CICS, data-conversion exits are not supported.

Writing a data-conversion exit program
For OS/390, you must write data-conversion exits in assembler language. For other
platforms, it is recommended that you use the C programming language.

To help you create a data-conversion exit program, the following are supplied:
v A skeleton source file
v A convert characters call
v A utility that creates a fragment of code that performs data conversion on data

type structures This utility takes C input only. On OS/390, it produces assembler
code.

These are described in subsequent sections.

For the procedure for writing the programs see:
v “Writing a data-conversion exit program for MQSeries for AS/400” on page 155
v “Writing a data-conversion exit for MQSeries for OS/2 Warp” on page 156
v “Writing a data-conversion exit program for MQSeries for OS/390” on page 158
v “Writing a data-conversion exit for MQSeries for Tandem NonStop Kernel” on

page 159
v “Writing a data-conversion exit for MQSeries on UNIX systems and Compaq

(DIGITAL) OpenVMS” on page 160
v “Writing a data-conversion exit for MQSeries for Windows NT” on page 165

Skeleton source file
These can be used as your starting point when writing a data-conversion exit
program. The files supplied are listed in Table 7.

Table 7. Skeleton source files

Platform File

AIX amqsvfc0.c

AS/400 QMQMSAMP/QCSRC(AMQSVFC4)

AT&T GIS UNIX amqsvfcx.c

data-conversion exit invocation

Chapter 11. Writing data-conversion exits 151

Table 7. Skeleton source files (continued)

Platform File

Digital OpenVMS AMQSVFCX.C

HP-UX amqsvfc0.c

OS/2 AMQSVFC0.C

OS/390 CSQ4BAX8 (1)
CSQ4BAX9 (2)
CSQ4CAX9 (3)

SINIX and DC/OSx amqsvfcx.c

Sun Solaris amqsvfc0.c

Tandem NSK amqsvfcn

Windows NT amqsvfc0.c

Notes:
1. Illustrates the MQXCVNC call.
2. A wrapper for the code fragments generated by the utility for use in all environments

except CICS.
3. A wrapper for the code fragments generated by the utility for use in the CICS

environment.

Convert characters call
The MQXCNVC (Convert characters) call may be used from within a
data-conversion exit program to convert character message data from one character
set to another. For certain multibyte character sets (for example, UCS2 character
sets), the appropriate options must be used.

No other MQI calls can be made from within the exit; an attempt to make such a
call fails with reason code MQRC_CALL_IN_PROGRESS.

See the MQSeries Application Programming Reference manual for further information
on the MQXCNVC call and appropriate options.

Utility for creating conversion-exit code
The commands for creating conversion-exit code are:

AS/400
CVTMQMDTA (Convert MQSeries Data Type)

OS/2, Digital OpenVMS, Tandem NSK, Windows NT, and UNIX systems
crtmqcvx (Create MQSeries conversion-exit)

OS/390
CSQUCVX

The command for your platform produces a fragment of code that performs data
conversion on data type structures, for use in your data-conversion exit program.
The command takes a file containing one or more C language structure definitions.
On OS/390, it then generates a data set containing assembler code fragments and
conversion functions. On other platforms, it generates a file with a C function to
convert each structure definition. The utility requires access to the LE/370 run-time
library SCEERUN.

Writing a data-conversion exit

152 MQSeries Application Programming Guide

Invoking the CSQUCVX utility on OS/390
Figure 13 shows an example of the JCL used to invoke the CSQUCVX utility.

Data definition statements
The CSQUCVX utility requires DD statements with the following DDnames:

SYSPRINT
This specifies a data set or print spool class for reports and error messages.

CSQUINP
This specifies the sequential data set containing the definitions of the data
structures to be converted.

CSQUOUT
This specifies the sequential data set where the conversion code fragments
are to be written. The logical record length (LRECL) must be 80 and the
record format (RECFM) must be FB.

Error messages in OS/2, Windows NT, and UNIX systems
The crtmqcvx command returns messages in the range AMQ7953 through
AMQ7970. For other platforms, see the appropriate System Management Guide for
your platform.

There are two main types of error:
v Major errors, such as syntax errors, when processing cannot continue.

A message is displayed on the screen giving the line number of the error in the
input file. The output file may have been partially created.

v Other errors when a message is displayed stating that a problem has been found
but parsing of the structure can continue.
The output file has been created and contains error information on the problems
that have occurred. This error information is prefixed by #error so that the code
produced will not be accepted by any compiler without intervention to rectify
the problems.

Valid syntax
Your input file for the utility must conform to the C language syntax. If you are
unfamiliar with C, refer to “Example of valid syntax for the input data set” on
page 154.

In addition, you must be aware of the following rules:
v typedef is recognized only before the struct keyword.
v A structure tag is required on your structure declarations.
v Empty square brackets [] may be used to denote a variable length array or

string at the end of a message.
v Multidimensional arrays and arrays of strings are not supported.

//CVX EXEC PGM=CSQUCVX
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQLOAD
// DD DISP=SHR,DSN=le370qual.SCEERUN
//SYSPRINT DD SYSOUT=*
//CSQUINP DD DISP=SHR,DSN=MY.MQSERIES.FORMATS(MSG1)
//CSQUOUT DD DISP=OLD,DSN=MY.MQSERIES.EXITS(MSG1)

Figure 13. Sample JCL used to invoke the CSQUCVX utility

Writing a data-conversion exit

Chapter 11. Writing data-conversion exits 153

v The following additional data types are recognized:
MQBYTE
MQCHAR
MQSHORT
MQLONG

MQCHAR fields are code page converted, but MQBYTE is left untouched. If the
encoding is different, MQSHORT and MQLONG are converted accordingly.

v The following should not be used:
float
double
pointers
bit-fields

This is because the utility for creating conversion-exit code does not provide the
facility to convert these data types. To overcome this, you can write your own
routines and call them from the exit.

Other points to note:
v Do not use sequence numbers in the input data set.
v If there are fields for which you want to provide your own conversion routines,

declare them as MQBYTE, and then replace the generated CMQXCFBA macros
with your own conversion code.

Example of valid syntax for the input data set
struct TEST { MQLONG SERIAL_NUMBER;

MQCHAR ID[5];
MQSHORT VERSION;
MQBYTE CODE[4];
MQLONG DIMENSIONS[3];
MQCHAR NAME[24];

} ;

This corresponds to the following declarations in the other programming
languages:

COBOL:
10 TEST.
15 SERIAL-NUMBER PIC S9(9) BINARY.
15 ID PIC X(5).
15 VERSION PIC S9(4) BINARY.

* CODE IS NOT TO BE CONVERTED
15 CODE PIC X(4).
15 DIMENSIONS PIC S9(9) BINARY OCCURS 3 TIMES.
15 NAME PIC X(24).

System/390 assembler: Supported on OS/390 only
TEST EQU *
SERIAL_NUMBER DS F
ID DS CL5
VERSION DS H
CODE DS XL4
DIMENSIONS DS 3F
NAME DS CL24

PL/I: Supported on AIX, OS/390, OS/2 Warp, and Windows NT only
DCL 1 TEST,

2 SERIAL_NUMBER FIXED BIN(31),
2 ID CHAR(5),

Writing a data-conversion exit

154 MQSeries Application Programming Guide

2 VERSION FIXED BIN(15),
2 CODE CHAR(4), /* not to be converted */
2 DIMENSIONS(3) FIXED BIN(31),
2 NAME CHAR(24);

Writing a data-conversion exit program for MQSeries for AS/400
Follow these steps:
1. Name your message format. The name must fit in the Format field of the

MQMD. The Format name should not have leading embedded blanks, and
trailing blanks are ignored. The object’s name must have no more than eight
non-blank characters, because the Format is only eight characters long.
Remember to use this name each time you send a message (our example uses
the name Format).

2. Create a structure to represent your message. See “Valid syntax” on page 153
for an example.

3. Run this structure through the CVTMQMDTA command to create a code
fragment for your data-conversion exit.
The functions generated by the CVTMQMDTA command use macros that are
shipped in the file QMQM/H(AMQSVMHA). These macros are written
assuming that all structures are packed; they should be amended if this is not
the case.

4. Take a copy of the supplied skeleton source file,
QMQMSAMP/QCSRC(AMQSVFC4) and rename it. (Our example uses the
name EXIT_MOD.)

5. Find the following comment boxes in the source file and insert code as
described:
a. Towards the bottom of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function you added in
step 5a above. Remove the comment characters to activate the function. If
there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in
step 5a above.

If the message contains character data, the generated code calls MQXCNVC;
this can be resolved by binding the service program QMQM/LIBMQM.

6. Compile the source module, EXIT_MOD, as follows:
CRTCMOD MODULE(library/EXIT_MOD) +
SRCFILE(QCSRC) +
TERASPACE(*YES *TSIFC)

7. Create/link the program.
For nonthreaded applications, use the following:

Writing a data-conversion exit

Chapter 11. Writing data-conversion exits 155

|
|

|

|
|
|

|

|

CRTSRVPGM SRVPGM(library/Format) +
MODULE(library/EXIT_MOD) +
BNDSRVPGM(QMQM/LIBMQM) +
ACTGRP(QMQM) +
USRPRF(*USER)

In addition to creating the data-conversion exit for the basic environment,
another is required in the threaded environment. This loadable object must be
followed by _R. The LIBMQM_R library should be used to resolve calls to the
MQXCNVC. Both loadable objects are required for a threaded environment.

CRTSRVPGM PGM(library/Format_R) +
MODULE(library/EXIT_MOD) +
BNDSRVPGM(QMQM/LIBMQM_R) +
ACTGRP(QMQM) +
USRPRF(*USER)

8. Place the output in the library list for the MQSeries job. It is recommended
that, for production, data-conversion exit programs be stored in QSYS.

Notes:

1. If CVTMQMDTA uses packed structures, all MQSeries applications must use
the _Packed qualifier.

2. Data-conversion exit programs must be re-entrant.
3. MQXCNVC is the only MQI call that may be issued from a data-conversion

exit.
4. The exit program should be compiled with the user profile compiler option set

to *USER, so that the exit runs with the authority of the user.
5. Teraspace memory enablement is required for all user exits with Version 5.1 of

MQSeries for AS/400, and TERASPACE(*YES *TSIFC) must be specified in the
CRTCMOD and CRTBNDC commands.

Writing a data-conversion exit for MQSeries for OS/2 Warp
Follow these steps:
1. Name your message format. The name must fit in the Format field of the

MQMD. The Format name should not have leading blanks. Trailing blanks are
ignored. The object’s name must have no more than eight non-blank characters,
because the Format is only eight characters long.
A .DEF file called AMQSVFC2.DEF is also supplied in the samples directory,
<drive:\directory>\MQM\TOOLS\C\SAMPLES. Take a copy of this file and
rename it, for example, to MYFORMAT.DEF. Make sure that the name of the
DLL being created and the name specified in MYFORMAT.DEF are the same.
Overwrite the name FORMAT1 in MYFORMAT.DEF with the new format name.
Remember to use this name each time you send a message.

2. Create a structure to represent your message. See “Valid syntax” on page 153
for an example.

3. Run this structure through the CRTMQCVX command to create a code
fragment for your data-conversion exit.
The functions generated by the CRTMQCVX command use macros which are
written assuming that all structures are packed; they should be amended if this
is not the case.

4. Take a copy of the supplied skeleton source file, AMQSVFC0.C, renaming it to
the name of your message format that you decided on in step 1 (that is,

MQSeries for AS/400 data-conversion exit

156 MQSeries Application Programming Guide

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

MYFORMAT.C in this example). AMQSVFC0.C is in
<drive:\directory>\MQM\TOOLS\C\SAMPLES (where <drive:\directory>
was specified at installation).
The skeleton includes a sample header file AMQSVMHA.H in the same
directory. Make sure that your include path points to this directory to pick up
this file.
The AMQSVMHA.H file contains macros that are used by the code generated
by the CRTMQCVX command. If the structure to be converted contains
character data, then these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as
described:
a. Towards the bottom of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function you added in
step 5a above. Remove the comment characters to activate the function. If
there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in
step 5a above.

6. Resolve this call by linking the routine with the library MQMVX.LIB, in the
directory <drive:\directory>\MQM\TOOLS\LIB.

7. Create the following command file:
icc /Ge- /I<drive:\directory>\mqm\tools\c\samples \
/I<drive:\directory>\mqm\tools\c\include MYFORMAT.C \
<drive:\directory>\mqm\tools\lib\mqm.lib MYFORMAT.DEF \
<drive:\directory>\mqm\tools\lib\mqmvx.lib

where <drive:\directory> is specified at installation.

Issue the command file to compile your exit as a DLL file.
8. Place the output in the \mqm\exits subdirectory. The path used to look for the

data-conversion exits is given in the qm.ini file as DefaultExitPath. This path is
set for each queue manager and the exit will only be looked for in that path or
paths.

Notes:

1. If CVTMQCVX uses packed structures, all MQSeries applications must be
compiled in this way.

2. Data-conversion exit programs must be re-entrant.
3. MQXCNVC is the only MQI call that may be issued from a data-conversion

exit.

MQSeries for OS/2 Warp data-conversion exit

Chapter 11. Writing data-conversion exits 157

|
|
|
|

Writing a data-conversion exit program for MQSeries for OS/390
Follow these steps:
1. Take the supplied source skeleton CSQ4BAX9 (for non-CICS environments) or

CSQ4CAX9 (for CICS) as your starting point.
2. Run the CSQUCVX utility.
3. Follow the instructions in the prolog of CSQ4BAX9 or CSQ4CAX9 to

incorporate the routines generated by the CSQUCVX utility, in the order that
the structures occur in the message you want to convert.

4. The utility assumes that the data structures are not packed, that the implied
alignment of the data is honored, and that the structures start on a full-word
boundary, with bytes being skipped as required (as between ID and VERSION
in the “Example of valid syntax for the input data set” on page 154). If the
structures are packed, you will need to omit the CMQXCALA macros that are
generated. You are therefore strongly recommended to declare your structures
in such a way that all fields are named and no bytes are skipped; in the
“Example of valid syntax for the input data set” on page 154, you would add a
field “MQBYTE DUMMY;” between ID and VERSION.

5. The supplied exit returns an error if the input buffer is shorter than the
message format to be converted. Although the exit converts as many complete
fields as possible, the error causes an unconverted message to be returned to
the application. If you want to allow short input buffers to be converted as far
as possible, including partial fields, change the TRUNC= value on the
CSQXCDFA macro to YES: no error is returned, so the application receives a
converted message. The application is responsible for handling the truncation.

6. Add any other special processing code that you need.
7. Rename the program to your data format name.
8. Compile and link-edit your program like a batch application program (unless it

is for use with CICS applications). The macros in the code generated by the
utility are in the library, thlqual.SCSQMACS.
If the message contains character data, the generated code will call MQXCNVC.
If your exit uses this call, link-edit it with the exit stub program CSQASTUB.
The stub is language-independent and environment-independent. Alternatively,
you can load the stub dynamically using the dynamic call name CSQXCNVC.
See “Dynamically calling the MQSeries stub” on page 267 for more information.
Place the link-edited module in your application load library, and in a data set
that is referenced by the CSQXLIB DD statement of your task procedure started
by your channel initiator.

9. If the exit is for use by CICS applications, compile and link-edit it like a CICS
application program, including CSQASTUB if required. Place it in your CICS
application program library. Define the program to CICS in the usual way,
specifying EXECKEY(CICS) in the definition.

Note: Although the LE/370 run-time libraries are needed for running the
CSQUCVX utility (see step 2), they are not needed for link-editing or
running the data-conversion exit itself (see steps 8 and 9).

See “Writing MQSeries-IMS bridge applications” on page 225 for information about
data conversion within the MQSeries-IMS bridge.

MQSeries for OS/390 data-conversion exit

158 MQSeries Application Programming Guide

Writing a data-conversion exit for MQSeries for Tandem NonStop
Kernel

Dynamically bound libraries are not supported by MQSeries for Tandem NonStop
Kernel. Data conversion exits (and channel exits) are implemented by including
statically bound stub functions in the MQSeries libraries and executables that can
be replaced using the REPLACE bind option.

A data conversion exit must be called DATACONVEXIT (see sample AMQSVFCN),
and can be bound into the chosen executable (or library) using the TACL macro
BEXITE.

Note: This procedure modifies the target executable; you are recommended to
make a back-up copy of the target executable or library before using the
macro.

Exit functions, once compiled, must be bound directly into the target executable or
library to be accessible by MQSeries. The following TACL macro is used for this
purpose:

BEXITE
Usage: BEXITE target-executable-or-library source-exit-file-or-
library

For example, to bind the sample data conversion exit into the sample MQSGETA,
follow these steps:
1. Compile the exit function DATACONVEXIT (CSAMP AMQSVFCN).
2. Compile the get application (CSAMP AMQSGET0).
3. Bind the get application (BSAMP AMQSGET).
4. Bind the exit function into the get application (BEXITE AMQSGET

AMQSVFCO).

Alternatively, if all applications are to have this data conversion exit, the following
steps would create both a user library and an application with the exit bound in:
1. Compile the exit function DATACONVEXIT (CSAMP AMQSVFCN).
2. Compile the get application (CSAMP AMQSGET0).
3. Bind the exit function into the user library (BEXITE ZMQSLIB.MQMLIBC

AMQSVFCO).
4. Bind the get application with the modified library (BSAMP AMQSGET).

If the data conversion exit is to be used by channels processing within MQSeries, it
must also be bound into the caller executable by the system administrator. For
example:
BEXITE ZMQSEXE.MQMCACAL AMQSVFCO

Use the TACL macro BDCXALL to bind the data conversion exit into all required
MQSeries processes. For example:
BDCXALL source-exit-file-or-library

Reusing data-conversion exit programs
In other MQSeries Version 2 products, a data-conversion exit is required for each
application-defined format to be supported. The data-conversion exit programs are
named according to the Format value (from MQMD) of the message to be

MQSeries for Tandem NonStop Kernel data-conversion exit

Chapter 11. Writing data-conversion exits 159

converted. The format for which conversion is being requested can be determined
from the Format field of the MsgDesc parameter. The appropriate data-conversion
exit program can therefore be invoked from MQDATACONVEXIT(). The
parameters supplied to MQDATACONVEXIT() can be supplied to the invoked
data-conversion function.

Writing a data-conversion exit for MQSeries on UNIX systems and
Compaq (DIGITAL) OpenVMS

For SINIX and DC/OSx, data-conversion exits must not use DCE.

Follow these steps:
1. Name your message format. The name must fit in the Format field of the

MQMD, and be in uppercase, for example, MYFORMAT. The Format name
should not have leading blanks. Trailing blanks are ignored. The object’s name
must have no more than eight non-blank characters because the Format is only
eight characters long. Remember to use this name each time you send a
message.

2. Create a structure to represent your message. See “Valid syntax” on page 153
for an example.

3. Run this structure through the crtmqcvx command to create a code fragment
for your data-conversion exit.
The functions generated by the crtmqcvx command use macros which are
written assuming that all structures are packed; they should be amended if this
is not the case.

4. Take a copy of the supplied skeleton source file renaming it to the name of
your message format that you decided on in step 1 (that is, MYFORMAT.C).

Note: On MQSeries for AIX, HP-UX, and Sun Solaris the skeleton source file is
called amqsvfc0.c. On MQSeries for AT&T GIS UNIX, Compaq
(DIGITAL) OpenVMS, DIGITAL UNIX, and SINIX and DC/OSx the
skeleton source file is called amqsvfcx.c.

The skeleton includes a sample header file amqsvmha.h in the directory
/usr/mqm/inc (on AIX) or /opt/mqm/inc (on other UNIX systems). Make
sure that your include path points to this directory to pick up this file.

The amqsvmha.h file contains macros that are used by the code generated by
the crtmqcvx command. If the structure to be converted contains character data,
then these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as
described:
a. Towards the bottom of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.

MQSeries for Tandem NonStop Kernel data-conversion exit

160 MQSeries Application Programming Guide

|

|
|
|
|

|

Change the name of the function to the name of the function you added in
step 5a above. Remove the comment characters to activate the function. If
there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in
step 5a above.

6. Resolve this call by linking the routine with the library libmqm. For threaded
programs, the routine must be linked with the library libmqm_r (AIX and
HP-UX only).

7. Compile your exit as a shared library, using MQStart as the entry point. To do
this, see “Compiling data-conversion exits on UNIX” on page 162, or
“Compiling data-conversion exits on Digital OpenVMS” on page 162.

8. Place the output in the default system directory, /var/mqm/exits, to ensure
that it can be loaded when required. The path used to look for the
data-conversion exits is given in the qm.ini file. This path can be set for each
queue manager and the exit is only looked for in that path or paths.

Notes:

1. If crtmqcvx uses packed structures, all MQSeries applications must be compiled
in this way.

2. Data-conversion exit programs must be re-entrant.
3. MQXCNVC is the only MQI call that may be issued from a data-conversion

exit.

UNIX environment
There are two environments to consider: non threaded and threaded.

Non-threaded environment
The loadable object must have its name in upper case, for example MYFORMAT.
The libmqm library should be used to resolve the calls to MQXCNVC.

Threaded environment
In addition to creating the data-conversion exit for the basic environment, another
is required in the threaded environment. This loadable object must be followed by
_r (on AIX and HP-UX) and _d (on Sun Solaris) to indicate that it is a
DCE-threaded version. The libmqm_r library (on AIX and HP-UX) and the
lmqmcs_d library (on Sun Solaris) should be used to resolve the calls to
MQXCNVC. Note that both loadable objects (non-threaded and threaded) are
required for a threading environment.

If you are running MQI clients, all data conversion is performed by the proxy
running on the machine to which the client is attached. This means that any data
conversion exits are run on the server, in the environment of the proxy, and not as
part of the client application.

For most platforms, the proxy/responder program is a threaded program.
Consequently, the data conversion exit must be compiled with appropriate options
to run in this threaded environment. Whether or not the client application is
threaded is irrelevant.

On the MQSeries V5 for UNIX systems, the proxy is threaded. The model of
threads used depends on whether the DCE option has been installed.

MQSeries on UNIX systems, Compaq (DIGITAL) OpenVMS data-conversion exit

Chapter 11. Writing data-conversion exits 161

|
|
|
|

|
|
|
|

|
|

Note: If the data-conversion exits are in a mixed non-threaded and threaded
environment, the calling environment is detected and the appropriate object
loaded. The shared object should be placed in /var/mqm/exits to ensure it
can be loaded when required.

Compiling data-conversion exits on Digital OpenVMS
The names of the routines which are called by the data-conversion exit must be
made universal.
$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE AMQSVFCX.C
$ LINK /SYS$SHARE:[SYSLIB]MYFORMAT AMQSVFCX.OBJ,MYFORMAT/OPTIONS

The contents of MYFORMAT.OPT vary depending on which platform you are
working on:

On Alpha:
SYS$SHARE:MQM/SHAREABLE
SYS$SHARE:MQMCS/SHAREABLE
SYMBOL_VECTOR=(MQSTART=PROCEDURE)

On VAX:
SYS$SHARE:MQM/SHAREABLE
SYS$SHARE:MQMCS/SHAREABLE
UNIVERSAL=MQSTART

If you are using threaded applications linked with the pthread library, you must
also build a second copy of the data-conversion exit with the thread options and
libraries:
$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE AMQSVFCX.C
$ LINK /SYS$SHARE:[SYSLIB]MYFORMAT AMQSVFCX.OBJ,MYFORMAT/OPTIONS

Again, the contents of MYFORMAT.OPT vary depending on which platform you
are working on:

On Alpha:
SYS$SHARE:MQM_R/SHAREABLE
SYS$SHARE:MQMCS_R/SHAREABLE
SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE
SYMBOL_VECTOR-(MQSTART=PROCEDURE)

On VAX:
SYS$SHARE:MQM_R/SHAREABLE
SYS$SHARE:MQMCS_R/SHAREABLE
SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE
UNIVERSAL=MQSTART

Compiling data-conversion exits on UNIX
The following sections give examples of how to compile a data conversion exit on
the UNIX platforms.

On all platforms, the entry point to the module is MQStart.

On AIX 4.2
$ cc -c -I/usr/mqm/inc MYFORMAT.C
$ ld MYFORMAT.o -e MQStart -o MYFORMAT -bM:SRE -H512 -T512 -lmqm -lc
$ cp MYFORMAT /var/mqm/exits

MQSeries on UNIX systems, Compaq (DIGITAL) OpenVMS data-conversion exit

162 MQSeries Application Programming Guide

If you are using threaded applications linked with the pthreads library or you are
running client applications, you must build a second copy of the conversion exit
with the thread options and libraries.

$ cc_r -c -I/usr/mqm/inc MYFORMAT.C
$ ld MYFORMAT.o -e MQStart -o MYFORMAT_r -bM:SRE -H512 \
-T512 -lmqm_r -lpthreads -lc_r
$ cp MYFORMAT_r /var/mqm/exits

On AIX 4.3
$ cc -c -I/usr/mqm/inc MYFORMAT.C
$ ld MYFORMAT.o -e MQStart -o MYFORMAT -bM:SRE -H512 -T512 -lmqm -lc
$ cp MYFORMAT /var/mqm/exits

You must build conversion exits for the threaded environment using the draft 7
Posix threads interface rather than the draft 10 interface which is the AIX 4.3
default.

$ xlc_r7 -c -I/usr/mqm/inc MYFORMAT.C
$ ld MYFORMAT.o -eMQStart -o MYFORMAT_r -bm:SRE -H512 -T512 \
-lmqm_r -lpthreads_compat -lpthreads -lc_r
$ cp MYFORMAT_r /var/mqm/exits

On AT&T GIS UNIX
$ cc -c -K PIC -I/opt/mqm/inc MYFORMAT.C
$ ld -G MYFORMAT.O -o MYFORMAT
$ cp MYFORMAT /opt/mqm/lib

On DIGITAL UNIX
$ cc -std1 -c -I/opt/mqm/inc MYFORMAT.C
$ ld MYFORMAT.o -shared -o MYFORMAT -L /opt/mqm/lib -lmqm -e MQStart -lc
$ cp MYFORMAT /opt/mqm/lib

On HP-UX Version 10.20
$ CC -c -Aa +z -I/opt/mqm/inc MYFORMAT.C
$ ld -b MYFORMAT.o -o MYFORMAT -L /opt/mqm/lib -lmqm +IMQStart
$ cp MYFORMAT /var/mqm/exits

If you are using threaded applications linked with the pthreads library or you are
running client applications, you must build a second copy of the conversion exit
with the thread options and libraries.

$ CC -c -Aa +z -I/opt/mqm/inc MYFORMAT.C
$ ld -b MYFORMAT.o -o MYFORMAT_r -L /opt/mqm/lib \
-lmqm_r -lcma -lc_r +IMQStart
$ cp MYFORMAT_r /var/mqm/exits

On HP-UX Version 11.00
$ CC -c -Aa +z -I/opt/mqm/inc MYFORMAT.C
$ ld -b MYFORMAT.o -o MYFORMAT -L /opt/mqm/lib -lmqm +IMQStart
$ cp MYFORMAT /var/mqm/exits

If you are using threaded applications linked with the POSIX Draft 10 pthreads
library, or you are running client applications, you must build the conversion exit
for Draft 10 threads.

$ CC -c -Aa +z -I/opt/mqm/inc MYFORMAT.C
$ ld -b MYFORMAT.o -o MYFORMAT_r -L/opt/mqm/lib -lmqm_r -lpthread -lc
+IMQStart
$ cp MYFORMAT_r /var/mqm/exits

MQSeries on UNIX systems, Compaq (DIGITAL) OpenVMS data-conversion exit

Chapter 11. Writing data-conversion exits 163

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

If you are using threaded applications linked with the POSIX Draft 4 (DCE)
pthreads library, or you are running client applications, you must build the
conversion exit for Draft 4 threads.
$ CC -c -Aa +z -I/opt/mqm/inc -D_PTHREADS_DRAFT4 MYFORMAT.C
$ ld -b MYFORMAT.o -o MYFORMAT_d -L/opt/mqm/lib -lmqm_d -ldr -lcma -lc
+IMQStart
$ cp MYFORMAT_d /var/mqm/exits

On SINIX
$ cc -c -K PIC -I/opt/mqm/inc -lmproc -lext MYFORMAT.C
$ ld -G MYFORMAT.O -o MYFORMAT
$ cp MYFORMAT /opt/mqm/lib

On DC/OSx
$ cc -c -K PIC -I/opt/mqm/inc -liconv -lmproc -lext MYFORMAT.C
$ ld -G MYFORMAT.O -o MYFORMAT
$ cp MYFORMAT /opt/mqm/lib

On Sun Solaris
If your application uses no threading calls or Posix V10 threading calls:
cc -c -KPIC -I/opt/mqm/inc MYFORMAT.C

ld -G /opt/SUNWspro/SC4.0/lib/crt1.o \
/opt/SUNWspro/SC4.0/lib/crti.o \
/opt/SUNWspro/SC4.0/lib/crtn.o \
/opt/SUNWspro/SC4.0/lib/values-xt.o \
MYFORMAT.o -o MYFORMAT -lmqm -lthread -lsocket -lc -lnsl -ldl

cp MYFORMAT /var/mqm/exits

If your application requires DCE threading (for example, if it is a CICS
application):
cc -c -KPIC -I/opt/mqm/inc MYFORMAT.C

ld -G /opt/SUNWspro/SC4.0/lib/crt1.o \
/opt/SUNWspro/SC4.0/lib/crti.o \
/opt/SUNWspro/SC4.0/lib/crtn.o \
/opt/SUNWspro/SC4.0/lib/values-xt.o \
MYFORMAT.o -o MYFORMAT_d -ldce -lnsl -lthread -lm -lsocket \
-lmqmcs_d -lmqm -lc -ldl

cp MYFORMAT /var/mqm/exits

Note: The SC4.0 directory name varies depending on the release of compiler.

If you want to run applications using both the Posix V10-threaded and the
DCE-threaded variants on a single queue manager:
1. Build a Posix V10 type of data-conversion exit. Name it MYFORMAT and place

it in the appropriate exit directory.
2. Build a DCE-threaded type of data-conversion exit. Name it MYFORMAT_d

and place it in the appropriate exit directory.

Two object files are generated; one of which loads the MYFORMAT
data-conversion exit, and the other of which loads the MYFORMAT_d
data-conversion exit.

MQSeries on UNIX systems, Compaq (DIGITAL) OpenVMS data-conversion exit

164 MQSeries Application Programming Guide

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Writing a data-conversion exit for MQSeries for Windows NT
Follow these steps:
1. Name your message format. The name must fit in the Format field of the

MQMD. The Format name should not have leading blanks. Trailing blanks are
ignored. The object’s name must have no more than eight non-blank characters,
because the Format is only eight characters long.
A .DEF file called amqsvfcn.def is also supplied in the samples directory,
<drive:\directory>\Program Files\MQSeries\Tools\C\Samples. Take a copy of
this file and rename it, for example, to MYFORMAT.DEF. Make sure that the
name of the DLL being created and the name specified in MYFORMAT.DEF are
the same. Overwrite the name FORMAT1 in MYFORMAT.DEF with the new
format name.
Remember to use this name each time you send a message.

2. Create a structure to represent your message. See “Valid syntax” on page 153
for an example.

3. Run this structure through the CRTMQCVX command to create a code
fragment for your data-conversion exit.
The functions generated by the CVTMQCVX command use macros which are
written assuming that all structures are packed; they should be amended if this
is not the case.

4. Take a copy of the supplied skeleton source file, amqsvfc0.c, renaming it to the
name of your message format that you decided on in step 1 (that is,
MYFORMAT).
amqsvfc0.c is in
<drive:\directory>\Program Files\MQSeries\Tools\C\Samples (where
<drive:\directory> was specified at installation).
The skeleton includes a sample header file amqsvmha.h in the same directory.
Make sure that your include path points to this directory to pick up this file.
The amqsvmha.h file contains macros that are used by the code generated by
the CRTMQCVX command. If the structure to be converted contains character
data, then these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as
described:
a. Towards the bottom of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function you added in
step 5a above. Remove the comment characters to activate the function. If
there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in
step 5a above.

MQSeries for Windows NT data-conversion exit

Chapter 11. Writing data-conversion exits 165

6. Resolve this call by linking the routine with the library MQMVX.LIB, in the
directory <drive:\directory>\Program Files\MQSeries\Tools\Lib.

7. Create the following command file:
cl -I <drive:\directory>\Program Files\MQSeries\Tools\C\Include -Tp \
MYFORMAT.C -LD -DEFAULTLIB \
<drive:\directory>\Program Files\MQSeries\Tools\Lib\mqm.lib \
<drive:\directory>\Program Files\MQSeries\Tools\Lib\mqmvx.lib \
MYFORMAT.DEF

where <drive:\directory> is specified at installation,

Issue the command file to compile your exit as a DLL file.
8. Place the output in the

C:\WINNT\Profiles\All Users\Application Data\MQSeries\EXITS
subdirectory. The path used to look for the data-conversion exits is given in the
registry. This path can be set for each queue manager and the exit is only
looked for in that path or paths.

Notes:

1. If CVTMQCVX uses packed structures, all MQSeries applications must be
compiled in this way.

2. Data-conversion exit programs must be re-entrant.
3. MQXCNVC is the only MQI call that may be issued from a data-conversion

exit.

MQSeries for Windows NT data-conversion exit

166 MQSeries Application Programming Guide

Chapter 12. Inquiring about and setting object attributes

Attributes are the properties that define the characteristics of an MQSeries object.
They affect the way that an object is processed by a queue manager. The attributes
of each type of MQSeries object are described in detail in the MQSeries Application
Programming Reference manual.

Some attributes are set when the object is defined, and can be changed only by
using the MQSeries commands; an example of such an attribute is the default
priority for messages put on a queue. Other attributes are affected by the operation
of the queue manager and may change over time; an example is the current depth
of a queue.

You can inquire about the current values of all these attributes using the MQINQ
call. The MQI also provides an MQSET call with which you can change some
queue attributes. You cannot use the MQI calls to change the attributes of any
other type of object; instead you must use:

For MQSeries for OS/390
The ALTER operator commands (or the DEFINE commands with the
REPLACE option), which are described in the MQSeries Command Reference.

For MQSeries for AS/400
The CHGMQMx CL commands, which are described in the MQSeries for
AS/400 V5.1 System Administration book, or you can use the MQSC facility.

For MQSeries for Tandem NonStop Kernel
The MQM screen-based interface, which is described in the MQSeries for
Tandem NonStop Kernel System Management Guide, or you can use the MQSC
facility.

For MQSeries for VSE/ESA
The panel interface, which is described in the MQSeries for VSE/ESA System
Management Guide.

For MQSeries for all other platforms
The MQSC facility, described in the MQSeries Command Reference.

Note: The names of the attributes of objects are shown in this book in the form
that you use them with the MQINQ and MQSET calls. When you use
MQSeries commands to define, alter, or display the attributes, you must
identify the attributes using the keywords shown in the descriptions of the
commands in the above books.

Both the MQINQ and the MQSET calls use arrays of selectors to identify those
attributes you want to inquire about or set. There is a selector for each attribute
you can work with. The selector name has a prefix, determined by the nature of
the attribute:

MQCA_
These selectors refer to attributes that contain character data (for example,
the name of a queue).

MQIA_
These selectors refer to attributes that contain either numeric values (such

© Copyright IBM Corp. 1993, 2000 167

|
|

as CurrentQueueDepth, the number of messages on a queue) or a constant
value (such as SyncPoint, whether or not the queue manager supports
syncpoints).

Before you use the MQINQ or MQSET calls your application must be connected to
the queue manager, and you must use the MQOPEN call to open the object for
setting or inquiring about attributes. These operations are described in “Chapter 7.
Connecting and disconnecting a queue manager” on page 83 and “Chapter 8.
Opening and closing objects” on page 91.

Inquiring about the attributes of an object
Use the MQINQ call to inquire about the attributes of any type of MQSeries object.

As input to this call, you must supply:
v A connection handle.
v An object handle.
v The number of selectors.
v An array of attribute selectors, each selector having the form MQCA_* or

MQIA_*. Each selector represents an attribute whose value you want to inquire
about, and each selector must be valid for the type of object that the object
handle represents. You can specify selectors in any order.

v The number of integer attributes that you are inquiring about. Specify zero if
you are not inquiring about integer attributes.

v The length of the character attributes buffer in CharAttrLength. This must be at
least the sum of the lengths required to hold each character attribute string.
Specify zero if you are not inquiring about character attributes.

The output from MQINQ is:
v A set of integer attribute values copied into the array. The number of values is

determined by IntAttrCount. If either IntAttrCount or SelectorCount is zero,
this parameter is not used.

v The buffer in which character attributes are returned. The length of the buffer is
given by the CharAttrLength parameter. If either CharAttrLength or
SelectorCount is zero, this parameter is not used.

v A completion code. If the completion code gives a warning, this means that the
call completed only partially. In this case, you should examine the reason code.

v A reason code. There are three partial-completion situations:
– The selector does not apply to the queue type
– There is not enough space allowed for integer attributes
– There is not enough space allowed for character attributes

If more than one of these situations arise, the first one that applies is returned.

Namelists can be inquired only on AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun
Solaris, and Windows NT.

If you open a queue for output or inquire and it resolves to a non-local cluster
queue you can only inquire the queue name, queue type, and common attributes.
The values of the common attributes are those of the chosen queue if
MQOO_BIND_ON_OPEN was used. The values are those of an arbitrary one of
the possible cluster queues if either MQOO_BIND_NOT_FIXED was used or

Object attributes

168 MQSeries Application Programming Guide

|
|

MQOO_BIND_AS_Q_DEF was used and the DefBind queue attribute was
MQBND_BIND_NOT_FIXED. See the MQSeries Queue Manager Clusters book for
more information.

Note: The values returned by the call are a snapshot of the selected attributes. The
attributes can change before your program acts on the returned values.

There is a description of the MQINQ call in the MQSeries Application Programming
Reference manual.

Some cases where the MQINQ call fails
If you open an alias to inquire about its attributes, you are returned the attributes
of the alias queue (the MQSeries object used to access another queue), not those of
the base queue. However, the definition of the base queue to which the alias
resolves is also opened by the queue manager, and if another program changes the
usage of the base queue in the interval between your MQOPEN and MQINQ calls,
your MQINQ call fails and returns the MQRC_OBJECT_CHANGED reason code.
The call also fails if the attributes of the alias queue object are changed.

Similarly, when you open a remote queue to inquire about its attributes, you are
returned the attributes of the local definition of the remote queue only.

If you specify one or more selectors that are not valid for the type of queue about
whose attributes you are inquiring, the MQINQ call completes with a warning and
sets the output as follows:
v For integer attributes, the corresponding elements of IntAttrs are set to

MQIAV_NOT_APPLICABLE.
v For character attributes, the corresponding portions of the CharAttrs string are

set to asterisks.

If you specify one or more selectors that are not valid for the type of object about
whose attributes you are inquiring, the MQINQ call fails and returns the
MQRC_SELECTOR_ERROR reason code.

It is not possible to call MQINQ to look at a model queue. You will have to use
either the MQSC facility or use the commands available on your platform.

Setting queue attributes
You can set only the following queue attributes using the MQSET call:
v InhibitGet (but not for remote queues)
v DistList
v InhibitPut
v TriggerControl
v TriggerType
v TriggerDepth
v TriggerMsgPriority
v TriggerData

The MQSET call has the same parameters as the MQINQ call. However for
MQSET, all parameters except the completion code and reason code are input
parameters. There are no partial-completion situations.

Using MQINQ

Chapter 12. Inquiring about and setting object attributes 169

Note: You cannot use the MQI to set the attributes of MQSeries objects other than
locally-defined queues.

There is a description of the MQSET call in the MQSeries Application Programming
Reference manual.

Using MQSET

170 MQSeries Application Programming Guide

Chapter 13. Committing and backing out units of work

This chapter describes how to commit and back out any recoverable get and put
operations that have occurred in a unit of work. The following terms, described
below, are used in this topic:
v Commit
v Back out
v Syncpoint coordination
v Syncpoint
v Unit of work
v Single-phase commit
v Two-phase commit

If you are familiar with these transaction processing terms, you can skip to
“Syncpoint considerations in MQSeries applications” on page 172.

Commit and back out
When a program puts a message on a queue within a unit of work, that
message is made visible to other programs only when the program commits
the unit of work. To commit a unit of work, all updates must be successful
to preserve data integrity. If the program detects an error and decides that
the put operation should not be made permanent, it can back out the unit
of work. When a program performs a back out, MQSeries restores the
message on the queue. The way in which the program performs the
commit and back out operations depends on the environment in which the
program is running.

Similarly, when a program gets a message from a queue within a unit of
work, that message remains on the queue until the program commits the
unit of work, but the message is not available to be retrieved by other
programs. The message is permanently deleted from the queue when the
program commits the unit of work. If the program backs out the unit of
work, MQSeries restores the queue to the state it was in before the
program performed the get operation.

Changes to queue attributes (either by the MQSET call or by commands)
are not affected by the committing or backing out of units of work.

Syncpoint coordination, syncpoint, unit of work
Syncpoint coordination is the process by which units of work are either
committed or backed out with data integrity.

The decision to commit or back out the changes is taken, in the simplest
case, at the end of a transaction. However, it can be more useful for an
application to synchronize data changes at other logical points within a
transaction. These logical points are called syncpoints (or synchronization
points) and the period of processing a set of updates between two
syncpoints is called a unit of work. Several MQGET calls and MQPUT calls
can be part of a single unit of work.

Single-phase commit
A single-phase commit process is one in which a program can commit
updates to a queue without coordinating its changes with other resource
managers.

Two-phase commit
A two-phase commit process is one in which updates that a program has

© Copyright IBM Corp. 1993, 2000 171

made to MQSeries queues can be coordinated with updates to other
resources (for example, databases under the control of DB2). Under such a
process, updates to all resources are committed or backed out together.

To help handle units of work, MQSeries provides the BackoutCount
attribute. This is incremented each time a message, within a unit of work,
is backed out. If the message repeatedly causes the unit of work to abend,
the value of the BackoutCount finally exceeds that of the BackoutThreshold.
This value is set when the queue is defined. In this situation, the
application can choose to remove the message from the unit of work and
put it onto another queue, as defined in BackoutRequeueQName. When the
message is moved, the unit of work can commit.

This chapter introduces committing and backing out units of work, under these
headings:
v “Syncpoint considerations in MQSeries applications”
v “Syncpoints in MQSeries for OS/390 applications” on page 173
v “Syncpoints in CICS for AS/400 applications” on page 176
v “Syncpoints in MQSeries for OS/2 Warp, MQSeries for Windows NT, MQSeries

for AS/400, and MQSeries on UNIX systems” on page 176
v “Syncpoints in MQSeries for Tandem NonStop Kernel applications” on page 182
v “Interfaces to the AS/400 external syncpoint manager” on page 181
v “General XA support” on page 183

Syncpoint considerations in MQSeries applications
Two-phase commit is supported under:
v MQSeries for AIX
v MQSeries for AS/400
v MQSeries for HP-UX
v MQSeries for OS/2 Warp
v MQSeries for Sun Solaris
v MQSeries for Tandem NonStop Kernel
v MQSeries for Windows NT
v CICS for MVS/ESA 4.1
v CICS Transaction Server for OS/390
v CICS on Open Systems
v TXSeries for Windows NT
v IMS/ESA
v OS/390 batch with RRS
v Other external coordinators using the X/Open XA interface

Single-phase commit is supported under:
v MQSeries for AS/400
v MQSeries for Compaq (DIGITAL) OpenVMS
v MQSeries for OS/2 Warp
v MQSeries for Tandem NonStop Kernel
v MQSeries on UNIX systems
v MQSeries for VSE/ESA
v MQSeries for Windows
v MQSeries for Windows NT
v CICS for OS/2
v CICS for Windows NT V2.0
v OS/390 batch

Commit and back out

172 MQSeries Application Programming Guide

|

Note: For further details on external interfaces see “Interfaces to external syncpoint
managers” on page 179, and the XA documentation CAE Specification
Distributed Transaction Processing: The XA Specification, published by The
Open Group. Transaction managers (such as CICS, IMS, Encina, and Tuxedo)
can participate in two-phase commit, coordinated with other recoverable
resources. This means that the queuing functions provided by MQSeries can
be brought within the scope of a unit of work, managed by the transaction
manager.

Samples shipped with MQSeries show MQSeries coordinating XA-compliant
databases. For further information about these samples, see “Chapter 32. Sample
programs (all platforms except OS/390)” on page 311.

In your MQSeries application, you can specify on every put and get call whether
you want the call to be under syncpoint control. To make a put operation operate
under syncpoint control, use the MQPMO_SYNCPOINT value in the Options field
of the MQPMO structure when you call MQPUT. For a get operation, use the
MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If you
do not explicitly choose an option, the default action depends on the platform. The
syncpoint control default on OS/390 and Tandem NSK is ‘yes’; for all other
platforms, it is ‘no’.

If a program issues the MQDISC call while there are uncommitted requests, an
implicit syncpoint occurs. If the program ends abnormally, an implicit backout
occurs. On OS/390, an implicit syncpoint occurs if the program ends normally
without first calling MQDISC.

For MQSeries for OS/390 programs, you can use the
MQGMO_MARK_SKIP_BACKOUT option to specify that a message should not be
backed out if backout occurs (in order to avoid an ‘MQGET-error-backout’ loop).
For information about using this option, see “Skipping backout” on page 138.

For information on committing and backing out units of work in MQSeries for
VSE/ESA, see the MQSeries for VSE/ESA V2R1 System Management Guide.

Syncpoints in MQSeries for OS/390 applications
This section explains how to use syncpoints in transaction manager (CICS and
IMS) and batch applications.

Syncpoints in CICS Transaction Server for OS/390 and CICS
for MVS/ESA applications

In a CICS application you establish a syncpoint by using the EXEC CICS
SYNCPOINT command. To back out all changes to the previous syncpoint, you
can use the EXEC CICS SYNCPOINT ROLLBACK command. For more
information, see the CICS Application Programming Reference manual.

If other recoverable resources are also involved in the unit of work, the queue
manager (in conjunction with the CICS syncpoint manager) participates in a
two-phase commit protocol; otherwise, the queue manager performs a single-phase
commit process.

Syncpointing and MQSeries

Chapter 13. Committing and backing out units of work 173

|
|
|

If a CICS application issues the MQDISC call, no implicit syncpoint is taken. If the
application closes down normally, any open queues are closed and an implicit
commit occurs. If the application closes down abnormally, any open queues are
closed and an implicit backout occurs.

Syncpoints in IMS applications
In an IMS application, you establish a syncpoint by using IMS calls such as GU
(get unique) to the IOPCB and CHKP (checkpoint). To back out all changes since
the previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see the following books:
v IMS/ESA Version 4 Application Programming: DL/I Calls
v IMS/ESA Version 4 Application Programming: Design Guide
v IMS/ESA Version 5 Application Programming: Database Manager
v IMS/ESA Version 5 Application Programming: Design Guide

The queue manager (in conjunction with the IMS syncpoint manager) participates
in a two-phase commit protocol if other recoverable resources are also involved in
the unit of work.

All open handles are closed by the IMS adapter at a syncpoint (except in a
nonmessage batch-oriented BMP). This is because a different user could initiate the
next unit of work and MQSeries security checking is performed when the
MQCONN and MQOPEN calls are made, not when the MQPUT or MQGET calls
are made. The handles are closed at the beginning of the MQI call following the
IMS call which initiated the syncpoint.

If you have not installed IMS APAR PN83757, handles are also closed after a ROLB
call unless you are running IMS Version 3 or are running a nonmessage BMP.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open
queues are closed but no implicit syncpoint is taken. If the application closes down
normally, any open queues are closed and an implicit commit occurs. If the
application closes down abnormally, any open queues are closed and an implicit
backout occurs.

Syncpoints in OS/390 batch applications
For batch applications, you can use the MQSeries syncpoint management calls:
MQCMIT and MQBACK. For backward compatibility, CSQBCMT and CSQBBAK
are available as synonyms.

Note: If you need to commit or back out updates to resources managed by
different resource managers, such as MQSeries and DB2, within a single unit
of work you could use RRS. For further information see “Transaction
management and recoverable resource manager services” on page 175.

Committing changes using the MQCMIT call
As input, you must supply the connection handle (Hconn), which is returned by the
MQCONN call.

The output from MQCMIT is a completion code and a reason code. The call
completes with a warning if the syncpoint was completed but the queue manager
backed out the put and get operations since the previous syncpoint.

Syncpointing and CICS

174 MQSeries Application Programming Guide

Successful completion of the MQCMIT call indicates to the queue manager that the
application has reached a syncpoint and that all put and get operations made since
the previous syncpoint have been made permanent.

There is a description of the MQCMIT call in the MQSeries Application Programming
Reference manual.

Backing out changes using the MQBACK call
As input, you must supply a connection handle (Hconn). Use the handle that is
returned by the MQCONN call.

The output from MQBACK is a completion code and a reason code.

The output indicates to the queue manager that the application has reached a
syncpoint and that all gets and puts that have been made since the last syncpoint
have been backed out.

There is a description of the MQBACK call in the MQSeries Application
Programming Reference manual.

Transaction management and recoverable resource manager
services
Transaction management and recoverable resource manager services (RRS) is an
OS/390 facility to provide two-phase syncpoint support across participating
resource managers. An application can update recoverable resources managed by
various OS/390 resource managers such as MQSeries and DB2, and then commit
or back out these updates as a single unit of work. RRS provides the necessary
unit-of-work status logging during normal execution, coordinates the syncpoint
processing, and provides appropriate unit-of-work status information during
subsystem restart.

MQSeries for OS/390 RRS participant support enables MQSeries applications in
the batch, TSO, and DB2 stored procedure environments to update both MQSeries
and non-MQSeries resources (for example, DB2) within a single logical unit of
work. For information about RRS participant support, see the MVS Programming:
Resource Recovery manual.

Your MQSeries application can use either MQCMIT and MQBACK or the
equivalent RRS calls, SRRCMIT and SRRBACK. See “RRS batch adapter” on
page 209 for more information.

RRS availability: If RRS is not active on your OS/390 system, any MQSeries call
issued from a program linked with either RRS stub (CSQBRSTB or CSQBRRSI)
returns MQRC_ENVIRONMENT_ERROR.

DB2 stored procedures: If you use DB2 stored procedures with RRS you must be
aware of the following guidelines:
v DB2 stored procedures that use RRS must be WLM-managed.
v If a DB2-managed stored procedure contains MQSeries calls, and it is linked

with either RRS stub (CSQBRSTB or CSQBRRSI), the MQCONN call returns
MQRC_ENVIRONMENT_ERROR.

v If a WLM-managed stored procedure contains MQSeries calls, and is linked with
a non-RRS stub, the MQCONN call returns MQRC_ENVIRONMENT_ERROR,
unless it is the first MQSeries call executed since the stored procedure address
space started.

Syncpointing and batch

Chapter 13. Committing and backing out units of work 175

|
|
|

|
|
|

|
|

v If your DB2 stored procedure contains MQSeries calls and is linked with a
non-RRS stub, MQSeries resources updated in that stored procedure are not
committed until the stored procedure address space ends, or until a subsequent
stored procedure does an MQCMIT (using an MQSeries Batch/TSO stub).

v Multiple copies of the same stored procedure can execute concurrently in the
same address space. You should ensure that your program is coded in a
re-entrant manner if you want DB2 to use a single copy of your stored
procedure. Otherwise you may receive MQRC_HCONN_ERROR on any
MQSeries call in your program.

v You must not code MQCMIT or MQBACK in a WLM-managed DB2 stored
procedure.

v All programs must be designed to run in Language Environment® (LE).

Syncpoints in CICS for AS/400 applications
MQSeries for AS/400 participates in CICS for AS/400 units of work. You can use
the MQI within a CICS for AS/400 application to put and get messages inside the
current unit of work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that
includes the MQSeries for AS/400 operations. To back out all changes up to the
previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK
command.

If you use MQPUT, MQPUT1, or MQGET with the MQPMO_SYNCPOINT, or
MQGMO_SYNCPOINT, option set in a CICS for AS/400 application, you cannot
log off CICS for AS/400 until MQSeries for AS/400 has removed its registration as
an API commitment resource. Therefore, you should commit or back out any
pending put or get operations before you disconnect from the queue manager. This
will allow you to log off CICS for AS/400.

Syncpoints in MQSeries for OS/2 Warp, MQSeries for Windows NT,
MQSeries for AS/400, and MQSeries on UNIX systems

Syncpoint support operates on two types of units of work: local and global.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit procedure.

A global unit of work is one in which resources belonging to other resource
managers, such as databases, are also updated. MQSeries can coordinate such units
of work itself. They can also be coordinated by an external commitment controller
such as another transaction manager or the OS/400 commitment controller.

For full integrity, a two-phase commit procedure must be used. Two-phase commit
can be provided by XA-compliant transaction managers and databases such as
IBM’s TXSeries and UDB and also by the OS/400 V4R4 commitment controller.
MQSeries 5.1 products (except MQSeries 5.1 for AS/400) can coordinate global
units of work using a two-phase commit process. MQSeries 5.1 for AS/400 cannot
coordinate a global unit of work but can participate in one being controlled by the
OS/400 commitment controller.

DB2 stored procedures

176 MQSeries Application Programming Guide

|
|
|
|

|
|
|
|
|
|
|

Local units of work
Units of work that involve only the queue manager are called local units of work.
Syncpoint coordination is provided by the queue manager itself (internal
coordination) using a single-phase commit process.

To start a local unit of work, the application issues MQGET, MQPUT, or MQPUT1
requests specifying the appropriate syncpoint option. The unit of work is
committed using MQCMIT or rolled back using MQBACK. However, the unit of
work also ends when the connection between the application and the queue
manager is broken, whether intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a unit of
work is still active, the unit of work is committed. If, however, the application
terminates without disconnecting, the unit of work is rolled back as the application
is deemed to have terminated abnormally.

Global units of work
Use global units of work when you also need to include updates to resources
belonging to other resource managers. Here the coordination may be internal or
external to the queue manager:

Internal syncpoint coordination
Queue manager coordination of global units of work is supported only on MQSeries
Version 5 products except for MQSeries for AS/400. It is not supported in an MQSeries
client environment.

Here, the coordination is performed by MQSeries. To start a global unit of work,
the application issues the MQBEGIN call.

As input to the MQBEGIN call, you must supply the connection handle (Hconn),
which is returned by the MQCONN call. This handle represents the connection to
the MQSeries queue manager.

Again, the application issues MQGET, MQPUT, or MQPUT1 requests specifying
the appropriate syncpoint option. This means that MQBEGIN can be used to
initiate a global unit of work that updates local resources, resources belonging to
other resource managers, or both. Updates made to resources belonging to other
resource managers are made using the API of that resource manager. However, it is
not possible to use the MQI to update queues that belong to other queue
managers. MQCMIT or MQBACK must be issued before starting further units of
work (local or global).

The global unit of work is committed using MQCMIT; this initiates a two-phase
commit of all the resource managers involved in the unit of work. A two-phase
commit process is used whereby resource managers (for example, XA-compliant
database managers such as DB2, Oracle, and Sybase) are firstly all asked to prepare
to commit. Only if all are prepared are they asked to commit. If any resource
manager signals that it cannot commit, each is asked to back out instead.
Alternatively, MQBACK can be used to roll back the updates of all the resource
managers.

If an application disconnects (MQDISC) while a global unit of work is still active,
the unit of work is committed. If, however, the application terminates without
disconnecting, the unit of work is rolled back as the application is deemed to have
terminated abnormally.

Syncpointing, other platforms

Chapter 13. Committing and backing out units of work 177

|
|
|

|

The output from MQBEGIN is a completion code and a reason code.

When MQBEGIN is used to start a global unit of work, all the external resource
managers that have been configured with the queue manager are included.
However, the call starts a unit of work but completes with a warning if:
v There are no participating resource managers (that is, no resource managers

have been configured with the queue manager)

or
v One or more resource managers are not available.

In these cases, the unit of work should include updates to only those resource
managers that were available when the unit of work was started.

If one of the resource managers is unable to commit its updates, all of the resource
managers are instructed to roll back their updates, and MQCMIT completes with a
warning. In unusual circumstances (typically, operator intervention), an MQCMIT
call may fail if some resource managers commit their updates but others roll them
back; the work is deemed to have completed with a ‘mixed’ outcome. Such
occurrences are diagnosed in the error log of the queue manager so remedial action
may be taken.

An MQCMIT of a global unit of work succeeds if all of the resource managers
involved commit their updates.

For a description of the MQBEGIN call, see the MQSeries Application Programming
Reference manual.

External syncpoint coordination
This occurs when a syncpoint coordinator other than MQSeries has been selected;
for example, CICS, Encina, or Tuxedo. In this situation, MQSeries for OS/2 Warp,
MQSeries on UNIX systems (with the exception of MQSeries for DIGITAL UNIX
(Compaq Tru64 UNIX)), and MQSeries for Windows NT register their interest in
the outcome of the unit of work with the syncpoint coordinator so that they can
commit or roll back any uncommitted get or put operations as required. The
external syncpoint coordinator determines whether one- or two-phase commitment
protocols are provided.

When an external coordinator is used MQCMIT, MQBACK, and MQBEGIN may
not be issued. Calls to these functions fail with the reason code
MQRC_ENVIRONMENT_ERROR.

The way in which an externally coordinated unit of work is started is dependent
on the programming interface provided by the syncpoint coordinator. An explicit
call may, or may not, be required. If an explicit call is required, and you issue an
MQPUT call specifying the MQPMO_SYNCPOINT option when a unit of work is
not started, the completion code MQRC_SYNCPOINT_NOT_AVAILABLE is
returned.

The scope of the unit of work is determined by the syncpoint coordinator. The
state of the connection between the application and the queue manager affects the
success or failure of MQI calls that an application issues, not the state of the unit
of work. It is, for example, possible for an application to disconnect and reconnect
to a queue manager during an active unit of work and perform further MQGET
and MQPUT operations inside the same unit of work. This is known as a pending
disconnect.

Syncpointing, other platforms

178 MQSeries Application Programming Guide

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

Interfaces to external syncpoint managers
MQSeries for OS/2 Warp, MQSeries on UNIX systems (with the exception of
MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)), and MQSeries for Windows
NT support coordination of transactions by external syncpoint managers which
utilize the X/Open XA interface. This support is available only on server
configurations. The interface is not available to client applications.

Some XA transaction managers (not CICS on Open Systems or Encina) require that
each XA resource manager supplies its name. This is the string called name in the
XA switch structure. The resource manager for MQSeries on UNIX systems is
named “MQSeries_XA_RMI”. For further details on XA interfaces refer to XA
documentation CAE Specification Distributed Transaction Processing: The XA
Specification, published by The Open Group.

In an XA configuration, MQSeries on UNIX systems, MQSeries for OS/2 Warp,
and MQSeries for Windows NT fulfil the role of an XA Resource Manager. An XA
syncpoint coordinator can manage a set of XA Resource Managers, and
synchronize the commit or backout of transactions in both Resource Managers.
This is how it works for a statically-registered resource manager:
1. An application notifies the syncpoint coordinator that it wishes to start a

transaction.
2. The syncpoint coordinator issues a call to any resource managers that it knows

of, to notify them of the current transaction.
3. The application issues calls to update the resources managed by the resource

managers associated with the current transaction.
4. The application requests that the syncpoint coordinator either commit or roll

back the transaction.
5. The syncpoint coordinator issues calls to each resource manager using

two-phase commit protocols to complete the transaction as requested.

The XA specification requires each Resource Manager to provide a structure called
an XA Switch. This structure declares the capabilities of the Resource Manager, and
the functions that are to be called by the syncpoint coordinator.

There are two versions of this structure:

MQRMIXASwitch
Static XA resource management

MQRMIXASwitchDynamic
Dynamic XA resource management

The structure is found in the following libraries:

mqmxa.lib
OS/2 and Windows NT XA library for Static resource management

mqmenc.lib
AIX, HP-UX, Sun Solaris, and Windows NT Encina XA library for Dynamic
resource management

libmqmxa.a
UNIX systems XA library (non-threaded) for both Static and Dynamic
resource management

Syncpointing, other platforms

Chapter 13. Committing and backing out units of work 179

|
|
|
|
|
|

|
|

|
|
|

libmqmxa_r.a
UNIX systems (except Sun Solaris) XA library (threaded) for both Static
and Dynamic resource management

The method that must be used to link them to an XA syncpoint coordinator is
defined by the coordinator, and you will need to consult the documentation
provided by that coordinator to determine how to enable MQSeries to cooperate
with your XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint
coordinator should be the name of the queue manager that is to be administered.
This takes the same form as the queue manager name passed to MQCONN, and
may be blank if the default queue manager is to be used.

Restrictions

v On OS/2, all functions declared in the XA switch are declared as _System
functions.

v On Windows NT, all functions declared in the XA switch are declared as
_cdecl functions.

v Only one queue manager may be administered by an external syncpoint
coordinator at a time. This is due to the fact that the coordinator has an
effective connection to each queue manager, and is therefore subject to the
rule that only one connection is allowed at a time.

v All applications that are run using the syncpoint coordinator can connect
only to the queue manager that is administered by the coordinator because
they are already effectively connected to that queue manager. They must
issue MQCONN to obtain a connection handle and must issue MQDISC
before they exit. Alternatively, they can use the CICS user exit 15 for CICS
for OS/2 V2 and V3, and CICS for Windows NT V2, or the exit UE014015
for TXSeries for Windows NT V4 and CICS on Open Systems.

The features not implemented are:
v Association migration
v Asynchronous calls

Because CICS Transaction Server V4 is 32-bit, changes are required to the source of
CICS user exits. The supplied samples have been updated to work with CICS
Transaction Server V4 as shown in Table 8.

Table 8. Linking MQSeries for OS/2 Warp with CICS Version 3 applications

User exit CICS V2 source CICS V2 dll TS V4 source TS V4 dll

exit 15 amqzsc52.c faaexp15.dll amqzsc53.c faaex315.dll

exit 17 amqzsc72.c faaexp17.dll amqzsc73.c faaex317.dll

For CICS Transaction Server V4, the supplied user exits faaex315.dll and
faaex317.dll should be renamed to the standard names faaexp15.dll and
faaexp17.dll.

Syncpointing, other platforms

180 MQSeries Application Programming Guide

|
|

|

Interfaces to the AS/400 external syncpoint manager
MQSeries for AS/400 uses native OS/400 commitment control as an external
syncpoint coordinator. See the AS/400 Programming: Backup and Recovery Guide for
more information about the commitment control capabilities of OS/400.

To start the OS/400 commitment control facilities, use the STRCMTCTL system
command. To end commitment control, use the ENDCMTCTL system command.

Note: The default value of Commitment definition scope is *ACTGRP. This must be
defined as *JOB for MQSeries for AS/400. For example:
STRCMTCTL LCKLVL(*ALL) CMTSCOPE(*JOB)

If you call MQPUT, MQPUT1, or MQGET, specifying MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT, after starting commitment control, MQSeries for AS/400
adds itself as an API commitment resource to the commitment definition. This is
typically the first such call in a job. While there are any API commitment resources
registered under a particular commitment definition, you cannot end commitment
control for that definition.

MQSeries for AS/400 removes its registration as an API commitment resource
when you disconnect from the queue manager, provided there are no pending MQI
operations in the current unit of work.

If you disconnect from the queue manager while there are pending MQPUT,
MQPUT1, or MQGET operations in the current unit of work, MQSeries for AS/400
remains registered as an API commitment resource so that it is notified of the next
commit or rollback. When the next syncpoint is reached, MQSeries for AS/400
commits or rolls back the changes as required. It is possible for an application to
disconnect and reconnect to a queue manager during an active unit of work and
perform further MQGET and MQPUT operations inside the same unit of work
(this is a pending disconnect).

If you attempt to issue an ENDCMTCTL system command for that commitment
definition, message CPF8355 is issued, indicating that pending changes were active.
This message also appears in the job log when the job ends. To avoid this, ensure
that you commit or roll back all pending MQSeries for AS/400 operations, and that
you disconnect from the queue manager. Thus, using COMMIT or ROLLBACK
commands before ENDCMTCTL should enable end-commitment control to
complete successfully.

When OS/400 commitment control is used as an external syncpoint coordinator,
MQCMIT, MQBACK, and MQBEGIN calls may not be issued. Calls to these
functions fail with the reason code MQRC_ENVIRONMENT_ERROR.

MQSeries for AS/400 syncpointing

Chapter 13. Committing and backing out units of work 181

|
|

|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

To commit or roll back (that is, to back out) your unit of work, use one of the
programming languages that supports the commitment control. For example:
v CL commands: COMMIT and ROLLBACK
v ILE C Programming Functions: _Rcommit and _Rrollback
v RPG/400: COMIT and ROLBK
v COBOL/400: COMMIT and ROLLBACK

Syncpoints in MQSeries for Tandem NonStop Kernel applications
When using MQSeries for Tandem NonStop Kernel, transaction management is
performed under the control of the Tandem TM/MP product, rather than by
MQSeries itself.

The effects of this difference are:
v The default SYNCPOINT option for the MQPUT and MQGET calls is

SYNCPOINT, rather than NO_SYNCPOINT.
v To use the default (SYNCPOINT) option for MQPUT, MQGET, and MQPUT1

operations, the application must have an active TM/MP Transaction that defines
the unit of work to be committed. An application initiates a TM/MP transaction
by calling the BEGINTRANSACTION() function. All MQPUT, MQPUT1, and
MQGET operations performed by the application while this transaction is active
are within the same unit of work (transaction). Any other database operations
performed by the application are also within this UOW. Note that there are
system-imposed limits on the number and size of messages that can be written
and deleted within a single TM/MP transaction. When the application has
completed the UOW, the TM/MP transaction is ended (the UOW is committed)
using the ENDTRANSACTION() function. If any error is encountered, the
application can cancel the TM/MP transaction (backout the UOW) using the
ABORTTRANSACTION() function. Consequently, the standard Version 2
functions MQCMIT() and MQBACK() are not supported on this product. If they
are called, an error is returned.

v If an application uses the NO_SYNCPOINT option for MQPUT, MQGET, and
MQPUT1 operations, MQSeries starts a TM/MP transaction itself, performs the
queuing operation, and commits the transaction before returning to the
application. Each operation is therefore performed in its own UOW and, once
complete, cannot be backed out by the application using TM/MP.

v A TM/MP transaction does not need to be active for MQI calls other than
MQGET, MQPUT, and MQPUT1.

v Because TM/MP can cause previously performed MQGET, MQPUT, and
MQPUT1 operations to be backed out without notification, the current
queue-depth and input-and-output-open counts of queues can become
inaccurate. The MQSeries Status Server (MQSS) corrects such inaccuracies PEN
call corrects the value of these at configurable intervals. However, applications
should be coded to be resilient to inaccuracies in these quantities, especially in
an environment that may involve backed-out transactions.

v The back-out count attribute cannot be maintained in the same way as on
standard Version 2 implementations. Also, the harden backout count attribute is
not used.

v The MQRC_SYNCPOINT_LIMIT_REACHED reason code is used by MQSeries
for Tandem NonStop Kernel V2.2.0.1 to inform an application that the
system-imposed limit on the number of I/O operations within a single TM/MP
transaction has been reached. If the application specified the SYNCPOINT

MQSeries for AS/400 syncpointing

182 MQSeries Application Programming Guide

|
|

|

|

|

|

|

|
|
|
|

option, it should cancel the transaction (back out the UOW) and retry with a
smaller number of operations in that UOW.

v The MQRC_UOW_CANCELED reason code informs the application that the
UOW (TM/MP transaction) has been canceled, either by the system itself
(TM/MP imposes some system-wide resource-usage thresholds that will cause
this), by user action, or by the initiator of the transaction itself.

General XA support
General XA support is not supported on AS/400, Compaq (DIGITAL) OpenVMS,
DIGITAL UNIX, or Tandem NonStop Kernel.

An XA switch load module is provided to enable you to link CICS with MQSeries
on UNIX systems. Additionally, sample source code files are provided to enable
you to develop the XA switches for other transaction messages. The names of the
switch load modules provided are:

Table 9. Essential Code for CICS applications

Description C (source) C (exec) - add one of the following to your
XAD.Stanza

XA initialization
routine

amqzscix.c amqzsc - CICS for AIX Version 2.1,
amqzsc - TXSeries for AIX, Version 4.2,
amqzsc - TXSeries for HP-UX, Version 4.2,
amqzsc - CICS for Siemens Nixdorf SINIX Version 2.2,
amqzsc - TXSeries for Sun Solaris, Version 4.2

amqzscin.c mqmc4swi - TXSeries for Windows NT, Version 4.2

MQSeries for Tandem NonStop Kernel syncpointing

Chapter 13. Committing and backing out units of work 183

|
|

|
|

General XA support

184 MQSeries Application Programming Guide

Chapter 14. Starting MQSeries applications using triggers

Triggering is not supported on MQSeries for Windows.

Some MQSeries applications that serve queues run continuously, so they are
always available to retrieve messages that arrive on the queues. However, this may
not be desirable when the number of messages arriving on the queues is
unpredictable. In this case, applications could be consuming system resources even
when there are no messages to retrieve.

MQSeries provides a facility that enables an application to be started automatically
when there are messages available to retrieve. This facility is known as triggering.

For information about triggering channels see the MQSeries Intercommunication
book.

This chapter introduces triggering, under these headings:
v “What is triggering?”
v “Prerequisites for triggering” on page 189
v “Conditions for a trigger event” on page 191
v “Controlling trigger events” on page 195
v “Designing an application that uses triggered queues” on page 197
v “Trigger monitors” on page 199
v “Properties of trigger messages” on page 202
v “When triggering does not work” on page 204

What is triggering?
The queue manager defines certain conditions as constituting “trigger events”. If
triggering is enabled for a queue and a trigger event occurs, the queue manager
sends a trigger message to a queue called an initiation queue. The presence of the
trigger message on the initiation queue indicates that a trigger event has occurred.

Trigger messages generated by the queue manager are not persistent. This has the
effect of reducing logging (thereby improving performance), and minimizing
duplicates during restart, so improving restart time.

The program which processes the initiation queue is called a trigger-monitor
application, and its function is to read the trigger message and take appropriate
action, based on the information contained in the trigger message. Normally this
action would be to start some other application to process the queue which caused
the trigger message to be generated. From the point of view of the queue manager,
there is nothing special about the trigger-monitor application—it is simply another
application that reads messages from a queue (the initiation queue).

If triggering is enabled for a queue, you have the option to create a
process-definition object associated with it. This object contains information about the
application that processes the message which caused the trigger event. If the
process definition object is created, the queue manager extracts this information
and places it in the trigger message, for use by the trigger-monitor application. The
name of the process definition associated with a queue is given by the ProcessName
local-queue attribute. Each queue can specify a different process definition, or
several queues can share the same process definition.

© Copyright IBM Corp. 1993, 2000 185

On MQSeries Version 5 products, in the case of triggering a channel, you do not
need to create a process definition object; the transmission queue definition is used
instead. When a trigger event occurs, the transmission queue definition contains
information about the application that processes the message that caused the event.
Again, when the queue manager generates the trigger message, it extracts this
information and places it in the trigger message.

On MQSeries for VSE/ESA, a trigger event is defined to activate the MQSeries
trigger API Handler, that is, the MQ02 CICS Transaction. The trigger API handler
executes a CICS LINK to the application program or a CICS START to the
application transaction depending on whether you defined a program name or a
transaction name in the queue definition. For more information, see the MQSeries
for VSE/ESA V2R1 System Management Guide.

Triggering is supported by MQSeries Clients in the Compaq (DIGITAL) OpenVMS,
OS/2, UNIX systems, Windows 3.1, Windows 95, and Windows NT environments.
An application running in a client environment is the same as one running in a full
MQSeries environment, except that you link it with the client libraries. However
the trigger monitor and the application to be started must both be in the same
environment.

Triggering involves:

Application queue
An application queue is a local queue, which, when it has triggering set on
and when the conditions are met, requires that trigger messages are
written.

Process Definition
An application queue can have a process definition object associated with it
that holds details of the application that will get messages from the
application queue. (See the MQSeries Application Programming Reference
manual for a list of atributes.)

On MQSeries Version 5 products, the process definition object is optional in the
case of triggering channels.

Transmission queue
The transmission queue holds the name of the channel to be triggered. This
can replace the process definition for triggering channels, but is used only
when a process definition is not created.

Trigger event
A trigger event is an event that causes a trigger message to be generated by
the queue manager. This is usually a message arriving on an application
queue, but it can also occur at other times (see “Conditions for a trigger
event” on page 191). MQSeries has a range of options to allow you to
control the conditions that cause a trigger event (see “Controlling trigger
events” on page 195).

Trigger message
The queue manager creates a trigger message when it recognizes a trigger
event (see “Conditions for a trigger event” on page 191). It copies into the
trigger message information about the application to be started. This
information comes from the application queue and the process definition
object associated with the application queue. Trigger messages have a fixed
format (see “Format of trigger messages” on page 203).

Triggering

186 MQSeries Application Programming Guide

|
|
|
|
|
|

|
|
|
|
|
|

|
|

Initiation queue
An initiation queue is a local queue on which the queue manager puts
trigger messages. A queue manager can own more than one initiation
queue, and each one is associated with one or more application queues.

Trigger monitor
A trigger monitor is a continuously-running program that serves one or
more initiation queues. When a trigger message arrives on an initiation
queue, the trigger monitor retrieves the message. The trigger monitor uses
the information in the trigger message. It issues a command to start the
application that is to retrieve the messages arriving on the application
queue, passing it information contained in the trigger message header,
which includes the name of the application queue. (For more information,
see “Trigger monitors” on page 199.)

To understand how triggering works, consider Figure 14, which is an example of
trigger type FIRST, (MQTT_FIRST).

In Figure 14, the sequence of events is:
1. Application A, which can be either local or remote to the queue manager, puts

a message on the application queue. Note that no application has this queue
open for input. However, this fact is relevant only to trigger type FIRST and
DEPTH.

Process

Application
Queue

application
message

tr igger
message

Initiation
Queue

APPLICATION

APPLICATION APPLICATION

TRIGGER
MONITOR

B

A

QUEUE MANAGER

trigger
event

tr igger
message

start
command

Local System
Local or Remote

System

application
message

Figure 14. Flow of application and trigger messages

Triggering

Chapter 14. Starting MQSeries applications using triggers 187

2. The queue manager checks to see if the conditions are met under which it has
to generate a trigger event. They are, and a trigger event is generated, passing
on information held within the associated process definition object.

3. The queue manager creates a trigger message and puts it on the initiation
queue associated with this application queue, but only if an application (trigger
monitor) has the initiation queue open for input.

4. The trigger monitor retrieves the trigger message from the initiation queue.
5. The trigger monitor issues a command to start program B (the server

application).
6. Application B opens the application queue and retrieves the message.

Notes:

1. If the application queue is open for input, by any program, and has triggering
set for FIRST or DEPTH, no trigger event will occur - it’s not needed.

2. If the initiation queue is not open for input, the queue manager will not
generate any trigger messages, it will wait until an application opens the
initiation queue for input.

3. Only use type FIRST or DEPTH when using triggering for channels.

So far, the relationship between the queues within triggering has been only on a
one to one basis. Consider Figure 15 on page 189.

Triggering

188 MQSeries Application Programming Guide

An application queue has a process definition object associated with it that holds
details of the application that will process the message. The queue manager places
the information in the trigger message, so only one initiation queue is necessary.
The trigger monitor extracts this information from the trigger message and starts
the relevant application to deal with the message on each application queue.

On MQSeries Version 5 products, in the case of triggering a channel, the process
definition object is optional. The transmission queue definition can determine the
channel to be triggered.

Prerequisites for triggering
Before your application can take advantage of triggering, follow the steps below:
1. Either:

a. Create an initiation queue for your application queue. For example:

Local or Remote
System

Local System

Process

Initiation
Queue

APPLICATION

TRIGGER
MONITOR

QUEUE MANAGER

Process

APPLICATION

APPLICATION

APPLICATION

APPLICATION

APPLICATION

A

B

C

X

Y

1

2

Application
Queue 1

Application
Queue 2

tr igger
message

tr igger
message

application
message

application
message

APPLICATION

APPLICATION

K

L

application
messages

start
command

start
command

tr igger
event

tr igger
event

Figure 15. Relationship of queues within triggering

Triggering

Chapter 14. Starting MQSeries applications using triggers 189

DEFINE QLOCAL (initiation.queue) REPLACE +
LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +
DESCR ('initiation queue description')

or
b. Determine the name of a local queue that already exists and can be used by

your application, and specify its name in the InitiationQName field of the
application queue.

You can think of this task as associating the initiation queue with the
application queue. A queue manager can own more than one initiation
queue—you may want some of your application queues to be served by
different programs, in which case you could use one initiation queue for each
serving program, although you do not have to. Here is an example of how to
create an application queue:

DEFINE QLOCAL (application.queue) REPLACE +
LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +
DESCR (‘appl queue description’) +
INITQ (‘initiation.queue’) +
PROCESS (‘process.name’) +
TRIGGER +
TRIGTYPE (FIRST)

2. If you are triggering an application, create a process definition object to contain
information relating to the application that is to serve your application queue.
For example:

DEFINE PROCESS (process.name) +
REPLACE +
DESCR ('process description') +
APPLTYPE ('CICS') +
APPLICID ('CKSG') +
USERDATA ('EXAMPLE.CHANNEL')

Here is an extract from an MQSeries for AS/400 CL program that creates a
process definition object:
/* Queue used by AMQSINQA */

CRTMQMQ QNAME('SYSTEM.SAMPLE.INQ') +
QTYPE(*LCL) REPLACE(*YES) +
MQMNAME +
TEXT('queue for AMQSINQA') +
SHARE(*YES) /* Shareable */+
DFTMSGPST(*YES)/* Persistent messages OK */+

+
TRGENBL(*YES) /* Trigger control on */+
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +
INITQNAME('SYSTEM.SAMPLE.TRIGGER')

/* Process definition */
CRTMQMPRC PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +

REPLACE(*YES) +
MQMNAME +
TEXT('trigger process for AMQSINQA') +
ENVDATA('JOBPTY(3)') /* Submit parameter */+
APPID('AMQSINQA') /* Program name */

When the queue manager creates a trigger message, it copies information from
the attributes of the process definition object into the trigger message. This step
is optional in the case of triggering channels.

Triggering prerequisites

190 MQSeries Application Programming Guide

|

|

Platform To create a process definition object

UNIX systems, Digital
OpenVMS, OS/2,
Windows NT

Use DEFINE PROCESS or use SYSTEM.DEFAULT.PROCESS and
modify using ALTER PROCESS

OS/390 Use DEFINE PROCESS (see sample code in step 2), or use the
operations and control panels.

OS/400 Use a CL program containing code as in step 2.

3. If you are triggering a channel on a product other than an MQSeries Version 5
or MQSeries for VSE/ESA product, you need to create a process definition.
Create a transmission queue definition and specify the ProcessName attribute as
blanks. The TrigData attribute can contain the name of the channel to be
triggered or it can be left blank. When the queue manager creates a trigger
message, it copies information from the TrigData attribute of the transmission
queue definition into the trigger message.

4. If you have created a process definition object, associate your application queue
with the application that is to serve that queue by naming the process
definition object in the ProcessName attribute of the queue.

Platform Use commands

UNIX systems, Digital
OpenVMS, OS/2,
Windows NT

ALTER QLOCAL

OS/390 ALTER QLOCAL

AS/400 CHGMQMQ

5. Start instances of the trigger monitors (or trigger servers in MQSeries for
AS/400) that are to serve the initiation queues you have defined. See “Trigger
monitors” on page 199 for more information.

If you wish to be aware of any undelivered trigger messages, make sure your
queue manager has a dead-letter (undelivered-message) queue defined. Specify the
name of the queue in the DeadLetterQName queue manager field.

You can then set the trigger conditions you require, using the attributes of the
queue object that defines your application queue. For more information on this, see
“Controlling trigger events” on page 195.

Conditions for a trigger event
The queue manager creates a trigger message when the following conditions are
satisfied:

1. A message is put on a queue.
2. The message has a priority greater than or equal to the threshold trigger

priority of the queue. This priority is set in the TriggerMsgPriority local
queue attribute—if it is set to zero, any message qualifies.

3. The number of messages on the queue with priority greater than or equal to
TriggerMsgPriority was previously, depending on TriggerType:
v Zero (for trigger type MQTT_FIRST)
v Any number (for trigger type MQTT_EVERY)
v TriggerDepth minus 1 (for trigger type MQTT_DEPTH)

Triggering prerequisites

Chapter 14. Starting MQSeries applications using triggers 191

|
|
|
|
|
|
|

Note: The queue manager counts both committed and uncommitted messages
when it assesses whether the conditions for a trigger event exist.
Consequently an application may be started when there are no
messages for it to retrieve because the messages on the queue have not
been committed. In this situation, you are strongly recommended to
consider using the wait option, and relating the WaitInterval to the
number of messages in the unit of work.

4. For triggering of type FIRST or DEPTH, no program has the application queue
open for removing messages (that is, the OpenInputCount local queue attribute
is zero).

5. On MQSeries for OS/390, if the application queue is one with a Usage
attribute of MQUS_NORMAL, get requests for it are not inhibited (that is, the
InhibitGet queue attribute is MQQA_GET_ALLOWED). Also, on MQSeries
for non-OS/390 platforms, if the application queue is one with a Usage
attribute of MQUS_XMITQ, get requests for it are not inhibited.

6. Either:
v The ProcessName local queue attribute for the queue is not blank, and the

process definition object identified by that attribute has been created.

or
v The ProcessName local queue attribute for the queue is all blank, but the

queue is a transmission queue. In this case, the trigger message contains
attributes with the following values:

ProcessName: blanks
TriggerData: trigger data
ApplType: MQAT_UNKNOWN
ApplId: blanks
EnvData: blanks
UserData: blanks

Note: As the process definition is optional, the TriggerData attribute may also
contain the name of the channel to be started. This option is available
only on MQSeries for AS/400, OS/2, HP-UX, AIX, Sun Solaris, and
Windows NT.

7. An initiation queue has been created, and has been specified in the
InitiationQName local queue attribute. Also:
v Get requests are not inhibited for the initiation queue (that is, the

InhibitGet queue attribute is MQQA_GET_ALLOWED).
v Put requests must not be inhibited for the initiation queue (that is, the

InhibitPut queue attribute must be MQQA_PUT_ALLOWED).
v The Usage attribute of the initiation queue must be MQUS_NORMAL.
v In environments where dynamic queues are supported, the initiation queue

must not be a dynamic queue that has been marked as logically deleted.
8. A trigger monitor currently has the initiation queue open for removing

messages (that is, the OpenInputCount local queue attribute is greater than
zero).

9. The trigger control (TriggerControl local queue attribute) for the application
queue is set to MQTC_ON. To do this, set the trigger attribute when you
define your queue, or use the ALTER QLOCAL command.

10. The trigger type (TriggerType local queue attribute) is not MQTT_NONE.
If all of the above required conditions are met, and the message that caused
the trigger condition is put as part of a unit of work, the trigger message does

Trigger event conditions

192 MQSeries Application Programming Guide

not become available for retrieval by the trigger monitor application until the
unit of work completes, whether the unit of work is committed or backed out.

11. A suitable message is placed on the queue, for a TriggerType of MQTT_FIRST
or MQTT_DEPTH, and the queue:
v Was not previously empty (MQTT_FIRST)

or
v Had TriggerDepth or more messages (MQTT_DEPTH)

and conditions 2 through 10 on page 192 (excluding 3) are satisfied, if in the
case of MQTT_FIRST a sufficient interval (TriggerInterval queue-manager
attribute) has elapsed since the last trigger message was written for this
queue.

This is to allow for a queue server that ends before processing all of the
messages on the queue. The purpose of the trigger interval is to reduce the
number of duplicate trigger messages that are generated.

Note: If you stop and restart the queue manager, the TriggerInterval “timer”
is reset. There is a small window during which it is possible to produce
two trigger messages. The window exists when the queue’s trigger
attribute is set to enabled at the same time as a message arrives and the
queue was not previously empty (MQTT_FIRST) or had TriggerDepth
or more messages (MQTT_DEPTH).

12. The only application serving a queue issues an MQCLOSE call, for a
TriggerType of MQTT_FIRST or MQTT_DEPTH, and there is at least:
v One (MQTT_FIRST)

or
v TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition 2 on page 191), and
conditions 6 through 10 on page 192 are also satisfied.

This is to allow for a queue server that issues an MQGET call, finds the queue
empty, and so ends; however, in the interval between the MQGET and the
MQCLOSE calls, one or more messages arrive.

Notes:

a. If the program serving the application queue does not want to retrieve all
the messages, this can cause a closed loop. Each time the program closes
the queue, the queue manager creates another trigger message which
causes the trigger monitor to start the server program again.

b. If the program serving the application queue backs out its get request (or
if the program abends) before it closes the queue, the same happens.

c. To prevent such a loop occurring, you could use the BackoutCount field of
MQMD to detect messages that are repeatedly backed out. For more
information, see “Messages that are backed out” on page 31.

13. The following conditions are satisfied using MQSET or a command:
a.

v TriggerControl is changed to MQTC_ON

or

Trigger event conditions

Chapter 14. Starting MQSeries applications using triggers 193

v TriggerControl is already MQTC_ON and the value of either
TriggerType, TriggerMsgPriority, or TriggerDepth (if relevant) is
changed,

and there is at least:
v One (MQTT_FIRST or MQTT_EVERY)

or
v TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition 2 on page 191), and
conditions 4 through 10 on page 192 (excluding 8) are also satisfied.

This is to allow for an application or operator changing the triggering
criteria, when the conditions for a trigger to occur are already satisfied.

b. The InhibitPut queue attribute of an initiation queue changes from
MQQA_PUT_INHIBITED to MQQA_PUT_ALLOWED, and there is at
least:
v One (MQTT_FIRST or MQTT_EVERY)

or
v TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 191) on any of the
queues for which this is the initiation queue, and conditions 4 through 10
on page 192 are also satisfied. (One trigger message is generated for each

such queue satisfying the conditions.)

This is to allow for trigger messages not being generated because of the
MQQA_PUT_INHIBITED condition on the initiation queue, but this
condition now having been changed.

c. The InhibitGet queue attribute of an application queue changes from
MQQA_GET_INHIBITED to MQQA_GET_ALLOWED, and there is at
least:
v One (MQTT_FIRST or MQTT_EVERY)

or
v TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 191) on the queue, and
conditions 4 through 10 on page 192, excluding 5, are also satisfied.

This allows applications to be triggered only when they are able to retrieve
messages from the application queue.

d. A trigger-monitor application issues an MQOPEN call for input from an
initiation queue, and there is at least:
v One (MQTT_FIRST or MQTT_EVERY)

or
v TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 191) on any of the
application queues for which this is the initiation queue, and conditions 4
through 10 on page 192 (excluding 8) are also satisfied, and no other
application has the initiation queue open for input (one trigger message is
generated for each such queue satisfying the conditions).

Trigger event conditions

194 MQSeries Application Programming Guide

This is to allow for messages arriving on queues while the trigger monitor
is not running, and for the queue manager restarting and trigger messages
(which are nonpersistent) being lost.

Note: From step 12 (where trigger messages are generated as a result of
some event other than a message arriving on the application queue),
the trigger message is not put as part of a unit of work. Also, if the
TriggerType is MQTT_EVERY, and if there are one or more
messages on the application queue, only one trigger message is
generated.

14. MSGDLVSQ is set correctly. If you set MSGDLVSQ=FIFO, messages are
delivered to the queue in a First In First Out basis. The priority of the
message is ignored and the default priority of the queue is assigned to the
message. If TriggerMsgPriority is set to a higher value than the default
priority of the queue, no messages are triggered. If TriggerMsgPriority is set
equal to or lower than the default priority of the queue, triggering occurs for
type FIRST, EVERY, and DEPTH. For information about these types, see the
description of the TriggerType field under “Controlling trigger events”. If you
set MSGDLVSQ=PRIORITY and the message priority is equal to or greater
than the TriggerMsgPriority field, messages only count towards a trigger
event. In this case, again triggering occurs for type FIRST, EVERY, and
DEPTH. As an example, if you put 100 messages of lower priority than the
TriggerMsgPriority, the effective queue depth for triggering purposes is still
zero. If you then put another message on the queue, but this time the priority
is greater than or equal to the TriggerMsgPriority, the effective queue depth
increases from zero to one and the condition for TriggerType FIRST is
satisfied.

Controlling trigger events
You control trigger events using some of the attributes that define your application
queue. You can enable and disable triggering, and you can select the number or
priority of the messages that count toward a trigger event. There is a full
description of these attributes in the MQSeries Application Programming Reference
manual.

The relevant attributes are:

TriggerControl
Use this attribute to enable and disable triggering for an application queue.

TriggerMsgPriority
The minimum priority that a message must have for it to count toward a
trigger event. If a message of priority less than TriggerMsgPriority arrives
on the application queue, the queue manager ignores the message when it
determines whether to create a trigger message. If TriggerMsgPriority is
set to zero, all messages count toward a trigger event.

TriggerType
In addition to the trigger type NONE (which disables triggering just like
setting the TriggerControl to OFF), you can use the following trigger types
to set the sensitivity of a queue to trigger events:

EVERY
A trigger event occurs every time a message arrives on the
application queue. Use this type of trigger if you want a serving
program to process only one message, then end.

Trigger event conditions

Chapter 14. Starting MQSeries applications using triggers 195

FIRST A trigger event occurs only when the number of messages on the
application queue changes from zero to one. Use this type of
trigger if you want a serving program to start when the first
message arrives on a queue, continue until there are no more
messages to process, then end. Also see “Special case of trigger
type FIRST” on page 197.

DEPTH
A trigger event occurs only when the number of messages on the
application queue reaches the value of the TriggerDepth attribute.
A typical use of this type of triggering is for starting a program
when all the replies to a set of requests are received.

Triggering by depth
With triggering by depth, the queue manager disables
triggering (using the TriggerControl attribute) after it creates
a trigger message. Your application must reenable triggering
itself (by using the MQSET call) after this has happened.

The action of disabling triggering is not under syncpoint control,
so triggering cannot be reenabled simply by backing out a unit of
work. If a program backs out a put request that caused a trigger
event, or if the program abends, you must reenable triggering by
using the MQSET call or the ALTER QLOCAL command.

TriggerDepth
The number of messages on a queue that causes a trigger event when
using triggering by depth.

The conditions that must be satisfied for a queue manager to create a trigger
message are described in “Conditions for a trigger event” on page 191.

Example of the use of trigger type EVERY
Consider an application that generates requests for motor insurance. The
application might send request messages to a number of insurance companies,
specifying the same reply-to queue each time. It could set a trigger of type EVERY
on this reply-to queue so that each time a reply arrives, the reply could trigger an
instance of the server to process the reply.

Example of the use of trigger type FIRST
Consider an organization with a number of branch offices that each transmit
details of the day’s business to the head office. They all do this at the same time, at
the end of the working day, and at the head office there is an application that
processes the details from all the branch offices. The first message to arrive at the
head office could cause a trigger event which starts this application. This
application would continue processing until there are no more messages on its
queue.

Example of the use of trigger type DEPTH
Consider a travel agency application that creates a single request to confirm a
flight reservation, to confirm a reservation for a hotel room, to rent a car, and to
order some travelers’ checks. The application could separate these items into four
request messages, sending each to a separate destination. It could set a trigger of

Controlling trigger events

196 MQSeries Application Programming Guide

type DEPTH on its reply-to queue (with the depth set to the value 4), so that it is
restarted only when all four replies have arrived.

If another message (possibly from a different request) arrives on the reply-to queue
before the last of the four replies, the requesting application is triggered early. To
avoid this, when DEPTH triggering is being used to collect multiple replies to a
request, you should always use a new reply-to queue for each request.

Special case of trigger type FIRST
With trigger type FIRST, if there is already a message on the application queue
when another message arrives, the queue manager does not usually create another
trigger message. However, the application serving the queue might not actually
open the queue (for example, the application might end, possibly because of a
system problem). If an incorrect application name has been put into the process
definition object, the application serving the queue will not pick up any of the
messages. In these situations, if another message arrives on the application queue,
there is no server running to process this message (and any other messages on the
queue).

To deal with this, the queue manager creates another trigger message if another
message arrives on the application queue, but only if a predefined time interval
has elapsed since the queue manager created the last trigger message for that
queue. This time interval is defined in the queue manager attribute
TriggerInterval. Its default value is 999 999 999 milliseconds.

You should consider the following points when deciding on a value for the trigger
interval to be used in your application:
v If TriggerInterval is set to a low value, trigger type FIRST might behave like

trigger type EVERY (this depends on the rate that messages are being put onto
the application queue, which in turn may depend on other system activity). This
is because, if the trigger interval is very small, another trigger message is
generated each time a message is put onto the application queue, even though
the trigger type is FIRST, not EVERY. (Trigger type FIRST with a trigger interval
of zero is equivalent to trigger type EVERY.)

v If a unit of work is backed out (see “Trigger messages and units of work”) and
the trigger interval has been set to a high value (or the default value), one
trigger message is generated when the unit of work is backed out. However, if
you have set the trigger interval to a low value or to zero (causing trigger type
FIRST to behave like trigger type EVERY) many trigger messages can be
generated. If the unit of work is backed out, all the trigger messages are still
made available. The number of trigger messages generated depends on the
trigger interval, the maximum number being reached when trigger interval has
been set to zero.

Designing an application that uses triggered queues
You have seen how to set up, and control, triggering for your applications. Here
are some tips you should consider when you design your application.

Trigger messages and units of work
Trigger messages created because of trigger events that are not part of a unit of
work are put on the initiation queue, outside any unit of work, with no
dependence on any other messages, and are available for retrieval by the trigger
monitor immediately.

Controlling trigger events

Chapter 14. Starting MQSeries applications using triggers 197

Trigger messages created because of trigger events that are part of a unit of work
are put on the initiation queue as part of the same unit of work. Trigger monitors
cannot retrieve these trigger messages until the unit of work completes. This
applies whether the unit of work is committed or backed out.

If the queue manager fails to put a trigger message on an initiation queue, it will
be put on the dead-letter (undelivered-message) queue.

Note: The queue manager counts both committed and uncommitted messages
when it assesses whether the conditions for a trigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available even
if the unit of work is backed out so that a trigger message is always available
when the required conditions are met. For example, consider a put request within
a unit of work for a queue that is triggered with trigger type FIRST. This causes
the queue manager to create a trigger message. If another put request occurs, from
another unit of work, this does not cause another trigger event because the number
of messages on the application queue has now changed from one to two, which
does not satisfy the conditions for a trigger event. Now if the first unit of work is
backed out, but the second is committed, a trigger message is still created.

However, this does mean that trigger messages are sometimes created when the
conditions for a trigger event are not satisfied. Applications that use triggering
must always be prepared to handle this situation. It is recommended that you use
the wait option with the MQGET call, setting the WaitInterval to a suitable value.

Getting messages from a triggered queue
When you design applications that use triggering, you must be aware that there
may be a delay between a program being started by a trigger monitor, and other
messages becoming available on the application queue. This can happen when the
message that causes the trigger event is committed before the others.

To allow time for messages to arrive, always use the wait option when you use the
MQGET call to remove messages from a queue for which trigger conditions are set.
The WaitInterval should be sufficient to allow for the longest reasonable time
between a message being put and that put call being committed. If the message is
arriving from a remote queue manager, this time is affected by:
v The number of messages that are put before being committed
v The speed and availability of the communication link
v The sizes of the messages

For an example of a situation where you should use the MQGET call with the wait
option, consider the same example we used when describing units of work. This
was a put request within a unit of work for a queue that is triggered with trigger
type FIRST. This event causes the queue manager to create a trigger message. If
another put request occurs, from another unit of work, this does not cause another
trigger event because the number of messages on the application queue has not
changed from zero to one. Now if the first unit of work is backed out, but the
second is committed, a trigger message is still created. So the trigger message is
created at the time the first unit of work is backed out. If there is a significant
delay before the second message is committed, the triggered application may need
to wait for it.

With triggering of type DEPTH, a delay can occur even if all relevant messages are
eventually committed. Suppose that the TriggerDepth queue attribute has the value

Using triggered queues

198 MQSeries Application Programming Guide

2. When two messages arrive on the queue, the second causes a trigger message to
be created. However, if the second message is the first to be committed, it is at that
time the trigger message becomes available. The trigger monitor starts the server
program, but the program can retrieve only the second message until the first one
is committed. So the program may need to wait for the first message to be made
available.

You should design your application so that it terminates if no messages are
available for retrieval when your wait interval expires. If one or more messages
arrive subsequently, you should rely on your application being retriggered to
process them. This method prevents applications being idle, and unnecessarily
using resources.

Trigger monitors
To a queue manager, a trigger monitor is like any other application that serves a
queue. However, a trigger monitor serves initiation queues.

A trigger monitor is usually a continuously-running program. When a trigger
message arrives on an initiation queue, the trigger monitor retrieves that message.
It uses information in the message to issue a command to start the application that
is to process the messages on the application queue.

The trigger monitor must pass sufficient information to the program it is starting
so that the program can perform the right actions on the right application queue.

A channel initiator is an example of a special type of trigger monitor for message
channel agents. In this situation however, you must use either trigger type FIRST
or DEPTH.

MQSeries for OS/390 trigger monitors
The following trigger monitor is provided for CICS Transaction Server for OS/390
and CICS for MVS/ESA:

CKTI You need to start one instance of CKTI for each initiation queue (see the
MQSeries for OS/390 System Management Guide for information on how to
do this). CKTI passes the MQTM structure of the trigger message to the
program it starts by EXEC CICS START TRANSID. The started program
gets this information by using the EXEC CICS RETRIEVE command. A
program can use the EXEC CICS RETRIEVE command with the
RTRANSID option to determine how the program was started; if the value
returned is CKTI, the program was started by MQSeries for OS/390. For
an example of how to use CKTI, see the source code supplied for module
CSQ4CVB2 in the Credit Check sample application supplied with
MQSeries for OS/390. See “The Credit Check sample” on page 403 for a
full description.

The following trigger monitor is provided for IMS/ESA:

CSQQTRMN
You need to start one instance of CSQQTRMN for each initiation queue
(see the MQSeries for OS/390 System Management Guide for information on
how to do this). CSQQTRMN passes the MQTMC2 structure of the trigger
message to the programs it starts.

Using triggered queues

Chapter 14. Starting MQSeries applications using triggers 199

MQSeries for OS/2 Warp, Digital OpenVMS, Tandem NSK,
UNIX systems, AS/400, and Windows NT trigger monitors

The following trigger monitors are provided for the server environment:

amqstrg0
This is a sample trigger monitor that provides a subset of the function
provided by runmqtrm. See “Chapter 32. Sample programs (all platforms
except OS/390)” on page 311 for more information on amqstrg0.

runmqtrm
runmqtrm [-m QMgrName] [-q InitQ] is the command. The default is
SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue manager. It
calls programs for the appropriate trigger messages. This trigger monitor
supports the default application type.

The command string passed by the trigger monitor to the operating system
is built as follows:
1. The ApplId from the relevant PROCESS definition (if created)
2. The MQTMC2 structure, enclosed in quotation marks
3. The EnvData from the relevant PROCESS definition (if created)

where ApplId is the name of the program to run - as it would be entered
on the command line.

The parameter passed is the MQTMC2 character structure. A command
string is invoked which has this string, exactly as provided, in ‘quotation
marks’, in order that the system command will accept it as one parameter.

The trigger monitor will not look to see if there is another message on the
initiation queue until the completion of the application it has just started. If
the application has a lot of processing to do, this may mean that the trigger
monitor cannot keep up with the number of trigger messages arriving. You
have two options:
v Have more trigger monitors running
v Run the started applications in the background

If you choose to have more trigger monitors running you have control over
the maximum number of applications that can run at any one time. If you
choose to run applications in the background, there is no restriction
imposed by MQSeries on the number of applications that can run.

To run the started application in the background under OS/2, or Windows
NT, within the ApplId field you must prefix the name of your application
with a START command. For example:
START AMQSECHA /B

To run the started application in the background on UNIX systems, you
must put an ‘&’ at the end of the EnvData of the PROCESS definition.

The following trigger monitors are provided for the MQSeries client:

runmqtmc
This is the same as runmqtrm except that it links with the MQSeries client
libraries.

Trigger monitors

200 MQSeries Application Programming Guide

For CICS:
The following trigger monitor is provided for CICS:

amqltmc0
The CICS Trigger monitor works in the same fashion as the standard
trigger monitor, runmqtrm, but you run it in a different way and it triggers
CICS transactions.

It is supplied as a CICS program and you must define it with a 4-character
transaction name. Enter the 4-character name to start the trigger monitor. It
uses the default queue manager (as named in the qm.ini file or, on
MQSeries for Windows NT, the registry), and the
SYSTEM.CICS.INITIATION.QUEUE.

If you want to use a different queue manager or queue, you must build the
trigger monitor the MQTMC2 structure: this requires you to write a
program using the EXEC CICS START call, because the structure is too
long to add as a parameter. Then, pass the MQTMC2 structure as data to
the START request for the trigger monitor.

When you use the MQTMC2 structure, you only need to supply the
StrucId, Version, QName, and QMgrName parameters to the trigger monitor as
it does not reference any other fields.

Messages are read from the initiation queue and used to start CICS
transactions, using EXEC CICS START, assuming the APPL_TYPE in the
trigger message is MQAT_CICS. The reading of messages from the
initiation queue is performed under CICS syncpoint control.

Messages are generated when the monitor has started and stopped as well
as when an error occurs. These messages are sent to the CSMT transient
data queue.

Here are the available versions and appropriate use of the trigger monitor:

Version
Use

amqltmc0
CICS for OS/2 Version 2

CICS for Windows NT Version 2

TXSeries for AIX, Version 4

amqltmc3
CICS Transaction Server for OS/2, Version 4

amqltmc4
TXSeries for Windows NT, Version 4

If you need a trigger monitor for other environments, you need to write a program
that can process the trigger messages that the queue manager puts on the initiation
queues. Such a program should:
1. Use the MQGET call to wait for a message to arrive on the initiation queue.
2. Examine the fields of the MQTM structure of the trigger message to find the

name of the application to start and the environment in which it runs.
3. Issue an environment-specific start command. For example, in OS/390 batch,

submit a job to the internal reader.
4. Convert the MQTM structure to the MQTMC2 structure if required.

Trigger monitors

Chapter 14. Starting MQSeries applications using triggers 201

5. Pass either the MQTMC2 or MQTM structure to the started application. This
may contain user data.

6. Associate with your application queue the application that is to serve that
queue. You do this by naming the process definition object (if created) in the
ProcessName attribute of the queue.
Use DEFINE QLOCAL or ALTER QLOCAL. On AS/400 you can also use
CRTMQMQ or CHGMQMQ.

For more information on the trigger monitor interface, see the MQSeries Application
Programming Reference manual.

MQSeries for AS/400 trigger monitors
The following are provided:

AMQSTRG4
This is a trigger monitor that submits an OS/400 job for the process that is
to be started, but this means there is a processing overhead associated with
each trigger message.

AMQSERV4
This is a trigger server. For each trigger message, this server runs the
command for the process in its own job, and can call CICS transactions.

Both the trigger monitor and the trigger server pass an MQTMC structure to the
programs they start. For a description of this structure, see the MQSeries Application
Programming Reference manual. Both of these samples are delivered in both source
and executable forms.

Properties of trigger messages
The following sections describe some other properties of trigger messages.

Persistence and priority of trigger messages
Trigger messages are not persistent as there is no requirement for them to be so.
The conditions for generating triggering events are persistent, hence trigger
messages will be generated whenever these conditions are met. In the event that a
trigger message is lost, the continued existence of the application message on the
application queue will guarantee that the queue manager will generate a trigger
message as soon as all the conditions are met.

If a unit of work is rolled-back, any trigger messages it generated will always be
delivered.

Trigger messages take the default priority of the initiation queue.

Queue manager restart and trigger messages
Following the restart of a queue manager, when an initiation queue is next opened
for input, a trigger message may be put to this initiation queue if an application
queue associated with it has messages on it, and is defined for triggering.

Trigger messages and changes to object attributes
Trigger messages are created according to the values of the trigger attributes in
force at the time of the trigger event. If the trigger message is not made available
to a trigger monitor until later (because the message that caused it to be generated

Trigger monitors

202 MQSeries Application Programming Guide

was put within a unit of work), any changes to the trigger attributes in the
meantime have no effect on the trigger message. In particular, disabling triggering
does not prevent a trigger message being made available once it has been created.
Also, the application queue may no longer exist at the time the trigger message is
made available.

Format of trigger messages
The format of a trigger message is defined by the MQTM structure. This has the
following fields, which the queue manager fills when it creates the trigger
message, using information in the object definitions of the application queue and
of the process associated with that queue:

StrucId
The structure identifier.

Version
The version of the structure.

QName The name of the application queue on which the trigger event occurred.
When the queue manager creates a trigger message, it fills this field using
the QName attribute of the application queue.

ProcessName
The name of the process definition object that is associated with the
application queue. When the queue manager creates a trigger message, it
fills this field using the ProcessName attribute of the application queue.

TriggerData
A free-format field for use by the trigger monitor. When the queue
manager creates a trigger message, it fills this field using the TriggerData
attribute of the application queue.

ApplType
The type of the application that the trigger monitor is to start. When the
queue manager creates a trigger message, it fills this field using the
ApplType attribute of the process definition object identified in ProcessName.

ApplId A character string that identifies the application that the trigger monitor is
to start. When the queue manager creates a trigger message, it fills this
field using the ApplId attribute of the process definition object identified in
ProcessName. When you use an MQSeries for OS/390-supplied trigger
monitor (CKTI or CSQQTRMN) the ApplId attribute of the process
definition object is a CICS or IMS transaction identifier.

EnvData
A character field containing environment-related data for use by the trigger
monitor. When the queue manager creates a trigger message, it fills this
field using the EnvData attribute of the process definition object identified
in ProcessName. The MQSeries for OS/390-supplied trigger monitors (CKTI
or CSQQTRMN) do not use this field, but other trigger monitors may
choose to use it.

UserData
A character field containing user data for use by the trigger monitor. When
the queue manager creates a trigger message, it fills this field using the
UserData attribute of the process definition object identified in ProcessName.

There is a full description of the trigger monitor structures in the MQSeries
Application Programming Reference manual.

Trigger message properties

Chapter 14. Starting MQSeries applications using triggers 203

When triggering does not work
A program is not triggered if the trigger monitor cannot start the program or the
queue manager cannot deliver the trigger message.

If a trigger message is created but cannot be put on the initiation queue (for
example, because the queue is full or the length of the trigger message is greater
than the maximum message length specified for the initiation queue), the trigger
message is put instead on the dead-letter (undelivered-message) queue.

If the put operation to the dead-letter queue cannot complete successfully, the
trigger message is discarded and a warning message is sent to the console
(OS/390) or to the system operator (AS/400), or put on the error log.

Putting the trigger message on the dead-letter queue may generate a trigger
message for that queue. This second trigger message is discarded if it adds a
message to the dead-letter queue.

If the program is triggered successfully but abends before it gets the message from
the queue, use a trace utility (for example, CICS AUXTRACE if the program is
running under CICS) to find out the cause of the failure.

How CKTI detects errors
If the CKTI trigger monitor in MQSeries for OS/390 detects an error in the
structure of a trigger message, or if it cannot start a program, it puts the trigger
message on the dead-letter (undelivered-message) queue. CKTI adds a dead-letter
header structure (MQDLH) to the trigger message. It uses a feedback code in the
Reason field of this structure to explain why it put the message on the dead-letter
(undelivered-message) queue.

An instance of CKTI stops serving an initiation queue if it attempts to get a trigger
message from the queue and finds that the attributes of the queue have changed
since it last accessed that queue. The attributes could have been changed by
another program, or by an operator using the commands or operations and control
panels of MQSeries. CKTI produces an error message, which includes a reason
code, explaining the action it has taken.

How CSQQTRMN detects errors
If the CSQQTRMN trigger monitor in MQSeries for OS/390 detects an error in the
structure of a trigger message, or if it cannot start a program, it puts the trigger
message on the dead-letter (undelivered-message) queue and sends a diagnostic
message to a user specified LTERM (the default is MASTER). CSQQTRMN adds a
dead-letter header structure (MQDLH) to the trigger message. It uses a feedback
code in the Reason field of this structure to explain why it put the message on the
dead-letter (undelivered-message) queue. If any other errors are detected,
CSQQTRMN sends a diagnostic message to the specified LTERM, and then
terminates.

How RUNMQTRM detects errors
If the RUNMQTRM trigger monitor in MQSeries for OS/2 Warp and MQSeries on
UNIX systems detects an error in either the:
v Structure of a trigger message
v Application type is unsupported

or it either:

Triggering failure

204 MQSeries Application Programming Guide

v Cannot start a program
v Detects a data-conversion error

it puts the trigger message on the dead-letter (undelivered-message) queue, having
added a dead-letter header structure (MQDLH) to the message. It uses a feedback
code in the Reason field of this structure to explain why it put the message on the
dead-letter (undelivered-message) queue.

Triggering failure

Chapter 14. Starting MQSeries applications using triggers 205

Changes

206 MQSeries Application Programming Guide

Chapter 15. Using and writing applications on MQSeries for
OS/390

MQSeries for OS/390 applications can be made up from programs that run in
many different environments. This means they can take advantage of the facilities
available in more than one environment. This chapter explains the MQSeries
facilities available to programs running in each of the supported environments.

This chapter introduces MQSeries for OS/390 applications, under these headings:
v “Environment-dependent MQSeries for OS/390 functions”
v “Program debugging facilities” on page 208
v “Syncpoint support” on page 208
v “Recovery support” on page 208
v “The MQSeries for OS/390 interface with the application environment” on

page 209
v “Writing OS/390 OpenEdition® applications” on page 212
v “The API-crossing exit for OS/390” on page 213
v “Writing MQSeries-CICS bridge applications” on page 217
v “Writing MQSeries-IMS bridge applications” on page 225
v “Writing IMS applications using MQSeries” on page 230
v “MQSeries Workflow” on page 234

Environment-dependent MQSeries for OS/390 functions
The main differences to be considered between MQSeries functions in the
environments in which MQSeries for OS/390 runs are:
v MQSeries for OS/390 supplies the following trigger monitors:

– CKTI for use in the CICS environment
– CSQQTRMN for use in the IMS environment

You must write your own module to start applications in other environments.
v Syncpointing using two-phase commit is supported in the CICS and IMS

environments. It is also supported in the OS/390 batch environment using
transaction management and recoverable resource manager services (RRS).
Single-phase commit is supported in the OS/390 environment by MQSeries
itself.

v For the batch and IMS environments, the MQI provides calls to connect
programs to, and to disconnect them from, a queue manager. Programs can
connect to more than one queue manager.

v A CICS system can connect to only one queue manager. This can be made to
happen when CICS is initiated if the subsystem name is defined in the CICS
system startup job. The MQI connect and disconnect calls are tolerated, but have
no effect, in the CICS environment.

v The API-crossing exit allows a program to intervene in the processing of all MQI
calls. This exit is available in the CICS environment only.

v In CICS on multiprocessor systems, some performance advantage is gained
because MQI calls can be executed under multiple OS/390 TCBs. For more
information, see the MQSeries for OS/390 System Management Guide.

© Copyright IBM Corp. 1993, 2000 207

These features are summarized in Table 10.

Table 10. OS/390 environmental features

CICS IMS Batch/TSO

Trigger monitor supplied Yes Yes No

Two-phase commit Yes Yes Yes

Single-phase commit Yes No Yes

Connect/disconnect MQI calls Tolerated Yes Yes

API-crossing exit Yes No No

Note: Two-phase commit is supported in the Batch/TSO environment using RRS.

Program debugging facilities
MQSeries for OS/390 provides a trace facility that you can use to debug your
programs in all environments. Additionally, in the CICS environment you can use:
v The CICS Execution Diagnostic Facility (CEDF)
v The CICS Trace Control Transaction (CETR)
v The MQSeries for OS/390 API-crossing exit

On the OS/390 platform, you can use any available interactive debugging tool that
is supported by the programming language you are using.

All these tools are discussed further in the MQSeries for OS/390 System Management
Guide.

Syncpoint support
The synchronization of the start and end of units of work is necessary in a
transaction processing environment so that transaction processing can be used
safely. This is fully supported by MQSeries for OS/390 in the CICS and IMS
environments. Full support means cooperation between resource managers so that
units of work can be committed or backed out in unison, under control of CICS or
IMS. Examples of resource managers are DB2, CICS File Control, IMS, and
MQSeries for OS/390.

OS/390 batch applications can use MQSeries for OS/390 calls to give a
single-phase commit facility. This means that an application-defined set of queue
operations can be committed, or backed out, without reference to other resource
managers.

Two-phase commit is also supported in the OS/390 batch environment using
transaction management and recoverable resource manager services (RRS). For
further information see “Transaction management and recoverable resource
manager services” on page 175.

Recovery support
If the connection between a queue manager and a CICS or IMS system is broken
during a transaction, some units of work may not be backed out successfully.
However, these units of work are resolved by the queue manager (under the
control of the syncpoint manager) when its connection with the CICS or IMS
system is reestablished.

Environment-dependent functions

208 MQSeries Application Programming Guide

The MQSeries for OS/390 interface with the application environment
To allow applications running in different environments to send and receive
messages through a message queuing network, MQSeries for OS/390 provides an
adapter for each of the environments it supports. These adapters are the interface
between the application programs and an MQSeries for OS/390 subsystem. They
allow the programs to use the MQI.

The batch adapter
The batch adapter provides access to MQSeries for OS/390 resources for programs
running in:
v Task (TCB) mode
v Problem or Supervisor state
v Primary address space control mode

The programs must not be in cross-memory mode.

Connections between application programs and MQSeries for OS/390 are at the
task level. The adapter provides a single connection thread from an application
task control block (TCB) to MQSeries for OS/390.

The adapter supports a single-phase commit protocol for changes made to
resources owned by MQSeries for OS/390; it does not support multiphase-commit
protocols.

RRS batch adapter
The transaction management and recoverable resource manager services (RRS)
adapter:
v Uses OS/390 RRS for commit control.
v Supports simultaneous connections to multiple MQSeries subsystems running on

a single OS/390 instance from a single task.
v Provides OS/390-wide coordinated commitment control (via OS/390 RRS) for

recoverable resources accessed via OS/390 RRS compliant recoverable managers
for:
– Applications that connect to MQSeries using the RRS batch adapter.
– DB2 stored procedures executing in a DB2 stored procedures address space

that is managed by an OS/390 workload manager (WLM).
v Supports the ability to switch an MQSeries batch thread between TCBs.

MQSeries for OS/390, V2.1 provides two RRS batch adapters:

CSQBRSTB
This adapter requires you to change any MQCMIT and MQBACK
statements in your MQSeries application to SRRCMIT and SRRBACK
respectively. (If you code MQCMIT or MQBACK in an application linked
with CSQBRSTB, you will receive MQRC_ENVIRONMENT_ERROR.)

CSQBRRSI
This adapter allows your MQSeries application to use either MQCMIT and
MQBACK or SRRCMIT and SRRBACK.

Note: CSQBRSTB and CSQBRRSI are shipped with linkage attributes AMODE(31)
RMODE(ANY). If your application loads either stub below the 16 MB line,
you must first relink the stub with RMODE(24).

The MQSeries for OS/390 interface

Chapter 15. Using and writing applications on MQSeries for OS/390 209

Migration
It is possible to migrate existing Batch/TSO MQSeries applications to exploit RRS
coordination with few or no changes. If you link-edit your MQSeries application
with the CSQBRRSI adapter, MQCMIT and MQBACK syncpoint your unit of work
across MQSeries and all other RRS-enabled resource managers. If you link-edit
your MQSeries application with the CSQBRSTB adapter you must change
MQCMIT and MQBACK to SRRCMIT and SRRBACK respectively. The latter
approach may be preferable as it clearly indicates that the syncpoint is not
restricted to MQSeries resources only.

The CICS adapter
A CICS system can have only one connection to an MQSeries for OS/390 queue
manager, and this connection is managed by the MQSeries for OS/390 CICS
adapter. The CICS adapter provides access to MQSeries for OS/390 resources for
CICS programs. In addition to providing access to the MQI calls, the adapter
provides:
v A trigger monitor (or task initiator) program that can start programs

automatically when certain trigger conditions on a queue are met. For more
information, see “Chapter 14. Starting MQSeries applications using triggers” on
page 185.

v An API-crossing exit that can be invoked before and after each MQI call. For
more information, see “The API-crossing exit for OS/390” on page 213.

v A trace facility to help you when debugging programs.
v Facilities that allow the MQI calls to be executed under multiple OS/390 TCBs.

For more information, see the MQSeries for OS/390 System Management Guide.

The adapter supports a two-phase commit protocol for changes made to resources
owned by MQSeries for OS/390, with CICS acting as the syncpoint coordinator.

The CICS adapter also supplies facilities (for use by system programmers and
administrators) for managing the CICS-MQSeries for OS/390 connection, and for
collecting task and connection statistics. These facilities are described in the
MQSeries for OS/390 System Management Guide.

Adapter trace points
Application programmers can use trace points related to the MQI calls—for
example, CSQCGMGD (GET Message Data)—for debugging CICS application
programs. System programmers can use trace points related to system events, such
as recovery and task switching, for diagnosing system-related problems. For full
details of trace points in the CICS adapter, see the MQSeries for OS/390 Problem
Determination Guide.

Some trace data addresses are passed by applications. If the address of the trace
data is in the private storage area of the CICS region, the contents of the area are
traced when necessary. For example, this would be done for the trace entries
CSQCGMGD (GET Message Data) or CSQCPMGD (PUT Message Data). If the
address is not in the private storage area, message CSQC416I is written to the CICS
trace—this contains the address in error.

Abends
This section describes some of the things you must consider with regard to CICS
AEY9 and QLOP abends. For information about all other abends, see the MQSeries
for OS/390 Messages and Codes manual.

Migration

210 MQSeries Application Programming Guide

CICS AEY9 abends: A transaction does not abend with a CICS AEY9 code if it
issues an MQI call before the adapter is enabled. Instead, it receives return code
MQCC_FAILED and reason code MQRC_ADAPTER_NOT_AVAILABLE.

For more information about CICS AEY9 abends, see the CICS Messages and Codes
manual.

QLOP abends: Tasks abend with the abend code QLOP if a second MQI call is
made after a call has been returned with completion code MQCC_FAILED and one
of these reason codes:

MQRC_CONNECTION_BROKEN
MQRC_Q_MGR_NAME_ERROR
MQRC_Q_MGR_NOT_AVAILABLE
MQRC_Q_MGR_STOPPING
MQRC_CONNECTION_STOPPING
MQRC_CONNECTION_NOT_AUTHORIZED

This runaway mechanism can be activated only after the adapter has been enabled
once. Before the adapter has been enabled, such a task will loop with reason code
set to MQRC_ADAPTER_NOT_AVAILABLE. To avoid this, ensure that your
applications respond to the above reason codes either by terminating abnormally
or by issuing an EXEC CICS SYNCPOINT ROLLBACK and terminating normally.

If the application does not terminate at this point, it might not issue any further
MQSeries calls even if the connection between MQSeries and CICS is
re-established. Once MQSeries is reconnected to CICS, new transactions can use
MQI calls as before.

Using the CICS Execution Diagnostic Facility
You can use the CICS execution diagnostic facility (CEDF) to monitor applications
that use the CICS adapter. For details of how to use CEDF, see the CICS Application
Programming Guide.

CEDF uses standard formatting to display MQI calls.
v Before the MQI call is executed:

– CEDF displays the addresses of the call parameters
– You can use the Working Storage key to verify or modify their contents
– You can skip the call by overtyping the command with NOOP

v After the call has completed:
– The results are returned in the program’s storage
– The return code and reason code are displayed in the call parameter list
– You can modify them before returning to the application program

See the MQSeries for OS/390 Problem Determination Guide for examples of the output
produced by this facility.

The IMS adapter
The IMS adapter provides access to MQSeries for OS/390 resources for
v On-line message processing programs (MPPs)
v Interactive Fast Path programs (IFPs)
v Batch message processing programs (BMPs)

To use these resources, the programs must be running in task (TCB) mode and
problem state; they must not be in cross-memory mode or access-register mode.

Migration

Chapter 15. Using and writing applications on MQSeries for OS/390 211

The adapter provides a connection thread from an application task control block
(TCB) to MQSeries. The adapter supports a two-phase commit protocol for changes
made to resources owned by MQSeries for OS/390, with IMS acting as the
syncpoint coordinator.

The adapter also provides a trigger monitor program that can start programs
automatically when certain trigger conditions on a queue are met. For more
information, see “Chapter 14. Starting MQSeries applications using triggers” on
page 185.

If you are writing batch DL/I programs, follow the guidance given in this book for
OS/390 batch programs.

Writing OS/390 OpenEdition ® applications
The batch adapter supports queue manager connections from Batch and TSO
address spaces:

If we consider a Batch address space, the adapter supports connections from
multiple TCBs within that address space as follows:
v Each TCB can connect to multiple queue managers via the MQCONN call (but a

TCB can only have one instance of a connection to a particular queue manager
at any one time).

v Multiple TCBs can connect to the same queue manager (but the queue manager
handle returned on any MQCONN call is bound to the issuing TCB and cannot
be used by any other TCB).

OS/390 OpenEdition supports two types of pthread_create call:
1. Heavyweight threads, run one per TCB, that are ATTACHed and DETACHed at

thread start and end by OS/390.
2. Mediumweight threads, run one per TCB, but the TCB can be one of a pool of

long-running TCBs. The onus is on the application to perform all necessary
application clean up, since, if it is connected to a server, the default thread
termination that may be provided by the server at Task (TCB) termination, will
not always be driven.

Lightweight threads are not supported. (If an application creates permanent
threads which do their own dispatching of work requests, then the application is
responsible for cleaning up any resources before starting the next work request.)

MQSeries for OS/390 supports OS/390 OpenEdition threads via the Batch Adapter
as follows:
1. Heavyweight threads are fully supported as Batch connections. Each thread

runs in its own TCB which is ATTACHed and DETACHed at thread start and
end. Should the thread end before issuing an MQDISC call, then MQSeries for
OS/390 performs its standard task clean up which includes committing any
outstanding unit of work if the thread terminated normally, or backing it out if
the thread terminated abnormally.

2. Mediumweight threads are fully supported but if the TCB is going to be reused
by another thread, then the application must ensure that an MQDISC call,
preceded by either MQCMIT or MQBACK, is issued prior to the next thread
start. This implies that if the application has established a Program Interrupt
Handler, and the application then abends, then the Interrupt Handler should
issue MQCMIT and MQDISC calls before reusing the TCB for another thread.

Migration

212 MQSeries Application Programming Guide

Again, lightweight threads are not supported.

Note: Threading models do not support access to common MQSeries resources
from multiple threads.

The API-crossing exit for OS/390
This section contains product-sensitive programming interface information.

An exit is a point in IBM-supplied code where you can run your own code.
MQSeries for OS/390 provides an API-crossing exit that you can use to intercept
calls to the MQI, and to monitor or modify the function of the MQI calls. This
section describes how to use the API-crossing exit, and describes the sample exit
program that is supplied with MQSeries for OS/390.

Note
The API-crossing exit is invoked only by the CICS adapter of MQSeries for
OS/390. The exit program runs in the CICS address space.

Using the API-crossing exit
You could use the API-crossing exit to:
v Operate additional security checks by examining the contents of each message

before and after each MQI call
v Replace the queue name supplied in the message with another queue name
v Cancel the call and either issue a return code of 0 to simulate a successful call,

or another value to indicate that the call was not performed
v Monitor the use of MQI calls in an application
v Gather statistics
v Modify input parameters on specific calls
v Modify the results of specific calls

Defining the exit program
Before the exit can be used, an exit program load module must be available when
the CICS adapter connects to MQSeries for OS/390. The exit program is a CICS
program that must be named CSQCAPX and reside in a library in the DFHRPL
concatenation. CSQCAPX must be defined in the CICS system definition file (CSD),
and the program must be enabled.

When CSQCAPX is loaded, a confirmation message is written to the CKQC
adapter control panel or to the console. If the program cannot be loaded, a
diagnostic message is displayed.

How the exit is invoked
When enabled, the API-crossing exit is invoked:
v By all applications that use the CICS adapter of MQSeries for OS/390
v For the following MQI calls:

– MQCLOSE
– MQGET
– MQINQ
– MQOPEN
– MQPUT
– MQPUT1

OS/390 OpenEdition applications

Chapter 15. Using and writing applications on MQSeries for OS/390 213

– MQSET
v Every time one of these MQI calls is made
v Both before and after a call

This means that using the API-crossing exit degrades the performance of MQSeries
for OS/390, so plan your use of it carefully.

The exit program can be invoked once before a call is executed, and once after the
call is executed. On the before type of exit call, the exit program can modify any of
the parameters on the MQI call, suppress the call completely, or allow the call to
be processed. If the call is processed, the exit is invoked again after the call has
completed.

Note: The exit program is not recursive. Any MQI calls made inside the exit do
not invoke the exit program for a second time.

Communicating with the exit program
After it has been invoked, the exit program is passed a parameter list in the CICS
communication area pointed to by a field called DFHEICAP. The CICS Exec
Interface Block field EIBCALEN shows the length of this area. The structure of this
communication area is defined in the CMQXPA assembler-language macro that is
supplied with MQSeries for OS/390 :
*
MQXP_COPYPLIST DSECT

DS 0D Force doubleword alignment
MQXP_PXPB DS AL4 Pointer to exit parameter block
MQXP_PCOPYPARM DS 11AL4 Copy of original plist
*

ORG MQXP_PCOPYPARM
MQXP_PCOPYPARM1 DS AL4 Copy of 1st parameter
MQXP_PCOPYPARM2 DS AL4 Copy of 2nd parameter
MQXP_PCOPYPARM3 DS AL4 Copy of 3rd parameter
MQXP_PCOPYPARM4 DS AL4 Copy of 4th parameter
MQXP_PCOPYPARM5 DS AL4 Copy of 5th parameter
MQXP_PCOPYPARM6 DS AL4 Copy of 6th parameter
MQXP_PCOPYPARM7 DS AL4 Copy of 7th parameter
MQXP_PCOPYPARM8 DS AL4 Copy of 8th parameter
MQXP_PCOPYPARM9 DS AL4 Copy of 9th parameter
MQXP_PCOPYPARM10 DS AL4 Copy of 10th parameter
MQXP_PCOPYPARM11 DS AL4 Copy of 11th parameter
*
MQXP_COPYPLIST_LENGTH EQU *-MQXP_PXPB

ORG MQXP_PXPB
MQXP_COPYPLIST_AREA DS CL(MQXP_COPYPLIST_LENGTH)
*

Field MQXP_PXPB points to the exit parameter block, MQXP.

Field MQXP_PCOPYPARM is an array of addresses of the call parameters. For example,
if the application issues an MQI call with parameters P1,P2,or P3, the
communication area contains:
PXPB,PP1,PP2,PP3

where P denotes a pointer (address) and XPB is the exit parameter block.

Writing your own exit program
You can use the sample API-crossing exit program (CSQCAPX) that is supplied
with MQSeries for OS/390 as a framework for your own program. This is
described on page 216.

API-crossing exit

214 MQSeries Application Programming Guide

When writing an exit program, to find the name of an MQI call issued by an
application, examine the ExitCommand field of the MQXP structure. To find the
number of parameters on the call, examine the ExitParmCount field. You can use
the 16-byte ExitUserArea field to store the address of any dynamic storage that the
application obtains. This field is retained across invocations of the exit and has the
same life time as a CICS task.

Your exit program can suppress execution of an MQI call by returning
MQXCC_SUPPRESS_FUNCTION or MQXCC_SKIP_FUNCTION in the
ExitResponse field. To allow the call to be executed (and the exit program to be
reinvoked after the call has completed), your exit program must return
MQXCC_OK.

When invoked after an MQI call, an exit program can inspect and modify the
completion and reason codes set by the call.

Usage notes
Here are some general points you should bear in mind when writing your exit
program:
v For performance reasons, you should write your program in assembler language.

If you write it in any of the other languages supported by MQSeries for OS/390,
you must provide your own data definition file.

v Link-edit your program as AMODE(31) and RMODE(ANY).
v To define the exit parameter block to your program, use the assembler-language

macro, CMQXPA.
v If you are using the CICS Transaction Server for OS/390 storage protection

feature, your program must run in CICS execution key. That is, you must specify
EXECKEY(CICS) when defining both your exit program and any programs to
which it passes control. For information about CICS exit programs and the CICS
storage protection facility, see the CICS Customization Guide.

v Your program can use all the APIs (for example, IMS, DB2, and CICS) that a
CICS task-related user exit program can use. It can also use any of the MQI calls
except MQCONN and MQDISC. However, any MQI calls within the exit
program do not invoke the exit program a second time.

v Your program can issue EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT
ROLLBACK commands. However, these commands commit or roll back all the
updates done by the task up to the point that the exit was used, and so their use
is not recommended.

v Your program must end by issuing an EXEC CICS RETURN command. It must
not transfer control with an XCTL command.

v Exits are written as extensions to the MQSeries for OS/390 code. You must take
great care that your exit does not disrupt any MQSeries for OS/390 programs or
transactions that use the MQI. These are usually indicated with a prefix of
“CSQ” or “CK”.

v If CSQCAPX is defined to CICS, the CICS system will attempt to load the exit
program when CICS connects to MQSeries for OS/390. If this attempt is
successful, message CSQC301I is sent to the CKQC panel or to the system
console. If the load is unsuccessful (for example, if the load module does not
exist in any of the libraries in the DFHRPL concatenation), message CSQC315 is
sent to the CKQC panel or to the system console.

v Because the parameters in the communication area are addresses, the exit
program must be defined as local to the CICS system (that is, not as a remote
program).

API-crossing exit

Chapter 15. Using and writing applications on MQSeries for OS/390 215

The sample API-crossing exit program, CSQCAPX
The sample exit program is supplied as an assembler-language program. The
source file (CSQCAPX) is supplied in the library thlqual.SCSQASMS (where
thlqual is the high-level qualifier used by your installation). This source file
includes pseudocode that describes the program logic.

The sample program contains initialization code and a layout that you can use
when writing your own exit programs.

The sample shows how to:
v Set up the exit parameter block
v Address the call and exit parameter blocks
v Determine for which MQI call the exit is being invoked
v Determine whether the exit is being invoked before or after processing of the

MQI call
v Put a message on a CICS temporary storage queue
v Use the macro DFHEIENT for dynamic storage acquisition to maintain

reentrancy
v Use DFHEIBLK for the CICS exec interface control block
v Trap error conditions
v Return control to the caller

Design of the sample exit program
The sample exit program writes messages to a CICS temporary storage queue
(CSQ1EXIT) to show the operation of the exit. The messages show whether the exit
is being invoked before or after the MQI call. If the exit is invoked after the call,
the message contains the completion code and reason code returned by the call.
The sample uses named constants from the CMQXPA macro to check on the type
of entry (that is, before or after the call).

The sample does not perform any monitoring function, but simply places
time-stamped messages into a CICS queue indicating the type of call it is
processing. This provides an indication of the performance of the MQI, as well as
the proper functioning of the exit program.

Note: The sample exit program issues six EXEC CICS calls for each MQI call that
is made while the program is running. If you use this exit program,
MQSeries for OS/390 performance is degraded.

Preparing and using the API-crossing exit
The sample exit is supplied in source form only. To use the sample exit, or an exit
program that you have written, you must create a load library, as you would for
any other CICS program, as described on page 265.
v For CICS Transaction Server for OS/390 and CICS for MVS/ESA, when you

update the CICS system definition (CSD) data set, the definitions you need are
in the member thlqual.SCSQPROC(CSQ4B100).

Note: The definitions use a suffix of MQ. If this suffix is already used in your
enterprise, this must be changed before the assembly stage.

If you use the default CICS program definitions supplied, the exit program
CSQCAPX is installed in a disabled state. This is because using the exit program
can produce a significant reduction in performance.

API-crossing exit

216 MQSeries Application Programming Guide

|
|
|

To activate the API-crossing exit temporarily:
1. Issue the command CEMT S PROGRAM(CSQCAPX) ENABLED from the CICS

master terminal.
2. Run the CKQC transaction, and use option 3 in the Connection pull-down to

alter the status of the API-crossing exit to ‘Enabled’.

If you want to run MQSeries for OS/390 with the API-crossing exit permanently
enabled, do one of the following:
v For CICS Transaction Server for OS/390 and CICS for MVS/ESA do one of the

following:
– Alter the CSQCAPX definition in member CSQ4B100, changing

STATUS(DISABLED) to STATUS(ENABLED). You can update the CICS CSD
definition using the CICS-supplied batch program DFHCSDUP.

– Alter the CSQCAPX definition in the CSQCAT1 group by changing the status
from DISABLED to ENABLED.

In both cases you must reinstall the group. You can do this by cold-starting your
CICS system or by using the CICS CEDA transaction to reinstall the group while
CICS is running.

Note: Using CEDA may cause an error if any of the entries in the group are
currently in use.

End of product-sensitive programming interface information.

Writing MQSeries-CICS bridge applications
The CICS bridge is accessed by putting an MQSeries message on the request
queue. The message can originate from any application running in an MQSeries
environment, but it must be forwarded to a request queue on MQSeries for
OS/390, defined for the sole use of the CICS bridge.

Within your request message you include the name of the user program (DPL
bridge), or transaction (3270 bridge) that is to be run. A response message will then
be put on a local queue. One or more request messages make up a unit of work.
The key attributes in a message used to identify and subsequently control a unit of
work are MsgId and CorrelId in the MQSeries message descriptor (MQMD) and
the UOWControl in the MQCIH header.

If your message originates from an application running in an MQSeries
environment other than OS/390, you will need the appropriate header files and
copybooks on that platform.

Structure of the MQSeries message
The structure a DPL bridge message must take is:
1. MQMD (MQSeries message descriptor).
2. MQCIH (CICS bridge header). This is optional; see “Using the MQCIH header”

on page 219 for more information about when the MQCIH header is
mandatory.

3. Program name (8-character name of the CICS program to be started by the
CICS bridge task).

4. Your own data (COMMAREA).

API-crossing exit

Chapter 15. Using and writing applications on MQSeries for OS/390 217

|
|
|
|
|
|

The structure a 3270 bridge message must take is:
1. MQMD (MQSeries message descriptor).
2. MQCIH (CICS bridge header).
3. BRMQ vectors. These contain any data required to run the application. For

information about these vectors, see the CICS Internet and External Interface
Guide.

The reply message has the same structure, although the BRMQ vectors are
different.

MQMD attributes
The message identifier (MsgId) and correlation identifier (CorrelId) attributes are
used by the CICS bridge to identify a unit of work. The first request message must
have a unique MsgId (unique to the request queue for a unit of work) and a
CorrelId of MQCI_NEW_SESSION. It is important that each request within a unit
of work, after the first message, has the same CorrelId and that this CorrelId is
the same as the MsgId of the first request message.

When sending a response, the CICS bridge:
v Sets the MsgId field, in every message, to the value in the MsgId of the first

message in a unit of work.
v Sets the CorrelId field to the value in the MsgId of the message it has just taken

off the queue.

The setting of MsgId and CorrelId is shown in Figure 17 on page 222.

When the message includes an MQCIH header, you must set the Format field in
the MQMD to MQFMT_CICS. If you do not set it to this value, the CICS bridge
assumes the message does not include the MQCIH header, hence expects the first 8
bytes of the Userdata to contain the name of the program to be run.

It is important that you specify a reply-to queue (ReplyToQ).

When returning messages to the reply-to queue, the CICS bridge sets the MsgType
field (in the MQMD) to MQMT_REQUEST until it is the last message in a unit of
work, when it is set to MQMT_REPLY.

The 3270 bridge environment can also set the MsgType to MQMT_DATAGRAM.
This MsgType indicates that the transaction has reached one of the following stages:
v EXEC CICS SYNCPOINT
v EXEC CICS SYNCPOINT ROLLBACK
v An MQSeries message greater than 32k has been received, this leads to buffer

full condition.
v A WAIT option specified on an EXEC CICS SEND command

Attention
MQMT_REQUEST messages from the CICS bridge refer to the results of
intermediate processing within a unit of work which could be backed out
after the message is sent.

MQSeries-CICS bridge applications

218 MQSeries Application Programming Guide

|
|

|

|

|
|

|
|

Using the MQCIH header
The MQCIH is required if you want to do one of the following:
v Run a 3270 transaction
v Run the bridge with AUTH=VERIFY_*
v Include more than one program within a single unit of work

It is not required if you want to run a single DPL program where AUTH is set to
LOCAL or IDENTIFY.

Messages returned from the CICS bridge
The CICS bridge puts response messages to the reply-to queue specified in the
MQMD of the request message. All replies within a unit of work will go to the
first reply-to queue specified in a request message for that unit of work, even if
subsequent request messages within the unit of work specify different reply-to
queues. In the DPL environment if a message does not specify a reply-to queue, no
reply message is sent unless a previous request message within the unit of work
specified a reply-to queue. Reply messages are not sent for any messages within a
unit of work that occur before the first message that specifies a reply-to queue
name.

The response message contains the following:
v For normal responses to DPL requests:

– An MQCIH (if one was present in the request message)
– The program name
– The return COMMAREA

v For error responses:
– An MQCIH (even if one was not present in the request message)
– Error text

v For responses to 3270 requests:
– An MQCIH
– Zero or more BRMQ vectors

As error replies sent by the monitor always have a CorrelId set from the MsgId
from the first request message, when your application gets a response message it
should issue an MQGET by MsgId call, and check the CorrelId where the order is
important, to ensure you pick up the correct message.

Error handling by the CICS bridge
Errors detected by the CICS bridge task cause the bridge to:
v Back out the unit of work.
v Copy the request message(s) to the dead-letter queue.
v Send an error reply message back to the client if a reply-to queue is specified.
v Write a CSQC7nn message to the CICS CSMT transient data queue or issue a

transaction abend. Where it is possible to put a message on the reply-to queue,
the message will contain this abend code.

Any further request messages in the same unit of work are removed from the
request queue and copied to the dead-letter queue, either during error processing
for this unit of work or at the next initialization of the monitor; no further error
reply messages are generated.

Unexpected messages are removed from the request queue during monitor
initialization and put on the dead-letter queue passing all context. No error reply
messages are generated.

MQSeries-CICS bridge applications

Chapter 15. Using and writing applications on MQSeries for OS/390 219

If the sending of a reply message fails, in the DPL bridge environment the CICS
bridge puts the reply on the dead-letter queue passing identity context from the
CICS bridge request queue. A unit of work is not backed out if the reply message
is successfully put on the dead-letter queue. Failure to put a reply message on the
dead-letter queue is treated as a request error, and the unit of work is backed out.

If the CICS bridge fails to put a request message on the dead-letter queue, the
CICS bridge task abends and leaves the CICS bridge monitor to process the error.
If the monitor fails to copy the request to the dead-letter queue, the monitor
abends.

Failure to put an error reply is ignored by the CICS bridge. In the DPL bridge
environment the request message has already been copied to the dead-letter queue
and the unit of work has been backed out by MQSeries.

CICS bridge specific abend codes are described in MQSeries for OS/390 Messages
and Codes.

Handling a unit of work
You can request the bridge to run a single transaction or program, by setting
UOWControl=MQCUOWC_ONLY in the request message, or allowing it to default.

In the DPL bridge environment, to run multiple user programs within a unit of
work, set UOWControl=MQCUOWC_FIRST in the first request,
MQCUOWC_MIDDLE in any intermediate requests and MQCUOWC_LAST in the
last request. Your application can send multiple request messages within a unit of
work before receiving any response messages. At any time after the first message
you can terminate the unit of work by sending an MQCUOWC_COMMIT or
MQCUOWC_BACKOUT message.

A transaction can split itself into multiple units of work by issuing EXEC CICS
SYNCPOINT, but you cannot group transactions into a single unit of work. Set
UOWControl=MQCUOWC_ONLY in the first request message. Messages supplying
additional data to the transaction should be set to MQCUOWC_CONTINUE, with
an appropriate CancelCode if you want to terminate the transaction.

A unit of work must only use one request queue.

Programming considerations for running 3270 transactions
This section describes the MQSeries specific aspects of programming for 3270
transactions. See the CICS Internet and External Interfaces Guide for a description of
the programming interface.

If the MQSeries application is on a platform other than OS/390, it will be
necessary for the BRMQ vectors to be translated between the CCSID and encoding
used on OS/390 and that used on the local platform. This causes a problem for the
bridge because the BMS application data structure (ADS) consists of binary values
that are not fullword values. To overcome this problem, the CICS bridge exit
(CSQCBE00) converts its various ADSs into long formats which are fullword
values. BMS vectors can be converted to the long format, but 3270 data stream
vectors cannot. If the CCSID of the receiving MQSeries is not the same as the host
CCSID, then you can not run 3270 bridge transactions that have 3270 data steam
vectors.

MQSeries-CICS bridge applications

220 MQSeries Application Programming Guide

|
|
|
|
|
|
|
|
|
|

The BRMQ BMS vectors contain the application data structure (ADS). The format
of the ADS can be determined in one of two ways:
1. Using the BMS copybooks

If the long form of the ADS is required, it will be necessary to generate a
special version of the BMS copybook. This is done by adding the parameter
DSECT=ADSL to the DFHMSD statement on the BMS map. The copybook can
then be used in exactly the same way as a normal copybook, except that the
fields are fullwords. Currently, only the C headers are supported.

2. Using the application data structure descriptors (ADSDs)
If application data structures are referred to using ADSDs, note that there are
two forms of ADS variables in the DFHBRMQx copybook:
v BRMQ_ADSI_* and BRMQ_ADSO_* refer to the ADS contents in the normal

form of the ADS and can only be used by systems using the same CCSID
v BRMQ_ADSLI_* and BRMQ_ADSLO_* refer to the ADS contents in the long

form of the ADS

The following MQCIH values must be set when using cross platform conversion:
v Format must be set to “CSQCBDCI”
v Adsdescriptor must be set to:

MQCADSD_SEND+MQCADSD_RECV+MQCADSD_MSGFORMAT

Scenarios
The following examples show the setting of key fields in different scenarios, and
what happens in the event of a failure.

In Figure 16, running one user program or transaction, the MsgId of the request
message is set by the queue manager (to M1), and subsequently copied to the
CorrelId in the reply message.

In Figure 17 on page 222, running more than one user program using the DPL
bridge, the MsgId of the request message is set by the queue manager (to M1), and
subsequently copied to the CorrelId.

MQSeries application MQSeries - CICS bridge

MQPUT

MQGET

In your application:
MQGET MsgId=M1

MsgId=MQMI_NONE
CorrelId=MQCI_NEW_SESSION
UOWControl=MQCUOWC_ONLY
Request message

MsgId=M1 (MsgId from request message)
CorrelId=M1 (MsgId from request message)
Reply message

M
Q

S
e

ri
e

s
n

e
tw

o
rk

Figure 16. Setting of key fields for a single CICS user program in a unit of work, or non-conversational 3270
transaction

Considerations for 3270 transactions

Chapter 15. Using and writing applications on MQSeries for OS/390 221

|
|

Figure 18 on page 223 shows a conversational 3270 transaction.

Figure 17. Setting of key fields for many CICS user programs in a unit of work

Scenarios

222 MQSeries Application Programming Guide

The following example shows what happens when an error occurs in a unit of
work.

Figure 18. Setting of key fields: MQSeries - conversational 3270 transaction

Scenarios

Chapter 15. Using and writing applications on MQSeries for OS/390 223

In this example:
v The client application sends a request message to run a CICS program named

P1.
The queue manager used by the client receives the message. If the queue is not
on OS/390, the queue needs to be defined as a remote queue with transmission
queue. The final destination queue must be on OS/390 in the same image as the
CICS bridge.

The monitor task browses the request queue awaiting the arrival of a message:
v Gets the request message with browse
v Checks for any problems with the request message
v Starts a CICS bridge task
v Continues browsing the request queue

The CICS bridge task:
v Gets the request message, under syncpoint control, from the request queue
v Takes the information in the request message and builds a COMMAREA for

program P1
v Issues an EXEC CICS LINK call to program P1
v Waits for program P1 to complete

When these tasks are complete, the user program abends.

MQSeries application MQSeries - CICS bridge

M
Q

S
e
ri

e
s

n
e
tw

o
rk

EXEC CICS START bridge
EXEC CICS RETRIEVE

EXEC CICS SYNCPOINT
EXEC CICS RETURN

User
program
abends

EXEC CICS SYNCPOINT ROLLBACK

MQGET MsgId(M1)

EXEC CICS LINK Pgmid (P1)

MQGET MsgId(M1)
MQGMO_SYNCPOINT

MQGET BROWSE
WAIT

MQGET MsgId(M1)

WAIT

Monitor task taskBridge

Request message
MQPUT
CorrelId=MQCI_NEW_SESSION
MsgId=M1

Reply Message

Reply message
MQPUT
MQPMO_SYNCPOINT
CorrelId=M1
MsgId=M1

Figure 19. User program abends (only program in the unit of work)

Scenarios

224 MQSeries Application Programming Guide

The CICS bridge task abend handler, CSQCBP10, is driven which:
v Issues an EXEC CICS SYNCPOINT ROLLBACK which:

– Backs out all the changes made by P1
– Reinstates the request message on the request queue

v Gets the request message a second time, under syncpoint control, from the
request queue

v Copies the request to the dead-letter queue
v Puts an error reply to the reply-to queue

If the request message includes the name of a reply-to queue:
v Writes a CSQC7nn message to the CICS transient data queue

For information on feedback codes, including those specific to the CICS bridge, see
the MQSeries Application Programming Reference manual.

Writing MQSeries-IMS bridge applications
This section discusses writing applications to exploit the MQSeries-IMS bridge. The
following topics are discussed:
v “How the MQSeries-IMS bridge deals with messages”
v “Writing your program” on page 229
v “Triggering” on page 230

For information about the MQSeries-IMS bridge, see the MQSeries for OS/390
System Management Guide.

How the MQSeries-IMS bridge deals with messages
When you use the MQSeries-IMS bridge to send messages to an IMS application,
you need to construct your messages in a special format. You must also put your
messages on MQSeries queues that have been defined with a storage class that
specifies the XCF group and member name of the target IMS system.

A user does not need to sign on to IMS before sending messages to an IMS
application. The user ID in the UserIdentifier field of the MQMD structure is
used for security checking. The level of checking is determined when MQSeries
connects to IMS, and is described in the security section of the MQSeries for OS/390
System Management Guide.

The MQSeries-IMS bridge accepts the following types of message:
v Messages containing IMS transaction data and an MQIIH structure (described in

the MQSeries Application Programming Reference manual):
MQIIH LLZZ<trancode><data>[LLZZ<data>][LLZZ<data>]

Notes:

1. The square brackets, [], represent optional multi-segments.
2. The Format field of the MQMD structure must be set to MQFMT_IMS to use

the MQIIH structure.
v Messages containing IMS transaction data but no MQIIH structure:

LLZZ<trancode><data> \
[LLZZ<data>][LLZZ<data>]

MQSeries validates the message data to ensure that the sum of the LL bytes is
equal to the message length after the MQIIH structure (if it is present).

Scenarios

Chapter 15. Using and writing applications on MQSeries for OS/390 225

When the MQSeries-IMS bridge gets messages from the OTMA queues, it processes
them as follows:
v If the message contains IMS transaction data and an MQIIH structure the bridge

verifies the MQIIH (see the MQSeries Application Programming Reference manual)
and puts the message on to the appropriate IMS queue. The transaction code is
specified in the input message. If this is an LTERM, IMS replies with a
DFS1288E message. If the transaction code represents a command, IMS executes
the command.

v If the message contains IMS transaction data, but no MQIIH structure, the IMS
bridge makes the following assumptions:
– The transaction code is in bytes 5 through 12 of the user data
– The transaction is in non-conversational mode
– The transaction is in commit mode 0 (commit-then-send)
– The Format in the MQMD is used as the MFSMapName (on input)
– The security mode is MQISS_CHECK

The reply message is also built without an MQIIH structure, taking the Format
for the MQMD from the MFSMapName of the IMS output.

The MQSeries-IMS bridge uses one or two Tpipes for each MQSeries queue:
v A synchronous Tpipe is used for all messages using Commit mode 0

(COMMIT_THEN_SEND) (these show with SYN in the status field of the IMS
/DIS TMEMBER client TPIPE xxxx command)

v An asynchronous Tpipe is used for all messages using Commit mode 1
(SEND_THEN_COMMIT)

The Tpipes are created by MQSeries when they are first used. An asynchronous
Tpipe exists until IMS is restarted. Synchronous Tpipes exist until IMS is cold
started.

Mapping MQSeries messages to IMS transaction types
Table 11. Mapping MQSeries messages to IMS transaction types

MQSeries message type Commit-then-send (mode 0) - uses
synchronous IMS Tpipes

Send-then-commit (mode 1) - uses
asynchronous IMS Tpipes

Persistent MQSeries messages v Recoverable full function
transactions

v Irrecoverable transactions are
rejected by IMS

v Fastpath transactions
v Conversational transactions
v Full function transactions

Nonpersistent MQSeries messages v Irrecoverable full function
transactions

v Recoverable transactions are
rejected by IMS

v Fastpath transactions
v Conversational transactions
v Full function transactions

Note: IMS commands cannot use persistent MQSeries messages with commit mode 0. See the IMS/ESA Open
Transaction Manager Access User’s Guide for more information.

If the message cannot be put to the IMS queue
If the message cannot be put to the IMS queue, the following action is taken by
MQSeries:
v If a message cannot be put to the IMS queue because the message is invalid, the

message is put to the dead-letter queue and a message is sent to the system
console.

v If the message is valid, but is rejected by IMS with a sense code of 001A and a
DFS message, MQSeries puts the original message to the dead-letter queue, and

MQSeries-IMS bridge applications

226 MQSeries Application Programming Guide

puts the DFS message to the reply-to queue. If MQSeries is unable to put the
DFS message to the reply-to queue, it is put to the dead-letter queue.

v If the negative acknowledgement (NAK) from IMS represents a message error,
an error message is sent to the system console, and the MQSeries message is put
to the dead-letter queue.

Note: In the circumstances listed above, if MQSeries is unable to put the message
to the dead-letter queue for any reason, the message is returned to the
originating MQSeries queue. An error message is sent to the system console,
and no further messages are sent using the Tpipe associated with that queue
until the problem with the dead-letter queue has been resolved.

To resend the messages, do one of the following:
1. Stop and restart the Tpipes in IMS corresponding to the queue
2. Alter the queue to GET(DISABLED), and again to GET(ENABLED)
3. Stop and restart the IMS OTMA
4. Stop and restart your MQSeries subsystem

If the NAK received from IMS represents anything else, the MQSeries message is
returned to the originating queue, MQSeries stops processing the queue, and an
error message is sent to the system console.

If an exception report message is required, the bridge puts it to the reply-to queue
with the authority of the originator. If the message cannot be put to the queue, the
report message is put to the dead-letter queue with the authority of the bridge. If it
cannot be put to the DLQ, it is discarded.

IMS bridge feedback codes
The IMS bridge feedback codes are in the range 301 through 399. They are mapped
from the IMS-OTMA sense codes as follows:
1. The IMS-OTMA sense code is converted from a hexadecimal number to a

decimal number.
2. 300 is added to the number resulting from the calculation in 1, giving the

MQSeries Feedback code.

Refer to the IMS/ESA Open Transaction Manager Access Guide for information about
IMS-OTMA sense codes.

Reply messages from IMS
Reply messages from IMS are put onto the reply-to queue specified in the original
message. If the message cannot be put onto the reply-to queue, it is put onto the
dead-letter queue using the authority of the bridge. If the message cannot be put
onto the dead-letter queue, a negative acknowledgement is sent to IMS to say that
the message cannot be received. Responsibility for the message is then returned to
IMS. If you are using commit mode 0, messages from that Tpipe are not sent to the
bridge, and remain on the IMS queue; that is, no further messages are sent until
restart. If you are using commit mode 1, other work can continue.

If the reply has an MQIIH structure, its format type is MQFMT_IMS; if not, its
format type is specified by the IMS MOD name used when inserting the message.

Using alternate response PCBs: If your IMS application uses alternate response
PCBs, invoking these applications through the MQSeries-IMS bridge will cause the
IMS pre-routing and destination resolution exits to be called. See the MQSeries for
OS/390 System Management Guide for information about these exit programs.

MQSeries-IMS bridge applications

Chapter 15. Using and writing applications on MQSeries for OS/390 227

Message segmentation
IMS transactions may be defined as expecting single- or multi-segment input. The
originating MQSeries application must construct the user input following the
MQIIH structure as one or more LLZZ-data segments. All segments of an IMS
message must be contained in a single MQSeries message sent with a single
MQPUT.

The maximum length of any one LLZZ-data segment is defined by IMS/OTMA
(32764 bytes). The total MQSeries message length is the sum of the LL bytes, plus
the length of the MQIIH structure.

All the segments of the reply are contained in a single MQSeries message.

There is a further restriction on the 32 KB limitation on messages with format
MQFMT_IMS_VAR_STRING. When the data in an ASCII mixed CCSID message is
converted to an EBCDIC mixed CCSID message, a shift-in byte or a shift-out byte
is added every time there is a transition between SBCS and DBCS characters. The
32 KB restriction applies to the maximum size of the message. That is, because the
LL field in the message cannot exceed 32 KB, the message must not exceed 32 KB
including all shift-in and shift-out characters. The application building the message
must allow for this.

Data conversion
The MQSeries-IMS bridge converts messages to the coded character set and
encoding of the local queue manager as required, using both built-in formats and
user exit programs. This means that you can send messages to an IMS application
using the MQSeries-IMS bridge from any MQSeries platform.

The conversion (including the calling of any necessary exits) is performed by the
distributed queuing facility when it puts a message to a destination queue that has
XCF information defined for its storage class. Any exits needed must be available
to the distributed queuing facility in the data set referenced by the CSQXLIB DD
statement.

Note: Messages arriving through the CICS distributed queuing facility are not
converted.

If there are conversion errors, the message is put to the queue unconverted; this
results eventually in it being treated as an error by the MQSeries-IMS bridge,
because the bridge cannot recognize the header format. If a conversion error
occurs, an error message is sent to the OS/390 console.

See “Chapter 11. Writing data-conversion exits” on page 149 for detailed
information about data conversion in general.

Sending messages to the MQSeries-IMS bridge: To ensure that conversion is
performed correctly, you must tell the queue manager what the format of the
message is. If the message has an MQIIH structure, the Format in the MQMD must
be set to the built-in format MQFMT_IMS, and the Format in the MQIIH must be
set to the name of the format that describes your message data. If there is no
MQIIH, set the Format in the MQMD to your format name.

If your data (other than the LLZZs) is all character data (MQCHAR), use as your
format name (in the MQIIH or MQMD, as appropriate) the built-in format
MQFMT_IMS_VAR_STRING. Otherwise, use your own format name, in which case
you must also provide a data-conversion exit for your format. The exit must

MQSeries-IMS bridge applications

228 MQSeries Application Programming Guide

|
|
|
|
|
|
|
|

handle the conversion of the LLZZs in your message, in addition to the data itself
(but it does not have to handle any MQIIH at the start of the message).

If you use this format, the MFSMapName passed to IMS is
MQFMT_IMS_VAR_STRING. If your application makes use of MFSMapName, you are
recommended to use messages with the MQFMT_IMS instead.

Receiving messages from the MQSeries-IMS bridge: If an MQIIH structure is
present on the original message that you are sending to IMS, one is also present on
the reply message.

To ensure your reply is converted correctly, follow these steps:
v If you have an MQIIH structure on your original message, specify the format

you want for your reply message in the MQIIH ReplytoFormat field of the
original message. This value is placed in the MQIIH Format field of the reply
message.

v If you do not have an MQIIH structure on your original message, specify the
format you want for the reply message as the MFS MOD name in the IMS
application’s ISRT to the IOPCB.

v Specify CONVERT(YES) on the sender channel between your MQSeries for
OS/390 system and your destination MQSeries system.

Writing your program
The coding required to handle IMS transactions through MQSeries is
platform-specific. However, there are several points to be borne in mind when
your application handles IMS screen formatting information.

In IMS, your application can modify certain 3270 screen behavior, for example,
highlighting a field which has had invalid data entered. This type of information is
communicated by adding a two byte attribute field to the IMS message for each
screen field needing to be modified by the program.

Thus, if you are coding an application to mimic a 3270, you need to take account
of these fields when building or receiving messages.

You may need to code information in your program to process:
v Which key is pressed (Enter, PF1....)
v Where the cursor is when the message is passed to your application
v Whether the attribute fields have been set by the IMS application

– High/normal/zero intensity
– Color
– Whether IMS is expecting the field back the next time enter is pressed

v Whether the IMS application has used null characters (X'3F') in any fields.

If your IMS message contains only character data (apart from the LLZZ-data
segment), and you are using an MQIIH structure, set the MQMD format to
MQFMT_IMS and the MQIIH format to MQFMT_IMS_VAR_STRING.

If your IMS message contains only character data (apart from the LLZZ-data
segment), and you are not using an MQIIH structure, set the MQMD format to
MQFMT_IMS_VAR_STRING and ensure that your IMS application specifies
MODname MQFMT_IMS_VAR_STRING when replying.

MQSeries-IMS bridge applications

Chapter 15. Using and writing applications on MQSeries for OS/390 229

If your IMS message contains binary, packed, or floating point data (apart from the
LLZZ-data segment), you will need to code your own data-conversion routines.
Refer to the IMS/ESA Application Programming: Transaction Manager manual for
information about IMS screen formatting.

Dealing with unsolicited messages from IMS
You need to write pre-routing and destination resolution exits to handle unsolicited
messages from IMS. See the MQSeries for OS/390 System Management Guide for
information about these exit programs.

Unsolicited messages can create new Tpipes. For example if an existing IMS
transaction switched to a new LTERM (for example PRINT01) but the
implementation required that the output be delivered through OTMA; a new Tpipe
(called PRINT01 in this example) would be created. By default this will be an
asynchronous Tpipe. If the implementation requires the message to be recoverable
the destination resolution exit Output flag must be set. See the IMS Customization
Guide for more information.

Writing MQSeries applications to invoke IMS conversational
transactions
When you write an application which will invoke an IMS conversation, you should
bear the following in mind:
v You must include an MQIIH structure with your application message.
v You must set the CommitMode in MQIIH to MQICM_SEND_THEN_COMMIT.
v To invoke a new conversation, set TranState in MQIIH to

MQITS_NOT_IN_CONVERSATION.
v To invoke second and subsequent steps of a conversation, set TranState to

MQITS_IN_CONVERSATION, and set TranInstanceId to the value of that field
returned in the previous step of the conversation.

v There is no easy way in IMS to find the value of a TranInstanceId, should you
lose the original message sent from IMS.

v The application must check the TranState of messages from IMS to check
whether the IMS transaction has terminated the conversation.

v You can use /EXIT to end a conversation. You must also quote the
TranInstanceId, set TranState to MQITS_IN_CONVERSATION, and use the
MQSeries queue on which the conversation is being carried out.

v You cannot use /HOLD or /REL to hold or release a conversation.
v Conversations invoked through the MQSeries-IMS bridge are terminated if IMS

is restarted.

Triggering
The MQSeries-IMS bridge does not support trigger messages.

If you define an initiation queue that uses a storage class with XCF parameters,
messages put to that queue are rejected when they get to the bridge.

Writing IMS applications using MQSeries
This section discusses the following subjects that you should consider when using
MQSeries in IMS applications:
v “Syncpoints in IMS applications” on page 231
v “MQI calls in IMS applications” on page 231

MQSeries-IMS bridge applications

230 MQSeries Application Programming Guide

Syncpoints in IMS applications
In an IMS application, you establish a syncpoint by using IMS calls such as GU
(get unique) to the IOPCB and CHKP (checkpoint). To back out all changes since
the previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see the following books:
v IMS/ESA Application Programming: Transaction Manager
v IMS/ESA Application Programming: Design Guide

The queue manager is a participant in a two-phase commit protocol; the IMS
syncpoint manager is the coordinator.

All open handles are closed by the IMS adapter at a syncpoint (except in a
batch-oriented BMP). This is because a different user could initiate the next unit of
work and MQSeries security checking is performed when the MQCONN and
MQOPEN calls are made, not when the MQPUT or MQGET calls are made.

Handles are also closed after a ROLB call unless you are running IMS Version 3 or
are running a batch-oriented BMP.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open
queues are closed but no implicit syncpoint is taken. If the application closes down
normally, any open queues are closed and an implicit commit occurs. If the
application closes down abnormally, any open queues are closed and an implicit
backout occurs.

MQI calls in IMS applications
This section covers the use of MQI calls in the following types of IMS applications:
v “Server applications”
v “Enquiry applications” on page 234

Server applications
Here is an outline of the MQI server application model:
Initialize/Connect
.

Open queue for input shared
.

Get message from MQSeries queue
.

Do while Get does not fail
.

If expected message received
Process the message

Else
Process unexpected message

End if
.

Commit
.

Get next message from MQSeries queue
.

End do
.
Close queue/Disconnect
.

END

Sample program CSQ4ICB3 shows the implementation, in C/370™, of a BMP using
this model. The program establishes communication with IMS first, and then with
MQSeries:

IMS applications

Chapter 15. Using and writing applications on MQSeries for OS/390 231

main()

Call InitIMS
If IMS initialization successful

Call InitMQM
If MQSeries initialization successful

Call ProcessRequests
Call EndMQM

End-if
End-if

Return

The IMS initialization determines whether the program has been called as a
message-driven or a batch-oriented BMP and controls MQSeries queue manager
connection and queue handles accordingly:
InitIMS

Get the IO, Alternate and Database PCBs
Set MessageOriented to true

Call ctdli to handle status codes rather than abend
If call is successful (status code is zero)

While status code is zero
Call ctdli to get next message from IMS message queue
If message received

Do nothing
Else if no IOPBC

Set MessageOriented to false
Initialize error message
Build 'Started as batch oriented BMP' message
Call ReportCallError to output the message

End-if
Else if response is not 'no message available'

Initialize error message
Build 'GU failed' message

Call ReportCallError to output the message
Set return code to error

End-if
End-if

End-while
Else

Initialize error message
Build 'INIT failed' message
Call ReportCallError to output the message
Set return code to error

End-if

Return to calling function

The MQSeries initialization performs queue manager connection opens the queues.
In a Message-driven BMP this is called after each IMS syncpoint is taken; in a
batch-oriented BMP, this is only called during program start-up:
InitMQM

Connect to the queue manager
If connect is successful

Initialize variables for the open call
Open the request queue
If open is not successful

Initialize error message
Build 'open failed' message
Call ReportCallError to output the message
Set return code to error

End-if

IMS applications

232 MQSeries Application Programming Guide

Else
Initialize error message
Build 'connect failed' message
Call ReportCallError to output the message
Set return code to error

End-if

Return to calling function

The implementation of the server model in an MPP is influenced by the fact that
the MPP processes a single unit of work per invocation. This is because, when a
syncpoint (GU) is taken, the connection and queue handles are closed and the next
IMS message is delivered. This limitation can be partially overcome by one of the
following:
v Processing many messages within a single unit-of-work

This involves:
– Reading a message
– Processing the required updates
– Putting the reply

in a loop until all messages have been processed or until a set maximum
number of messages has been processed, at which time a syncpoint is taken.

Only certain types of application (for example, a simple database update or
inquiry) can be approached in this way. Although the MQI reply messages can
be put with the authority of the originator of the MQI message being handled,
the security implications of any IMS resource updates need to be addressed
carefully.

v Processing one message per invocation of the MPP and ensuring multiple
scheduling of the MPP to process all available messages.

Use the MQSeries IMS trigger monitor program (CSQQTRMN) to schedule the
MPP transaction when there are messages on the MQSeries queue and no
applications serving it.
If the MPP is started by the trigger monitor the queue manager name and queue
name are be passed to the program, as shown in the following COBOL code
extract:

* Data definition extract
01 WS-INPUT-MSG.

05 IN-LL1 PIC S9(3) COMP.
05 IN-ZZ1 PIC S9(3) COMP.
05 WS-STRINGPARM PIC X(1000).

01 TRIGGER-MESSAGE.
COPY CMQTMC2L.

*
* Code extract
GU-IOPCB SECTION.

MOVE SPACES TO WS-STRINGPARM.
CALL 'CBLTDLI' USING GU,

IOPCB,
WS-INPUT-MSG.

IF IOPCB-STATUS = SPACES
MOVE WS-STRINGPARM TO MQTMC.

* ELSE handle error
*
* Now use the queue manager and queue names passed

DISPLAY 'MQTMC-QMGRNAME ='
MQTMC-QMGRNAME OF MQTMC '='.

DISPLAY 'MQTMC-QNAME ='
MQTMC-QNAME OF MQTMC '='.

IMS applications

Chapter 15. Using and writing applications on MQSeries for OS/390 233

The server model, which is expected to be a long running task, is better supported
in a batch processing region, although the BMP cannot be triggered using
CSQQTRMN.

Enquiry applications
A typical MQSeries application initiating an inquiry or update works as follows:
v Gather data from the user
v Put one or more MQSeries messages
v Get the reply messages (you might have to wait for them)
v Provide a response to the user

Because messages put on to MQSeries queues do not become available to other
MQSeries applications until they are committed, they must either be put out of
syncpoint, or the IMS application must be split into two transactions.

If the inquiry involves putting a single message, it is acceptable to use the “no
syncpoint” option; however, if the inquiry is more complex, or resource updates
are involved, you might get consistency problems if failure occurs and you don’t
use syncpointing.

To overcome this, IMS MPP transactions using MQI calls could be split using a
program-to-program message switch; see the IMS/ESA Application Programming:
Data Communication manual for information about this. This would allow an
inquiry program to be implemented in an MPP :
Initialize first program/Connect
.

Open queue for output
.

Put inquiry to MQSeries queue
.

Switch to second MQSeries program, passing necessary data in save
pack area (this commits the put)
.

END
.
.

Initialize second program/Connect
.

Open queue for input shared
.

Get results of inquiry from MQSeries queue
.

Return results to originator
.

END

MQSeries Workflow
MQSeries Workflow on OS/390 is a tool which helps companies improve their
business processes. OS/390 workload manager (WLM) addresses the need for:
v Managing workload distribution
v Load balancing
v Distribution of computing resources to competing workloads

MQSeries support for OS/390 workload manager introduces a new type of local
queue: a WLM-managed queue. It is recognized by a new value of the INDXTYPE
attribute called MSGTOKEN. The initiation queue associated with a
WLM-managed queue should have TRIGTYPE defined as NONE and no ordinary
local queues should be associated with this initiation queue.

IMS applications

234 MQSeries Application Programming Guide

If an MQSeries Workflow server application has the initiation queue open for
input, MQSeries updates a WLM worklist as part of commit processing of
MQPUTs to the WLM-managed queue. The setting of TRIGGER or NOTRIGGER
on the WLM-managed queue has no effect on the updating of this WLM worklist.

The PROCESS definition is used to provide the name of the
application_environment associated with a WLM-managed queue. This is passed in
the APPLICID attribute. You should ensure that a WLM-managed queue uniquely
references an associated process and that two processes do not specify the same
APPLICID value.

Messages are retrieved from a WLM-managed queue using a unique
message_token which must be passed to MQGET. To do this, a new message_token
value (MQGMO_MSGTOKEN) and a new get message match option
(MQMO_MATCH_MSG_TOKEN) are used. Workflow does not normally issue
MQGET calls until the message is placed successfully on the queue. If the
application needs to wait for the arrival of a message, it must set the match option
to MQMO_NONE.

There are new MQRC values for MQGET (MQRC_MSG_TOKEN_ERROR) and
MQPUT (MQRC_MISSING_WIH and MQRC_WIH_ERROR).
MQRC_MISSING_WIH is returned if a message, MQPUT to a WLM-managed
queue, does not include the new work information header (MQWIH).
MQRC_WIH_ERROR is returned if the message data does not conform to an
MQWIH. MQGET does not remove this header from the message.

Note: You may experience excessive CPU usage if your OS/390 system is at
Version 2.5 or earlier and the number of messages on WLM-managed
queues exceeds 500.

For further information see IBM MQSeries Workflow:Concepts and Architecture,
GH12-6285 and IBM MQSeries Workflow for OS/390:Customization and Administration,
SC33-7030.

MQSeries Workflow

Chapter 15. Using and writing applications on MQSeries for OS/390 235

|
|
|
|

Changes

236 MQSeries Application Programming Guide

Chapter 16. Object-oriented programming with MQSeries

The preceding chapters have described the procedural Message Queue Interface
(MQI), which may be used from programming languages such as COBOL, PL/I, C,
and C++. The MQI comprises calls, structures, and elementary data types to allow
an application programmer to create MQSeries applications.

MQSeries provides an alternative way of programming MQSeries applications, that
can be used from object-oriented programming languages. It is called the MQSeries
Object Model. Instead of calls and structures, the MQSeries Object Model provides
classes that provide the same functionality, but which are a more natural way of
programming in an object-oriented environment.

What is in the MQSeries Object Model?
The MQSeries Object Model comprises the following:
v Classes representing familiar MQSeries concepts such as queue managers,

queues, and messages.
v Methods on each class corresponding to MQI calls.
v Properties on each class corresponding to attributes of MQSeries objects.

When creating an MQSeries application using the MQSeries Object Model, you
create instances of these classes in the program. An instance of a class in
object-oriented programming is called an object. When an object has been created,
you interact with the object by examining or setting the values of the object’s
properties (the equivalent of issuing an MQINQ or MQSET call), and by making
method calls against the object (the equivalent of issuing the other MQI calls).

Classes
The MQSeries Object Model provides the following base set of classes. Note that
the actual implementation of the model varies slightly between the different
supported object-oriented environments.

MQQueueManager
An object of the MQQueueManager class represents a connection to a
queue manager. It has methods to Connect(), Disconnect(), Commit(), and
Backout() (the equivalent of MQCONN, MQDISC, MQCMIT, and
MQBACK). It has properties corresponding to the attributes of a queue
manager. Note that accessing a queue manager attribute property implicitly
connects to the queue manager if not already connected. Destroying an
MQQueueManager object implicitly disconnects from the queue manager.

MQQueue
An object of the MQQueue class represents a queue. It has methods to
Put() and Get() messages to and from the queue (the equivalent of MQPUT
and MQGET). It has properties corresponding to the attributes of a queue.
Note that accessing a queue attribute property, or issuing a Put() or Get()
method call, implicitly opens the queue (the equivalent of MQOPEN).
Destroying an MQQueue object implicitly closes the queue (the equivalent
of MQCLOSE).

© Copyright IBM Corp. 1993, 2000 237

MQMessage
An object of the MQMessage class represents a message to be put on a
queue or got from a queue. It comprises a buffer, and encapsulates both
application data and MQMD. It has properties corresponding to MQMD
fields, and methods that allow you to write and read user data of different
types (for example, strings, long integers, short integers, single bytes) to
and from the buffer.

MQPutMessageOptions
An object of the MQPutMessageOptions class represents the MQPMO
structure. It has properties corresponding to MQPMO fields.

MQGetMessageOptions
An object of the MQGetMessageOptions class represents the MQGMO
structure. It has properties corresponding to MQGMO fields.

MQProcess
An object of the MQProcess class represents a process definition (used with
triggering). It has properties that represent the attributes of a process
definition.

MQDistributionList
MQSeries Version 5 products only. An object of the MQDistributionList
class represents a distribution list (used to send multiple messages with a
single MQPUT). It comprises a list of MQDistributionListItem objects.

MQDistributionListItem
MQSeries Version 5 products only. An object of the MQDistributionListItem
class represents a single distribution list destination. It encapsulates the
MQOR, MQRR, and MQPMR structures, and has properties corresponding
to the fields of these structures.

Object references
In an MQSeries program that uses the MQI, MQSeries returns connection handles
and object handles to the program. These handles must be passed as parameters
on subsequent MQSeries calls. With the MQSeries Object Model, these handles are
hidden from the application program. Instead, the creation of an object from a class
results in an object reference being returned to the application program. It is this
object reference that is used when making method calls and property accesses
against the object.

Return codes
Issuing a method call or setting a property value results in return codes being set.
These return codes are a completion code and a reason code, and are themselves
properties of the object. The values of completion code and reason code are exactly
the same as those defined for the MQI, with some extra values specific to the
object-oriented environment.

Programming language considerations
The MQSeries Object Model is implemented in C++, Java, LotusScript®, and
ActiveX®.

Coding in C++
Refer to the MQSeries Using C++ book for information about coding programs
using the MQSeries Object Model in C++.

Object-oriented programming

238 MQSeries Application Programming Guide

|
|
|

|
|
|
|

Coding in Java
Refer to the MQSeries Using Java book for information about coding programs
using the MQSeries Object Model in Java.

Coding in LotusScript
Refer to the MQSeries LotusScript Extension book for information about coding
programs using the MQSeries Object Model in LotusScript.

The MQSeries link LotusScript Extension is commonly known as the MQLSX. For
Windows NT the MQLSX is included as part of MQSeries for Windows NT, V5.1.
For other platforms, or for earlier releases of MQSeries, the MQLSX and its
documentation may be downloaded from the MQSeries Web site as a SupportPac.

Coding in ActiveX
Refer to the MQSeries for Windows NT Using the Component Object Model Interface for
information about coding programs using the MQSeries Object Model in ActiveX.

The MQSeries ActiveX is commonly known as the MQAX. The MQAX is included
as part of MQSeries for Windows NT, V5.1. For earlier releases of MQSeries for
Windows NT, the MQAX and its documentation may be downloaded from the
MQSeries Web site as a SupportPac.

Object-oriented programming

Chapter 16. Object-oriented programming with MQSeries 239

Changes

240 MQSeries Application Programming Guide

Part 3. Building an MQSeries application

Chapter 17. Building your application on AIX 243
Preparing C programs 243

Linking libraries 243
Preparing COBOL programs 244

Preparing COBOL programs using IBM COBOL
SET for AIX 245
Preparing COBOL programs using Micro Focus
COBOL 245

Preparing PL/I programs 245
Preparing CICS programs 245

CICS on Open Systems support 246
Preparing CICS COBOL programs using IBM
COBOL SET for AIX 246
Preparing CICS COBOL programs using
Micro Focus COBOL 246
Preparing CICS C programs 247

Chapter 18. Building your application on AS/400 249
Preparing C programs 249
Preparing COBOL programs 249
Preparing CICS programs 251
Preparing RPG programs 251
SQL programming considerations 251
AS/400 programming considerations 252

QMQM activation group 252

Chapter 19. Building your application on AT&T
GIS UNIX 253
Preparing C programs 253

C compiler flags 253
Linking libraries 253

Chapter 20. Building your application on Digital
OpenVMS 255
Preparing C programs 255

C compiler version 255
C compiler flags 255
Linking libraries 255

Preparing COBOL programs 256
COBOL compiler flags 256
Linking libraries 256

Chapter 21. Building your application on Digital
UNIX 257
Preparing C programs 257

Linking libraries 257

Chapter 22. Building your application on HP-UX 259
Preparing C programs 259

Preparing C programs on HP-UX V10.20 . . . 259
Preparing C programs on HP-UX V11.00 . . . 259
Linking libraries 260

Preparing COBOL programs 261
Programs to run in the MQSeries client
environment. 261

Preparing CICS programs 262
CICS on Open Systems support 262

CICS C sample transaction 262
Preparing CICS COBOL programs using
Micro Focus COBOL 262

Chapter 23. Building your application on
OS/390 263
Preparing your program to run 263

Building OS/390 batch applications 264
Building CICS applications 265
Building IMS (BMP or MPP) applications . . . 266

Dynamically calling the MQSeries stub 267
Debugging your programs 272

Debugging CICS programs 272
CICS trace 272

Debugging TSO programs 274

Chapter 24. Building your application on OS/2
Warp 275
Preparing C programs 275

Preparing CICS and Transaction Server
programs 276

Preparing COBOL programs 277
Preparing Transaction Server programs 278

Preparing PL/I programs 278

Chapter 25. Building your application on SINIX
or DC/OSx 279
Preparing C programs 279

C compiler flags 279
Preparing COBOL programs 280

Compiling COBOL programs 280
Preparing CICS programs 281

CICS on Open Systems support 281
CICS sample transaction. 281

Linking libraries 282

Chapter 26. Building your application on Sun
Solaris 283
Preparing C programs 283

Linking libraries 284
Preparing COBOL programs 284
Preparing CICS programs 285

CICS on Open Systems support 285
Preparing CICS COBOL programs using
Micro Focus COBOL 285
Preparing CICS C programs 286

Chapter 27. Building your application on
Tandem NSK 287
Unit of work (transaction) management 287

General design considerations 287
MQGMO_BROWSE_* with MQGMO_LOCK 287
Triggered applications 287

© Copyright IBM Corp. 1993, 2000 241

||

||

|
||
||
||

||

|
||

Compiling and binding applications 288
Running applications 288

Chapter 28. Building your application on
VSE/ESA 291
Linking library 291
Using the batch interface 291
Preparing C programs 291
Preparing COBOL programs 291
Preparing PL/I programs 291

Chapter 29. Building your application on
Windows 293
Linking libraries 293
Preparing Visual Basic programs 293

Chapter 30. Building your application on
Windows NT 295
Preparing C programs 295

Preparing CICS and Transaction Server
programs 296

Preparing COBOL programs 297
Preparing CICS and Transaction Server
programs 298

Preparing PL/I programs 299
Preparing Visual Basic programs 299

Chapter 31. Using lightweight directory access
protocol services with MQSeries for Windows
NT 301
What is a directory service? 301
What is LDAP?. 301
Using LDAP with MQSeries 302
LDAP sample program 303

Building the sample program 303
Configuring the directory 303
Configuring the IBM eNetwork LDAP server 304
Configuring the Netscape directory server. . . 305
Running the sample program 306
Program design 306

242 MQSeries Application Programming Guide

Chapter 17. Building your application on AIX

The AIX publications describe how to build executable applications from the
programs you write. This chapter describes the additional tasks, and the changes
to the standard tasks, you must perform when building MQSeries for AIX
applications to run under AIX. C, C++, and COBOL are supported. For information
about preparing your C++ programs, see the MQSeries Using C++ book.

The tasks you must perform to create an executable application using MQSeries for
AIX vary with the programming language your source code is written in. In
addition to coding the MQI calls in your source code, you must add the
appropriate language statements to include the MQSeries for AIX include files for
the language you are using. You should make yourself familiar with the contents
of these files. See “Appendix F. MQSeries data definition files” on page 515 for a
full description.

EXTSHM environment variable
AIX Version 4.3.1 intoduces the EXTSHM environment variable.

Do not set the EXTSHM environment variable before you issue the strmqm
command. If you attempt to set this variable before you issue the strmqm
command, the strmqm command will fail.

All other MQSeries operations work correctly with this variable set.

Preparing C programs
Precompiled C programs are supplied in the /usr/mqm/samp/bin directory. Use
the ANSI compiler and run the following command:

$ cc -o <amqsput> <amqsput>.c -lmqm

where amqsput is a sample program.

If you want to use the programs on a machine which has only the MQSeries client
for AIX installed, recompile the programs to link them with the client library
(-lmqic) instead.

Linking libraries
You will need the following libraries:
v If your application is running in a DCE client environment you will need to

copy the DCE library, libxdsom.a, on to your machine.
v You need to link your programs with the appropriate library provided by

MQSeries.
In a non-threaded environment you must link to one of the following libraries:

Library file
Program/exit type

libmqm.a
Server for C

© Copyright IBM Corp. 1993, 2000 243

|

|
|
|

|

libmqic.a
Client for C

In a threaded environment, you must link to one of the following libraries:

Library file
Program/exit type

libmqm_r.a
Server for C

libmqic_r.a
Client for C

For example, to build a simple threaded MQSeries application from a single
compilation unit on AIX 4.3 run the following command:

$ xlc_r7 -o myapp myapp.c -lmqm_r

where myapp is the name of your program.

Notes:

1. If you are writing an installable service (see the MQSeries Programmable
System Management book for further information), you need to link to the
libmqmzf.a library in a non-threaded application and to the libmqmzf_r.a
library in a threaded application.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, you need to link to the libmqmxa.a library in a non-threaded
application and to the libmqmxa_r.a library in a threaded application.

3. You need to link trusted applications to the threaded MQSeries libraries.
However, only one thread in an MQSeries on UNIX systems trusted
application can be connected at a time.

4. To run the sample Encina program, link against the following libraries:
– libmqmxa_r.a
– libmqm_r.a

Also, link to the Encina and DCE libraries:
– libEncServer.a
– libEncina.a
– libdce.a

The sample must be compiled and linked using xlc_r4.
5. You must link MQSeries libraries before any other product libraries (in this

case, DCE and Encina). For example:
cc -o put put.c -lmqm_r -ldce

This ensures that any operating system functions that have been redefined by
DCE are also used by MQSeries.

Preparing COBOL programs
You need to link your program with one of the following:
libmqmcb.a

Server for COBOL
libmqicb.a

Client for COBOL
libmqmcb_r.a

Server for COBOL (in a threaded application)

Preparing C programs

244 MQSeries Application Programming Guide

You can use the IBM COBOL Set compiler or Micro Focus COBOL compiler
depending on the program:
v Programs beginning amqi are suitable for the IBM COBOL Set compiler,
v programs beginning amqm are suitable for the Micro Focus COBOL compiler,

and
v programs beginning amq0 are suitable for either compiler.

Preparing COBOL programs using IBM COBOL SET for AIX
Sample COBOL programs are supplied with MQSeries. To compile such a
program, enter:

cob2 -o amq0put0 amq0put0.cbl
-L/usr/mqm/lib
-lmqmcb -qLIB
-I/usr/mqm/inc

Note: For threaded applications, cob2_r is used with the libmqmcb_r.a library.

Preparing COBOL programs using Micro Focus COBOL
Set environment variables before compiling your program as follows:
export COBCPY=/usr/mqm/inc
export LIB=/usr/mqm/lib;$LIB

To compile a COBOL program using Micro Focus COBOL, enter:
cob -xvP amq0put0.cbl -lmqmcb

See the Micro Focus COBOL documentation for a description of the environment
variables that need to be set up.

Preparing PL/I programs
Sample PL/I programs are supplied with MQSeries. PL/I include files are also
provided so that the C entry points in the MQSeries libraries can be invoked
directly.

To prepare a PL/I program:
1. Link your program with one of the libraries listed in “Linking libraries” on

page 243.
2. Compile your program:

pli amqpput0.pli -I/usr/mqm/inc /usr/mqm/lib/libmqm.a

Preparing CICS programs
XA switch modules are provided to enable you to link CICS with MQSeries:

Table 12. Essential Code for CICS applications (AIX)

Description C (source) C (exec) - add to your
XAD.Stanza

XA initialization routine amqzscix.c amqzsc21 - CICS for AIX

Always link your transactions with the thread safe MQSeries library libmqm_r.a.

Preparing COBOL programs

Chapter 17. Building your application on AIX 245

Note: On AIX Version 4, the libmqm_r.a library works with both native and DCE
libraries.

Compile the program by typing:
xlC_r4 /usr/mqm/samp/amqzscix.c -I/usr/lpp/encina/include \
-e amqzscix -o amqzscix /usr/lpp/cics/lib/regxa_swxa.o \
-L/usr/lpp/cics/lib -L/usr/lpp/encina/lib -lmqmcics_r -lmqmxa_r -lmqm_r \
-lcicsrt -lEncina -lEncServer -ldce

You can find more information about supporting CICS transactions in the MQSeries
System Administration book.

CICS on Open Systems support
MQSeries on UNIX systems support CICS on Open Systems via the XA interface.

You must ensure that CICS COBOL applications are linked to the threaded version
of the library. CICS on Open Systems MQSeries transactions must link with
libmqm_r, except on Sun Solaris, where you must link with lmqmcs_d.

You can run CICS programs using IBM COBOL SET for AIX or Micro Focus
COBOL. The following sections describe the difference between these.

Preparing CICS COBOL programs using IBM COBOL SET for AIX
To use IBM COBOL, follow these steps:
1. Export the following environment variable:

export LDFLAGS="-qLIB -bI:/usr/lpp/cics/lib/cicsprIBMCOB.exp \
-I/usr/mqm/inc -I/usr/lpp/cics/include \
-e _iwz_cobol_main \
-L/usr/lib/dce -lmqmcb_r -ldcelibc_r -ldcepthreads"

where LIB is a compiler directive.
2. Translate, compile, and link the program by typing:

cicstcl -l IBMCOB <yourprog>.ccp

Preparing CICS COBOL programs using Micro Focus COBOL
To use Micro Focus COBOL, follow these steps:
1. Add the MQSeries COBOL run-time library module to the run-time library

using the following command:
cicsmkcobol -L/usr/lib/dce -L/usr/mqm/lib \

/usr/mqm/lib/ libmqmcbrt.o -lmqm_r

This creates the Micro Focus COBOL language method file and enables the
CICS run-time COBOL library to call MQSeries on UNIX systems.

Note: cicsmkcobol must be run only when one of the following is installed:
v New version or release of Micro Focus COBOL
v New version or release of CICS for AIX
v New version or release of any supported database product (for

COBOL transactions only)
v CICS for AIX

2. Export the following environment variables:
COBCPY=/usr/mqm/inc export COBCPY
LDFLAGS="-L/usr/mqm/lib -lmqm_r" export LDFLAGS

3. Translate, compile, and link the program by typing:
cicstcl -l COBOL -e <yourprog>.ccp

Preparing CICS programs

246 MQSeries Application Programming Guide

|
|

Preparing CICS C programs
You build CICS C programs using the standard CICS facilities:
1. Export one of the following environment variables:
v LDFLAGS = “-L/usr/mqm/lib -lmqm_r” export LDFLAGS
v USERLIB = “-L/usr/mqm/lib -lmqm_r” export USERLIB

2. Translate, compile, and link the program by typing:
cicstcl -l C amqscic0.ccs

CICS C sample transaction: Sample C source for a CICS MQSeries transaction is
provided by AMQSCIC0.CCS. The transaction reads messages from the
transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue
manager and places them onto the local queue whose name is contained in the
transmission header of the message. Any failures will be sent to the queue
SYSTEM.SAMPLE.CICS.DLQ. The sample MQSC script AMQSCIC0.TST may be
used to create these queues and sample input queues.

Preparing CICS programs

Chapter 17. Building your application on AIX 247

Changes

248 MQSeries Application Programming Guide

Chapter 18. Building your application on AS/400

The AS/400 publications describe how to build executable applications from the
programs you write. This chapter describes the additional tasks, and the changes
to the standard tasks, you must perform when building MQSeries for AS/400
applications to run on AS/400 systems. COBOL, C, C++, and RPG programming
languages are supported. For information about preparing your C++ programs, see
the MQSeries Using C++ book.

The tasks you must perform to create an executable MQSeries for AS/400
application depend on the programming language the source code is written in. In
addition to coding the MQI calls in your source code, you must add the
appropriate language statements to include the MQSeries for AS/400 data
definition files for the language you are using. You should make yourself familiar
with the contents of these files. See “Appendix F. MQSeries data definition files” on
page 515 for a full description.

Preparing C programs
To compile a C module, you can use the OS/400 command, CRTCMOD. Make
sure that the library containing the include files (QMQM) is in the library list when
you perform the compilation.

You must then bind the output of the compiler with the service program using the
CRTPGM command.

An example of the command for a nonthreaded environment is:

Table 13. Example of CRTPGM in the nonthreaded environment
Command Program/exit type

CRTPGM PGM(pgmname) MODULE(pgmname)
BNDSRVPGM(QMQM/LIBMQM)

Server for C

where pgmname is the name of your program.

An example of the command for a threaded environment is:

Table 14. Example of CRTPGM in the threaded environment
Command Program/exit type

CRTPGM PGM(pgmname) MODULE(pgmname)
BNDSRVPGM(QMQM/LIBMQM_R)

Server for C

where pgmname is the name of your program.

Preparing COBOL programs
MQSeries for AS/400 provides two methods for accessing the MQI from within
COBOL programs:
1. A dynamic call interface to programs having the names of the MQI functions,

such as MQCONN and MQOPEN. This interface is intended primarily for use

© Copyright IBM Corp. 1993, 2000 249

|

|

|

|

|
|

|
|

with the OPM (Original Program Mode) COBOL compiler, but may also be
used with the ILE (Integrated Language Environment) COBOL compiler. Some
functions new to MQSeries for AS/400 V5.1, such as MQCMIT and MQBACK
are not supported through this interface, which is provided for compatibility
with previous releases.

2. A bound procedural call interface provided by service programs. This provides
access to the new MQI functions in this release, support for threaded
applications and possibly, better performance compared with the dynamic call
interface. This interface can only be used with the ILE COBOL compiler.

In both cases the standard COBOL CALL syntax is used to access the MQI
functions.

The COBOL copy files containing the named constants and structure definitions for
use with the MQI are contained in the source physical files QMQM/QLBLSRC and
QMQM/QCBLLESRC. The members in these two files are identical, but are
packaged twice in this way to correspond with the defaults assumed by the OPM
and ILE COBOL compilers respectively.

The COBOL copy files use the single quotation mark character (’) as the string
delimiter. The AS/400 COBOL compilers assume the delimiter will be the double
quote(″). To prevent the compilers generating warning messages, specify
OPTION(*APOST) on the commands CRTCBLPGM, CRTBNDCBL, or
CRTCBLMOD.

To make the compiler accept the single quotation mark character (’) as the string
delimiter in the COBOL copy files, use the compiler option \APOST.

Using the Dynamic Call Interface
v The QMQM library must be in your library list when you compile and when

you run COBOL programs using the MQI dynamic call interface.
v Use the CRTCBLPGM command to invoke the OPM COBOL compiler.
v Use either the CRTBNDCBL command or the two separate commands

CRTCBLMOD and CRTPGM to invoke the ILE COBOL compiler.

Using the Bound Procedure Call Interface
v First create a module using the CRTCBLMOD compiler specifying the

parameter:
LINKLIT(*PRC)

v Then use the CRTPGM command to create the program object specifying the
parameter:
for non-threaded applications
BNDSRVPGM(QMQM/AMQ0STUB)

for threaded applications
BNDSRVPGM(QMQM/AMQ0STUB_R)

Note: Except for programs created using the V4R4 ILE COBOL compiler and
containing the THREAD(SERIALIZE) option in the PROCESS statement,
COBOL programs should not use the threaded MQSeries libraries. Even if a
COBOL program has been made thread safe in this manner, careful
consideration should be given to the overall application design, since
THREAD(SERIALIZE) forces serialization of COBOL procedures at the
module level and may have an impact on overall performance.

Preparing COBOL programs

250 MQSeries Application Programming Guide

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|

|

|

|
|
|
|
|
|
|

See the ILE COBOL/400 Programmer's Guide and ILE COBOL/400 Reference for
further information.

For more information on compiling a CICS application, see the CICS for AS/400
Application Programming Guide, SC33-1386.

Preparing CICS programs
To create a program that includes EXEC CICS statements and MQI calls, perform
these steps:
1. If necessary, prepare maps using the CRTCICSMAP command.
2. Translate the EXEC CICS commands into native language statements. Use the

CRTCICSC command for a C program. Use the CRTCICSCBL command for a
COBOL program.
Include CICSOPT(*NOGEN) in the CRTCICSC or CRTCICSCBL command. This
halts processing to enable you to include the appropriate CICS and MQSeries
service programs. This command puts the code, by default, into
QTEMP/QACYCICS.

3. Compile the source code using the CRTCMOD command (for a C program) or
the CRTCBLMOD command (for a COBOL program).

4. Use CRTPGM to link the compiled code with the appropriate CICS and
MQSeries service programs. This creates the executable program.

An example of such code follows (it compiles the shipped CICS sample program):
CRTCICSC OBJ(QTEMP/AMQSCIC0) SRCFILE(/MQSAMP/QCSRC) +

SRCMBR(AMQSCIC0) OUTPUT(*PRINT) +
CICSOPT(*SOURCE *NOGEN)

CRTCMOD MODULE(MQTEST/AMQSCIC0) +
SRCFILE(QTEMP/QACYCICS) OUTPUT(*PRINT)

CRTPGM PGM(MQTEST/AMQSCIC0) MODULE(MQTEST/AMQSCIC0) +
BNDSRVPGM(QMQM/LIBMQIC QCICS/AEGEIPGM)

Preparing RPG programs

If you are using MQSeries for AS/400, you can write your applications in RPG. For
more information see “Coding in RPG” on page 76, and refer to the MQSeries for
AS/400 Application Programming Reference (ILE RPG) manual.

SQL programming considerations
If your program contains EXEC SQL statements and MQI calls, perform these
steps:
1. Translate the EXEC SQL commands into native language statements. Use the

CRTSQLCI command for a C program. Use the CRTSQLCBLI command for a
COBOL program.
Include OPTION(*NOGEN) in the CRTSQLCI or CRTSQLCBLI command. This
halts processing to enable you to include the appropriate MQSeries service
programs. This command puts the code, by default, into QTEMP/QSQLTEMP.

2. Compile the source code using the CRTCMOD command (for a C program) or
the CRTCBLMOD command (for a COBOL program).

3. Use CRTPGM to link the compiled code with the appropriate MQSeries service
programs. This creates the executable program.

Preparing COBOL programs

Chapter 18. Building your application on AS/400 251

|
|

|
|

|
|

|
|

|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

An example of such code follows (it compiles a program, SQLTEST, in library,
SQLUSER):
CRTSQLCI OBJ(MQTEST/SQLTEST) SRCFILE(SQLUSER/QCSRC) +

SRCMBR(SQLTEST) OUTPUT(*PRINT) OPTION(*NOGEN)
CRTCMOD MODULE(MQTEST/SQLTEST) +

SRCFILE(QTEMP/QSQLTEMP) OUTPUT(*PRINT)
CRTPGM PGM(MQTEST/SQLTEST) +

BNDSRVPGM(QMQM/LIBMQIC)

AS/400 programming considerations
If you have compiled programs for releases of MQSeries for AS/400 earlier than
V4R4, you will have linked to AMQZSTUB and, possibly, AMQVSTUB. These
libraries are provided at this release for compatibility purposes; you do not need to
recompile your applications.

These libraries provide support for the default connection handle
(MQHC_DEF_HCONN). This is no longer provided by the standard V4R4
libraries. However, the libraries provided at this release for compatibility purposes
do not support all new features (for example, MQCONNX, MQCMIT, and
MQBACK).

QMQM activation group
When creating your program on AS/400, the QMQM activation group should not
be used. The QMQM activation group is for the use of MQSeries only.

Preparing RPG programs

252 MQSeries Application Programming Guide

|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

Chapter 19. Building your application on AT&T GIS UNIX

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for AT&T GIS UNIX applications to
run under AT&T GIS UNIX3. C and C++ programming languages are supported.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See “Appendix F. MQSeries data definition files” on page 515 for a full
description.

Preparing C programs
Precompiled C programs are found in the /opt/mqm/samp/bin directory. To
build a sample from source code, use the C compiler in /bin/cc, for example:
/bin/cc -o <yourprog> <yourprog>.c -lmqm -lmqmcs -lmqmzse \
-lnet -lnsl -lsocket -ldl

Note: The backslash (\) represents the continuation of the line.

C compiler flags
The order of the libraries specified is important. The following is an example of
how to build the sample program amqsput0:
/bin/cc -o <amqsput0> <amqsput0>.c -lmqic -lmqmcs -lmqmzse \
-lnet -lnsl -lsocket -ldl -lc

This links with the client library -lmqic, so allows you to use the programs on a
machine which has only the MQSeries client for GIS installed.

If you use the other version of the compiler (/usr/ucb/cc), your application may
compile and link successfully. However when you run it, it will fail when it
attempts to connect to the queue manager.

Linking libraries
You need to link your programs with the appropriate library provided by
MQSeries.

You must link to one or more of the following libraries:
Library file

Program/exit type
libmqm.so

Server for C
libmqmzse.so

For C
libmqic.so

Client for C
libmqmcs.so

Client for C

3. This platform has become NCR UNIX SVR4 MP-RAS, R3.0.

© Copyright IBM Corp. 1993, 2000 253

|
|

Notes:

1. If you are writing an installable service (see the MQSeries Programmable System
Management book for further information), you need to link to the libmqmzf.so
library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, you need to link to the libmqmxa.a library.

Preparing C programs

254 MQSeries Application Programming Guide

Chapter 20. Building your application on Digital OpenVMS

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for Compaq (DIGITAL) OpenVMS
applications to run under Digital OpenVMS. C and COBOL are supported.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See “Appendix F. MQSeries data definition files” on page 515 for a full
description.

Preparing C programs
This section explains the compiler and libraries you need to prepare your C
programs.

C compiler version
You must use the DEC C compiler. To invoke the compiler, enter:

$ CC/DECC

This is the default.

C compiler flags
The include files for MQSeries for Compaq (DIGITAL) OpenVMS are located in the
MQS_INCLUDE directory. The following is an example of how to build the sample
program AMQSPUT0:

$ CC/INCLUDE_DIRECTORY=MQS_INCLUDE AMQSPUT0
$ LINK AMQSPUT0.OBJ,SYS$INPUT/OPTIONS
SYS$SHARE: MQM/SHAREABLE
Ctrl + Z

Linking libraries
You need to link your programs with the appropriate library provided by
MQSeries. The libraries are found in SYS$SHARE.

You must link to one or more of the following libraries:
Library file

Program/exit type
mqm.exe

Server for C
mqic.exe

Client for C
mqmzf.exe

Installable service exits for C

© Copyright IBM Corp. 1993, 2000 255

Preparing COBOL programs
This section explains the compiler and libraries you need to prepare your COBOL
programs.

COBOL compiler flags
You must compile the programs in ANSI mode using the /ANSI switch to the
DEC COBOL compiler. The following is an example of how to build the sample
program AMQ0PUT0:
$ COBOL/ANSI AMQ0PUT0.COB
$ LINK AMQ0PUT0.OBJ,SYS$INPUT/OPTIONS
SYS$SHARE: MQMCB/SHAREABLE
Ctrl + Z

Linking libraries
You need to link your program with one of the following:
MQMCB.EXE

COBOL
MQICB.EXE

COBOL MQSeries client

Preparing COBOL programs

256 MQSeries Application Programming Guide

Chapter 21. Building your application on Digital UNIX

This chapter describes the additional tasks, and the changes to the standard tasks,
that you must perform when building MQSeries for DIGITAL UNIX (Compaq
Tru64 UNIX) applications to run under DIGITAL UNIX. C is supported.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See “Appendix F. MQSeries data definition files” on page 515 for a full
description.

Preparing C programs
Work in your normal environment. Precompiled C programs are supplied in the
/opt/mqm/samp/bin directory. The following is an example of how to build the
sample program amqsput0:
cc -std1 -pthread -o amqsput0 amqsput0.c -lmqm -lmqmcs -lmqmzse

If you want to use the programs on a machine on which only the MQSeries client
for DIGITAL UNIX is installed, recompile the programs to link them with the
client library, as follows:
cc -std1 -pthread -o amqsput0 amqsput0.c -lmqic -lmqmcs

Linking libraries
Link your programs with the appropriate library provided by MQSeries.

In a non-threaded environment you must link to one or more of the following
libraries:
Library file

Program
libmqm.so

Server for C
libmqic.so

Client for C

Note: If you are writing an installable service (see the MQSeries Programmable
System Management book for further information), you need to link to the
libmqmzf.sl library.

© Copyright IBM Corp. 1993, 2000 257

|

|

|
|
|

|
|
|
|

|
|

|
|
|

|

|
|
|

|

|

|

|
|
|
|
|
|
|
|

|
|
|

Preparing C programs

258 MQSeries Application Programming Guide

Chapter 22. Building your application on HP-UX

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for HP-UX applications to run under
HP-UX. C, C++, and COBOL are supported. For information about preparing your
C++ programs, see the MQSeries Using C++ book.

The tasks you must perform to create an executable application using MQSeries for
HP-UX vary with the programming language your source code is written in. In
addition to coding the MQI calls in your source code, you must add the
appropriate language statements to include the MQSeries for HP-UX include files
for the language you are using. You should make yourself familiar with the
contents of these files. See “Appendix F. MQSeries data definition files” on
page 515 for a full description.

Preparing C programs
Work in your normal environment. Precompiled C programs are supplied in the
/opt/mqm/samp/bin directory.

Preparing C programs on HP-UX V10.20
The following is an example of how to build the sample program amqsput0 in a
non-threaded environment:
cc -Aa -D_HPUX_SOURCE -o amqsput0 amqsput0.c -lmqm

The following is an example of how to build the sample program amqsput0 in a
threaded environment:
cc -Aa -D_HPUX_SOURCE -o amqsput0 amqsput0.c -lmqm_r -lcma

If you want to use the programs on a machine that has only the MQSeries client
for HP-UX installed, recompile the programs to link them with the client library
instead. The following is an example of how to build a non-threaded client:
cc -Aa -D_HPUX_SOURCE -o amqsput0 amqsput0.c -lmqic

The following is an example of how to build a threaded client:
cc -Aa -D_HPUX_SOURCE -o amqsput0 amqsput0.c -lmqic_r

Note: If you are building an application that uses the curses screen display library,
you must explicitly link libC following libmqm and place libcurses at the
end of the link order.

The following is an example of how to build a program that links with MQSeries
curses:
cc -Aa -D_HPUX_SOURCE -o mqcurse mqcurse.c -lmqm -lc -lcurses

Preparing C programs on HP-UX V11.00
The following is an example of how to build the sample program amqsput0 in a
non-threaded environment:
cc -Aa -D_HPUX_SOURCE -o amqsput0 amqsput0.c -lmqm

© Copyright IBM Corp. 1993, 2000 259

|

|
|
|

|
|

|

|

|
|

|

The following is an example of how to build the sample program amqsput0 in a
POSIX draft 10 threaded environment:
cc -Aa -D_HPUX_SOURCE -o amqsput0 amqsput0.c -lmqm_r -lpthread

The following is an example of how to build the sample program amqsput0 in a
POSIX draft 4 (DCE) threaded environment:
cc -Aa -D_HPUX_SOURCE -D_PTHREADS_DRAFT -o amqsput0 \
amqsput0.c -lmqm_d -ld4r -lcma

If you want to use the programs on a machine that has only the MQSeries client
for HP-UX installed, recompile the programs to link them with the client library
instead. The following is an example of how to build a non-threaded client:
cc -Aa -D_HPUX_SOURCE -o amqsput0 amqsput0.c -lmqic

The following is an example of how to build a POSIX draft 10 threaded client:
cc -Aa -D_HPUX_SOURCE -o amqsput0 amqsput0.c -lmqic_r -lpthread

The following is an example of how to build a POSIX draft 4 (DCE) threaded
client:
cc -Aa -D_HPUX_SOURCE -D_PTHREADS_DRAFT4 -0 amqsput0 \
amqsput0.c -lmqic_d -ld4r -lcma

Linking libraries
The following lists the libraries you will need.
v You need to link your programs with the appropriate library provided by

MQSeries.
In a non-threaded environment, you must link to one of the following libraries:
Library file

Program/exit type
libmqm.sl

Server for C
libmqic.sl

Client for C

In a threaded environment, you must link to one of the following libraries:
Library file

Program/exit type
libmqm_r.sl

Server for C
libmqic_r.sl

Client for C

In a POSIX draft 10 threaded environment on HP-UX V11.00, you must link to
one of the following libraries:
Library file

Program/exit type
libmqm_r.sl

Server for C
libmqic_r.sl

Client for C

In a POSIX draft 4 (DCE) threaded environment on HP-UX V11.00, you must
link to one of the following libraries:

Preparing C programs

260 MQSeries Application Programming Guide

|
|

|

|
|

|
|

|
|
|

|

|

|

|
|

|
|

|

|
|
|
|
|
|
|
|

|
|

Library file
Program/exit type

libmqm_d.sl
Server for C

libmqic_d.sl
Client for C

Notes:

1. If you are writing an installable service (see the MQSeries Programmable
System Management book for further information), you need to link to the
libmqmzf.sl library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, you need to link to the libmqmxa.a library in a non-threaded
application and to the libmqmxa_r.a library in a threaded application.

3. You must link MQSeries libraries before any other product libraries (in this
case, DCE and Encina). This ensures that any operating system functions that
have been redefined by DCE are also used by MQSeries.

Preparing COBOL programs
Compile the programs using the Micro Focus compiler. The copy files which
declare the structures are in /opt/mqm/inc:

$ export LIB=/usr/mqm/lib;$LIB
$ export COBCPY=“/opt/mqm/inc”
$ cob -vxP <amqsput>.cbl -lmqmcb

where amqsput is a sample program.

You must ensure that you have specified adequate run-time stack sizes; 16 KB is
the recommended minimum.

You need to link your program with one of the following:
libmqmcb.sl

Server for COBOL
libmqicb.sl

Client for COBOL
amqmcb_r.sl

Threaded applications

Programs to run in the MQSeries client environment
If you are using LU 6.2 to connect your MQI client to a server, you must link your
application to libsna.a, part of the SNAplusAPI product. Use the –lV3 and –lstr
options on your compile and link command.
v The –lV3 option gives your program access to the AT&T signaling library (the

SNAPlusAPI uses AT&T signals)
v The –lstr option links your program to the streams component

Note: The –lstr option is not needed on HP–UX Version 10.

If you are not using LU 6.2, consider linking to libsnastubs.a (in /opt/mqm/lib) to
fully resolve function names. The need to link to this library varies with how you
are using the -B flag during the linking stage.

Preparing C programs

Chapter 22. Building your application on HP-UX 261

|
|
|
|
|
|

|

Preparing CICS programs
To build the sample CICS transaction, amqscic0.ccs, run the following command:
$ export USERLIB=“-lmqm_r”
$ cicstcl -l C amqscic0.ccs

An XA switch module is provided to enable you to link CICS with MQSeries:

Table 15. Essential Code for CICS applications (HP-UX)

Description C (source) C (exec)

XA initialization routine amqzscix.c amqzsc

You can find more information about supporting CICS transactions in the MQSeries
System Administration book.

CICS on Open Systems support
MQSeries on UNIX systems supports CICS on Open Systems via the XA interface.

It is very important to ensure that CICS COBOL applications are linked to the
threaded version of the library. CICS on Open Systems MQSeries transactions must
link with libmqm_r, except on Sun Solaris, where you must link with lmqmcs_d.

CICS C sample transaction
Sample C source for a CICS MQSeries transaction is provided by AMQSCIC0.CCS.
The transaction reads messages from the transmission queue
SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places
them onto the local queue whose name is contained in the transmission header of
the message. Any failures will be sent to the queue SYSTEM.SAMPLE.CICS.DLQ.
The sample MQSC script AMQSCIC0.TST may be used to create these queues and
sample input queues.

Preparing CICS COBOL programs using Micro Focus COBOL
To use Micro Focus COBOL, follow these steps:
1. Add the MQSeries COBOL run-time library module to the run-time library

using the following command:
cicsmkcobol -L/usr/lib/dce -L/usr/mqm/lib \

/usr/mqm/lib/ libmqmcbrt.o -lmqm_r

This creates the Micro Focus COBOL language method file and enables the
CICS run-time COBOL library to call MQSeries on UNIX systems.

Note: cicsmkcobol must be run only when one of the following is installed:
v New version or release of Micro Focus COBOL
v New version or release of TXSeries for HP-UX
v New version or release of any supported database product (for

COBOL transactions only)
v TXSeries for HP-UX

2. Export the following environment variables:
COBCPY=/usr/mqm/inc export COBCPY
LDFLAGS="-L/usr/mqm/lib -lmqm_r" export LDFLAGS

3. Translate, compile, and link the program by typing:
cicstcl -l COBOL -e <yourprog>.ccp

Preparing CICS programs

262 MQSeries Application Programming Guide

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

|
|

|

|

Chapter 23. Building your application on OS/390

The CICS, IMS, and OS/390 publications describe how to build applications that
run in these environments. This chapter describes the additional tasks, and the
changes to the standard tasks, you must perform when building MQSeries for
OS/390 applications for these environments. COBOL, C, C++, Assembler, and PL/I
programming languages are supported. (For information on building C++
applications see the MQSeries Using C++ book.)

The tasks you must perform to create an executable MQSeries for OS/390
application depend on both the programming language the program is written in,
and the environment in which the application will run.

In addition to coding the MQI calls in your program, you must add the
appropriate language statements to include the MQSeries for OS/390 data
definition file for the language you are using. You should make yourself familiar
with the contents of these files. See “Appendix F. MQSeries data definition files” on
page 515 for a full description.

Note
The name thlqual is the high-level qualifier of the installation library on
OS/390.

This chapter introduces building OS/390 applications, under these headings:
v “Preparing your program to run”
v “Dynamically calling the MQSeries stub” on page 267
v “Debugging your programs” on page 272

Preparing your program to run
After you have written the program for your MQSeries application, to create an
executable application you have to compile or assemble it, then link-edit the
resulting object code with the stub program that MQSeries for OS/390 supplies for
each environment it supports. How you prepare your program depends on both
the environment (batch, CICS, or IMS(BMP or MPP)) in which the application will
run, and the structure of the data sets on your OS/390 installation. The details are
described in the following sections.

“Dynamically calling the MQSeries stub” on page 267 describes an alternative
method of making MQI calls in your programs so that you do not need to link-edit
an MQSeries stub. This method is not available for all languages and
environments.

Do not link-edit a higher level of stub program than that of the version of
MQSeries for OS/390 on which your program is running. For example, a program
running on MQSeries for MVS/ESA, V1.2 must not be link-edited with a stub
program supplied with MQSeries for OS/390, V2.1.

© Copyright IBM Corp. 1993, 2000 263

|

Building OS/390 batch applications
To build an MQSeries for OS/390 application that runs under OS/390 batch, create
job control language (JCL) that performs these tasks:
1. Compile (or assemble) the program to produce object code. The JCL for your

compilation must include SYSLIB statements that make the product data
definition files available to the compiler. The data definitions are supplied in
the following MQSeries for OS/390 libraries:

For COBOL, thlqual.SCSQCOBC
For assembler language, thlqual.SCSQMACS
For C, thlqual.SCSQC370
For PL/I, thlqual.SCSQPLIC

2. For a C application, prelink the object code created in step 1.
3. Link-edit the object code created in step 1 (or step 2 for a C application) to

produce a load module. When you link-edit the code, you must include one of
the MQSeries for OS/390 batch stub programs (CSQBSTUB or one of the RRS
stub programs: CSQBRRSI or CSQBRSTB).
CSQBSTUB

single-phase commit provided by MQSeries for OS/390
CSQBRRSI

two-phase commit provided by RRS via the MQI
CSQBRSTB

two-phase commit provided by RRS directly

Note: If you use CSQBRSTB then you must also link-edit your application with
ATRSCSS from SYS1.CSSLIB. Figure 20 and Figure 21 on page 265 show
fragments of JCL to do this. The stubs are language-independent and are
supplied in library thlqual.SCSQLOAD.

4. Store the load module in an application load library.

...

//*
//* MQSERIES FOR OS/390 LIBRARY CONTAINING BATCH STUB
//*
//CSQSTUB DD DSN=++HLQ.MQM100++.SCSQLOAD,DISP=SHR
//*...

//SYSIN DD *
INCLUDE CSQSTUB(CSQBSTUB)...

/*

Figure 20. Fragments of JCL to link-edit the object module in the batch environment, using
single-phase commit

Preparing your programs

264 MQSeries Application Programming Guide

To run a batch or RRS program, you must include the libraries
thlqual.SCSQAUTH and thlqual.SCSQLOAD in the STEPLIB or JOBLIB data set
concatenation.

To run a TSO program, you must include the libraries thlqual.SCSQAUTH and
thlqual.SCSQLOAD in the STEPLIB used by the TSO session.

To run an OpenEdition batch program from the OpenEdition shell, add the
libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD to the STEPLIB specification
in your $HOME/.profile like this:

STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQLOAD
export STEPLIB

Building CICS applications
To build an MQSeries for OS/390 application that runs under CICS, you must:
v Translate the CICS commands in your program into the language in which the

rest of your program is written
v Compile or assemble the output from the translator to produce object code
v Link-edit the object code to create a load module

CICS provides a procedure to execute these steps in sequence for each of the
programming languages it supports.
v For CICS Transaction Server for OS/390, the CICS Transaction Server for OS/390

System Definition Guide describes how to use these procedures and the CICS/ESA
Application Programming Guide gives more information on the translation process.

You must include:
v In the SYSLIB statement of the compilation (or assembly) stage, statements that

make the product data definition files available to the compiler. The data
definitions are supplied in the following MQSeries for OS/390 libraries:

For COBOL, thlqual.SCSQCOBC
For assembler language, thlqual.SCSQMACS
For C, thlqual.SCSQC370
For PL/I, thlqual.SCSQPLIC

...

//*
//* MQSERIES FOR OS/390 LIBRARY CONTAINING BATCH STUB
//*
//CSQSTUB DD DSN=++HLQ.MQM100++.SCSQLOAD,DISP=SHR
//CSSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//*...

//SYSIN DD *
INCLUDE CSQSTUB(CSQBRSTB)
INCLUDE CSSLIB(ATRSCSS)...

/*

Figure 21. Fragments of JCL to link-edit the object module in the batch environment, using
two-phase commit

Preparing your programs

Chapter 23. Building your application on OS/390 265

v In your link-edit JCL, the MQSeries for OS/390 CICS stub program
(CSQCSTUB). Figure 22 shows fragments of JCL code to do this. The stub is
language-independent and is supplied in library thlqual.SCSQLOAD.

When you have completed these steps, store the load module in an application
load library and define the program to CICS in the usual way.

Before you run a CICS program, your system administrator must define it to CICS
as an MQSeries program and transaction: you can then run it in the usual way.

Building IMS (BMP or MPP) applications
If you are building batch DL/I programs, see “Building OS/390 batch
applications” on page 264. To build other applications that run under IMS (either as
a BMP or an MPP), create JCL that performs these tasks:
1. Compile (or assemble) the program to produce object code. The JCL for your

compilation must include SYSLIB statements that make the product data
definition files available to the compiler. The data definitions are supplied in
the following MQSeries for OS/390 libraries:

For COBOL, thlqual.SCSQCOBC
For assembler language, thlqual.SCSQMACS
For C, thlqual.SCSQC370
For PL/I, thlqual.SCSQPLIC

2. For a C application, prelink the object module created in step 1.
3. Link-edit the object code created in step 1 (or step 2 for a C/370 application) to

produce a load module:
a. Include the IMS language interface module (DFSLI000).
b. Include the MQSeries for OS/390 IMS stub program (CSQQSTUB).

Figure 23 on page 267 shows fragments of JCL to do this. The stub is
language independent and is supplied in library thlqual.SCSQLOAD.

Note: If you are using COBOL, you should select the NODYNAM compiler
option to enable the linkage editor to resolve references to
CSQQSTUB unless you intend to use dynamic linking as described in
“Dynamically calling the MQSeries stub” on page 267.

4. Store the load module in an application load library.

...

//*
//* MQSERIES FOR OS/390 LIBRARY CONTAINING CICS STUB
//*
//CSQSTUB DD DSN=++HLQ.MQM100++.SCSQLOAD,DISP=SHR
//*...

//LKED.SYSIN DD *
INCLUDE CSQSTUB(CSQCSTUB)...

/*

Figure 22. Fragments of JCL to link-edit the object module in the CICS environment

Preparing your programs

266 MQSeries Application Programming Guide

Before you run an IMS program, your system administrator must define it to IMS
as an MQSeries program and transaction: you can then run it in the usual way.

Dynamically calling the MQSeries stub
Instead of link-editing the MQSeries stub program with your object code, you can
dynamically call the stub from within your program. You can do this in the batch,
IMS, and CICS environments. This facility is not supported by programs using
PL/I in the CICS environment and it is not supported in the RRS environment.

However, this method:
v Increases the complexity of your programs
v Increases the storage required by your programs at execution time
v Reduces the performance of your programs
v Means that you cannot use the same programs in other environments

If you call the stub dynamically, the appropriate stub program and its aliases must
be available at execution time. To ensure this, include the MQSeries for OS/390
data set SCSQLOAD:

For batch and IMS In the STEPLIB concatenation of the JCL

For CICS In the CICS DFHRPL concatenation

For IMS, you must ensure that the library containing the dynamic stub (built as
described in the information about installing the IMS adapter in the MQSeries for
OS/390 System Management Guide) is ahead of the data set SCSQLOAD in the
STEPLIB concatenation of the region JCL.

Use the names shown in Table 16 when you call the stub dynamically. In PL/I,
only declare the call names used in your program.

Table 16. Call names for dynamic linking

MQI call Dynamic call name

Batch (non-RRS) CICS IMS

MQBACK CSQBBACK not supported not supported

MQCMIT CSQBCOMM not supported not supported

MQCLOSE CSQBCLOS CSQCCLOS MQCLOSE

...

//*
//* MQSERIES FOR OS/390 LIBRARY CONTAINING IMS STUB
//*
//CSQSTUB DD DSN=++HLQ.MQM100++.SCSQLOAD,DISP=SHR
//*...

//LKED.SYSIN DD *
INCLUDE CSQSTUB(CSQQSTUB)...

/*

Figure 23. Fragments of JCL to link-edit the object module in the IMS environment

Preparing your programs

Chapter 23. Building your application on OS/390 267

Table 16. Call names for dynamic linking (continued)

MQI call Dynamic call name

MQCONN CSQBCONN CSQCCONN MQCONN

MQDISC CSQBDISC CSQCDISC MQDISC

MQGET CSQBGET CSQCGET MQGET

MQINQ CSQBINQ CSQCINQ MQINQ

MQOPEN CSQBOPEN CSQCOPEN MQOPEN

MQPUT CSQBPUT CSQCPUT MQPUT

MQPUT1 CSQBPUT1 CSQCPUT1 MQPUT1

MQSET CSQBSET CSQCSET MQSET

For examples of how to use this technique, see the following figures:

Batch and COBOL Figure 24

CICS and COBOL Figure 25 on page 269

IMS and COBOL Figure 26 on page 269

Batch and assembler Figure 27 on page 270

CICS and assembler Figure 28 on page 270

IMS and assembler Figure 29 on page 270

Batch and C Figure 30 on page 270

CICS and C Figure 31 on page 271

IMS and C Figure 32 on page 271

Batch and PL/I Figure 33 on page 271

IMS and PL/I Figure 34 on page 272

...

WORKING-STORAGE SECTION....

05 WS-MQOPEN PIC X(8) VALUE 'CSQBOPEN'....

PROCEDURE DIVISION....

CALL WS-MQOPEN WS-HCONN
MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON....

Figure 24. Dynamic linking using COBOL in the batch environment

Calling the MQSeries stub

268 MQSeries Application Programming Guide

...

WORKING-STORAGE SECTION....

05 WS-MQOPEN PIC X(8) VALUE 'CSQCOPEN'....

PROCEDURE DIVISION....

CALL WS-MQOPEN WS-HCONN
MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON....

Figure 25. Dynamic linking using COBOL in the CICS environment

...

WORKING-STORAGE SECTION....

05 WS-MQOPEN PIC X(8) VALUE 'MQOPEN'....

PROCEDURE DIVISION....

CALL WS-MQOPEN WS-HCONN
MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON....

* --- *
*
* If the compile option 'DYNAM' is specified
* then you may code the MQ calls as follows
*
* --- *...

CALL 'MQOPEN' WS-HCONN
MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON....

Figure 26. Dynamic linking using COBOL in the IMS environment

Calling the MQSeries stub

Chapter 23. Building your application on OS/390 269

...

LOAD EP=CSQBOPEN...

CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL...

DELETE EP=CSQBOPEN...

Figure 27. Dynamic linking using assembler language in the batch environment

...

EXEC CICS LOAD PROGRAM('CSQCOPEN') ENTRY(R15)...

CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL...

EXEC CICS RELEASE PROGRAM('CSQCOPEN')...

Figure 28. Dynamic linking using assembler language in the CICS environment

...

LOAD EP=MQOPEN...

CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL...

DELETE EP=MQOPEN...

Figure 29. Dynamic linking using assembler language in the IMS environment

...

typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)...

main()
{
CALL_ME * csqbopen;...

csqbopen = (CALL_ME *) fetch("CSQBOPEN");
(*csqbopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);...

Figure 30. Dynamic linking using C language in the batch environment

Calling the MQSeries stub

270 MQSeries Application Programming Guide

...

typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)...

main()
{
CALL_ME * csqcopen;...

EXEC CICS LOAD PROGRAM("CSQCOPEN") ENTRY(csqcopen);
(*csqcopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);...

Figure 31. Dynamic linking using C language in the CICS environment

...

typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)...

main()
{
CALL_ME * mqopen;...

mqopen = (CALL_ME *) fetch("MQOPEN");
(*mqopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);...

Figure 32. Dynamic linking using C language in the IMS environment

...

DCL CSQBOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);...

FETCH CSQBOPEN;

CALL CSQBOPEN(HQM,
MQOD,
OPTIONS,
HOBJ,
COMPCODE,
REASON);

RELEASE CSQBOPEN;

Figure 33. Dynamic linking using PL/I in the batch environment

Calling the MQSeries stub

Chapter 23. Building your application on OS/390 271

Debugging your programs
The main aids to debugging MQSeries for OS/390 application programs are the
reason codes returned by each API call. See the MQSeries Application Programming
Reference manual for a list of these and for more information, including suggestions
for corrective action.

This chapter also suggests other debugging tools that you may want to use in
particular environments.

Debugging CICS programs
You can use the CICS Execution Diagnostic Facility (CEDF) to test your CICS
programs interactively without having to modify the program or
program-preparation procedure. For more information about EDF, see the CICS
Transaction Server for OS/390 CICS Application Programming Guide.

CICS trace
You will probably also find it helpful to use the CICS Trace Control transaction
(CETR) to control CICS trace activity. For more information about CETR, see the
CICS Transaction Server for OS/390 CICS-Supplied Transactions manual.

To determine whether CICS trace is active, display connection status using the
CKQC panel. This panel also shows the trace number.

To interpret CICS trace entries, see Table 17.

The CICS trace entry for these values is AP0xxx (where xxx is the trace number
specified when the CICS adapter was enabled). All trace entries except CSQCTEST
are issued by CSQCTRUE. CSQCTEST is issued by CSQCRST and CSQCDSP.

Table 17. CICS adapter trace entries

Name Description Trace sequence Trace data

CSQCABNT Abnormal termination Before issuing END_THREAD
ABNORMAL to MQSeries. This is due
to the end of the task and therefore an
implicit backout could be performed
by the application. A ROLLBACK
request is included in the
END_THREAD call in this case.

Unit of work information. You can use
this information when finding out
about the status of work. (For
example, it can be verified against the
output produced by the DISPLAY
THREAD command, or the MQSeries
for OS/390 log print utility.)

...

DCL MQOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);...

FETCH MQOPEN;

CALL MQOPEN(HQM,
MQOD,
OPTIONS,
HOBJ,
COMPCODE,
REASON);

RELEASE MQOPEN;

Figure 34. Dynamic linking using PL/I in the IMS environment

Debugging programs

272 MQSeries Application Programming Guide

Table 17. CICS adapter trace entries (continued)

Name Description Trace sequence Trace data

CSQCBACK Syncpoint backout Before issuing BACKOUT to MQSeries
for OS/390. This is due to an explicit
backout request from the application.

Unit of work information.

CSQCCCRC Completion code and reason
code

After unsuccessful return from API
call.

Completion code and reason code.

CSQCCOMM Syncpoint commit Before issuing COMMIT to MQSeries
for OS/390. This can be due to a
single-phase commit request or the
second phase of a two-phase commit
request. The request is due to a
explicit syncpoint request from the
application.

Unit of work information.

CSQCEXER Execute resolve Before issuing EXECUTE_RESOLVE to
MQSeries for OS/390.

The unit of work information of the
unit of work issuing the
EXECUTE_RESOLVE. This is the last
indoubt unit of work in the
resynchronization process.

CSQCGETW GET wait Before issuing CICS wait. Address of the ECB to be waited on.

CSQCGMGD GET message data After successful return from MQGET. Up to 40 bytes of the message data.

CSQCGMGH GET message handle Before issuing MQGET to MQSeries
for OS/390.

Object handle.

CSQCGMGI Get message ID After successful return from MQGET. Message ID and correlation ID of the
message.

CSQCINDL Indoubt list After successful return from the
second INQUIRE_INDOUBT.

The indoubt units of work list.

CSQCINDO IBM use only

CSQCINDS Indoubt list size After successful return from the first
INQUIRE_INDOUBT and the indoubt
list is not empty.

Length of the list. Divided by 64 gives
the number of indoubt units of work.

CSQCINQH INQ handle Before issuing MQINQ to MQSeries
for OS/390.

Object handle.

CSQCLOSH CLOSE handle Before issuing MQCLOSE to MQSeries
for OS/390.

Object handle.

CSQCLOST Disposition lost During the resynchronization process,
CICS informs the adapter that it has
been cold started so no disposition
information regarding the unit of
work being resynchronized is
available.

Unit of work ID known to CICS for
the unit of work being
resynchronized.

CSQCNIND Disposition not indoubt During the resynchronization process,
CICS informs the adapter that the unit
of work being resynchronized should
not have been indoubt (that is,
perhaps it is still running).

Unit of work ID known to CICS for
the unit of work being
resynchronized.

CSQCNORT Normal termination Before issuing END_THREAD
NORMAL to MQSeries for OS/390.
This is due to the end of the task and
therefore an implicit syncpoint commit
may be performed by the application.
A COMMIT request is included in the
END_THREAD call in this case.

Unit of work information.

CSQCOPNH OPEN handle After successful return from
MQOPEN.

Object handle.

CSQCOPNO OPEN object Before issuing MQOPEN to MQSeries
for OS/390.

Object name.

CSQCPMGD PUT message data Before issuing MQPUT to MQSeries
for OS/390.

Up to 40 bytes of the message data.

Debugging programs

Chapter 23. Building your application on OS/390 273

Table 17. CICS adapter trace entries (continued)

Name Description Trace sequence Trace data

CSQCPMGH PUT message handle Before issuing MQPUT to MQSeries
for OS/390.

Object handle.

CSQCPMGI PUT message ID After successful MQPUT from
MQSeries for OS/390.

Message ID and Correlation ID of the
message.

CSQCPREP Syncpoint prepare Before issuing PREPARE to MQSeries
for OS/390 in the first phase of
two-phase commit processing. This
call can also be issued from the
distributed queuing component as an
API call.

Unit of work information.

CSQCP1MD PUTONE message data Before issuing MQPUT1 to MQSeries
for OS/390.

Up to 40 bytes of data of the message.

CSQCP1MI PUTONE message ID After successful return from MQPUT1. Message ID and correlation ID of the
message.

CSQCP1ON PUTONE object name Before issuing MQPUT1 to MQSeries
for OS/390.

Object name.

CSQCRBAK Resolved backout Before issuing RESOLVE_ROLLBACK
to MQSeries for OS/390.

Unit of work information.

CSQCRCMT Resolved commit Before issuing RESOLVE_COMMIT to
MQSeries for OS/390.

Unit of work information.

CSQCRMIR RMI response Before returning to the CICS RMI
(resource manager interface) from a
specific invocation.

Architected RMI response value. Its
meaning depends of the type of the
invocation. These values are
documented in the CICS Transaction
Server for OS/390 Customization Guide.
To determine the type of invocation,
look at previous trace entries
produced by the CICS RMI
component.

CSQCRSYN Resynchronization Before the resynchronization process
starts for the task.

Unit of work ID known to CICS for
the unit of work being
resynchronized.

CSQCSETH SET handle Before issuing MQSET to MQSeries
for OS/390.

Object handle.

CSQCTASE IBM use only

CSQCTEST Trace test Used in EXEC CICS ENTER TRACE
call to verify the trace number
supplied by the user or the trace
status of the connection.

No data.

CSQCDCFF IBM use only

Debugging TSO programs
The following interactive debugging tools are available for TSO programs:
v TEST tool
v VS COBOL II interactive debugging tool
v INSPECT interactive debugging tool for C and PL/I programs

Debugging programs

274 MQSeries Application Programming Guide

Chapter 24. Building your application on OS/2 Warp

The OS/2 publications describe how to build executable applications from the
programs you write. This chapter describes the additional tasks, and the changes
to the standard tasks, you must perform when building MQSeries for OS/2 Warp
applications to run under OS/2 Warp. C, C++, and COBOL programming
languages are supported. For information about preparing your C++ programs, see
the MQSeries Using C++ book.

The tasks you must perform to create an executable application using MQSeries for
OS/2 Warp vary with the programming language your source code is written in.
In addition to coding the MQI calls in your source code, you must add the
appropriate language statements to include the MQSeries for OS/2 Warp include
files for the language you are using. You should make yourself familiar with the
contents of these files. See “Appendix F. MQSeries data definition files” on
page 515 for a full description.

Preparing C programs

For DOS and Windows 3.1 only
Applications must be built using the large memory model.

Work in your normal environment; MQSeries for OS/2 Warp requires nothing
special.
v You need to link your programs with the appropriate libraries provided by

MQSeries. Link program/exit type server for 32-bit C with library file MQM.LIB.
Link program/exit type client for C with library file MQIC.LIB.
The following command gives an example of compiling the sample program
amqsget0:
icc amqsget0.c /Gm /Gd /B “/pmtype:vio” /Fe“amqsget0.exe” mqm.lib

Notes:

1. If you are writing an installable service (see the MQSeries Programmable
System Management book for further information), link to the MQMZF.LIB
library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, use the MQRMIXASwitch structure and link to the
MQMXA.LIB library.

3. If you are writing a CICS exit for use with CICS for OS/2 Version 2.0.1, link
to the MQMCICS.LIB library. If you are writing a CICS exit for use with
CICS Transaction Server for OS/2, Version 4, link to the MQMCICS3.LIB
library.

v For DOS only: Your application must also be linked with two of the following
libraries, one for each protocol, indicating whether you do or do not require it. If
you require TCP/IP you must also link to SOCKETL from the DOS TCP/IP
product.

© Copyright IBM Corp. 1993, 2000 275

Library file Program/exit type
MQICN.LIB NetBIOS required
MQICDN.LIB NetBIOS not required
MQICT.LIB TCP/IP required
MQICDT.LIB TCP/IP not required

v You must ensure that you have specified adequate run-time stack and heap
sizes:
– You must link a trusted application with more stack than a normal

application. Therefore, a stack size of 200 KB is the recommended minimum.
– A heap size of 8 KB is the recommended minimum.

v The DLLs must be in the library path (LIBPATH) you have specified.
v If you use lowercase characters whenever possible, you can move from

MQSeries for OS/2 Warp to MQSeries on UNIX systems, where use of lowercase
is necessary.

Preparing CICS and Transaction Server programs
Sample C source for a CICS MQSeries transaction is provided by AMQSCIC0.CCS.
You build it using the standard CICS facilities.

For CICS for OS/2 Version 2:
1. Add the following lines to the CICSENV.CMD file:

UserWrk = ‘c:\mqm\dll’
UserInclude = ‘c:\mqm\tools\c\include;c:\mqm\tools\c\samples’

If necessary replace c:\mqm with the path on which you installed the sample
code.

2. Compile using the command:
CICS32TC AMQSCIC0.CCS LIBS(MQM)

This is described in the CICS for OS/2 V2.0.1 Application Programming Guide.

For CICS Transaction Server for OS/2, Version 4:
1. Add the following lines to the CICSENV.CMD file:

UserWrk = ‘c:\mqm\dll’
UserInclude = ‘c:\mqm\tools\c\include;c:\mqm\tools\c\samples’

If necessary replace c:\mqm with the path on which you installed the sample
code.

2. Compile using the command:
CICSCTCL AMQSCIC0.CCS LIBS(MQM)

This is described in the Transaction Server for OS/2 Warp, V4 Application
Programming Guide.

You can find more information about supporting CICS transactions in the MQSeries
System Administration book.

Preparing C programs

276 MQSeries Application Programming Guide

Preparing COBOL programs
To prepare COBOL programs on OS/2, link your programs with one of the
following libraries provided by MQSeries:

Library file Program/exit type
MQMCB16 Server for 16-bit Micro Focus COBOL
MQICCB16 Client for 16-bit Micro Focus COBOL
MQMCBB Server for 32-bit IBM VisualAge COBOL
MQMCB32 Server for 32-bit Micro Focus COBOL
MQICCBB Client for 32-bit IBM VisualAge COBOL
MQICCB32 Client for 32-bit Micro Focus COBOL

To compile, for example, the sample program amq0put0, using IBM VisualAge
COBOL:
1. Set the SYSLIB environment variable to include the path to the MQSeries

VisualAge COBOL copybooks:
set SYSLIB=<drive>:\mqm\tools\cobol\copybook\VAcobol;%SYSLIB%

2. Compile and link the program:
cob2 amq0put0.cbl -qlib <drive>:\mqm\tools\lib\mqmcbb.lib

(for use on the MQSeries server)
cob2 amq0put0.cbl -qlib <drive>:\mqm\tools\lib\mqiccbb.lib

(for use on the MQSeries client)

Note: Although the compiler option CALLINT(SYSTEM) must be used, this is
the default for cob2.

To prepare Micro Focus COBOL programs, follow these steps:
1. Compile your applications with the LITLINK directive.
2. Specify adequate run-time stack sizes. You must link a trusted application with

more stack than a normal application, so a stack size of 200 KB is the
recommended minimum. To do this, use:
set cobsw=xxxx

3. Link the object file to the run-time system.
Set the LIB environment variable to point to the compiler COBOL libraries.
Link the object file for use on the MQSeries server:
cbllink amq0put0.obj mqmcb32.lib

or
Link the object file for use on the MQSeries client:
cbllink amq0put0.obj mqiccb32.lib

4. Add the MQSeries copybook directory (\mqm\tools\cobol\copybook) to the
cobcpy environment variable.
set cobcpy=c:\mqm\tools\cobol\copybook;%COBCPY%

Preparing COBOL programs

Chapter 24. Building your application on OS/2 Warp 277

Preparing Transaction Server programs
To prepare CICS Transaction Server for OS/2, V4 programs using IBM VisualAge
COBOL:
1. Add the following lines to the CICSENV.CMD file:

UserWrk=‘c:\mqm\dll’
UserCobol=‘IBM’
UserCobcopy=‘c:\mqm\tools\cobol\copybook’
UserCobWork=‘c:\mq-cics\wrk’

Where \mq-cics\wrk is the name of a work directory for output from
CICSTRAN and CICSCOMP commands (see steps 2 and 3).

2. Translate your program:
CICSTRAN MYPROG.CPP

This translates your program to a .CBL program.
3. Compile your program:

CICSCOMP MYPROG.CBL

4. Link your program:
CICSLINK MYPROG.OBJ LIBS(MQMCBB)

For further information about this, see the CICS for OS/2 Customization V3.0,
SC33-1581-00 and the Transaction Server for OS/2 Warp, V4 Application Programming
Guide.

Preparing PL/I programs
Sample PL/I programs are supplied with MQSeries. PL/I include files are also
provided so that the C entry points in the MQSeries libraries can be invoked
directly.

To prepare a PL/I program:
1. Link your program with one of the libraries listed in “Preparing C programs”

on page 275.
2. Ensure that \mqm\tools\pli\include is in your INCLUDE environment

variable.
3. Compile your program:

pli amqpput0.pli
ilink amqpput0.obj mqm.lib

Preparing COBOL programs

278 MQSeries Application Programming Guide

Chapter 25. Building your application on SINIX or DC/OSx

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for SINIX and DC/OSx applications to
run under SINIX or DC/OSx. COBOL and C programming languages are
supported.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See “Appendix F. MQSeries data definition files” on page 515 for a full
description.

Preparing C programs
You need to link your programs with the appropriate library provided by
MQSeries.

If you are not working in a DCE-threaded environment or using CICS, you must
link to one of the following libraries:

Library file Program/exit type
libmqm.so server for C
libmqic.so client for C

If you are working in a DCE-threaded environment or using CICS, you must link
to the C library, libmqm_r.so.

Notes:

1. If you are writing an installable service (see the MQSeries Programmable System
Management book for further information), you need to link to the libmqmzf.so
library. Installable services must not use DCE.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, link to the libmqmxa.so library in a non-DCE threaded
environment and to the libmqmxa_r.so library in a DCE threaded environment.

C compiler flags
When you compile dynamic libraries, or shared objects, for use with MQSeries for
SINIX and DC/OSx, you must use the cc command in the final step that creates
the library or object, and not merely the ld command. This is because the cc
command automatically links various initialization data that is needed for proper
dynamic linking and loading.

The order of the libraries specified is important. The following is an example of
how to build the sample program amqsput0 for SINIX:

cc -o amqsput0 -lmqm -lmqmcs -lmqmzse -lnsl \
-lsocket -ldl -lmproc -lext amqsput0.c

For DC/OSx Version cd087, include -liconv -lresolv on the above command, as
shown below:

cc -o amqsput0 -lmqm -lmqmcs -lmqmzse -lnsl \
-lsocket -ldl -liconv -lresolv -lmproc -lext amqsput0.c

© Copyright IBM Corp. 1993, 2000 279

In the same way, for versions preceding cd087 of DC/OSx, include -liconv.

Note: If you are using an additional product such as ENCINA, you need to find
the appropriate header files. You can do this in two ways:
1. Use the -I option to scan the extra include directory, for example:

cc -c -I/opt/encina/include amqsxaex.c

2. Symbolically link the header files into /usr/include, for example:
ln -s /opt/encina/include/* /usr/include

Preparing COBOL programs
You must compile your COBOL programs using the Micro Focus Cobol compiler
for SINIX with the LITLINK directive.

You must ensure that you have specified adequate run-time stack sizes; 16 KB is
the recommended minimum.

You need to link your program with one of the following:

Library file Program/exit type
libmqmcbrt.o MQSeries COBOL run-time
libmqmcb.so server for COBOL
libmqicb.so client for COBOL

Export the following variables:
COBDIR=/usr/opt/lib/cobol export COBDIR
COBLIB=$COBDIR/coblib export COBLIB
COBCPY=/opt/mqm/inc export COBCPY
LD_LIBRARY_PATH=/opt/lib/cobol/coblib export LD_LIBRARY_PATH

Compiling COBOL programs
To compile a COBOL program like amq0gbr0.cbl on MQSeries for SINIX and
DC/OSx, enter:
$ cob -xU -C warning=2 amq0gbr0.cbl -lmqmcb -lmqm \
-lmqmcs -lmqmzse -lmproc

For DC/OSx Version cd087, include -liconv -lresolv on the above command. In
the same way, for versions preceding cd087 of DC/OSx, include -liconv.

If you want to use the programs on a machine which only has MQSeries client
connections, recompile the programs and link them with the mqicb library instead
of the mqmcb library.

Note: The mqicb and mqmcb libraries must come before the mqm library on the
above command line.

If you have DCE, you can link your COBOL batch programs with either DCE
threaded libraries or non-DCE threaded libraries.

Notes:

1. A single program cannot contain both DCE threaded and non-DCE threaded
modules.

2. Programs running under CICS must always be DCE threaded.
3. DCE threaded libraries are referred to as re-entrant.

Preparing C programs

280 MQSeries Application Programming Guide

If you do not choose to use DCE threaded libraries, remove /opt/dcelocal/bin
from your PATH environment variable before calling the COBOL compiler.

If you do choose to use DCE threaded libraries, export the following:
$ export COBLIBLIST=“/opt/lib/cobol/coblib/liblist_r”

Note: COBLIBLIST is used only in the Micro Focus Compiler for SINIX. It is the
same as the Micro Focus Compiler expression LIBLIST.

Preparing CICS programs
An XA switch module is provided to enable you to link CICS with MQSeries:

Table 18. Essential Code for CICS applications (SINIX)

Description C (source) C (exec) - add one of the following
to your XAD.Stanza

XA initialization routine amqzscix.c amqzsc - CICS for Siemens Nixdorf
SINIX V2.2

Always link your transactions with the thread safe MQSeries library libmqm_r.so.

You can find more information about supporting CICS transactions in the MQSeries
for SINIX and DC/OSx System Management Guide.

CICS on Open Systems support
MQSeries for SINIX supports CICS on Open Systems via the XA interface.

Note: MQSeries for DC/OSx does not support CICS.

In order to enable the CICS run-time COBOL library to call MQSeries on UNIX
systems, you must add the MQSeries COBOL run-time library module to the
run-time library using the following command:

cicsmkcobol libmqmcbrt.o -lmqm_r

It is important to ensure that the COBOL run-time library and CICS are linked to
the same (DCE) version of the library. All CICS on Open Systems MQSeries
transactions must link with libmqm_r.

CICS sample transaction
Sample C source for a CICS MQSeries transaction is provided by AMQSCIC0.CCS.
You build it using the standard CICS facilities. Compile it using the following
commands.

Export the following environment variables:
export CCFLAGS=“-I/opt/mqm/inc -I/opt/mqm/samp”
export USERLIB=“-L/opt/mqm/lib -L/opt/cics/lib -lmqm_r -lmqmcs_r”

Unset the lib path.

Then, use the command:
cicstcl -l C amqscic0.ccs

The transaction reads messages from the transmission queue
SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places

Preparing COBOL programs

Chapter 25. Building your application on SINIX or DC/OSx 281

them onto the local queue whose name is contained in the transmission header of
the message. Any failures will be sent to the queue SYSTEM.SAMPLE.CICS.DLQ.
The sample MQSC script AMQSCIC0.TST may be used to create these queues and
sample input queues.

Linking libraries
You need to link your programs with the appropriate library provided by
MQSeries.

You must link to one or more of the following libraries:

Library file Program/exit type
libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service
libmqmxa.a XA interface

If you are using an additional product such as ENCINA, you need to find the
run-time libraries. There are three ways (the first two are preferred, especially if
the module is an exit or trigger monitor):
1. Link the libraries into /usr/lib/, for example:

ln -s /opt/encina/lib/*.so /usr/lib

Note: You need to check these symbolic links when you install a newer version
of ENCINA.

2. Set LD_LIBRARY_PATH to include the ENCINA library directory (this is in the
environment when you run the programs), for example:
LD_LIBRARY_PATH=/opt/encina/lib export LD_LIBRARY_PATH

3. Set LD_RUN_PATH to include /opt/encina/lib when you compile the
programs.

To compile an ENCINA program on SINIX which uses the MQI:
LD_RUN_PATH=/opt/encina/lib export LD_RUN_PATH
cc -o amqsxaex -I/opt/encina/include amqsxaex.c -lmqm -lmqmcs \
-lmqmcs -lmqmzse -lnsl -lsocket -lencina -ldl -lmproc -lext

For DC/OSx, include -liconv on the above command line.

Preparing CICS programs

282 MQSeries Application Programming Guide

Chapter 26. Building your application on Sun Solaris

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for Sun Solaris applications to run
under Sun Solaris. COBOL, C, and C++ programming languages are supported.
For information about preparing your C++ programs, see the MQSeries Using C++
book.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See “Appendix F. MQSeries data definition files” on page 515 for a full
description.

Sun Solaris applications must be built threaded, regardless of how many threads
the application uses. This is because MQSeries will create background threads. Do
not use nonthreadsafe functions such as:
v asctime
v ctime
v qmtime
v localtime
v rand
v srand

Use their threadsafe equivalents.

Preparing C programs
Precompiled C programs are supplied in the /opt/mqm/samp/bin directory. To
build a sample from source code, use a supported compiler (see “Appendix A.
Language compilers and assemblers” on page 423 for more information).

To compile, for example, the sample program amqsput0:
1. export LIB=/opt/mqm/lib:$LIB

2. Ensure the environment is set to use the correct versions of the compiler
software and man pages:
export PATH=/opt/SUNWspro/bin:$PATH
export MANPATH=/opt/SUNWspro/man:/usr/man:$MANPATH
export LD_LIBRARY_PATH= \
/opt/SUNWspro/lib:/$OPENWINHOME/lib:$LD_LIBRARY_PATH

3. Compile the program (the order of the libraries specified is important):
cc -o <amqsput0> <amqsput0>.c -mt -lmqm -lmqmcs -lmqmzse \
-lsocket -lnsl -ldl

If you wish to compile a DCE application, use the following:
cc -o <amqsput0> <amqsput0>.c -mt -lmqm -lmqmcs_d -lmqmzse \
-ldce -lthread -lsocket -lnsl -ldl

If you use the unsupported compiler /usr/ucb/cc, your application may compile
and link successfully. However when you run it, it will fail when it attempts to
connect to the queue manager.

© Copyright IBM Corp. 1993, 2000 283

|
|
|
|
|
|
|
|
|

|

|

If you want to use the programs on a machine which has only the MQSeries client
for Sun Solaris installed, recompile the programs to link them with the client
library instead:
cc -o <amqsput0> <amqsput0>.c -lmqic -lmqmcs -lsocket

To build an MQSeries client application that uses DCE, enter:
cc -o <amqsput0> <amqsput0>.c -mt -lmqic -lmqmcs_d -lmqmzse \
-ldce -lm -lpthread -lsocket -lc -lnsl -ldl

Linking libraries
You must link with the MQSeries libraries that are appropriate for your application
type:
Program/exit type

Library files
Server for C

libmqm.so, libmqmcs.so, and libmqmzse.so
Client for C

libmqic.so, libmqmcs.so, and libmqmzse.so
Server for C with DCE

libmqm.so, libmqmcs_d.so, and libmqmzse.so
Client for C with DCE

libmqic.so, libmqmcs_d.so, and libmqmzse.so

Notes:

1. If you are writing an installable service (see the MQSeries Programmable System
Management book for further information), link to the libmqmzf.so library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, link to the libmqmxa.a library.

3. To run the sample Encina program, link against the following libraries in
addition to the libraries listed above.
v libmqmxa.a

Also, link against libmqmcs_d.so instead of libmqmcs.so, in addition to the
Encina and DCE libraries:
v libEncServer.so
v libEncina.so
v libdce.so

Preparing COBOL programs
Before preparing your COBOL programs, you should check with your system
administrator that the COBOL compiler is set up to link with the correct C
libraries. By default, the COBOL compiler Version 3.2 links to 3.0 SPARCompiler C
libraries. For example, to update the compiler to link with SPARCompiler Version
4.0, ensure that your system administrator has completed the following:
1. Change directory to $COBDIR/coblib:

cd $COBDIR/coblib

Note: By default, COBDIR is /opt/lib/cobol.
2. Make a backup copy of liblist:

cp liblist liblist.saved

3. Edit the liblist file using a standard UNIX editor like vi:
vi liblist

Preparing C programs

284 MQSeries Application Programming Guide

4. Change all references from SC3.0 to SC4.0.

The COBOL compiler is now set up for you to compile COBOL programs.

Precompiled COBOL programs are supplied in the /opt/mqm/samp/bin directory.
Use the Micro Focus compiler from the directory /opt/bin to build a sample from
source code.

To compile, for example, the sample program amq0put0:
1. Ensure that the environment is set:

export COBDIR=/opt/lib/cobol
export PATH=/opt/bin:$PATH
export LD_LIBRARY_PATH=$COBDIR/coblib:$LD_LIBRARY_PATH

Note: The above assumes that COBOL is installed in the default directories.
2. Define the location of the copybooks which declare the MQI structures:

export COBCPY="/opt/mqm/inc"

3. Link your program with one of the following libraries when building the
application:
libmqmcb.so

Server for COBOL
libmqicb.so

Client for COBOL
4. Compile the program:

cob -vxP amq0put0.cbl -lmqmcb -lmqm -lmqmcs -lmqmzse

Preparing CICS programs
XA switch modules are provided to enable you to link CICS with MQSeries:

Table 19. Essential Code for CICS applications (Sun Solaris)

Description C (source) C (exec) - add one of the
following to your XAD.Stanza

XA initialization routine amqzscix.c amqzsc - TXSeries for Sun Solaris

Always link your transactions with the thread safe MQSeries library libmqm_so.

You can find more information about supporting CICS transactions in the MQSeries
System Administration book.

CICS on Open Systems support
MQSeries on UNIX systems supports CICS on Open Systems via the XA interface.

You must ensure that CICS COBOL applications are linked to the threaded version
of the library. CICS on Open Systems MQSeries transactions must link with
libmqm_r, except on Sun Solaris, where you must link with lmqmcs_d.

Preparing CICS COBOL programs using Micro Focus COBOL
To use Micro Focus COBOL, follow these steps:
1. Add the MQSeries COBOL run-time library module to the run-time library

using the following command:
cicsmkcobol /opt/mqm/lib/libmqmcbrt.o -lmqmcs_d

Preparing COBOL programs

Chapter 26. Building your application on Sun Solaris 285

This creates the Micro Focus COBOL language method file and enables the
CICS run-time COBOL library to call MQSeries on UNIX systems.

Note: cicsmkcobol must be run only when one of the following is installed:
New version or release of Micro Focus COBOL
New version or release of TXSeries for Sun Solaris
New version or release of any supported database product (for
COBOL transactions only)
TXSeries for Sun Solaris

2. Export the following environment variables:
COBCPY=/opt/mqm/inc export COBCPY
LDFLAGS="-L/usr/mqm/lib -lmqmcs_d" export LDFLAGS

3. Translate, compile, and link the program by typing:
cicstcl -l COBOL -e <yourprog>.ccp

Preparing CICS C programs
You build CICS C programs using the standard CICS facilities:
1. Export one of the following environment variables:
v LDFLAGS = “-L/opt/mqm/lib -L/opt/cics/lib -lmqmcs_d -lmqm -lmqmzse

-lsocket -lnsl -ldl”
2. Translate, compile, and link the program by typing:

cicstcl -l C amqscic0.ccs

CICS C sample transaction: Sample C source for a CICS MQSeries transaction is
provided by AMQSCIC0.CCS. The transaction reads messages from the
transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue
manager and places them onto the local queue whose name is contained in the
transmission header of the message. Any failures are sent to the queue
SYSTEM.SAMPLE.CICS.DLQ. The sample MQSC script AMQSCIC0.TST may be
used to create these queues and sample input queues.

Preparing CICS programs

286 MQSeries Application Programming Guide

Chapter 27. Building your application on Tandem NSK

The sample programs and the sample compilation and binding scripts, provided in
subvolume ZMQSSMPL, illustrate the main features of the MQI in MQSeries for
Tandem NonStop Kernel, and demonstrate how to compile and bind an
application.

This chapter describes some minor differences between the standard Version 2 MQI
interface, as documented in the MQSeries Application Programming Reference manual,
and the MQI interface for MQSeries for Tandem NonStop Kernel.

Unit of work (transaction) management
Transaction management is performed under the control of Tandem’s TM/MP
product, rather than by MQSeries itself. See “Syncpoints in MQSeries for Tandem
NonStop Kernel applications” on page 182 for details.

General design considerations
Please note that:
v The MQI library (bound into the application process) does not open $RECEIVE

and does not open $TMP (TM/MP transaction pseudo-file) itself, so you may
code your application to use these features.

v The MQI library uses a SERVERCLASS_SEND_() call in initial communication
with the Queue Manager. While connected, it maintains two process file opens
(with the LINKMON process and a Local Queue Manager Agent) and a small
number of disk file opens (fewer than 10).

MQGMO_BROWSE_* with MQGMO_LOCK
As a consequence of the use of TM/MP, MQGMO_BROWSE_* with
MQGMO_LOCK is not supported.

Triggered applications
Triggered MQSeries applications in the Tandem NSK environment receive user
data through environment variables set up in the TACL process that is running.
This is because there is a limit to the length of the argument list that can be passed
to a Tandem C process.

In order to access this information, triggered applications should contain code
similar to the following (see sample amqsinqa for more details):

MQTMC2 *trig; /* trigger message structure */
MQTMC2 trigdata; /* trigger message structure */
char *applId;
char *envData;
char *usrData;
char *qmName;

/**/
/* */
/* Set the program argument into the trigger message */
/* */
/**/
trig = (MQTMC2*)argv[1]; /* -> trigger message */

© Copyright IBM Corp. 1993, 2000 287

/* get the environment variables and load the rest of the trigger */
memcpy(&trigdata, trig, sizeof(trigdata));

memset(trigdata.ApplId, ' ', sizeof(trigdata.ApplId));
memset(trigdata.EnvData, ' ', sizeof(trigdata.EnvData));
memset(trigdata.UserData, ' ', sizeof(trigdata.UserData));
memset(trigdata.QMgrName, ' ', sizeof(trigdata.QMgrName));

if((applId = getenv("TRIGAPPLID")) != 0)
{
strncpy(trigdata.ApplId ,applId, strlen(applId));

}

if ((envData = getenv("TRIGENVDATA")) != 0)
{
strncpy(trigdata.EnvData , envData, strlen(envData));

}

if ((usrData = getenv("TRIGUSERDATA")) != 0)
{
strncpy(trigdata.UserData, usrData, strlen(usrData));

}

if ((qmName = getenv("TRIGQMGRNAME")) != 0)
{
strncpy(trigdata.QMgrName, qmName, strlen(qmName));

}

trig = &trigdata;

Compiling and binding applications
The MQSeries for Tandem NonStop Kernel.0.1 MQI is implemented using the
Tandem wide memory model (the int datatype is 4 bytes) and the Common
Run-time Environment (CRE). Applications must be compatible with this
environment to work correctly. Refer to the sample build files for the correct
options for each compiler to ensure compatibility.

In particular, TAL and COBOL applications must follow the rules that are required
for compatibility with the CRE, documented in the Tandem manuals relating to the
CRE.

Four versions of the MQI library are delivered with MQSeries for Tandem
NonStop Kernel.0.1, contained in ZMQSLIB. You must ensure that you use the
correct library, as follows:

mqmlibc for C, non-native
mqmlibt for TAL or COBOL, non-native
mqmlibnc for native C
mqmlibnt for native TAL or COBOL

Running applications
In order to be able to connect to a queue manager, the environment of an
application program must be correctly defined:

Building applications on Tandem NSK

288 MQSeries Application Programming Guide

|
|
|
|
|

|
|
|

v The PARAM MQDEFAULTPREFIX is mandatory in the environment of all
applications.

v If you have chosen an alternative (nondefault) location for your MQSINI file, an
application will not be able to connect to the queue manager if the PARAM
MQMACHINIFILE is not set correctly.

v TAL and COBOL applications must have the PARAM SAVE-ENVIRONMENT
ON defined in their environment, or they will not be able to connect to the
queue manager.

An application may run as either low-pin or high-pin. MQSeries executables
themselves are configured to run as high-pin.

MQSeries applications are supported in the NSK environment only. No support for
OSS applications is provided.

An MQSeries application may run under PATHWAY, from TACL, or as a child
process of another process. Applications can even be added to the queue manager
PATHWAY configuration itself, provided they behave correctly on queue manager
shutdown.

Running applications

Chapter 27. Building your application on Tandem NSK 289

Changes

290 MQSeries Application Programming Guide

Chapter 28. Building your application on VSE/ESA

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for VSE/ESA applications to run
under MQSeries for VSE/ESA. C, COBOL, and PL/I programming languages are
supported.

Linking library
The object decks required by MQSeries for VSE/ESA applications are held in the
install sublibrary PRD2.MQSERIES (this is its default name). Reference the
sublibrary in a LIBDEF statement in the compile JCL:
// LIBDEF SEARCH=(PRD2.MQSERIES,PRD2.SCEECICS,PRD2.SCEEBASE)

The MQSeries object code is autolinked into the application.

Using the batch interface
If you invoke the MQSeries API from a VSE/ESA batch application, you must
link-edit a special object module, which intercepts and handles the MQSeries calls,
with the usercode by specifying:

INCLUDE MQBIBTCH

as part of the link-edit JCL.

Preparing C programs
You must meet the requirements of the COBOL language interface when you write
C programs. There are no sample programs provided but an include file,
equivalent to the COBOL copybooks, is supplied. It is called CMQC.H, and it
declares everything required.

Preparing COBOL programs
Sample programs and copybooks are provided in COBOL for VSE/ESA.

Preparing PL/I programs
You must meet the requirements of the COBOL language interface when you write
PL/I programs. There are no sample programs provided but two include files,
equivalent to the COBOL copybooks, are supplied:
CMQEPP.P

Declares the MQI calls and structures
CMQP.P

Declares the MQI constants

© Copyright IBM Corp. 1993, 2000 291

Building applications on VSE/ESA

292 MQSeries Application Programming Guide

Chapter 29. Building your application on Windows

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for Windows applications to run
under Windows. C and Visual Basic programming languages are supported.

The tasks you must perform to create an executable application using MQSeries for
Windows depend on the language in which your source code is written. In
addition to coding the MQI calls in your source code, you must add the
appropriate language statements to include the MQSeries for Windows data
definition files for the language you are using. You should be aware of the contents
of these files. See “Appendix F. MQSeries data definition files” on page 515 for a
full description.

Linking libraries
You need to link your programs with the appropriate libraries provided by
MQSeries:

Library file Program
MQM.LIB server for 32-bit C
MQM16.LIB server for 16-bit C

Preparing Visual Basic programs
To prepare Visual Basic programs on Windows client:
1. Create a new project.
2. Add the supplied module file, CMQB.BAS, to the project.
3. Add other supplied module files if you need them:

CMQBB.BAS MQAI support
CMQCFB.BAS PCF support
CMQXB Channel exits support

Call the procedure MQ_SETDEFAULTS before making any MQI calls in the project
code. This procedure sets up default structures that the MQI calls require.

Specify that you are creating an MQSeries client, before you compile or run the
project, by setting the conditional compilation variable MqType to 2 as follows:
v In a Visual Basic version 4 project:

1. Select the Tools menu.
2. Select Options.
3. Select the Advanced tab in the dialog box.
4. In the Conditional Compilation Arguments field, enter this:

MqType=2

© Copyright IBM Corp. 1993, 2000 293

v In a Visual Basic version 5 project:
1. Select the Project menu.
2. Select Name Properties (where Name is the name of the current project).
3. Select the Make tab in the dialog box.
4. In the Conditional Compilation Arguments field, enter this:

MqType=2

Preparing Visual Basic programs

294 MQSeries Application Programming Guide

Chapter 30. Building your application on Windows NT

The Windows NT publications describe how to build executable applications from
the programs you write. This chapter describes the additional tasks, and the
changes to the standard tasks, you must perform when building MQSeries for
Windows NT applications to run under Windows NT. ActiveX, C, C++, COBOL,
PL/I, and Visual Basic programming languages are supported. For information
about preparing your ActiveX programs, see the MQSeries for Windows NT Using
the Component Object Model Interface book. For information about preparing your
C++ programs, see the MQSeries Using C++ book.

The tasks you must perform to create an executable application using MQSeries for
Windows NT vary with the programming language your source code is written in.
In addition to coding the MQI calls in your source code, you must add the
appropriate language statements to include the MQSeries for Windows NT include
files for the language you are using. You should make yourself familiar with the
contents of these files. See “Appendix F. MQSeries data definition files” on
page 515 for a full description.

Preparing C programs

For DOS and Windows 3.1 only
Applications must be built using the large memory model.

Work in your normal environment; MQSeries for Windows NT requires nothing
special.
v You need to link your programs with the appropriate libraries provided by

MQSeries:

Library file Program/exit type
MQM.LIB server for 32-bit C
MQIC32.LIB client for 32-bit C

The following command gives an example of compiling the sample program
amqsget0 (using the Microsoft Visual C++® compiler):
cl amqsget0.c /link mqm.lib

Notes:

1. If you are writing an installable service (see the MQSeries Programmable
System Management book for further information), you need to link to the
MQMZF.LIB library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM TXSeries, Transarc Encina, or
Novell Tuxedo, use the MQRMIXASwitch structure and link to the
MQMXA.LIB library.

3. If you are producing an XA switch load file using the
MQRMIXASwitchDynamic structure, link to the Encina MQMENC.LIB
library.

4. To build the Encina sample, link against the following libraries:

© Copyright IBM Corp. 1993, 2000 295

– MQM.LIB
– MQMENC.LIB

Also, link against the Encina and DCE libraries:
– libEncServer.lib
– libEncina.lib
– libdce.lib

5. If you are writing a CICS exit, link to the MQMCICS.LIB library.
6. If an application is to make changes to environment variables, such as

MQSERVER, you must link it to the same C run-time libraries as those used
by MQSeries. Use the ‘-MD’ compile switch to accomplish this.

v For DOS only: Your application must also be linked with two of the following
libraries, one for each protocol, indicating whether you do or do not require it. If
you require TCP/IP you must also link to SOCKETL from the DOS TCP/IP
product.

Library file Protocol
MQICN.LIB NetBIOS required
MQICDN.LIB NetBIOS not required
MQICT.LIB TCP/IP required
MQICDT.LIB TCP/IP not required

v You must ensure that you have specified adequate run-time heap and stack
sizes. A heap size of 8 KB and stack size of 16 KB are the recommended
minimum size.

v The DLLs must be in the path (PATH) you have specified.
v If you use lowercase characters whenever possible, you can move from

MQSeries for Windows NT to MQSeries on UNIX systems, where use of
lowercase is necessary.

Preparing CICS and Transaction Server programs
Sample C source for a CICS MQSeries transaction is provided by AMQSCIC0.CCS.
You build it using the standard CICS facilities:

For CICS for Windows NT V2:
1. Add the following lines to the CICSENV.CMD file:

UserWork = ‘c:\mqm\dll’
UserIncl = ‘c:\mqm\tools\c\include;c:\mqm\tools\c\samples’

If necessary replace c:\mqm with the path on which you installed the sample
code.

2. Edit the CICSCCL.CMD file (found in <drive>:\CNT200\UTIL) and add the
library mqm.lib to the set of libraries.

3. To the LIB environment variable add:
<drive>:\MQM\TOOLS\LIB

4. To the INCLUDE environment variable add:
<drive>:\MQM\TOOLS\C\INCLUDE
<drive>:\CNT200\INCLUDE

5. Compile using the command:
CICSCTCL AMQSCIC0

This is described in the CICS for Windows NT V2.0 Application Programming
Guide.

Preparing C programs

296 MQSeries Application Programming Guide

For TXSeries for Windows NT, V4:
1. Set the environment variable (enter the following on one line):

set CICS_IBMC_FLAGS=-IC:\Program Files\MQSeries\Tools\C\Include;
%CICS_IBMC_FLAGS%

2. Set the USERLIB environment variable:
set USERLIB=MQM.LIB;%USERLIB%

3. Translate, compile, and link the sample program:
cicstcl -l IBMC amqscic0.ccs

This is described in the Transaction Server for Windows NT Application Programming
Guide (CICS) V4.

You can find more information about supporting CICS transactions in the MQSeries
System Administration book.

Preparing COBOL programs
To prepare COBOL programs on Windows NT, link your program to one of the
following libraries provided by MQSeries:

Library file Program/exit type
MQMCBB server for 32-bit IBM COBOL
MQMCB32 server for 32-bit Micro Focus COBOL
MQICCBB client for 32-bit IBM COBOL
MQICCB32 client for 32-bit Micro Focus COBOL
MQMCB16 server for 16-bit Micro Focus COBOL
MQICCB16 client for 16-bit Micro Focus COBOL

When you are running a program in the MQI client environment, ensure the
DOSCALLS library appears before any COBOL or MQSeries library.

Micro Focus
You must relink any existing MQSeries Micro Focus COBOL programs using
either mqmcb3.lib or mqiccb32.lib rather than the mqmcbb and mqiccbb
libraries.

To compile, for example, the sample program amq0put0, using IBM VisualAge
COBOL:
1. Set the SYSLIB environment variable to include the path to the MQSeries

VisualAge COBOL copybooks (enter the following on one line):
set SYSLIB=<drive>:\Program Files\MQSeries\
Tools\Cobol\Copybook\VAcobol;%SYSLIB%

2. Compile and link the program (enter the following examples on one line):
cob2 amq0put0.cbl -qlib <drive>:\Program Files\MQSeries\
Tools\Lib\mqmcbb.lib

(for use on the MQSeries server)
cob2 amq0put0.cbl -qlib <drive>:\Program Files\MQSeries\
Tools\Lib\mqiccbb.lib

(for use on the MQSeries client)

Preparing C programs

Chapter 30. Building your application on Windows NT 297

Note: Although the compiler option CALLINT(SYSTEM) must be used, this is
the default for cob2.

To compile, for example, the sample program amq0put0, using Micro Focus
COBOL:
1. Set the COBCPY environment variable to point to the MQSeries COBOL

copybooks (enter the following on one line):
set COBCPY=<drive>:\Program Files\MQSeries\
Tools\Cobol\Copybook

2. Compile the program to give you an object file:
cobol amq0put0 LITLINK

3. Link the object file to the run-time system.
Set the LIB environment variable to point to the compiler COBOL libraries.
Link the object file for use on the MQSeries server:
cbllink amq0put0.obj mqmcb32.lib

or
Link the object file for use on the MQSeries client:

cbllink amq0put0.obj mqiccb32.lib

Preparing CICS and Transaction Server programs
To compile and link a TXSeries for Windows NT, V4 program using IBM
VisualAge COBOL:
1. Set the environment variable (enter the following on one line):

set CICS_IBMCOB_FLAGS=c:\Program Files\MQSeries\Tools\
Cobol\Copybook\VAcobol;%CICS_IBMCOB_FLAGS%

2. Set the USERLIB environment variable:
set USERLIB=MQMCBB.LIB

3. Translate, compile, and link your program:
cicstcl -l IBMCOB myprog.ccp

This is described in the Transaction Server for Windows NT, V4 Application
Programming Guide.

To compile and link a CICS for Windows NT V2 program using Micro Focus
COBOL:
v Edit the CICSLINK.CMD file and add the library mqmcbb.lib to the set of

libraries.(This file is called by the CICSTCL.CMD utility.)
v Set the COBCPY environment variable:

set

cobcpy=<drive>:\mqm\tools\cobol\copybook;<drive>:\cnt200\copybook

v To the LIB environment variable add:
<drive.>:\mqm\tools\lib

<drive.>:\cobol32\lib

v Edit the CICSCOMP.CMD file, change LITLINK(2) to LITLINK to enable
link-time, not run-time resolution of the MQI calls.

v Compile using the command:
CICSTCL MQMXADC

Preparing COBOL programs

298 MQSeries Application Programming Guide

Where MQMXADC.CCP (not actually provided as a sample program) is the
name of the program. This creates a MQMXADC.DLL.

This is described in the CICS for Windows NT V2.0 Application Programming Guide.

Preparing PL/I programs
Sample PL/I programs are supplied with MQSeries. PL/I include files are also
provided so that the C entry points in the MQSeries libraries can be invoked
directly.

To prepare a PL/I program:
1. Link your program with one of the libraries listed in “Preparing C programs”

on page 295.
2. Ensure that \mqm\tools\pli\include is in your INCLUDE environment

variable.
3. Compile your program:

pli amqpput0.pli
ilink amqpput0.obj mqm.lib

Preparing Visual Basic programs
To prepare Visual Basic programs on Windows NT:
1. Create a new project.
2. Add the supplied module file, CMQB.BAS, to the project.
3. Add other supplied module files if you need them:

CMQBB.BAS MQAI support
CMQCFB.BAS PCF support
CMQXB.BAS Channel exits support

Call the procedure MQ_SETDEFAULTS before making any MQI calls in the project
code. This procedure sets up default structures that the MQI calls require.

Specify whether you are creating an MQSeries server or client, before you compile
or run the project, by setting the conditional compilation variable MqType. Set
MqType to 1 for a server or 2 for a client as follows:
v In a Visual Basic version 4 project:

1. Select the Tools menu.
2. Select Options.
3. Select the Advanced tab in the dialog box.
4. In the Conditional Compilation Arguments field, enter this for a server:

MqType=1

or this for a client:
MqType=2

Preparing COBOL programs

Chapter 30. Building your application on Windows NT 299

v In a Visual Basic version 5 project:
1. Select the Project menu.
2. Select Name Properties (where Name is the name of the current project).
3. Select the Make tab in the dialog box.
4. In the Conditional Compilation Arguments field, enter this for a server:

MqType=1

or this for a client:
MqType=2

Preparing Visual Basic programs

300 MQSeries Application Programming Guide

Chapter 31. Using lightweight directory access protocol
services with MQSeries for Windows NT

This chapter explains what a directory service is and the part played by a directory
access protocol (DAP). It also explains how MQSeries applications can use a
lightweight directory access protocol (LDAP) directory using a sample program as
a guide.

Note: The sample program is designed for someone who is already familiar with
LDAP.

What is a directory service?
A directory is a repository of information about objects, which is organized in such
a way that it is easy to find the information on a specific object. A common
example is a telephone directory, where information (address and telephone
number) is stored about people and companies. Another example is an address
book for an e-mail system, where e-mail addresses, and optionally other
information such as telephone numbers, are stored for people.

On computer systems, directories can store information about computer resources,
such as printers or shared disks. For example you could use a directory to find out
where the nearest color printer is located. In an MQSeries application a directory
can be used to provide the association between an application service (such as
accounts-receivable processing) and the queue to be used for messages requiring
that service (possibly identified through the queue name and its host queue
manager name).

Directories are implemented as client-server systems, where the directory server
holds all the information and answers requests from clients. The clients could be
user-interface programs, which provide the information directly to the user, or
application programs which need to locate resources to complete their work. A
Directory Service comprises the directory server, administrative programs, and the
client libraries and programs which are needed to configure, update, and read the
directory.

What is LDAP?
Many directory services exist, such as Novell Directory Services, DCE Cell
Directory Service, Banyan StreetTalk, Windows NT Directory Services, X.500, and
the address book services associated with e-mail products. X.500 was proposed as
a standard for global directory services by the International Standards
Organization (ISO). It requires an OSI protocol stack for its communications, and
largely because of this, its use has been restricted to large organizations and
academic institutions. An X.500 directory server communicates with its clients
using the Directory Access Protocol (DAP).

LDAP (Lightweight Directory Access Protocol) was created as a simplified version
of DAP. It is easier to implement, omits some of the lesser-used features of DAP,
and runs over TCP/IP. As a result of these changes it is rapidly being adopted as
the directory access protocol for most purposes, replacing the multitude of
proprietary protocols previously used. LDAP clients can still access an X.500 server

© Copyright IBM Corp. 1993, 2000 301

through a gateway (X.500 still requires the OSI protocol stack), or increasingly
X.500 implementations typically include native support for LDAP as well as DAP
access.

LDAP directories can be distributed and can use replication to enable efficient
access to their contents.

For a more complete description of LDAP, please see the IBM Redbook
Understanding LDAP.

Using LDAP with MQSeries
In MQSeries configurations, the information that defines message and transmission
queues is stored locally. This means that in an MQSeries network the various
definitions are distributed, with no central directory of this information being
available for browsing. Remote messaging between MQSeries applications is
commonly achieved through the use of local definitions of remote queues. The
application first issues an MQOPEN call using the name specified in the local
definition of the remote queue. To put the message on the remote queue, the
application then issues MQPUT, specifying the handle returned from the MQOPEN
call. The remote queue definition supplies the name of the destination queue, the
destination queue manager, and optionally, a transmission queue. In this technique
the application has to know at run-time the name specified in the local queue
definition.

A variation on the above avoids the use of local definitions of remote queues. The
application can specify the full destination queue name, which includes the remote
queue manager name as part of the MQOPEN. The application therefore has to
know these two names at run-time. Again the local queue manager must be
correctly configured with the local queue definition, and with a suitably named (or
default) transmission queue and an associated channel that delivers to the target.

In the case where both the source and target queue managers are defined as being
members of the same cluster, then the transmission queue and channel aspects of
the above two scenarios can be ignored. If the target transmission queue is a
cluster queue then a local definition of a remote queue is also not required.
However, similarly to the previous cases described, the application must still know
the name of the destination queue.

A directory service can be used to remove this application dependency on queue
names (or the combination of queue and queue manager names). The mapping
between application criteria and MQSeries object names can be held in a directory
and be updated dynamically, and independently of applications. At run-time the
MQSeries application wishing to send a message first queries the directory using
application-based criteria, for example where: service_name = “accounts
receivable”, retrieves the relevant MQSeries object names, and then uses these
returned values in the MQOPEN call.

Another example of the use of a directory is for a company that has many small
depots or offices, MQSeries clients may be used to send messages to MQSeries
servers located in the larger offices. The clients need to know the name of the host
machine, MQI channel, and queue name for each server they send messages to.
Occasionally it may be necessary to move an MQSeries server to another machine;
every client that communicates with the server would need to know about the
change. An LDAP directory service could be used to store the names of the host
machines (and the channel and queue names) and the client programs could

Using LDAP services with MQSeries for Windows NT

302 MQSeries Application Programming Guide

retrieve the information from the directory whenever they want to send a message
to a server. In this case only the directory needs to be updated if a host name (or
channel or queue name) changed.

Multiple destinations for an application message could be stored in a directory,
with the one chosen being dependent on availability or load-sharing
considerations.

LDAP sample program
The sample program is designed for someone who is familiar with LDAP and
probably already uses it. It is intended to show how MQSeries applications can use
an LDAP directory.

Building the sample program
This program has been built and tested only on Windows NT using TCP/IP. As
well as the general considerations mentioned in “Preparing C programs” on
page 295 the following points must be observed:
v This program is designed to run as a client program, so it should be linked with

the MQIC32.LIB library.
v As well as the MQSeries header files and libraries, this program must be built

using LDAP client header files and libraries. These are available from several
locations, including the IBM eNetwork™ Web site at:
http://www.software.ibm.com/enetwork

> >

For example, using the IBM eNetwork client, the program should be linked with
the LIBLDAPSTATICE.LIB and LIBLBERSTATICSSL.LIB libraries.

Configuring the directory
Before the sample program can be run, an LDAP Directory Server must be
configured with sample data. The file MQuser.ldif contains some sample data in
LDIF (LDAP Data Interchange Format). You can edit this file to suit your needs. It
contains data for a fictitious company called MQuser that has a Transport
Department comprising three offices. Each of these offices has a machine that runs
an MQSeries server.

As a minimum you must edit the three lines that contain the host names of the
machines running the MQSeries servers - these are lines 18, 27, and 36:
host: LondonHost
...

host: SydneyHost
...

host: WashingtonHost

You must change “LondonHost”, “SydneyHost”, and “WashingtonHost” to the
names of three of your machines which run MQSeries servers. You may also
change the channel and queue names if you wish (the sample uses names of the
system defaults). You may also wish to increase or decrease the number of offices
in the sample data.

Using LDAP services with MQSeries for Windows NT

Chapter 31. Using lightweight directory access protocol services with MQSeries for Windows NT 303

Configuring the IBM eNetwork LDAP server
Refer to the eNetwork LDAP Directory Administrator’s Guide for information
about installing the directory. In the chapter “Installing and Configuring Server”,
work through the sections “Installing Server” and “Basic Server Configuration”. If
necessary, read through the chapter “Administrator Interface” to familiarize
yourself with how the interface works.

In the chapter “Configuring - How Do I”, follow the instructions for starting up
the administrator, then work through the section “Configure Database” and create
a default database. Skip the section “Configure replica” and using the section
“Work with Suffixes”, add a suffix “o=MQuser”.

Before adding any entries to the database, you must extend the directory schema
by adding some attribute definitions and an objectclass definition. This is described
in the eNetwork LDAP Directory Administrator’s Guide in the chapter “Reference
Information” under the section “Directory Schema”. Two sample files are included
to help you with this. The file “mq.at.conf” includes the attribute definitions which
you must add to the file “/etc/slapd.at.conf”. Do this by including the sample file
by editing slapd.at.conf and adding a line:
include <pathname>/mq.at.conf

Alternatively you can edit the file slapd.at.conf and add the contents of the sample
file directly to it, that is, add the lines:
MQ attribute definitions
attribute mqChannel ces mqChannel 1000 normal
attribute mqQueueManager ces mqQueueManager 1000 normal
attribute mqQueue ces mqQueue 1000 normal
attribute mqPort cis mqPort 64 normal

Similarly for the objectclass definition, you can either include the sample file by
editing “etc/slapd.oc.conf” and add the line:
include <pathname>/mq.oc.conf

or you can add the contents of the sample file directly to slapd.oc.conf, that is, add
the lines:
MQ object classdefinition
objectclass mqApplication

requires
objectClass,
cn,
host,
mqChannel,
mqQueue

allows
mqQueueManager,
mqPort,
description,
l,
ou,
seeAlso

You can now start the directory server (Administration, Server, Startup) and add
the sample entries to it. To add the sample entries, go to the Administration, Add
Entries page of the administrator, type in the full pathname of the sample file
“MQuser.ldif” and click the Submit button.

The directory server is now running and loaded with data suitable for running the
sample program.

Using LDAP services with MQSeries for Windows NT

304 MQSeries Application Programming Guide

Configuring the Netscape directory server
Using the Netscape Server Administration page, click on “Create New Netscape
Directory Server”. You should now be presented with a form containing
configuration information. Change the Directory Suffix to “o=MQuser” and add a
password for the Unrestricted User. You may also, if you wish, change any other
information to suit your installation. Click on the OK button, and the directory
should be created successfully. Click on “Return to Server Administration” and
start the directory server. Click on the directory name to start the Directory Server
Administration server for the new directory.

Before adding any entries to the database, you must extend the directory schema
by adding some attribute definitions and an objectclass definition. Click on the
“Schema” tab of the Directory Server page. You are now presented with a form
that allows you to add new attributes. Add the following attributes (the Attribute
OID can be left blank for all of them):
Attribute Name Syntax
-------------- ------
mqChannel Case Exact String
mqQueueManager Case Exact String
mqQueue Case Exact String
mqPort Integer

Add a new objectClass by clicking “Create ObjectClass” in the side panel. Enter
“mqApplication” as the ObjectClass Name, select “applicationProcess” as the
parent ObjectClass and leave the ObjectClass OID blank. Now add some attributes
to the objectClass. Select “host”, “mqChannel”, and “mqQueue” as Required
Attributes, and select “mqQueueManager” and “mqPort” as Allowed attributes.
Press the “Create New ObjectClass” button to create the objectClass.

To add the sample data, click on the “Database Management” tab and select “Add
Entries” from the side panel. You must enter the pathname of the sample data file
<pathname>\MQuser.ldif, enter the password, and click on the OK button.

The sample program runs as an unauthorized user, and by default the Netscape
Directory does not allow unauthorized users to search the directory. You must
change this by clicking the “Access Control” tab. Enter the password for the
Unrestricted User and click the OK button to load in the access control entries for
the directory. These should currently be empty. Press the “New ACI” button to
create a new access control entry. In the entry box which appears, click on the
word “Deny” (which is underlined) and in the resultant dialog box, change it to
“Allow”. Add a name, for example, “MQuser-access”, and click on “choose a
suffix” to select “o=MQuser”. Enter “o=MQuser” as the target, enter the password
for the Unrestricted User, and click on the “Submit” button.

The directory server is now running and loaded with data suitable for running the
sample program.

Using LDAP services with MQSeries for Windows NT

Chapter 31. Using lightweight directory access protocol services with MQSeries for Windows NT 305

Running the sample program
You should now have an LDAP Directory Server running and populated with the
sample data. The data specifies three host machines all of which should be running
MQSeries servers. You should ensure that the default queue manager is running on
each machine (unless you changed the sample data to specify a different queue
manager). You should also start the MQSeries listener program on each machine;
the sample uses TCP/IP with the default MQSeries port number, so you can start
the listener with the command:
runmqlsr -t tcp

To test the sample, you might also wish to run a program to read the messages
arriving at each MQSeries server, for example you could use the “amqstrg” sample
program:
amqstrg SYSTEM.DEFAULT.LOCAL.QUEUE

The sample program uses three environment variables, one required and two
optional. The required variable is LDAP_BASEDN, which specifies the base
Distinguished Name for the directory search. To work with the sample data, you
should set this to “ou=Transport, o=MQuser”, for example in a Windows NT
Command Window type:
set LDAP_BASEDN=ou=Transport, o=MQuser

The optional variables are LDAP_HOST and LDAP_VERSION. The LDAP_HOST
variable specifies the name of the host where the LDAP server is running, it
defaults to the local host if it is not specified. The LDAP_VERSION variable
specifies the version of the LDAP protocol to be used, and can be either 2 or 3.
Most LDAP servers now support version 3 of the protocol; they all support the
older version 2. This sample works equally well with either version of the protocol,
and if it is not specified it defaults to version 2.

You can now run the sample by typing the program name followed by the name of
the MQSeries application you wish to send messages to, in the case of the sample
data the application names are “London”, “Sydney”, and “Washington”. For
example, to send messages to the London application:
amqsldpc London

If the program fails to connect to the MQSeries server, an appropriate error
message will appear. If it connects successfully you can start typing messages, each
line you type (terminated by <return> or <enter>) is sent as a separate message, an
empty line ends the program.

Program design
The program has two distinct parts: the first part uses the environment variables
and command line value to query an LDAP directory server; the second part
establishes the MQSeries connection using the information returned from the
directory and sends the messages.

The LDAP calls used in the first part of the program differ slightly depending on
whether LDAP version 2 or 3 is being used, and they are described in detail by the
documentation which comes with the LDAP client libraries. This section gives a
brief description.

Using LDAP services with MQSeries for Windows NT

306 MQSeries Application Programming Guide

The first part of the program checks that it has been called correctly and reads the
environment variables. It then establishes a connection with the LDAP directory
server at the specified host:
if (ldapVersion == LDAP_VERSION3)
{
if ((ld = ldap_init(ldapHost, LDAP_PORT)) == NULL)

...
}
else
{
if ((ld = ldap_open(ldapHost, LDAP_PORT)) == NULL)

...
}

When a connection has been established, the program sets some options on the
server with the “ldap_set_option” call, and then authenticates itself to the server
by binding to it:
if (ldapVersion == LDAP_VERSION3)
{
if (ldap_simple_bind_s(ld, bindDN, password) != LDAP_SUCCESS)

...
}
else
{
if (ldap_bind_s(ld, bindDN, password, LDAP_AUTH_SIMPLE) !=

LDAP_SUCCESS)
...

}

In the sample program “bindDN” and “password” are set to NULL, which means
that the program authenticates itself as an anonymous user, that is, it does not
have any special access rights and can access only information which is publicly
available. In practice most organizations would restrict access to the information
they store in directories so that only authorized users can access it.

The first parameter to the bind call “ld” is a handle which is used to identify this
particular LDAP session throughout the rest of the program. After authenticating,
the program searches the directory for entries which match the application name:
rc = ldap_search_s(ld, /* LDAP Handle */

baseDN, /* base distinguished name */
LDAP_SCOPE_ONELEVEL, /* one-level search */
filterPattern, /* filter search pattern */
attrs, /* attributes required */
FALSE, /* NOT attributes only */
&ldapResult); /* search result */

This is a simple synchronous call to the server which returns the results directly.
There are other types of search which are more appropriate for complex queries or
when a large number of results is expected. The first parameter to the search is the
handle “ld” which identifies the session. The second parameter is the base
distinguished name, which specifies where in the directory the search is to begin,
and the third parameter is the scope of the search, that is, which entries relative to
the starting point are searched. These two parameters together define which entries
in the directory are searched. The next parameter, “filterPattern” specifies what we
are searching for. The “attrs” parameter lists the attributes which we want to get
back from the object when we have found it. The next attribute says whether we
want just the attributes or their values as well, setting this to FALSE means that we
want the attribute values. The final parameter is used to return the result.

Using LDAP services with MQSeries for Windows NT

Chapter 31. Using lightweight directory access protocol services with MQSeries for Windows NT 307

The result could contain many directory entries, each with the specified attributes
and their values. We have to extract the values we want from the result. In this
sample program we only expect one entry to be found, so we only look at the first
entry in the result:
ldapEntry = ldap_first_entry(ld, ldapResult);

This call returns a handle which represents the first entry, and we set up a for loop
to extract all the attributes from the entry:
for (attribute = ldap_first_attribute(ld, ldapEntry, &ber);

attribute != NULL;
attribute = ldap_next_attribute(ld, ldapEntry, ber))

{

For each of these attributes, we extract the values associated with it. Again we only
expect one value per attribute, so we only use the first value; we determine which
attribute we have and store the value in the appropriate program variable:
values = ldap_get_values(ld, ldapEntry, attribute);
if (values != NULL && values[0] != NULL)
{
if (stricmp(attribute, MQ_HOST_ATTR) == 0)
{
mqHost = strdup(values[0]);
...

Finally we tidy up by freeing memory (ldap_value_free, ldap_memfree,
ldap_msgfree) and close the session by “unbinding” from the server:
ldap_unbind(ld);

We check that we have found all the MQSeries values we need from the directory,
and if so we call sendMessages() to connect to the MQSeries server and send the
MQSeries messages.

The second part of the sample program is the sendMessages() routine which
contains all of the MQSeries calls. This is modelled on the amqsput0 sample
program, the differences being that the parameters to the program have been
extended and MQCONNX is used instead of the MQCONN call.

Using LDAP services with MQSeries for Windows NT

308 MQSeries Application Programming Guide

Part 4. Sample MQSeries programs

Chapter 32. Sample programs (all platforms
except OS/390) 311
Features demonstrated in the sample programs . . 312

Samples for Compaq (DIGITAL) OpenVMS and
UNIX systems 312
Samples for OS/2 Warp and Windows NT . . 314
PL/I samples for AIX, OS/2 Warp, and
Windows NT 316
Visual Basic samples for Windows NT 316
Samples for AS/400 316
Samples for Tandem NonStop Kernel 318
Samples for VSE/ESA 318

Preparing and running the sample programs . . . 319
AS/400 319
UNIX systems 319
Digital OpenVMS 320
OS/2 and Windows NT 320
Tandem NSK 321

Building C sample programs 321
Building COBOL sample programs 322
Building TAL sample programs 323

Windows 323
Running the sample programs. 323

On all platforms except AS/400 324
On AS/400 324
Length of queue name 324
Inquire, Set, and Echo examples 325

The Put sample programs 325
Running the amqsput and amqsputc samples 325
Running the amqsputw sample 325
Running the amq0put sample 326
Running the AMQSPUT4 C sample 326
Running the AMQ0PUT4 COBOL sample . . . 327
Design of the Put sample program 327

The Distribution List sample program 327
Running the Distribution List sample, amqsptl0 327
Design of the Distribution List sample 328

The Browse sample programs 328
OS/2, UNIX systems, Digital OpenVMS, and
Windows NT 328
AS/400 329
Design of the Browse sample program 329

The Browser sample program 330
The Get sample programs 330

Running the amqsget and amqsgetc samples 330
Running the amqsgetw sample 331
Running the amq0get sample 331
Running the AMQSGET4 and the AMQ0GET4
samples 331
Design of the Get sample program 332

The Reference Message sample programs 332
Notes for AS/400 users 333
Running the Reference Message samples . . . 334
Design of the Put Reference Message sample
(amqsprma.c, AMQSPRM4). 338

Design of the Reference Message Exit sample
(amqsxrma.c, AMQSXRM4). 338

Compiling the Reference Message Exit
sample 339

Design of the Get Reference Message sample
(amqsgrma.c, AMQSGRM4) 340

The Request sample programs. 340
Running the amqsreq0.c, amqsreq, and
amqsreqc samples 340
Running the amq0req0.cbl sample 340
Running the AMQSREQ4 sample. 341
Running the AMQ0REQ4 sample 341
Running the Request sample using triggering 341

OS/2, UNIX systems, and Windows NT . . 341
AS/400 343

Design of the Request sample program 344
The Inquire sample programs 346

Design of the Inquire sample program 347
The Set sample programs 347

Design of the Set sample program 348
The Echo sample programs. 349

Design of the Echo sample programs 349
The Data-Conversion sample program 350

Design of the data-conversion sample 350
The Triggering sample programs 350

Running the amqstrg0.c, amqstrg, and amqstrgc
samples 350
Running the AMQSTRG4 sample 351
Design of the triggering sample 351
Running the AMQSERV4 sample 351
Design of the trigger server 352
Ending the triggering sample programs on
AS/400 352

Running the samples using remote queues . . . 352
Database coordination samples 352

Creating the databases and tables 354
Precompiling, compiling, and linking the
samples 355

Precompiling in C 355
Precompiling in COBOL. 355
Compiling and linking 356

Running the samples 357
C samples 358
COBOL samples 358

The CICS transaction sample 359
TUXEDO samples 359

Building the server environment 359
To build the server environment for
MQSeries for AIX: 359
To build the server environment for
MQSeries for AT&T GIS UNIX and MQSeries
for Sun Solaris: 360
To build the server environment for
MQSeries for HP-UX:. 361
To build the server environment for
MQSeries for SINIX and DC/OSx 362

© Copyright IBM Corp. 1993, 2000 309

||
||
||

||

||

To build the server environment for
MQSeries for Windows NT: 364

Server sample program for TUXEDO 367
Put sample program for TUXEDO 368
Get sample for TUXEDO 368

Encina sample program 369
Building the AMQSXAE0.C sample 369

Compiling and linking on Windows NT . . 369
Compiling and linking on Sun Solaris . . . 370

Dead-letter queue handler sample 370
The Connect sample program 370

Running the amqscnxc sample 370

Chapter 33. Sample programs for MQSeries for
OS/390 373
Features demonstrated in the sample applications 373

Put samples 373
Get samples 374
Browse sample 374
Print Message sample 374
Queue Attributes sample 375
Mail Manager sample 375
Credit Check sample 375
The Message Handler sample 376
Distributed queuing exit samples 376
Data-conversion exit samples 377

Preparing and running sample applications for the
batch environment 377

Names of the sample batch applications . . . 378
Preparing sample applications for the TSO
environment. 378

Names of the sample TSO applications 379
Preparing the sample applications for the CICS
environment. 380

QLOP abend 381
Names of the sample CICS applications . . . 381

Preparing the sample application for the IMS
environment. 383

Names of the sample IMS application 384
The Put samples 384

Design of the Put sample 384
The Put samples for the batch environment . . 385

Usage notes 385
The Put samples for the CICS environment . . 386

Usage notes 386
The Get samples 386

Design of the Get sample 387
The Get samples for the batch environment 387
Usage notes 388

The Get samples for the CICS environment . . 388
Usage notes 389

The Browse sample 389
Design of the Browse sample 390
Language-dependent design considerations . . 391

The Print Message sample 391
Design of the sample 393

The Queue Attributes sample 395
Design of the sample 395

The Mail Manager sample 396
Preparing the sample 396

Preparing the sample for the TSO
environment. 397

Running the sample 397
Design of the sample 399

Menu program 400
Get-mail and display-message programs . . 401
Send-mail program 402
Nickname program 403

The Credit Check sample 403
Preparing and running the Credit Check sample 404

Entering information in the inquiry panels 405
Design of the sample 405

User-interface program (CSQ4CVB1) . . . 407
Credit application manager (CSQ4CVB2) . . 407
Checking-account program (CSQ4CVB3) . . 410
Distribution program (CSQ4CVB4) 410
Agency-query program
(CSQ4CVB5/CSQ4CCB5) 411

Design considerations 412
Separate inquiry and reply queues in the
CAM 412
How the sample handles errors 412
How the sample handles unexpected
messages 412
How the sample uses syncpoints 413
How the sample uses message context
information 413
Use of message and correlation identifiers in
the CAM 414

The Credit Check sample with multiple queue
managers. 414
The IMS extension to the Credit Check sample 414

Design of the IMS checking-account program
(CSQ4ICB3) 415

The Message Handler sample 415
Preparing and running the sample 416
Using the sample 416
Design of the sample 418

Object validation program 419
Message list program. 419
Message content program 419

310 MQSeries Application Programming Guide

Chapter 32. Sample programs (all platforms except OS/390)

This chapter describes the sample programs delivered with MQSeries, written in C,
COBOL, PL/I, and TAL. The samples demonstrate typical uses of the Message
Queue Interface (MQI).

The samples are not intended to demonstrate general programming techniques, so
some error checking that you may want to include in a production program has
been omitted. However, these samples are suitable for use as a base for your own
message queuing programs.

The source code for all the samples is provided with the product; this source
includes comments that explain the message queuing techniques demonstrated in
the programs.

DCE sample exit: For information on compiling and linking the DCE sample exit
(amqsdsc0.c) see the MQSeries Intercommunication book.

C++ sample programs: See the MQSeries Using C++ book for a description of the
sample programs available in C++.

RPG sample programs: See the MQSeries for AS/400 Application Programming
Reference (ILE RPG) manual for a description of the sample programs available in
RPG.

The names of the samples start with the prefix amq, except for TAL programs that
start zmq. The fourth character indicates the programming language, and the
compiler where necessary.

s C language
0 COBOL language on both IBM and Micro Focus compilers
i COBOL language on IBM compilers only
m COBOL language on Micro Focus compilers only
v COBOL language on DEC COBOL V2.3 and subsequent releases
p PL/I language

This chapter introduces the sample programs, under these headings:
v “Features demonstrated in the sample programs” on page 312
v “Preparing and running the sample programs” on page 319
v “The Put sample programs” on page 325
v “The Distribution List sample program” on page 327
v “The Browse sample programs” on page 328
v “The Browser sample program” on page 330
v “The Get sample programs” on page 330
v “The Reference Message sample programs” on page 332
v “The Request sample programs” on page 340
v “The Inquire sample programs” on page 346
v “The Set sample programs” on page 347
v “The Echo sample programs” on page 349
v “The Data-Conversion sample program” on page 350
v “The Triggering sample programs” on page 350
v “Running the samples using remote queues” on page 352

© Copyright IBM Corp. 1993, 2000 311

v “Database coordination samples” on page 352
v “The CICS transaction sample” on page 359
v “TUXEDO samples” on page 359
v “Encina sample program” on page 369
v “Dead-letter queue handler sample” on page 370
v “The Connect sample program” on page 370

Features demonstrated in the sample programs
The following tables show the techniques demonstrated by the MQSeries sample
programs on all systems except OS/390 (see “Chapter 33. Sample programs for
MQSeries for OS/390” on page 373). All the samples open and close queues using
the MQOPEN and MQCLOSE calls, so these techniques are not listed separately in
the tables. See the heading that includes the platform you are interested in:

“Samples for Compaq (DIGITAL) OpenVMS and UNIX systems”
“Samples for OS/2 Warp and Windows NT” on page 314
“PL/I samples for AIX, OS/2 Warp, and Windows NT” on page 316
“Visual Basic samples for Windows NT” on page 316
“Samples for AS/400” on page 316
“Samples for Tandem NonStop Kernel” on page 318
“Samples for VSE/ESA” on page 318

Samples for Compaq (DIGITAL) OpenVMS and UNIX systems
Table 20 shows the techniques demonstrated by the sample programs for MQSeries
on UNIX systems and MQSeries for Digital OpenVMS.

Table 20. MQSeries on UNIX and Digital OpenVMS sample programs demonstrating use of the MQI

Technique C
(source) (1)

COBOL
(source) (2)

C
(executable)

Client (3)
(executable)

Putting messages using the MQPUT call amqsput0
amqsputw (4)

amq0put0 amqsput amqsputc
amqsputw

Putting a single message using the
MQPUT1 call

amqsinqa
amqsecha

amqminqx
amqmechx
amqiinqx
amqiechx
amqvinqx
amqviechx

amqsinq
amqsech

no sample

Putting messages to a distribution list (5) amqsptl0 no sample amqsptl amqsptlc

Replying to a request message (4) amqsinq0 amqminqx
amqiinqx
amqvinqx

amqsinq no sample

Getting messages (no wait) amqsgbr0 amq0gbr0 amqsgbr no sample

Getting messages (wait with a time limit) amqsget0
amqsgetw (4)

amq0get0 amqsget amqsgetc
amqsgetw

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech no sample

Putting reference messages to a queue (5) amqsprma no sample amqsprm amqsprmc

Getting reference messages from a queue (5) amqsgrma no sample amqsgrm amqsgrmc

Reference message channel exit (5) amqsqrma
amqsxrma

no sample amqsxrm no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr no sample

Browsing complete messages amqsbcg0 no sample amqsbcg no sample

MQSeries sample programs

312 MQSeries Application Programming Guide

|

|

||
|
|||
|

|||
|
|

||

||
|
|||
|

|||||

Table 20. MQSeries on UNIX and Digital OpenVMS sample programs demonstrating use of the MQI (continued)

Technique C
(source) (1)

COBOL
(source) (2)

C
(executable)

Client (3)
(executable)

Using a shared input queue (4) amqsinq0 amqminqx
amqiinqx
amqvinqx

amqsinq no sample

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminqx
amqiinqx
amqvinqx

amqsinq no sample

Using the MQSET call amqsseta amqmsetx
amqisetx
amqvsetx

amqsset no sample

Using a reply-to queue amqsreq0 amq0req0 amqsreq no sample

Requesting message exceptions amqsreq0 amq0req0 amqsreq no sample

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr no sample

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr no sample

Triggering a process amqstrg0 no sample amqstrg amqstrgc

Using data conversion (6) no sample no sample no sample

MQSeries (coordinating XA-compliant
database managers) accessing a single
database using SQL

amqsxas0.sqc amq0xas0.sqb no sample no sample

MQSeries (coordinating XA-compliant
database managers) accessing two
databases using SQL

amqsxag0.c
amqsxab0.sqc
amqsxaf0.sqc

amq0xag0.cbl
amq0xab0.sqb
amq0xaf0.sqb

no sample no sample

CICS transaction (7) amqscic0.ccs no sample amqscic0 no sample

Encina transaction (5) amqsxae0 no sample amqsxae0 no sample

TUXEDO transaction to put messages (8) amqstxpx no sample no sample no sample

TUXEDO transaction to get messages (8) amqstxgx no sample no sample no sample

Server for TUXEDO (8) amqstxsx no sample no sample no sample

Dead-letter queue handler (9) no sample amqsdlq no sample

From an MQI client, putting a message (4) amqsputw no sample no sample amqsputc
amqsputw

From an MQI client, getting a message (4) amqsgetw no sample no sample amqsgetc
amqsgetw

Connecting to the queue manager
using MQCONNX (4)

amqscnxc no sample no sample amqscnxc

Features demonstrated

Chapter 32. Sample programs (all platforms except OS/390) 313

|||
|
|

||

|||||
|

|||||
|

|
|
||||

Table 20. MQSeries on UNIX and Digital OpenVMS sample programs demonstrating use of the MQI (continued)

Technique C
(source) (1)

COBOL
(source) (2)

C
(executable)

Client (3)
(executable)

Notes:

1. The executable version of the MQSeries client samples share the same source as the samples that run in a server
environment.

2. COBOL is not supported by MQSeries for AT&T GIS UNIX or DIGITAL UNIX. Compile programs beginning
‘amqm’ with the Micro Focus COBOL compiler, beginning ‘amqi’ with the IBM COBOL compiler, and beginning
‘amq0’ with either.

3. The executable versions of the MQSeries client samples are not available on MQSeries for HP-UX or MQSeries
for Digital OpenVMS.

4. Not available on MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX).

5. Supported on MQSeries for AIX, HP-UX, and Sun Solaris only.

6. On MQSeries for AIX, HP-UX, and Sun Solaris this program is called amqsvfc0.c. On MQSeries for AT&T GIS
UNIX, Compaq (DIGITAL) OpenVMS, DIGITAL UNIX, and SINIX and DC/OSx this program is called
amqsvfcx.c.

7. CICS is supported by MQSeries for AIX and MQSeries for HP-UX only.

8. TUXEDO is not supported by MQSeries for AS/400, Compaq (DIGITAL) OpenVMS, DIGITAL UNIX, and
Windows.

9. The source for the dead-letter queue handler is made up of several files and provided in a separate directory.

Samples for OS/2 Warp and Windows NT
Table 21 shows the techniques demonstrated by the sample programs for MQSeries
for OS/2 Warp and Windows NT.

Table 21. MQSeries for OS/2 Warp and Windows NT sample programs demonstrating use of the MQI

Technique C (source) COBOL
(source)

C (executable) Client
(executable)

Putting messages using the MQPUT call amqsput0 amq0put0 amqsput amqsputc
amqsputw

Putting a single message using the MQPUT1
call

amqsinqa
amqsecha

amqminq2
amqmech2
amqiinq2
amqiech2

amqsinq
amqsech

amqsinqc
amqsechc

Putting messages to a distribution list amqsptl0 no sample amqsptl amqsptlc

Replying to a request message amqsinq0 amqminq2
amqiinq2

amqsinq amqsinqc

Getting messages (no wait) amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Getting messages (wait with a time limit) amqsget0
amqsgetw

amq0get0 amqsget amqsgetc
amqsgetw

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech amqsechc

Putting reference messages to a queue amqsprma no sample amqsprm amqsprmc

Getting reference messages from a queue amqsgrma no sample amqsgrm amqsgrmc

Reference message channel exit amqsqrma
amqsxrma

no sample amqsxrm no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Browsing complete messages amqsbcg0 no sample amqsbcg amqsbcgc

Features demonstrated

314 MQSeries Application Programming Guide

|
|
|

|

|
|
|

|
|

Table 21. MQSeries for OS/2 Warp and Windows NT sample programs demonstrating use of the MQI (continued)

Technique C (source) COBOL
(source)

C (executable) Client
(executable)

Using a shared input queue amqsinq0 amqminq2
amqiinq2

amqsinq amqsinqc

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Using the MQSET call amqsseta amqmset2
amqiset2

amqsset amqssetc

Using a reply-to queue amqsreq0 amq0req0 amqsreq amqsreqc

Requesting message exceptions amqsreq0 amq0req0 amqsreq amqsreqc

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Triggering a process amqstrg0 no sample amqstrg amqstrgc

Using data conversion amqsvfc0 no sample no sample no sample

CICS transaction amqscic0.ccs no sample amqscic0 (1) no sample

TUXEDO transaction to put messages
(Windows NT only)

amqstxpx no sample no sample no sample

TUXEDO transaction to get messages
(Windows NT only)

amqstxgx no sample no sample no sample

Server for TUXEDO (Windows NT only) amqstxsx no sample no sample no sample

Encina transaction amqsxae0 no sample amqsxae0 no sample

Dead-letter queue handler (2) no sample amqsdlq no sample

From an MQSeries client, putting a message amqsputw no sample no sample amqsputc
amqsputw

From an MQSeries client, getting a message amqsgetw no sample no sample amqsgetc
amqsgetw

Connecting to the queue manager using
MQCONNX

amqscnxc no sample no sample amqscnxc

Notes:
1. The executable version on OS/2 is for CICS Transaction Server for OS/2, Version 4; the version on Windows NT

is for TXSeries for Windows NT, Version 4.
2. The source for the dead-letter queue handler is made up of several files and provided in a separate directory.

The following list shows the techniques demonstrated by the MQSeries for
Windows sample programs:

Sample program Technique
AMQSPUTW Putting a message on a specified queue
AMQSGETW Getting a message from a specified queue
AMQSBCGW Browsing a message and its header

For further information about these sample programs, see the following:
v MQSeries for Windows V2.0 User’s Guide.
v MQSeries for Windows V2.1 User’s Guide.

Features demonstrated

Chapter 32. Sample programs (all platforms except OS/390) 315

PL/I samples for AIX, OS/2 Warp, and Windows NT
Table 22 shows the techniques demonstrated by the MQSeries for AIX, MQSeries
for OS/2 Warp, and MQSeries for Windows NT sample programs.

Table 22. MQSeries for AIX, OS/2 Warp, and Windows NT sample programs demonstrating use of the MQI

Technique PL/I (source) PL/I (executable)

Putting messages using the MQPUT call amqpput0 no sample

Getting messages (wait with a time limit) amqpget0 no sample

Visual Basic samples for Windows NT
Table 23 shows the techniques demonstrated by the MQSeries for Windows NT
sample programs.

A project may contain several files. When you open a project within Visual Basic
the other files will be loaded automatically. No executable programs are provided.

All the sample projects, except mqtrivc.vbp, are set up to work with the MQSeries
server. To find out how to change the sample projects to work with the MQSeries
clients see “Preparing Visual Basic programs” on page 299.

Table 23. MQSeries for Windows NT sample programs demonstrating use of the MQI

Technique Project file name

Putting messages using the MQPUT call amqsputb.vbp

Getting messages using the MQGET call amqsgetb.vbp

Browsing a queue using the MQGET call amqsbcgb.vbp

Simple MQGET and MQPUT sample (client) mqtrivc.vbp

Simple MQGET and MQPUT sample (server) mqtrivs.vbp

Putting and getting strings and user-defined structures using MQPUT and MQGET strings.vbp

Using PCF structures to start and stop a channel pcfsamp.vbp

Creating a queue using the MQAI amqsaicq.vbp

Listing a queue manager’s queues using the MQAI amqsailq.vbp

Monitoring events using the MQAI amqsaiem.vbp

Samples for AS/400
Table 24 shows the techniques demonstrated by the MQSeries for AS/400 sample
programs. Some techniques occur in more than one sample program, but only one
program is listed in the table.

Table 24. MQSeries for AS/400 sample programs demonstrating use of the MQI

Technique C (source) (1) COBOL (source)
(2)

RPG (source) (3)

Putting messages using the MQPUT call AMQSPUT0 AMQ0PUT4 AMQnPUT4

Putting messages from a data file using the MQPUT
call

AMQSPUT4 no sample no sample

Putting a single message using the MQPUT1 call AMQSINQ4,
AMQSECH4

AMQ0INQ4,
AMQ0ECH4

AMQnINQ4,
AMQnECH4

Putting messages to a distribution list AMQSPTL4 no sample no sample

Features demonstrated

316 MQSeries Application Programming Guide

|
|
|||

Table 24. MQSeries for AS/400 sample programs demonstrating use of the MQI (continued)

Technique C (source) (1) COBOL (source)
(2)

RPG (source) (3)

Replying to a request message AMQSINQ4 AMQ0INQ4 AMQnINQ4

Getting messages (no wait) AMQSGBR4 AMQ0GBR4 AMQnGBR4

Getting messages (wait with a time limit) AMQSGET4 AMQ0GET4 AMQnGET4

Getting messages (unlimited wait) AMQSTRG4 no sample AMQ3TRG4

Getting messages (with data conversion) AMQSECH4 AMQ0ECH4 AMQnECH4

Putting reference messages to a queue AMQSPRM4 no sample no sample

Getting reference messages from a queue AMQSGRM4 no sample no sample

Reference message channel exit AMQSQRM4,
AMQSXRM4

no sample no sample

Message exit AMQSCMX4 no sample no sample

Browsing first 20 characters of a message AMQSGBR4 AMQ0GBR4 AMQnGBR4

Browsing complete messages AMQSBCG4 no sample no sample

Using a shared input queue AMQSINQ4 AMQ0INQ4 AMQnINQ4

Using an exclusive input queue AMQSREQ4 AMQ0REQ4 AMQnREQ4

Using the MQINQ call AMQSINQ4 AMQ0INQ4 AMQnINQ4

Using the MQSET call AMQSSET4 AMQ0SET4 AMQnSET4

Using a reply-to queue AMQSREQ4 AMQ0REQ4 AMQnREQ4

Requesting message exceptions AMQSREQ4 AMQ0REQ4 AMQnREQ4

Accepting a truncated message AMQSGBR4 AMQ0GBR4 AMQnGBR4

Using a resolved queue name AMQSGBR4 AMQ0GBR4 AMQnGBR4

Triggering a process AMQSTRG4 no sample AMQ3TRG4

Trigger server AMQSERV4 no sample AMQ3SRV4

Using a trigger server (including CICS transactions) AMQSERV4 no sample AMQ3SRV4

Using data conversion AMQSVFC4 no sample no sample

Notes:

1. Source for the C samples is in the file QMQMSAMP/QCSRC. Include files exist as members in the file
QMQM/H.

2. Source for the COBOL samples are in the files QMQMSAMP/QLBLSRC for the OPM compiler, and
QMQMSAMP/QCBLLESRC for the ILE compiler. The members are named AMQ0xxx4, where xxx indicates the
sample function.

3. There are three sets of RPG sample programs:

a. OPM RPG programs.

The source is in QMQMSAMP/QRPGSRC. Members are named AMQ1xxx4, where xxx indicates the sample
function. Copy members exist in QMQM/QRPGSRC.

b. ILE RPG programs using the MQI through a call to QMQM.

The source is in QMQMSAMP/QRPGLESRC. Members are named AMQ2xxx4, where xxx indicates the
sample function. Copy members exist in QMQM/QRPGLESRC. Each member name is suffixed with “R”.

c. ILE RPG programs using prototyped calls to the MQI.

The source is in QMQMSAMP/QRPGLESRC. Members are named AMQ3xxx4, where xxx indicates the
sample function. Copy members exist in QMQM/QRPGLESRC. Each member name is suffixed with “G”.

Features demonstrated

Chapter 32. Sample programs (all platforms except OS/390) 317

In addition to these, the MQSeries for AS/400 sample option includes a sample
data file, which can be used as input to the sample programs, AMQSDATA and
sample CL programs that demonstrate administration tasks. The CL samples are
described in the MQSeries for AS/400 V5.1 System Administration book. You could
use the sample CL program amqsamp4 to create queues to use with the sample
programs described in this chapter.

Samples for Tandem NonStop Kernel
The following C and COBOL sample programs are supplied with MQSeries for
Tandem NonStop Kernel:

Table 25. MQSeries for Tandem NonStop Kernel C and COBOL sample programs demonstrating use of the MQI

Description C
(source)

C
(executable)

COBOL85
(source)

COBOL85
(executable)

Putting messages using
the MQPUT call

amqsput0 amqsput amq0put0 amq0put

Putting a single message
using the MQPUT1 call

amqsinqa amqsinq No sample No sample

Getting messages
(no wait)

amqsgbr0 amqsgbr amq0gbr0 amq0gbr

Getting messages
(wait with a time limit)

amqsget0 amqsget amq0get0 amq0get

Getting messages
(unlimited wait)

amqstrg0 amqstrg No sample No sample

Getting messages
(with data conversion)

amqsecha amqsech amq0ech0 amq0ech

Browsing complete messages amqsbcg0 amqsbcg No sample No sample

Use a shared input queue No sample No sample amq0inq0 amq0inq

Using the MQSET call amqsseta amqsset amq0set0 amq0set

Using a reply-to queue amqsreq0 amqsreq amq0req0 amq0req

Using data conversion amqsvfcn No sample No sample No sample

Sample skeleton for channel exit amqsvchn No sample No sample No sample

The following TAL sample programs are supplied with MQSeries for Tandem
NonStop Kernel:

Table 26. MQSeries for Tandem NonStop Kernel TAL sample programs demonstrating use
of the MQI

Description TAL
(source)

TAL
(executable)

Read n messages from a queue zmqreadt zmqread

Write n messages of n length to a queue zmqwritt zmqwrit

Samples for VSE/ESA
Table 27 on page 319 shows the techniques demonstrated by the MQSeries for
VSE/ESA COBOL sample programs.

Features demonstrated

318 MQSeries Application Programming Guide

|
|
|
|
|
|

|
|

|
|

Table 27. MQSeries for VSE/ESA COBOL sample programs demonstrating use of the MQI

Description COBOL
(source)

COBOL
(executable)

Transaction that demonstrates MQI calls (1) TTPTST2.Z TTPTST2

Test facility that starts the sample
transaction TTPTST2 (2)

TTPTST3.Z TTPTST3

Triggered test program that echoes a
message from a queue to a reply-to queue

MQPECHO.Z MQPECHO

Notes:
1. Demonstrates MQGET, MQINQ, MQPUT, MQPUT1, both MQPUT and MQGET,

MQGET and delete, MQPUT and reply.
2. Each TTPTST2 that is started is a task.

Preparing and running the sample programs
The following sections help you find the samples that you need to run on the
different platforms.

AS/400
The source for MQSeries for AS/400 sample programs are provided in library
QMQMSAMP as members of QCSRC, QLBLSRC, QCBLLESRC, QRPGSRC, and
QRPGLESRC. To run the samples use either the C executable versions, supplied in
the library QMQM, or compile them as you would any other MQSeries
application. For more information see “Running the sample programs” on
page 323.

UNIX systems
Table 28. Where to find the samples for MQSeries on UNIX systems

Content Directory

source files /mqmtop/samp

C source file for Windows 3.1 sample /mqmtop/win_client/samp

dead-letter queue handler source files /mqmtop/samp/dlq

executable files /mqmtop/samp/bin

Other MQSeries client executable files /mqmtop/dos_client/samp/bin
/mqmtop/os2_client/samp/bin
/mqmtop/win_client/samp/bin

Note: For MQSeries for AIX mqmtop is usr/mqm, for MQSeries for other UNIX systems
mqmtop is opt/mqm.

The MQSeries on UNIX systems sample files will be in the directories listed in
Table 28 if the defaults were used at installation time. To run the samples, either
use the executable versions supplied or compile the source versions as you would
any other applications, using an ANSI compiler. For information on how to do this,
see “Running the sample programs” on page 323.

Features demonstrated

Chapter 32. Sample programs (all platforms except OS/390) 319

Digital OpenVMS
Table 29. Where to find the samples for MQSeries for Compaq (DIGITAL) OpenVMS

Content Directory

source files MQS_EXAMPLES

C source file for Windows 3.1 sample [.WIN_CLIENT.SAMP] under
MQS_EXAMPLES

dead-letter queue handler source files [.DLQ] under MQS_EXAMPLES

executable files [.BIN] under MQS_EXAMPLES

Other MQSeries client executable files [.DOS_CLIENT.SAMP.BIN] under
MQS_EXAMPLES [OS2_CLIENT.SAMP.BIN]
under MQS_EXAMPLES
[WIN_CLIENT.SAMP.BIN] under
MQS_EXAMPLES

The MQSeries for Compaq (DIGITAL) OpenVMS sample files are in the directories
listed in Table 29 if the defaults were used at installation time. To run the samples,
either use the executable versions supplied or compile the source versions as you
would any other applications, using an ANSI compiler. For information on how to
do this, see “Running the sample programs” on page 323.

OS/2 and Windows NT
Table 30. Where to find the samples for MQSeries for OS/2 Warp and MQSeries for
Windows NT

Content Directory

C source code <drive:directory>\MQM\TOOLS\C\SAMPLES
<drive:directory>\Program Files\MQSeries\
Tools\C\Samples

Source code for
dead-letter handler
sample

<drive:directory>\MQM\TOOLS\C\SAMPLES\DLQ
<drive:directory>\Program Files\MQSeries\
Tools\C\Samples\DLQ

C source code for
Windows 3.1 sample

<drive:directory>\MQM\WIN

COBOL source code <drive:directory>\MQM\TOOLS\COBOL\SAMPLES
<drive:directory>\Program Files\MQSeries\
Tools\Cobol\Samples

C executable files <drive:directory>\MQM\TOOLS\C\SAMPLES\BIN
<drive:directory>\Program Files\MQSeries\
Tools\C\Samples\Bin

Other MQSeries client
executable files

<drive:directory>\MQM\DOS
<drive:directory>\MQM\AIX
<drive:directory>\MQM\WIN

Sample MQSC files <drive:directory>\MQM\TOOLS\MQSC\SAMPLES
<drive:directory>\Program Files\MQSeries\
Tools\MQSC\Samples

PL/I source code <drive:directory>\MQM\TOOLS\PLI\SAMPLES
<drive:directory>\Program Files\MQSeries\
Tools\PLI\Samples

Visual Basic Version 4
source code

<drive:directory>\Program Files\MQSeries\
Tools\Samples\VB\Sampvb4

Preparing and running samples

320 MQSeries Application Programming Guide

Table 30. Where to find the samples for MQSeries for OS/2 Warp and MQSeries for
Windows NT (continued)

Content Directory

Visual Basic Version 5
source code

<drive:directory>\Program Files\MQSeries\
Tools\Samples\VB\Sampvb5

Note: The Visual Basic samples are not available for OS/2.

Note: MQSeries for Windows NT samples are in the directories that begin
<drive:directory>\Program Files.

The MQSeries for OS/2 Warp and MQSeries for Windows NT sample files will be
in the directories listed in Table 30 on page 320 if the defaults were used at
installation time, the <drive:directory> will default to <c:>. To run the samples,
either use the executable versions supplied or compile the source versions as you
would any other MQSeries for OS/2 Warp or MQSeries for Windows NT
applications. For information on how to do this, see “Running the sample
programs” on page 323.

Tandem NSK
See the relevant following section for your programming language.

Building C sample programs
The subvolume ZMQSSMPL contains the following TACL macro files to be used
for building non-native sample C applications:

CSAMP
Usage: CSAMP source-code-file-name

This is a basic macro for compiling a C source file using the include files
contained in subvolume ZMQSLIB. For example, to compile the sample
AMQSBCG0, use CSAMP AMQSBCG0. If the compilation is successful, the
macro produces an object file with the last character of the file name
replaced by the letter O; for example, AMQSBCGO.

BSAMP
Usage: BSAMP exe-file-name

This is a basic macro used to bind an object file with the user libraries in
ZMQSLIB. For example, to bind the compiled sample AMQSBCG0, use
BSAMP AMQSBCG. The macro produces an executable file called
exe-file-nameE; for example, AMQSBCGE.

COMPALL
Usage: COMPALL

This TACL macro compiles each of the sample source code files using the
CSAMP macro.

BINDALL
Usage: BINDALL

This TACL macro binds each of the sample object files into executables
using the BSAMP macro.

BUILDC
Usage: BUILDC

This TACL macro compiles and binds all of the C sample files using the
macros COMPALL and BINDALL.

Preparing and running samples

Chapter 32. Sample programs (all platforms except OS/390) 321

|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

For a native install, the following TACL macro files are to be used for building
sample MQI applications:

NMCALL
Usage: NMCALL

Macro to compile all samples native using NMCSAMP.

NMCPSRL
Usage: NMCPSRL source-code-file-name

Macro to compile user code for inclusion in the MQSeries PSRL.

NMCSAMP
Usage: NMCSAMP source-code-file-name

This is a basic macro for compiling a C source file using the include files
contained in subvolume ZMQSLIB. For example, to compile the sample
AMQSBCG0, use NMCSAMP AMQSBCG0. If the compilation is successful, the
macro produces an object file with the last character of the file name
replaced by the letter O; for example, AMQSBCGO.

NMLDSAMP
Usage: NMLDSAMP exe-file-name

This basic macro links an object file with the static MQI library in
ZMQSLIB.

NMLDPSRL
Usage: NMLDPSRL exe-file-name

This basic macro links an object file with the MQSeries private SRL in
ZMQSLIB

NMLDUSRL
Usage: NMLDUSRL object-input-file, where object-input-file is a file
containing a list of objects to be linked.

This is a basic macro for linking user code into a relinkable library.

Note: Non-native applications can connect to native queue managers, and native
applications can connect to non-native queue managers. All combinations of
native and non-native operation are valid and supported.

Building COBOL sample programs
The subvolume ZMQSSMPL contains the following files to be used for building
sample COBOL applications.

COBSAMP
Usage: COBSAMP source-code-file-name

This is a basic macro for compiling a COBOL source file using the
definition files contained in subvolume ZMQSLIB. For example, to compile
the program AMQ0GBR0, use COBSAMP AMQ0GBR0. If the compilation
is successful, the macro produces an object file with the last character of
the file name replaced by the letter O; for example, AMQ0GBRO.

BCOBSAMP
Usage: BCOBSAMP exe-file-name

This is a basic macro used to bind an object with the user libraries in
ZMQSLIB. For example, to bind the compiled sample AMQ0GBRO, use
BCOBSAMP AMQ0GBR. The macro produces an executable called
exe-file-name AMQ0GBR.

Preparing and running samples

322 MQSeries Application Programming Guide

|
|

|
|

|

|
|

|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

CCBSMPLS
Usage: CCBSMPLS

This TACL macro compiles each of the COBOL sample source code files.

BCBSMPLS
Usage: BIND /IN BCBSMPLS/

This bind input file binds each of the COBOL sample object files into
executables.

BUILDCOB
Usage: BUILDCOB

This TACL macro compiles and binds all of the COBOL sample files using
the macros CCBSMPLS and BCBSMPLS.

Building TAL sample programs
The subvolume ZMQSSMPL contains the following files to be used for building
sample TAL programs.

TALSAMP
Usage: TALSAMP source-code-file-name

This is a basic macro for compiling a TAL source file using the definition
files contained in subvolume ZMQSLIB. For example, to compile the
program ZMQWRITT, use TALSAMP ZMQWRITT. If the compilation is
successful, the macro produces an object file with the last character of the
file name replaced by the letter O; for example, ZMQWRITO.

BTALSAMP
Usage: BTALSAMP exe-file-name

This is a basic macro used to bind an object with the user libraries in
ZMQSLIB. For example, to bind the compiled sample ZMQWRITO, use
BTALSAMP ZMQWRIT.

CTLSMPLS
Usage: CTLSMPLS

This TACL macro compiles each of the TAL sample source code files.

BTLSMPLS
Usage: BIND /IN BTLSMPLS/

This bind input file binds each of the TAL sample object files into
executables.

BUILDTAL
Usage: BUILDTAL

This TACL macro compiles and binds all of the TAL sample files using the
macros CTLSMPLS and BTLSMPLS.

Windows
For information about MQSeries for Windows, see the following:
v MQSeries for Windows V2.0 User’s Guide.
v MQSeries for Windows V2.1 User’s Guide.

Running the sample programs
Before you can run any of the sample programs, a queue manager must be created
and the default definitions set up. This is explained in the MQSeries System

Preparing and running samples

Chapter 32. Sample programs (all platforms except OS/390) 323

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|

|

Administration book for MQSeries for AIX, HP-UX, OS/2, Sun Solaris, and
Windows NT; for other platforms, see the appropriate System Management Guide.

On all platforms except AS/400
The samples need a set of queues to work with. Either use your own queues or
run the sample MQSC file amqscos0.tst to create a set.

To do this on UNIX systems and Digital OpenVMS, enter:
runmqsc QManagerName <amqscos0.tst >/tmp/sampobj.out

Check the sampobj.out file to ensure that there are no errors.

To do this on OS/2 and Windows NT enter:
runmqsc QManagerName <amqscos0.tst > sampobj.out

Check the sampobj.out file to ensure that there are no errors. This file will be
found in your current directory.

To do this on Tandem NSK enter:
runmqsc -i $SYSTEM.ZMQSSMPL.AMQSCOMA

Check the sampobj.out file to ensure that there are no errors. This file will be
found in your current directory.

The sample applications can now be run. Enter the name of the sample application
followed by any parameters, for example:

amqsput myqueue qmanagername

o where myqueue is the name of the queue on which the messages are going to be
put, and qmanagername is the queue manager that owns myqueue.

See the description of the individual samples for information on the parameters
that each of them expects.

On AS/400
You can use your own queues when you run the samples, or you can run the
sample program AMQSAMP4 to create some sample queues. The source for this
program is shipped in file QCLSRC in library QMQMSAMP. It can be compiled
using the CRTCLPGM command.

To call one of the sample programs using data from member PUT in file
AMQSDATA of library QMQMSAMP, use a command like:

CALL PGM(QMQM/AMQSPUT4) PARM('QMQMSAMP/AMQSDATA(PUT)')

Note: For a compiled module to use the IFS file system specify the option
SYSIFCOPT (*IFSIO) on CRTCMOD, then the file name, passed as a
parameter, must be specified in the following format:
home/me/myfile

The sample data only applies to the C/400 sample programs.

Length of queue name
For the COBOL sample programs, when you pass queue names as parameters, you
must provide 48 characters, padding with blank characters if necessary. Anything
other than 48 characters causes the program to fail with reason code 2085.

Preparing and running samples

324 MQSeries Application Programming Guide

|
|
|

|

Inquire, Set, and Echo examples
For the Inquire, Set, and Echo examples, the sample definitions cause the C
versions of these samples to be triggered. If you want the COBOL versions you
must change the process definitions:

SYSTEM.SAMPLE.INQPROCESS
SYSTEM.SAMPLE.SETPROCESS
SYSTEM.SAMPLE.ECHOPROCESS

On OS/2, Windows NT, and UNIX do this by editing the amqscos0.tst file and
changing the C executable file names to the COBOL executable file names before
using the runmqsc command above.

On AS/400, you can use the CHGMQMPRC command (described in the MQSeries
for AS/400 V5.1 System Administration book), or edit and run AMQSAMP4 with the
alternative definition.

The Put sample programs
The Put sample programs put messages on a queue using the MQPUT call. See
“Features demonstrated in the sample programs” on page 312 for the names of
these programs.

Running the amqsput and amqsputc samples
These programs each take 2 parameters:
1. The name of the target queue (required)
2. The name of the queue manager (optional)

If a queue manager is not specified, amqsput connects to the default queue
manager and amqsputc connects to the queue manager identified by an
environment variable or the client channel definition file. To run these programs,
enter one of the following:

amqsput myqueue qmanagername

amqsputc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be
put, and qmanagername is the queue manager that owns myqueue.

Running the amqsputw sample
This program has no visible interface; all messages are put in the output file.

This program takes 4 parameters:
1. The name of the output file (required)
2. The name of the input file (required)
3. The name of the queue manager (required)
4. The name of the target queue (optional)

To run amqsputw from the Windows program manager:
1. Select File and click on Run...
2. On the run dialog, enter into the command line entry field the program name

followed by the parameters.

For example:
amqsputw outfile.out infile.in qmanagername myqueue

Preparing and running samples

Chapter 32. Sample programs (all platforms except OS/390) 325

|
|
|

where:
outfile.out is used to hold the messages generated when the program runs.
infile.in contains the data to be put onto the target queue. Each line of data is
put as a message. This must be an ASCII file.
qmanagername is the queue manager that owns myqueue.
myqueue is the name of the target queue on which the messages are going to be
put. If you don’t enter a queue name, the default queue for the queue manager
is used.

Here is an example of what you would see in the output file if you supplied a
target queue name:
Sample AMQSPUTW start
Output file “OUTFILE.OUT” opened
Input file “INFILE.IN” opened
Queue Manager name “QMANAGERNAME” will be used
target queue is MYQUEUE
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 1>
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 2>
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 3>
Sample AMQSPUTW end

Here is an example of what you would see in the output file if you did not enter a
target queue name (for example, amqsputw outfil2.out c: \infil2.in
qmanagernam2):
Sample AMQSPUTW start
Output file “OUTFIL2.OUT” opened
Input file “C:\INFIL2.IN” opened
Queue Manager name “QMANAGERNAM2” will be used
No parameter for Queue Name. Default Queue Name will be used
target queue is QDEF2.Q
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 1>
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 2>
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 3>
Sample AMQSPUTW end

where QDEF2.Q is the name of the default queue for the queue manager.

It is important always to look in the output file to see what has happened as there
is no visible indication of success or failure when you run this program.

Running the amq0put sample
The COBOL version does not have any parameters. It connects to the default
queue manager and when you run it you are prompted:
Please enter the name of the target queue

It takes input from StdIn and adds each line of input to the target queue. A blank
line indicates there is no more data.

Running the AMQSPUT4 C sample
The C program creates messages by reading data from a member of a source file.
You must specify the name of the file as a parameter when you start the program.
The structure of the file must be:

queue name
text of message 1
text of message 2

..

Put samples

326 MQSeries Application Programming Guide

.

text of message n
blank line

A sample of input for the put samples is supplied in library QMQMSAMP file
AMQSDATA member PUT.

Note: Remember that queue names are case sensitive. All the queues created by
the sample file create program AMQSAMP4 have names created in
uppercase characters.

The C program puts messages on the queue named in the first line of the file—you
could use the supplied queue SYSTEM.SAMPLE.LOCAL. The program puts the
text of each of the following lines of the file into separate datagram messages, and
stops when it reads a blank line at the end of the file.

Using the example data file the command is:
CALL PGM(QMQM/AMQSPUT4) PARM('QMQMSAMP/AMQSDATA(PUT)')

Running the AMQ0PUT4 COBOL sample
The COBOL program creates messages by accepting data from the keyboard. To
start the program, call the program and give the name of your target queue as a
program parameter. The program accepts input from the keyboard into a buffer
and creates a datagram message for each line of text. The program stops when you
enter a blank line at the keyboard.

Design of the Put sample program
The program uses the MQOPEN call with the MQOO_OUTPUT option to open the
target queue for putting messages. If it cannot open the queue, the program
outputs an error message containing the reason code returned by the MQOPEN
call. To keep the program simple, on this and on subsequent MQI calls, the
program uses default values for many of the options.

For each line of input, the program reads the text into a buffer and uses the
MQPUT call to create a datagram message containing the text of that line. The
program continues until either it reaches the end of the input or the MQPUT call
fails. If the program reaches the end of the input, it closes the queue using the
MQCLOSE call.

The Distribution List sample program
The Distribution List sample amqsptl0 gives an example of putting a message on
several message queues. It is based on the MQPUT sample, amqsput0.

Running the Distribution List sample, amqsptl0
The Distribution List sample runs in a similar way to the Put samples. It takes the
following parameters:
v The names of the queues
v The names of the queue managers

These values are entered as pairs. For example:
amqsptl0 queue1 qmanagername1 queue2 qmanagername2

Put samples

Chapter 32. Sample programs (all platforms except OS/390) 327

The queues are opened using MQOPEN and messages are put to the queues using
MQPUT. Reason codes are returned if any of the queue or queue manager names
are not recognized.

Design of the Distribution List sample
Put Message Records (MQPMRs) specify message attributes on a per destination
basis. The sample chooses to provide values for MsgId and CorrelId, and these
override the values specified in the MQMD structure. The PutMsgRecFields field in
the MQPMO structure indicates which fields are present in the MQPMRs:
MQLONG PutMsgRecFields=MQPMRF_MSG_ID + MQPMRF_CORREL_ID;

Next, the sample allocates the response records and object records. The object
records (MQORs) require at least one pair of names and an even number of names,
that is, ObjectName and ObjectQMgrName.

The next stage involves connecting to the queue managers using MQCONN. The
sample attempts to connect to the queue manager associated with the first queue
in the MQOR; if this fails, it goes through the object records in turn. You are
informed if it is not possible to connect to any queue manager and the program
exits.

The target queues are opened using MQOPEN and the message is put to these
queues using MQPUT. Any problems and failures are reported in the response
records (MQRRs).

Finally, the target queues are closed using MQCLOSE and the program disconnects
from the queue manager using MQDISC. The same response records are used for
each call stating the CompCode and Reason.

The Browse sample programs
The Browse sample programs browse messages on a queue using the MQGET call.
See “Features demonstrated in the sample programs” on page 312 for the names of
these programs.

OS/2, UNIX systems, Digital OpenVMS, and Windows NT
The C version of the program takes 2 parameters
1. The name of the source queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it will connect to the default one. For example,
enter one of the following:

amqsgbr myqueue qmanagername

amqsgbrc myqueue qmanagername

amq0gbr0 myqueue

where myqueue is the name of the queue that the messages will be viewed from,
and qmanagername is the queue manager that owns myqueue.

If you omit the qmanagername, when running the C sample, it will assume that the
default queue manager owns the queue.

The COBOL version does not have any parameters. It connects to the default
queue manager and when you run it you are prompted:

Distribution List sample

328 MQSeries Application Programming Guide

Please enter the name of the target queue

Only the first 20 characters of each message are displayed, followed by
- - - truncated when this is the case.

AS/400
Each program retrieves copies of all the messages on the queue you specify when
you call the program; the messages remain on the queue. You could use the
supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to
put some messages on the queue. You could use the queue
SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue. The
program continues until it reaches the end of the queue or an MQI call fails.

An example of a command to call the C program is:
CALL PGM(QMQM/AMQSGBR4) PARM('SYSTEM.SAMPLE.LOCAL')

Design of the Browse sample program
The program opens the target queue using the MQOPEN call with the
MQOO_BROWSE option. If it cannot open the queue, the program outputs an
error message containing the reason code returned by the MQOPEN call.

For each message on the queue, the program uses the MQGET call to copy the
message from the queue, then displays the data contained in the message. The
MQGET call uses these options:

MQGMO_BROWSE_NEXT
After the MQOPEN call, the browse cursor is positioned logically before
the first message in the queue, so this option causes the first message to be
returned when the call is first made.

MQGMO_NO_WAIT
The program does not wait if there are no messages on the queue.

MQGMO_ACCEPT_TRUNCATED_MSG
The MQGET call specifies a buffer of fixed size. If a message is longer than
this buffer, the program displays the truncated message, together with a
warning that the message has been truncated.

The program demonstrates how you must clear the MsgId and CorrelId fields of
the MQMD structure after each MQGET call, because the call sets these fields to
the values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The program continues to the end of the queue; at this point the MQGET call
returns the MQRC_NO_MSG_AVAILABLE reason code and the program displays a
warning message. If the MQGET call fails, the program displays an error message
that contains the reason code.

The program then closes the queue using the MQCLOSE call.

Browse samples

Chapter 32. Sample programs (all platforms except OS/390) 329

The Browser sample program
The Browser sample program is written as a utility not just to demonstrate a
technique. It reads and outputs both the message descriptor and the message
content fields of all the messages on a queue. See “Features demonstrated in the
sample programs” on page 312 for the names of these programs.

This program takes 2 parameters:
1. The name of the source queue
2. The name of the queue manager

Both input parameters for this program are mandatory. For example, enter one of
the following:

amqsbcg myqueue qmanagername

amqsbcgc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be
browsed, and qmanagername is the queue manager that owns myqueue.

It reads each message from the queue and outputs the following to the stdout:
Formatted message descriptor fields
Message data (dumped in hex and, where possible, character format)

The program is restricted to printing the first 32767 characters of the message, and
will fail with the reason ‘truncated msg’ if a longer message is read.

See the System Management Guide for your platform, for examples of the output
from this utility.

The Get sample programs
The Get sample programs get messages from a queue using the MQGET call. See
“Features demonstrated in the sample programs” on page 312 for the names of
these programs.

Running the amqsget and amqsgetc samples
These programs each take two parameters:
1. The name of the source queue (required)
2. The name of the queue manager (optional)

If a queue manager is not specified, amqsget connects to the default queue
manager, and amqsgetc connects to the queue manager identified by an
environment variable or the client channel definition file.

To run these programs, enter one of the following:
amqsget myqueue qmanagername

amqsgetc myqueue qmanagername

where myqueue is the name of the queue from which the program will get
messages, and qmanagername is the queue manager that owns myqueue.

If you omit the qmanagername, the programs assume the default, or, in the case of
the MQI client, the queue manager identified by an environment variable or the
client channel definition file.

Browser sample

330 MQSeries Application Programming Guide

Running the amqsgetw sample
This program has no visible interface, all messages are put in the output file, not to
stdout.

This program takes 3 parameters:
1. The name of the output file (required)
2. The name of the queue manager (required)
3. The name of the target queue (optional)

To run amqsgetw from the Windows 3.1 program manager:
1. Select File and click on Run...
2. On the run dialog, enter into the command line entry field the program name

followed by the parameters.

For example:
amqsgetw outfile.out qmanagername myqueue

where:
outfile.out is used to hold the messages generated when the program runs.
qmanagername is the queue manager that owns myqueue.
myqueue is the name of the target queue from which the program will get
messages. If you do not enter a queue name, the default queue for the queue
manager is used.

Here is an example of the contents of the output file:
Sample AMQSGETW start
Output file “OUTFILE.OUT” opened
Queue Manager name “QMANAGERNAME” will be used
Queue Name “MYQUEUE” will be used
MQGET OK - message contents: <AMQSPUTW: Windows Client Test Message 1>
MQGET OK - message contents: <AMQSPUTW: Windows Client Test Message 2>
MQGET OK - message contents: <AMQSPUTW: Windows Client Test Message 3>
no more messages
Sample AMQSGETW end

It is important always to look in the output file to see what has happened as there
is no visible indication of success or failure when you run this program.

Running the amq0get sample
The COBOL version does not have any parameters. It connects to the default
queue manager and when you run it you are prompted:
Please enter the name of the source queue

Each program removes messages from the queue you specify when you call the
program. You could use the supplied queue SYSTEM.SAMPLE.LOCAL; run the
Put sample program first to put some messages on the queue. You could use the
queue SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue.
The program continues until the queue is empty or an MQI call fails.

Running the AMQSGET4 and the AMQ0GET4 samples
The Get sample programs get messages from a queue using the MQGET call. The
programs are named:

C language AMQSGET4

Get samples

Chapter 32. Sample programs (all platforms except OS/390) 331

COBOL language AMQ0GET4

Each program removes messages from the queue you specify when you call the
program. You could use the supplied queue SYSTEM.SAMPLE.LOCAL; run the
Put sample program first to put some messages on the queue. You could use the
queue SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue.
The program continues until the queue is empty or an MQI call fails.

An example of a command to call the C program is:
CALL PGM(QMQM/AMQSGET4) PARM('SYSTEM.SAMPLE.LOCAL')

Design of the Get sample program
The program opens the target queue using the MQOPEN call with the
MQOO_INPUT_AS_Q_DEF option. If it cannot open the queue, the program
displays an error message containing the reason code returned by the MQOPEN
call.

For each message on the queue, the program uses the MQGET call to remove the
message from the queue, then displays the data contained in the message. The
MQGET call uses the MQGMO_WAIT option, specifying a WaitInterval of 15
seconds, so that the program waits for this period if there is no message on the
queue. If no message arrives before this interval expires, the call fails and returns
the MQRC_NO_MSG_AVAILABLE reason code.

The program demonstrates how you must clear the MsgId and CorrelId fields of
the MQMD structure after each MQGET call because the call sets these fields to the
values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The MQGET call specifies a buffer of fixed size. If a message is longer than this
buffer, the call fails and the program stops.

The program continues until either the MQGET call returns the
MQRC_NO_MSG_AVAILABLE reason code or the MQGET call fails. If the call
fails, the program displays an error message that contains the reason code.

The program then closes the queue using the MQCLOSE call.

The Reference Message sample programs
The reference message samples allow a large object to be transferred from one
node to another (usually on different systems) without the need for the object to be
stored on MQSeries queues at either the source or the destination nodes.

A set of sample programs is provided to demonstrate how reference messages can
be 1) put to a queue, 2) received by message exits, and 3) taken from a queue. The
sample programs use reference messages to move files. If you want to move other
objects such as databases, or if you want to perform security checks, you must
define your own exit, based on our sample, amqsxrm. The following sections
describe the Reference Message sample programs.

Get samples

332 MQSeries Application Programming Guide

There are four versions of the reference message exit sample program. The one to
use depends on the platform on which the channel is running. If the sender
channel is running on:

MQSeries Version 5 products (excluding MQSeries for AS/400)
Use amqsxrma at the sending end. Use amqsxrma at the receiving end if
the receiver is running under MQSeries Version 5 products (excluding
MQSeries for AS/400) or amqsxrm4 if the receiver is running under
MQSeries for AS/400.

MQSeries for Windows (not MQSeries for Windows NT)
Use amqsqrma at the receiving end if the receiver is running under
MQSeries Version 5 products (excluding MQSeries for AS/400) or
amqsqrm4 if the receiver is running under MQSeries for AS/400.

If you use amqsqrma or amqsqrm4 a model queue with the name
SYSTEM.DEFAULT.MODEL.PERMDYN.QUEUE and queue definition type of
PERMDYN must exist at the receiving end. You can create this queue using the
MQSC command:
def qm(system.default.model.permdyn.queue) deftype(permdyn)

Note: In the following sections references to amqsxrma also apply to amqsqrma
and references to AMQSXRM4 also apply to AMQSQRM4.

Notes for AS/400 users
To receive a reference message using the sample message exit, specify a file in the
root file system of IFS or any sub-directory so that a stream file can be created. The
sample message exit on AS/400 creates the file, converts the data to EBCDIC, and
sets the code page to your system code page. You then have the option of copying
this file to the QSYS.LIB file system using the CPYFRMSTMF command. For
example:
CPYFRMSTMF FROMSTMF('JANEP/TEST.TXT')

TOMBR('qsys.lib.janep.lib/test.fie/test.mbr') MBROPT(*REPLACE)
CVTDTA(*NONE)

Note that the CPYFRMSTMF command does not create the file, it must be created
before running this command.

If you send a file from QSYS.LIB no changes are required to the samples. For any
other file system ensure that the CCSID specified in the CodedCharSetId field in
the MQRMH structure matches the bulk data you are sending.

When using the integrated file system, create program modules with the
SYSIFCOPT(*IFSIO) option set. If you want to move database or fixed-length
record files, define your own exit based on the supplied sample AMQSXRM4.

Reference Message samples

Chapter 32. Sample programs (all platforms except OS/390) 333

|
|
|
|
|

|
|
|

Running the Reference Message samples
The reference message samples run as follows:

1. Set up the environment to start the listeners, channels, and trigger monitors,
and define your channels and queues.
For the purposes of describing how to set-up the reference message example
this refers to the sending machine as MACHINE1 with a queue manager called
QMGR1 and the receiving machine as MACHINE2 with a queue manager
called QMGR2.

Note: The following definitions allow a reference message to be built to send a
file with an object type of FLATFILE from queue manager QMGR1 to
QMGR2 and to recreate the file as defined in the call to AMQSPRM (or
AMQSPRMA on AS/400). The reference message (including the file data)
is sent using channel CHL1 and transmission queue XMITQ and placed
on queue DQ. Exception and COA reports are sent back to QMGR1
using the channel REPORT and transmission queue QMGR1.

Putting application, amqsprm Getting application, amqsgrm

ReplyToQ

XMITQ

amqsxrm
exit

Receiving
channel

file data
d:/files/infile.dat

Destination
queue
(DQ)

Receiving
channel

amqsxrm
exit

Sending
channel

file data
e:/files/outfile.dat

QMGR1

Q

QM

XQ RMH

RMH

RMH

RMH

COA

COA

COA

report

Check

existence

of file

RMH + data

RMH

QMGR2QMGR1

QR

Sending
channel

Figure 35. Running the reference message samples

Reference Message samples

334 MQSeries Application Programming Guide

The application that receives the reference message (AMQSGRM or
AMQSGRMA on the AS/400) is triggered using the initiation queue INITQ and
process PROC. You need to ensure the CONNAME fields are set correctly and
the MSGEXIT field reflects your directory structure, depending on machine
type and where the MQSeries product is installed.

The MQSC definitions have used an OS/2 style for defining the exits, if you
are using MQSC on the AS/400 you will need to modify these accordingly. It is
important to note that the message data FLATFILE is case sensitive and the
sample will not work unless it is in uppercase.

On machine MACHINE1, queue manager QMGR1

MQSC syntax
define chl(chl1) chltype(sdr) trptype(tcp) conname('machine2') xmitq(xmitq)
msgdata(FLATFILE) msgexit('d:\mqm\tools\c\samples\bin\amqsxrm(MsgExit)')

define ql(xmitq) usage(xmitq)

define chl(report) chltype(rcvr) trptype(tcp) replace

define qr(qr) rname(dq) rqmname(qmgr2) xmitq(xmitq) replace

AS/400 command syntax

Note: If you do not specify a queue manager name the system uses the default
queue manager.
CRTMQMCHL CHLNAME(CHL1) CHLTYPE(*SDR) TRPTYPE MQMNAME(QMGR1)

CONNAME(MACHINE2) TMQNAME(XMITQ) MSGEXIT(QMQM/AMQSXRM4)
MSGUSRDAT A(FLATFILE)

CRTMQMQ QNAME(XMITQ) QTYPE(*LCL) MQMNAME(QMGR1) USAGE(*TMQ)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(*RCVR)TRPTYPE MQMNAME(QMGR1)

CRTMQMQ QNAME(QR) QTYPE(*RMT) RMTQNAME(DQ) RMTMQMNAME(QMGR2)
TMQNAME(XMITQ)MQMNAME(QMGR1)

On machine MACHINE2, queue manager QMGR2

MQSC syntax
define chl(chl1) chltype(rcvr) trptype(tcp)
msgexit('d:\mqm\tools\c\samples\bin\amqsxrm(MsgExit)')

msgdata(flatfile)

define chl(report) chltype(sdr) trptype(tcp) conname('MACHINE1')
xmitq(qmgr1)

define ql(initq)

define ql(qmgr1) usage(xmitq)

define pro(proc) applicid('d:\mqm\tools\c\samples\bin\amqsgrm')

define ql(dq) initq(initq) process(proc) trigger trigtype(first)

AS/400 command syntax

Note: If you do not specify a queue manager name the system uses the default
queue manager.

Reference Message samples

Chapter 32. Sample programs (all platforms except OS/390) 335

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|

|
|

CRTMQMCHL CHLNAME(CHL1) CHLTYPE(*RCVR) TRPTYPE MQMNAME(QMGR2)
MSGEXIT(QMQM/AMQSXRM4) MSGUSRDATA(FLATFILE)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(*SDR) TRPTYPE MQMNAME(QMGR2)
CONNAME(MQCHINE1) TMQNAME(QMGR1)

CRTMQMQ QNAME(INITQ) QTYPE(*LCL) MQMNAME(QMGR2) USAGE(*NORMAL)

CRTMQMQ QNAME(QMGR1) QTYPE(*LCL) MQMNAME(QMGR2) USAGE(*TMQ)

CRTMQMPRC PRCNAME(PROC) MQMNAME(QMGR2) APPID('QMQMSAMP/AMQSGRMA')

CRTMQMQ QNAME(DQ) QTYPE(*LCL) MQMNAME(QMGR2) PRCNAME(PROC) TRGENBL(*YES)
INITQNAME(INITQ)

2. Once the above MQSeries objects have been created:
a. Where applicable to the platform, start the listener for the sending and

receiving queue managers
b. Start the channels CHL1 and REPORT
c. On the receiving queue manager start the trigger monitor for the initiation

queue INITQ
3. Invoke the put reference message sample AMQSPRM (AMQSPRMA on the

AS/400) from the command line using the following parameters:

-m Name of the local queue manager, this defaults to the default queue manager
-i Name and location of source file
-o Name and location of destination file
-q Name of queue
-g Name of queue manager where the queue, defined in the -q parameter exists This

defaults to the queue manager specified in the -m parameter
-t Object type
-w Wait interval, that is, the waiting time for exception and COA reports from the

receiving queue manager

For example, to use the sample with the objects defined above you would use
the following parameters:
-mQMGR1 -iInput File -oOutput File -qQR -tFLATFILE -w120

Increasing the waiting time will allow time for a large file to be sent across a
network before the putting program times out.
amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

AS/400 users: On the AS/400 use the following command:
CALL PGM(QMQMSAMP/AMQSPRMA) PARM('-mQMGR1' '-iLIBRARY/FILEIN'
'-oLIBRARY/FILEOUT' '-qDQ' '-tFLATFILE'

To use the IFS, use the following commands:
CRTCMOD MODULE(QMQMSAMP/AMQSXRM4) SRCFILE(QMQMSAMP/QCSRC) SYSIFCOPT(*IFSIO)
CRTCMOD MODULE(QMQMSAMP/AMQSGRM4) SRCFILE(QMQMSAMP/QCSRC) SYSIFCOPT(*IFSIO)

You may use the root directory, but it is recommended you create one using the
CRTDIR command.

When calling the putting program the output file name will need to reflect the
IFS naming convention, for instance /TEST/FILENAME will create a file called
FILENAME in the directory TEST.

Reference Message samples

336 MQSeries Application Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Note: You can use either a forward slash (/) or a dash (-) when specifying
parameters.

For example:
amqsprm /i d:\files\infile.dat /o e:\files\outfile.dat /q QR
/m QMGR1 /w 30 /t FLATFILE

Note: For UNIX platforms, you must use two slashes (\\) instead of one to
denote the destination file directory. Therefore, the above command
looks like this:
amqsprm -i /files/infile.dat -o e:\\files\\outfile.dat -q QR
-m QMGR1 -w 30 -t FLATFILE

This demonstrates the following:
v The reference message will be put to queue QR on queue manager QMGR1.
v The source file and path is d:\files\infile.dat and exists on the system

where the example command is issued.
v If the queue QR is a remote queue, the reference message is sent to another

queue manager, on a different system, where a file is created with the name
and path e:\files\outfile.dat. The contents of this file are the same as the
source file.

v amqsprm waits for 30 seconds for a COA report from the destination queue
manager.

v The object type is flatfile, so the channel used to move messages from the
queue QR must specify this in the MsgData field.

4. When you define your channels, select the message exit at both the sending
and receiving ends to be amqsxrm. This is defined on MQSeries for OS/2
Warp, and Windows NT as follows:
msgexit(‘<pathname>\amqsxrm.dll(MsgExit)’)

This is defined on MQSeries for AIX, HP-UX, and Sun Solaris as follows:
msgexit(‘<pathname>/amqsxrm(MsgExit)’)

If a pathname is specified, the complete name must be specified (with .dll on
OS/2). If a pathname is not specified, it is assumed that the program is in the
path specified in the qm.ini file (or, on MQSeries for Windows NT, the path
specified in the registry). This is explained fully in the MQSeries
Intercommunication book.

5. The channel exit reads the reference message header and finds the file that it is
referring to.

6. It can then choose to segment the file before sending it down the channel along
with the header. On MQSeries for AIX, HP-UX, and Sun Solaris, you must
change the group owner of the target directory to ‘mqm’ so that the sample
message exit can create the file in that directory. Also, change the permissions
of the target directory to allow mqm group members to write to it. The file
data is not stored on the MQSeries queues.

7. When the last segment of the file is processed by the receiving message exit,
the reference message is put to the destination queue specified by amqsprm. If
this queue is triggered (that is, the definition specifies Trigger, InitQ, and
Process queue attributes), the program specified by the PROC parameter of the
destination queue is triggered. The program to be triggered must be defined in
the ApplId field of the Process attribute.

Reference Message samples

Chapter 32. Sample programs (all platforms except OS/390) 337

8. When the reference message reaches the destination queue (DQ), a COA report
is sent back to the putting application (amqsprm).

9. The get reference message sample, amqsgrm, gets messages from the queue
specified in the input trigger message and checks the existence of the file.

Design of the Put Reference Message sample (amqsprma.c,
AMQSPRM4)

This sample creates a reference message that refers to a file and puts it on a
specified queue:
1. The sample connects to a local queue manager using MQCONN.
2. It then opens (MQOPEN) a model queue which is used to receive report

messages.
3. The sample builds a reference message containing the values required to move

the file, for example, the source and destination file names and the object type.
As an example, the sample shipped with MQSeries builds a reference message
to send the file d:\x\file.in from QMGR1 to QMGR2 and to recreate the file as
d:\y\file.out using the following parameters:
amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

Where QR is a remote queue definition that refers to a target queue on QMGR2.

Note: For UNIX platforms, you must use two slashes (\\) instead of one to
denote the destination file directory. Therefore, the above command
looks like this:
amqsprm -q QR -m QMGR1 -i /x/file.in -o d:\\y\\file.out -t FLATFILE

4. The reference message is put (without any file data) to the queue specified by
the /q parameter. If this is a remote queue, the message is put to the
corresponding transmission queue.

5. The sample waits, for the duration of time specified in the /w parameter
(which defaults to 15 seconds), for COA reports, which, along with exception
reports, are sent back to the dynamic queue created on the local queue manager
(QMGR1).

Design of the Reference Message Exit sample (amqsxrma.c,
AMQSXRM4)

This sample recognizes reference messages with an object type that matches the
object type in the message exit user data field of the channel definition. For these
messages, the following happens:
v At the sender or server channel, the specified length of data is copied from the

specified offset of the specified file into the space remaining in the agent buffer
after the reference message. If the end of the file is not reached, the reference
message is put back on the transmission queue after updating the
DataLogicalOffset field.

v At the requester or receiver channel, if the DataLogicalOffset field is zero and
the specified file does not exist, it is created. The data following the reference
message is added to the end of the specified file. If the reference message is not
the last one for the specified file, it is discarded. Otherwise, it is returned to the
channel exit, without the appended data, to be put on the target queue.

Reference Message samples

338 MQSeries Application Programming Guide

For sender and server channels, if the DataLogicalLength field in the input
reference message is zero, the remaining part of the file, from DataLogicalOffset
to the end of the file, is to be sent along the channel. If it is not zero, only the
length specified is sent.

If an error occurs (for example, if the sample is unable to open a file),
MQCXP.ExitResponse is set to MQXCC_SUPPRESS_FUNCTION so that the
message being processed is put to the dead-letter queue instead of continuing to
the destination queue. A feedback code is returned in MQCXP.Feedback and
returned to the application that put the message in the Feedback field of the
message descriptor of a report message. This is because the putting application
requested exception reports by setting MQRO_EXCEPTION in the Report field of
the MQMD.

If the encoding or CodedCharacterSetId (CCSID) of the reference message is
different from that of the queue manager, the reference message is converted to the
local encoding and CCSID. In our sample, amqsprm, the format of the object is
MQFMT_STRING, so amqsxrm converts the object data to the local CCSID at the
receiving end before the data is written to the file.

The format of the file being transferred should not be specified as
MQFMT_STRING if the file contains multibyte characters (for example, DBCS or
Unicode). This is because a multibyte character could be split when the file is
segmented at the sending end. To transfer and convert such a file, the format
should be specified as something other than MQFMT_STRING so that the
reference message exit does not convert it and the file should be converted at the
receiving end when the transfer is complete.

Compiling the Reference Message Exit sample
To compile amqsxrma, use the following commands:

On AIX:
$cc -d -I/usr/mqm/inc amqsxrma.c
$ld -o amqsxrm amqsxrma.o -bE:amqsxrm.exp -H512 -T512 \
-e MQStart -bM:SRE -lc -ls -lmqm

On HP-UX:
$ cc -c -Aa +z -I/opt/mqm/inc amqsxrma.c
$ ld -b -o amqsxrm amqsxrma.o -z +b : -lmqm -lc

On AS/400: To create the module use the following command:
CRTCMOD MODULE(MYLIB/AMQSXRMA) SRCFILE(QMQMSAMP/QCSRC)

TERASPACE (*YES *TSIFC)

Note: To create your module so that it uses the IFS file system add the option
SYSIFCOPT (*IFSIO).

To create the program for use with nonthreaded channels use the following
command: CRTPGM PGM(MYLIB/AMQSXRMA) BNDSRVPGM(QMQM/LIBMQM)

To create the program for use with threaded channels use the following command:
CRTPGM PGM(MYLIB/AMQSXRMA) BNDSRVPGM(QMQM/LIBMQM_R)

On Sun Solaris:
$ cc -c -KPIC -I/opt/mqm/inc amqsxrma.c
$ ld -G -o amqsxrm amqsxrma.o -dy -lmqm -lc -lnsl -ldl

Reference Message samples

Chapter 32. Sample programs (all platforms except OS/390) 339

|

|
|

|
|

|
|

|
|

Design of the Get Reference Message sample (amqsgrma.c,
AMQSGRM4)

The program logic is as follows:
1. The sample is triggered and extracts the queue and queue manager names from

the input trigger message.
2. It then connects to the specified queue manager using MQCONN and opens

the specified queue using MQOPEN.
3. The sample issues MQGET with a wait interval of 15 seconds within a loop to

get messages from the queue.
4. If a message is a reference message, the sample checks the existence of the file

that has been transferred.
5. It then closes the queue and disconnects from the queue manager.

The Request sample programs
The Request sample programs demonstrate client/server processing. The samples
are the clients that put request messages on a target server queue that is processed
by a server program. They wait for the server program to put a reply message on a
reply-to queue.

The Request samples put a series of request messages on target server queue using
the MQPUT call. These messages specify the local queue, SYSTEM.SAMPLE.REPLY
as the reply-to queue, which can be a local or remote queue. The programs wait
for reply messages, then display them. Replies are sent only if the target server
queue is being processed by a server application, or if an application is triggered
for that purpose (the Inquire, Set, and Echo sample programs are designed to be
triggered). The C sample waits 1 minute (the COBOL sample waits 5 minutes), for
the first reply to arrive (to allow time for a server application to be triggered), and
15 seconds for subsequent replies, but both samples can end without getting any
replies. See “Features demonstrated in the sample programs” on page 312 for the
names of the Request sample programs.

Running the amqsreq0.c, amqsreq, and amqsreqc samples
The C version of the program takes 2 parameters:
1. The name of the target server queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it will connect to the default one. For example,
enter one of the following:

amqsreq myqueue qmanagername

amqsreqc myqueue qmanagername

amq0req0 myqueue

where myqueue is the name of the target server queue, and qmanagername is the
queue manager that owns myqueue.

If you omit the qmanagername, when running the C sample, it will assume that the
default queue manager owns the queue.

Running the amq0req0.cbl sample
The COBOL version does not have any parameters. It connects to the default
queue manager and when you run it you are prompted:

Reference Message samples

340 MQSeries Application Programming Guide

Please enter the name of the target server queue

The program takes its input from StdIn and adds each line to the target server
queue, taking each line of text as the content of a request message. The program
ends when a null line is read.

Running the AMQSREQ4 sample
The C program creates messages by reading data from a member of a source file.
You must specify the name of the file as a parameter when you start the program.
The structure of the file must be:

queue name
text of message 1
text of message 2

...

text of message n
blank line

Samples of input for the request samples are supplied in library QMQMSAMP file
AMQSDATA members ECHO, INQ and SET.

Note: Remember that queue names are case sensitive. All the queues created by
the sample file create program AMQSAMP4 have names created in
uppercase characters.

The C program puts messages on the queue named in the first line of the file—you
could use the supplied queue SYSTEM.SAMPLE.TRIGGER. The program puts the
text of each of the following lines of the file into separate request messages, and
stops when it reads a blank line at the end of the file.

Running the AMQ0REQ4 sample
The COBOL program creates messages by accepting data from the keyboard. To
start the program, call the program and specify the name of your target queue as a
parameter. The program accepts input from the keyboard into a buffer and creates
a request message for each line of text. The program stops when you enter a blank
line at the keyboard.

Running the Request sample using triggering
If the sample is used with triggering and one of the Inquire, Set, or Echo sample
programs, the line of input must be the queue name of the queue that you want
the triggered program to access.

OS/2, UNIX systems, and Windows NT
To run the samples using triggering:
1. Start the trigger monitor program RUNMQTRM in one session (the initiation

queue SYSTEM.SAMPLE.TRIGGER is available for you to use).
2. Start the amqsreq program in another session.
3. Make sure you have defined a target server queue.

The sample queues available to you to use as the target server queue for the
request sample to put messages are:
v SYSTEM.SAMPLE.INQ - for the Inquire sample program
v SYSTEM.SAMPLE.SET - for the Set sample program
v SYSTEM.SAMPLE.ECHO - for the Echo sample program

Request samples

Chapter 32. Sample programs (all platforms except OS/390) 341

These queues have a trigger type of FIRST, so if there are already messages on
the queues before you run the Request sample, server applications are not
triggered by the messages you send.

4. Make sure you have defined a queue for the Inquire, Set or Echo sample
program to use.

This means that the trigger monitor is ready when the request sample sends a
message.

Note: The sample process definitions created using RUNMQSC and the
amqscos0.tst file cause the C samples to be triggered. Change the process
definitions in amqscos0.tst and use RUNMQSC with this updated file if the
COBOL versions are required.

Figure 36 demonstrates how the Request and Inquire samples can be used together.

In Figure 36 the Request sample puts messages on to the target server queue,
SYSTEM.SAMPLE.INQ, and the Inquire sample queries the queue, MYQUEUE.
Alternatively, you can use one of the sample queues defined when you ran
amqscos0.tst, or any other queue you have defined, for the Inquire sample.

SYSTEM.
SAMPLE.
INQPROCESS

Process

SYSTEM.
SAMPLE.
INQ

SYSTEM.
SAMPLE.
TRIGGER

APPLICATION

APPLICATION APPLICATION

TRIGGER
MONITOR

INQUIRE
SAMPLE

REQUEST
SAMPLE

QUEUE MANAGER

Local System
Local or Remote

System

SYSTEM.
SAMPLE.
REPLY

amqsreq

amqsinq runmqtrm

MYQUEUE

trigger
messagetr igger

event

start
command

message

message

inquiryreply message tr igger
message

Figure 36. Request and Inquire samples using triggering

Request samples

342 MQSeries Application Programming Guide

Note: The numbers in Figure 36 on page 342 show the sequence of events.

To run the Request and Inquire samples, using triggering:
1. Check that the queues you want to use are defined. Run amqscos0.tst, to define

the sample queues, and define a queue MYQUEUE.
2. Run the trigger monitor command RUNMQTRM:

RUNMQTRM -m qmanagername -q SYSTEM.SAMPLE.TRIGGER

3. Run the request sample
amqsreq SYSTEM.SAMPLE.INQ

Note: The process object defines what is to be triggered. If the client and server
are not running on the same platform, any processes started by the
trigger monitor must define ApplType, otherwise the server takes its
default definitions (that is, the type of application that is normally
associated with the server machine) and causes a failure.

For example, if the trigger monitor is running on a Windows NT client
and wants to send a request to an OS/2 server, MQAT_WINDOWS_NT
must be defined otherwise OS/2 uses its default definitions (that is,
MQAT_OS2) and the process fails.

For a list of application types, see the MQSeries Application Programming
Reference manual.

4. Enter the name of the queue you want the Inquire sample to use:
MYQUEUE

5. Enter a blank line (to end the Request program).
6. The request sample will then display a message, containing the data the Inquire

program obtained from MYQUEUE.

If you wish, you can use more than one queue. In this case, you enter the names of
the other queues at step 4.

For more information on triggering see “Chapter 14. Starting MQSeries applications
using triggers” on page 185.

AS/400
To try the samples using triggering on AS/400, start the sample trigger server,
AMQSERV4, in one job, then start AMQSREQ4 in another. This means that the
trigger server is ready when the Request sample program sends a message.

Notes:

1. The sample definitions created by AMQSAMP4 cause the C versions of the
samples to be triggered. If you want to trigger the COBOL versions, you must
change the process definitions SYSTEM.SAMPLE.ECHOPROCESS,
SYSTEM.SAMPLE.INQPROCESS, and SYSTEM.SAMPLE.SETPROCESS. You
can use the CHGMQMPRC command (described in the MQSeries for AS/400
V5.1 System Administration book) to do this, or edit and run your own version
of AMQSAMP4.

2. Source code for AMQSERV4 is supplied for the C language only. However, a
compiled version (that you can use with the COBOL samples) is supplied in
library QMQM.

You could put your request messages on these sample server queues:
v SYSTEM.SAMPLE.ECHO (for the Echo sample programs)

Request samples

Chapter 32. Sample programs (all platforms except OS/390) 343

|
|
|
|
|
|
|

v SYSTEM.SAMPLE.INQ (for the Inquire sample programs)
v SYSTEM.SAMPLE.SET (for the Set sample programs)

A flow chart for the SYSTEM.SAMPLE.ECHO program is shown in Figure 37 on
page 346. Using the example data file the command to issue the C program request
to this server is:

CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(ECHO)')

Note: This sample queue has a trigger type of FIRST, so if there are already
messages on the queue before you run the Request sample, server
applications are not triggered by the messages you send.

If you want to attempt further examples, you can try the following variations:
v Use AMQSTRG4 instead of AMQSERV4 to submit the job instead, but potential

job submission delays could make it less easy to follow what is happening.
v Run the SYSTEM.SAMPLE.INQUIRE and SYSTEM.SAMPLE.SET sample

programs. Using the example data file the commands to issue the C program
requests to these servers are, respectively:

CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(INQ)')
CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(SET)')

These sample queues also have a trigger type of FIRST.

Design of the Request sample program
The program opens the target server queue so that it can put messages. It uses the
MQOPEN call with the MQOO_OUTPUT option. If it cannot open the queue, the
program displays an error message containing the reason code returned by the
MQOPEN call.

The program then opens the reply-to queue called SYSTEM.SAMPLE.REPLY so
that it can get reply messages. For this, the program uses the MQOPEN call with
the MQOO_INPUT_EXCLUSIVE option. If it cannot open the queue, the program
displays an error message containing the reason code returned by the MQOPEN
call.

For each line of input, the program then reads the text into a buffer and uses the
MQPUT call to create a request message containing the text of that line. On this
call the program uses the MQRO_EXCEPTION_WITH_DATA report option to
request that any report messages sent about the request message will include the
first 100 bytes of the message data. The program continues until either it reaches
the end of the input or the MQPUT call fails.

The program then uses the MQGET call to remove reply messages from the queue,
and displays the data contained in the replies. The MQGET call uses the
MQGMO_WAIT, MQGMO_CONVERT, and MQGMO_ACCEPT_TRUNCATED
options. The WaitInterval is 5 minutes in the COBOL version, and 1 minute in the
C version, for the first reply (to allow time for a server application to be triggered),
and 15 seconds for subsequent replies. The program waits for these periods if there
is no message on the queue. If no message arrives before this interval expires, the
call fails and returns the MQRC_NO_MSG_AVAILABLE reason code. The call also
uses the MQGMO_ACCEPT_TRUNCATED_MSG option, so messages longer than
the declared buffer size are truncated.

The program demonstrates how you must clear the MsgId and CorrelId fields of
the MQMD structure after each MQGET call because the call sets these fields to the

Request samples

344 MQSeries Application Programming Guide

values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The program continues until either the MQGET call returns the
MQRC_NO_MSG_AVAILABLE reason code or the MQGET call fails. If the call
fails, the program displays an error message that contains the reason code.

The program then closes both the target server queue and the reply-to queue using
the MQCLOSE call. Figure 31 shows the changes to the Echo sample program that
are necessary to run the Inquire and Set sample programs on AS/400.

Note: The details for the Echo sample program are included as a reference.

Table 31. Client/server sample program details

Program name AMQSAMP/
AMQSDATA data
file

SYSTEM/SAMPLE
queue

Program started

Echo ECHO ECHO AMQSECHA

Inquire INQ INQ AMQSINQA

Set SET SET AMQSSETA

Request samples

Chapter 32. Sample programs (all platforms except OS/390) 345

The Inquire sample programs
The Inquire sample programs inquire about some of the attributes of a queue using
the MQINQ call. See “Features demonstrated in the sample programs” on page 312
for the names of these programs.

These programs are intended to run as triggered programs, so their only input is
an MQTMC2 (trigger message) structure for OS/2, Windows NT, Digital
OpenVMS, and UNIX, and an MQTMC structure for AS/400. These structures
contain the name of a target queue whose attributes are to be inquired. The C
version also uses the queue manager name. The COBOL version uses the default
queue manager.

For the triggering process to work, you must ensure that the Inquire sample
program you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.INQ. To do this, specify the name of the Inquire sample
program you want to use in the ApplicId field of the process definition
SYSTEM.SAMPLE.INQPROCESS. For AS/400, you can use the CHGMQMPRC
command described in the MQSeries for AS/400 V5.1 System Administration book for
this. The sample queue has a trigger type of FIRST; if there are already messages
on the queue before you run the request sample, the inquire sample is not
triggered by the messages you send.

Data file

AMQSAMP / AMQSDATA (ECHO)

Program

AMQSREQ4

Disp lay rep lies

Read queue

Start program

Read

Trigger message
written to queue

Read reply

SYSTEM.SAMPLE.ECHO

SYSTEM.SAMPLE.TRIGGER

Put to queue

Write reply to queue

SYSTEM.SAMPLE.REPLY

Read queue

Program
AMQSERV4

AMQSECHA

Figure 37. Sample Client/Server (Echo) program flowchart

Inquire samples

346 MQSeries Application Programming Guide

|
|
|
|
|
|
|
|
|

When you have set the definition correctly:
v For OS/2, UNIX systems, Digital OpenVMS, and Windows NT, start the

runmqtrm program in one session, then start the amqsreq program in another.
v For AS/400, start the AMQSERV4 program in one session, then start the

AMQSREQ4 program in another. You could use AMQSTRG4 instead of
AMQSERV4, but potential job submission delays could make it less easy to
follow what is happening.

Use the Request sample programs to send request messages, each containing just a
queue name, to queue SYSTEM.SAMPLE.INQ. For each request message, the
Inquire sample programs send a reply message containing information about the
queue specified in the request message. The replies are sent to the reply-to queue
specified in the request message.

On AS/400, if the sample input file member QMQMSAMP.AMQSDATA(INQ) is
used, the last queue named does not exist, so the sample returns a report message
with a reason code for the failure.

Design of the Inquire sample program
The program opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The program
uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options,
with a wait interval of 5 seconds. The program tests the descriptor of each message
to see if it is a request message; if it is not, the program discards the message and
displays a warning message.

For each request message removed from the request queue, the program reads the
name of the queue (which we will call the target queue) contained in the data and
opens that queue using the MQOPEN call with the MQOO_INQ option. The
program then uses the MQINQ call to inquire about the values of the InhibitGet,
CurrentQDepth, and OpenInputCount attributes of the target queue.

If the MQINQ call is successful, the program uses the MQPUT1 call to put a reply
message on the reply-to queue. This message contains the values of the 3
attributes.

If the MQOPEN or MQINQ call is unsuccessful, the program uses the MQPUT1
call to put a report message on the reply-to queue. In the Feedback field of the
message descriptor of this report message is the reason code returned by either the
MQOPEN or MQINQ call, depending on which one failed.

After the MQINQ call, the program closes the target queue using the MQCLOSE
call.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

The Set sample programs
The Set sample programs inhibit put operations on a queue by using the MQSET
call to change the queue’s InhibitPut attribute. See “Features demonstrated in the
sample programs” on page 312 for the names of these programs.

Inquire samples

Chapter 32. Sample programs (all platforms except OS/390) 347

The programs are intended to run as triggered programs, so their only input is an
MQTMC2 (trigger message) structure that contains the name of a target queue
whose attributes are to be inquired. The C version also uses the queue manager
name. The COBOL version uses the default queue manager.

For the triggering process to work, you must ensure that the Set sample program
you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.SET. To do this, specify the name of the Set sample program you
want to use in the ApplicId field of the process definition
SYSTEM.SAMPLE.SETPROCESS. The sample queue has a trigger type of FIRST; if
there are already messages on the queue before you run the Request sample, the
Set sample is not triggered by the messages you send.

When you have set the definition correctly:
v For OS/2, UNIX systems, Digital OpenVMS, and Windows NT, start the

runmqtrm program in one session, then start the amqsreq program in another.
v For AS/400, start the AMQSERV4 program in one session, then start the

AMQSREQ4 program in another. You could use AMQSTRG4 instead of
AMQSERV4, but potential job submission delays could make it less easy to
follow what is happening.

Use the Request sample programs to send request messages, each containing just a
queue name, to queue SYSTEM.SAMPLE.SET. For each request message, the Set
sample programs send a reply message containing a confirmation that put
operations have been inhibited on the specified queue. The replies are sent to the
reply-to queue specified in the request message.

On AS/400, if the sample input file member QMQMSAMP.AMQSDATA(SET) is
used, one queue, SYSTEM.SAMPLE.LOCAL has put inhibited.

Design of the Set sample program
The program opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The
program uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options,
with a wait interval of 5 seconds. The program tests the descriptor of each message
to see if it is a request message; if it is not, the program discards the message and
displays a warning message.

For each request message removed from the request queue, the program reads the
name of the queue (which we will call the target queue) contained in the data and
opens that queue using the MQOPEN call with the MQOO_SET option. The
program then uses the MQSET call to set the value of the InhibitPut attribute of
the target queue to MQQA_PUT_INHIBITED.

If the MQSET call is successful, the program uses the MQPUT1 call to put a reply
message on the reply-to queue. This message contains the string PUT inhibited.

If the MQOPEN or MQSET call is unsuccessful, the program uses the MQPUT1
call to put a report message on the reply-to queue. In the Feedback field of the
message descriptor of this report message is the reason code returned by either the
MQOPEN or MQSET call, depending on which one failed.

Set samples

348 MQSeries Application Programming Guide

After the MQSET call, the program closes the target queue using the MQCLOSE
call.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

The Echo sample programs
The Echo sample programs echo a message from a message queue to the reply
queue. See “Features demonstrated in the sample programs” on page 312 for the
names of these programs.

The programs are intended to run as triggered programs.

On OS/2, UNIX systems, and Windows NT, their only input is an MQTMC2
(trigger message) structure that contains the name of a target queue and the queue
manager. The COBOL version uses the default queue manager.

On AS/400, for the triggering process to work, you must ensure that the Echo
sample program you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.ECHO. To do this, specify the name of the Echo sample
program you want to use in the ApplId field of the process definition
SYSTEM.SAMPLE.ECHOPROCESS. (For this, you can use the CHGMQMPRC
command, described in the MQSeries for AS/400 V5.1 System Administration book.)
The sample queue has a trigger type of FIRST, so, if there are already messages on
the queue before you run the Request sample, the Echo sample is not triggered by
the messages you send.

When you have set the definition correctly, first start AMQSERV4 in one job, then
start AMQSREQ4 in another. You could use AMQSTRG4 instead of AMQSERV4,
but potential job submission delays could make it less easy to follow what is
happening.

Use the Request sample programs to send messages to queue
SYSTEM.SAMPLE.ECHO. The Echo sample programs send a reply message
containing the data in the request message to the reply-to queue specified in the
request message.

Design of the Echo sample programs
The program opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The program
uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the MQGMO_ACCEPT_TRUNCATED_MSG, MQGMO_CONVERT, and
MQGMO_WAIT options, with a wait interval of 5 seconds. The program tests the
descriptor of each message to see if it is a request message; if it is not, the program
discards the message and displays a warning message.

For each line of input, the program then reads the text into a buffer and uses the
MQPUT1 call to put a request message, containing the text of that line, on to the
reply-to queue.

Set samples

Chapter 32. Sample programs (all platforms except OS/390) 349

|
|
|
|
|
|
|
|
|

If the MQGET call fails, the program puts a report message on the reply-to queue,
setting the Feedback field of the message descriptor to the reason code returned by
the MQGET.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

On AS/400, the program can also respond to messages sent to the queue from
platforms other than MQSeries for AS/400, although no sample is supplied for this
situation. To make the ECHO program work, you:
v Write a program, correctly specifying the Format, Encoding, and CCSID

parameters, to send text request messages.
The ECHO program requests the queue manager to perform message data
conversion, if this is needed.

v Specify CONVERT(*YES) on the MQSeries for AS/400 sending channel, if the
program you have written does not provide similar conversion for the reply.

The Data-Conversion sample program
The data-conversion sample program is a skeleton of a data conversion exit
routine. See “Features demonstrated in the sample programs” on page 312 for the
names of these programs.

Design of the data-conversion sample
Each data-conversion exit routine converts a single named message format. This
skeleton is intended as a wrapper for code fragments generated by the
data-conversion exit generation utility program.

The utility produces one code fragment for each data structure; several such
structures make up a format, so several code fragments are added to this skeleton
to produce a routine to do data conversion of the entire format.

The program then checks whether the conversion is a success or failure, and
returns the values required to the caller.

The Triggering sample programs
The function provided in the triggering sample is a subset of that provided in the
trigger monitor in the runmqtrm program. See “Features demonstrated in the
sample programs” on page 312 for the names of these programs.

Running the amqstrg0.c, amqstrg, and amqstrgc samples
The program takes 2 parameters:
1. The name of the initiation queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it will connect to the default one. A sample
initiation queue will have been defined when you ran amqscos0.tst. the name of
that queue is SYSTEM.SAMPLE.TRIGGER, and you can use it when you run this
program.

Note: The function in this sample is a subset of the full triggering function that is
supplied in the runmqtrm program.

Echo samples

350 MQSeries Application Programming Guide

Running the AMQSTRG4 sample
This is a trigger monitor for the AS/400 environment. It submits an AS/400 job for
the application to be started, but this means there is a processing overhead
associated with each trigger message.

AMQSTRG4 takes one parameter: the name of the initiation queue it is to serve.
AMQSAMP4 defines a sample initiation queue, SYSTEM.SAMPLE.TRIGGER, that
you can use when you try the sample programs.

Using the example trigger queue the command to issue is:
CALL PGM(QMQM/AMQSTRG4) PARM('SYSTEM.SAMPLE.TRIGGER')

Design of the triggering sample
The triggering sample program opens the initiation queue using the MQOPEN call
with the MQOO_INPUT_AS_Q_DEF option. It gets messages from the initiation
queue using the MQGET call with the MQGMO_ACCEPT_TRUNCATED_MSG
and MQGMO_WAIT options, specifying an unlimited wait interval. The program
clears the MsgId and CorrelId fields before each MQGET call to get messages in
sequence.

When it has retrieved a message from the initiation queue, the program tests the
message:
v It checks the size of the message to make sure it is the same size as an MQTM

structure.
v It checks the ApplType field to make sure it contains the value MQAT_UNIX.

If either of these tests fail, the program displays a warning.

For valid trigger messages, the triggering sample copies data from these fields:
ApplicId, EnvrData, Version, and ApplType. The last two of these fields are
numeric, so the program creates character replacements to use in an MQTMC2
structure for OS/2, UNIX, and Windows NT, and in an MQTMC structure for
AS/400.

The triggering sample issues a start command to the application specified in the
ApplicId field of the trigger message, and passes an MQTMC2 or MQTMC (a
character version of the trigger message) structure. In OS/2, UNIX systems, and
Windows NT, the EnvData field is used as an extension to the invoking command
string. In AS/400, it is used as job submission parameters, for example, the job
priority.

Finally, the program closes the initiation queue.

Running the AMQSERV4 sample
This is a trigger server for the AS/400 environment. For each trigger message, this
server runs the start command in its own job to start the specified application. The
trigger server can call CICS transactions.

AMQSERV4 takes one parameter: the name of the initiation queue it is to serve.
AMQSAMP4 defines a sample initiation queue, SYSTEM.SAMPLE.TRIGGER, that
you can use when you try the sample programs.

Using the example trigger queue the command to issue is:
CALL PGM(QMQM/AMQSERV4) PARM('SYSTEM.SAMPLE.TRIGGER')

Triggering samples

Chapter 32. Sample programs (all platforms except OS/390) 351

Design of the trigger server
The design of the trigger server is similar to that of the trigger monitor, except the
trigger server:
v Allows MQAT_CICS as well as MQAT_OS400 applications
v Calls AS/400 applications in its own job (or uses STRCICSUSR to start CICS

applications) rather than submitting an AS/400 job
v For CICS applications, substitutes the EnvData, for example, to specify the CICS

region, from the trigger message in the STRCICSUSR command
v Opens the initiation queue for shared input, so many trigger servers can run at

the same time

Note: Programs started by AMQSERV4 must not use the MQDISC call because
this will stop the trigger server. If programs started by AMQSERV4 use the
MQCONN call, they will get the MQRC_ALREADY_CONNECTED reason
code.

Ending the triggering sample programs on AS/400
A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or
by inhibiting gets from the trigger queue. If the sample trigger queue is used the
command is:

CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') MQMNAME GETENBL(*NO)

Note: To start triggering again on this queue, you must enter the command:
CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(*YES)

Running the samples using remote queues
You can demonstrate remote queuing by running the samples on connected queue
managers.

Program amqscos0.tst provides a local definition of a remote queue
(SYSTEM.SAMPLE.REMOTE) that uses a remote queue manager named OTHER.
To use this sample definition, change OTHER to the name of the second queue
manager you want to use. You must also set up a message channel between your
two queue managers; for information on how to do this, see the MQSeries
Intercommunication book.

The Request sample programs put their own local queue manager name in the
ReplyToQMgr field of messages they send. The Inquire and Set samples send reply
messages to the queue and message queue manager named in the ReplyToQ and
ReplyToQMgr fields of the request messages they process.

Database coordination samples
Two samples are provided which demonstrate how MQSeries can coordinate both
MQSeries updates and database updates within the same unit of work:
1. AMQSXAS0 (in C) or AMQ0XAS0 (in COBOL), which updates a single

database within an MQSeries unit of work.
2. AMQSXAG0 (in C) or AMQ0XAG0 (in COBOL), AMQSXAB0 (in C) or

AMQ0XAB0 (in COBOL), and AMQSXAF0 (in C) or AMQ0XAF0 (in COBOL),
which together update two databases within an MQSeries unit of work,
showing how multiple databases can be accessed. These samples are provided

Triggering samples

352 MQSeries Application Programming Guide

to show the use of the MQBEGIN call, mixed SQL and MQSeries calls, and
where and when to connect to a database.

Figure 38 shows how the samples provided are used to update databases:

The programs read a message from a queue (under syncpoint), then, using the
information in the message, obtain the relevant information from the database and
update it. The new status of the database is then printed.

The program logic is as follows:
1. Use name of input queue from program argument
2. Connect to default queue manager (or optionally supplied name in C) using

MQCONN
3. Open queue (using MQOPEN) for input while no failures
4. Start a unit of work using MQBEGIN
5. Get next message (using MQGET) from queue under syncpoint
6. Get information from databases
7. Update information from databases
8. Commit changes using MQCMIT
9. Print updated information (no message available counts as failure, and loop

ends)
10. Close queue using MQCLOSE
11. Disconnect from queue using MQDISC

updates

updates

updates

MQFeeDB database

MQFeeTB table

Account
FeeDue
TranFee

Transactions

MQBankDB database

MQBankT table

Name
Account
Balance

MQBankTB table

Name
Account
Balance

Transactions

AMQSXAS0/
AMQ0XAS0

Single
database
sample

Prepared and
bound with
MQBankDB

database

AMQSXAB0/

Prepared and
bound with
MQBankDB

database

AMQ0XAB0

AMQSXAF0/

Prepared and
bound with
MQFeeDB
database

AMQ0XAF0

AMQSXAG0/
AMQ0XAG0

Multiple
database
sample

Figure 38. The database coordination samples

Database coordination samples

Chapter 32. Sample programs (all platforms except OS/390) 353

SQL cursors are used in the samples, so that reads from the databases (that is,
multiple instances) are locked whilst a message is being processed, thus multiple
instances of these programs can be run simultaneously. The cursors are explicitly
opened, but implicitly closed by the MQCMIT call.

The single database sample (AMQSXAS0 or AMQ0XAS0) has no SQL CONNECT
statements and the connection to the database is implicitly made by MQSeries with
the MQBEGIN call. The multiple database sample (AMQSXAG0 or AMQ0XAG0,
AMQSXAB0 or AMQ0XAB0, and AMQSXAF0 or AMQ0XAF0) has SQL CONNECT
statements, as some database products allow only one active connection. If this is
not the case for your database product, or if you are accessing a single database in
multiple database products, the SQL CONNECT statements can be removed.

The samples are prepared with IBM’s DB2 database product, so they may need
some modification to work with other database products.

The SQL error checking uses routines in UTIL.C and CHECKERR.CBL supplied by
DB2. These must be compiled or replaced before compiling and linking.

Note: If you are using the Micro Focus COBOL source CHECKERR.MFC for SQL
error checking, you must change the program ID to uppercase, that is
CHECKERR, for AMQ0XAS0 to link correctly.

Creating the databases and tables
The databases and tables must be created before the samples can be compiled. To
create the databases, use the normal method for your database product, for
example:
DB2 CREATE DB MQBankDB
DB2 CREATE DB MQFeeDB

Create the tables using SQL statements as follows:

In C:
EXEC SQL CREATE TABLE MQBankT(Name VARCHAR(40) NOT NULL,

Account INTEGER NOT NULL,
Balance INTEGER NOT NULL,
PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQBankTB(Name VARCHAR(40) NOT NULL,
Account INTEGER NOT NULL,
Balance INTEGER NOT NULL,
Transactions INTEGER,
PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQFeeTB(Account INTEGER NOT NULL,
FeeDue INTEGER NOT NULL,
TranFee INTEGER NOT NULL,
Transactions INTEGER,
PRIMARY KEY (Account));

In COBOL:
EXEC SQL CREATE TABLE
MQBankT(Name VARCHAR(40) NOT NULL,

Account INTEGER NOT NULL,
Balance INTEGER NOT NULL,
PRIMARY KEY (Account))

END-EXEC.

EXEC SQL CREATE TABLE

Database coordination samples

354 MQSeries Application Programming Guide

MQBankTB(Name VARCHAR(40) NOT NULL,
Account INTEGER NOT NULL,
Balance INTEGER NOT NULL,
Transactions INTEGER,
PRIMARY KEY (Account))

END-EXEC.

EXEC SQL CREATE TABLE
MQFeeTB(Account INTEGER NOT NULL,

FeeDue INTEGER NOT NULL,
TranFee INTEGER NOT NULL,
Transactions INTEGER,
PRIMARY KEY (Account))

END-EXEC.

Fill in the tables using SQL statements as follows:
EXEC SQL INSERT INTO MQBankT VALUES ('Mr Fred Bloggs',1,0);
EXEC SQL INSERT INTO MQBankT VALUES ('Mrs S Smith',2,0);
EXEC SQL INSERT INTO MQBankT VALUES ('Ms Mary Brown',3,0);...

EXEC SQL INSERT INTO MQBankTB VALUES ('Mr Fred Bloggs',1,0,0);
EXEC SQL INSERT INTO MQBankTB VALUES ('Mrs S Smith',2,0,0);
EXEC SQL INSERT INTO MQBankTB VALUES ('Ms Mary Brown',3,0,0);...

EXEC SQL INSERT INTO MQFeeTB VALUES (1,0,50,0);
EXEC SQL INSERT INTO MQFeeTB VALUES (2,0,50,0);
EXEC SQL INSERT INTO MQFeeTB VALUES (3,0,50,0);...

Note: For COBOL, use the same SQL statements but add END_EXEC at the end of
each line.

Precompiling, compiling, and linking the samples
The .SQC files (in C) and .SQB files (in COBOL) must be precompiled and bound
against the appropriate database to produce the .C or .CBL files. To do this, use the
normal method for your database product, as shown below.

Precompiling in C
db2 connect to MQBankDB
db2 prep AMQSXAS0.SQC
db2 connect reset

db2 connect to MQBankDB
db2 prep AMQSXAB0.SQC
db2 connect reset

db2 connect to MQFeeDB
db2 prep AMQSXAF0.SQC
db2 connect reset

Precompiling in COBOL
db2 connect to MQBankDB
db2 prep AMQ0XAS0.SQB bindfile target ibmcob
db2 bind AMQ0XAS0.BND
db2 connect reset

db2 connect to MQBankDB
db2 prep AMQ0XAB0.SQB bindfile target ibmcob
db2 bind AMQ0XAB0.BND
db2 connect reset

Database coordination samples

Chapter 32. Sample programs (all platforms except OS/390) 355

|

|
|
|
|
|
|
|
|
|
|
|
|

|

db2 connect to MQFeeDB
db2 prep AMQ0XAF0.SQB bindfile target ibmcob
db2 bind AMQ0XAF0.BND
db2 connect reset

Compiling and linking
The following sample commands use the symbol <DB2TOP>. <DB2TOP>
represents the installation directory for the DB2 product.
v On AIX the directory path is:

/usr/lpp/db2_05_00

v On HP-UX and Sun Solaris the directory path is:
/opt/IBMdb2/V5.0

v On Windows NT and OS/2 the directory path depends on the path chosen
when installing the product. If you chose the default settings the path is:
c:\sqllib

Note: Before issuing the link command on Windows NT or OS/2 ensure that the
LIB environment variable contains paths to the DB2 and MQSeries libraries.

Copy the following files into a temporary directory:
v The amqsxag0.c file from your MQSeries installation

Note: This file can be found in the following directories:
– On UNIX:

<MQMTOP>/samp/xatm

– On Windows NT and OS/2:
<MQMTOP>\tools\c\samples\xatm

v The .c files that you have obtained by precompiling the .sqc source files,
amqsxas0.sqc, amqsxaf0.sqc, and amqsxab0.sqc

v The files util.c and util.h from your DB2 installation.

Note: These files can be found in the directory:
<DB2TOP>/samples/c

Build the object files for each .c file using the following compiler command for the
platform that you are using:
v AIX

xlc_r -I<MQMTOP>/inc -I<DB2TOP>/include -c -o
<FILENAME>.o <FILENAME>.c

v HP-UX
cc -Aa +z -I<MQMTOP>/inc -I<DB2TOP>/include -c -o
<FILENAME>.o <FILENAME>.c

v OS/2
icc /c /I<MQMTOP>\tools\c\include /I<DB2TOP>\include <FILENAME>.c

v Sun Solaris
cc -Aa -KPIC -mt -I<MQMTOP>/inc -I<DB2TOP>/include -c -o
<FILENAME>.o <FILENAME>.c

v Windows NT
cl /c /I<MQMTOP>\tools\c\include /I<DB2TOP>\include
<FILENAME>.c

Database coordination samples

356 MQSeries Application Programming Guide

|
|
|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|
|

|

|
|

Build the amqsxag0 executable using the following link command for the platform
that you are using:
v AIX

xlc_r -H512 -T512 -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib
-lmqm util.o amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

v HP-UX Revision 10.20
ld -E -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib -lmqm -1c /lib/crt0.o
util.o amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

v HP-UX Revision 11.00
ld -E -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib -lmqm -lc -lpthread -lcl
/lib/crt0.o util.o amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

v OS/2
ilink util.obj amqsxaf0.obj amqsxab0.obj amqsxag0.obj mqm.lib
db2api.lib /out:amqsxag0.exe

v Sun Solaris
cc -mt -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib
-lmqm -lmqmzse-lmqmcs -lthread -lsocket -lc -lnsl -ldl util.o
amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

v Windows NT
link util.obj amqsxaf0.obj amqsxab0.obj amqsxag0.obj mqm.lib db2api.lib
/out:amqsxag0.exe

Build the amqsxas0 executable using the following compile and link commands for
the platform that you are using:
v AIX

xlc_r -H512 -T512 -L<DB2TOP>/lib -ldb2
-L<MQMTOP>/lib -lmqm util.o amqsxas0.o -o amqsxas0

v HP-UX Revision 10.20
ld -E -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib -lmqm -lc
/lib/crt0.o util.o amqsxas0.o -o amqsxas0

v HP-UX Revision 11.00
ld -E -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib -lmqm -lc -lpthread
-lcl /lib/crt0.o util.o amqsxas0.o -o amqsxas0

v OS/2
ilink util.obj amqsxas0.obj mqm.lib db2api.lib /out:amqsxas0.exe

v Sun Solaris
cc -mt -L<DB2TOP>/lib -ldb2-L<MQMTOP>/lib
-lqm -lmqmzse -lmqmcs -lthread -lsocket -lc -lnsl -ldl util.o
amqsxas0.o -o amqsxas0

v Windows NT
link util.obj amqsxas0.obj mqm.lib db2api.lib /out:amqsxas0.exe

Additional information

If you are working on AIX or HP-UX and wish to access Oracle, use the xlc_r
compiler and link to libmqm_r.a.

Running the samples
Before the samples can be run, the queue manager must be configured with the
database product you are using. For information about how to do this, see the
MQSeries System Administration book.

Database coordination samples

Chapter 32. Sample programs (all platforms except OS/390) 357

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|
|

|

|
|

|
|

|

|
|

|

|
|

|

|
|

|

|

|

|
|
|

|

|

|

|
|

C samples
Messages must be in the following format to be read from a queue:
UPDATE Balance change=nnn WHERE Account=nnn

AMQSPUT can be used to put the messages on the queue.

The database coordination samples take two parameters:
1. Queue name (required)
2. Queue manager name (optional)

Assuming that you have created and configured a queue manager for the single
database sample called singDBQM, with a queue called singDBQ, you increment
Mr Fred Bloggs’s account by 50 as follows:
AMQSPUT singDBQ singDBQM

Then key in the following message:
UPDATE Balance change=50 WHERE Account=1

You can put multiple messages on the queue.
AMQSXAS0 singDBQ singDBQM

The updated status of Mr Fred Bloggs’s account is then printed.

Assuming that you have created and configured a queue manager for the
multiple-database sample called multDBQM, with a queue called multDBQ, you
decrement Ms Mary Brown’s account by 75 as follows:
AMQSPUT multDBQ multDBQM

Then key in the following message:
UPDATE Balance change=-75 WHERE Account=3

You can put multiple messages on the queue.
AMQSXAG0 multDBQ multDBQM

The updated status of Ms Mary Brown’s account is then printed.

COBOL samples
Messages must be in the following format to be read from a queue:
UPDATE Balance change=snnnnnnnn WHERE Account=nnnnnnnn

For simplicity, the Balance change must be a signed eight-character number and
the Account must be an eight-character number.

The sample AMQSPUT can be used to put the messages on the queue.

The samples take no parameters and use the default queue manager. It can be
configured to run only one of the samples at any time. Assuming that you have
configured the default queue manager for the single database sample, with a
queue called singDBQ, you increment Mr Fred Bloggs’s account by 50 as follows:
AMQSPUT singDBQ

Then key in the following message:
UPDATE Balance change=+00000050 WHERE Account=00000001

You can put multiple messages on the queue.

Database coordination samples

358 MQSeries Application Programming Guide

AMQ0XAS0

Type in the name of the queue:
singDBQ

The updated status of Mr Fred Bloggs’s account is then printed.

Assuming that you have configured the default queue manager for the multiple
database sample, with a queue called multDBQ, you decrement Ms Mary Brown’s
account by 75 as follows:

AMQSPUT multDBQ

Then key in the following message:
UPDATE Balance change=-00000075 WHERE Account=00000003

You can put multiple messages on the queue.
AMQ0XAG0

Type in the name of the queue:
multDBQ

The updated status of Ms Mary Brown’s account is then printed.

The CICS transaction sample
A sample CICS transaction program is provided, named amqscic0.ccs for source
code and amqscic0 for the executable version. Transactions may be built using the
standard CICS facilities. See “Part 3. Building an MQSeries application” on
page 241 for details on the commands needed for your platform.

The transaction reads messages from the transmission queue
SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places
them on to the local queue, the name of which is contained in the transmission
header of the message. Any failures will be sent to the queue
SYSTEM.SAMPLE.CICS.DLQ.

Note: A sample MQSC script amqscic0.tst may be used to create these queues and
sample input queues.

TUXEDO samples
Before running these samples, you must build the server environment.

Building the server environment
It is assumed that you have a working TUXEDO environment.

To build the server environment for MQSeries for AIX:
1. Create a directory (for example, <APPDIR>) in which the server environment is

built and execute all commands in this directory.
2. Export the following environment variables, where TUXDIR is the root directory

for TUXEDO:

Database coordination samples

Chapter 32. Sample programs (all platforms except OS/390) 359

$ export CFLAGS=“-I /usr/mqm/inc -I /<APPDIR> -L /usr/mqm/lib”
$ export LDOPTS=“-lmqm -lmqmzse -lnet -insl -lsocket -lc -ldl”
$ export FIELDTBLS=/usr/mqm/samp/amqstxvx.flds
$ export VIEWFILES=/<APPDIR>/amqstxvx.V
$ export LIBPATH=$TUXDIR/lib:/usr/mqm/lib:/lib

3. Add the following to the TUXEDO file udataobj/RM
MQSeries_XA_RMI:MQRMIXASwitchDynamic: \

/usr/mqm/lib/libmqmxa.a /usr/mqm/lib/libmqm.a

4. Run the commands:
$ mkfldhdr /usr/mqm/samp/amqstxvx.flds
$ viewc /usr/mqm/samp/amqstxvx.v
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f /usr/mqm/samp/amqstxsx.c \

-f /usr/mqm/lib/libmqm.a \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm

$ buildserver -o MQSERV2 -f /usr/mqm/samp/amqstxsx.c \
-f /usr/mqm/lib/libmqm.a \
-r MQSeries_XA_RMI -s MPUT2:MPUT
-s MGET2:MGET \
-v -bshm

$ buildclient -o doputs -f /usr/mqm/samp/amqstxpx.c \
-f /usr/mqm/lib/libmqm.a

$ buildclient -o dogets -f /usr/mqm/samp/amqstxgx.c\
-f /usr/mqm/lib/libmqm.a

5. Edit ubbstxcx.cfg (see Figure 39 on page 364), and add details of the machine
name, working directories, and queue manager as necessary:

$ tmloadcf -y /usr/mqm/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

A prompt then appears. At this prompt, enter:
> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:
$ strmqm

8. Start Tuxedo:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and
retrieve them from a queue.

To build the server environment for MQSeries for AT&T GIS UNIX
and MQSeries for Sun Solaris:
1. Create a directory (for example, <APPDIR>) in which the server environment is

built and execute all commands in this directory.
2. Export the following environment variables, where TUXDIR is the root directory

for TUXEDO:
$ export CFLAGS="-I /<APPDIR>"
$ export FIELDTBLS=amqstxvx.flds
$ export VIEWFILES=amqstxvx.V
$ export SHLIB_PATH=$TUXDIR/lib:/opt/mqm/lib:/lib
$ export LD_LIBRARY_PATH=$TUXDIR/lib:/opt/mqm/lib:/lib

3. Add the following to the TUXEDO file udataobj/RM (RM must include
/opt/mqm/lib/libmqmcs and /opt/mqm/lib/libmqmzse).

TUXEDO samples

360 MQSeries Application Programming Guide

|
|

Note: The \ characters should not be entered into the file; they are line
continuations.
MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
/opt/mqm/lib/libmqmxa.a /opt/mqm/lib/libmqm.so \
/opt/tuxedo/lib/libtux.a /opt/mqm/lib/libmqmcs.so \
/opt/mqm/lib/libmqmzse.so

4. Run the commands:
$ mkfldhdr amqstxvx.flds
$ viewc amqstxvx.v
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f amqstxsx.c \

-f /opt/mqm/lib/libmqm.so \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm
-l -ldl

$ buildserver -o MQSERV2 -f amqstxsx.c \
-f /opt/mqm/lib/libmqm.so \
-r MQSeries_XA_RMI -s MPUT2:MPUT \
-s MGET2:MGET \
-v -bshm
-l -ldl

$ buildclient -o doputs -f amqstxpx.c \
-f /opt/mqm/lib/libmqm.so \
-f /opt/mqm/lib/libmqmzse.co \
-f /opt/mqm/lib/libmqmcs.so

$ buildclient -o dogets -f amqstxgx.c \
-f /opt/mqm/lib/libmqm.so
-f /opt/mqm/lib/libmqmzse.co \
-f /opt/mqm/lib/libmqmcs.so

5. Edit ubbstxcx.cfg (see Figure 39 on page 364), and add details of the machine
name, working directories, and Queue Manager as necessary:

$ tmloadcf -y ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

A prompt then appears. At this prompt, enter:
> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:
$ strmqm

8. Start Tuxedo:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and
retrieve them from a queue.

To build the server environment for MQSeries for HP-UX:
1. Create a directory (for example, <APPDIR>) in which the server environment is

built and execute all commands in this directory.
2. Export the following environment variables, where TUXDIR is the root directory

for TUXEDO:
$ export CFLAGS=“-Aa -D_HPUX_SOURCE”
$ export LDOPTS=“-lmqm”
$ export FIELDTBLS=/opt/mqm/samp/amqstxvx.flds
$ export VIEWFILES=<APPDIR>/amqstxvx.V
$ export SHLIB_PATH=$TUXDIR/lib:/opt/mqm/lib:/lib
$ export LPATH=$TUXDIR/lib:/opt/mqm/lib:/lib

3. Add the following to the TUXEDO file udataobj/RM

TUXEDO samples

Chapter 32. Sample programs (all platforms except OS/390) 361

|

|
|

|
|

|
|
|
|
|
|

MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
/opt/mqm/lib/libmqmxa.a /opt/mqm/lib/libmqm.sl \
/opt/tuxedo/lib/libtux.sl

4. Run the commands:
$ mkfldhdr /opt/mqm/samp/amqstxvx.flds
$ viewc /opt/mqm/samp/amqstxvx.v
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f /opt/mqm/samp/amqstxsx.c \

-f /opt/mqm/lib/libmqm.sl \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm

$ buildserver -o MQSERV2 -f /opt/mqm/samp/amqstxsx.c \
-f /opt/mqm/lib/libmqm.sl \
-r MQSeries_XA_RMI -s MPUT2:MPUT \
-s MGET2:MGET \
-v -bshm

$ buildclient -o doputs -f /opt/mqm/samp/amqstxpx.c \
-f /opt/mqm/lib/libmqm.sl

$ buildclient -o dogets -f /opt/mqm/samp/amqstxgx.c \
-f /opt/mqm/lib/libmqm.sl

5. Edit ubbstxcx.cfg (see Figure 39 on page 364), and add details of the machine
name, working directories, and Queue Manager as necessary:

$ tmloadcf -y /opt/mqm/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

A prompt then appears. At this prompt, enter:
> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:
$ strmqm

8. Start Tuxedo:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and
retrieve them from a queue.

To build the server environment for MQSeries for SINIX and
DC/OSx
1. Export the following environment variables where TUXDIR is the root directory

for TUXEDO:
$ export CFLAGS=“-lmqm -lmqmcs -lmqmzse -lmqmxa \
-lnsl -lsocket -ldl -lmproc -lext”

Note: For DC/OSx, add “-liconv” to the above.
$ export FIELDTBLS=amqstxvx.flds
$ export VIEWFILES=amqstxvx.V
$ export VIEWDIR=The path to the directory where the views
are held
$ export TUXDIR=The path to the directory where TUXEDO
is installed (/opt/tuxedo).
$ export CFLAGS=“-lmqm -lmqmcs -lmqmzse -lmqmxa \
-lnsl -lsocket -ldl -lmproc -lext”

2. Add the following to the TUXEDO file udataobj/RM
MQSeries_XA_RMI:MQRMIXASwitchDynamic: \

/opt/mqm/lib/libmqmxa.so
/opt/mqm/lib/libmqm.so /opt/mqm/lib/libmqmcs.s

TUXEDO samples

362 MQSeries Application Programming Guide

3. Ensure that your LD_LIBRARY_PATH contains the path to the Tuxedo
libraries (/opt/tuxedo/lib), and that it is exported.

4. Ensure that your PATH contains the path to the Tuxedo bin directory
(/opt/tuxedo/bin), and that it is exported.

5. Run the commands:
$ mkfldhdr amqstxvx.flds
$ viewc amqstxvx.v

6. Alter the value of the CFLAGS variable:
export CFLAGS=“$CFLAGS -LDuMQRMIXASwitchDynamic -lmqmxa”

7. Run the commands:
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f amqstxsx.c \

-f /opt/mqm/lib/libmqm.so i \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm

$ buildserver -o MQSERV2 -f amqstxsx.c \
-f /opt/mqm/lib/libmqm.so \
-r MQSeries_XA_RMI -s MPUT2:MPUT \
-s MGET2:MGET \
-v -bshm

$ buildclient -o doputs -f amqstxpx.c \
-f /opt/mqm/lib/libmqm.so

$ buildclient -o dogets -f amqstxgx.c \
-f /opt/mqm/lib/libmqm.so

8. Ensure that your NLS_PATH contains the path to the Tuxedo messages
(/opt/tuxedo/locale/C/%N), and that it is exported.

9. Edit ubbstxcx.cfg (see Figure 39 on page 364), and add details of the machine
name, working directories, and Queue Manager as necessary.

10. Set the environment variable TUXCONFIG to the value specified in the
MACHINES section of the ubbstxcx.cfg file.

11. If you are using the Tuxedo main machine, run the following commands:
tmadmin -c

At the prompt (>), enter:
crdl -z filename

where filename is the path to the Tuxedo TLOG file.
12. Run the following command:

$ tmloadcf -y ubbstxcx.cfg

13. Start the queue manager:
$ strmqm

14. Start Tuxedo:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and
retrieve them from a queue.

For further information on building the TUXEDO server environment, see the
README file in the MQSeries sample directory, /opt/mqm/samp.

TUXEDO samples

Chapter 32. Sample programs (all platforms except OS/390) 363

Note: Other information that you need to add is identified by <> characters. In this
file, the queue manager name has been changed to MYQUEUEMANAGER:

To build the server environment for MQSeries for Windows NT:

Note: Change the fields identified by <> in the following, to the directory paths:
<MQMDIR>

the directory path specified when MQSeries was installed, for
example g:\Program Files\MQSeries

<TUXDIR>
the directory path specified when TUXEDO was installed, for
example f:\tuxedo

<APPDIR>
the directory path to be used for the sample application, for example
f:\tuxedo\apps\mqapp

To build the server environment and samples:

*RESOURCES
IPCKEY <IPCKey>

#Example:
#IPCKEY 123456

MASTER <MachineName>
MAXACCESSERS 20
MAXSERVERS 20
MAXSERVICES 50
MODEL SHM
LDBAL N

*MACHINES
DEFAULT:

APPDIR=“<WorkDirectory>”
TUXCONFIG=“<WorkDirectory>/tuxconfig”
ROOTDIR=“<RootDirectory>”

<MachineName> LMID=<MachineName>
TLOGDEVICE=“<WorkDirectory>/TLOG1”
TLOGNAME=TLOG

*GROUPS
GROUP1

LMID=<MachineName> GRPNO=1
TMSNAME=MQXA
OPENINFO=“MQSeries_XA_RMI:MYQUEUEMANAGER”

*SERVERS
DEFAULT:

CLOPT=“-A -- -m MYQUEUEMANAGER

MQSERV1 SRVGRP=GROUP1 SRVID=1
MQSERV2 SRVGRP=GROUP1 SRVID=2

*SERVICES
MPUT1
MGET1
MPUT2
MGET2

Figure 39. Example of ubbstxcx.cfg file for UNIX systems

TUXEDO samples

364 MQSeries Application Programming Guide

1. Create an application directory in which to build the sample application, for
example:

f:\tuxedo\apps\mqapp

2. Copy the following sample files from the MQSeries sample directory to the
application directory:

amqstxmn.mak
amqstxen.env
ubbstxcn.cfg

3. Edit each of these files to set the directory names and directory paths used on
your installation.

4. Edit ubbstxcn.cfg (see Figure 40 on page 366) to add details of the machine
name and the Queue Manager that you wish to connect to.

5. Add the following line to the TUXEDO file <TUXDIR>udataobj\rm
MQSeries_XA_RMI;MQRMIXASwitchDynamic;

<MQMDIR>\tools\lib\mqmtux.lib <MQMDIR>\tools\lib\mqm.lib

where <MQMDIR> is replaced as above. Although shown here as two lines, the
new entry must be one line in the file.

6. Set the following environment variables:
TUXDIR=<TUXDIR>
TUXCONFIG=<APPDIR>\tuxconfig
FIELDTBLS=<MQMDIR>\tools\c\samples\amqstxvx.fld
LANG=C

7. Create a TLOG device for TUXEDO. To do this, invoke tmadmin -c, and enter
the command:
crdl -z <APPDIR>\TLOG

where <APPDIR> is replaced as above.
8. Set the current directory to <APPDIR>, and invoke the sample makefile

(amqstxmn.mak) as an external project makefile. For example, with Microsoft
Visual C++ Version 2.0, issue the command:
msvc amqstxmn.mak

Select build to build all the sample programs.

TUXEDO samples

Chapter 32. Sample programs (all platforms except OS/390) 365

Note: The directory names and directory paths must be changed to match your
installation. The queue manager name MYQUEUEMANAGER should also
be changed to the name of the queue manager you wish to connect to.
Other information that you need to add is identified by <> characters.

The sample ubbconfig file for MQSeries for Windows NT is listed in Figure 40. It is
supplied as ubbstxcn.cfg in the MQSeries samples directory.

The sample makefile (see Figure 41 on page 367) supplied for MQSeries for
Windows NT is called ubbstxmn.mak, and is held in the MQSeries samples
directory.

*RESOURCES
IPCKEY 99999
UID 0
GID 0
MAXACCESSERS 20
MAXSERVERS 20
MAXSERVICES 50
MASTER SITE1
MODEL SHM
LDBAL N

*MACHINES
<MachineName> LMID=SITE1

TUXDIR=“f:\tuxedo”
APPDIR=“f:\tuxedo\apps\mqapp;g:\Program Files\MQSeries\bin”
ENVFILE=“f:\tuxedo\apps\mqapp\amqstxen.env”
TUXCONFIG=“f:\tuxedo\apps\mqapp\tuxconfig”
ULOGPFX=“f:\tuxedo\apps\mqapp\ULOG”
TLOGDEVICE=“f:\tuxedo\apps\mqapp\TLOG”
TLOGNAME=TLOG
TYPE=“i386NT”
UID=0
GID=0

*GROUPS
GROUP1

LMID=SITE1 GRPNO=1
TMSNAME=MQXA
OPENINFO=“MQSeries_XA_RMI:MYQUEUEMANAGER”

*SERVERS
DEFAULT: CLOPT=“-A -- -m MYQUEUEMANAGER”

MQSERV1 SRVGRP=GROUP1 SRVID=1
MQSERV2 SRVGRP=GROUP1 SRVID=2

*SERVICES
MPUT1
MGET1
MPUT2
MGET2

Figure 40. Example of ubbstxcn.cfg file for Windows NT

TUXEDO samples

366 MQSeries Application Programming Guide

Server sample program for TUXEDO
This program is designed to run with the Put (amqstxpx.c) and the Get
(amqstxgx.c) sample programs. The sample server program runs automatically
when TUXEDO is started.

Note: You must start your queue manager before you start TUXEDO.

The sample server provides two TUXEDO services, MPUT1 and MGET1.

The MPUT1 service is driven by the PUT sample and uses MQPUT1 in syncpoint
to put a message in a unit of work controlled by TUXEDO. It takes the parameters
QName and Message Text, which are supplied by the PUT sample.

The MGET1 service opens and closes the queue each time it gets a message. It
takes the parameters QName and Message Text, which are supplied by the GET
sample.

Any error messages, reason codes, and status messages are written to the TUXEDO
log file.

TUXDIR = f:\tuxedo
MQMDIR = g:\Program Files\MQSeries
APPDIR = f:\tuxedo\apps\mqapp
MQMLIB = $(MQMDIR)\tools\lib
MQMINC = $(MQMDIR)\tools\c\include
MQMSAMP = $(MQMDIR)\tools\c\samples
INC = -f “-I$(MQMINC) -I$(APPDIR)”
DBG = -f “/Zi”

amqstx.exe:
$(TUXDIR)\bin\mkfldhdr -d$(APPDIR) $(MQMSAMP)\amqstxvx.fld
$(TUXDIR)\bin\viewc -d$(APPDIR) $(MQMSAMP)\amqstxvx.v
$(TUXDIR)\bin\buildtms -o MQXA -r MQSeries_XA_RMI
$(TUXDIR)\bin\buildserver -o MQSERV1 -f $(MQMSAMP)\amqstxsx.c \

-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
-r MQSeries_XA_RMI \
-s MPUT1:MPUT -s MGET1:MGET

$(TUXDIR)\bin\buildserver -o MQSERV2 -f $(MQMSAMP)\amqstxsx.c \
-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
-r MQSeries_XA_RMI \
-s MPUT2:MPUT -s MGET2:MGET

$(TUXDIR)\bin\buildclient -o doputs -f $(MQMSAMP)\amqstxpx.c \
-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG)

$(TUXDIR)\bin\buildclient -o dogets -f $(MQMSAMP)\amqstxgx.c \
-f $(MQMLIB)\mqm.lib $(INC) -v $(DBG)

$(TUXDIR)\bin\tmloadcf -y $(APPDIR)\ubbstxcn.cfg

Figure 41. Sample TUXEDO makefile for MQSeries for Windows NT

TUXEDO samples

Chapter 32. Sample programs (all platforms except OS/390) 367

Put sample program for TUXEDO
This sample allows you to put a message on a queue multiple times, in batches,
demonstrating syncpointing using TUXEDO as the resource manager. The sample
server program amqstxsx must be running for the put sample to succeed - the
server sample program makes the connection to the queue manager and uses the
XA interface. To run the sample enter:
v doputs –n queuename –b batchsize –c trancount –t message

For example:
v doputs -n myqueue -b 5 -c 6 -t “Hello World”

This puts 30 messages on to the queue named myqueue, in 6 batches each with 5
messages in them. If there are any problems it will back a batch of messages out,
otherwise it will commit them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason
codes are written to stderr.

Get sample for TUXEDO
This sample allows you to get messages from a queue in batches. The sample
server program amqstxsx must be running for the put sample to succeed - the
server sample program makes the connection to the queue manager and uses the
XA interface. To run the sample enter:
v dogets –n queuename –b batchsize –c trancount

For example:

Local System
Local or Remote

System

(queue used
by samples)

Server Machine
Client Machine

amqstxgx
(GET)

Client Machine

amqstxpx
(PUT)

QUEUE
MANAGER

XA
Interface

TUXEDO Application MQSERIES

MQSERV1
(amqstxsx)

Figure 42. How TUXEDO samples work together

TUXEDO samples

368 MQSeries Application Programming Guide

v dogets -n myqueue -b 6 -c 4

This takes 24 messages off the queue named myqueue, in 6 batches each with 4
messages in them. If you ran this after the put example, which put 30 messages on
myqueue, you would now have only 6 messages on myqueue. Note that the number
of batches and the batch size can vary between the putting of messages and the
getting of them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason
codes are written to stderr.

Encina sample program
This program puts 10 messages to the queue, backing out the odd numbered
messages and committing the even numbered messages. The message is a 4-byte
number.

The queue used by this sample is the SYSTEM.DEFAULT.MODEL.QUEUE, so a
temporary dynamic queue is created each time the program is run. You will need
to run trace to see what happens when the program runs.

Building the AMQSXAE0.C sample
When compiling for a UNIX or OS/2 platform, ensure that the symbolic constant,
WIN32 is not defined. This constant is used in the preprocessor statements for
processing specific to Windows NT:

#if defined(WIN32)

Compiling and linking on Windows NT
When compiling, specify the following options (in addition to those usually
specified for an MQSeries application) to the C compiler:

-MD -DWIN32 -DDEC_DCE -Gz

The sample contains references to the Encina header files:
#include <tc/tc.h>
#include <tmxa/tmxa_status.h>
#include <tmxa/tmxa.h>

At compile time, also include the parent directory path name containing these files,
using the compiler -I option with a value which names the directory. For example:

-Ic:\opt\encina\include

At link time, the directory path names containing the Encina and DCE library files
must also be specified to the linker, by setting the LIB environment variable. For
example:

SET LIB=C:\OPT\ENCINA\LIB;C:\OPT\DCE\LIB;%LIB%

When linking, specify the following library files:
v mqm.lib
v mqmenc.lib
v libEncServer.lib
v libEncina.lib
v msvcrt.lib
v pthreads.lib
v libdce.lib

TUXEDO samples

Chapter 32. Sample programs (all platforms except OS/390) 369

Compiling and linking on Sun Solaris
Use the following invocation:
cc -I/opt/encina/include -c amqsxae0.c && cc -mt -o amqsxae0 amqsxae0.o \

-L/opt/encina/lib -L/opt/mqm/lib -lmqm -lmqmcs_d -lmqmzse -lmqmxa \
-lsocket -lnsl -ldce -lthread -lEncServer -lEncina -lc -lm

Dead-letter queue handler sample
A sample dead-letter queue handler is provided, the name of the executable
version is amqsdlq. If you want a dead-letter queue handler that is different to
RUNMQDLQ, the source of the sample is available for you to use your base.

The sample is similar to the dead-letter handler provided within the product but
trace and error reporting are different. There are two environment variables
available to you:

ODQ_TRACE
set to YES or yes to switch tracing on

ODQ_MSG
set to the name of the file containing error and information messages. The
file provided is called amqsdlq.msg.

These need to be made known to your environment using either the export or set
commands, depending on your platform; trace is turned off using the unset
command.

You can modify the error message file, amqsdlq.msg, to suit your own
requirements. The sample puts messages out to stdout, not to the MQSeries error
log file.

The System Management Guide for your platform explains how the dead-letter
handler works, and how you run it.

The Connect sample program
The Connect sample program allows you to explore the MQCONNX call and its
options from a client. The sample connects to the queue manager using the
MQCONNX call, inquires about the name of the queue manager using the MQINQ
call, and displays it.

Note: The Connect sample program is a client sample. You can compile and run it
on a server but the function is meaningful only on a client, and only client
executables are supplied.

Running the amqscnxc sample
The command-line syntax of the Connect sample program is:
amqscnxc [-x ConnName [-c SvrconnChannelName]] [QMgrName]

The parameters are optional and their order is not important with the exception
that QMgrName, if it is specified, must come last. The parameters are:
ConnName

The TCP/IP connection name of the server queue manager
SvrconnChannelName

The name of the server connection channel

Encina sample

370 MQSeries Application Programming Guide

QMgrName
The name of the target queue manager

If you do not specify the TCP/IP connection name, MQCONNX is issued with the
ClientConnPtr set to NULL. If you specify the TCP/IP connection name but not the
server connection channel (the reverse is not allowed) the sample uses the name
SYSTEM.DEF.SVRCONN. If you do not specify the target queue manager the
sample connects to whichever queue manager is listening at the given TCP/IP
connection name.

Note: If you enter a question mark as the only parameter or if you enter incorrect
parameters you will see a message explaining how to use the program.

If you run the sample with no command-line options the contents of the
MQSERVER environment variable are used to determine the connection
information. (In this example MQSERVER is set to
“SYSTEM.DEF.SVRCONN/TCP/machine.site.company.com”.) You see output like
this:
Sample AMQSCNXC start
Connecting to the default queue manager
with no client connection information specified.
Connection established to queue manager machine

Sample AMQSCNXC end

If you run the sample and provide a TCP/IP connection name and a server
connection channel name but no target queue manager name, like this:
amqscnxc -x machine.site.company.com -c SYSTEM.ADMIN.SVRCONN

the default queue manager name is used and you see output like this:
Sample AMQSCNXC start
Connecting to the default queue manager
using the server connection channel SYSTEM.ADMIN.SVRCONN
on connection name machine.site.company.com.
Connection established to queue manager MACHINE

Sample AMQSCNXC end

If you run the sample and provide a TCP/IP connection name and a target queue
manager name, like this:
amqscnxc -x machine.site.company.com MACHINE

you see output like this:
Sample AMQSCNXC start
Connecting to queue manager MACHINE
using the server connection channel SYSTEM.DEF.SVRCONN
on connection name machine.site.company.com.
Connection established to queue manager MACHINE

Sample AMQSCNXC end

Connect sample program

Chapter 32. Sample programs (all platforms except OS/390) 371

Connect sample program

372 MQSeries Application Programming Guide

Chapter 33. Sample programs for MQSeries for OS/390

This chapter describes the sample applications that are delivered with MQSeries
for OS/390. These samples demonstrate typical uses of the Message Queue
Interface (MQI).

MQSeries for OS/390 also provides a sample API-crossing exit program, described
in the “The API-crossing exit for OS/390” on page 213, and sample data-conversion
exits, described in “Chapter 11. Writing data-conversion exits” on page 149.

The sample applications are supplied in source form only. The source modules
include pseudocode that describes the program logic.

Note: Although some of the sample applications have basic panel-driven
interfaces, they do not aim to demonstrate how to design the “look and
feel” of your applications. For more information on how to design
panel-driven interfaces for nonprogrammable terminals, see the SAA
Common User Access: Basic Interface Design Guide (SC26-4583) and its
addendum (GG22-9508). These provide guidelines to help you design
applications that are consistent both within the application and across other
applications.

This chapter introduces the sample programs, under these headings:
v “Features demonstrated in the sample applications”
v “Preparing and running sample applications for the batch environment” on

page 377
v “Preparing sample applications for the TSO environment” on page 378
v “Preparing the sample applications for the CICS environment” on page 380
v “Preparing the sample application for the IMS environment” on page 383
v “The Put samples” on page 384
v “The Get samples” on page 386
v “The Browse sample” on page 389
v “The Print Message sample” on page 391
v “The Queue Attributes sample” on page 395
v “The Mail Manager sample” on page 396
v “The Credit Check sample” on page 403
v “The Message Handler sample” on page 415

Features demonstrated in the sample applications
This section summarizes the MQI features demonstrated in each of the sample
applications, shows the programming languages in which each sample is written,
and the environment in which each sample runs.

Put samples
The Put samples demonstrate how to put messages on a queue using the MQPUT
call.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQPUT

© Copyright IBM Corp. 1993, 2000 373

v MQCLOSE
v MQDISC

The program is delivered in COBOL and C, and runs in the batch and CICS
environment. See Table 34 on page 378 for the batch application and Table 39 on
page 381 for the CICS application.

Get samples
The Get samples demonstrate how to get messages from a queue using the
MQGET call.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQGET
v MQCLOSE
v MQDISC

The program is delivered in COBOL and C, and runs in the batch and CICS
environment. See Table 34 on page 378 for the batch application and Table 39 on
page 381 for the CICS application.

Browse sample
The Browse sample demonstrates how to browse a message, print it, then step
through the messages on a queue.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQGET for browsing messages
v MQCLOSE
v MQDISC

The program is delivered in the COBOL, assembler, PL/I, and C languages. The
application runs in the batch environment. See Table 35 on page 378 for the batch
application.

Print Message sample
The Print Message sample demonstrates how to remove a message from a queue
and print the data in the message, together with all the fields of its message
descriptor. By removing comment characters from two lines in the source module,
you can change the program so that it browses, rather than removes, the messages
on a queue. This program can usefully be used for diagnosing problems with an
application that is putting messages on a queue.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQGET for removing messages from a queue (with an option to browse)
v MQCLOSE
v MQDISC

The program is delivered in the C language. The application runs in the batch
environment. See Table 36 on page 378 for the batch application.

Features demonstrated

374 MQSeries Application Programming Guide

Queue Attributes sample
The Queue Attributes sample demonstrates how to inquire about and set the
values of MQSeries for OS/390 object attributes.

The application uses these MQI calls:
v MQOPEN
v MQINQ
v MQSET
v MQCLOSE

The program is delivered in the COBOL, assembler, and C languages. The
application runs in the CICS environment. See Table 40 on page 382 for the CICS
application.

Mail Manager sample
The Mail Manager sample demonstrates these techniques:
v Using alias queues
v Using a model queue to create a temporary dynamic queue
v Using reply-to queues
v Using syncpoints in the CICS and batch environments
v Sending commands to the system-command input queue
v Testing return codes
v Sending messages to remote queue managers, both by using a local definition of

a remote queue and by putting messages directly on a named queue at a remote
queue manager

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQPUT1
v MQGET
v MQINQ
v MQCMIT
v MQCLOSE
v MQDISC

Three versions of the application are provided:
v A CICS application written in COBOL
v A TSO application written in COBOL
v A TSO application written in C

The TSO applications use the MQSeries for OS/390 batch adapter and include
some ISPF panels.

See Table 37 on page 379 for the TSO application, and Table 41 on page 382 for the
CICS application.

Credit Check sample
The Credit Check sample is a suite of programs that demonstrates these
techniques:
v Developing an application that runs in more than one environment
v Using a model queue to create a temporary dynamic queue
v Using a correlation identifier
v The setting and passing of context information

Features demonstrated

Chapter 33. Sample programs for MQSeries for OS/390 375

v Using message priority and persistence
v Starting programs by using triggering
v Using reply-to queues
v Using alias queues
v Using a dead-letter queue
v Using a namelist
v Testing return codes

The application uses these MQI calls:
v MQOPEN
v MQPUT
v MQPUT1
v MQGET for browsing and getting messages, using the wait and signal options,

and for getting a specific message
v MQINQ
v MQSET
v MQCLOSE

The sample can run as a stand-alone CICS application. However, to demonstrate
how to design a message queuing application that uses the facilities provided by
both the CICS and IMS environments, one module is also supplied as an IMS
batch message processing program.

The CICS programs are delivered in C and COBOL. The single IMS program is
delivered in C.

See Table 42 on page 382 for the CICS application, and Table 43 on page 384 for the
IMS application.

The Message Handler sample
The Message Handler sample allows you to browse, forward, and delete messages
on a queue.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQINQ
v MQPUT1
v MQCMIT
v MQBACK
v MQGET
v MQCLOSE
v MQDISC

The program is delivered in C and COBOL programming languages. The
application runs under TSO. See Table 38 on page 380 for the TSO application.

Distributed queuing exit samples
The names of the source programs of the distributed queuing exit samples are
listed in the following table:

Features demonstrated

376 MQSeries Application Programming Guide

Table 32. Source for the distributed queuing exit samples

Member name For language Description Supplied in library

CSQ4BAX0 Assembler Source program SCSQASMS

CSQ4BCX1 C Source program SCSQC37S

CSQ4BCX2 C Source program SCSQC37S

Note: The source programs are link-edited with CSQXSTUB.

See the MQSeries Intercommunication book for a description of the distributed
queuing exit samples.

Data-conversion exit samples
A skeleton is provided for a data-conversion exit routine, and a sample is shipped
with MQSeries illustrating the MQXCNVC call. The names of the source programs
of the data-conversion exit samples are listed in the following table:

Table 33. Source for the data conversion exit samples (Assembler language only)

Member name Description Supplied in library

CSQ4BAX8 Source program SCSQASMS

CSQ4BAX9 Source program SCSQASMS

CSQ4CAX9 Source program SCSQASMS

Note: The source programs are link-edited with CSQASTUB.

See “Chapter 11. Writing data-conversion exits” on page 149 for more information.

Preparing and running sample applications for the batch environment
To prepare a sample application that runs in the &batch environment, perform the
same steps that you would when building any batch MQSeries for OS/390
application. These steps are listed in “Building OS/390 batch applications” on
page 264.

Note: The assembler language version of the Browse sample uses data control
blocks (DCBs), so you must link-edit it using RMODE(24).

The library members that you will use are listed in Table 34, Table 35, and Table 36
on page 378.

You must edit the run JCL supplied for the samples that you want to use (see
Table 34, Table 35, and Table 36 on page 378).

The PARM statement in the supplied JCL contains a number of parameters that
you need to modify. To run the C sample programs, separate the parameters by
spaces; to run the Assembler, COBOL, and PL/I sample programs, separate them
by commas. For example, if the name of your queue manager is CSQ1 and you
want to run the application with a queue named LOCALQ1, in the COBOL, PL/I,
and assembler-language JCL, your PARM statement should look like this:

PARM=(CSQ1,LOCALQ1)

In the C language JCL, your PARM statement should look like this:

Features demonstrated

Chapter 33. Sample programs for MQSeries for OS/390 377

PARM=('CSQ1 LOCALQ1')

You are now ready to submit the jobs.

Names of the sample batch applications
The names of the source programs and JCL that are supplied for each of the
sample batch applications are listed in the following tables:

Put and Get samples Table 34
Browse sample Table 35
Print message sample Table 36

Table 34. Source and JCL for the Put and Get samples

Member name For language Description Supplied in library

CSQ4BCJ1 C Get source program SCSQC37S

CSQ4BCK1 C Put source program SCSQC37S

CSQ4BVJ1 COBOL Get source program SCSQCOBS

CSQ4BVK1 COBOL Put source program SCSQCOBS

CSQ4BCJR C Sample run JCL SCSQPROC

CSQ4BVJR COBOL Sample run JCL SCSQPROC

Table 35. Source and JCL for the Browse sample

Member name For language Description Supplied in library

CSQ4BVA1 COBOL Source program SCSQCOBS

CSQ4BVAR COBOL Sample run JCL SCSQPROC

CSQ4BAA1 Assembler Source program SCSQASMS

CSQ4BAAR Assembler Sample run JCL SCSQPROC

CSQ4BCA1 C Source program SCSQC37S

CSQ4BCAR C Sample run JCL SCSQPROC

CSQ4BPA1 PL/I Source program SCSQPLIS

CSQ4BPAR PL/I Sample run JCL SCSQPROC

Table 36. Source for the Print Message sample (C language only)

Member name Description Supplied in library

CSQ4BCG1 Source program SCSQC37S

CSQ4BCGR Sample run JCL SCSQPROC

Preparing sample applications for the TSO environment
To prepare a sample application that runs in the TSO environment, perform the
same steps that you would when building any batch MQSeries for OS/390
application—these steps are listed in “Building OS/390 batch applications” on
page 264. The library members you will use are listed in Table 37 on page 379.

For the Mail Manager sample application, ensure that the queues it uses are
available on your system. They are defined in the member
thlqual.SCSQPROC(CSQ4CVD). To ensure that these queues are always available,

Preparing batch samples

378 MQSeries Application Programming Guide

you could add these members to your CSQINP2 initialization input data set, or use
the CSQUTIL program to load these queue definitions.

Names of the sample TSO applications
The names of the source programs that are supplied for each of the sample TSO
applications are listed in the following tables:

Mail manager sample Table 37
Message handler
sample

Table 38 on page 380

These samples use ISPF panels. You must therefore include the ISPF stub,
ISPLINK, when you link-edit the programs.

Table 37. Source and JCL for the Mail Manager (TSO) sample

Member name For language Description Supplied in library

CSQ4CVD independent MQSeries for OS/390
object definitions

SCSQPROC

CSQ40 independent ISPF messages SCSQMSGE

CSQ4RVD1 COBOL CLIST to initiate
CSQ4TVD1

SCSQCLST

CSQ4TVD1 COBOL Source program for
Menu program

SCSQCOBS

CSQ4TVD2 COBOL Source program for
Get Mail program

SCSQCOBS

CSQ4TVD4 COBOL Source program for
Send Mail program

SCSQCOBS

CSQ4TVD5 COBOL Source program for
Nickname program

SCSQCOBS

CSQ4VDP1-6 COBOL Panel definitions SCSQPNLA

CSQ4VD0 COBOL Data definition SCSQCOBC

CSQ4VD1 COBOL Data definition SCSQCOBC

CSQ4VD2 COBOL Data definition SCSQCOBC

CSQ4VD4 COBOL Data definition SCSQCOBC

CSQ4RCD1 C CLIST to initiate
CSQ4TCD1

SCSQCLST

CSQ4TCD1 C Source program for
Menu program

SCSQC37S

CSQ4TCD2 C Source program for
Get Mail program

SCSQC37S

CSQ4TCD4 C Source program for
Send Mail program

SCSQC37S

CSQ4TCD5 C Source program for
Nickname program

SCSQC37S

CSQ4CDP1-6 C Panel definitions SCSQPNLA

CSQ4TC0 C Include file SCSQC370

Preparing TSO samples

Chapter 33. Sample programs for MQSeries for OS/390 379

Table 38. Source for the Message Handler sample

Member name For language Description Supplied in library

CSQ4TCH0 C Data definition SCSQC370

CSQ4TCH1 C Source program SCSQC37S

CSQ4TCH2 C Source program SCSQC37S

CSQ4TCH3 C Source program SCSQC37S

CSQ4RCH1 C and COBOL CLIST to initiate
CSQ4TCH1 or
CSQ4TVH1

SCSQCLST

CSQ4CHP1 C and COBOL Panel definition SCSQPNLA

CSQ4CHP2 C and COBOL Panel definition SCSQPNLA

CSQ4CHP3 C and COBOL Panel definition SCSQPNLA

CSQ4CHP9 C and COBOL Panel definition SCSQPNLA

CSQ4TVH0 COBOL Data definition SCSQCOBC

CSQ4TVH1 COBOL Source program SCSQCOBS

CSQ4TVH2 COBOL Source program SCSQCOBS

CSQ4TVH3 COBOL Source program SCSQCOBS

Preparing the sample applications for the CICS environment
Before you run the CICS sample programs, you must log on to CICS using a
LOGMODE of 32702. This is because the sample programs have been written to
use a 3270 mode 2 screen.

To prepare a sample application that runs in the CICS environment, perform the
following steps:
1. Create the symbolic description map and the physical screen map for the

sample by assembling the BMS screen definition source (supplied in library
thlqual.SCSQMAPS, where thlqual is the high-level qualifier used by your
installation). When you name the maps, use the name of the BMS screen
definition source (not available for Put and Get sample programs), but omit the
last character of that name.

2. Perform the same steps that you would when building any CICS MQSeries for
OS/390 application—these steps are listed in “Building CICS applications” on
page 265. The library members that you will use are listed in Table 39 on
page 381, Table 40 on page 382, Table 41 on page 382, and Table 42 on page 382.

3. Identify the map set, programs, and transaction to CICS by updating the CICS
system definition (CSD) data set. The definitions you require are in the member
thlqual.SCSQPROC(CSQ4S100). For guidance on how to do this, see the
MQSeries for OS/390 System Management Guide.

Note: For the Credit Check sample application, you will get an error message
at this stage if you have not already created the VSAM data set that the
sample uses.

4. For the Credit Check and Mail Manager sample applications, ensure that the
queues they use are available on your system. For the Credit Check sample,
they are defined in the member thlqual.SCSQPROC(CSQ4CVB) for COBOL,
and thlqual.SCSQPROC(CSQ4CCB) for C. For the Mail Manager sample, they
are defined in the member thlqual.SCSQPROC(CSQ4CVD). To ensure that

Preparing TSO samples

380 MQSeries Application Programming Guide

these queues are always available, you could add these members to your
CSQINP2 initialization input data set, or use the CSQUTIL program to load
these queue definitions.
For the Queue Attributes sample application, you could use one or more of the
queues that are supplied for the other sample applications. Alternatively, you
could use your own queues. However, note that in the form that it is supplied,
this sample works only with queues that have the characters CSQ4SAMP in the
first eight bytes of their name.

QLOP abend
When the CICS sample applications supplied with MQSeries for OS/390 use MQI
calls, they do not test for the return codes that indicate that the queue manager is
not available. If the queue manager is not available when you attempt to run one
of the CICS samples, the sample abends with the CICS abend code QLOP. If this
happens, you must connect your queue manager to your CICS system before you
attempt to start the sample application again. For information about starting a
connection, see the MQSeries for OS/390 System Management Guide.

Names of the sample CICS applications
The source and JCL files that are supplied for each of the sample CICS applications
are listed in the following tables:

Put and Get samples Table 39
Queue attributes
sample

Table 40 on page 382

Mail Manager (CICS)
sample

Table 41 on page 382

Credit Check (CICS)
sample

Table 42 on page 382

Table 39. Source and JCL for the Put and Get samples

Member name For language Description Supplied in library

CSQ4CCK1 C Source program SCSQC37S

CSQ4CCJ1 C Source program SCSQC37S

CSQ4CVJ1 COBOL Source program SCSQCOBS

CSQ4CVK1 COBOL Source program SCSQCOBS

CSQ4S100 independent CICS system
definition data set

SCSQPROC

Preparing CICS samples

Chapter 33. Sample programs for MQSeries for OS/390 381

Table 40. Source for the Queue Attributes sample

Member name For language Description Supplied in library

CSQ4CVC1 COBOL Source program SCSQCOBS

CSQ4VMSG COBOL Message definition SCSQCOBC

CSQ4VCMS COBOL BMS screen definition SCSQMAPS

CSQ4CAC1 Assembler Source program SCSQASMS

CSQ4AMSG Assembler Message definition SCSQMACS

CSQ4ACMS Assembler BMS screen definition SCSQMAPS

CSQ4CCC1 C Source program SCSQC37S

CSQ4CMSG C Message definition SCSQC370

CSQ4CCMS C BMS screen definition SCSQMAPS

CSQ4S100 independent CICS system
definition data set

SCSQPROC

Table 41. Source and JCL for the Mail Manager (CICS) sample (COBOL only)

Member name Description Supplied in library

CSQ4CVD MQSeries for OS/390 object
definitions

SCSQPROC

CSQ4CVD1 Source for Menu program SCSQCOBS

CSQ4CVD2 Source for Get Mail program SCSQCOBS

CSQ4CVD3 Source for Display Message
program

SCSQCOBS

CSQ4CVD4 Source for Send Mail
program

SCSQCOBS

CSQ4CVD5 Source for Nickname
program

SCSQCOBS

CSQ4VDMS BMS screen definition source SCSQMAPS

CSQ4S100 CICS system definition data
set

SCSQPROC

CSQ4VD0 Data definition SCSQCOBC

CSQ4VD3 Data definition SCSQCOBC

CSQ4VD4 Data definition SCSQCOBC

Table 42. Source and JCL for the Credit Check CICS sample

Member name For language Description Supplied in
library

CSQ4CVB independent MQSeries object definitions SCSQPROC

CSQ4CCB independent MQSeries object definitions SCSQPROC

CSQ4CVB1 COBOL Source for user-interface program SCSQCOBS

CSQ4CVB2 COBOL Source for credit application
manager

SCSQCOBS

CSQ4CVB3 COBOL Source for checking-account
program

SCSQCOBS

CSQ4CVB4 COBOL Source for distribution program SCSQCOBS

CSQ4CVB5 COBOL Source for agency-query program SCSQCOBS

Preparing CICS samples

382 MQSeries Application Programming Guide

Table 42. Source and JCL for the Credit Check CICS sample (continued)

Member name For language Description Supplied in
library

CSQ4CCB1 C Source for user-interface program SCSQC37S

CSQ4CCB2 C Source for credit application
manager

SCSQC37S

CSQ4CCB3 C Source for checking-account
program

SCSQC37S

CSQ4CCB4 C Source for distribution program SCSQC37S

CSQ4CCB5 C Source for agency-query program SCSQC37S

CSQ4CB0 C Include file SCSQC370

CSQ4CBMS C BMS screen definition source SCSQMAPS

CSQ4VBMS COBOL BMS screen definition source SCSQMAPS

CSQ4VB0 COBOL Data definition SCSQCOBC

CSQ4VB1 COBOL Data definition SCSQCOBC

CSQ4VB2 COBOL Data definition SCSQCOBC

CSQ4VB3 COBOL Data definition SCSQCOBC

CSQ4VB4 COBOL Data definition SCSQCOBC

CSQ4VB5 COBOL Data definition SCSQCOBC

CSQ4VB6 COBOL Data definition SCSQCOBC

CSQ4VB7 COBOL Data definition SCSQCOBC

CSQ4VB8 COBOL Data definition SCSQCOBC

CSQ4BAQ independent Source for VSAM data set SCSQPROC

CSQ4FILE independent JCL to build VSAM data set used
by CSQ4CVB3

SCSQPROC

CSQ4S100 independent CICS system definition data set SCSQPROC

Preparing the sample application for the IMS environment
Part of the Credit Check sample application can run in the IMS environment. To
prepare this part of the application to run with the CICS sample you must first
perform the steps described in “Preparing the sample applications for the CICS
environment” on page 380.

Then perform the following steps:
1. Perform the same steps that you would when building any IMS MQSeries for

OS/390 application—these steps are listed in “Building IMS (BMP or MPP)
applications” on page 266. The library members that you will use are listed in
Table 43 on page 384.

2. Identify the application program and database to IMS. Samples are provided
with PSBGEN, DBDGEN, ACB definition, IMSGEN, and IMSDALOC
statements to enable this.

3. Load the database CSQ4CA by tailoring and running the sample JCL provided
for this purpose (CSQ4ILDB). This JCL loads the database with data from the
file CSQ4BAQ. Update the IMS control region with a DD statement for the
database CSQ4CA.

Preparing CICS samples

Chapter 33. Sample programs for MQSeries for OS/390 383

4. Start the checking-account program as a batch message processing (BMP)
program by tailoring and running the sample JCL provided for this purpose.
This JCL starts a batch-oriented BMP program. To run the program as a
message-oriented BMP program, remove the comment characters from the line
in the JCL that contains the IN= statement.

Names of the sample IMS application
The source and JCL that are supplied for the Credit Check sample IMS application
are listed in Table 43.

Table 43. Source and JCL for the Credit Check IMS sample (C only)

Member name Description Supplied in library

CSQ4CVB MQSeries object definitions SCSQPROC

CSQ4ICB3 Source for checking-account
program

SCSQC37S

CSQ4ICBL Source for loading the
checking-account database

SCSQC37S

CSQ4CBI Data definition SCSQC370

CSQ4PSBL PSBGEN JCL for
database-load program

SCSQPROC

CSQ4PSB3 PSBGEN JCL for
checking-account program

SCSQPROC

CSQ4DBDS DBDGEN JCL for database
CSQ4CA

SCSQPROC

CSQ4GIMS IMSGEN macro definitions
for CSQ4IVB3 and CSQ4CA

SCSQPROC

CSQ4ACBG Application control block
(ACB) definition for
CSQ4IVB3

SCSQPROC

CSQ4BAQ Source for database SCSQPROC

CSQ4ILDB Sample run JCL for
database-load job

SCSQPROC

CSQ4ICBR Sample run JCL for
checking-account program

SCSQPROC

CSQ4DYNA IMSDALOC macro
definitions for database

SCSQPROC

The Put samples
The Put sample programs put messages on a queue using the MQPUT call.

The source programs are supplied in C and COBOL in the batch and CICS
environments (see Table 34 on page 378 and Table 39 on page 381).

Design of the Put sample
The flow through the program logic is:
1. Connect to the queue manager using the MQCONN call. If this call fails, print

the completion and reason codes and stop processing.

Preparing IMS sample

384 MQSeries Application Programming Guide

Note: If you are running the sample in a CICS environment, you do not need
to issue an MQCONN call; if you do, it returns DEF_HCONN. You can
use the connection handle MQHC_DEF_HCONN for the MQI calls that
follow.

2. Open the queue using the MQOPEN call with the MQOO_OUTPUT option. On
input to this call, the program uses the connection handle that is returned in
step 1. For the object descriptor structure (MQOD), it uses the default values
for all fields except the queue name field which is passed as a parameter to the
program. If the MQOPEN call fails, print the completion and reason codes and
stop processing.

3. Create a loop within the program issuing MQPUT calls until the required
number of messages are put on the queue. If an MQPUT call fails, the loop is
abandoned early, no further MQPUT calls are attempted, and the completion
and reason codes are returned.

4. Close the queue using the MQCLOSE call with the object handle returned in
step 2. If this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the
connection handle returned in step 1. If this call fails, print the completion and
reason codes.

Note: If you are running the sample in a CICS environment, you do not need
to issue an MQDISC call.

The Put samples for the batch environment
To run the samples, you must edit and run the sample JCL, as described in
“Preparing and running sample applications for the batch environment” on
page 377.

The programs take the following parameters in an EXEC PARM, separated by
spaces in C and commas in COBOL:
1. The name of the queue manager (4 characters)
2. The name of the target queue (48 characters)
3. The number of messages (up to 4 digits)
4. The padding character to be written in the message (1 character)
5. The number of characters to write in the message (up to 4 digits)
6. The persistence of the message (1 character: ‘P’ for persistent or ‘N’ for

nonpersistent)

If you enter any of the above parameters wrongly, you will receive appropriate
error messages.

Any messages from the samples are written to the SYSPRINT data set.

Usage notes
v To keep the samples simple, there are some minor functional differences

between language versions. However, these differences are minimized if the
layout of the parameters shown in the sample run JCL, CSQ4BCJR, and
CSQ4BVJR, is used. None of the differences relate to the MQI.

v CSQ4BCK1 allows you to enter more than four digits for the number of
messages sent and the length of the messages.

v For the two numeric fields, enter any digit between 1 and 9999. The value you
enter should be a positive number. For example, to put a single message, you
can enter 1 or 01 or 001 or 0001 as the value. If you enter non-numeric or

Put samples

Chapter 33. Sample programs for MQSeries for OS/390 385

negative values, you may receive an error. For example, if you enter ‘-1’, the
COBOL program will send a one-byte message, but the C program will receive
an error.

v For both programs, CSQ4BCK1 and CSQ4BVK1, you must enter ‘P’ in the
persistence parameter, ++PER++, if you require the message to be persistent. If
you fail to do so, the message will be nonpersistent.

The Put samples for the CICS environment
The transactions take the following parameters separated by commas:
1. The number of messages (up to 4 digits)
2. The padding character to be written in the message (1 character)
3. The number of characters to write in the message (up to 4 digits)
4. The persistence of the message (1 character: ‘P’ for persistent or ‘N’ for

nonpersistent)
5. The name of the target queue (48 characters)

If you enter any of the above parameters wrongly, you will receive appropriate
error messages.

For the COBOL sample, invoke the Put sample in the CICS environment by
entering:
MVPT,9999,*,9999,P,QUEUE.NAME

For the C sample, invoke the Put sample in the CICS environment by entering:
MCPT,9999,*,9999,P,QUEUE.NAME

Any messages from the samples are displayed on the screen.

Usage notes
v To keep the samples simple, there are some minor functional differences

between language versions. None of the differences relate to the MQI.
v If you enter a queue name that is longer than 48 characters, its length is

truncated to the maximum of 48 characters but no error message is returned.
v Before entering the transaction, press the ‘CLEAR’ key.
v For the two numeric fields, enter any number between 1 and 9999. The value

you enter should be a positive number. For example, to put a single message,
you can enter the value 1 or 01 or 001 or 0001. If you enter non-numeric or
negative values, you may receive an error. For example, if you enter ‘-1’, the
COBOL program will send a 1 byte message, and the C program will abend
with an error from malloc().

v For both programs, CSQ4CCK1 and CSQ4CVK1, you must enter ‘P’ in the
persistence parameter, if you require the message to be persistent. For
non-persistent messages, enter ‘N’ in the persistence parameter. If you enter any
other value you will receive an error message.

v The messages are put in syncpoint because default values are used for all
parameters except those set during program invocation.

The Get samples
The Get sample programs get messages from a queue using the MQGET call.

Put samples

386 MQSeries Application Programming Guide

The source programs are supplied in C and COBOL in the batch and CICS
environments (see Table 34 on page 378 and Table 39 on page 381).

Design of the Get sample
The flow through the program logic is:
1. Connect to the queue manager using the MQCONN call. If this call fails, print

the completion and reason codes and stop processing.

Note: If you are running the sample in a CICS environment, you do not need
to issue an MQCONN call; if you do, it returns DEF_HCONN. You can
use the connection handle MQHC_DEF_HCONN for the MQI calls that
follow.

2. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED
and MQOO_BROWSE options. On input to this call, the program uses the
connection handle that is returned in step 1. For the object descriptor structure
(MQOD), it uses the default values for all fields except the queue name field
which is passed as a parameter to the program. If the MQOPEN call fails, print
the completion and reason codes and stop processing.

3. Create a loop within the program issuing MQGET calls until the required
number of messages are retrieved from the queue. If an MQGET call fails, the
loop is abandoned early, no further MQGET calls are attempted, and the
completion and reason codes are returned. The following options are specified
on the MQGET call:
v MQGMO_NO_WAIT
v MQGMO_ACCEPT_TRUNCATED_MESSAGE
v MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT
v MQGMO_BROWSE_FIRST and MQGMO_BROWSE_NEXT

For a description of these options, see the MQSeries Application Programming
Reference manual. For each message, the message number is printed followed
by the length of the message and the message data.

4. Close the queue using the MQCLOSE call with the object handle returned in
step 2. If this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the
connection handle returned in step 1. If this call fails, print the completion and
reason codes.

Note: If you are running the sample in a CICS environment, you do not need
to issue an MQDISC call.

The Get samples for the batch environment
To run the samples, you must edit and run the sample JCL, as described in
“Preparing and running sample applications for the batch environment” on
page 377.

The programs take the following parameters in an EXEC PARM, separated by
spaces in C and commas in COBOL:
1. The name of the queue manager (4 characters)
2. The name of the target queue (48 characters)
3. The number of messages to get (up to 4 digits)
4. The browse/get message option (1 character: ‘B’ to browse or ‘D’ to

destructively get the messages)
5. The syncpoint control (1 character: ‘S’ for syncpoint or ‘N’ for no syncpoint)

Get samples

Chapter 33. Sample programs for MQSeries for OS/390 387

If you enter any of the above parameters wrongly, you will receive appropriate
error messages.

Output from the samples is written to the SYSPRINT data set:
=====================================
PARAMETERS PASSED :

QMGR - VC9
QNAME - A.Q
NUMMSGS - 000000002
GET - D
SYNCPOINT - N

=====================================
MQCONN SUCCESSFUL
MQOPEN SUCCESSFUL
000000000 : 000000010 : **********
000000001 : 000000010 : **********
000000002 MESSAGES GOT FROM QUEUE
MQCLOSE SUCCESSFUL
MQDISC SUCCESSFUL

Usage notes
v To keep the samples simple, there are some minor functional differences

between language versions. However, these differences are minimized if the
layout of the parameters shown in the sample run JCL, CSQ4BCJR, and
CSQ4BVJR, are used. None of the differences relate to the MQI.

v CSQ4BCJ1 allows you to enter more than four digits for the number of messages
retrieved.

v Messages longer than 64 KB are truncated.
v CSQ4BCJ1 can only correctly display character messages as it only displays until

the first NULL (\0) character is displayed.
v For the numeric number-of-messages field, enter any digit between 1 and 9999.

The value you enter should be a positive number. For example, to get a single
message, you can enter 1 or 01 or 001 or 0001 as the value. If you enter
non-numeric or negative values, you may receive an error. For example, if you
enter ‘-1’, the COBOL program will retrieve one message, but the C program
will not retrieve any messages.

v For both programs, CSQ4BCJ1 and CSQ4BVJ1, you must enter ‘B’ in the get
parameter, ++GET++, if you want to browse the messages.

v For both programs, CSQ4BCJ1 and CSQ4BVJ1, you must enter ‘S’ in the
syncpoint parameter, ++SYNC++, for messages to be retrieved in syncpoint.

The Get samples for the CICS environment
The transactions take the following parameters in an EXEC PARM, separated by
commas:
1. The number of messages to get (up to 4 digits)
2. The browse/get message option (1 character: ‘B’ to browse or ‘D’ to

destructively get the messages)
3. The syncpoint control (1 character: ‘S’ for syncpoint or ‘N’ for no syncpoint)
4. The name of the target queue (48 characters)

If you enter any of the above parameters wrongly, you will receive appropriate
error messages.

For the COBOL sample, invoke the Get sample in the CICS environment by
entering:

Get samples

388 MQSeries Application Programming Guide

MVGT,9999,B,S,QUEUE.NAME

For the C sample, invoke the Get sample in the CICS environment by entering:
MCGT,9999,B,S,QUEUE.NAME

When the messages are retrieved from the queue, they are put on a CICS
temporary storage queue with the same name as the CICS transaction (for
example, MCGT for the C sample).

Here is example output of the Get samples:
**************************** TOP OF QUEUE ************************
000000000 : 000000010: **********
000000001 : 000000010 :**********
*************************** BOTTOM OF QUEUE **********************

Usage notes
v To keep the samples simple, there are some minor functional differences

between language versions. None of the differences relate to the MQI.
v If you enter a queue name that is longer than 48 characters, its length is

truncated to the maximum of 48 characters but no error message is returned.
v Before entering the transaction, press the ‘CLEAR’ key.
v CSQ4CCJ1 can only correctly display character messages as it only displays until

the first NULL (\0) character is displayed.
v For the numeric field, enter any number between 1 and 9999. The value you

enter should be a positive number. For example, to get a single message, you
can enter the value 1 or 01 or 001 or 0001. If you enter a non-numeric or
negative value, you may receive an error.

v Messages longer than 24 526 bytes in C and 9 950 bytes in COBOL are truncated.
This is due to the way the CICS temporary storage queues are used.

v For both programs, CSQ4CCK1 and CSQ4CVK1, you must enter ‘B’ in the get
parameter if you want to browse the messages, otherwise enter ‘D’. This will
perform destructive MQGET calls. If you enter any other value you will receive
an error message.

v For both programs, CSQ4CCJ1 and CSQ4CVJ1, you must enter ‘S’ in the
syncpoint parameter for messages to be retrieved in syncpoint. If you enter ‘N’
in the syncpoint parameter the MQGET calls will be issued out of syncpoint. If
you enter any other value you will receive an error message.

The Browse sample
The Browse sample is a batch application that demonstrates how to browse
messages on a queue using the MQGET call. The application steps through all the
messages in a queue, printing the first 80 bytes of each one. You could use this
application to look at the messages on a queue without changing them.

Source programs and sample run JCL are supplied in the COBOL, assembler, PL/I,
and C languages (see Table 35 on page 378).

To start the application, you must edit and run the sample run JCL, as described in
“Preparing and running sample applications for the batch environment” on
page 377. You can look at messages on one of your own queues by specifying the
name of the queue in the run JCL.

Get samples

Chapter 33. Sample programs for MQSeries for OS/390 389

When you run the application (and there are some messages on the queue), the
output data set looks this:

07/12/1998 SAMPLE QUEUE REPORT PAGE 1
QUEUE MANAGER NAME : VC4

QUEUE NAME : CSQ4SAMP.DEAD.QUEUE
RELATIVE
MESSAGE MESSAGE
NUMBER LENGTH ------------------- MESSAGE DATA -------------

1 740 HELLO. PLEASE CALL ME WHEN YOU GET BACK.
2 429 CSQ4BQRM
3 429 CSQ4BQRM
4 429 CSQ4BQRM
5 22 THIS IS A TEST MESSAGE
6 8 CSQ4TEST
7 36 CSQ4MSG - ANOTHER TEST MESSAGE.....!
8 9 CSQ4STOP

********** END OF REPORT **********

If there are no messages on the queue, the data set contains the headings and the
“End of report” message only. If an error occurs with any of the MQI calls, the
completion and reason codes are added to the output data set.

Design of the Browse sample
The Browse sample application uses a single program module—one is provided in
each of the supported programming languages.

The flow through the program logic is:
1. Open a print data set and print the title line of the report. Check that names of

the queue manager and queue have been passed from the run JCL. If both
names have been passed, print the lines of the report that contain the names. If
they have not, print an error message, close the print data set, and stop
processing.
The way that the program tests the parameters it is passed from the JCL
depends on the language in which the program is written—for more
information, see “Language-dependent design considerations” on page 391.

2. Connect to the queue manager using the MQCONN call. If this call is not
successful, print the completion and reason codes, close the print data set, and
stop processing.

3. Open the queue using the MQOPEN call with the MQOO_BROWSE option. On
input to this call, the program uses the connection handle returned in step 2.
For the object descriptor structure (MQOD), it uses the default values for all the
fields except the queue name (which was passed in step 1). If this call is not
successful, print the completion and reason codes, close the print data set, and
stop processing.

4. Browse the first message on the queue, using the MQGET call. On input to this
call, the program specifies:
v The connection and queue handles from steps 2 and 3
v An MQMD structure with all fields set to their initial values
v Two options:

– MQGMO_BROWSE_FIRST
– MQGMO_ACCEPT_TRUNCATED_MSG

v A buffer of size 80 bytes to hold the data copied from the message

Browse sample

390 MQSeries Application Programming Guide

The MQGMO_ACCEPT_TRUNCATED_MSG option allows the call to complete
even if the message is longer than the 80-byte buffer specified in the call. If the
message is longer than the buffer, the message is truncated to fit the buffer, and
the completion and reason codes are set to show this. The sample was designed
so that messages are truncated to 80 characters simply to make the report easy
to read. The buffer size is set by a DEFINE statement, so you can easily change it
if you want to.

5. Perform the following loop until the MQGET call fails:
a. Print a line of the report showing:
v The sequence number of the message (this is a count of the browse

operations).
v The true length of the message (not the truncated length). This value is

returned in the DataLength field of the MQGET call.
v The first 80 bytes of the message data.

b. Reset the MsqId and CorrelId fields of the MQMD structure to nulls
c. Browse the next message, using the MQGET call with these two options:
v MQGMO_BROWSE_NEXT
v MQGMO_ACCEPT_TRUNCATED_MSG

6. If the MQGET call fails, test the reason code to see if the call has failed because
the browse cursor has got to the end of the queue. In this case, print the “End
of report” message and go to step 7; otherwise, print the completion and reason
codes, close the print data set, and stop processing.

7. Close the queue using the MQCLOSE call with the object handle returned in
step 3 on page 390.

8. Disconnect from the queue manager using the MQDISC call with the
connection handle returned in step 2 on page 390.

9. Close the print data set and stop processing.

Language-dependent design considerations
Source modules are provided for the Browse sample in four programming
languages. There are two main differences between the source modules:
v When testing the parameters passed from the run JCL, the COBOL, PL/I, and

assembler-language modules search for the comma character (,). If the JCL
passes PARM=(,LOCALQ1), the application attempts to open queue LOCALQ1 on
the default queue manager. If there is no name after the comma (or no comma),
the application returns an error. The C module does not search for the comma
character. If the JCL passes a single parameter (for example, PARM=('LOCALQ1')),
the C module uses this as a queue name on the default queue manager.

v To keep the assembler-language module simple, it uses the date format yy/ddd
(for example, 93/116) when it creates the print report. The other modules use
the calendar date in mm/dd/yy format.

The Print Message sample
The Print Message sample is a simple batch application that demonstrates how to
remove all the messages from a queue using the MQGET call. It also prints, for
each message, the fields of the message descriptor, followed by the message data.
The program prints the data both in hexadecimal and as characters (if they are
printable). If a character is not printable, the program replaces it with a period
character (.). You can use the program when diagnosing problems with an
application that is putting messages on a queue.

Browse sample

Chapter 33. Sample programs for MQSeries for OS/390 391

You can change the application so that it browses the messages, rather than
removing them from the queue. To do this, remove the comment characters from
two lines in the code, as indicated in “Design of the sample” on page 393.

The application has a single source program, which is written in the C language.
Sample run JCL code is also supplied (see Table 36 on page 378).

To start the application, you must edit and run the sample run JCL, as described in
“Preparing and running sample applications for the batch environment” on
page 377. When you run the application (and there are some messages on the
queue), the output data set looks like that in Figure 43.

MQCONN to VC4
MQOPEN - 'CSQ4SAMP.DEAD.QUEUE'

MQGET of message number 1
****Message descriptor****
StrucId : 'MD ' Version : 1
Report : 0 MsgType : 2
Expiry : -1 Feedback : 0
Encoding : 785 CodedCharSetId : 500
Format : ' '
Priority : 3 Persistence : 0
MsgId : X'C3E2D840E5C3F4404040404040404040A6FE06A95105C620'
CorrelId : X'C3E2D840E5C3F4404040404040404040A6FE062950C2F125'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : 'VC4 '
** Identity Context
UserIdentifier : 'CICSUSER '
Account.Token :
X'160DD5E3E2D5C5E34BC9C7D7C2F6F1FE060D3B55B60001000000000000000000'

ApplIdentData : ' '
** Origin Context
PutApplType : '1'
PutApplName : 'VICAUT4 MVB5 '
PutDate : '19930203' PutTime : '20165982'
ApplOriginData : ' '

Figure 43. Example of a report from the Print Message sample application (Part 1 of 2)

Print Message sample

392 MQSeries Application Programming Guide

Design of the sample
The Print message sample application uses a single program written in the C
language.

The flow through the program logic is:
1. Check that names of the queue manager and queue have been passed from the

run JCL. If they have not, print an error message and stop processing.
2. Connect to the queue manager using the MQCONN call. If this call is not

successful, print the completion and reason codes and stop processing;
otherwise print the name of the queue manager.

3. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED
option.

Note: If you want the application to browse the messages rather than remove
them from the queue, remove the comment characters from the line in
the program that adds the MQOO_BROWSE option.

On input to this call, the program uses the connection handle returned in step
2. For the object descriptor structure (MQOD), it uses the default values for all
the fields except the queue name (which was passed in step 1). If this call is not
successful, print the completion and reason codes and stop processing;
otherwise, print the name of the queue.

**** Message ****
length - 429 bytes

00000000: C3E2 D8F4 C2D8 D9D4 4040 4040 4040 4040 'CSQ4BQRM '
00000010: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
00000020: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
00000030: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
00000040: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
00000050: 4040 4040 4040 40D1 D6C8 D540 D140 4040 ' JOHN J '
00000060: 4040 4040 4040 4040 4040 40F1 F2F3 F4F5 ' 12345'
00000070: F6F7 F8F9 C6C9 D9E2 E340 C7C1 D3C1 C3E3 '6789FIRST GALACT'
00000080: C9C3 40C2 C1D5 D240 4040 4040 4040 4040 'IC BANK '
00000090: 4040 E2D6 D4C5 E3C8 C9D5 C740 C4C9 C6C6 ' SOMETHING DIFF'
000000A0: C5D9 C5D5 E340 4040 4040 4040 4040 4040 'ERENT '
000000B0: F3F5 F0F1 F6F7 F6F2 F1F2 F1F0 F0F0 F0F0 '3501676212100000'
000000C0: D985 A297 9695 A285 4086 9996 9440 C3E2 'Response from CS'
000000D0: D8F4 E2C1 D4D7 4BC2 F74B D4C5 E2E2 C1C7 'Q4SAMP.B7.MESSAG'
000000E0: C5E2 4040 4040 4040 4040 4040 4040 4040 'ES '
000000F0: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
00000100: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
00000110: 4040 4040 40D3 9681 9540 8194 96A4 95A3 ' Loan amount'
00000120: 40F1 F0F0 F0F0 F040 8696 9940 D1D6 C8D5 ' 100000 for JOHN'
00000130: 40D1 4040 4040 4040 4040 4040 4040 4040 ' J '
00000140: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
00000150: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
00000160: 4040 4040 C399 8584 89A3 40A6 9699 A388 ' Credit worth'
00000170: 8995 85A2 A240 8995 8485 A740 6040 C2C1 'iness index - BA'
00000180: C440 4040 4040 4040 4040 4040 4040 4040 'D '
00000190: 4040 4040 4040 4040 4040 4040 4040 4040 ' '
000001A0: 4040 4040 4040 4040 4040 4040 40 ' '

No more messages
MQCLOSE
MQDISC

Figure 43. Example of a report from the Print Message sample application (Part 2 of 2)

Print Message sample

Chapter 33. Sample programs for MQSeries for OS/390 393

4. Perform the following loop until the MQGET call fails:
a. Initialize the buffer to blanks so that the message data does not get

corrupted by any data already in the buffer.
b. Set the MsgId and CorrelId fields of the MQMD structure to nulls so that

the MQGET call selects the first message from the queue.
c. Get a message from the queue, using the MQGET call. On input to this call,

the program specifies:
v The connection and object handles from steps 2 and 3.
v An MQMD structure with all fields set to their initial values. (Note that

MsgId and CorrelId are reset to nulls for each MQGET call.)
v The option MQGMO_NO_WAIT.

Note: If you want the application to browse the messages rather than
remove them from the queue, remove the comment characters from
the line in the program that adds the MQOO_BROWSE_NEXT
option. When this option is used on a call against a queue for
which no browse cursor has previously been used with the current
object handle, the browse cursor is positioned logically before the
first message.

v A buffer of size 32 KB to hold the data copied from the message.
d. Call the printMD subroutine. This prints the name of each field in the

message descriptor, followed by its contents.
e. Print the length of the message, followed by the message data. Each line of

message data is in this format:
v Relative position (in hexadecimal) of this part of the data
v 16 bytes of hexadecimal data
v The same 16 bytes of data in character format, if it is printable

(nonprintable characters are replaced by periods)
5. If the MQGET call fails, test the reason code to see if the call failed because

there are no more messages on the queue. In this case, print the message: “No
more messages”; otherwise, print the completion and reason codes. In both
cases, go to step 6.

Note: The MQGET call fails if it finds a message that has more than 32 KB of
data. To change the program to handle larger messages, you could do
one of the following:
v Add the MQGMO_ACCEPT_TRUNCATED_MSG option to the

MQGET call, so that the call gets the first 32 KB of data and discards
the remainder

v Make the program leave the message on the queue when it finds one
with this amount of data

v Increase the size of the buffer
6. Close the queue using the MQCLOSE call with the object handle returned in

step 3 on page 393.
7. Disconnect from the queue manager using the MQDISC call with the

connection handle returned in step 2 on page 393.

Print Message sample

394 MQSeries Application Programming Guide

The Queue Attributes sample
The Queue Attributes sample is a conversational-mode CICS application that
demonstrates the use of the MQINQ and MQSET calls. It shows how to inquire
about the values of the InhibitPut and InhibitGet attributes of queues, and how
to change them so that programs cannot put messages on, or get messages from, a
queue. You may want to lock a queue in this way when you are testing a program.

To prevent accidental interference with your own queues, this sample works only
on a queue object that has the characters CSQ4SAMP in the first eight bytes of its
name. However, the source code includes comments to show you how to remove
this restriction.

Source programs are supplied in the COBOL, assembler, and C languages (see
Table 40 on page 382).

The assembler-language version of the sample uses reenterable code. To do this,
you will notice that the code for each MQI call in that version of the sample
includes the MF keyword; for example:

CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

(The VL keyword means that you can use the CICS Execution Diagnostic Facility
(CEDF) supplied transaction for debugging the program.) For more information on
writing reenterable programs, see “Writing reenterable programs” on page 75.

To start the application, start your CICS system and use the following CICS
transactions:
v For COBOL, MVC1
v For Assembler language, MAC1
v For C, MCC1

You can change the name of any of these transactions by changing the CSD data
set mentioned in step 3 on page 380.

Design of the sample
When you start the sample, firstly it displays a screen map that has fields for:
v Name of the queue
v User request (valid actions are: inquire, allow, or inhibit)
v Current status of put operations for the queue
v Current status of get operations for the queue

The first two fields are for user input. The last two fields are filled by the
application: they show the word INHIBITED or the word ALLOWED.

The application validates the values you enter in the first two fields. It checks that
the queue name starts with the characters CSQ4SAMP and that you entered one of
the three valid requests in the Action field. The application converts all your input
to uppercase, so you cannot use any queues with names that contain lowercase
characters.

If you enter ‘inquire’ in the Action field, the flow through the program logic is:
1. Open the queue using the MQOPEN call with the MQOO_INQUIRE option
2. Call MQINQ using the selectors MQIA_INHIBIT_GET and

MQIA_INHIBIT_PUT
3. Close the queue using the MQCLOSE call

Queue Attributes sample

Chapter 33. Sample programs for MQSeries for OS/390 395

4. Analyze the attributes that are returned in the IntAttrs parameter of the
MQINQ call and move the words ‘INHIBITED’ or ‘ALLOWED’, as appropriate,
to the relevant screen fields

If you enter ‘inhibit’ in the Action field, the flow through the program logic is:
1. Open the queue using the MQOPEN call with the MQOO_SET option
2. Call MQSET using the selectors MQIA_INHIBIT_GET and

MQIA_INHIBIT_PUT, and with the values MQQA_GET_INHIBITED and
MQQA_PUT_INHIBITED in the IntAttrs parameter

3. Close the queue using the MQCLOSE call
4. Move the word ‘INHIBITED’ to the relevant screen fields

If you enter ‘allow’ in the Action field, the application performs similar processing
to that for an ‘inhibit’ request. The only differences are the settings of the attributes
and the words displayed on the screen.

When the application opens the queue, it uses the default connection handle to the
queue manager. (CICS establishes a connection to the queue manager when you
start your CICS system.) The application can trap the following errors at this stage:
v The application is not connected to the queue manager
v The queue does not exist
v The user is not authorized to access the queue
v The application is not authorized to open the queue

For other MQI errors, the application displays the completion and reason codes.

The Mail Manager sample
The Mail Manager sample application is a suite of programs that demonstrates the
sending and receiving of messages, both within a single environment and across
different environments. The application is a simple electronic mailing system that
allows users to exchange messages, even if they use different queue managers.

The application demonstrates how to create queues using the MQOPEN call and
by putting MQSeries for OS/390 commands on the system-command input queue.

Three versions of the application are provided:
v A CICS application written in COBOL
v A TSO application written in COBOL
v A TSO application written in C

Preparing the sample
The Mail Manager is provided in versions that run in two environments. The
preparation you must carry out before you run the application depends on the
environment you want to use.

A user can access mail queues and nickname queues from both TSO and CICS so
long as their sign-on user IDs are the same on each system.

Before you can send messages to another queue manager, you must set up a
message channel to that queue manager. To do this, use the channel control
function of MQSeries, described in the MQSeries Intercommunication book.

Queue Attributes sample

396 MQSeries Application Programming Guide

Preparing the sample for the TSO environment
Follow these steps:
1. Prepare the sample as described in “Preparing sample applications for the TSO

environment” on page 378.
2. Tailor the CLIST provided for the sample to define:
v The location of the panels
v The location of the message file
v The location of the load modules
v The name of the queue manager you want to use with the application

A separate CLIST is provided for each language version of the sample:

For the COBOL
version:

CSQ4RVD1

For the C version: CSQ4RCD1

3. Ensure that the queues used by the application are available on the queue
manager. (The queues are defined in CSQ4CVD.)

Note: VS COBOL II does not support multitasking with ISPF. This means that you
cannot use the Mail Manager sample application on both sides of a split
screen. If you do, the results are unpredictable.

Running the sample
To start the sample in the TSO environment, execute your tailored version of the
CLIST from the TSO command processor within ISPF.

To start the sample in the CICS Transaction Server for OS/390 environment, run
transaction MAIL. If you have not already signed-on to CICS, the application
prompts you to enter a user ID to which it can send your mail.

When you start the application, it opens your mail queue. If this queue does not
already exist, the application creates one for you. Mail queues have names of the
form CSQ4SAMP.MAILMGR.userid, where userid depends on the environment:

In TSO
The user’s TSO ID

In CICS
The user’s CICS sign-on or the user ID entered by the user when
prompted when the Mail Manager started

All parts of the queue names that the Mail Manager uses must be uppercase.

The application then presents a menu panel that has options for:
v Read incoming mail
v Send mail
v Create nickname

The menu panel also shows you how many messages are waiting on your mail
queue. Each of the menu options displays a further panel:

Read incoming mail
The Mail Manager displays a list of the messages that are on your mail
queue. (Note that only the first 99 messages on the queue are displayed.)

Mail Manager sample

Chapter 33. Sample programs for MQSeries for OS/390 397

For an example of this panel, see Figure 46 on page 401. When you select a
message from this list, the contents of the message are displayed (see
Figure 47 on page 402).

Send mail
A panel prompts you to enter:
v The name of the user to whom you want to send a message
v The name of the queue manager that owns their mail queue
v The text of your message

In the user name field you can enter either a user ID or a nickname that
you created using the Mail Manager. You can leave the queue manager
name field blank if the user’s mail queue is owned by the same queue
manager that you are using, and you must leave it blank if you entered a
nickname in the user name field:
v If you specify only a user name, the program first assumes that the

name is a nickname, and sends the message to the object defined by that
name. If there is no such nickname, the program attempts to send the
message to a local queue of that name.

v If you specify both a user name and a queue manager name, the
program sends the message to the mail queue that is defined by those
two names.

For example, if you want to send a message to user JONESM on remote
queue manager QM12, you could send them a message in either of two
ways:
v Use both fields to specify user JONESM at queue manager QM12.
v Define a nickname (for example, MARY) for that user and send them a

message by putting MARY in the user name field and nothing in the
queue manager name field.

Create nickname
You can define an easy-to-remember name that you can use when you
send a message to another user who you contact frequently. You are
prompted to enter the user ID of the other user and the name of the queue
manager that owns their mail queue.

Nicknames are queues that have names of the form
CSQ4SAMP.MAILMGR.userid.nickname, where userid is your own user ID
and nickname is the nickname that you want to use. With names structured
in this way, users can each have their own set of nicknames.

The type of queue that the program creates depends on how you fill in the
fields of the Create Nickname panel:
v If you specify only a user name, or the queue manager name is the same

as that of the queue manager to which the Mail Manager is connected,
the program creates an alias queue.

v If you specify both a user name and a queue manager name (and the
queue manager is not the one to which the Mail Manager is connected),
the program creates a local definition of a remote queue. The program
does not check the existence of the queue to which this definition
resolves, or even that the remote queue manager exists.

For example, if your own user ID is SMITHK and you create a nickname
called MARY for user JONESM (who uses the remote queue manager
QM12), the nickname program creates a local definition of a remote queue
named CSQ4SAMP.MAILMGR.SMITHK.MARY. This definition resolves to

Mail Manager sample

398 MQSeries Application Programming Guide

Mary’s mail queue, which is CSQ4SAMP.MAILMGR.JONESM at queue
manager QM12. If you are using queue manager QM12 yourself, the
program instead creates an alias queue of the same name
(CSQ4SAMP.MAILMGR.SMITHK.MARY).

The C version of the TSO application makes greater use of ISPF’s
message-handling capabilities than does the COBOL version. You may notice that
different error messages are displayed by the C and COBOL versions.

Design of the sample
The following sections describe each of the programs that comprise the Mail
Manager sample application. The relationships between the programs and the
panels that the application uses is shown in Figure 44 for the TSO version, and
Figure 45 on page 400 for the CICS Transaction Server for OS/390 version.

Send mail

CSQ4TVD4

Nickname

CSQ4TVD5

Get mail

CSQ4TVD2

Mail

awaiting

CSQ4VDP2

Create

nickname

CSQ4VDP5

Menu

CSQ4TVD1

Main menu

CSQ4VDP1

CSQ4RVD1

KEY

Program module

Panel

Received

mail

CSQ4VDP3

Send mail

CSQ4VDP4

Figure 44. Programs and panels for the TSO versions of the Mail Manager. This figure shows the names for the
COBOL version.

Mail Manager sample

Chapter 33. Sample programs for MQSeries for OS/390 399

Menu program
In the TSO environment, the menu program is invoked by the CLIST. In the CICS
environment, the program is invoked by transaction MAIL.

The menu program is the initial program in the suite. It displays the menu and
invokes the other programs when they are selected from the menu.

The program first obtains the user’s ID:
v In the CICS version of the program, if the user has signed on to CICS, the user

ID is obtained by using the CICS command ASSIGN USERID. If the user has not
signed on, the program displays the sign-on panel (CSQ4VD0) to prompt the
user to enter a user ID. There is no security processing within this program—the
user can give any user ID.

v In the TSO version, the user’s ID is obtained from TSO in the CLIST. It is passed
to the menu program as a variable in the ISPF shared pool.

After the program has obtained the user ID, it checks to ensure that the user has a
mail queue (CSQ4SAMP.MAILMGR.userid). If a mail queue does not exist, the
program creates one by putting a message on the system-command input queue.

Send mail

CSQ4CVD4

Nickname

CSQ4CVD5

Get mail

CSQ4CVD2

Mail

awaiting

Mail - VD2

Menu

CSQ4CVD1 Main menu

Mail - VD1

MAIL

KEY

Program module

Panel

Received

mail

Mail - VD3

Display

message

CSQ4CVD3

Get user ID

Mail - VD0

Create

nickname

Mail - VD5

Send mail

Mail - VD4

Figure 45. Programs and panels for the CICS version of the Mail Manager

Mail Manager sample

400 MQSeries Application Programming Guide

The message contains the MQSeries for OS/390 command DEFINE QLOCAL. The
object definition that this command uses sets the maximum depth of the queue to
9999 messages.

The program also creates a temporary dynamic queue to handle replies from the
system-command input queue. To do this, the program uses the MQOPEN call,
specifying the SYSTEM.DEFAULT.MODEL.QUEUE as the template for the dynamic
queue. The queue manager creates the temporary dynamic queue with a name that
has the prefix CSQ4SAMP; the remainder of the name is generated by the queue
manager.

The program then opens the user’s mail queue and finds the number of messages
on the queue by inquiring about the current depth of the queue. To do this, the
program uses the MQINQ call, specifying the MQIA_CURRENT_Q_DEPTH
selector.

The program then performs a loop that displays the menu and processes the
selection that the user makes. The loop is stopped when the user presses the PF3
key. When a valid selection is made, the appropriate program is started; otherwise
an error message is displayed.

Get-mail and display-message programs
In the TSO versions of the application, the get-mail and display-message functions
are performed by the same program. In the CICS version of the application, these
functions are performed by separate programs.

The Mail Awaiting panel (see Figure 46 for an example) shows all the messages
that are on the user’s mail queue. To create this list, the program uses the MQGET
call to browse all the messages on the queue, saving information about each one.
In addition to the information displayed, the program records the MsgId and
CorrelId of each message.

From the Mail Awaiting panel the user can select one message and display the
contents of the message (see Figure 47 on page 402 for an example). The program

--------------------- MQSeries for OS/390 Sample Programs ------- ROW 16 OF 29
COMMAND ==> Scroll ===> PAGE

USERID - NTSFV02
Mail Manager System QMGR - VC4

Mail Awaiting

Msg Mail Date Time
No From Sent Sent

16
16 Deleted
17 JOHNJ 01/06/1993 12:52:02
18 JOHNJ 01/06/1993 12:52:02
19 JOHNJ 01/06/1993 12:52:03
20 JOHNJ 01/06/1993 12:52:03
21 JOHNJ 01/06/1993 12:52:03
22 JOHNJ 01/06/1993 12:52:04
23 JOHNJ 01/06/1993 12:52:04
24 JOHNJ 01/06/1993 12:52:04
25 JOHNJ 01/06/1993 12:52:05
26 JOHNJ 01/06/1993 12:52:05
27 JOHNJ 01/06/1993 12:52:05
28 JOHNJ 01/06/1993 12:52:06
29 JOHNJ 01/06/1993 12:52:06

Figure 46. Example of a panel showing a list of waiting messages

Mail Manager sample

Chapter 33. Sample programs for MQSeries for OS/390 401

uses the MQGET call to remove this message from the queue, using the MsgId and
CorrelId that the program noted when it browsed all the messages. This MQGET
call is performed using the MQGMO_SYNCPOINT option. The program displays
the contents of the message, then declares a syncpoint: this commits the MQGET
call, so the message now no longer exists.

An obvious extension to the function provided by the Mail Manager is to give the
user the option to leave the message on the queue after viewing its contents. To do
this, you would have to back out the MQGET call that removes the message from
the queue, after displaying the message.

Send-mail program
When the user has completed the Send Mail panel, the send-mail program puts the
message on the receiver’s mail queue. To do this, the program uses the MQPUT1
call. The destination of the message depends on how the user has filled the fields
in the Send Mail panel:
v If the user has specified only a user name, the program first assumes that the

name is a nickname, and sends the message to the object defined by that name.
If there is no such nickname, the program attempts to send the message to a
local queue of that name.

v If the user has specified both a user name and a queue manager name, the
program sends the message to the mail queue that is defined by those two
names.

The program does not accept blank messages, and it removes leading blanks from
each line of the message text.

If the MQPUT1 call is successful, the program displays a message that shows the
user name and queue manager name to which the message was put. If the call is
unsuccessful, the program checks specifically for the reason codes that indicate the
queue or the queue manager do not exist; these are
MQRC_UNKNOWN_OBJECT_NAME and MQRC_UNKNOWN_OBJECT_Q_MGR.

--------------------- MQSeries for OS/390 Sample Programs ---------------------
COMMAND ==>

USERID - NTSFV02
Mail Manager System QMGR - VC4

Received Mail

Mail sent from JOHNJ at VC4

Sent on the 01/06/1993 at 12:52:02
------------------------------------ Message -------------------------------
| HELLO FROM JOHNJ |
| |
| |
| |
| |
| |
| |
| |
| |
| |
'--'

Figure 47. Example of a panel showing the contents of a message

Mail Manager sample

402 MQSeries Application Programming Guide

The program displays its own error message for each of these errors; for other
errors, the program displays the completion and reason codes returned by the call.

Nickname program
When the user defines a nickname, the program creates a queue that has the
nickname as part of its name. The program does this by putting a message on the
system-command input queue. The message contains the MQSeries for OS/390
command DEFINE QALIAS or DEFINE QREMOTE. The type of queue that the
program creates depends on how the user has filled the fields of the Create
Nickname panel:
v If the user has specified only a user name, or the queue manager name is the

same as that of the queue manager to which the Mail Manager is connected, the
program creates an alias queue.

v If the user has specified both a user name and a queue manager name, (and the
queue manager is not the one to which the Mail Manager is connected), the
program creates a local definition of a remote queue. The program does not
check the existence of the queue to which this definition resolves, or even that
the remote queue manager exists.

The program also creates a temporary dynamic queue to handle replies from the
system-command input queue.

If the queue manager cannot create the nickname queue for a reason that the
program expects (for example, the queue already exists), the program displays its
own error message. If the queue manager cannot create the queue for a reason that
the program does not expect, the program displays up to two of the error
messages that are returned to the program by the command server.

Note: For each nickname, the nickname program creates only an alias queue or a
local definition of a remote queue. The local queues to which these queue
names resolve are created only when the user ID that is contained in the
nickname is used to start the Mail Manager application.

The Credit Check sample
The Credit Check sample application is a suite of programs that demonstrates how
to use many of the features provided by MQSeries for OS/390. It shows how the
many component programs of an application can pass messages to each other
using message queuing techniques.

The sample can run as a stand-alone CICS application. However, to demonstrate
how to design a message queuing application that uses the facilities provided by
both the CICS and IMS environments, one module is also supplied as an IMS
batch message processing program. This extension to the sample is described in
“The IMS extension to the Credit Check sample” on page 414.

You can also run the sample on more than one queue manager, and send messages
between each instance of the application. To do this, see “The Credit Check sample
with multiple queue managers” on page 414.

The CICS programs are delivered in C and COBOL. The single IMS program is
delivered only in C. The supplied data sets are shown in Table 42 on page 382 and
Table 43 on page 384.

Mail Manager sample

Chapter 33. Sample programs for MQSeries for OS/390 403

The application demonstrates a method of assessing the risk when bank customers
ask for loans. The application shows how a bank could work in two ways to
process loan requests:
v When dealing directly with a customer, bank staff want immediate access to

account and credit-risk information.
v When dealing with written applications, bank staff can submit a series of

requests for account and credit-risk information, and deal with the replies at a
later time.

The financial and security details in the application have been kept simple so that
the message queuing techniques are clear.

Preparing and running the Credit Check sample
To prepare and run the Credit Check sample, perform the following steps:
1. Create the VSAM data set that holds information about some example

accounts. Do this by editing and running the JCL supplied in data set
CSQ4FILE.

2. Perform the steps in “Preparing the sample applications for the CICS
environment” on page 380. (The additional steps you must perform if you want
to use the IMS extension to the sample are described in “The IMS extension to
the Credit Check sample” on page 414.)

3. Start the CKTI trigger monitor (supplied with MQSeries for OS/390) against
queue CSQ4SAMP.INITIATION.QUEUE, using the CICS transaction CKQC.

4. To start the application, start your CICS system and use the transaction MVB1.
5. Select Immediate or Batch inquiry from the first panel.

The immediate and batch inquiry panels are similar—Figure 48 shows the
Immediate Inquiry panel.

6. Enter an account number and loan amount in the appropriate fields. See
“Entering information in the inquiry panels” on page 405 for guidance on what
information you should enter in these fields.

CSQ4VB2 MQSeries for OS/390 Sample Programs

Credit Check - Immediate Inquiry

Specify details of the request, then press Enter.
Name ____________________
Social security number ___ __ ____
Bank account name . . ______________________________
Account number __________
Amount requested . . . 012345

Response from CHECKING ACCOUNT for name : ____________________
Account information not found
Credit worthiness index - NOT KNOWN

..

..

..

..

..

..

..

..

..
MESSAGE LINE
F1=Help F3=Exit F5=Make another inquiry

Figure 48. Immediate Inquiry panel for the Credit Check sample application

Credit Check sample

404 MQSeries Application Programming Guide

Entering information in the inquiry panels
The Credit Check sample application checks that the data you enter in the
‘Amount requested’ field of the inquiry panels is in the form of integers.

If you enter one of the following account numbers, the application finds the
appropriate account name, average account balance, and credit worthiness index in
the VSAM data set CSQ4BAQ:

2222222222
3111234329
3256478962
3333333333
3501676212
3696879656
4444444444
5555555555
6666666666
7777777777

You can enter any, or no, information in the other fields. The application retains
any information that you do enter and returns the same information in the reports
that it generates.

Design of the sample
This section describes the design of each of the programs that comprise the Credit
Check sample application. For a discussion of some of the techniques that were
considered during the design of the application, see “Design considerations” on
page 412.

Figure 49 on page 406 shows the programs that make up the application, and also
the queues that these programs serve. In this figure, the prefix CSQ4SAMP has
been omitted from all the queue names to make the figure easier to understand.

Credit Check sample

Chapter 33. Sample programs for MQSeries for OS/390 405

CSQ4CVB5

CSQ4CVB5

CSQ4CVB5

CSQ4CVB2

Credit

Application

Manager

CSQ4CVB3

B5.MESSAGES

B6.MESSAGES

B7.MESSAGES

B2.REPLY.n

Dynamic QueueB2.RESPONSE

B3.MESSAGESB4.MESSAGES

B2.INQUIRY

B2.WAITING.n

Queue

Program

module

Symbols:

CSQ4CVB4

CSQ4CVB1

User

Interface

MVB1

Figure 49. Programs and queues for the Credit Check sample application (COBOL programs only). In the sample
application, the queue names shown in this figure have the prefix ‘CSQ4SAMP.’

Credit Check sample

406 MQSeries Application Programming Guide

User-interface program (CSQ4CVB1)
When you start the conversational-mode CICS transaction MVB1, this starts the
user-interface program for the application. This program puts inquiry messages on
queue CSQ4SAMP.B2.INQUIRY and gets replies to those inquiries from a reply-to
queue that it specifies when it makes the inquiry. From the user interface you can
submit either immediate or batch inquiries:
v For immediate inquiries, the program creates a temporary dynamic queue that it

uses as a reply-to queue. This means that each inquiry has its own reply-to
queue.

v For batch inquiries, the user-interface program gets replies from the queue
CSQ4SAMP.B2.RESPONSE. For simplicity, the program gets replies for all its
inquiries from this one reply-to queue. It is easy to see that a bank might want
to use a separate reply-to queue for each user of MVB1, so that they could each
see replies to only those inquiries they had initiated.

Important differences between the properties of messages used in the application
when in batch and immediate mode are:
v For batch working, the messages have a low priority, so they are processed after

any loan requests that are entered in immediate mode. Also, the messages are
persistent, so they are recovered if the application or the queue manager has to
restart.

v For immediate working, the messages have a high priority, so they are processed
before any loan requests that are entered in batch mode. Also, messages are not
persistent so they are discarded if the application or the queue manager has to
restart.

However, in all cases, the properties of loan request messages are propagated
throughout the application. So, for example, all messages that result from a
high-priority request will also have a high priority.

Credit application manager (CSQ4CVB2)
The Credit Application Manager (CAM) program performs most of the processing
for the Credit Check application.

The CAM is started by the CKTI trigger monitor (supplied with MQSeries for
OS/390) when a trigger event occurs on either queue CSQ4SAMP.B2.INQUIRY or
queue CSQ4SAMP.B2.REPLY.n, where n is an integer that identifies one of a set of
reply queues. The trigger message contains data that includes the name of the
queue on which the trigger event occurred.

The CAM uses queues with names of the form CSQ4SAMP.B2.WAITING.n to store
information about inquiries it is processing. The queues are named so that they are
each paired with a reply-to queue; for example, queue CSQ4SAMP.B2.WAITING.3
contains the input data for a particular inquiry, and queue CSQ4SAMP.B2.REPLY.3
contains a set of reply messages (from programs that query databases) all relating
to that same inquiry. To understand the reasons behind this design, see “Separate
inquiry and reply queues in the CAM” on page 412.

Start-up logic: If the trigger event occurs on queue CSQ4SAMP.B2.INQUIRY, the
CAM opens the queue for shared access. It then tries to open each reply queue
until a free one is found. If it cannot find a free reply queue, the CAM logs the fact
and terminates normally.

If the trigger event occurs on queue CSQ4SAMP.B2.REPLY.n, the CAM opens the
queue for exclusive access. If the return code reports that the object is already in

Credit Check sample

Chapter 33. Sample programs for MQSeries for OS/390 407

use, the CAM terminates normally. If any other error occurs, the CAM logs the
error and terminates. The CAM opens the corresponding waiting queue and the
inquiry queue, then starts getting and processing messages. From the waiting
queue, the CAM recovers details of partially-completed inquiries.

For the sake of simplicity in this sample, the names of the queues used are held in
the program. In a business environment, the queue names would probably be held
in a file accessed by the program.

Getting a message: The CAM first attempts to get a message from the inquiry
queue using the MQGET call with the MQGMO_SET_SIGNAL option. If a message
is available immediately, the message is processed; if no message is available, a
signal is set.

The CAM then attempts to get a message from the reply queue, again using the
MQGET call with the same option. If a message is available immediately, the
message is processed; otherwise a signal is set.

When both signals are set, the program waits until one of the signals is posted. If a
signal is posted to indicate a message is available, the message is retrieved and
processed. If the signal expires or the queue manager is terminating, the program
terminates.

Processing the message retrieved: A message retrieved by the CAM may be one
of four types:
v An inquiry message
v A reply message
v A propagation message
v An unexpected or unwanted message

The CAM processes these messages as follows:

Inquiry message
Inquiry messages come from the user-interface program. It creates an
inquiry message for each loan request.

For all loan requests, the CAM requests the average balance of the
customer’s checking account. It does this by putting a request message on
alias queue CSQ4SAMP.B2.OUTPUT.ALIAS. This queue name resolves to
queue CSQ4SAMP.B3.MESSAGES, which is processed by the
checking-account program, CSQ4CVB3. When the CAM puts a message on
this alias queue, it specifies the appropriate CSQ4SAMP.B2.REPLY.n queue
for the reply-to queue. An alias queue is used here so that program
CSQ4CVB3 can easily be replaced by another program that processes a
base queue of a different name. To do this, you simply redefine the alias
queue so that its name resolves to the new queue. Also, you could assign
differing access authorities to the alias queue and to the base queue.

If a user requests a loan that is larger than 10000 units, the CAM initiates
checks on other databases as well. It does this by putting a request
message on queue CSQ4SAMP.B4.MESSAGES, which is processed by the
distribution program, CSQ4CVB4. The process serving this queue
propagates the message to queues served by programs that have access to
other records such as credit card history, savings accounts, and mortgage
payments. The data from these programs is returned to the reply-to queue
specified in the put operation. Additionally, a propagation message is sent
to the reply-to queue by this program to specify how many propagation
messages have been sent.

Credit Check sample

408 MQSeries Application Programming Guide

In a business environment, the distribution program would probably
reformat the data provided to match the format required by each of the
other types of bank account.

Any of the queues referred to here can be on a remote system.

For each inquiry message, the CAM initiates an entry in the
memory-resident Inquiry Record Table (IRT). This record contains:
v The MsgId of the inquiry message
v In the ReplyExp field, the number of responses expected (equal to the

number of messages sent)
v In the ReplyRec field, the number of replies received (zero at this stage)
v In the PropsOut field, an indication of whether a propagation message is

expected

The CAM copies the inquiry message on to the waiting queue with:
v Priority set to 3
v CorrelId set to the MsgId of the inquiry message
v The other message-descriptor fields set to those of the inquiry message

Propagation message
A propagation message contains the number of queues to which the
distribution program has forwarded the inquiry. The message is processed
as follows:
1. Add to the ReplyExp field of the appropriate record in the IRT the

number of messages sent. This information is in the message.
2. Increment by 1 the ReplyRec field of the record in the IRT.
3. Decrement by 1 the PropsOut field of the record in the IRT.
4. Copy the message on to the waiting queue. The CAM sets the Priority

to 2 and the other fields of the message descriptor to those of the
propagation message.

Reply message
A reply message contains the response to one of the requests to the
checking-account program or to one of the agency-query programs. Reply
messages are processed as follows:
1. Increment by 1 the ReplyRec field of the record in the IRT.
2. Copy the message on to the waiting queue with Priority set to 1 and

the other fields of the message descriptor set to those of the reply
message.

3. If ReplyRec = ReplyExp, and PropsOut = 0, set the MsgComplete flag.

Other messages
The application does not expect other messages. However, the application
might receive messages broadcast by the system, or reply messages with
unknown CorrelIds.

The CAM puts these messages on queue CSQ4SAMP.DEAD.QUEUE,
where they can be examined. If this put operation fails, the message is lost
and the program continues. For more information on the design of this
part of the program, see “How the sample handles unexpected messages”
on page 412.

Sending an answer: When the CAM has received all the replies it is expecting for
an inquiry, it processes the replies and creates a single response message. It
consolidates into one message all the data from all reply messages that have the

Credit Check sample

Chapter 33. Sample programs for MQSeries for OS/390 409

same CorrelId. This response is put on the reply-to queue specified in the original
loan request. The response message is put within the same unit of work that
contains the retrieval of the final reply message. This is to simplify recovery by
ensuring that there is never a completed message on queue
CSQ4SAMP.B2.WAITING.n.

Recovery of partially-completed inquiries: The CAM copies on to queue
CSQ4SAMP.B2.WAITING.n all the messages that it receives. It sets the fields of the
message descriptor like this:
v Priority is determined by the type of message:

– For request messages, priority = 3
– For datagrams, priority = 2
– For reply messages, priority = 1

v CorrelId is set to the MsgId of the loan request message
v Other MQMD fields are copied from those of the received message

When an inquiry has been completed, the messages for a specific inquiry are
removed from the waiting queue during answer processing. Therefore, at any time,
the waiting queue contains all messages relevant to in-progress inquiries. These
messages are used to recover details of in-progress inquiries if the program has to
restart. The different priorities are set so that inquiry messages are recovered before
propagations or reply messages.

Checking-account program (CSQ4CVB3)
The checking-account program is started by a trigger event on queue
CSQ4SAMP.B3.MESSAGES. After it has opened the queue, this program gets a
message from the queue using the MQGET call with the wait option, and with the
wait interval set to 30 seconds.

The program searches VSAM data set CSQ4BAQ for the account number in the
loan request message. It retrieves the corresponding account name, average
balance, and credit worthiness index, or notes that the account number is not in
the data set.

The program then puts a reply message (using the MQPUT1 call) on the reply-to
queue named in the loan request message. For this reply message, the program:
v Copies the CorrelId of the loan request message
v Uses the MQPMO_PASS_IDENTITY_CONTEXT option

The program continues to get messages from the queue until the wait interval
expires.

Distribution program (CSQ4CVB4)
The distribution program is started by a trigger event on queue
CSQ4SAMP.B4.MESSAGES. To simulate the distribution of the loan request to
other agencies that have access to records such as credit card history, savings
accounts, and mortgage payments, the program puts a copy of the same message
on all the queues in the namelist CSQ4SAMP.B4.NAMELIST. There are three of
these queues, with names of the form CSQ4SAMP.Bn.MESSAGES, where n is 5, 6,
or 7. In a business application, the agencies could be at separate locations, so these
queues could be remote queues. If you want to modify the sample application to
show this, see “The Credit Check sample with multiple queue managers” on
page 414.

The distribution program performs the following steps:

Credit Check sample

410 MQSeries Application Programming Guide

1. From the namelist, gets the names of the queues the program is to use. The
program does this by using the MQINQ call to inquire about the attributes of
the namelist object.

2. Opens these queues and also CSQ4SAMP.B4.MESSAGES.
3. Performs the following loop until there are no more messages on queue

CSQ4SAMP.B4.MESSAGES:
a. Get a message using the MQGET call with the wait option, and with the

wait interval set to 30 seconds.
b. Put a message on each queue listed in the namelist, specifying the name of

the appropriate CSQ4SAMP.B2.REPLY.n queue for the reply-to queue. The
program copies the CorrelId of the loan request message to these copy
messages, and it uses the MQPMO_PASS_IDENTITY_CONTEXT option on
the MQPUT call.

c. Send a datagram message to queue CSQ4SAMP.B2.REPLY.n to show how
many messages it has successfully put.

d. Declare a syncpoint.

Agency-query program (CSQ4CVB5/CSQ4CCB5)
The agency-query program is supplied as both a COBOL program and a C
program. Both programs have the same design. This shows that programs of
different types can easily coexist within an MQSeries application, and that the
program modules that comprise such an application can easily be replaced.

An instance of the program is started by a trigger event on any of these queues:
v For the COBOL program (CSQ4CVB5):

– CSQ4SAMP.B5.MESSAGES
– CSQ4SAMP.B6.MESSAGES
– CSQ4SAMP.B7.MESSAGES

v For the C program (CSQ4CCB5), queue CSQ4SAMP.B8.MESSAGES

Note: If you want to use the C program, you must alter the definition of the
namelist CSQ4SAMP.B4.NAMELIST to replace the queue
CSQ4SAMP.B7.MESSAGES with CSQ4SAMP.B8.MESSAGES. To do this, you
can use any one of:
v The MQSeries for OS/390 operations and control panels
v The ALTER NAMELIST command (described in the MQSeries Command

Reference manual)
v The CSQUTIL utility (described in the MQSeries for OS/390 System

Management Guide)

After it has opened the appropriate queue, this program gets a message from the
queue using the MQGET call with the wait option, and with the wait interval set
to 30 seconds.

The program simulates the search of an agency’s database by searching the VSAM
data set CSQ4BAQ for the account number that was passed in the loan request
message. It then builds a reply that includes the name of the queue it is serving
and a credit-worthiness index. To simplify the processing, the credit-worthiness
index is selected at random.

When putting the reply message, the program uses the MQPUT1 call and:
v Copies the CorrelId of the loan request message
v Uses the MQPMO_PASS_IDENTITY_CONTEXT option

Credit Check sample

Chapter 33. Sample programs for MQSeries for OS/390 411

The program sends the reply message to the reply-to queue named in the loan
request message. (The name of the queue manager that owns the reply-to queue is
also specified in the loan request message.)

Design considerations
This section discusses:
v Why the CAM uses separate inquiry and reply queues
v How the sample handles errors
v How the sample handles unexpected messages
v How the sample uses syncpoints
v How the sample uses message context information

Separate inquiry and reply queues in the CAM
The application could use a single queue for both inquiries and replies, but it was
designed to use separate queues for the following reasons:
v When the program is handling the maximum number of inquiries, further

inquiries can be left on the queue. If a single queue were being used, these
would have to be taken off the queue and stored elsewhere.

v Other instances of the CAM could be started automatically to service the same
inquiry queue if message traffic was high enough to warrant it. But the program
must track in-progress inquiries, and to do this it must get back all replies to
inquiries it has initiated. If only one queue were used, the program would have
to browse the messages to see if they were for this program or for another. This
would make the operation much less efficient.
The application can support multiple CAMs and can recover in-progress
inquiries effectively by using paired reply-to and waiting queues.

v The program can wait on multiple queues effectively by using signaling.

How the sample handles errors
The user-interface program handles errors very simply by reporting them directly
to the user. The other programs do not have user interfaces, so they have to handle
errors in other ways. Also, in many situations (for example, if an MQGET call fails)
these other programs do not know the identity of the user of the application.

The other programs put error messages on a CICS temporary storage queue called
CSQ4SAMP. You can browse this queue using the CICS-supplied transaction CEBR.
The programs also write error messages to the CICS CSML log.

How the sample handles unexpected messages
When you design a message-queuing application, you must decide how to handle
messages that arrive on a queue unexpectedly. The two basic choices are:
v The application must do no more work until it has processed the unexpected

message. This probably means that the application must notify an operator,
terminate itself, and ensure that it is not restarted automatically (it can do this
by setting triggering off). This choice means that all processing for the
application can be halted by a single unexpected message, and the intervention
of an operator is required to restart the application.

v The application must remove the message from the queue it is serving, put the
message in another location, and continue processing. The best place to put this
message is on the system dead-letter queue.

If you choose the second option:
v An operator, or another program, should examine the messages that are put on

the dead-letter queue to find out where the messages are coming from.

Credit Check sample

412 MQSeries Application Programming Guide

v An unexpected message is lost if it cannot be put on the dead-letter queue.
v An long unexpected message is truncated if it is longer than the limit for

messages on the dead-letter queue, or longer than the buffer size in the program.

To ensure that the application smoothly handles all inquiries with minimal impact
from outside activities, the Credit Check sample application uses the second
option. To allow you to keep the sample separate from other applications that use
the same queue manager, the Credit Check sample does not use the system
dead-letter queue: instead, it uses its own dead-letter queue. This queue is named
CSQ4SAMP.DEAD.QUEUE. The sample truncates any messages that are longer
than the buffer area provided for the sample programs. You can use the Browse
sample application to browse messages on this queue, or use the Print Message
sample application to print the messages together with their message descriptors.

However, if you extend the sample to run across more than one queue manager,
unexpected messages, or messages that cannot be delivered, could be put on the
system dead-letter queue by the queue manager.

How the sample uses syncpoints
The programs in the Credit Check sample application declare syncpoints to ensure
that:
v Only one reply message is sent in response to each expected message
v Multiple copies of unexpected messages are never put on the sample’s

dead-letter queue
v The CAM can recover the state of all partially-completed inquiries by getting

persistent messages from its waiting queue

To achieve this, a single unit of work is used to cover the getting of a message, the
processing of that message, and any subsequent put operations.

How the sample uses message context information
When the user-interface program (CSQ4CVB1) sends messages, it uses the
MQPMO_DEFAULT_CONTEXT option. This means that the queue manager
generates both identity and origin context information. The queue manager gets
this information from the transaction that started the program (MVB1) and from
the user ID that started the transaction.

When the CAM sends inquiry messages, it uses the
MQPMO_PASS_IDENTITY_CONTEXT option. This means that the identity context
information of the message being put is copied from the identity context of the
original inquiry message. With this option, origin context information is generated
by the queue manager.

When the CAM sends reply messages, it uses the
MQPMO_ALTERNATE_USER_AUTHORITY option. This causes the queue
manager to use an alternate user ID for its security check when the CAM opens a
reply-to queue. The CAM uses the user ID of the submitter of the original inquiry
message. This means that users are allowed to see replies to only those inquiries
they have originated. The alternate user ID is obtained from the identity context
information in the message descriptor of the original inquiry message.

When the query programs (CSQ4CVB3/4/5) send reply messages, they use the
MQPMO_PASS_IDENTITY_CONTEXT option. This means that the identity context

Credit Check sample

Chapter 33. Sample programs for MQSeries for OS/390 413

information of the message being put is copied from the identity context of the
original inquiry message. With this option, origin context information is generated
by the queue manager.

Note: The user ID associated with the MVB3/4/5 transactions requires access to
the B2.REPLY.n queues. These user IDs may not be the same as those
associated with the request being processed. To get around this possible
security exposure, the query programs could use the
MQPMO_ALTERNATE_USER_AUTHORITY option when putting their
replies. This would mean that each individual user of MVB1 needs authority
to open the B2.REPLY.n queues.

Use of message and correlation identifiers in the CAM
The application has to monitor the progress of all the “live” inquiries it is
processing at any one time. To do this it uses the unique message identifier of each
loan request message to associate all the information it has about each inquiry.

The CAM copies the MsgId of the inquiry message into the CorrelId of all the
request messages it sends for that inquiry. The other programs in the sample
(CSQ4CVB3 - 5) copy the CorrelId of each message they receive into the CorrelId
of their reply message.

The Credit Check sample with multiple queue managers
You can use the Credit Check sample application to demonstrate distributed
queuing by installing the sample on two queue managers and CICS systems (with
each queue manager connected to a different CICS system). When the sample
program is installed, and the trigger monitor (CKTI) is running on each system,
you need to:
1. Set up the communication link between the two queue managers. For

information on how to do this, see the MQSeries Intercommunication book.
2. On one queue manager, create a local definition for each of the remote queues

(on the other queue manager) that you want to use. These queues can be any
of CSQ4SAMP.Bn.MESSAGES, where n is 3, 5, 6, or 7. (These are the queues
that are served by the checking-account program and the agency-query
program.) For information on how to do this, see the MQSeries Command
Reference manual.

3. Change the definition of the namelist (CSQ4SAMP.B4.NAMELIST) so that it
contains the names of the remote queues you choose to use. For information on
how to do this, see the MQSeries Command Reference manual.

The IMS extension to the Credit Check sample
A version of the checking-account program is supplied as an IMS batch message
processing (BMP) program. It is written in the C language.

The program performs the same function as the CICS version, except that to obtain
the account information, the program reads an IMS database instead of a VSAM
file. If you replace the CICS version of the checking-account program with the IMS
version, you see no difference in the method of using the application.

To prepare and run the IMS version you must:
1. Follow the steps in “Preparing and running the Credit Check sample” on

page 404.
2. Follow the steps in “Preparing the sample application for the IMS

environment” on page 383.

Credit Check sample

414 MQSeries Application Programming Guide

|
|
|
|
|

3. Alter the definition of the alias queue CSQ4SAMP.B2.OUTPUT.ALIAS to
resolve to queue CSQ4SAMP.B3.IMS.MESSAGES (instead of
CSQ4SAMP.B3.MESSAGES). To do this, you can use any one of:
v The MQSeries for OS/390 operations and control panels
v The ALTER QALIAS command (described in the MQSeries Command Reference

manual)

Another way of using the IMS checking-account program is to make it serve one of
the queues that receives messages from the distribution program. In the delivered
form of the Credit Check sample application, there are three of these queues
(B5/6/7.MESSAGES), all served by the agency-query program. This program
searches a VSAM data set. To compare the use of the VSAM data set and the IMS
database, you could make the IMS checking-account program serve one of these
queues instead. To do this, you must alter the definition of the namelist
CSQ4SAMP.B4.NAMELIST to replace one of the CSQ4SAMP.Bn.MESSAGES queues
with the CSQ4SAMP.B3.IMS.MESSAGES queue. You can use any one of:
v The MQSeries for OS/390 operations and control panels
v The ALTER NAMELIST command (described in the MQSeries Command Reference

manual)

You can then run the sample from CICS transaction MVB1 as usual. The user sees
no difference in operation or response. The IMS BMP stops either after receiving a
stop message or after being inactive for five minutes.

Design of the IMS checking-account program (CSQ4ICB3)
This program runs as a BMP. You must start the program using its JCL before any
MQSeries messages are sent to it.

The program searches an IMS database for the account number in the loan request
messages. It retrieves the corresponding account name, average balance, and credit
worthiness index.

The program sends the results of the database search to the reply-to queue named
in the MQSeries message being processed. The message returned appends the
account type and the results of the search to the message received so that the
transaction building the response can confirm that the correct query is being
processed. The message is in the form of three 79-character groups, as follows:
'Response from CHECKING ACCOUNT for name : JONES J B'
' Opened 870530, 3-month average balance = 000012.57'
' Credit worthiness index - BBB'

When running as a message-oriented BMP, the program drains the IMS message
queue, then reads messages from the MQSeries for OS/390 queue and processes
them. No information is received from the IMS message queue. The program
reconnects to the queue manager after each checkpoint because the handles have
been closed.

When running in a batch-oriented BMP, the program continues to be connected to
the queue manager after each checkpoint because the handles are not closed.

The Message Handler sample
The Message Handler sample TSO application allows you to browse, forward, and
delete messages on a queue. The sample is available in C and COBOL.

Credit Check sample

Chapter 33. Sample programs for MQSeries for OS/390 415

Preparing and running the sample
Follow these steps:
1. Prepare the sample as described in “Preparing sample applications for the TSO

environment” on page 378.
2. Tailor the CLIST (CSQ4RCH1) provided for the sample to define: - The location

of the panels - The location of the message file - The location of the load
modules

CLIST CSQ4RCH1 may be used to run both the C and the COBOL version of the
sample. The supplied version of CSQ4RCH1 runs the C version, and contains
instructions on the tailoring necessary for the COBOL version.

Notes:

1. There are no sample queue definitions provided with the sample.
2. VS COBOL II does not support multitasking with ISPF, so you should not use

the Message Handler sample application on both sides of a split screen. If you
do, the results are unpredictable.

Using the sample
Having installed the sample and invoked it from the tailored CLIST CSQ4RCH1,
the screen shown in Figure 50 is displayed.

Enter the Queue Manager and Queue name to be viewed (case sensitive) and the
message list screen is displayed (see Figure 51 on page 417).

----------------------- MQSeries for OS/390 -- Samples ------------------------
COMMAND ===>

User Id : JOHNJ

Enter information. Press ENTER :

Queue Manager Name : __ :

Queue Name : __ :

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 50. Initial screen for Message Handler sample

Message Handler sample

416 MQSeries Application Programming Guide

This screen shows the first 99 messages on the queue and, for each, shows the
following fields:

Msg No
Message number

Put Date MM/DD/YYYY
Date the message was put on the queue (GMT)

Put Time HH:MM:SS
Time the message was put on the queue (GMT)

Format Name
MQMD.Format field

User Identifier
MQMD.UserIdentifier field

Put Application Type
MQMD.PutApplType field

Put Application Name
MQMD.PutApplName field

The total number of messages on the queue is also displayed.

From this screen a message can be chosen, by number not by cursor position, and
then displayed. For an example, see Figure 52 on page 418.

----------------------- MQSeries for OS/390 -- Samples ------- Row 1 to 4 of 4
COMMAND ==>

Queue Manager : VM03 :
Queue : MQEI.IMS.BRIDGE.QUEUE :

Message number 01 of 04

Msg Put Date Put Time Format User Put Application
No MM/DD/YYYY HH:MM:SS Name Identifier Type Name
01 10/16/1998 13:51:19 MQIMS NTSFV02 00000002 NTSFV02A
02 10/16/1998 13:55:45 MQIMS JOHNJ 00000011 EDIT\CLASSES\BIN\PROGTS
03 10/16/1998 13:54:01 MQIMS NTSFV02 00000002 NTSFV02B
04 10/16/1998 13:57:22 MQIMS johnj 00000011 EDIT\CLASSES\BIN\PROGTS
******************************* Bottom of data ********************************

Figure 51. Message list screen for Message Handler sample

Message Handler sample

Chapter 33. Sample programs for MQSeries for OS/390 417

Once the message has been displayed it can be deleted, left on the queue, or
forwarded to another queue. The Forward to Q Mgr and Forward to Queue fields
are initialized with values from the MQMD, these can be changed prior to
forwarding the message.

The sample design will only allow messages with unique MsgId / CorrelId
combinations to be selected and displayed, this is because the message is retrieved
using the MsgId and CorrelId as the key. If the key is not unique the sample
cannot retrieve the chosen message with certainty.

Design of the sample
This section describes the design of each of the programs that comprise the
Message Handler sample application.

----------------------- MQSeries for OS/390 -- Samples ----- Row 1 to 35 of 35
COMMAND ==>

Queue Manager : VM03 :
Queue : MQEI.IMS.BRIDGE.QUEUE :
Forward to Q Mgr : VM03 :
Forward to Queue : QL.TEST.ISCRES1 :

Action : _ : (D)elete (F)orward

Message Content :

Message Descriptor
StrucId : ′MD ′
Version : 000000001
Report : 000000000
MsgType : 000000001
Expiry : -00000001
Feedback : 000000000
Encoding : 000000785
CodedCharSetId : 000000500
Format : ′MQIMS ′
Priority : 000000000
Persistence : 000000001
MsgId : ′C3E2D840E5D4F0F34040404040404040AF6B30F0A89B7605′X
CorrelId : ′00′X
BackoutCount : 000000000
ReplyToQ : ′QL.TEST.ISCRES1 ′
ReplyToQMgr : ′VM03 ′
UserIdentifier : ′NTSFV02 ′
AccountingToken :

′06F2F5F5F3F0F100′X
ApplIdentityData : ′ ′
PutApplType : 000000002
PutApplName : ′NTSFV02A ′
PutDate : ′19971016′
PutTime : ′13511903′
ApplOriginData : ′ ′

Message Buffer : 108 byte(s)
00000000 : C9C9 C840 0000 0001 0000 0054 0000 0311 ′IIH′
00000010 : 0000 0000 4040 4040 4040 4040 0000 0000 ′....′
00000020 : 4040 4040 4040 4040 4040 4040 4040 4040 ′ ′
00000030 : 4040 4040 4040 4040 4040 4040 4040 4040 ′ ′
00000040 : 0000 0000 0000 0000 0000 0000 0000 0000 ′................′
00000050 : 40F1 C300 0018 0000 C9C1 D7D4 C4C9 F2F8 ′ 1C.....IAPMDI28′
00000060 : 40C8 C5D3 D3D6 40E6 D6D9 D3C4 ′ HELLO WORLD ′
******************************* Bottom of data ********************************

Figure 52. Chosen message is displayed

Message Handler sample

418 MQSeries Application Programming Guide

Object validation program
This requests a valid queue and queue manager name. If you do not specify a
queue manager name, the default queue manager is used, if available. Only local
queues can be used; an MQINQ is issued to check the queue type and an error is
reported if the queue is not local. If the queue is not opened successfully, or the
MQGET call is inhibited on the queue, error messages are returned indicating the
CompCode and Reason return code.

Message list program
This displays a list of messages on a queue with information about them such as
the putdate, puttime and the message format. The maximum number of messages
stored in the list is 99. If there are more messages on the queue than this, the
current queue depth is also displayed. To choose a message for display, type the
message number into the entry field (the default is 01). If your entry is invalid, you
will receive an appropriate error message.

Message content program
This displays message content. The content is formatted and split into two parts:
1. the message descriptor
2. the message buffer

The message descriptor shows the contents of each field on a separate line.

The message buffer is formatted depending on its contents. If the buffer holds a
dead letter header (MQDLH) or a transmission queue header (MQXQH), these are
formatted and displayed before the buffer itself.

Before the buffer data is formatted, a title line shows the buffer length of the
message in bytes. The maximum buffer size is 32768 bytes, and any message
longer than this is truncated. The full size of the buffer is displayed along with a
message indicating that only the first 32768 bytes of the message are displayed.

The buffer data is formatted in two ways:
1. After the offset into the buffer is printed, the buffer data is displayed in HEX.
2. The buffer data is then displayed again as EBCDIC values. If any EBCDIC

value cannot be printed, it prints a ‘.’ instead.

You may enter ‘D’ for delete, or ‘F’ for forward into the action field. If you choose
to forward the message, the forward-to queue and queue manager name must be
filled in appropriately. The defaults for these fields are read from the message
descriptor ReplyToQ and ReplyToQMgr fields.

If you forward a message, any header block stored in the buffer is stripped. If the
message is forwarded successfully, it is removed from the original queue. If you
enter invalid actions, error messages are displayed.

An example help panel is also available called CSQ4CHP9.

Message Handler sample

Chapter 33. Sample programs for MQSeries for OS/390 419

Changes

420 MQSeries Application Programming Guide

Part 5. Appendixes

© Copyright IBM Corp. 1993, 2000 421

422 MQSeries Application Programming Guide

Appendix A. Language compilers and assemblers

Table 44 lists the language compilers and assemblers supported.

Table 44. Language compilers and assemblers

Platform Language Compiler/Assembler

MQSeries for AIX C++ IBM C Set++ for AIX, V3.1
IBM C++ compiler, V3.6.4 (for AIX V4.3)

C IBM C for AIX, V3.1.4
IBM C Set++ for AIX, V3.1 (C bindings only)
IBM C++ compiler, V3.6.4 (for AIX V4.3)

COBOL IBM COBOL Set for AIX, V1.1
Micro Focus COBOL Compiler for UNIX, V4.0

PL/I IBM PL/I Set for AIX, V1.1

MQSeries for AS/400 C++ IBM ILE C++ for AS/400 (program 5799-GDW)

C IBM ILE C for AS/400, V4R4M0

COBOL IBM ILE COBOL for AS/400, V4R4M0

RPG IBM ILE RPG for AS/400, V4R4M0

MQSeries for AT&T GIS UNIX C++ AT&T C++ language system for AT&T GIS UNIX

C AT&T GIS High Performance C, V1.0b

MQSeries for Compaq (DIGITAL)
OpenVMS

C++ DEC C++, V5.0 (VAX), V5.2 (AXP)

C DEC C, V5.0

COBOL DEC COBOL, V5.0 (VAX), V2.2 (AXP)

MQSeries for DIGITAL UNIX
(Compaq Tru64 UNIX)

C DEC C, V5.2 for DIGITAL UNIX

MQSeries for HP-UX C++ ANSI C++ for HP-UX V10 and V11
HP C++, V3.1 for HP-UX V10.x
IBM C++ compiler, V3.6

C ANSI C++ for HP-UX V10 and V11
C bundled compiler
C Softbench, V5.0
HP C++, V3.1 for HP-UX V10.x
HP-UX ANSI C compiler
IBM C compiler, V3.6

COBOL COBOL Softbench, V4.0
Micro Focus COBOL compiler, V4.0 for UNIX

MQSeries for OS/2 Warp C++ IBM C++ compiler, V3.6
IBM VisualAge for C++ for OS/2, V3.0

C Borland C++, V2 (C bindings only)
IBM C compiler, V3.6
IBM VisualAge for C++ for OS/2, V3.0 (C bindings only)

COBOL IBM VisualAge for COBOL for OS/2, V1.1
Micro Focus COBOL, V4.0

PL/I IBM PL/I for OS/2, V1.2
IBM VisualAge for PL/I for OS/2

© Copyright IBM Corp. 1993, 2000 423

|

||

||

||

|
|

|
|
||

Table 44. Language compilers and assemblers (continued)

Platform Language Compiler/Assembler

MQSeries for OS/390 Assembler Assembler H assembler
IBM High Level Assembler/MVS assembler

C++ IBM OS/390 C/C++, V2R4

C C/370, Release 2.1.0
IBM OS/390 C/C++, V2R4
IBM SAA AD/Cycle® C/370

COBOL IBM SAA AD/Cycle COBOL/370™

VS COBOL II

PL/I IBM SAA AD/Cycle PL/I Compiler
OS PL/I Optimizing compiler

MQSeries for SINIX and DC/OSx C DC/OSx: C4.0 compiler, V4.0.1
SINIX: C compiler (C-DS, MIPS), V1.1

COBOL Micro Focus COBOL, V3.2

MQSeries for Sun Solaris C++ SunWorkShop compiler C++, V4.2

C SunWorkShop compiler C, V4.2

COBOL Micro Focus COBOL Compiler, V4.0 for UNIX

MQSeries for Tandem NSK C D30 or later using WIDE memory model (32-bit integers)

COBOL D30 or later

TAL D30 or later

MQSeries for VSE/ESA C IBM C for VSE/ESA, V1.1

COBOL IBM COBOL for VSE/ESA, V1.1

PL/I IBM PL/I for VSE/ESA, V1.1

MQSeries for Windows V2.0 16-bit Basic Microsoft Visual Basic, V3.0 or V4.0

32-bit Basic Microsoft Visual Basic, V4.0

16-bit C Microsoft Visual C++, V1.5

32-bit C Microsoft Visual C++, V2.0

MQSeries for Windows V2.1 Basic Microsoft Visual Basic, V4.0

C Microsoft Visual C++, V4.0
Borland C

Compilers and assemblers

424 MQSeries Application Programming Guide

Table 44. Language compilers and assemblers (continued)

Platform Language Compiler/Assembler

MQSeries for Windows NT Basic Visual Basic for Windows, V4.0 (16-bit)
Visual Basic for Windows, V5.0 (32-bit)

C++ IBM C++ compiler, V3.6.4
IBM VisualAge for C++ for Windows, V3.5
IBM VisualAge for C++ Professional, V4.0
Microsoft Visual C++ for Windows 95 and NT, V4.0 & V5.0

C IBM C compiler, V3.6.4
IBM VisualAge for C++ for Windows, V3.5
Microsoft Visual C++ for Windows 95 and NT, V4.0 & V5.0

COBOL IBM VisualAge COBOL Enterprise, V2.2
IBM VisualAge COBOL for Windows NT, V2.1
Micro Focus Object COBOL for Windows NT, V3.3 or V4.0

Java IBM VisualAge e-business for Windows, V1.0.1
IBM VisualAge for Java Enterprise, V2.0
IBM VisualAge for Java Professional, V2.0

PL/I IBM PL/I for Windows, V1.2
IBM VisualAge for PL/I for Windows
IBM VisualAge PL/I Enterprise, V2.1

DOS clients C Microsoft C, V7.0
Microsoft Visual C++, V1.5

VM/ESA clients Assembler IBM Assembler

C IBM C for VM Release, 3.1

COBOL IBM VS COBOL II

PL/I IBM OS/PL/I, Release 2.3

REXX IBM VM/ESA REXX/VM

Windows 3.1 clients C++ Microsoft Visual C++, V1.5

C Microsoft C, V7.0

Windows 95 and Windows 98
clients

C++ IBM VisualAge for C++ for Windows, V3.5
Microsoft Visual C++, V4.0

C Microsoft Visual C++, V4.0

COBOL Micro Focus COBOL Workbench, V4.0

Note: RPG bindings are shown for the IBM SAA AD/Cycle RPG/400 compiler.

Compilers and assemblers

Appendix A. Language compilers and assemblers 425

|
|
|
|

|
|
|

Compilers and assemblers

426 MQSeries Application Programming Guide

Appendix B. C language examples

The extracts in this appendix are mostly taken from the MQSeries for OS/390
sample applications. They are applicable to all platforms, and any exception to this
is noted.

The examples in this appendix demonstrate the following techniques:

Connecting to a queue manager Figure 53 on page 428
Disconnecting from a queue manager Figure 54 on page 429
Creating a dynamic queue Figure 55 on page 430
Opening an existing queue Figure 56 on page 432
Closing a queue Figure 57 on page 433
Putting a message using MQPUT Figure 58 on page 434
Putting a message using MQPUT1 Figure 59 on page 435
Getting a message Figure 60 on page 437
Getting a message using the wait option Figure 61 on page 438
Getting a message using signaling Figure 62 on page 440
Inquiring about the attributes of an object Figure 63 on page 442
Setting the attributes of a queue Figure 64 on page 444

© Copyright IBM Corp. 1993, 2000 427

Connecting to a queue manager
Figure 53 demonstrates how to use the MQCONN call to connect a program to a
queue manager in OS/390 batch. This extract is taken from the Browse sample
application (program CSQ4BCA1) supplied with MQSeries for OS/390. For the
names and locations of the sample applications on other platforms, see
“Chapter 32. Sample programs (all platforms except OS/390)” on page 311.

#include <cmqc.h>...

static char Parm1[MQ_Q_MGR_NAME_LENGTH] ;...

int main(int argc, char *argv[])
{
/* */
/* Variables for MQ calls */
/* */
MQHCONN Hconn; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */...

/* Copy the queue manager name, passed in the */
/* parm field, to Parm1 */
strncpy(Parm1,argv[1],MQ_Q_MGR_NAME_LENGTH);...

/* */
/* Connect to the specified queue manager. */
/* Test the output of the connect call. If the */
/* call fails, print an error message showing the */
/* completion code and reason code, then leave the */
/* program. */
/* */
MQCONN(Parm1,

&Hconn,
&CompCode,
&Reason);

if ((CompCode != MQCC_OK) | (Reason != MQRC_NONE))
{
sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQCONN, CompCode, Reason);
PrintLine(pBuff);
RetCode = CSQ4_ERROR;
goto AbnormalExit2;
}...

}

Figure 53. Using the MQCONN call (C language)

C language examples

428 MQSeries Application Programming Guide

Disconnecting from a queue manager
Figure 54 demonstrates how to use the MQDISC call to disconnect a program from
a queue manager in OS/390 batch. This extract is taken from the Browse sample
application (program CSQ4BCA1) supplied with MQSeries for OS/390. For the
names and locations of the sample applications on other platforms, see
“Chapter 32. Sample programs (all platforms except OS/390)” on page 311.

...

/* */
/* Disconnect from the queue manager. Test the */
/* output of the disconnect call. If the call */
/* fails, print an error message showing the */
/* completion code and reason code. */
/* */
MQDISC(&Hconn,

&CompCode,
&Reason);

if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
{
sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQDISC, CompCode, Reason);
PrintLine(pBuff);
RetCode = CSQ4_ERROR;
}...

Figure 54. Using the MQDISC call (C language). The variables used in this code extract are
those that were set in Figure 53 on page 428.

C language examples

Appendix B. C language examples 429

Creating a dynamic queue
Figure 55 demonstrates how to use the MQOPEN call to create a dynamic queue.
This extract is taken from the Mail Manager sample application (program
CSQ4TCD1) supplied with MQSeries for OS/390. For the names and locations of
the sample applications on other platforms, see “Chapter 32. Sample programs (all
platforms except OS/390)” on page 311.

...

MQLONG HCONN = 0; /* Connection handle */
MQHOBJ HOBJ; /* MailQ Object handle */
MQHOBJ HobjTempQ; /* TempQ Object Handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
MQOD ObjDesc = {MQOD_DEFAULT};

/* Object descriptor */
MQLONG OpenOptions; /* Options control MQOPEN */...

/*--- */
/* Initialize the Object Descriptor (MQOD) */
/* control block. (The remaining fields */
/* are already initialized.) */
/*--*/
strncpy(ObjDesc.ObjectName,

SYSTEM_REPLY_MODEL,
MQ_Q_NAME_LENGTH);

strncpy(ObjDesc.DynamicQName,
SYSTEM_REPLY_INITIAL,
MQ_Q_NAME_LENGTH);

OpenOptions = MQOO_INPUT_AS_Q_DEF;
/*--*/
/* Open the model queue and, therefore, */
/* create and open a temporary dynamic */
/* queue */
/*--*/
MQOPEN(HCONN,

&ObjDesc,
OpenOptions,
&HobjTempQ,
&CompCode,
&Reason);

if (CompCode == MQCC_OK) {...

}
else {

/*---------------------------------------*/
/* Build an error message to report the */
/* failure of the opening of the model */
/* queue */
/*---------------------------------------*/
MQMErrorHandling("OPEN TEMPQ", CompCode,

Reason);
ErrorFound = TRUE;

}
return ErrorFound;

} ...

Figure 55. Using the MQOPEN call to create a dynamic queue (C language)

C language examples

430 MQSeries Application Programming Guide

Opening an existing queue
Figure 56 on page 432 demonstrates how to use the MQOPEN call to open a queue
that has already been defined. This extract is taken from the Browse sample
application (program CSQ4BCA1) supplied with MQSeries for OS/390. For the
names and locations of the sample applications on other platforms, see
“Chapter 32. Sample programs (all platforms except OS/390)” on page 311.

C language examples

Appendix B. C language examples 431

#include <cmqc.h>...

static char Parm1[MQ_Q_MGR_NAME_LENGTH];...

int main(int argc, char *argv[])
{
/*
/* Variables for MQ calls */
/*
MQHCONN Hconn ; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
MQOD ObjDesc = { MQOD_DEFAULT };

/* Object descriptor */
MQLONG OpenOptions; /* Options that control */

/* the MQOPEN call */
MQHOBJ Hobj; /* Object handle */...

/* Copy the queue name, passed in the parm field, */
/* to Parm2 strncpy(Parm2,argv[2], */
/* MQ_Q_NAME_LENGTH); */...

/* */
/* Initialize the object descriptor (MQOD) control */
/* block. (The initialization default sets StrucId, */
/* Version, ObjectType, ObjectQMgrName, */
/* DynamicQName, and AlternateUserid fields) */
/* */
strncpy(ObjDesc.ObjectName,Parm2,MQ_Q_NAME_LENGTH);...

/* Initialize the other fields required for the open */
/* call (Hobj is set by the MQCONN call). */
/* */
OpenOptions = MQOO_BROWSE;...

/* */
/* Open the queue. */
/* Test the output of the open call. If the call */
/* fails, print an error message showing the */
/* completion code and reason code, then bypass */
/* processing, disconnect and leave the program. */
/* */
MQOPEN(Hconn,

&ObjDesc,
OpenOptions,
&Hobj,
&CompCode,
&Reason);

Figure 56. Using the MQOPEN call to open an existing queue (C language) (Part 1 of 2)

C language examples

432 MQSeries Application Programming Guide

Closing a queue
Figure 57 demonstrates how to use the MQCLOSE call to close a queue. This
extract is taken from the Browse sample application (program CSQ4BCA1)
supplied with MQSeries for OS/390. For the names and locations of the sample
applications on other platforms, see “Chapter 32. Sample programs (all platforms
except OS/390)” on page 311.

if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
{
sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQOPEN, CompCode, Reason);
PrintLine(pBuff);
RetCode = CSQ4_ERROR;
goto AbnormalExit1; /* disconnect processing */
}...

} /* end of main */

Figure 56. Using the MQOPEN call to open an existing queue (C language) (Part 2 of 2)

...

/* */
/* Close the queue. */
/* Test the output of the close call. If the call */
/* fails, print an error message showing the */
/* completion code and reason code. */
/* */
MQCLOSE(Hconn,

&Hobj,
MQCO_NONE,
&CompCode,
&Reason);

if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
{
sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQCLOSE, CompCode, Reason);
PrintLine(pBuff);
RetCode = CSQ4_ERROR;
}...

Figure 57. Using the MQCLOSE call (C language)

C language examples

Appendix B. C language examples 433

Putting a message using MQPUT
Figure 58 demonstrates how to use the MQPUT call to put a message on a queue.
This extract is not taken from the sample applications supplied with MQSeries. For
the names and locations of the sample applications, see “Chapter 32. Sample
programs (all platforms except OS/390)” on page 311 and “Chapter 33. Sample
programs for MQSeries for OS/390” on page 373.

...

qput()
{

MQMD MsgDesc;
MQPMO PutMsgOpts;
MQLONG CompCode;
MQLONG Reason;
MQHCONN Hconn;
MQHOBJ Hobj;
char message_buffer[] = "MY MESSAGE";

/*-------------------------------*/
/* Set up PMO structure. */
/*-------------------------------*/
memset(&PutMsgOpts, '\0', sizeof(PutMsgOpts));
memcpy(PutMsgOpts.StrucId, MQPMO_STRUC_ID,

sizeof(PutMsgOpts.StrucId));
PutMsgOpts.Version = MQPMO_VERSION_1;
PutMsgOpts.Options = MQPMO_SYNCPOINT;

/*-------------------------------*/
/* Set up MD structure. */
/*-------------------------------*/
memset(&MsgDesc, '\0', sizeof(MsgDesc));
memcpy(MsgDesc.StrucId, MQMD_STRUC_ID,

sizeof(MsgDesc.StrucId));
MsgDesc.Version = MQMD_VERSION_1;
MsgDesc.Expiry = MQEI_UNLIMITED;
MsgDesc.Report = MQRO_NONE;
MsgDesc.MsgType = MQMT_DATAGRAM;
MsgDesc.Priority = 1;
MsgDesc.Persistence = MQPER_PERSISTENT;
memset(MsgDesc.ReplyToQ,

'\0',
sizeof(MsgDesc.ReplyToQ));

/*---*/
/* Put the message. */
/*---*/
MQPUT(Hconn, Hobj, &MsgDesc, &PutMsgOpts,

sizeof(message_buffer), message_buffer,
&CompCode, &Reason);

Figure 58. Using the MQPUT call (C language) (Part 1 of 2)

C language examples

434 MQSeries Application Programming Guide

Putting a message using MQPUT1
Figure 59 demonstrates how to use the MQPUT1 call to open a queue, put a single
message on the queue, then close the queue. This extract is taken from the Credit
Check sample application (program CSQ4CCB5) supplied with MQSeries for
OS/390. For the names and locations of the sample applications on other
platforms, see “Chapter 32. Sample programs (all platforms except OS/390)” on
page 311.

/*-------------------------------------*/
/* Check completion and reason codes. */
/*-------------------------------------*/
switch (CompCode)

{
case MQCC_OK:

break;
case MQCC_FAILED:

switch (Reason)
{
case MQRC_Q_FULL:
case MQRC_MSG_TOO_BIG_FOR_Q:

break;
default:

break; /* Perform error processing */
}

break;
default:

break; /* Perform error processing */
}

}

Figure 58. Using the MQPUT call (C language) (Part 2 of 2)

...

MQLONG Hconn; /* Connection handle */
MQHOBJ Hobj_CheckQ; /* Object handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
MQOD ObjDesc = {MQOD_DEFAULT};

/* Object descriptor */
MQMD MsgDesc = {MQMD_DEFAULT};

/* Message descriptor */
MQLONG OpenOptions; /* Control the MQOPEN call */

MQGMO GetMsgOpts = {MQGMO_DEFAULT};
/* Get Message Options */

MQLONG MsgBuffLen; /* Length of message buffer */
CSQ4BCAQ MsgBuffer; /* Message structure */
MQLONG DataLen; /* Length of message */

MQPMO PutMsgOpts = {MQPMO_DEFAULT};
/* Put Message Options */

CSQ4BQRM PutBuffer; /* Message structure */
MQLONG PutBuffLen = sizeof(PutBuffer);

/* Length of message buffer */...

Figure 59. Using the MQPUT1 call (C language) (Part 1 of 2)

C language examples

Appendix B. C language examples 435

Getting a message
Figure 60 on page 437 demonstrates how to use the MQGET call to remove a
message from a queue. This extract is taken from the Browse sample application
(program CSQ4BCA1) supplied with MQSeries for OS/390. For the names and
locations of the sample applications on other platforms, see “Chapter 32. Sample
programs (all platforms except OS/390)” on page 311.

void Process_Query(void)
{
/* */
/* Build the reply message */
/* */...

/* */
/* Set the object descriptor, message descriptor and */
/* put message options to the values required to */
/* create the reply message. */
/* */
strncpy(ObjDesc.ObjectName, MsgDesc.ReplyToQ,

MQ_Q_NAME_LENGTH);
strncpy(ObjDesc.ObjectQMgrName, MsgDesc.ReplyToQMgr,

MQ_Q_MGR_NAME_LENGTH);
MsgDesc.MsgType = MQMT_REPLY;
MsgDesc.Report = MQRO_NONE;
memset(MsgDesc.ReplyToQ, ' ', MQ_Q_NAME_LENGTH);
memset(MsgDesc.ReplyToQMgr, ' ', MQ_Q_MGR_NAME_LENGTH);
memcpy(MsgDesc.MsgId, MQMI_NONE, sizeof(MsgDesc.MsgId));
PutMsgOpts.Options = MQPMO_SYNCPOINT +

MQPMO_PASS_IDENTITY_CONTEXT;
PutMsgOpts.Context = Hobj_CheckQ;
PutBuffLen = sizeof(PutBuffer);
MQPUT1(Hconn,

&ObjDesc,
&MsgDesc,
&PutMsgOpts,
PutBuffLen,
&PutBuffer,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
strncpy(TS_Operation, "MQPUT1",

sizeof(TS_Operation));
strncpy(TS_ObjName, ObjDesc.ObjectName,

MQ_Q_NAME_LENGTH);
Record_Call_Error();
Forward_Msg_To_DLQ();
}

return;
}...

Figure 59. Using the MQPUT1 call (C language) (Part 2 of 2)

C language examples

436 MQSeries Application Programming Guide

#include "cmqc.h"...

#define BUFFERLENGTH 80...

int main(int argc, char *argv[])
{
/* */
/* Variables for MQ calls */
/* */
MQHCONN Hconn ; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
MQHOBJ Hobj; /* Object handle */
MQMD MsgDesc = { MQMD_DEFAULT };

/* Message descriptor */
MQLONG DataLength ; /* Length of the message */
MQCHAR Buffer[BUFFERLENGTH+1];

/* Area for message data */
MQGMO GetMsgOpts = { MQGMO_DEFAULT };

/* Options which control */
/* the MQGET call */

MQLONG BufferLength = BUFFERLENGTH ;
/* Length of buffer */...

/* No need to change the message descriptor */
/* (MQMD) control block because initialization */
/* default sets all the fields. */
/* */
/* Initialize the get message options (MQGMO) */
/* control block (the copy file initializes all */
/* the other fields). */
/* */
GetMsgOpts.Options = MQGMO_NO_WAIT +

MQGMO_BROWSE_FIRST +
MQGMO_ACCEPT_TRUNCATED_MSG;

/* */
/* Get the first message. */
/* Test for the output of the call is carried out */
/* in the 'for' loop. */
/* */
MQGET(Hconn,

Hobj,
&MsgDesc,
&GetMsgOpts,
BufferLength,
Buffer,
&DataLength,
&CompCode,
&Reason);

Figure 60. Using the MQGET call (C language) (Part 1 of 2)

C language examples

Appendix B. C language examples 437

Getting a message using the wait option
Figure 61 demonstrates how to use the wait option of the MQGET call. This code
accepts truncated messages. This extract is taken from the Credit Check sample
application (program CSQ4CCB5) supplied with MQSeries for OS/390. For the
names and locations of the sample applications on other platforms, see
“Chapter 32. Sample programs (all platforms except OS/390)” on page 311.

/* */
/* Process the message and get the next message, */
/* until no messages remaining. */...

/* If the call fails for any other reason, */
/* print an error message showing the completion */
/* code and reason code. */
/* */
if ((CompCode == MQCC_FAILED) &&

(Reason == MQRC_NO_MSG_AVAILABLE))
{...

}
else

{
sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQGET, CompCode, Reason);
PrintLine(pBuff);
RetCode = CSQ4_ERROR;
}...

} /* end of main */

Figure 60. Using the MQGET call (C language) (Part 2 of 2)

...

MQLONG Hconn; /* Connection handle */
MQHOBJ Hobj_CheckQ; /* Object handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
MQOD ObjDesc = {MQOD_DEFAULT};

/* Object descriptor */
MQMD MsgDesc = {MQMD_DEFAULT};

/* Message descriptor */
MQLONG OpenOptions;

/* Control the MQOPEN call */
MQGMO GetMsgOpts = {MQGMO_DEFAULT};

/* Get Message Options */
MQLONG MsgBuffLen; /* Length of message buffer */
CSQ4BCAQ MsgBuffer; /* Message structure */
MQLONG DataLen; /* Length of message */

Figure 61. Using the MQGET call with the wait option (C language) (Part 1 of 2)

C language examples

438 MQSeries Application Programming Guide

Getting a message using signaling
Signaling is available only with MQSeries for OS/390 and MQSeries for Windows V2.1.

Figure 62 on page 440 demonstrates how to use the MQGET call to set a signal so
that you are notified when a suitable message arrives on a queue. This extract is
not taken from the sample applications supplied with MQSeries.

...

void main(void)
{...

/* */
/* Initialize options and open the queue for input */
/* */...

/* */
/* Get and process messages */
/* */
GetMsgOpts.Options = MQGMO_WAIT +

MQGMO_ACCEPT_TRUNCATED_MSG +
MQGMO_SYNCPOINT;

GetMsgOpts.WaitInterval = WAIT_INTERVAL;
MsgBuffLen = sizeof(MsgBuffer);
memcpy(MsgDesc.MsgId, MQMI_NONE,

sizeof(MsgDesc.MsgId));
memcpy(MsgDesc.CorrelId, MQCI_NONE,

sizeof(MsgDesc.CorrelId));
/* */
/* Make the first MQGET call outside the loop */
/* */
MQGET(Hconn,

Hobj_CheckQ,
&MsgDesc,
&GetMsgOpts,
MsgBuffLen,
&MsgBuffer,
&DataLen,
&CompCode,
&Reason);...

/* */
/* Test the output of the MQGET call. If the call */
/* failed, send an error message showing the */
/* completion code and reason code, unless the */
/* reason code is NO_MSG AVAILABLE. */
/* */
if (Reason != MQRC_NO_MSG_AVAILABLE)

{
strncpy(TS_Operation, "MQGET", sizeof(TS_Operation));
strncpy(TS_ObjName, ObjDesc.ObjectName,

MQ_Q_NAME_LENGTH);
Record_Call_Error();
}...

Figure 61. Using the MQGET call with the wait option (C language) (Part 2 of 2)

C language examples

Appendix B. C language examples 439

...

get_set_signal()
{

MQMD MsgDesc;
MQGMO GetMsgOpts;
MQLONG CompCode;
MQLONG Reason;
MQHCONN Hconn;
MQHOBJ Hobj;
MQLONG BufferLength;
MQLONG DataLength;
char message_buffer[100];
long int q_ecb, work_ecb;
short int signal_sw, endloop;
long int mask = 255;

/*---------------------------*/
/* Set up GMO structure. */
/*---------------------------*/
memset(&GetMsgOpts,'\0',sizeof(GetMsgOpts));
memcpy(GetMsgOpts.StrucId, MQGMO_STRUC_ID,

sizeof(GetMsgOpts.StrucId);
GetMsgOpts.Version = MQGMO_VERSION_1;
GetMsgOpts.WaitInterval = 1000;
GetMsgOpts.Options = MQGMO_SET_SIGNAL +

MQGMO_BROWSE_FIRST;
q_ecb = 0;
GetMsgOpts.Signal1 = &q_ecb;
/*---------------------------*/
/* Set up MD structure. */
/*---------------------------*/
memset(&MsgDesc,'\0',sizeof(MsgDesc));
memcpy(MsgDesc.StrucId, MQMD_STRUC_ID,

sizeof(MsgDesc.StrucId);
MsgDesc.Version = MQMD_VERSION_1;
MsgDesc.Report = MQRO_NONE;
memcpy(MsgDesc.MsgId,MQMI_NONE,

sizeof(MsgDesc.MsgId));
memcpy(MsgDesc.CorrelId,MQCI_NONE,

sizeof(MsgDesc.CorrelId));

Figure 62. Using the MQGET call with signaling (C language) (Part 1 of 3)

C language examples

440 MQSeries Application Programming Guide

/*---*/
/* Issue the MQGET call. */
/*---*/
BufferLength = sizeof(message_buffer);
signal_sw = 0;

MQGET(Hconn, Hobj, &MsgDesc, &GetMsgOpts,
BufferLength, message_buffer, &DataLength,
&CompCode, &Reason);

/*-------------------------------------*/
/* Check completion and reason codes. */
/*-------------------------------------*/
switch (CompCode)

{
case (MQCC_OK): /* Message retrieved */

break;
case (MQCC_WARNING):

switch (Reason)
{
case (MQRC_SIGNAL_REQUEST_ACCEPTED):

signal_sw = 1;
break;

default:
break; /* Perform error processing */

}
break;

case (MQCC_FAILED):
switch (Reason)
{
case (MQRC_Q_MGR_NOT_AVAILABLE):
case (MQRC_CONNECTION_BROKEN):
case (MQRC_Q_MGR_STOPPING):

break;
default:

break; /* Perform error processing. */
}
break;

default:
break; /* Perform error processing. */

}
/*---*/
/* If the SET_SIGNAL was accepted, set up a loop to */
/* check whether a message has arrived at one second */
/* intervals. The loop ends if a message arrives or */
/* the wait interval specified in the MQGMO */
/* structure has expired. */
/* */
/* If a message arrives on the queue, another MQGET */
/* must be issued to retrieve the message. If other */
/* MQM calls have been made in the intervening */
/* period, this may necessitate reinitializing the */
/* MQMD and MQGMO structures. */
/* In this code, no intervening calls */
/* have been made, so the only change required to */
/* the structures is to specify MQGMO_NO_WAIT, */
/* since we now know the message is there. */
/* */
/* This code uses the EXEC CICS DELAY command to */
/* suspend the program for a second. A batch program */
/* may achieve the same effect by calling an */
/* assembler language subroutine which issues an */
/* OS/390 STIMER macro. */
/*---*/

Figure 62. Using the MQGET call with signaling (C language) (Part 2 of 3)

C language examples

Appendix B. C language examples 441

Inquiring about the attributes of an object
Figure 63 demonstrates how to use the MQINQ call to inquire about the attributes
of a queue. This extract is taken from the Queue Attributes sample application
(program CSQ4CCC1) supplied with MQSeries for OS/390. For the names and
locations of the sample applications on other platforms, see “Chapter 32. Sample
programs (all platforms except OS/390)” on page 311.

if (signal_sw == 1)
{
endloop = 0;
do
{
EXEC CICS DELAY FOR HOURS(0) MINUTES(0) SECONDS(1);
work_ecb = q_ecb & mask;
switch (work_ecb)

{
case (MQEC_MSG_ARRIVED):

endloop = 1;
mqgmo_options = MQGMO_NO_WAIT;
MQGET(Hconn, Hobj, &MsgDesc, &GetMsgOpts,

BufferLength, message_buffer,
&DataLength, &CompCode, &Reason);

if (CompCode != MQCC_OK)
; /* Perform error processing. */

break;
case (MQEC_WAIT_INTERVAL_EXPIRED):
case (MQEC_WAIT_CANCELED):

endloop = 1;
break;

default:
break;

}
} while (endloop == 0);

}
return;

}

Figure 62. Using the MQGET call with signaling (C language) (Part 3 of 3)

#include <cmqc.h> /* MQ API header file */...

#define NUMBEROFSELECTORS 2

const MQHCONN Hconn = MQHC_DEF_HCONN;...

static void InquireGetAndPut(char *Message,
PMQHOBJ pHobj,
char *Object)

Figure 63. Using the MQINQ call (C language) (Part 1 of 2)

C language examples

442 MQSeries Application Programming Guide

{
/* Declare local variables */
/* */
MQLONG SelectorCount = NUMBEROFSELECTORS;

/* Number of selectors */
MQLONG IntAttrCount = NUMBEROFSELECTORS;

/* Number of int attrs */
MQLONG CharAttrLength = 0;

/* Length of char attribute buffer */
MQCHAR *CharAttrs ;

/* Character attribute buffer */
MQLONG SelectorsTable[NUMBEROFSELECTORS];

/* attribute selectors */
MQLONG IntAttrsTable[NUMBEROFSELECTORS];

/* integer attributes */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
/* */
/* Open the queue. If successful, do the inquire */
/* call. */
/* */

/* */
/* Initialize the variables for the inquire */
/* call: */
/* - Set SelectorsTable to the attributes whose */
/* status is */
/* required */
/* - All other variables are already set */
/* */
SelectorsTable[0] = MQIA_INHIBIT_GET;
SelectorsTable[1] = MQIA_INHIBIT_PUT;
/* */
/* Issue the inquire call */
/* Test the output of the inquire call. If the */
/* call failed, display an error message */
/* showing the completion code and reason code,*/
/* otherwise display the status of the */
/* INHIBIT-GET and INHIBIT-PUT attributes */
/* */
MQINQ(Hconn,

*pHobj,
SelectorCount,
SelectorsTable,
IntAttrCount,
IntAttrsTable,
CharAttrLength,
CharAttrs,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
sprintf(Message, MESSAGE_4_E,

ERROR_IN_MQINQ, CompCode, Reason);
SetMsg(Message);
}

else
{
/* Process the changes */

} /* end if CompCode */

Figure 63. Using the MQINQ call (C language) (Part 2 of 2)

C language examples

Appendix B. C language examples 443

Setting the attributes of a queue
Figure 64 demonstrates how to use the MQSET call to change the attributes of a
queue. This extract is taken from the Queue Attributes sample application
(program CSQ4CCC1) supplied with MQSeries for OS/390. For the names and
locations of the sample applications on other platforms, see “Chapter 32. Sample
programs (all platforms except OS/390)” on page 311.

#include <cmqc.h> /* MQ API header file */...

#define NUMBEROFSELECTORS 2

const MQHCONN Hconn = MQHC_DEF_HCONN;

static void InhibitGetAndPut(char *Message,
PMQHOBJ pHobj,
char *Object)

{
/* */
/* Declare local variables */
/* */
MQLONG SelectorCount = NUMBEROFSELECTORS;

/* Number of selectors */
MQLONG IntAttrCount = NUMBEROFSELECTORS;

/* Number of int attrs */
MQLONG CharAttrLength = 0;

/* Length of char attribute buffer */
MQCHAR *CharAttrs ;

/* Character attribute buffer */
MQLONG SelectorsTable[NUMBEROFSELECTORS];

/* attribute selectors */
MQLONG IntAttrsTable[NUMBEROFSELECTORS];

/* integer attributes */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */...

/* */
/* Open the queue. If successful, do the */
/* inquire call. */
/* */...

/* */
/* Initialize the variables for the set call: */
/* - Set SelectorsTable to the attributes to be */
/* set */
/* - Set IntAttrsTable to the required status */
/* - All other variables are already set */
/* */
SelectorsTable[0] = MQIA_INHIBIT_GET;
SelectorsTable[1] = MQIA_INHIBIT_PUT;
IntAttrsTable[0] = MQQA_GET_INHIBITED;
IntAttrsTable[1] = MQQA_PUT_INHIBITED;...

Figure 64. Using the MQSET call (C language) (Part 1 of 2)

C language examples

444 MQSeries Application Programming Guide

/* */
/* Issue the set call. */
/* Test the output of the set call. If the */
/* call fails, display an error message */
/* showing the completion code and reason */
/* code; otherwise move INHIBITED to the */
/* relevant screen map fields */
/* */
MQSET(Hconn,

*pHobj,
SelectorCount,
SelectorsTable,
IntAttrCount,
IntAttrsTable,
CharAttrLength,
CharAttrs,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
sprintf(Message, MESSAGE_4_E,

ERROR_IN_MQSET, CompCode, Reason);
SetMsg(Message);
}

else
{
/* Process the changes */

} /* end if CompCode */

Figure 64. Using the MQSET call (C language) (Part 2 of 2)

Changes

Appendix B. C language examples 445

Changes

446 MQSeries Application Programming Guide

Appendix C. COBOL examples

The examples in this appendix are taken from the MQSeries for OS/390 sample
applications. They are applicable to all platforms, and any exception to this is
noted.

The examples in this appendix demonstrate the following techniques:

Connecting to a queue manager Figure 65 on page 448
Disconnecting from a queue manager Figure 66 on page 449
Creating a dynamic queue Figure 67 on page 450
Opening an existing queue Figure 68 on page 452
Closing a queue Figure 69 on page 454
Putting a message using MQPUT Figure 70 on page 455
Putting a message using MQPUT1 Figure 71 on page 456
Getting a message Figure 72 on page 458
Getting a message using the wait option Figure 73 on page 460
Getting a message using signaling Figure 74 on page 462
Inquiring about the attributes of an object Figure 75 on page 466
Setting the attributes of a queue Figure 76 on page 468

© Copyright IBM Corp. 1993, 2000 447

Connecting to a queue manager
Figure 65 demonstrates how to use the MQCONN call to connect a program to a
queue manager in OS/390 batch. This extract is taken from the Browse sample
application (program CSQ4BVA1) supplied with MQSeries for OS/390. For the
names and locations of the sample applications on other platforms, see
“Chapter 32. Sample programs (all platforms except OS/390)” on page 311.

Disconnecting from a queue manager
Figure 66 on page 449 demonstrates how to use the MQDISC call to disconnect a
program from a queue manager in OS/390 batch. This extract is taken from the
Browse sample application (program CSQ4BVA1) supplied with MQSeries for
OS/390. For the names and locations of the sample applications on other
platforms, see “Chapter 32. Sample programs (all platforms except OS/390)” on
page 311 .

* ---*
WORKING-STORAGE SECTION.

* ---*
* W02 - Data fields derived from the PARM field
01 W02-MQM PIC X(48) VALUE SPACES.

* W03 - MQM API fields
01 W03-HCONN PIC S9(9) BINARY.
01 W03-COMPCODE PIC S9(9) BINARY.
01 W03-REASON PIC S9(9) BINARY.

*
* MQV contains constants (for filling in the control
* blocks)
* and return codes (for testing the result of a call)
*
01 W05-MQM-CONSTANTS.
COPY CMQV SUPPRESS....

* Separate into the relevant fields any data passed
* in the PARM statement
*

UNSTRING PARM-STRING DELIMITED BY ALL ','
INTO W02-MQM

W02-OBJECT....

* Connect to the specified queue manager.
*

CALL 'MQCONN' USING W02-MQM
W03-HCONN
W03-COMPCODE
W03-REASON.

*
* Test the output of the connect call. If the call
* fails, print an error message showing the
* completion code and reason code.
*

IF (W03-COMPCODE NOT = MQCC-OK) THEN...

END-IF....

Figure 65. Using the MQCONN call (COBOL)

COBOL examples

448 MQSeries Application Programming Guide

Creating a dynamic queue
Figure 67 on page 450 demonstrates how to use the MQOPEN call to create a
dynamic queue. This extract is taken from the Credit Check sample application
(program CSQ4CVB1) supplied with MQSeries for OS/390. For the names and
locations of the sample applications on other platforms, see “Chapter 32. Sample
programs (all platforms except OS/390)” on page 311.

...

*
* Disconnect from the queue manager
*

CALL 'MQDISC' USING W03-HCONN
W03-COMPCODE
W03-REASON.

*
* Test the output of the disconnect call. If the
* call fails, print an error message showing the
* completion code and reason code.
*

IF (W03-COMPCODE NOT = MQCC-OK) THEN...

END-IF....

Figure 66. Using the MQDISC call (COBOL). The variables used in this code extract are
those that were set in Figure 65 on page 448.

COBOL examples

Appendix C. COBOL examples 449

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W02 - Queues processed in this program
*
01 W02-MODEL-QNAME PIC X(48) VALUE

'CSQ4SAMP.B1.MODEL '.
01 W02-NAME-PREFIX PIC X(48) VALUE

'CSQ4SAMP.B1.* '.
01 W02-TEMPORARY-Q PIC X(48).

*
* W03 - MQM API fields
*
01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W03-OPTIONS PIC S9(9) BINARY.
01 W03-HOBJ PIC S9(9) BINARY.
01 W03-COMPCODE PIC S9(9) BINARY.
01 W03-REASON PIC S9(9) BINARY.

*
* API control blocks
*
01 MQM-OBJECT-DESCRIPTOR.

COPY CMQODV.
*
* CMQV contains constants (for setting or testing
* field values) and return codes (for testing the
* result of a call)
*
01 MQM-CONSTANTS.
COPY CMQV SUPPRESS.

* ---*
PROCEDURE DIVISION.

* ---*...

* ---*
OPEN-TEMP-RESPONSE-QUEUE SECTION.

* ---*

Figure 67. Using the MQOPEN call to create a dynamic queue (COBOL) (Part 1 of 2)

COBOL examples

450 MQSeries Application Programming Guide

Opening an existing queue
Figure 68 on page 452 demonstrates how to use the MQOPEN call to open an
existing queue. This extract is taken from the Browse sample application (program
CSQ4BVA1) supplied with MQSeries for OS/390. For the names and locations of
the sample applications on other platforms, see “Chapter 32. Sample programs (all
platforms except OS/390)” on page 311.

*
* This section creates a temporary dynamic queue
* using a model queue
*
* ---*
*
* Change three fields in the Object Descriptor (MQOD)
* control block. (MQODV initializes the other fields)
*

MOVE MQOT-Q TO MQOD-OBJECTTYPE.
MOVE W02-MODEL-QNAME TO MQOD-OBJECTNAME.
MOVE W02-NAME-PREFIX TO MQOD-DYNAMICQNAME.

*
COMPUTE W03-OPTIONS = MQOO-INPUT-EXCLUSIVE.

*
CALL 'MQOPEN' USING W03-HCONN

MQOD
W03-OPTIONS
W03-HOBJ-MODEL
W03-COMPCODE
W03-REASON.

*
IF W03-COMPCODE NOT = MQCC-OK

MOVE 'MQOPEN' TO M01-MSG4-OPERATION
MOVE W03-COMPCODE TO M01-MSG4-COMPCODE
MOVE W03-REASON TO M01-MSG4-REASON
MOVE M01-MESSAGE-4 TO M00-MESSAGE

ELSE
MOVE MQOD-OBJECTNAME TO W02-TEMPORARY-Q

END-IF.
*
OPEN-TEMP-RESPONSE-QUEUE-EXIT.

*
* Return to performing section.
*

EXIT.
EJECT

*

Figure 67. Using the MQOPEN call to create a dynamic queue (COBOL) (Part 2 of 2)

COBOL examples

Appendix C. COBOL examples 451

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W01 - Fields derived from the command area input
*
01 W01-OBJECT PIC X(48).

*
* W02 - MQM API fields
*
01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W02-OPTIONS PIC S9(9) BINARY.
01 W02-HOBJ PIC S9(9) BINARY.
01 W02-COMPCODE PIC S9(9) BINARY.
01 W02-REASON PIC S9(9) BINARY.

*
* CMQODV defines the object descriptor (MQOD)
*
01 MQM-OBJECT-DESCRIPTOR.

COPY CMQODV.
*
* CMQV contains constants (for setting or testing
* field values) and return codes (for testing the
* result of a call)
*
01 MQM-CONSTANTS.
COPY CMQV SUPPRESS.

* ---*
E-OPEN-QUEUE SECTION.

* ---*
* *
* This section opens the queue *
*
* Initialize the Object Descriptor (MQOD) control
* block
* (The copy file initializes the remaining fields.)
*

MOVE MQOT-Q TO MQOD-OBJECTTYPE.
MOVE W01-OBJECT TO MQOD-OBJECTNAME.

*
* Initialize W02-OPTIONS to open the queue for both
* inquiring about and setting attributes
*

COMPUTE W02-OPTIONS = MQOO-INQUIRE + MQOO-SET.

Figure 68. Using the MQOPEN call to open an existing queue (COBOL) (Part 1 of 2)

COBOL examples

452 MQSeries Application Programming Guide

Closing a queue
Figure 69 on page 454 demonstrates how to use the MQCLOSE call. This extract is
taken from the Browse sample application (program CSQ4BVA1) supplied with
MQSeries for OS/390. For the names and locations of the sample applications on
other platforms, see “Chapter 32. Sample programs (all platforms except OS/390)”
on page 311.

*
* Open the queue
*

CALL 'MQOPEN' USING W02-HCONN
MQOD
W02-OPTIONS
W02-HOBJ
W02-COMPCODE
W02-REASON.

*
* Test the output from the open
*
* If the completion code is not OK, display a
* separate error message for each of the following
* errors:
*
* Q-MGR-NOT-AVAILABLE - MQM is not available
* CONNECTION-BROKEN - MQM is no longer connected to CICS
* UNKNOWN-OBJECT-NAME - The queue does not exist
* NOT-AUTHORIZED - The user is not authorized to open
* the queue
*
* For any other error, display an error message
* showing the completion and reason codes
*
IF W02-COMPCODE NOT = MQCC-OK

EVALUATE TRUE
*

WHEN W02-REASON = MQRC-Q-MGR-NOT-AVAILABLE
MOVE M01-MESSAGE-6 TO M00-MESSAGE

*
WHEN W02-REASON = MQRC-CONNECTION-BROKEN

MOVE M01-MESSAGE-6 TO M00-MESSAGE
*

WHEN W02-REASON = MQRC-UNKNOWN-OBJECT-NAME
MOVE M01-MESSAGE-2 TO M00-MESSAGE

*
WHEN W02-REASON = MQRC-NOT-AUTHORIZED

MOVE M01-MESSAGE-3 TO M00-MESSAGE
*

WHEN OTHER
MOVE 'MQOPEN' TO M01-MSG4-OPERATION
MOVE W02-COMPCODE TO M01-MSG4-COMPCODE
MOVE W02-REASON TO M01-MSG4-REASON
MOVE M01-MESSAGE-4 TO M00-MESSAGE

END-EVALUATE
END-IF.

E-EXIT.
*
* Return to performing section
*

EXIT.
EJECT

Figure 68. Using the MQOPEN call to open an existing queue (COBOL) (Part 2 of 2)

COBOL examples

Appendix C. COBOL examples 453

Putting a message using MQPUT
Figure 70 on page 455 demonstrates how to use the MQPUT call using context.
This extract is taken from the Credit Check sample application (program
CSQ4CVB1) supplied with MQSeries for OS/390. For the names and locations of
the sample applications on other platforms, see “Chapter 32. Sample programs (all
platforms except OS/390)” on page 311.

...

*
* Close the queue
*

MOVE MQCO-NONE TO W03-OPTIONS.
*

CALL 'MQCLOSE' USING W03-HCONN
W03-HOBJ
W03-OPTIONS
W03-COMPCODE
W03-REASON.

*
* Test the output of the MQCLOSE call. If the call
* fails, print an error message showing the
* completion code and reason code.
*

IF (W03-COMPCODE NOT = MQCC-OK) THEN
MOVE 'CLOSE' TO W04-MSG4-TYPE
MOVE W03-COMPCODE TO W04-MSG4-COMPCODE
MOVE W03-REASON TO W04-MSG4-REASON
MOVE W04-MESSAGE-4 TO W00-PRINT-DATA
PERFORM PRINT-LINE
MOVE W06-CSQ4-ERROR TO W00-RETURN-CODE

END-IF.
*

Figure 69. Using the MQCLOSE call (COBOL). The variables used in this code extract are
those that were set in Figure 65 on page 448.

COBOL examples

454 MQSeries Application Programming Guide

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W02 - Queues processed in this program
*
01 W02-TEMPORARY-Q PIC X(48).

*
* W03 - MQM API fields
*
01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W03-HOBJ-INQUIRY PIC S9(9) BINARY.
01 W03-OPTIONS PIC S9(9) BINARY.
01 W03-BUFFLEN PIC S9(9) BINARY.
01 W03-COMPCODE PIC S9(9) BINARY.
01 W03-REASON PIC S9(9) BINARY.

*
01 W03-PUT-BUFFER.

*
05 W03-CSQ4BIIM.
COPY CSQ4VB1.

*
* API control blocks
*
01 MQM-MESSAGE-DESCRIPTOR.

COPY CMQMDV.
01 MQM-PUT-MESSAGE-OPTIONS.

COPY CMQPMOV.
*
* MQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
01 MQM-CONSTANTS.

COPY CMQV SUPPRESS.
* ---*
PROCEDURE DIVISION.

* ---*...

* Open queue and build message....

Figure 70. Using the MQPUT call (COBOL) (Part 1 of 2)

COBOL examples

Appendix C. COBOL examples 455

Putting a message using MQPUT1
Figure 71 demonstrates how to use the MQPUT1 call. This extract is taken from the
Credit Check sample application (program CSQ4CVB5) supplied with MQSeries
for OS/390. For the names and locations of the sample applications on other
platforms, see “Chapter 32. Sample programs (all platforms except OS/390)” on
page 311.

*
* Set the message descriptor and put-message options to
* the values required to create the message.
* Set the length of the message.
*
MOVE MQMT-REQUEST TO MQMD-MSGTYPE.
MOVE MQCI-NONE TO MQMD-CORRELID.
MOVE MQMI-NONE TO MQMD-MSGID.
MOVE W02-TEMPORARY-Q TO MQMD-REPLYTOQ.
MOVE SPACES TO MQMD-REPLYTOQMGR.
MOVE 5 TO MQMD-PRIORITY.
MOVE MQPER-NOT-PERSISTENT TO MQMD-PERSISTENCE.
COMPUTE MQPMO-OPTIONS = MQPMO-NO-SYNCPOINT +

MQPMO-DEFAULT-CONTEXT.
MOVE LENGTH OF CSQ4BIIM-MSG TO W03-BUFFLEN.

*
CALL 'MQPUT' USING W03-HCONN

W03-HOBJ-INQUIRY
MQMD
MQPMO
W03-BUFFLEN
W03-PUT-BUFFER
W03-COMPCODE
W03-REASON.

IF W03-COMPCODE NOT = MQCC-OK...

END-IF.

Figure 70. Using the MQPUT call (COBOL) (Part 2 of 2)

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W03 - MQM API fields
*
01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W03-OPTIONS PIC S9(9) BINARY.
01 W03-COMPCODE PIC S9(9) BINARY.
01 W03-REASON PIC S9(9) BINARY.
01 W03-BUFFLEN PIC S9(9) BINARY.

*
01 W03-PUT-BUFFER.

05 W03-CSQ4BQRM.
COPY CSQ4VB4.

Figure 71. Using the MQPUT1 call (COBOL) (Part 1 of 2)

COBOL examples

456 MQSeries Application Programming Guide

*
* API control blocks
*
01 MQM-OBJECT-DESCRIPTOR.

COPY CMQODV.
01 MQM-MESSAGE-DESCRIPTOR.

COPY CMQMDV.
01 MQM-PUT-MESSAGE-OPTIONS.

COPY CMQPMOV.
*
* CMQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
01 MQM-MQV.
COPY CMQV SUPPRESS.

* ---*
PROCEDURE DIVISION.

* ---*...

* Get the request message....

* ---*
PROCESS-QUERY SECTION.

* ---*...

* Build the reply message....

*
* Set the object descriptor, message descriptor and
* put-message options to the values required to create
* the message.
* Set the length of the message.
*
MOVE MQMD-REPLYTOQ TO MQOD-OBJECTNAME.
MOVE MQMD-REPLYTOQMGR TO MQOD-OBJECTQMGRNAME.
MOVE MQMT-REPLY TO MQMD-MSGTYPE.
MOVE SPACES TO MQMD-REPLYTOQ.
MOVE SPACES TO MQMD-REPLYTOQMGR.
MOVE LOW-VALUES TO MQMD-MSGID.
COMPUTE MQPMO-OPTIONS = MQPMO-SYNCPOINT +

MQPMO-PASS-IDENTITY-CONTEXT.
MOVE W03-HOBJ-CHECKQ TO MQPMO-CONTEXT.
MOVE LENGTH OF CSQ4BQRM-MSG TO W03-BUFFLEN.

*
CALL 'MQPUT1' USING W03-HCONN

MQOD
MQMD
MQPMO
W03-BUFFLEN
W03-PUT-BUFFER
W03-COMPCODE
W03-REASON.

IF W03-COMPCODE NOT = MQCC-OK
MOVE 'MQPUT1' TO M02-OPERATION
MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME
PERFORM RECORD-CALL-ERROR
PERFORM FORWARD-MSG-TO-DLQ

END-IF.
*

Figure 71. Using the MQPUT1 call (COBOL) (Part 2 of 2)

COBOL examples

Appendix C. COBOL examples 457

Getting a message
Figure 72 demonstrates how to use the MQGET call to remove a message from a
queue. This extract is taken from the Credit Check sample application (program
CSQ4CVB1) supplied with MQSeries for OS/390. For the names and locations of
the sample applications on other platforms, see “Chapter 32. Sample programs (all
platforms except OS/390)” on page 311.

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W03 - MQM API fields
*
01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W03-HOBJ-RESPONSE PIC S9(9) BINARY.
01 W03-OPTIONS PIC S9(9) BINARY.
01 W03-BUFFLEN PIC S9(9) BINARY.
01 W03-DATALEN PIC S9(9) BINARY.
01 W03-COMPCODE PIC S9(9) BINARY.
01 W03-REASON PIC S9(9) BINARY.

*
01 W03-GET-BUFFER.

05 W03-CSQ4BAM.
COPY CSQ4VB2.

*
* API control blocks
*
01 MQM-MESSAGE-DESCRIPTOR.

COPY CMQMDV.
01 MQM-GET-MESSAGE-OPTIONS.

COPY CMQGMOV.
*
* MQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
01 MQM-CONSTANTS.

COPY CMQV SUPPRESS.
* ---*
A-MAIN SECTION.

* ---*...

* Open response queue....

* ---*
PROCESS-RESPONSE-SCREEN SECTION.

* ---*
* *
* This section gets a message from the response queue. *
* *
* When a correct response is received, it is *
* transferred to the map for display; otherwise *
* an error message is built. *
* *
* ---*

Figure 72. Using the MQGET call (COBOL) (Part 1 of 2)

COBOL examples

458 MQSeries Application Programming Guide

Getting a message using the wait option
Figure 73 on page 460 demonstrates how to use the MQGET call with the wait
option and accepting truncated messages. This extract is taken from the Credit
Check sample application (program CSQ4CVB5) supplied with MQSeries for
OS/390. For the names and locations of the sample applications on other
platforms, see “Chapter 32. Sample programs (all platforms except OS/390)” on
page 311.

*
* Set get-message options
*
COMPUTE MQGMO-OPTIONS = MQGMO-SYNCPOINT +

MQGMO-ACCEPT-TRUNCATED-MSG +
MQGMO-NO-WAIT.

*
* Set msgid and correlid in MQMD to nulls so that any
* message will qualify.
* Set length to available buffer length.
*

MOVE MQMI-NONE TO MQMD-MSGID.
MOVE MQCI-NONE TO MQMD-CORRELID.
MOVE LENGTH OF W03-GET-BUFFER TO W03-BUFFLEN.

*
CALL 'MQGET' USING W03-HCONN

W03-HOBJ-RESPONSE
MQMD
MQGMO
W03-BUFFLEN
W03-GET-BUFFER
W03-DATALEN
W03-COMPCODE
W03-REASON.

EVALUATE TRUE
WHEN W03-COMPCODE NOT = MQCC-FAILED...

* Process the message...

WHEN (W03-COMPCODE = MQCC-FAILED AND
W03-REASON = MQRC-NO-MSG-AVAILABLE)
MOVE M01-MESSAGE-9 TO M00-MESSAGE
PERFORM CLEAR-RESPONSE-SCREEN

*
WHEN OTHER

MOVE 'MQGET ' TO M01-MSG4-OPERATION
MOVE W03-COMPCODE TO M01-MSG4-COMPCODE
MOVE W03-REASON TO M01-MSG4-REASON
MOVE M01-MESSAGE-4 TO M00-MESSAGE
PERFORM CLEAR-RESPONSE-SCREEN

END-EVALUATE.

Figure 72. Using the MQGET call (COBOL) (Part 2 of 2)

COBOL examples

Appendix C. COBOL examples 459

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W00 - General work fields
*
01 W00-WAIT-INTERVAL PIC S9(09) BINARY VALUE 30000.

*
* W03 - MQM API fields
*
01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W03-OPTIONS PIC S9(9) BINARY.
01 W03-HOBJ-CHECKQ PIC S9(9) BINARY.
01 W03-COMPCODE PIC S9(9) BINARY.
01 W03-REASON PIC S9(9) BINARY.
01 W03-DATALEN PIC S9(9) BINARY.
01 W03-BUFFLEN PIC S9(9) BINARY.

*
01 W03-MSG-BUFFER.

05 W03-CSQ4BCAQ.
COPY CSQ4VB3.

*
* API control blocks
*
01 MQM-MESSAGE-DESCRIPTOR.

COPY CMQMDV.
01 MQM-GET-MESSAGE-OPTIONS.

COPY CMQGMOV.
*
* CMQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
01 MQM-MQV.
COPY CMQV SUPPRESS.

* ---*
PROCEDURE DIVISION.

* ---*...

* Open input queue....

Figure 73. Using the MQGET call with the wait option (COBOL) (Part 1 of 2)

COBOL examples

460 MQSeries Application Programming Guide

Getting a message using signaling
Signaling is available only with MQSeries for OS/390.

Figure 74 on page 462 demonstrates how to use the MQGET call with signaling.
This extract is taken from the Credit Check sample application (program
CSQ4CVB2) supplied with MQSeries for OS/390.

*
* Get and process messages.
*
COMPUTE MQGMO-OPTIONS = MQGMO-WAIT +

MQGMO-ACCEPT-TRUNCATED-MSG +
MQGMO-SYNCPOINT.

MOVE LENGTH OF W03-MSG-BUFFER TO W03-BUFFLEN.
MOVE W00-WAIT-INTERVAL TO MQGMO-WAITINTERVAL.
MOVE MQMI-NONE TO MQMD-MSGID.
MOVE MQCI-NONE TO MQMD-CORRELID.

*
* Make the first MQGET call outside the loop.
*

CALL 'MQGET' USING W03-HCONN
W03-HOBJ-CHECKQ
MQMD
MQGMO
W03-BUFFLEN
W03-MSG-BUFFER
W03-DATALEN
W03-COMPCODE
W03-REASON.

*
* Test the output of the MQGET call using the
* PERFORM loop that follows.
*
* Perform whilst no failure occurs
* - process this message
* - reset the call parameters
* - get another message
* End-perform
* ...

*
* Test the output of the MQGET call. If the call
* fails, send an error message showing the
* completion code and reason code, unless the
* completion code is NO-MSG-AVAILABLE.
*

IF (W03-COMPCODE NOT = MQCC-FAILED) OR
(W03-REASON NOT = MQRC-NO-MSG-AVAILABLE)
MOVE 'MQGET ' TO M02-OPERATION
MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME

PERFORM RECORD-CALL-ERROR
END-IF....

Figure 73. Using the MQGET call with the wait option (COBOL) (Part 2 of 2)

COBOL examples

Appendix C. COBOL examples 461

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W00 - General work fields...

01 W00-WAIT-INTERVAL PIC S9(09) BINARY VALUE 30000.
*
* W03 - MQM API fields
*
01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W03-HOBJ-REPLYQ PIC S9(9) BINARY.
01 W03-COMPCODE PIC S9(9) BINARY.
01 W03-REASON PIC S9(9) BINARY.
01 W03-DATALEN PIC S9(9) BINARY.
01 W03-BUFFLEN PIC S9(9) BINARY....

01 W03-GET-BUFFER.
05 W03-CSQ4BQRM.
COPY CSQ4VB4.

*
05 W03-CSQ4BIIM REDEFINES W03-CSQ4BQRM.
COPY CSQ4VB1.

*
05 W03-CSQ4BPGM REDEFINES W03-CSQ4BIIM.
COPY CSQ4VB5....

* API control blocks
*
01 MQM-MESSAGE-DESCRIPTOR.

COPY CMQMDV.
01 MQM-GET-MESSAGE-OPTIONS.

COPY CMQGMOV....

* MQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
01 MQM-MQV.
COPY CMQV SUPPRESS.

* ---*
LINKAGE SECTION.

* ---*
01 L01-ECB-ADDR-LIST.

05 L01-ECB-ADDR1 POINTER.
05 L01-ECB-ADDR2 POINTER.

Figure 74. Using the MQGET call with signaling (COBOL) (Part 1 of 4)

COBOL examples

462 MQSeries Application Programming Guide

*
01 L02-ECBS.

05 L02-INQUIRY-ECB1 PIC S9(09) BINARY.
05 L02-REPLY-ECB2 PIC S9(09) BINARY.

01 REDEFINES L02-ECBS.
05 PIC X(02).
05 L02-INQUIRY-ECB1-CC PIC S9(04) BINARY.
05 PIC X(02).
05 L02-REPLY-ECB2-CC PIC S9(04) BINARY.

*
* ---*
PROCEDURE DIVISION.

* ---*...

* Initialize variables, open queues, set signal on
* inquiry queue....

* ---*
PROCESS-SIGNAL-ACCEPTED SECTION.

* ---*
* This section gets a message with signal. If a *
* message is received, process it. If the signal *
* is set or is already set, the program goes into *
* an operating system wait. *
* Otherwise an error is reported and call error set. *
* ---*
*
PERFORM REPLYQ-GETSIGNAL.

*
EVALUATE TRUE

WHEN (W03-COMPCODE = MQCC-OK AND
W03-REASON = MQRC-NONE)

PERFORM PROCESS-REPLYQ-MESSAGE
*

WHEN (W03-COMPCODE = MQCC-WARNING AND
W03-REASON = MQRC-SIGNAL-REQUEST-ACCEPTED)

OR
(W03-COMPCODE = MQCC-FAILED AND

W03-REASON = MQRC-SIGNAL-OUTSTANDING)
PERFORM EXTERNAL-WAIT

*
WHEN OTHER

MOVE 'MQGET SIGNAL' TO M02-OPERATION
MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME
PERFORM RECORD-CALL-ERROR
MOVE W06-CALL-ERROR TO W06-CALL-STATUS

END-EVALUATE.
*
PROCESS-SIGNAL-ACCEPTED-EXIT.

* Return to performing section
EXIT.
EJECT

*

Figure 74. Using the MQGET call with signaling (COBOL) (Part 2 of 4)

COBOL examples

Appendix C. COBOL examples 463

* ---*
EXTERNAL-WAIT SECTION.

* ---*
* This section performs an external CICS wait on two *
* ECBs until at least one is posted. It then calls *
* the sections to handle the posted ECB. *
* ---*

EXEC CICS WAIT EXTERNAL
ECBLIST(W04-ECB-ADDR-LIST-PTR)
NUMEVENTS(2)

END-EXEC.
*
* At least one ECB must have been posted to get to this
* point. Test which ECB has been posted and perform
* the appropriate section.
*

IF L02-INQUIRY-ECB1 NOT = 0
PERFORM TEST-INQUIRYQ-ECB

ELSE
PERFORM TEST-REPLYQ-ECB

END-IF.
*
EXTERNAL-WAIT-EXIT.

*
* Return to performing section.
*

EXIT.
EJECT...

* ---*
REPLYQ-GETSIGNAL SECTION.

* ---*
* *
* This section performs an MQGET call (in syncpoint with *
* signal) on the reply queue. The signal field in the *
* MQGMO is set to the address of the ECB. *
* Response handling is done by the performing section. *
* *
* ---*
*

COMPUTE MQGMO-OPTIONS = MQGMO-SYNCPOINT +
MQGMO-SET-SIGNAL.

MOVE W00-WAIT-INTERVAL TO MQGMO-WAITINTERVAL.
MOVE LENGTH OF W03-GET-BUFFER TO W03-BUFFLEN.

*
MOVE ZEROS TO L02-REPLY-ECB2.
SET MQGMO-SIGNAL1 TO ADDRESS OF L02-REPLY-ECB2.

Figure 74. Using the MQGET call with signaling (COBOL) (Part 3 of 4)

COBOL examples

464 MQSeries Application Programming Guide

Inquiring about the attributes of an object
Figure 75 on page 466 demonstrates how to use the MQINQ call to inquire about
the attributes of a queue. This extract is taken from the Queue Attributes sample
application (program CSQ4CVC1) supplied with MQSeries for OS/390. For the
names and locations of the sample applications on other platforms, see
“Chapter 32. Sample programs (all platforms except OS/390)” on page 311.

*
* Set msgid and correlid to nulls so that any message
* will qualify.
*

MOVE MQMI-NONE TO MQMD-MSGID.
MOVE MQCI-NONE TO MQMD-CORRELID.

*
CALL 'MQGET' USING W03-HCONN

W03-HOBJ-REPLYQ
MQMD
MQGMO
W03-BUFFLEN
W03-GET-BUFFER
W03-DATALEN
W03-COMPCODE
W03-REASON.

*
REPLYQ-GETSIGNAL-EXIT.

*
* Return to performing section.
*

EXIT.
EJECT

* ...

Figure 74. Using the MQGET call with signaling (COBOL) (Part 4 of 4)

COBOL examples

Appendix C. COBOL examples 465

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W02 - MQM API fields
*
01 W02-SELECTORCOUNT PIC S9(9) BINARY VALUE 2.
01 W02-INTATTRCOUNT PIC S9(9) BINARY VALUE 2.
01 W02-CHARATTRLENGTH PIC S9(9) BINARY VALUE ZERO.
01 W02-CHARATTRS PIC X VALUE LOW-VALUES.
01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W02-HOBJ PIC S9(9) BINARY.
01 W02-COMPCODE PIC S9(9) BINARY.
01 W02-REASON PIC S9(9) BINARY.
01 W02-SELECTORS-TABLE.

05 W02-SELECTORS PIC S9(9) BINARY OCCURS 2 TIMES
01 W02-INTATTRS-TABLE.

05 W02-INTATTRS PIC S9(9) BINARY OCCURS 2 TIMES
*
* CMQODV defines the object descriptor (MQOD).
*
01 MQM-OBJECT-DESCRIPTOR.

COPY CMQODV.
*
* CMQV contains constants (for setting or testing field
* values) and return codes (for testing the result of a
* call).
*
01 MQM-CONSTANTS.
COPY CMQV SUPPRESS.

* ---*
PROCEDURE DIVISION.

* ---*
*
* Get the queue name and open the queue.
* ...

*
* Initialize the variables for the inquiry call:
* - Set W02-SELECTORS-TABLE to the attributes whose
* status is required
* - All other variables are already set
*

MOVE MQIA-INHIBIT-GET TO W02-SELECTORS(1).
MOVE MQIA-INHIBIT-PUT TO W02-SELECTORS(2).

Figure 75. Using the MQINQ call (COBOL) (Part 1 of 2)

COBOL examples

466 MQSeries Application Programming Guide

Setting the attributes of a queue
Figure 76 on page 468 demonstrates how to use the MQSET call to change the
attributes of a queue. This extract is taken from the Queue Attributes sample
application (program CSQ4CVC1) supplied with MQSeries for OS/390. For the
names and locations of the sample applications on other platforms, see
“Chapter 32. Sample programs (all platforms except OS/390)” on page 311.

*
* Inquire about the attributes.
*

CALL 'MQINQ' USING W02-HCONN,
W02-HOBJ,
W02-SELECTORCOUNT,
W02-SELECTORS-TABLE,
W02-INTATTRCOUNT,
W02-INTATTRS-TABLE,
W02-CHARATTRLENGTH,
W02-CHARATTRS,
W02-COMPCODE,
W02-REASON.

*
* Test the output from the inquiry:
*
* - If the completion code is not OK, display an error
* message showing the completion and reason codes
*
* - Otherwise, move the correct attribute status into
* the relevant screen map fields
*

IF W02-COMPCODE NOT = MQCC-OK
MOVE 'MQINQ' TO M01-MSG4-OPERATION
MOVE W02-COMPCODE TO M01-MSG4-COMPCODE
MOVE W02-REASON TO M01-MSG4-REASON
MOVE M01-MESSAGE-4 TO M00-MESSAGE

*
ELSE

* Process the changes....

END-IF....

Figure 75. Using the MQINQ call (COBOL) (Part 2 of 2)

COBOL examples

Appendix C. COBOL examples 467

...

* ---*
WORKING-STORAGE SECTION.

* ---*
*
* W02 - MQM API fields
*
01 W02-SELECTORCOUNT PIC S9(9) BINARY VALUE 2.
01 W02-INTATTRCOUNT PIC S9(9) BINARY VALUE 2.
01 W02-CHARATTRLENGTH PIC S9(9) BINARY VALUE ZERO.
01 W02-CHARATTRS PIC X VALUE LOW-VALUES.
01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.
01 W02-HOBJ PIC S9(9) BINARY.
01 W02-COMPCODE PIC S9(9) BINARY.
01 W02-REASON PIC S9(9) BINARY.
01 W02-SELECTORS-TABLE.

05 W02-SELECTORS PIC S9(9) BINARY OCCURS 2 TIMES.
01 W02-INTATTRS-TABLE.

05 W02-INTATTRS PIC S9(9) BINARY OCCURS 2 TIMES.
*
* CMQODV defines the object descriptor (MQOD).
*
01 MQM-OBJECT-DESCRIPTOR.

COPY CMQODV.
*
* CMQV contains constants (for setting or testing
* field values) and return codes (for testing the
* result of a call).
*
01 MQM-CONSTANTS.
COPY CMQV SUPPRESS.

* ---*
PROCEDURE DIVISION.

* ---*

Figure 76. Using the MQSET call (COBOL) (Part 1 of 2)

COBOL examples

468 MQSeries Application Programming Guide

*
* Get the queue name and open the queue.
* ...

*
*
* Initialize the variables required for the set call:
* - Set W02-SELECTORS-TABLE to the attributes to be set
* - Set W02-INTATTRS-TABLE to the required status
* - All other variables are already set
*

MOVE MQIA-INHIBIT-GET TO W02-SELECTORS(1).
MOVE MQIA-INHIBIT-PUT TO W02-SELECTORS(2).
MOVE MQQA-GET-INHIBITED TO W02-INTATTRS(1).
MOVE MQQA-PUT-INHIBITED TO W02-INTATTRS(2).

*
* Set the attributes.
*

CALL 'MQSET' USING W02-HCONN,
W02-HOBJ,
W02-SELECTORCOUNT,
W02-SELECTORS-TABLE,
W02-INTATTRCOUNT,
W02-INTATTRS-TABLE,
W02-CHARATTRLENGTH,
W02-CHARATTRS,
W02-COMPCODE,
W02-REASON.

*
* Test the output from the call:
*
* - If the completion code is not OK, display an error
* message showing the completion and reason codes
*
* - Otherwise, move 'INHIBITED' into the relevant
* screen map fields
*

IF W02-COMPCODE NOT = MQCC-OK
MOVE 'MQSET' TO M01-MSG4-OPERATION
MOVE W02-COMPCODE TO M01-MSG4-COMPCODE
MOVE W02-REASON TO M01-MSG4-REASON
MOVE M01-MESSAGE-4 TO M00-MESSAGE

ELSE
*
* Process the changes....

END-IF.

Figure 76. Using the MQSET call (COBOL) (Part 2 of 2)

Changes

Appendix C. COBOL examples 469

Changes

470 MQSeries Application Programming Guide

Appendix D. System/390 assembler-language examples

The extracts in this appendix are mostly taken from the MQSeries for OS/390
sample applications.

The examples in this appendix demonstrate the following techniques:

Connecting to a queue manager Figure 77 on page 472
Disconnecting from a queue manager Figure 78 on page 473
Creating a dynamic queue Figure 79 on page 474
Opening an existing queue Figure 80 on page 476
Closing a queue Figure 81 on page 477
Putting a message using MQPUT Figure 82 on page 479
Putting a message using MQPUT1 Figure 83 on page 481
Getting a message Figure 84 on page 483
Getting a message using the wait option Figure 85 on page 484
Getting a message using signaling Figure 86 on page 487
Inquiring about and setting the attributes of a queue Figure 87 on page 491

© Copyright IBM Corp. 1993, 2000 471

Connecting to a queue manager
Figure 77 demonstrates how to use the MQCONN call to connect a program to a
queue manager in OS/390 batch. This extract is taken from the Browse sample
program (CSQ4BAA1) supplied with MQSeries for OS/390.

...

WORKAREA DSECT
*
PARMLIST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
COMPCODE DS F Completion code
REASON DS F Reason code
HCONN DS F Connection handle

ORG
PARMADDR DS F Address of parm field
PARMLEN DS H Length of parm field
*
MQMNAME DS CL48 Queue manager name
*
*
**
* SECTION NAME : MAINPARM *
**
MAINPARM DS 0H

MVI MQMNAME,X'40'
MVC MQMNAME+1(L'MQMNAME-1),MQMNAME

*
* Space out first byte and initialize
*
*
* Code to address and verify parameters passed omitted
*
*
PARM1MVE DS 0H

SR R1,R3 Length of data
LA R4,MQMNAME Address for target
BCTR R1,R0 Reduce for execute
EX R1,MOVEPARM Move the data

*
**
* EXECUTES *
**
MOVEPARM MVC 0(*-*,R4),0(R3)
*

EJECT

Figure 77. Using the MQCONN call (Assembler language) (Part 1 of 2)

Assembler-language examples

472 MQSeries Application Programming Guide

Disconnecting from a queue manager
Figure 78 demonstrates how to use the MQDISC call to disconnect a program from
a queue manager in OS/390 batch. This extract is not taken from the sample
applications supplied with MQSeries.

**
* SECTION NAME : MAINCONN *
**
*
*
MAINCONN DS 0H

XC HCONN,HCONN Null connection handle
*

CALL MQCONN, X
(MQMNAME, X
HCONN, X
COMPCODE, X
REASON), X
MF=(E,PARMLIST),VL

*
LA R0,MQCC_OK Expected compcode
C R0,COMPCODE As expected?
BER R6 Yes .. return to caller

*
MVC INF4_TYP,=CL10'CONNECT '
BAL R7,ERRCODE Translate error
LA R0,8 Set exit code
ST R0,EXITCODE to 8
B ENDPROG End the program

*

Figure 77. Using the MQCONN call (Assembler language) (Part 2 of 2)

...

*
* ISSUE MQI DISC REQUEST USING REENTRANT FORM
* OF CALL MACRO
*
* HCONN WAS SET BY A PREVIOUS MQCONN REQUEST
* R5 = WORK REGISTER
*
DISC DS 0H

CALL MQDISC, X
(HCONN, X
COMPCODE, X
REASON), X
VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK
C R5,COMPCODE
BNE BADCALL...

Figure 78. Using the MQDISC call (Assembler language) (Part 1 of 2)

Assembler-language examples

Appendix D. System/390 assembler-language examples 473

Creating a dynamic queue
Figure 79 demonstrates how to use the MQOPEN call to create a dynamic queue.
This extract is not taken from the sample applications supplied with MQSeries.

BADCALL DS 0H...

* CONSTANTS
*

CMQA
*
* WORKING STORAGE (RE-ENTRANT)
*
WEG3 DSECT
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
HCONN DS F
COMPCODE DS F
REASON DS F
*
*
LEG3 EQU *-WKEG3

END

Figure 78. Using the MQDISC call (Assembler language) (Part 2 of 2)

...

*
* R5 = WORK REGISTER.
*
OPEN DS 0H
*
MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF
* MQOD WITH DEFAULTS
MVC WOD_OBJECTNAME,MOD_Q COPY IN THE MODEL Q NAME
MVC WOD_DYNAMICQNAME,DYN_Q COPY IN THE DYNAMIC Q NAME
L R5,=AL4(MQOO_OUTPUT) OPEN FOR OUTPUT AND
A R5,=AL4(MQOO_INQUIRE) INQUIRE
ST R5,OPTIONS

Figure 79. Using the MQOPEN call to create a dynamic queue (Assembler language) (Part 1
of 2)

Assembler-language examples

474 MQSeries Application Programming Guide

Opening an existing queue
Figure 80 on page 476 demonstrates how to use the MQOPEN call to open a queue
that has already been defined. It shows how to specify two options. This extract is
not taken from the sample applications supplied with MQSeries.

*
* ISSUE MQI OPEN REQUEST USING REENTRANT
* FORM OF CALL MACRO
*

CALL MQOPEN, X
(HCONN, X
WOD, X
OPTIONS, X
HOBJ, X
COMPCODE, X
REASON),VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK CHECK THE COMPLETION CODE
C R5,COMPCODE FROM THE REQUEST AND BRANCH
BNE BADCALL TO ERROR ROUTINE IF NOT MQCC_OK

*
MVC TEMP_Q,WOD_OBJECTNAME SAVE NAME OF TEMPORARY Q

* CREATED BY OPEN OF MODEL Q
* ...

BADCALL DS 0H...

*
*
* CONSTANTS:
*
MOD_Q DC CL48'QUERY.REPLY.MODEL' MODEL QUEUE NAME
DYN_Q DC CL48'QUERY.TEMPQ.*' DYNAMIC QUEUE NAME
*

CMQODA DSECT=NO,LIST=YES CONSTANT VERSION OF MQOD
CMQA MQI VALUE EQUATES

*
* WORKING STORAGE
*

DFHEISTG
HCONN DS F CONNECTION HANDLE
OPTIONS DS F OPEN OPTIONS
HOBJ DS F OBJECT HANDLE
COMPCODE DS F MQI COMPLETION CODE
REASON DS F MQI REASON CODE
TEMP_Q DS CL(MQ_Q_NAME_LENGTH) SAVED QNAME AFTER OPEN
*
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L LIST FORM

OF CALL
* MACRO...

END

Figure 79. Using the MQOPEN call to create a dynamic queue (Assembler language) (Part 2
of 2)

Assembler-language examples

Appendix D. System/390 assembler-language examples 475

...

*
* R5 = WORK REGISTER.
*
OPEN DS 0H
*

MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF
* MQOD WITH DEFAULTS

MVC WOD_OBJECTNAME,Q_NAME SPECIFY Q NAME TO OPEN
LA R5,MQOO_INPUT_EXCLUSIVE OPEN FOR MQGET CALLS

*
ST R5,OPTIONS

*
* ISSUE MQI OPEN REQUEST USING REENTRANT FORM
* OF CALL MACRO
*

CALL MQOPEN, X
(HCONN, X
WOD, X
OPTIONS, X
HOBJ, X
COMPCODE, X
REASON),VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK CHECK THE COMPLETION CODE
C R5,COMPCODE FROM THE REQUEST AND BRANCH
BNE BADCALL TO ERROR ROUTINE IF NOT MQCC_OK

* ...

BADCALL DS 0H...

*
*
* CONSTANTS:
*
Q_NAME DC CL48'REQUEST.QUEUE' NAME OF QUEUE TO OPEN
*

CMQODA DSECT=NO,LIST=YES CONSTANT VERSION OF MQOD
CMQA MQI VALUE EQUATES

*
* WORKING STORAGE
*

DFHEISTG
HCONN DS F CONNECTION HANDLE
OPTIONS DS F OPEN OPTIONS
HOBJ DS F OBJECT HANDLE
COMPCODE DS F MQI COMPLETION CODE
REASON DS F MQI REASON CODE
*
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L LIST FORM

OF CALL
* MACRO...

END

Figure 80. Using the MQOPEN call to open an existing queue (Assembler language)

Assembler-language examples

476 MQSeries Application Programming Guide

Closing a queue
Figure 81 demonstrates how to use the MQCLOSE call to close a queue. This
extract is not taken from the sample applications supplied with MQSeries.

...

*
* ISSUE MQI CLOSE REQUEST USING REENTRANT FROM OF
* CALL MACRO
*
* HCONN WAS SET BY A PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY A PREVIOUS MQOPEN REQUEST
* R5 = WORK REGISTER
*
CLOSE DS 0H

LA R5,MQCO_NONE NO SPECIAL CLOSE OPTIONS
ST R5,OPTIONS ARE REQUIRED.

*
CALL MQCLOSE, X

(HCONN, X
HOBJ, X
OPTIONS, X
COMPCODE, X
REASON), X
VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK
C R5,COMPCODE
BNE BADCALL

* ...

BADCALL DS 0H...

* CONSTANTS
*

CMQA
*
* WORKING STORAGE (REENTRANT)
*
WEG4 DSECT
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
HCONN DS F
HOBJ DS F
OPTIONS DS F
COMPCODE DS F
REASON DS F
*
*
LEG4 EQU *-WKEG4

END

Figure 81. Using the MQCLOSE call (Assembler language)

Assembler-language examples

Appendix D. System/390 assembler-language examples 477

Putting a message using MQPUT
Figure 82 on page 479 demonstrates how to use the MQPUT call to put a message
on a queue. This extract is not taken from the sample applications supplied with
MQSeries.

Assembler-language examples

478 MQSeries Application Programming Guide

...

* CONNECT TO QUEUE MANAGER
*
CONN DS 0H...

*
* OPEN A QUEUE
*
OPEN DS 0H...

*
* R4,R5,R6,R7 = WORK REGISTER.
*
PUT DS 0H

LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR
*

MVC WPMO_AREA,MQPMO_AREA INITIALIZE WORKING MQPMO
*

LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*
MVC BUFFER,TEST_MSG SET THE MESSAGE TO BE PUT

*
* ISSUE MQI PUT REQUEST USING REENTRANT FORM
* OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*

CALL MQPUT, X
(HCONN, X
HOBJ, X
WMD, X
WPMO, X
BUFFLEN, X
BUFFER, X
COMPCODE, X
REASON),VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK
C R5,COMPCODE
BNE BADCALL

* ...

BADCALL DS 0H...

Figure 82. Using the MQPUT call (Assembler language) (Part 1 of 2)

Assembler-language examples

Appendix D. System/390 assembler-language examples 479

Putting a message using MQPUT1
Figure 83 on page 481 demonstrates how to use the MQPUT1 call to open a queue,
put a single message on the queue, then close the queue. This extract is not taken
from the sample applications supplied with MQSeries.

*
* CONSTANTS
*

CMQMDA DSECT=NO,LIST=YES,PERSISTENCE=MQPER_PERSISTENT
CMQPMOA DSECT=NO,LIST=YES
CMQA

TEST_MSG DC CL80'THIS IS A TEST MESSAGE'
*
* WORKING STORAGE DSECT
*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WMD CMQMDA DSECT=NO,LIST=NO
WPMO CMQPMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
* ...

END

Figure 82. Using the MQPUT call (Assembler language) (Part 2 of 2)

Assembler-language examples

480 MQSeries Application Programming Guide

...

*
* CONNECT TO QUEUE MANAGER
*
CONN DS 0H...

*
* R4,R5,R6,R7 = WORK REGISTER.
*
PUT DS 0H
*
MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF

* MQOD WITH DEFAULTS
MVC WOD_OBJECTNAME,Q_NAME SPECIFY Q NAME FOR PUT1

*
LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR

*
MVC WPMO_AREA,MQPMO_AREA INITIALIZE WORKING MQPMO

*

LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*
MVC BUFFER,TEST_MSG SET THE MESSAGE TO BE PUT

*
* ISSUE MQI PUT REQUEST USING REENTRANT FORM OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*

CALL MQPUT1, X
(HCONN, X
LMQOD, X
LMQMD, X
LMQPMO, X
BUFFERLENGTH, X
BUFFER, X
COMPCODE, X
REASON),VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK
C R5,COMPCODE
BNE BADCALL

* ...

BADCALL DS 0H...

*

Figure 83. Using the MQPUT1 call (Assembler language) (Part 1 of 2)

Assembler-language examples

Appendix D. System/390 assembler-language examples 481

Getting a message
Figure 84 on page 483 demonstrates how to use the MQGET call to remove a
message from a queue. This extract is not taken from the sample applications
supplied with MQSeries.

* CONSTANTS
*
CMQMDA DSECT=NO,LIST=YES,PERSISTENCE=MQPER_PERSISTENT
CMQPMOA DSECT=NO,LIST=YES
CMQODA DSECT=NO,LIST=YES
CMQA

*
TEST_MSG DC CL80'THIS IS ANOTHER TEST MESSAGE'
Q_NAME DC CL48'TEST.QUEUE.NAME'
*
* WORKING STORAGE DSECT
*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
WMD CMQMDA DSECT=NO,LIST=NO
WPMO CMQPMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
* ...

END

Figure 83. Using the MQPUT1 call (Assembler language) (Part 2 of 2)

Assembler-language examples

482 MQSeries Application Programming Guide

...

*
* CONNECT TO QUEUE MANAGER
*
CONN DS 0H...

*
* OPEN A QUEUE FOR GET
*
OPEN DS 0H...

*
* R4,R5,R6,R7 = WORK REGISTER.
*
GET DS 0H

LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR
*

MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO
*

LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*
*
* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*

CALL MQGET, X
(HCONN, X
HOBJ, X
WMD, X
WGMO, X
BUFFLEN, X
BUFFER, X
DATALEN, X
COMPCODE, X
REASON), X
VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK
C R5,COMPCODE
BNE BADCALL

* ...

BADCALL DS 0H...

Figure 84. Using the MQGET call (Assembler language) (Part 1 of 2)

Assembler-language examples

Appendix D. System/390 assembler-language examples 483

Getting a message using the wait option
Figure 85 demonstrates how to use the wait option of the MQGET call. This code
accepts truncated messages. This extract is not taken from the sample applications
supplied with MQSeries.

*
* CONSTANTS
*

CMQMDA DSECT=NO,LIST=YES
CMQGMOA DSECT=NO,LIST=YES
CMQA

*
* WORKING STORAGE DSECT
*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
* ...

END

Figure 84. Using the MQGET call (Assembler language) (Part 2 of 2)

...

* CONNECT TO QUEUE MANAGER
CONN DS 0H...

* OPEN A QUEUE FOR GET
OPEN DS 0H...

* R4,R5,R6,R7 = WORK REGISTER.
GET DS 0H

LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR

Figure 85. Using the MQGET call with the wait option (Assembler language) (Part 1 of 3)

Assembler-language examples

484 MQSeries Application Programming Guide

*
MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO
L R5,=AL4(MQGMO_WAIT)
A R5,=AL4(MQGMO_ACCEPT_TRUNCATED_MSG)
ST R5,WGMO_OPTIONS
MVC WGMO_WAITINTERVAL,TWO_MINUTES WAIT UP TO TWO

MINUTES BEFORE
FAILING THE
CALL

*
LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*
* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*

CALL MQGET, X
(HCONN, X
HOBJ, X
WMD, X
WGMO, X
BUFFLEN, X
BUFFER, X
DATALEN, X
COMPCODE, X
REASON), X
VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK DID THE MQGET REQUEST
C R5,COMPCODE WORK OK?
BE GETOK YES, SO GO AND PROCESS.
LA R5,MQCC_WARNING NO, SO CHECK FOR A WARNING.
C R5,COMPCODE IS THIS A WARNING?
BE CHECK_W YES, SO CHECK THE REASON.

*
LA R5,MQRC_NO_MSG_AVAILABLE IT MUST BE AN ERROR.

IS IT DUE TO AN EMPTY
C R5,REASON QUEUE?
BE NOMSG YES, SO HANDLE THE ERROR
B BADCALL NO, SO GO TO ERROR ROUTINE

*
CHECK_W DS 0H

LA R5,MQRC_TRUNCATED_MSG_ACCEPTED IS THIS A
TRUNCATED

C R5,REASON MESSAGE?
BE GETOK YES, SO GO AND PROCESS.
B BADCALL NO, SOME OTHER WARNING

*
NOMSG DS 0H...

GETOK DS 0H...

Figure 85. Using the MQGET call with the wait option (Assembler language) (Part 2 of 3)

Assembler-language examples

Appendix D. System/390 assembler-language examples 485

Getting a message using signaling
Figure 86 on page 487 demonstrates how to use the MQGET call to set a signal so
that you are notified when a suitable message arrives on a queue. This extract is
not taken from the sample applications supplied with MQSeries.

BADCALL DS 0H...

*
* CONSTANTS
*

CMQMDA DSECT=NO,LIST=YES
CMQGMOA DSECT=NO,LIST=YES
CMQA

*
TWO_MINUTES DC F'120000' GET WAIT INTERVAL
*
* WORKING STORAGE DSECT

*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
* ...

END

Figure 85. Using the MQGET call with the wait option (Assembler language) (Part 3 of 3)

Assembler-language examples

486 MQSeries Application Programming Guide

...

*
* CONNECT TO QUEUE MANAGER
*
CONN DS 0H...

*
* OPEN A QUEUE FOR GET
*
OPEN DS 0H...

*
* R4,R5,R6,R7 = WORK REGISTER.
*
GET DS 0H

LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR

Figure 86. Using the MQGET call with signaling (Assembler language) (Part 1 of 4)

Assembler-language examples

Appendix D. System/390 assembler-language examples 487

*
MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO
LA R5,MQGMO_SET_SIGNAL
ST R5,WGMO_OPTIONS
MVC WGMO_WAITINTERVAL,FIVE_MINUTES WAIT UP TO FIVE

MINUTES BEFORE
* FAILING THE CALL
*

XC SIG_ECB,SIG_ECB CLEAR THE ECB
LA R5,SIG_ECB GET THE ADDRESS OF THE ECB
ST R5,WGMO_SIGNAL1 AND PUT IT IN THE WORKING

* MQGMO
*

LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*
*
* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*

CALL MQGET, X
(HCONN, X
HOBJ, X
WMD, X
WGMO, X
BUFFLEN, X
BUFFER, X
DATALEN, X
COMPCODE, X
REASON), X
VL,MF=(E,CALLLST)

*
LA R5,MQCC_OK DID THE MQGET REQUEST
C R5,COMPCODE WORK OK?
BE GETOK YES, SO GO AND PROCESS.
LA R5,MQCC_WARNING NO, SO CHECK FOR A WARNING.
C R5,COMPCODE IS THIS A WARNING?
BE CHECK_W YES, SO CHECK THE REASON.
B BADCALL NO, SO GO TO ERROR ROUTINE

*

Figure 86. Using the MQGET call with signaling (Assembler language) (Part 2 of 4)

Assembler-language examples

488 MQSeries Application Programming Guide

CHECK_W DS 0H
LA R5,MQRC_SIGNAL_REQUEST_ACCEPTED
C R5,REASON SIGNAL REQUEST SIGNAL SET?
BNE BADCALL NO, SOME ERROR OCCURRED
B DOWORK YES, SO DO SOMETHING

* ELSE
*
CHECKSIG DS 0H

CLC SIG_ECB+1(3),=AL3(MQEC_MSG_ARRIVED)
IS A MESSAGE AVAILABLE?

BE GET YES, SO GO AND GET IT
*

CLC SIG_ECB+1(3),=AL3(MQEC_WAIT_INTERVAL_EXPIRED)
HAVE WE WAITED LONG ENOUGH?

BE NOMSG YES, SO SAY NO MSG AVAILABLE
B BADCALL IF IT'S ANYTHING ELSE

* GO TO ERROR ROUTINE.
*
DOWORK DS 0H...

TM SIG_ECB,X'40' HAS THE SIGNAL ECB BEEN POSTED?
BO CHECKSIG YES, SO GO AND CHECK WHY
B DOWORK NO, SO GO AND DO MORE WORK

*
NOMSG DS 0H...

GETOK DS 0H...

BADCALL DS 0H...

*
* CONSTANTS
*

CMQMDA DSECT=NO,LIST=YES
CMQGMOA DSECT=NO,LIST=YES
CMQA

*
FIVE_MINUTES DC F'300000' GET SIGNAL INTERVAL
*
* WORKING STORAGE DSECT
*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
SIG_ECB DS F

Figure 86. Using the MQGET call with signaling (Assembler language) (Part 3 of 4)

Assembler-language examples

Appendix D. System/390 assembler-language examples 489

Inquiring about and setting the attributes of a queue
Figure 87 on page 491 demonstrates how to use the MQINQ call to inquire about
the attributes of a queue and to use the MQSET call to change the attributes of a
queue. This extract is taken from the Queue Attributes sample application
(program CSQ4CAC1) supplied with MQSeries for OS/390.

*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
* ...

END

Figure 86. Using the MQGET call with signaling (Assembler language) (Part 4 of 4)

Assembler-language examples

490 MQSeries Application Programming Guide

...

DFHEISTG DSECT...

OBJDESC CMQODA LIST=YES Working object descriptor
*
SELECTORCOUNT DS F Number of selectors
INTATTRCOUNT DS F Number of integer attributes
CHARATTRLENGTH DS F char attributes length
CHARATTRS DS C Area for char attributes
*
OPTIONS DS F Command options
HCONN DS F Handle of connection
HOBJ DS F Handle of object
COMPCODE DS F Completion code
REASON DS F Reason code
SELECTOR DS 2F Array of selectors
INTATTRS DS 2F Array of integer attributes...

OBJECT DS CL(MQ_Q_NAME_LENGTH) Name of queue...

CALLLIST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
**
* PROGRAM EXECUTION STARTS HERE *...

CSQ4CAC1 DFHEIENT CODEREG=(R3),DATAREG=(R13)...

* Initialize the variables for the set call
*

SR R0,R0 Clear register zero
ST R0,CHARATTRLENGTH Set char length to zero
LA R0,2 Load to set
ST R0,SELECTORCOUNT selectors add
ST R0,INTATTRCOUNT integer attributes

*
LA R0,MQIA_INHIBIT_GET Load q attribute selector
ST R0,SELECTOR+0 Place in field
LA R0,MQIA_INHIBIT_PUT Load q attribute selector
ST R0,SELECTOR+4 Place in field

*
UPDTEST DS 0H

CLC ACTION,CINHIB Are we inhibiting?
BE UPDINHBT Yes branch to section

*
CLC ACTION,CALLOW Are we allowing?
BE UPDALLOW Yes branch to section

*
MVC M00_MSG,M01_MSG1 Invalid request
BR R6 Return to caller

*

Figure 87. Using the MQINQ and MQSET calls (Assembler language) (Part 1 of 3)

Assembler-language examples

Appendix D. System/390 assembler-language examples 491

UPDINHBT DS 0H
MVC UPDTYPE,CINHIBIT Indicate action type
LA R0,MQQA_GET_INHIBITED Load attribute value
ST R0,INTATTRS+0 Place in field
LA R0,MQQA_PUT_INHIBITED Load attribute value
ST R0,INTATTRS+4 Place in field
B UPDCALL Go and do call

*
UPDALLOW DS 0H

MVC UPDTYPE,CALLOWED Indicate action type
LA R0,MQQA_GET_ALLOWED Load attribute value
ST R0,INTATTRS+0 Place in field
LA R0,MQQA_PUT_ALLOWED Load attribute value
ST R0,INTATTRS+4 Place in field
B UPDCALL Go and do call

*
UPDCALL DS 0H

CALL MQSET, C
(HCONN, C
HOBJ, C
SELECTORCOUNT, C
SELECTOR, C
INTATTRCOUNT, C
INTATTRS, C
CHARATTRLENGTH, C
CHARATTRS, C
COMPCODE, C
REASON), C
VL,MF=(E,CALLLIST)

*
LA R0,MQCC_OK Load expected compcode
C R0,COMPCODE Was set successful?...

* SECTION NAME : INQUIRE *
* FUNCTION : Inquires on the objects attributes *
* CALLED BY : PROCESS *
* CALLS : OPEN, CLOSE, CODES *
* RETURN : To Register 6 *
INQUIRE DS 0H...

Figure 87. Using the MQINQ and MQSET calls (Assembler language) (Part 2 of 3)

Assembler-language examples

492 MQSeries Application Programming Guide

* Initialize the variables for the inquire call
*

SR R0,R0 Clear register zero
ST R0,CHARATTRLENGTH Set char length to zero
LA R0,2 Load to set
ST R0,SELECTORCOUNT selectors add
ST R0,INTATTRCOUNT integer attributes

*
LA R0,MQIA_INHIBIT_GET Load attribute value
ST R0,SELECTOR+0 Place in field
LA R0,MQIA_INHIBIT_PUT Load attribute value
ST R0,SELECTOR+4 Place in field
CALL MQINQ, C

(HCONN, C
HOBJ, C
SELECTORCOUNT, C
SELECTOR, C
INTATTRCOUNT, C
INTATTRS, C
CHARATTRLENGTH, C
CHARATTRS, C
COMPCODE, C
REASON), C
VL,MF=(E,CALLLIST)

LA R0,MQCC_OK Load expected compcode
C R0,COMPCODE Was inquire successful?...

Figure 87. Using the MQINQ and MQSET calls (Assembler language) (Part 3 of 3)

Changes

Appendix D. System/390 assembler-language examples 493

Changes

494 MQSeries Application Programming Guide

Appendix E. PL/I examples

The use of PL/I is supported by MQSeries for AIX, OS/2 Warp, OS/390,
VSE/ESA, and Windows NT only.

The examples demonstrate the following techniques:

Connecting to a queue manager Figure 88 on page 496
Disconnecting from a queue manager Figure 89 on page 497
Creating a dynamic queue Figure 90 on page 498
Opening an existing queue Figure 91 on page 499
Closing a queue Figure 92 on page 500
Putting a message using MQPUT Figure 93 on page 501
Putting a message using MQPUT1 Figure 94 on page 503
Getting a message Figure 95 on page 504
Getting a message using the wait option Figure 96 on page 506
Getting a message using signaling Figure 97 on page 508
Inquiring about the attributes of an object Figure 98 on page 512
Setting the attributes of a queue Figure 99 on page 513

© Copyright IBM Corp. 1993, 2000 495

Connecting to a queue manager
Figure 88 demonstrates how to use the MQCONN call to connect a program to a
queue manager in OS/390 batch. This extract is not taken from the sample
applications supplied with MQSeries.

Disconnecting from a queue manager
Figure 89 on page 497 demonstrates how to use the MQDISC call to disconnect a
program from a queue manager in OS/390 batch. This extract is not taken from the
sample applications supplied with MQSeries.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/**/
/* STRUCTURE BASED ON PARAMETER INPUT AREA (PARAM) */
/**/
DCL 1 INPUT_PARAM BASED(ADDR(PARAM)),

2 PARAM_LENGTH FIXED BIN(15),
2 PARAM_MQMNAME CHAR(48);...

/**/
/* WORKING STORAGE DECLARATIONS */
/**/
DCL MQMNAME CHAR(48);
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);...

/**/
/* COPY QUEUE MANAGER NAME PARAMETER */
/* TO LOCAL STORAGE */
/**/
MQMNAME = ' ';
MQMNAME = SUBSTR(PARAM_MQMNAME,1,PARAM_LENGTH);...

/**/
/* CONNECT FROM THE QUEUE MANAGER */
/**/
CALL MQCONN (MQMNAME, /* MQM SYSTEM NAME */

HCONN, /* CONNECTION HANDLE */
COMPCODE, /* COMPLETION CODE */
REASON); /* REASON CODE */

/**/
/* TEST THE COMPLETION CODE OF THE CONNECT CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/**/
IF COMPCODE ¬= MQCC_OK

THEN DO;

...

CALL ERROR_ROUTINE;
END;

Figure 88. Using the MQCONN call (PL/I)

PL/I examples

496 MQSeries Application Programming Guide

Creating a dynamic queue
Figure 90 on page 498 demonstrates how to use the MQOPEN call to create a
dynamic queue. This extract is not taken from the sample applications supplied
with MQSeries.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/**/
/* WORKING STORAGE DECLARATIONS */
/**/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);

...

/**/
/* DISCONNECT FROM THE QUEUE MANAGER */
/**/
CALL MQDISC (HCONN, /* CONNECTION HANDLE */

COMPCODE, /* COMPLETION CODE */
REASON); /* REASON CODE */

/**/
/* TEST THE COMPLETION CODE OF THE DISCONNECT CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/**/

IF COMPCODE ¬= MQCC_OK
THEN DO;

...

CALL ERROR_ROUTINE;
END;

Figure 89. Using the MQDISC call (PL/I)

PL/I examples

Appendix E. PL/I examples 497

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:

/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);...

DCL MODEL_QUEUE_NAME CHAR(48) INIT('PL1.REPLY.MODEL');
DCL DYNAMIC_NAME_PREFIX CHAR(48) INIT('PL1.TEMPQ.*');
DCL DYNAMIC_QUEUE_NAME CHAR(48) INIT(' ');...

/***/
/* LOCAL COPY OF OBJECT DESCRIPTOR */
/***/
DCL 1 LMQOD LIKE MQOD;...

/***/
/* SET UP OBJECT DESCRIPTOR FOR OPEN OF REPLY QUEUE */
/***/
LMQOD.OBJECTTYPE =MQOT_Q;
LMQOD.OBJECTNAME = MODEL_QUEUE_NAME;
LMQOD.DYNAMICQNAME = DYNAMIC_NAME_PREFIX;
OPTIONS = MQOO_INPUT_EXCLUSIVE;

CALL MQOPEN (HCONN,
LMQOD,
OPTIONS,
HOBJ,
COMPCODE,
REASON);

/***/
/* TEST THE COMPLETION CODE OF THE OPEN CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/* IF THE CALL HAS SUCCEEDED THEN EXTRACT THE NAME OF */
/* THE NEWLY CREATED DYNAMIC QUEUE FROM THE OBJECT */
/* DESCRIPTOR. */
/***/

IF COMPCODE ¬= MQCC_OK
THEN DO;

...

CALL ERROR_ROUTINE;
END;
ELSE
DYNAMIC_QUEUE_NAME = LMQOD_OBJECTNAME;

Figure 90. Using the MQOPEN call to create a dynamic queue (PL/I)

PL/I examples

498 MQSeries Application Programming Guide

Opening an existing queue
Figure 91 demonstrates how to use the MQOPEN call to open an existing queue.
This extract is not taken from the sample applications supplied with MQSeries.

Closing a queue
Figure 92 on page 500 demonstrates how to use the MQCLOSE call. This extract is
not taken from the sample applications supplied with MQSeries.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);...

DCL QUEUE_NAME CHAR(48) INIT('PL1.LOCAL.QUEUE');...

/***/
/* LOCAL COPY OF OBJECT DESCRIPTOR */
/***/
DCL 1 LMQOD LIKE MQOD;...

/***/
/* SET UP OBJECT DESCRIPTOR FOR OPEN OF REPLY QUEUE */
/***/
LMQOD.OBJECTTYPE = MQOT_Q;
LMQOD.OBJECTNAME = QUEUE_NAME;
OPTIONS = MQOO_INPUT_EXCLUSIVE;

CALL MQOPEN (HCONN,
LMQOD,
OPTIONS,
HOBJ,
COMPCODE,
REASON);

/***/
/* TEST THE COMPLETION CODE OF THE OPEN CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/***/

IF COMPCODE ¬= MQCC_OK
THEN DO;

...

CALL ERROR_ROUTINE;
END;

Figure 91. Using the MQOPEN call to open an existing queue (PL/I)

PL/I examples

Appendix E. PL/I examples 499

Putting a message using MQPUT
Figure 93 on page 501 demonstrates how to use the MQPUT call using context.
This extract is not taken from the sample applications supplied with MQSeries.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);...

/***/
/* SET CLOSE OPTIONS */
/***/
OPTIONS=MQCO_NONE;

/***/
/* CLOSE QUEUE */
/***/

CALL MQCLOSE (HCONN, /* CONNECTION HANDLE */
HOBJ, /* OBJECT HANDLE */
OPTIONS, /* CLOSE OPTIONS */
COMPCODE, /* COMPLETION CODE */
REASON); /* REASON CODE */

/***/
/* TEST THE COMPLETION CODE OF THE CLOSE CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/***/

IF COMPCODE ¬= MQCC_OK
THEN DO;

...

CALL ERROR_ROUTINE;
END;

Figure 92. Using the MQCLOSE call (PL/I)

PL/I examples

500 MQSeries Application Programming Guide

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL BUFFER CHAR(80);...

DCL PL1_TEST_MESSAGE CHAR(80)
INIT('***** THIS IS A TEST MESSAGE *****');...

**/
/* LOCAL COPY OF MESSAGE DESCRIPTOR */
/* AND PUT MESSAGE OPTIONS */
/***/
DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQPMO LIKE MQPMO;...

/***/
/* SET UP MESSAGE DESCRIPTOR */
/***/
LMQMD.MSGTYPE = MQMT_DATAGRAM;
LMQMD.PRIORITY = 1;
LMQMD.PERSISTENCE = MQPER_PERSISTENT;
LMQMD.REPLYTOQ = ' ';
LMQMD.REPLYTOQMGR = ' ';
LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/***/
/* SET UP PUT MESSAGE OPTIONS */
/***/
LMQPMO.OPTIONS = MQPMO_NO_SYNCPOINT;

/***/
/* SET UP LENGTH OF MESSAGE BUFFER AND THE MESSAGE */
/***/
BUFFLEN = LENGTH(BUFFER);
BUFFER = PL1_TEST_MESSAGE;
/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/
CALL MQPUT (HCONN,

HOBJ,
LMQMD,
LMQPMO,
BUFFLEN,
BUFFER,
COMPCODE,
REASON);

Figure 93. Using the MQPUT call (PL/I) (Part 1 of 2)

PL/I examples

Appendix E. PL/I examples 501

Putting a message using MQPUT1
Figure 94 on page 503 demonstrates how to use the MQPUT1 call. This extract is
not taken from the sample applications supplied with MQSeries.

/***/
/* TEST THE COMPLETION CODE OF THE PUT CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/***/

IF COMPCODE ¬= MQCC_OK
THEN DO;

...

CALL ERROR_ROUTINE;
END;

Figure 93. Using the MQPUT call (PL/I) (Part 2 of 2)

PL/I examples

502 MQSeries Application Programming Guide

%INCLUDE SYSLIB(CMQEPP);
%INCLUDE SYSLIB(CMQP);
:
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL BUFFER CHAR(80);...

DCL REPLY_TO_QUEUE CHAR(48) INIT('PL1.REPLY.QUEUE');
DCL QUEUE_NAME CHAR(48) INIT('PL1.LOCAL.QUEUE');
DCL PL1_TEST_MESSAGE CHAR(80)
INIT('***** THIS IS ANOTHER TEST MESSAGE *****');...

/***/
/* LOCAL COPY OF OBJECT DESCRIPTOR, MESSAGE DESCRIPTOR */
/* AND PUT MESSAGE OPTIONS */
/***/
DCL 1 LMQOD LIKE MQOD;
DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQPMO LIKE MQPMO;...

/***/
/* SET UP OBJECT DESCRIPTOR AS REQUIRED. */
/***/
LMQOD.OBJECTTYPE = MQOT_Q;
LMQOD.OBJECTNAME = QUEUE_NAME;

/***/
/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */
/***/
LMQMD.MSGTYPE = MQMT_REQUEST;
LMQMD.PRIORITY = 5;
LMQMD.PERSISTENCE = MQPER_PERSISTENT;
LMQMD.REPLYTOQ = REPLY_TO_QUEUE;
LMQMD.REPLYTOQMGR = ' ';
LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

Figure 94. Using the MQPUT1 call (PL/I) (Part 1 of 2)

PL/I examples

Appendix E. PL/I examples 503

Getting a message
Figure 95 demonstrates how to use the MQGET call to remove a message from a
queue. This extract is not taken from the sample applications supplied with
MQSeries.

/***/
/* SET UP PUT MESSAGE OPTIONS AS REQUIRED */
/***/

LMQPMO.OPTIONS = MQPMO_NO_SYNCPOINT;

/***/
/* SET UP LENGTH OF MESSAGE BUFFER AND THE MESSAGE */
/***/

BUFFLEN = LENGTH(BUFFER);
BUFFER = PL1_TEST_MESSAGE;

CALL MQPUT1 (HCONN,
LMQOD,
LMQMD,
LMQPMO,
BUFFLEN,
BUFFER,
COMPCODE,
REASON);

/***/
/* TEST THE COMPLETION CODE OF THE PUT1 CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */
/* THE COMPLETION CODE AND THE REASON CODE. */
/***/

IF COMPCODE ¬= MQCC_OK
THEN DO;

...

CALL ERROR_ROUTINE;
END;

Figure 94. Using the MQPUT1 call (PL/I) (Part 2 of 2)

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:

/***/
/* WORKING STORAGE DECLARATIONS */
/***/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL DATALEN BINARY FIXED (31);
DCL BUFFER CHAR(80);

...

Figure 95. Using the MQGET call (PL/I) (Part 1 of 2)

PL/I examples

504 MQSeries Application Programming Guide

Getting a message using the wait option
Figure 96 on page 506 demonstrates how to use the MQGET call with the wait
option and accepting truncated messages. This extract is not taken from the sample
applications supplied with MQSeries.

/***/
/* LOCAL COPY OF MESSAGE DESCRIPTOR AND */
/* GET MESSAGE OPTIONS */
/***/

DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQGMO LIKE MQGMO;

...

/***/
/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */
/* MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST */
/* AVAILABLE MESSAGE WILL BE RETRIEVED. */
/***/

LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/***/
/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */
/***/

LMQGMO.OPTIONS = MQGMO_NO_SYNCPOINT;

/***/
/* SET UP LENGTH OF MESSAGE BUFFER. */
/***/

BUFFLEN = LENGTH(BUFFER);
/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/

CALL MQGET (HCONN,
HOBJ,
LMQMD,
LMQGMO,
BUFFERLEN,
BUFFER,
DATALEN,
COMPCODE,
REASON);

/***/
/* TEST THE COMPLETION CODE OF THE GET CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/***/

IF COMPCODE ¬= MQCC_OK
THEN DO;
:
:
:
CALL ERROR_ROUTINE;

END;

Figure 95. Using the MQGET call (PL/I) (Part 2 of 2)

PL/I examples

Appendix E. PL/I examples 505

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:

/***/
/* WORKING STORAGE DECLARATIONS */
/***/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL DATALEN BINARY FIXED (31);
DCL BUFFER CHAR(80);

...

/***/
/* LOCAL COPY OF MESSAGE DESCRIPTOR AND GET MESSAGE */
/* OPTIONS */
/***/

DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQGMO LIKE MQGMO;

...

/***/
/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */
/* MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST */
/* AVAILABLE MESSAGE WILL BE RETRIEVED. */
/***/

LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/***/
/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */
/* WAIT INTERVAL SET TO ONE MINUTE. */
/***/

LMQGMO.OPTIONS = MQGMO_WAIT +
MQGMO_ACCEPT_TRUNCATED_MSG +
MQGMO_NO_SYNCPOINT;

LMQGMO.WAITINTERVAL=60000;

/***/
/* SET UP LENGTH OF MESSAGE BUFFER. */
/***/

BUFFLEN = LENGTH(BUFFER);

Figure 96. Using the MQGET call with the wait option (PL/I) (Part 1 of 2)

PL/I examples

506 MQSeries Application Programming Guide

Getting a message using signaling
Signaling is available only with MQSeries for OS/390.

Figure 97 on page 508 demonstrates how to use the MQGET call with signaling.
This extract is not taken from the sample applications supplied with MQSeries.

/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/

CALL MQGET (HCONN,
HOBJ,
LMQMD,
LMQGMO,
BUFFERLEN,
BUFFER,
DATALEN,
COMPCODE,
REASON);

/***/
/* TEST THE COMPLETION CODE OF THE GET CALL. */
/* TAKE APPROPRIATE ACTION BASED ON COMPLETION CODE AND */
/* REASON CODE. */
/***/

SELECT(COMPCODE);
WHEN (MQCC_OK) DO; /* GET WAS SUCCESSFUL */

...

END;
WHEN (MQCC_WARNING) DO;
IF REASON = MQRC_TRUNCATED_MSG_ACCEPTED
THEN DO; /* GET WAS SUCCESSFUL */

...

END;
ELSE DO;

...

CALL ERROR_ROUTINE;
END;

END;
WHEN (MQCC_FAILED) DO;

...

CALL ERROR_ROUTINE;
END;

END;
OTHERWISE;

END;

Figure 96. Using the MQGET call with the wait option (PL/I) (Part 2 of 2)

PL/I examples

Appendix E. PL/I examples 507

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:

/***/
/* WORKING STORAGE DECLARATIONS */
/***/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL DATALEN BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL BUFFER CHAR(80);

...

DCL ECB_FIXED FIXED BIN(31);
DCL 1 ECB_OVERLAY BASED(ADDR(ECB_FIXED)),

3 ECB_WAIT BIT,
3 ECB_POSTED BIT,
3 ECB_FLAG3_8 BIT(6),
3 ECB_CODE PIC'999';

...

/***/
/* LOCAL COPY OF MESSAGE DESCRIPTOR AND GET MESSAGE */
/* OPTIONS */
/***/

DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQGMO LIKE MQGMO;

...

/***/
/* CLEAR ECB FIELD. */
/***/

ECB_FIXED = 0;

...

/***/
/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */
/* MSGID AND CORRELLID IN MQMD SET TO NULLS SO FIRST */
/* AVAILABLE MESSAGE WILL BE RETRIEVED. */
/***/

LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/***/
/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */
/* WAIT INTERVAL SET TO ONE MINUTE. */
/***/

LMQGMO.OPTIONS = MQGMO_SET_SIGNAL +
MQGMO_NO_SYNCPOINT;

LMQGMO.WAITINTERVAL=60000;
LMQGMO.SIGNAL1 = ADDR(ECB_FIXED);

Figure 97. Using the MQGET call with signaling (PL/I) (Part 1 of 4)

PL/I examples

508 MQSeries Application Programming Guide

/***/
/* SET UP LENGTH OF MESSAGE BUFFER. */
/* CALL MESSGE RETRIEVAL ROUTINE. */
/***/

BUFFLEN = LENGTH(BUFFER);
CALL GET_MSG;

/***/
/* TEST THE COMPLETION CODE OF THE GET CALL. */
/* TAKE APPROPRIATE ACTION BASED ON COMPLETION CODE AND */
/* REASON CODE. */
/***/

SELECT;
WHEN ((COMPCODE = MQCC_OK) &

(REASON = MQCC_NONE)) DO

...

CALL MSG_ROUTINE;

...

END;
WHEN ((COMPCODE = MQCC_WARNING) &

(REASON = MQRC_SIGNAL_REQUEST_ACCEPTED)) DO;

...

CALL DO_WORK;

...

END;
WHEN ((COMPCODE = MQCC_FAILED) &

(REASON = MQRC_SIGNAL_OUTSTANDING)) DO;

...

CALL DO_WORK;

...

END;
OTHERWISE DO; /* FAILURE CASE */

/***/
/* ISSUE AN ERROR MESSAGE SHOWING THE COMPLETION CODE */
/* AND THE REASON CODE. */
/***/

...

CALL ERROR_ROUTINE;

...

END;
END;

...

Figure 97. Using the MQGET call with signaling (PL/I) (Part 2 of 4)

PL/I examples

Appendix E. PL/I examples 509

DO_WORK: PROC;

...

IF ECB_POSTED
THEN DO;
SELECT(ECB_CODE);
WHEN(MQEC_MSG_ARRIVED) DO;

...

CALL GET_MSG;

...

END;
WHEN(MQEC_WAIT_INTERVAL_EXPIRED) DO;

...

CALL NO_MSG;

...

END;
OTHERWISE DO; /* FAILURE CASE */

/***/
/* ISSUE AN ERROR MESSAGE SHOWING THE COMPLETION CODE */
/* AND THE REASON CODE. */
/***/

...

CALL ERROR_ROUTINE;

...

END;

END;

END;

...

END DO_WORK;

GET_MSG: PROC;

Figure 97. Using the MQGET call with signaling (PL/I) (Part 3 of 4)

PL/I examples

510 MQSeries Application Programming Guide

Inquiring about the attributes of an object
Figure 98 on page 512 demonstrates how to use the MQINQ call to inquire about
the attributes of a queue. This extract is not taken from the sample applications
supplied with MQSeries.

/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* MD AND GMO SET UP AS REQUIRED. */
/* */
/***/

CALL MQGET (HCONN,
HOBJ,
LMQMD,
LMQGMO,
BUFFLEN,
BUFFER,
DATALEN,
COMPCODE,
REASON);

END GET_MSG;

NO_MSG: PROC;

...

END NO_MSG;

Figure 97. Using the MQGET call with signaling (PL/I) (Part 4 of 4)

PL/I examples

Appendix E. PL/I examples 511

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:

/***/
/* WORKING STORAGE DECLARATIONS */
/***/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL SELECTORCOUNT BINARY FIXED (31);
DCL INTATTRCOUNT BINARY FIXED (31);
DCL 1 SELECTOR_TABLE,

3 SELECTORS(5) BINARY FIXED (31);
DCL 1 INTATTR_TABLE,

3 INTATTRS(5) BINARY FIXED (31);
DCL CHARATTRLENGTH BINARY FIXED (31);
DCL CHARATTRS CHAR(100);

...

/***/
/* SET VARIABLES FOR INQUIRE CALL */
/* INQUIRE ON THE CURRENT QUEUE DEPTH */
/***/

SELECTORS(01) = MQIA_CURRENT_Q_DEPTH;

SELECTORCOUNT = 1;
INTATTRCOUNT = 1;

CHARATTRLENGTH = 0;
/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/

CALL MQINQ (HCONN,
HOBJ,
SELECTORCOUNT,
SELECTORS,
INTATTRCOUNT,
INTATTRS,
CHARATTRLENGTH,
CHARATTRS,
COMPCODE,
REASON);

Figure 98. Using the MQINQ call (PL/I) (Part 1 of 2)

PL/I examples

512 MQSeries Application Programming Guide

Setting the attributes of a queue
Figure 99 demonstrates how to use the MQSET call to change the attributes of a
queue. This extract is not taken from the sample applications supplied with
MQSeries.

/***/
/* TEST THE COMPLETION CODE OF THE INQUIRE CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */
/* THE COMPLETION CODE AND THE REASON CODE. */
/***/

IF COMPCODE ¬= MQCC_OK
THEN DO;

...

CALL ERROR_ROUTINE;
END;

Figure 98. Using the MQINQ call (PL/I) (Part 2 of 2)

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:

/***/
/* WORKING STORAGE DECLARATIONS */
/***/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL SELECTORCOUNT BINARY FIXED (31);
DCL INTATTRCOUNT BINARY FIXED (31);
DCL 1 SELECTOR_TABLE,

3 SELECTORS(5) BINARY FIXED (31);
DCL 1 INTATTR_TABLE,

3 INTATTRS(5) BINARY FIXED (31);
DCL CHARATTRLENGTH BINARY FIXED (31);
DCL CHARATTRS CHAR(100);

...

/***/
/* SET VARIABLES FOR SET CALL */
/* SET GET AND PUT INHIBITED */
/***/

SELECTORS(01) = MQIA_INHIBIT_GET;
SELECTORS(02) = MQIA_INHIBIT_PUT;

INTATTRS(01) = MQQA_GET_INHIBITED;
INTATTRS(02) = MQQA_PUT_INHIBITED;

SELECTORCOUNT = 2;
INTATTRCOUNT = 2;

CHARATTRLENGTH = 0;

Figure 99. Using the MQSET call (PL/I) (Part 1 of 2)

PL/I examples

Appendix E. PL/I examples 513

/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/

CALL MQSET (HCONN,
HOBJ,
SELECTORCOUNT,
SELECTORS,
INTATTRCOUNT,
INTATTRS,
CHARATTRLENGTH,
CHARATTRS,
COMPCODE,
REASON);

/***/
/* TEST THE COMPLETION CODE OF THE SET CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */
/* THE COMPLETION CODE AND THE REASON CODE. */
/***/

IF COMPCODE ¬= MQCC_OK
THEN DO;

...

CALL ERROR_ROUTINE;
END;

Figure 99. Using the MQSET call (PL/I) (Part 2 of 2)

Changes

514 MQSeries Application Programming Guide

Appendix F. MQSeries data definition files

MQSeries provides data definition files to assist you with the writing of your
applications. Data definition files are also known as:

Language Data definitions
C Include files or header files
Visual Basic Module files
COBOL Copy files
Assembler Macros
PL/I Include files

See “Appendix A. Language compilers and assemblers” on page 423 for the
compilers that are supported and suitable for use with these data definition files.

The data definition files to assist with the writing of channel exits are described in
the MQSeries Intercommunication book.

The data definition files to assist with the writing of installable services exits are
described in the MQSeries Programmable System Management book.

For data definition files supported on C++, see the MQSeries Using C++ book.

For data definition files supported on RPG, see the MQSeries for AS/400 Application
Programming Reference (RPG) book.

The names of the data definition files have the prefix CMQ, and a suffix that is
determined by the programming language:

Suffix Language
a Assembler language
b Visual Basic
c C
l COBOL (without initialized values)
p PL/I
v COBOL (with default values set)

Installation library
The name thlqual is the high-level qualifier of the installation library on
OS/390.

This chapter introduces MQSeries data definition files, under these headings:
v “C language include files” on page 516
v “Visual Basic module files” on page 516
v “COBOL copy files” on page 517
v “System/390 assembler-language macros” on page 520
v “PL/I include files” on page 520

© Copyright IBM Corp. 1993, 2000 515

C language include files
The MQSeries C include files are listed in Table 45. They are installed in the
following directories or libraries:

Platform Installation directory or library
AIX /usr/mqm/inc/
AS/400 QMQM/H
Compaq (DIGITAL)
OpenVMS

/mqm/inc/

Other UNIX platforms /opt/mqm/inc/
OS/2 and Windows
NT

\mqm\tools\c\include

Windows V2.0 \MQW\INCLUDE
Windows V2.1 \Program Files\MQSeries for Windows\Lib
OS/390 thlqual.SCSQC370
Tandem NSK $volume.zmqslib
VSE/ESA PRD2.MQSERIES

Note: For UNIX platforms (not including Digital OpenVMS), the include files are
symbolically linked into /usr/include.

For more information on the structure of directories, see the MQSeries System
Administration book for MQSeries for AIX, AS/400, HP-UX, OS/2, Sun Solaris, and
Windows NT; for other platforms, see the appropriate System Management Guide.

Table 45. C include files for MQSeries

File name Contents

<cmqc.h> Call prototypes, data types, structures, return codes, and
constants

<cmqcfc.h> (1, 2) Definitions for programmable commands

<cmqxc.h>(2) Definitions for channel exits and data-conversion exits

<cmqzc.h>(2, 3) Definitions for installable services exits

Notes: The files are protected against multiple declaration, so you can include them many
times.
1. MQSeries for Windows does not provide this include file.
2. MQSeries for VSE/ESA does not provide this include file.
3. MQSeries for OS/390 and MQSeries for Windows do not provide this include file.
4. On Tandem NSK filenames cannot contain a period (.) so the header filenames are

<cmqch> and so on.

Visual Basic module files
MQSeries for Windows Version 2.0 provides two Visual Basic module files. They
are listed in Table 46 and installed in \MQW\INCLUDE.

Table 46. Visual Basic module files for MQSeries for Windows V2.0

File name Contents

CMQB3.BAS Call declarations, data types, and named constants for the
16-bit MQI.(1)

CMQB4.BAS Call declarations, data types, and named constants for both
the 16-bit and 32-bit MQI.(2)

C language include files

516 MQSeries Application Programming Guide

||

Table 46. Visual Basic module files for MQSeries for Windows V2.0 (continued)

File name Contents

Notes:
1. Use this with Microsoft Visual Basic Version 3.
2. Use this with Microsoft Visual Basic Version 4.

MQSeries for Windows Version 2.1 provides two Visual Basic module files. They
are listed in Table 47 and installed in \Program Files\MQSeries for Windows\Lib.

Table 47. Visual Basic module files for MQSeries for Windows V2.1

File name Contents

CMQB.BAS Call declarations, data types, and named constants for the
main MQI.

CMQB4.BAS Call declarations, data types, and named constants for the
channel exits.

Note: In a default installation, the form files (.BAS) are supplied in the \Program
Files\MQSeries for Windows\Include subdirectory.

MQSeries for Windows NT, V5.1 provides four Visual Basic module files. They are
listed in Table 48 and installed in
\Program Files\MQSeries\Tools\Samples\VB\Include.

Table 48. Visual Basic module files for MQSeries for Windows NT, V5.1

File name Contents

CMQB.BAS Call declarations, data types, and named constants for the
main MQI.

CMQBB.BAS Call declarations, data types, and named constants for
MQAI support.

CMQCFB.BAS Call declarations, data types, and named constants for PCF
support.

CMQXB.BAS Call declarations, data types, and named constants for the
channel exits.

COBOL copy files
For COBOL, MQSeries provides separate copy files containing the named
constants, and two copy files for each of the structures. There are two copy files for
each structure because each is provided both with and without initial values:
v In the WORKING-STORAGE SECTION of a COBOL program, use the files that

initialize the structure fields to default values. These structures are defined in the
copy files that have names suffixed with the letter “V” (values).

v In the LINKAGE SECTION of a COBOL program, use the structures without
initial values. These structures are defined in copy files that have names suffixed
with the letter “L” (linkage).

The MQSeries COBOL copy files are listed in Table 49 on page 518. They are
installed in the following directories:

Platform Installation directory or library

AIX /usr/mqm/inc/

Compaq (DIGITAL)
OpenVMS

/mqm/inc/

Visual Basic module files

Appendix F. MQSeries data definition files 517

Platform Installation directory or library

Other UNIX platforms /opt/mqm/inc/

OS/2 and Windows NT \mqm\tools\cobol\copybook (for Micro Focus COBOL)
\mqm\tools\cobol\copybook\VAcobol (for IBM VisualAge
COBOL)

OS/390 thlqual.SCSQCOBC

Tandem NSK $volume.zmqslib

VSE/ESA PRD2.MQSERIES

Notes:

1. For AS/400, they are supplied in the library QMQM:
2. For OPM, they are supplied as members of the file QLBLSRC.
3. For ILE, they are supplied as members of the file QCBLLESRC.
4. For Tandem NSK, all the sections are contained in one ENSCRIBE file

CMCPCOBOL.

Table 49. COBOL copy files

File name (with
initial values)

File name (without
initial values)

Contents

CMQBOV (not
AS/400)

CMQBOL (not
AS/400)

Begin options structure (MQBO)

CMQCFV (OS/390
only)

not applicable Additional named constants for events and
PCF commands

CMQCIHV CMQCIHL CICS information header structure

CMQCNOV CMQCNOL Connect options structure (MQCNO)

CMQDHV CMQDHL Distribution header structure (MQDH)

CMQDLHV CMQDLHL Dead-letter (undelivered-message) header
structure (MQDLH)

CMQDXPV CMQDXPL Data-conversion exit parameter structure
(MQDXP)

CMQGMOV CMQGMOL Get-message options structure (MQGMO)

CMQIIHV CMQIIHL IMS header structure (MQIIH)

CMQMDEV CMQMDEL Message descriptor extension structure
(MQMDE)

CMQMDV CMQMDL Message descriptor structure (MQMD)

CMQODV CMQODL Object descriptor structure (MQOD)

CMQORV CMQORL Object record structure (MQOR)

CMQPMOV CMQPMOL Put-message options structure (MQPMO)

CMQRRV CMQRRL Response record structure (MQRR)

CMQTMCV CMQTMCL Trigger-message structure (character format)

CMQTMC2V CMQTMC2L Trigger-message structure (character format)
(MQTMC)

CMQTMV CMQTML Trigger-message structure (MQTM)

CMQV not applicable Named constants for the MQI

CMQWIHV CMQWIHL Work-information header structure

COBOL copy files

518 MQSeries Application Programming Guide

Table 49. COBOL copy files (continued)

File name (with
initial values)

File name (without
initial values)

Contents

CMQXQHV CMQXQHL Transmission-queue header structure
(MQXQH)

CMQXV not applicable Named constants for exits

Include in your program only those files you need. Do this with one or more
COPY statements after a level-01 declaration. This means you can include multiple
versions of the structures in a program if necessary. However, note that CMQV is a
large file.

Here is an example of COBOL code for including the CMQMDV copy file:
01 MQM-MESSAGE-DESCRIPTOR.

COPY CMQMDV.

Each structure declaration begins with a level-10 item; this means you can declare
several instances of the structure by coding the level-01 declaration followed by a
COPY statement to copy in the remainder of the structure declaration. To refer to
the appropriate instance, use the IN keyword.

Here is an example of COBOL code for including two instances of CMQMDV:
* Declare two instances of MQMD
01 MY-CMQMD.

COPY CMQMDV.
01 MY-OTHER-CMQMD.

COPY CMQMDV.
*
* Set MSGTYPE field in MY-OTHER-CMQMD

MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-CMQMD.

The structures should be aligned on 4-byte boundaries. If you use the COPY
statement to include a structure following an item that is not the level-01 item, try
to ensure that the structure is a multiple of 4-bytes from the start of the level-01
item. If you do not do this, you may get a reduction in the performance of your
application.

The structures are described in the MQSeries Application Programming Reference
manual. The descriptions of the field in the structures show the names of fields
without a prefix. In COBOL programs you must prefix the field names with the
name of the structure followed by a hyphen, as shown in the COBOL declarations.
The fields in the structure copy files are prefixed this way.

The field names in the declarations in the structure copy files are in uppercase. You
can use mixed case or lowercase instead. For example, the field StrucId of the
MQGMO structure is shown as MQGMO-STRUCID in the COBOL declaration and
in the copy file.

The V-suffix structures are declared with initial values for all of the fields, so you
need to set only those fields where the value required is different from the initial
value.

COBOL copy files

Appendix F. MQSeries data definition files 519

System/390 assembler-language macros
MQSeries for OS/390 provides two assembler-language macros containing the
named constants, and one macro to generate each structure. They are listed in
Table 50 and installed in thlqual.SCSQMACS.

Table 50. System/390 assembler-language macros

Macro Contents

CMQA Values of the return codes for the API calls Constants for filling in
the option fields Constants for each object attribute, used by the
MQINQ and MQSET calls

CMQCFA Additional named constants for events and PCF commands

CMQCIHA CICS information-header structure

CMQDLHA Definition of the MQDLH structure

CMQDXPA Definition of the MQDXP structure

CMQGMOA Definition of the MQGMO structure

CMQIIHA Definition of the MQIIH structure

CMQMDA Definition of the MQMD structure

CMQODA Definition of the MQOD structure

CMQPMOA Definition of the MQPMO structure

CMQTMA Definition of the MQTM structure

CMQTMC2A Definition of the MQTMC2 structure

CMQWIHA Work-information header structure

CMQXA Constants for exits

CMQXPA Definition of the MQXP structure

CMQXQHA Definition of the MQXQH structure

These macros are called using code like this:
MY_MQMD CMQMDA EXPIRY=0,MSGTYPE=MQMT_DATAGRAM

PL/I include files
MQSeries for OS/390, AIX, OS/2 Warp, and Windows NT provide include files
that contain all the definitions you need when you write MQSeries applications in
PL/I. They are listed in Table 51 on page 521. They are installed in the following
directories:

Platform
Installation directory or library

AIX /usr/mqm/inc/
OS/2 \mqm\tools\pli\include
Windows NT

\Program Files\MQSeries\Tools\PLI\Include
OS/390

thlqual.SCSQPLIC
VSE/ESA

PRD2.MQSERIES

System/390 assembler-language macros

520 MQSeries Application Programming Guide

Table 51. PL/I include files

Include file Contents

CMQCFP(1) Definitions for programmable commands

CMQEPP Entry point definitions for the API calls.

CMQP Definitions of all the constants and return codes, data types and
structures, and constants to initialize the structures.

CMQXP(1) Definitions for channel exits and data-conversion exits on OS/390.
Named constants related to PCF on AIX, OS/2 Warp, and
Windows NT.

Note:
1. MQSeries for VSE/ESA does not provide this include file.

Include these files in your program if you are going to link the MQSeries stub to
your program (see “Preparing your program to run” on page 263). Include only
CMQP if you intend to link the MQSeries calls dynamically (see “Dynamically
calling the MQSeries stub” on page 267). Dynamic linking can be performed for
batch and IMS programs only.

PL/I include files

Appendix F. MQSeries data definition files 521

Changes

522 MQSeries Application Programming Guide

Appendix G. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2000 523

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information
This book documents General-use Programming Interface and Associated Guidance
Information and Product-sensitive Programming Interface and Associated
Guidance Information provided by MQSeries for AIX, V5.1, MQSeries for AS/400,
V5.1, MQSeries for AT&T GIS UNIX V2.2, MQSeries for Compaq (DIGITAL)
OpenVMS, V2.2.1.1, MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX), V2.2.1,
MQSeries for HP-UX, V5.1, MQSeries for OS/2 Warp, V5.1, MQSeries for OS/390,
V2.1, MQSeries for SINIX and DC/OSx, V2.2, MQSeries for Sun Solaris, V5.1,
MQSeries for Tandem NonStop Kernel, V2.2.0.1, MQSeries for VSE/ESA V2.1,
MQSeries for Windows V2.0, MQSeries for Windows V2.1, and MQSeries for
Windows NT, V5.1.

General-use programming interfaces allow the customer to write programs that
obtain the services of these products.

Notices

524 MQSeries Application Programming Guide

|
|
|
|
|
|
|
|
|
|

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of these products. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

400 AD/Cycle AIX
Application System/400 AS/400 BookManager
C/370 C/400 CICS
CICS/ESA COBOL/370 COBOL/400
Common User Access DB2 eNetwork
First Failure Support
Technology

FFST IBM

IBMLink IMS IMS/ESA
Language Environment MQ MQSeries
MVS/ESA OS/2 OS/390
OS/400 OpenEdition RACF
RPG/400 SP2 SupportPac
System/390 TXSeries VM/ESA
VSE/ESA VTAM VisualAge

Lotus, Lotus Notes, LotusScript, and Notes are trademarks of Lotus Development
Corporation in the United States, or other countries, or both.

ActiveX, BackOffice, Microsoft, Visual Basic, Visual C++, Windows, Windows NT,
and the Windows logo are trademarks of Microsoft Corporation in the United
States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix G. Notices 525

Changes

526 MQSeries Application Programming Guide

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
OS/390. A complete list of MQSeries for OS/390 abend
reason codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log. See recovery log.

adapter. An interface between MQSeries for OS/390
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space. The area of virtual storage available for
a particular job.

address space identifier (ASID). A unique,
system-assigned identifier for an address space.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

affinity. An association between objects that have
some relationship or dependency upon each other.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alert monitor. In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue

manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

allied address space. See ally.

ally. An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

application-defined format. In message queuing,
application data in a message, which has a meaning
defined by the user application. Contrast with built-in
format.

application environment. The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application log. In Windows NT, a log that records
significant application events.

application queue. A queue used by an application.

archive log. See recovery log.

ASID. Address space identifier.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

© Copyright IBM Corp. 1993, 2000 527

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

B
backout. An operation that reverses all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS). A VSAM data set that
contains:

v An inventory of all active and archived log data sets
known to MQSeries for OS/390

v A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

BSDS. Bootstrap data set.

buffer pool. An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

built-in format. In message queuing, application data
in a message, which has a meaning defined by the
queue manager. Synonymous with in-built format.
Contrast with application-defined format.

C
call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint. In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

CICS transaction. In CICS, a unit of application
processing, usually comprising one or more units of
work.

circular logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

528 MQSeries Application Programming Guide

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF). In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor. The MQSeries component that
processes commands.

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

completion code. A return code indicating how an
MQI call has ended.

configuration file. In MQSeries on UNIX systems,
MQSeries for AS/400, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a file that contains
configuration information related to, for example, logs,
communications, or installable services. Synonymous
with .ini file. See also stanza.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL). In MQSeries for AS/400, a
language that can be used to issue commands, either at
the command line or by writing a CL program.

controlled shutdown. See quiesced shutdown.

CPF. Command prefix.

Cross Systems Coupling Facility (XCF). Provides the
OS/390 coupling services that allow authorized
programs in a multisystem environment to
communicate with programs on the same or different
OS/390 systems.

D
DAE. Dump analysis and elimination.

data conversion interface (DCI). The MQSeries
interface to which customer- or vendor-written
programs that convert application data between
different machine encodings and CCSIDs must
conform. A part of the MQSeries Framework.

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

data-conversion service. A service that converts
application data to the character set and encoding that
are required by applications on other platforms.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler. An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with a
user-written rules table.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection. A pending event that is activated
when a CICS subsystem tries to connect to MQSeries
for OS/390 before MQSeries for OS/390 has been
started.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Glossary of terms and abbreviations 529

Distributed Computing Environment (DCE).
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

distribution list. A list of queues to which a message
can be put using a single MQPUT or MQPUT1
statement.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging. A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode. See dual logging.

dump analysis and elimination (DAE). An OS/390
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E
environment. See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log. See application log.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer. A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE). An
OS/390 macro that provides recovery capability and
gives control to the specified exit routine for
processing, diagnosing an abend, or specifying a retry
address.

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
FIFO. First-in-first-out.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

forced shutdown. A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

format. In message queuing, a term used to identify
the nature of application data in a message. See also
built-in format and application-defined format.

Framework. In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

v MQSeries data conversion interface (DCI)

v MQSeries message channel interface (MCI)

v MQSeries name service interface (NSI)

v MQSeries security enabling interface (SEI)

v MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR). An OS/390
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

530 MQSeries Application Programming Guide

generalized command preprocessor (GCPC). An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF). An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

global trace. An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

GTF. Generalized Trace Facility.

H
handle. See connection handle and object handle.

I
ILE. Integrated Language Environment.

immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

in-built format. See built-in format.

in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

Integrated Language Environment (ILE). The AS/400
Integrated Language Environment. This replaces the
AS/400 Original Program Model (OPM).

.ini file. See configuration file.

initialization input data sets. Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

installable services. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is

optional: in-house or third-party components can be
used instead. See also authorization service, name service,
and user identifier service.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS). A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating
standard screen panels and interactive dialogues
between the application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
linear logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence of
files. New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale. On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

Glossary of terms and abbreviations 531

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log control file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file. In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW). See unit of work.

M
machine check interrupt. An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

media image. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message. In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission

queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message format service (MFS). In IMS, and editing
facility that allows application programs to deal with
simple logical messages, instead of device-dependent
data, thus simplifying the application development
process. See message input descriptor and message output
descriptor.

message group. A group of logical messages. Logical
grouping of messages allows applications to group
messages that are similar and to ensure the sequence of
the messages.

message input descriptor (MID). In IMS, the MFS
control block that describes the format of the data
presented to the application program. Contrast with
message output descriptor.

message output descriptor (MOD). In IMS, the MFS
control block that describes the format of the output
data produced by the application program. Contrast
with message input descriptor.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message segment. One of a number of segments of a
message that is too large either for the application or
for the queue manager to handle.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

532 MQSeries Application Programming Guide

messaging. See synchronous messaging and asynchronous
messaging.

MFS. Message format service.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries client. Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI calls
from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

name service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI). The MQSeries interface
to which customer- or vendor-written programs that
resolve queue-name ownership must conform. A part of
the MQSeries Framework.

name transformation. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system
being used. Externally, the queue manager name
remains unchanged.

New Technology File System (NTFS). A Windows NT
recoverable file system that provides security for files.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character. The character that is represented by
X'00'.

O
OAM. Object authority manager.

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM). In MQSeries on
UNIX systems, MQSeries for AS/400, and MQSeries for
Windows NT, the default authorization service for
command and object management. The OAM can be
replaced by, or run in combination with, a
customer-supplied security service.

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading. In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

Open Transaction Manager Access (OTMA). A
transaction-based, connectionless client/server protocol.
It functions as an interface for host-based
communications servers accessing IMS TM applications
through the OS/390 Cross Systems Coupling Facility
(XCF). OTMA is implemented in an OS/390 sysplex
environment. Therefore, the domain of OTMA is
restricted to the domain of XCF.

OPM. Original Program Model.

Original Program Model (OPM). The AS/400
Original Program Model. This is no longer supported
on MQSeries. It is replaced by the Integrated Language
Environment (ILE).

OTMA. Open Transaction Manager Access.

output log-buffer. In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

Glossary of terms and abbreviations 533

|
|
|
|
|
|

P
page set. A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command. See programmable command format.

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

point of recovery. In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries for
OS/390 page sets and the corresponding log data sets
required to recover these page sets. These backup
copies provide a potential restart point in the event of
page set loss (for example, page set I/O error).

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal. In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of
MQSeries message used by:

v User administration applications, to put PCF
commands onto the system command input queue of
a specified queue manager

v User administration applications, to get the results of
a PCF command from a specified queue manager

v A queue manager, as a notification that an event has
occurred

Contrast with MQSC.

program temporary fix (PTF). A solution or by-pass of
a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

v An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

v A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

534 MQSeries Application Programming Guide

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R
RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log. In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the active
log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM). A program that
handles all normal and abnormal termination of tasks
by passing control to a recovery routine associated with
the terminating function.

reference message. A message that refers to a piece of
data that is to be transmitted. The reference message is
handled by message exit programs, which attach and
detach the data from the message so allowing the data
to be transmitted without having to be stored on any
queues.

Registry. In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor. In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive. In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA). The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

RESLEVEL. In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

Resource Recovery Services (RRS). An OS/390
facility that provides 2-phase syncpoint support across
participating resource managers.

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

Glossary of terms and abbreviations 535

RRS. Resource Recovery Services.

RTM. Recovery termination manager.

rules table. A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEI. Security enabling interface.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding

whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

session ID. In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be
used by a message channel agent when moving
messages from a transmission queue to a link.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling. In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging. A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza. A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

storage class. In MQSeries for OS/390, a storage class
defines the page set that is to hold the messages for a
particular queue. The storage class is specified when
the queue is defined.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem. In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC). An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

536 MQSeries Application Programming Guide

switch profile. In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a
refresh security command is issued. Each switch profile
that MQSeries detects turns off checking for the
specified resource.

symptom string. Diagnostic information displayed in
a structured format designed for searching the IBM
software support database.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF). An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA). Data recorded
in a SYS1.LOGREC entry, which describes a program or
hardware error.

system initialization table (SIT). A table containing
parameters used by CICS on start up.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

T
target library high-level qualifier (thlqual).
High-level qualifier for OS/390 target data set names.

task control block (TCB). An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching. The overlapping of I/O operations
and processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

teraspace. In MQSeries for AS/400, a form of shared
memory introduced in OS/400 V4R4.

termination notification. A pending event that is
activated when a CICS subsystem successfully connects
to MQSeries for OS/390.

thlqual. Target library high-level qualifier.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid. See transaction identifier.

transaction. See unit of work and CICS transaction.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transaction manager. A software unit that coordinates
the activities of resource managers by managing global
transactions and coordinating the decision to commit
them or roll them back. V5.1 of MQSeries for AIX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT is a
transaction manager.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A suite of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

Glossary of terms and abbreviations 537

|
|

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS. User identifier service.

undelivered-message queue. See dead-letter queue.

undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made
to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS). In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X
X/Open XA. The X/Open Distributed Transaction
Processing XA interface. A proposed standard for
distributed transaction communication. The standard

specifies a bidirectional interface between resource
managers that provide access to shared resources
within transactions, and between a transaction service
that monitors and resolves transactions.

XCF. Cross Systems Coupling Facility.

538 MQSeries Application Programming Guide

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS,

V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64

UNIX), V2.2.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V2.1
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA V2.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT, V5.1

Any exceptions to this general rule are indicated.

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a
brief introduction to the benefits of
MQSeries. It is intended to support the
purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and
Queuing

An Introduction to Messaging and Queuing,
GC33-0805, describes briefly what
MQSeries is, how it works, and how it
can solve some classic interoperability
problems. This book is intended for a
more technical audience than the
MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349,
describes some key MQSeries concepts,
identifies items that need to be considered
before MQSeries is installed, including

storage requirements, backup and
recovery, security, and migration from
earlier releases, and specifies hardware
and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book,
SC33-1872, defines the concepts of
distributed queuing and explains how to
set up a distributed queuing network in a
variety of MQSeries environments. In
particular, it demonstrates how to (1)
configure communications to and from a
representative sample of MQSeries
products, (2) create required MQSeries
objects, and (3) create and configure
MQSeries channels. The use of channel
exits is also described.

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters,
SC34-5349, describes MQSeries clustering.
It explains the concepts and terminology
and shows how you can benefit by taking
advantage of clustering. It details changes
to the MQI, and summarizes the syntax of
new and changed MQSeries commands. It
shows a number of examples of tasks you
can perform to set up and maintain
clusters of queue managers.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Clients
The MQSeries Clients book, GC33-1632,
describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book,
SC33-1873, supports day-to-day
management of local and remote
MQSeries objects. It includes topics such
as security, recovery and restart,
transactional support, problem

© Copyright IBM Corp. 1993, 2000 539

|

|
|
|
|

|

|

determination, and the dead-letter queue
handler. It also includes the syntax of the
MQSeries control commands.

This book applies to the following
MQSeries products only:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

MQSeries Command Reference
The MQSeries Command Reference,
SC33-1369, contains the syntax of the
MQSC commands, which are used by
MQSeries system operators and
administrators to manage MQSeries
objects.

MQSeries Programmable System Management
The MQSeries Programmable System
Management book, SC33-1482, provides
both reference and guidance information
for users of MQSeries events,
Programmable Command Format (PCF)
messages, and installable services.

MQSeries Administration Interface
Programming Guide and Reference

The MQSeries Administration Interface
Programming Guide and Reference,
SC34-5390, provides information for users
of the MQAI. The MQAI is a
programming interface that simplifies the
way in which applications manipulate
Programmable Command Format (PCF)
messages and their associated data
structures.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Messages
The MQSeries Messages book, GC33-1876,
which describes “AMQ” messages issued
by MQSeries, applies to these MQSeries
products only:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

v MQSeries for Windows V2.0
v MQSeries for Windows V2.1

This book is available in softcopy only.

For other MQSeries platforms, the
messages are supplied with the system.
They do not appear in softcopy manual
form.

MQSeries Application Programming Guide
The MQSeries Application Programming
Guide, SC33-0807, provides guidance
information for users of the message
queue interface (MQI). It describes how to
design, write, and build an MQSeries
application. It also includes full
descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming
Reference, SC33-1673, provides
comprehensive reference information for
users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of
MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Programming Reference
Summary

The MQSeries Application Programming
Reference Summary, SX33-6095,
summarizes the information in the
MQSeries Application Programming
Reference manual.

MQSeries Using C++
MQSeries Using C++, SC33-1877, provides
both guidance and reference information
for users of the MQSeries C++
programming-language binding to the
MQI. MQSeries C++ is supported by
these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for OS/390, V2.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

MQSeries C++ is also supported by
MQSeries clients supplied with these
products and installed in the following
environments:
v AIX
v HP-UX

540 MQSeries Application Programming Guide

|

|

v OS/2
v Sun Solaris
v Windows NT
v Windows 3.1
v Windows 95 and Windows 98

MQSeries Using Java
MQSeries Using Java, SC34-5456, provides
both guidance and reference information
for users of the MQSeries Bindings for
Java and the MQSeries Client for Java.
MQSeries classes for Java are supported
by these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for MVS/ESA V1.2
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

This book is available in softcopy only.

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX

MQSeries for AIX, V5.1 Quick
Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 V5.1 Quick
Beginnings, GC34-5557
MQSeries for AS/400 V5.1 System
Administration, SC34-5558
MQSeries for AS/400 V5.1 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Digital UNIX (Compaq Tru64
UNIX)

MQSeries for Digital UNIX System
Management Guide, GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX, V5.1 Quick
Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp, V5.1 Quick
Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1
Licensed Program Specifications,
GC34-5377
MQSeries for OS/390 Version 2 Release 1
Program Directory

MQSeries for OS/390 System
Management Guide, SC34-5374
MQSeries for OS/390 Messages and
Codes, GC34-5375
MQSeries for OS/390 Problem
Determination Guide, GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1.2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris, V5.1 Quick
Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows

MQSeries for Windows V2.0 User’s
Guide, GC33-1822
MQSeries for Windows V2.1 User’s
Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT, V5.1 Quick
Beginnings, GC34-5389
MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387

Bibliography 541

|

|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

BookManager format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1 (compiled

HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:
http://www.ibm.com/software/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:
http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1

v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1
v MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:
http://www.ibm.com/software/ts/mqseries/

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/ts/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

Related publications
This section describes the documentation
available for some related products and issues
mentioned in this book.

CICS
For information about those aspects of CICS
Transaction Server for OS/390 that this book
refers to, see the following books:

CICS Application Programming Reference,
SC33-1688
CICS Customization Guide, SC33-1683
CICS-Supplied Transactions, SC33-1686
CICS System Definition Guide, SC33-1682

542 MQSeries Application Programming Guide

|

|

For information about those aspects of CICS for
MVS/ESA Version 4.1 that this book refers to, see
the following books:

CICS for MVS/ESA V4.1 Application
Programming Reference, SC33-1170
CICS for MVS/ESA V4.1 Customization Guide,
SC33-1165
CICS for MVS/ESA V4.1 CICS-Supplied
Transactions, SC33-1168
CICS for MVS/ESA V4.1 System Definition
Guide, SC33-1164

For information about CICS programming on
other platforms, see the following books:

CICS on Open Systems Application Programming
Guide, SC33-1568-00
CICS for OS/2 V2.0.1 Application Programming,
SC33-0883
Transaction Server for OS/2 Warp, V4 Application
Programming, SC33-1585
CICS for AS/400 Application Programming Guide,
SC33-1386
CICS for Windows NT V2.0 Application
Programming, SC33-1425
Transaction Server for Windows NT, V4
Application Programming Guide, SC33-1888

IMS
For information about those aspects of IMS that
this book refers to, see the following books:

IMS/ESA Version 4 Application Programming:
DL/I Calls, SC26-3062
IMS/ESA Version 4 Application Programming:
Design Guide, SC26-3066
IMS/ESA Version 5 Application Programming:
Database Manager, SC26-8015
IMS/ESA Version 5 Application Programming:
Design Guide, SC26-8016
IMS/ESA Version 5 Application Programming:
Transaction Manager, SC26-8017
IMS/ESA Version 5 Open Transaction Manager
Access Guide, SC26-8026

MVS/ESA
For information about those aspects of MVS/ESA
that this book refers to, see the following book:

MVS/ESA Application Development Guide:
Assembler Language Programs, GC28-1644

Design
For information on how to design panel-driven
application interfaces, see the following book:

Systems Application Architecture, Common User
Access: Basic Interface Design Guide, SC26-4583

C
For information about C programming, see the
following books:

Guide to Tools for Programming in C,
U6296-J-Z145-2-7600
SNI Programmer’s Reference Manual,
U6401-J-Z145-3-7600
OS/390 C/C++ Programming Guide, SC09-2362

C++
For information about C++ programming, see the
following books:

C Set++ for AIX: User’s Guide, SC09-1968
VisualAge C++ for OS/2 User’s Guide, S25H-6961
VisualAge C++ for OS/2 Programming Guide,
S25H-6958
VisualAge for C++ for Windows User’s Guide,
S33H-5031
VisualAge for C++ for Windows Programming
Guide, S33H 5032
VisualAge for C++ for AS/400 : C++ User’s
Guide, SC09-2416
OS/390 C/C++ Programming Guide, SC09-2362

COBOL
For information about COBOL programming that
this book refers to, see the following books:

COBOL V3.2 SINIX pocket guide,
U21709-J-Z145-2-7600
IBM COBOL Set for AIX Programming Guide,
SC26-8423
IBM COBOL for MVS and VM, IBM VisualAge
for COBOL for OS/2, IBM COBOL Set for AIX
Language Reference, SC26-4769

LDAP
For information about LDAP, see the following
redbook:

Understanding LDAP, SG24-4986

RPG
For information about RPG programming, see the
following books:

ILE RPG for AS/400 Programmer’s Guide,
SC09-2507
ILE RPG for AS/400 Reference, SC09-2508

Related publications

Bibliography 543

|

|
|
|
|
|

Related publications

544 MQSeries Application Programming Guide

Index

Special Characters
runmqtmc trigger monitor 200
runmqtrm trigger monitor

error detection 204
how to run 200

A
abend

AEY9 211
QLOP 211

accounting using message context 33
AccountingToken field 33
adapter

batch 209
CICS 210
IMS 211
trace points 210

AEY9 abend 211
alias queue

examples of when to use 40
overview 37
resolving queue name 95

alias queue manager definition 93
alternate PCB, IMS bridge 227
alternate user authority 97
AlternateUserId field 97
AMQ0ECHA sample program 349
amq0gbr0 sample program 312, 328
amq0get0 sample program 312, 330
AMQ0GET4 sample program 330
amq0put0 sample program 312, 325
amq0req0 sample program 312, 340
AMQ0REQ4 sample program 340
AMQ0SETA sample program 347
amqiech2 sample program 314, 349
amqiechx sample program 312, 349
amqiinq2 sample program 314, 346
amqiinqx sample program 312, 346
amqiset2 sample program 314, 347
amqisetx sample program 312, 347
amqltmc0 trigger monitor 201
amqmech2 sample program 314, 349
amqmechx sample program 312, 349
amqminq2 sample program 314, 346
amqminqx sample program 312, 346
amqmset2 sample program 314, 347
amqmsetx sample program 312, 347
amqrgrma sample program 332
amqsbcg sample program 330
amqsbcg0 sample program 312, 330
amqsbcgc sample program 330
amqscic0 sample transaction 312, 359
amqscic21 sample transaction 312
amqsdlq sample program 312
amqsech sample program 349
amqsecha sample program 312, 349
AMQSECHA sample program 349
amqsechc sample program 349

AMQSERV4 sample program 199, 350,
351

amqsgbr sample program 328
amqsgbr0 sample program 312, 328
AMQSGBR4 sample program 328
amqsgbrc sample program 328
amqsget0 sample program 312, 330
AMQSGET4 sample program 330
amqsgetc sample program 312, 330
amqsgetw sample program 312, 330
amqsinqa sample program 346
amqsinqc sample program 346
amqsprma sample program 332
amqsptl0 sample program 327
amqsput0 sample program 312, 325
AMQSPUT4 sample program 325
amqsputc sample program 312, 325
amqsputw sample program 312, 325
amqsreq sample program 340
amqsreq0 sample program 312, 340
AMQSREQ4 sample program 340
amqsreqc sample program 340
amqsset sample program 347
amqsseta sample program 347
AMQSSETA sample program 347
amqssetc sample program 347
amqstrg sample program 350
amqstrg0 sample program 312, 350
AMQSTRG4 sample program 199, 350
amqstrgc sample program 350
amqstxgx sample program 312, 359
amqstxpx sample program 312, 359
amqstxsx sample program 312, 359
amqsvfc0 sample program 314, 350
AMQSVFC4 sample program 317, 350
amqsvfcx sample program 350
amqsxa4x sample transaction 312
amqsxab0.sqb sample 352
amqsxab0.sqc sample 352
amqsxaex sample transaction 312, 369
amqsxaf0.sqb sample 352
amqsxaf0.sqc sample 352
amqsxag0.c sample 352
amqsxag0.cbl sample 352
amqsxas0.sqb sample 352
amqsxas0.sqc sample 352
amqsxrma sample program 332
amqzsc (XA switch load module) 183
amqzsc21 (XA switch load module) 183
amqzsca (XA switch load module) 183
API (Application Programming Interface)

calls 60
dealing with failure of a call 47

API-crossing exit for OS/390 213
application data 19
application design

for more than one platform 18
overview 11

application queue 185
applications, writing 229
ApplIdentityData field 33

ApplOriginData field 33
assembler language

assemblers supported 423
examples

MQCLOSE 477
MQCONN 472
MQDISC 473
MQGET 482
MQGET with signaling 486
MQGET with wait option 484
MQINQ 490
MQOPEN for dynamic queue 474
MQOPEN for existing queue 475
MQPUT 478
MQPUT1 480
MQSET 490

macros 520
preparing your program to run 263
support for 73
using constants and structures 520
using the MQI 73

attributes
DefInputOpenOption 96
DefPriority 28
HardenGetBackout 31, 49
IndexType 128
inquiring about 167
MaxMsgLength 105, 120
MaxPriority 28
MsgDeliverySequence 31, 120
queue manager 35
queues 38
selectors 167
setting 167
Shareability 96
TriggerControl 195
TriggerDepth 196
TriggerInterval 197
TriggerMsgPriority 195
TriggerType 195

audit trail using message context 32
authority checking

alternate user authority on
MQOPEN 97

by MQCLOSE 89
by MQDISC 89
by MQOPEN 91

automatically starting an application
an example 341
how triggering works 185
introduction 14

B
backing out changes 31, 171
backout, skipping 138
BackoutCount field 31, 49
base queue 40
Basic

compilers supported 423

© Copyright IBM Corp. 1993, 2000 545

|

batch for MQSeries for OS/390
adapter 209
building an application 264
calling the stub dynamically 267
restrictions 77
support for 208

benefits of message queuing 9
bibliography 539
binding

FASTPATH 86
STANDARD 86

BookManager 542
browse cursor 96, 143
browsing (sample for MQSeries for

OS/390) 389
browsing messages 143
browsing messages in logical order 145
Buffer parameter 105
BufferLength parameter 119
building your application

batch with MQSeries for OS/390 264
CICS and MQSeries for OS/390 265
IMS 266
on AIX 243
on AS/400 249
on Digital OpenVMS 255
on Digital UNIX 257
on HP-UX 259
on NCR UNIX SVR4 MP-RAS,

R3.0 253
on OS/2 Warp 275
on OS/390 263
on SINIX or DC/OSx 279
on Sun Solaris 283
on Tandem NSK 287
on VSE/ESA 291
on Windows 293
on Windows NT 295

built-in formats 27

C
C++

support for 69
C++ language

compilers supported 423
C++ sample programs 311
C language

compilers supported 423
examples

MQCLOSE 433
MQCONN 428
MQDISC 429
MQGET 436
MQGET with signaling 439
MQGET with wait option 438
MQINQ 442
MQOPEN for dynamic queue 430
MQOPEN for existing queue 431
MQPUT 434
MQPUT1 435
MQSET 444

include files 516
support for 70

C language include files
<cmqc.h> 516
<cmqcfc.h> 516
<cmqxc.h> 516

C language include files (continued)
<cmqzc.h> 516
header files 516
include files 516

call interface 60
calling dynamically with MQSeries for

OS/390 267
CAM (credit application manager) 407
CCSID (Coded Character Set Identifier)

same as queue manager 25
CEDF (CICS Execution Diagnostic

Facility) 76, 211
CETR (CICS Trace Control

transaction) 272
channel

data-conversion exit 149
channel queue 38
CICS

adapter 210
API=crossing exit 213
calling the stub dynamically with

MQSeries for OS/390 267
COBOL applications 246, 297, 298
CSQCAPX 213
debugging programs 272
Execution Diagnostic Facility 76
MQSeries for OS/390 support 208
on AS/400 251
preparing C programs 247, 286
sample transaction for MQSeries for

AIX 247, 262
sample transaction for MQSeries for

SINIX and DC/OSx 281
sample transaction for MQSeries for

Sun Solaris 286
storage protection facility 215
trace 272
Trace Control transaction 272
with MQSeries for AIX 246
with MQSeries for HP-UX 262
with MQSeries for OS/2 Warp 276
with MQSeries for OS/390 265
with MQSeries for SINIX and

DC/OSx 281
with MQSeries for Sun Solaris 285
with MQSeries for Windows NT 296

CICS adapter
abends 210
QLOP abend 211
trace points 210
using CEDF 211

CICS bridge
3270 considerations 220
error handling 219
handling units of work 220
message structure 217
messages returned 219
senarios 221
writing applications 217

CICS Execution Diagnostic Facility
(CEDF) 211

CICS for OS/2 user exit 15 180
CICS sample transaction 359
CKQC transaction 83, 272
CKTI transaction 199, 204
client (MQSeries)

LU 6.2 link library 261

client (MQSeries) (continued)
MQSeries clients and servers 8
triggering support 185
what it is 6

cluster
what it is 5

cluster queue
MQOPEN option 95
overview 38

clusters (message affinities)
MQSeries techniques 15

COBOL
CICS applications 246, 297, 298
compilers supported 423
copy files 517
examples

MQCLOSE 453
MQCONN 448
MQDISC 448
MQGET 458
MQGET with signaling 461
MQGET with wait option 459
MQINQ 465
MQOPEN for dynamic queue 449
MQOPEN for existing queue 451
MQPUT 454
MQPUT1 456
MQSET 467

LITLINK directive 277, 280, 298
on AIX 244
on AS/400 249
on HP-UX 261
on OS/2 277
on SINIX or DC/OSx 280
on Sun Solaris 284
on Windows NT 297
support for 72
using named constants 73

Coded Character Set Identifier (CCSID)
same as queue manager 25

coded character sets 27
CodedCharSetId (CCSID) 25

message data 26
commit

single-phase 171
two-phase 171

committing changes 171
communication

connectionless 6
time-independent 7

compilers supported 423
compiling

for MQSeries for AIX 243
for MQSeries for AS/400 249
for MQSeries for AT&T GIS

UNIX 253
for MQSeries for Compaq (DIGITAL)

OpenVMS 255
for MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 257
for MQSeries for HP-UX 259
for MQSeries for OS/2 Warp 275
for MQSeries for OS/390 263
for MQSeries for SINIX and

DC/OSx 279
for MQSeries for Sun Solaris 283
for MQSeries for Windows 293

546 MQSeries Application Programming Guide

compiling (continued)
for MQSeries for Windows NT 295

completion code 68
confirmation of arrival (COA) report 21
confirmation of delivery (COD)

report 21
connecting to a queue manager 84, 86
connection handle

returned from MQCONN 85
returned from MQCONNX 86
using with MQGET 116
what it is 68

connectionless communication 6
constants in COBOL 73
context

default 106
identity 33
message 32
MQOPEN options 97
MQPUT options 106
origin 33

context (Credit Check sample
application) 413

Context field 103
control information 20
convert characters call 152
convert message data

MQGET 117, 141
copy files

how to use them 517
copying messages 143
correlation identifier 30
CorrelId field 30, 127
creating conversion-exit code 152
credit application manager (CAM) 407
credit check sample (MQSeries for

OS/390) 403
crtmqcvx 152
CRTMQCVX 152
CSQ4BAA1 sample 389
CSQ4BCA1 sample 389
CSQ4BVA1 sample 389
CSQ4CAC1 sample 395
CSQ4CCB5 sample 411
CSQ4CCC1 sample 395
CSQ4CCG1 sample 391
CSQ4CVB1 sample 407
CSQ4CVB2 sample 407
CSQ4CVB3 sample 410
CSQ4CVB4 sample 410
CSQ4CVB5 sample 411
CSQ4CVC1 sample 395
CSQ4CVD1 sample 400
CSQ4CVD2 sample 401
CSQ4CVD3 sample 401
CSQ4CVD4 sample 402
CSQ4CVD5 sample 403
CSQ4ICB3 sample 415
CSQ4TCD1 sample 400
CSQ4TCD2 sample 401
CSQ4TCD4 sample 402
CSQ4TCD5 sample 403
CSQ4TVD1 sample 400
CSQ4TVD2 sample 401
CSQ4TVD4 sample 402
CSQ4TVD5 sample 403
CSQCAPX sample 213

CSQQTRMN transaction 199, 204
cursor, browse 96, 143
CVTMQMDTA 152

D
data

application 19
message 19, 105

data conversion
amqsvfc0 sample program 350
AMQSVFC4 sample program 350
amqsvfcx sample program 350
application 26
convert characters call 152
convert MQSeries Data Type

command 152
create MQSeries conversion-exit

command 152
IMS bridge 228
interface 149
message 141
MQGET 117, 141
MQXCNVC call 62
OS/390 considerations 150
UNIX environment 161

data-conversion exit 149, 151
amqsvfc0 sample program 350
AMQSVFC4 sample program 350
amqsvfcx sample program 350
convert characters call 152
convert MQSeries Data Type

command 152
create MQSeries conversion-exit

command 152
IMS bridge 228
invoking 150
MQXCNVC call 62
skeleton 151
UNIX environment 161
writing

AS/400 155
Digital OpenVMS 160
OS/2 156
OS/390 158
Tandem NSK systems 159
UNIX systems 160
Windows NT 165

data conversion interface (DCI) 149
data definition files 63

copy files 515
header files 515
include files 515
macros 515

data in a message 19, 105
data types

elementary 62
structures 62

datagram 20
DataLength parameter 119
DCE sample exits 311
dead-letter (undelivered-message) queue

handler 52
overview 43
sample to deal with messages on

it 370
use within MQSeries for OS/390

sample 412

dead-letter (undelivered-message) queue
(continued)

using 51
dead-letter queue handler

brief description 52
sample 370

DeadLetterQName field 191
debugging programs 272
default context 106
defining alias for queue manager 93
DefInputOpenOption attribute 96
DefPriority attribute 28
design considerations

performance hints and tips 16
disconnecting from a queue manager 88
distribution lists 109

identifying 110
opening 110
putting messages to 112
using the MQPMR structure 113

DOS, no triggering support 185
DOS clients

compilers supported 423
dynamic linking of MQI calls for

MQSeries for OS/390 267
dynamic queue

closing temporary queue 99
creating 98
overview 41
permanent queue properties 41
temporary queue properties 41
when to use 42

dynamic XA resource management
structure 179

DynamicQName field 98

E
EBCDIC newline character

conversion 142
ECB (event control block) 137
Encina sample transaction 369
Encoding field 26
environments for MQSeries for

OS/390 207
errors

dead-letter (undelivered-message)
queue 51

dealing with failure of a call 47
incorrect message data 49
report message 49
system interruptions 47
undelivered-message queue 51

event control block 137
event-driven processing 8
event queue 38
examples

assembler language
MQCLOSE 477
MQCONN 472
MQDISC 473
MQGET 482
MQGET with signaling 486
MQGET with wait option 484
MQINQ 490
MQOPEN for dynamic queue 474
MQOPEN for existing queue 475
MQPUT 478

Index 547

examples (continued)
MQPUT1 480
MQSET 490

C
MQCLOSE 433
MQCONN 428
MQDISC 429
MQGET 436
MQGET with signaling 439
MQGET with wait option 438
MQINQ 442
MQOPEN for dynamic queue 430
MQOPEN for existing queue 431
MQPUT 434
MQPUT1 435
MQSET 444

COBOL
MQCLOSE 453
MQCONN 448
MQDISC 448
MQGET 458
MQGET with signaling 461
MQGET with wait option 459
MQINQ 465
MQOPEN for dynamic queue 449
MQOPEN for existing queue 451
MQPUT 454
MQPUT1 456
MQSET 467

PL/I
MQCLOSE 499
MQCONN 496
MQDISC 496
MQGET 504
MQGET with signaling 507
MQGET with wait option 505
MQINQ 511
MQOPEN for dynamic queue 497
MQOPEN for existing queue 499
MQPUT 500
MQPUT1 502
MQSET 513

exception report 21
exclusive access to a queue 96
Execution Diagnostic Facility 76
execution key of CICS programs 215
exit programs 213

data conversion 151
expiry report 21
external syncpoint

coordination 178
interfaces 179
restrictions 180
X/Open XA interface 179

F
FASTPATH binding 86
feedback codes, IMS bridge 227
Feedback field 23
fields

AlternateUserId 97
ApplIdentityData 33
ApplOriginData 33
BackoutCount 31, 49
Context 103
CorrelId 30, 127

fields (continued)
DeadLetterQName 191
DynamicQName 98
Encoding 26
Feedback 23
Format 26
GroupId

match options 127
MQMO 127

InitiationQName 190
MsgId 127
Persistence 30
Priority 28
PutApplName 33
PutApplType 33
PutDate 33
PutMsgRecFields 104
PutMsgRecOffset 104
PutMsgRecPtr 104
PutTime 33
RecsPresent 103
ReplyToQ 32
ReplyToQMgr 32
Report 21
ResolvedQMgrName 103
ResolvedQName 103
ResponseRecOffset 104
ResponseRecPtr 104
StrucId 102
UserIdentifier 33
Version 103
WaitInterval 118, 135

format
control information 25
message data 26

Format field 26
formats

built-in 27
user-defined 27

G
get (sample for MQSeries for

OS/390) 386
get-message options structure 116
getting

a particular message 127
message from triggered queue 198
message when the length is

unknown 144
messages 115
options 115

glossary 527
group

identifier 30
GroupStatus field

MQGMO structure 119

H
handle

scope of connection 85
scope of connection handle 92
scope of object handle 92
using 68
using object handle 91

HardenGetBackout attribute 31, 49
heap size

for OS/2 MQI client 276
MQSeries for Windows NT 296

HTML (Hypertext Markup
Language) 542

Hypertext Markup Language
(HTML) 542

I
identity context 33
IMS

adapter 211
building an MQSeries for OS/390

application 266
calling the stub dynamically with

MQSeries for OS/390 267
closing objects 91
enquiry application (IMS) 234
mapping MQSeries messages to

transactions 226
support for 208
using MQI calls 231
using syncpoints 231
writing a server application 231
writing an enquiry application 234
writing MQSeries applications 230

IMS bridge
alternate PCB 227
data conversion 228
feedback codes 227
IMS commands 225
LLZZ data segment 228
mapping MQSeries messages to

transactions 226
message segmentation 228
NAK 225
reply messages 227
sense codes 227
undelivered messages 225
writing applications 225

IMS commands, IMS bridge 226
include files

PL/I for MQSeries for OS/390 520
increasing MaxMsgLength 129
initiation queue 43

example to create one 189
what it is 187

InitiationQName field 190
inquiring about attributes

MQSeries for AS/400 sample
program 346

MQSeries for OS/2 Warp sample
program 346

MQSeries for OS/390 sample 395
MQSeries for UNIX sample

program 346
MQSeries for Windows NT sample

program 346
using MQINQ 167

interfaces to external syncpoint
managers 179

internal syncpoint coordination 177
invoking data-conversion exit 150

J
JCL (Job Control Language)

batch 264

548 MQSeries Application Programming Guide

JCL (Job Control Language) (continued)
CICS and MQSeries for OS/390 265
IMS 266

L
languages 69
languages supported 423
large messages

reference messages 129
segmented messages 129

LDAP (lightweight directory access
protocol) 301

libraries to use
with MQSeries for AIX 243
with MQSeries for AT&T GIS

UNIX 253
with MQSeries for Compaq

(DIGITAL) OpenVMS 255
with MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 257
with MQSeries for HP-UX 260
with MQSeries for OS/2 Warp 275
with MQSeries for SINIX and

DC/OSx 282
with MQSeries for Sun Solaris 284
with MQSeries for Windows 293
with MQSeries for Windows NT 295

library files 63
libsna.a 261
libsnastubs.a 261
lightweight directory access protocol

(LDAP) 301
linking

for MQSeries for AIX 243
for MQSeries for AS/400 249
for MQSeries for AT&T GIS

UNIX 253
for MQSeries for Compaq (DIGITAL)

OpenVMS 255
for MQSeries for DIGITAL UNIX

(Compaq Tru64 UNIX) 257
for MQSeries for HP-UX 259
for MQSeries for OS/2 Warp 275
for MQSeries for OS/390 263
for MQSeries for SINIX and

DC/OSx 279
for MQSeries for Sun Solaris 283
for MQSeries for Windows 293
for MQSeries for Windows NT 295

linking in the MQI client environment
when using LU 6.2 261

LLZZ data segment, IMS bridge 228
local queue 37
looking at a message 143

M
macros, assembler language 520
mail manager sample application

(MQSeries for OS/390) 396
MatchOptions field

MQGMO structure 118
maximum message length

increasing 129
MaxMsgLength attribute 105, 120
MaxPriority attribute 28

MCA (message channel agent), definition
of 4

message

backed out 31
browsing 143
browsing and removing 145
browsing in logical order 145
browsing when message length

unknown 144
channel agent definition 4
confirm arrival 21
confirm delivery 21
context

MQOPEN options 97
MQPUT options 106
types 32

copying 143
creating 19
data 19, 105
data conversion

considerations 26
MQGET 141

data format 25
datagram 20
definition 4
descriptor

MQMD structure 20
when using MQGET 116
when using MQPUT 102

design 13
exception 21
expiry 21
getting 115
getting a particular 127
groups 28
identifier 30
large 129
logical ordering 120
looking at 143
maximum size 105
negative action notification 21
notification of arrival 136
order of retrieval from a queue 120
originator information 33
persistence 30
persistence and triggers 202
physical ordering 120
positive action notification 21
priority 28, 120
priority and triggers 202
problem delivering 50
putting 101
putting one 107
reference 133
removing after browsing 145
reply 21
reply, IMS bridge 227
report 21, 49
request 20
retry sending 50
return to sender 51
sample to deal with those on

dead-letter queue 370
segmentation 130
segmented 29
selecting from a queue 30
signaling 136

message (continued)
size 105
structure 19
trigger 186, 202
trigger after queue manager

restart 202
trigger format 203
type for status information 21
type when no reply required 20
types 20
undeliverable, IMS bridge 226
undelivered 50
undelivered, sample to handle 370
use of types 20
waiting for 135

message affinities (clusters)
MQSeries techniques 15

message channel agent (MCA), definition
of 4

message context (Credit Check sample
application) 413

message data conversion, MQGET 117,
141

message handler sample (MQSeries for
OS/390) 415

message queue, definition of 4
Message Queue Interface 15

calls 60
data definition files 63
dealing with failure of a call 47
elementary data types 62
library files 63
structures 62
stub programs 63
using System/390 assembler 73

message queuing 3
benefits of 9
features 6

message segmentation, IMS bridge 228
messages

mapping to IMS transaction
types 226

model queue 40, 98
MQ*_DEFAULT values

with MQSeries for AIX 71
MQ_MSG_HEADER_LENGTH 106
MQCA_* values 167
MQCLOSE

authority checking 89
call parameters 99
closing a queue 99

MQCMIT 174
MQCONN

call parameters 84
scope of 85

MQCONNX 86
MQDH 105
MQDISC

authority checking 89
when to use 88

MQDLH 51, 105
MQGET

backing out changes 171
buffer size 119
call parameters 115
committing changes 171
data conversion 141

Index 549

MQGET (continued)
increase speed of 128
message data conversion 117
message options 116
order of message retrieval 120
to get a specific message 127
triggered queues 198
unknown message length 144
using MQGMO 116
using MQMD 116
when it fails 148
when to use 115

MQGMO 116
MQGMO_ACCEPT_TRUNCATED_MSG 119
MQGMO_BROWSE_* 287

FIRST 143
MSG_UNDER_CURSOR 144
NEXT 143

MQGMO_CONVERT 141
MQGMO_MARK_SKIP_BACKOUT 49

explanation 138
MQGMO_MSG_UNDER_CURSOR 145
MQGMO_WAIT 135
MQI (Message Queue Interface)

calls 60
client library files 63
data definition files 63
dealing with failure of a call 47
elementary data types 62
IMS applications 231
library files 63
overview 15
structures 62
stub programs 63
using System/390 assembler 73

MQI client
LU 6.2 link library 261

MQIA_* values 167
MQIIH 225
MQINQ

call parameters 168
use of selectors 167
when it fails 169

MQMD
overview 20
when using MQGET 116
when using MQPUT 102

MQMT_* values 20
MQOD 93
MQOO_* values 95
MQOPEN

browse cursor 143
call parameters 92
MQOO_* values 95
object handle 91
using MQOD 93
using options parameter 95

MQPMO 102
MQPUT

backing out changes 171
call parameters 101
committing changes 171
context information 106
if it fails 114
quiescing queue manager 103
syncpointing 103
using MQPMO 102

MQPUT1
call parameters 107
if it fails 114
performance 101

MQRMIXASwitch 179
MQRMIXASwitchDynamic 179
MQSeries applications

planning 11
testing 18

MQSeries client
connection to queue manager 85
using triggering 186
what it is 6

MQSeries data conversion interface 149
MQSeries for AIX

amqisetx 347
amqmsetx 347
amqsseta 347
amqzsc 183
amqzsc21 183
amqzsca 183
build TUXEDO server

environment 359
building your application 243
CICS support 246
compilers supported 423
key features 10
sample programs 311
scope of MQCONN 85
set sample 347
syncpoints 176
triggering using samples 341
TUXEDO samples 359
ubbstxcx.cfg example 363
XA switch load module 183

MQSeries for AS/400
AMQZSTUB 249
building your application 249
compilers supported 423
compiling 249
CRTCMOD 249
disconnecting from queue

manager 88
key features 10
linking 249
sample program

using triggering 343
SQL programming

considerations 251
syncpoint considerations with CICS

for AS/400 176
syncpoints 176, 181

MQSeries for AT&T GIS UNIX
amqisetx 347
amqmsetx 347
amqsseta 347
building your application 253
C compiler 253
compilers supported 423
flags when compiling 253
key features 10
link libraries 253
sample programs 311
set sample 347
syncpoints 176
triggering using samples 341
TUXEDO samples 359

MQSeries for AT&T GIS UNIX
(continued)

ubbstxcx.cfg example 363
MQSeries for Compaq (DIGITAL)

OpenVMS
building your application 255
C compiler 255
compilers supported 423
flags when compiling 255
link libraries 255
sample programs 311

MQSeries for DIGITAL UNIX (Compaq
Tru64 UNIX)

building your application 257
compilers supported 423
link libraries 257
sample programs 311

MQSeries for HP-UX
amqisetx 347
amqmsetx 347
amqsseta 347
amqzsc 183
build TUXEDO server

environment 361
building your application 259
CICS support 262
compilers supported 423
sample programs 311
scope of MQCONN 85
set sample 347
syncpoints 176
triggering using samples 341
TUXEDO samples 359
ubbstxcx.cfg example 363
XA switch load module 183

MQSeries for OS/2 Warp
building your application 275
CICS support 276
compilers supported 423
key features 10
sample programs 311
scope of MQCONN 85
syncpoints 176
Transaction Server support 276, 278
triggering using samples 341
TZ environment variable 33

MQSeries for OS/390
building your application 263
CMQA 520
CMQDLHA 520
CMQDXPA 520
CMQEPP 520
CMQGMOA 520
CMQIIHA 520
CMQMDA 520
CMQODA 520
CMQP 520
CMQPMOA 520
CMQTMA 520
CMQTMC2A 520
CMQXA 520
CMQXPA 520
CMQXQHA 520
compilers and assemblers

supported 423
CSQBSTUB 264
CSQCSTUB 266

550 MQSeries Application Programming Guide

MQSeries for OS/390 (continued)
CSQQSTUB 266
key features 9
requesting no backout of

MQGET 138
using signaling 136

MQSeries for SINIX and DC/OSx
build TUXEDO server

environment 362, 363
building your application 279
CICS support 281
compilers supported 423
flags when compiling 279
link libraries 282
sample programs 311

MQSeries for Sun Solaris
build TUXEDO server

environment 360, 363
building your application 283
C compiler 283
CICS support 285
compilers supported 423
link libraries 284
sample programs 311

MQSeries for Tandem NonStop Kernel
building your application 287
compilers supported 423
notification of message arrival 136
sample programs 311
syncpoint considerations 182
using signaling 136

MQSeries for VSE/ESA
building your application 291
compilers supported 423
sample programs 311

MQSeries for Windows
building your application 293
sample programs 311
using signaling 136

MQSeries for Windows NT
build TUXEDO server

environment 364
building your application 295
CICS support 296
compilers supported 423
key features 10
sample programs 311
scope of MQCONN 85
syncpoints 176
Transaction Server support 296
triggering using samples 341
TUXEDO sample makefile 366
TUXEDO samples 359
ubbstxcn.cfg example 365

MQSeries for Windows V2.0
compilers supported 423

MQSeries for Windows V2.1
compilers supported 423

MQSeries object
closing 99
creating 12
introduction 12
namelist 43
naming 45
opening 91
process definition

attributes 44

MQSeries object (continued)
process definition (continued)

create 190
queue 36
queue manager 35
rules for naming 45
storage class 44
what it is 35

MQSeries on UNIX systems
key features 10
sample programs 311
syncpoints 176
triggering using samples 341
TUXEDO 359
ubbstxcx.cfg example 363

MQSeries publications 539
MQSeries Workflow 234
MQSET

attribute list 169
call parameters 169
use of selectors 167

MQTM 203
MQTM (trigger message) 201
MQTMC (trigger message,

character) 201
MQTMC2 (trigger message,

character) 201
MQXCNVC data-conversion call 62
MQXQH 105
MsgDeliverySequence attribute 31, 120
MsgId field 127
MsgToken field

MQGMO structure 119

N
NAK, IMS bridge 227
name resolution 46, 93
namelist

attributes 43
opening 91
rules for naming 45
sample application 410

naming of MQSeries objects 45
negative action notification (NAN)

report 21
notification of message arrival 136

O
object

closing 99
creating 12
descriptor 93
handle 68
introduction 12
namelist 43
naming 45
opening 91
process definition 190

attributes 44
queue 36
queue manager 35
rules for naming 45
storage class 44
using handle 91
what it is 35

object-oriented programming (OOP) 237
OOP (object-oriented programming) 237
opening an MQSeries object 91
opening distribution lists

identifying distribution lists 110
identifying Object Records 110
the MQOD structure 110
the MQOR structure 110

Options field
MQGMO structure 117
MQPMO structure 103

Options parameter (MQOPEN call) 95
order of message retrieval 120
origin context 33
OS/390

batch restrictions 77
OpenEdition 212
support for 208
WLM (workload manager) 234
workload manager (WLM) 234

OTMA sense codes 227

P
parameters

Buffer 105
BufferLength 119
DataLength 119
Options 95

PDF (Portable Document Format) 542
performance

design hints and tips 16
MQGET and buffer size 119
MQGET for a particular message 128
MQPUT1 101
persistent messages 30

permanent dynamic queue,
properties 41

Persistence field 30
PL/I

CMQEPP 520
CMQP 520
compilers supported 423
examples

MQCLOSE 499
MQCONN 496
MQDISC 496
MQGET 504
MQGET with signaling 507
MQGET with wait option 505
MQINQ 511
MQOPEN for dynamic queue 497
MQOPEN for existing queue 499
MQPUT 500
MQPUT1 502
MQSET 513

include files 520
on AIX 245
on OS/2 278
on Windows NT 299
support for 76

planning an MQSeries application 11
platform support

list of 16
Portable Document Format (PDF) 542
positive action notification (PAN)

report 21
PostScript format 542

Index 551

print message (sample for MQSeries for
OS/390) 391

Priority field 28
priority in messages 28
problem delivering a message,

overview 31
problem determination

abend codes issued by the CICS
adapter 210

trace points in CICS adapter 210
using CEDF with the CICS

adapter 211
problem determination, use of report

message 49
process definition object

attributes 44
example to create one 190
opening 91
rules for naming 45
triggering prerequisite 190
what it is 186

ProcessName 191, 201
programming languages 69
publications

MQSeries 539
put (sample for MQSeries for

OS/390) 384
put-message options 102
PutApplName field 33
PutApplType field 33
PutDate field 33
PutMsgRecFields field 104
PutMsgRecOffset field 104
PutMsgRecPtr field 104
PutTime field 33
putting

messages 101
one message 107

putting messages to a distribution list
the MQPMR structure 113

Q
QLOP abend, CICS adapter 211
QLOP abend on MQSeries for

OS/390 381
QMQM library 516
queue

alias 37, 40
application 186
attributes 38
authority check on MQOPEN 91
base 40
channel 38
closing 91, 99
cluster 38
creating 37
dead-letter 43, 51
dead-letter on MQSeries for

OS/390 412
definition 4
dynamic

permanent 41
temporary 41

dynamic, creation of 98
event 38
exclusive access 96

queue (continued)
handle 91
initiation 43, 187
introduction to 36
local definition 37
model 40, 98
name resolution 46
name resolution when remote 98
object handle 91
opening 91
order of messages 30
remote

definition 37
putting messages 106
using 39
using local definition 93
using MQOPEN 98

reply-to 32
resolving name 93
rules for naming 45
selecting messages 30
shared access 96
system admin command 43
system command 38
system command input 43
system default 38, 43
transmission 38, 42
triggered 197
undelivered message 51
undelivered-message 43

queue attributes for MQSeries for OS/390
sample application 395

queue manager
alias definition 93
attributes 35
authority checking 89
connecting using MQCONN 84
connecting using MQCONNX 86
definition 5
disconnecting 88
location of default 84
number per system 5
reply-to 32
restart and trigger messages 202
scope of MQCONN 85
workload management 36

queuing
definition 3
features 6

quiescing connection
MQGET 117

quiescing queue manager
how applications should react 48
MQCONN 85
MQOPEN 97
MQPUT 103

R
reason codes 68
recoverable resource manager services

(RRS)
batch adapter 209
what it is 175

recovery 8, 208
RecsPresent field 103

reenterable assembler-language
programs 75

reference messages 133
remote queue

definition 37
using 39
using local definition of 93
using MQOPEN 98

reply message 21
reply messages, IMS bridge 227
reply-to queue 32
reply-to queue manager 32
ReplyToQ field 32
ReplyToQMgr field 32
report

confirmation of arrival (COA) 21
confirmation of delivery (COD) 21
exception 21
expiry 21
negative action notification

(NAN) 21
positive action notification (PAN) 21

Report field 21
report message

creating 49
options 22
type of 21

reports
application-generated 24
MQSeries-generated 23
retrieval of 24
segmented messages 23

request message 20
resolution of queue names 46, 93
ResolvedQMgrName field 103
ResolvedQName field

MQGMO structure 118
MQPMO structure 103

resource manager, XA compliant
name 179

ResponseRecOffset field 104
ResponseRecPtr field 104
restrictions in OS/390 batch 77
retry sending message 50
return codes 68
ReturnedLength field

MQGMO structure 119
RPG language

compilers supported 423
on AS/400 251
support for 76

RPG sample programs 311
RRS (recoverable resource manager

services)
batch adapter 209
what it is 175

running a program automatically
an example 341
how triggering works 185

S
sample applications

API-crossing exit for OS/390 213
sample applications for MQSeries for

OS/390
browse 389

552 MQSeries Application Programming Guide

sample applications for MQSeries for
OS/390 (continued)

credit check 403
features of MQI demonstrated 373
get 386
logging on to CICS 380
mail manager 396
message handler 415
preparing in batch 377
preparing in CICS Transaction Server

for OS/390 380
preparing in IMS 383
preparing in TSO 378
print message 391
put 384
queue attributes 395

sample programs
building C versions 321
building COBOL versions 322
building TAL versions 323
C++ 311
DCE exits 311
preparing and running

AS/400 319
Digital OpenVMS systems 319
OS/2 and Windows NT 320
Tandem NSK 321
UNIX systems 319
Windows 323

RPG 311
sample programs for MQSeries for

AS/400
AMQ0ECHA 349
AMQ0GET4 330
AMQ0REQ4 340
AMQ0SETA 347
AMQSECHA 349
AMQSERV4 350, 351
AMQSGBR4 328
AMQSGET4 330
AMQSPUT4 325
AMQSREQ4 340
AMQSSETA 347
AMQSTRG4 350, 351
AMQSVFC4 350
put 325
trigger monitor 351
trigger server 351
using remote queues 352
using triggering 343

sample programs for MQSeries for OS/2
Warp, Windows NT, and UNIX systems

amq0gbr0 328
amq0get0 330
amq0put0 325
amq0req0 340
amqiech2 349
amqiechx 349
amqiinq2 346
amqiinqx 346
amqiset2 347
amqisetx 347
amqmech2 349
amqmechx 349
amqminq2 346
amqminqx 346
amqmset2 347

sample programs for MQSeries for OS/2
Warp, Windows NT, and UNIX
systems (continued)

amqmsetx 347
amqrgrm 332
amqrgrma 332
amqsbcg 330
amqsbcg0 330
amqsbcgc 330
amqscic0 359
amqsdlq 370
amqsech 349
amqsecha 349
amqsechc 349
amqsgbr 328
amqsgbr0 328
amqsgbrc 328
amqsget0 330
amqsgetc 330
amqsgetw 330
amqsinq 346
amqsinqa 346
amqsinqc 346
amqsprm 332
amqsprma 332
amqsptl0 327
amqsput0 325
amqsputc 325
amqsputw 325
amqsreq 340
amqsreq0 340
amqsreqc 340
amqsset 347
amqsseta 347
amqssetc 347
amqstrg 350
amqstrg0 350
amqstrgc 350
amqstxgx 368
amqstxpx 368
amqstxsx.c 359
amqsvfc0 350
amqsvfcx 350
amqsxab0.sqb 352
amqsxab0.sqc 352
amqsxaf0.sqb 352
amqsxaf0.sqc 352
amqsxag0.c 352
amqsxag0.cbl 352
amqsxas0.sqb 352
amqsxas0.sqc 352
amqsxrm 332
amqsxrma 332
browse 328
browser 330
CICS transaction 359
data conversion 350
dead-letter queue handler 370
distribution list 327
echo 349
get 330
inquire 346
put 325
reference messages 332
request 340
set sample 347
trigger monitor 350

sample programs for MQSeries for OS/2
Warp, Windows NT, and UNIX
systems (continued)

TUXEDO 359
TUXEDO get 368
TUXEDO put 368
using remote queues 352
using triggering 341
XA transaction manager 352

scope, handles 85, 92
security 8
Segmentation field

MQGMO structure 119
segmented messages 29

reports 23
segmented messages, IMS bridge 228
SegmentStatus field

MQGMO structure 119
selection of messages from queues 30
selector for attributes 167
send message, retry on failure 50
sense codes, IMS 227
server application (IMS) 231
server environment

TUXEDO 359
setting attributes 167
setting attributes on MQSeries for

OS/390 395
Shareability attribute 96
shared access to a queue 96
Signal handling on UNIX 78
Signal1 field 118, 137
Signal2 field

MQGMO structure 118
signaling 14, 136
single-phase commit 171
size of messages 105
skeleton data-conversion exit 151
skipping backout 138
softcopy books 542
SQL on AS/400 251
stack size

for OS/2 MQI client 276
MQSeries for Windows NT 296

starting applications automatically
an example 341
how triggering works 185
introduction 14

static XA resource management
structure 179

store-and-forward 7
StrucId field

MQGMO structure 117
MQPMO structure 102

structures 62
in COBOL copy files 517

stub program for MQSeries for OS/390
batch 264
CICS 266
CSQBSTUB 264

calling dynamically 267
CSQCSTUB 266

calling dynamically 267
CSQQSTUB 266
IMS 266

stub programs 63

Index 553

syncpoint
calls by platform 61
considerations 172
external coordination 178
external manager interfaces 179
IMS applications 231
in CICS for AS/400 applications 176
in Tandem NSK applications 182
in the Credit Check sample

application 413
internal coordination 177
MQBACK 175
MQCMIT 174
overview 8
single-phase commit 171
two-phase commit 171
with MQSeries for AIX 176
with MQSeries for AS/400 176, 181
with MQSeries for HP-UX 176
with MQSeries for OS/2 Warp 176
with MQSeries for OS/390 208
with MQSeries for Windows NT 176
with MQSeries on UNIX systems 176
X/Open XA interface 179

system command queue 38
system command queues 43
system default queue 38, 43
system interruptions 47

T
TAL

compilers supported 423
support for 77

techniques with MQSeries 14
temporary dynamic queue

closing 99
properties 41

terminology used in this book 527
testing MQSeries applications 18
threads, maximum no. 85
time-independent communication 7
TMI (trigger monitor interface) 201
trace entries for CICS adapter 272
trace points in CICS adapter 210
Transaction Server

with MQSeries for OS/2 Warp 276,
278

with MQSeries for Windows NT 296
translation of data 142
transmission queue 38, 42
trigger

event 186
conditions for 191
controlling 195

feedback code 204
following queue manager restart 202
message

definition 186
MQTM format 203
object attribute changes 202
persistence and priority 202
properties 202
without application messages 193

monitor
what it is 187
writing your own 201

monitor, provided
amqltmc0 199

trigger (continued)
monitor, provided (continued)

AMQSERV4 199
AMQSTRG0 199
AMQSTRG4 199
AMQSTRG4 sample program 351
CKTI 199
CSQQTRMN 199
runmqtmc 199
runmqtrm 199

process definition 186
server

AMQSERV4 sample program 351
type of 196

trigger monitor
provided, by platform 199
what it is 187

trigger monitor interface (TMI) 201
TriggerControl attribute 195
TriggerDepth attribute 196
triggered applications 287
triggering

application design 197
application queue 185
example of type DEPTH 196
example of type EVERY 196
example of type FIRST 196, 197
getting messages 198
how it works 187
how it works with the samples 341
IMS bridge 230
introduction 14, 185
no DOS support 185
points to note 188
prerequisites 189
process definition attributes 44
sample program

for MQSeries for AS/400 343
sample trigger monitor for MQSeries

for OS/2 Warp 350
sample trigger monitor for MQSeries

for Windows NT 350
sample trigger monitor for MQSeries

on UNIX systems 350
sequence of events 187
setting conditions 195
what it is 185
when it does not work 204
with the request sample on MQSeries

for OS/2 Warp 341
with the request sample on MQSeries

for Windows NT 341
with the request sample on MQSeries

on UNIX systems 341
with units of work 197
without application messages 193

triggering for MQSeries for OS/390
sample application 407

TriggerInterval attribute 197
TriggerMsgPriority attribute 195
TriggerType attribute 195
trusted applications 86
TUXEDO sample makefile for MQSeries

for Windows NT 366
TUXEDO sample programs

amqstxgx 359
amqstxpx 359

TUXEDO sample programs (continued)
amqstxsx 359
building server environment 359

TUXEDO ubbstxcn.cfg example for
MQSeries for Windows NT 365

TUXEDO ubbstxcx.cfg example for
MQSeries on UNIX systems 363

two-phase commit 171
TZ environment variable

MQSeries for OS/2 Warp only 33

U
ubbstxcn.cfg example for MQSeries for

Windows NT 365
ubbstxcx.cfg example for MQSeries on

UNIX systems 363
undelivered-message queue, using 51
undelivered messages, IMS bridge 226
unit of work

message persistence 30
syncpoint 171
triggering 197

UNIX signal handling 78
use of message types 20
user-defined formats 27
user exits 213
UserIdentifier field 33

V
valid syntax

creating conversion-exit code 153
input data set 153

Version field 103
MQGMO structure 117
MQPMO structure 103

Visual Basic
on Windows 293
on Windows NT 299

Visual Basic language
module files 516, 517

Visual Basic module files
CMQB.BAS 517
CMQB3.BAS 516
CMQB4.BAS 516, 517
CMQBB.BAS 517
CMQCFB.BAS 517
CMQXB.BAS 517
module files 516, 517

W
waiting for messages 14, 135
WaitInterval field 118, 135
Windows 3.1 clients

compilers supported 423
Windows 95 and Windows 98 clients

compilers supported 423
Windows Help 542
WLM (workload manager) 234
Workflow 234
workload management

queue manager 36
workload manager (WLM) 234
writing applications 229

554 MQSeries Application Programming Guide

writing exit programs

data conversion
Digital OpenVMS 160
MQSeries for AS/400 155
MQSeries for OS/2 Warp 156
MQSeries for OS/390 158
Tandem NSK systems 159
UNIX systems 160
Windows NT 165

X
X/Open XA interface support 179

XA resource manager

name 179

XA transaction manager samples 352

Index 555

556 MQSeries Application Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1993, 2000 557

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-0807-10

Spine information:

IBM MQSeries® MQSeries Application Programming Guide

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Appearance of text in this book
	Terms used in this book

	Summary of changes
	Changes for this edition (SC33-0807-10)
	Changes for the tenth edition (SC33-0807-09)
	Changes for the ninth edition (SC33-0807-08)

	Part 1. Designing applications that use MQSeries
	Chapter 1. Introduction to message queuing
	What is message queuing?
	What is a message?
	Message descriptor
	Message channel agent

	What is a message queue?
	What is a queue manager?
	What is a cluster?
	What is an MQSeries client?
	Main features of message queuing
	MQSeries clients and servers

	Benefits of message queuing to the application designer anddeveloper
	What can you do with MQSeries products?
	MQSeries for OS/390
	MQSeries for non-OS/390 platforms

	Chapter 2. Overview of application design
	Planning your design
	Using MQSeries objects
	Designing your messages
	MQSeries techniques
	Waiting for messages
	Correlating replies
	Setting and using context information
	Starting MQSeries programs automatically
	Generating MQSeries reports
	Clusters and message affinities

	Application programming
	Call interface
	Design for performance - hints and tips
	Programming platforms
	Applications for more than one platform

	Testing MQSeries applications

	Chapter 3. MQSeries messages
	Message descriptor
	Types of message
	Datagrams
	Request messages
	Reply messages
	Report messages
	Types of report message
	Report message options

	Reports and segmented messages
	MQSeries-generated reports
	Application-generated reports
	Retrieval of reports
	Back-level queue managers

	Format of message control information and message data
	Format of message control information
	Format of message data
	Application data conversion
	Conversion at the sending queue manager
	Conversion at the receiving queue manager
	Coded character sets

	Message priorities
	Message groups
	Message persistence
	Selecting messages from queues
	Messages that fail to be delivered
	Messages that are backed out
	Reply-to queue and queue manager
	Message context
	Identity context
	Origin context

	Chapter 4. MQSeries objects
	Queue managers
	Attributes of queue managers
	Queue managers and workload management

	Queues
	Types of queue
	Types of local queue

	Attributes of queues
	Remote queues
	Alias queues
	Model queues
	Dynamic queues
	Properties of temporary dynamic queues
	Properties of permanent dynamic queues
	Uses of dynamic queues
	Recommendations for uses of dynamic queues

	Transmission queues
	Initiation queues
	Dead-letter (undelivered-message) queues
	System command queues
	System default queues

	Namelists
	Process definitions
	Channels
	Storage classes
	Rules for naming MQSeries objects
	Queue names
	Process definition and namelist names
	Channel names
	Reserved object names

	Chapter 5. Handling program errors
	Locally determined errors
	Failure of an MQI call
	System interruptions
	Messages containing incorrect data

	Using report messages for problem determination
	Creating report messages
	Requesting and receiving (MQGET) report messages

	Remotely determined errors
	Problems delivering a message
	Retry message delivery
	Return message to sender

	Using the dead-letter (undelivered-message) queue
	Dead-letter queue processing

	Part 2. Writing an MQSeries application
	Chapter 6. Introducing the Message Queue Interface
	What is in the MQI?
	Calls
	Syncpoint calls
	MQSeries for OS/390 calls
	OS/400 calls
	MQSeries for Tandem NonStop Kernel calls
	MQSeries for VSE/ESA calls
	MQSeries calls on other platforms

	Data conversion
	Structures
	Elementary data types
	MQSeries data definitions
	MQSeries stub programs and library files
	MQSeries for OS/390
	MQSeries for AS/400
	MQSeries for OS/2 Warp
	MQSeries for Windows
	MQSeries for Windows NT
	MQSeries for AIX
	MQSeries for AT&T GIS UNIX
	MQSeries for Compaq (DIGITAL) OpenVMS
	MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)
	MQSeries for HP-UX
	MQSeries for SINIX and DC/OSx
	DOS and Windows 3.1 clients
	MQSeries for Sun Solaris
	MQSeries for VSE/ESA
	MQSeries for Tandem NonStop Kernel

	Parameters common to all the calls
	Using connection and object handles
	Understanding return codes

	Specifying buffers
	Programming language considerations
	Coding in C
	Parameters of the MQI calls
	Parameters with undefined data type
	Data types
	Manipulating binary strings
	Manipulating character strings
	Initial values for structures
	Initial values for dynamic structures
	Use from C++

	Coding in COBOL
	Named constants

	Coding in System/390® assembler language
	Names
	Using the MQI calls
	Declaring constants
	Specifying the name of a structure

	Specifying the form of a structure
	Controlling the listing
	Specifying initial values for fields
	Writing reenterable programs
	Using CEDF

	Coding in RPG
	Coding in PL/I
	Structures
	Named constants

	Coding in TAL

	OS/390 batch considerations
	UNIX signal handling on MQSeries Version 5 products
	Unthreaded applications
	Threaded applications
	Synchronous signals
	Asynchronous signals
	MQSeries use of SIGALRM
	Threaded client applications - additional considerations

	Fastpath (trusted) applications
	MQI function calls within signal handlers
	Signals during MQI calls
	User exits and installable services

	Chapter 7. Connecting and disconnecting a queue manager
	Connecting to a queue manager using the MQCONN call
	Scope of MQCONN

	Connecting to a queue manager using the MQCONNX call
	MQCNO_STANDARD_BINDING
	MQCNO_FASTPATH_BINDING
	Restrictions
	Environment variable

	Disconnecting programs from a queue manager using MQDISC
	Authority checking

	Chapter 8. Opening and closing objects
	Opening objects using the MQOPEN call
	Scope of an object handle
	Identifying objects (the MQOD structure)
	Name resolution
	Using the options of the MQOPEN call
	MQOPEN option for cluster queue
	MQOPEN option for putting messages
	MQOPEN option for browsing messages
	MQOPEN options for removing messages
	MQOPEN options for setting and inquiring about attributes
	MQOPEN options relating to message context
	MQOPEN option for alternate user authority
	MQOPEN option for queue manager quiescing

	Creating dynamic queues
	Opening remote queues
	Closing objects using the MQCLOSE call

	Chapter 9. Putting messages on a queue
	Putting messages on a local queue using the MQPUT call
	Specifying handles
	Defining messages using the MQMD structure
	Specifying options using the MQPMO structure
	The data in your message

	Putting messages on a remote queue
	Controlling context information
	Passing identity context
	Passing all context
	Setting identity context
	Setting all context

	Putting one message on a queue using the MQPUT1 call
	Distribution lists
	Opening distribution lists
	Using the MQOD structure
	Using the MQOR structure
	Using the MQRR structure
	Using the MQOPEN options

	Putting messages to a distribution list
	Using the MQPMR structure
	Using MQPUT1

	Some cases where the put calls fail

	Chapter 10. Getting messages from a queue
	Getting messages from a queue using the MQGET call
	Specifying connection handles
	Describing messages using the MQMD structure and theMQGET call
	Specifying MQGET options using the MQGMO structure
	Specifying the size of the buffer area

	The order in which messages are retrieved from a queue
	Priority
	Logical and physical ordering
	Grouping logical messages
	Putting and getting a group that spans units of work

	Getting a particular message
	Type of index
	Handling large messages
	Increasing the maximum message length
	Message segmentation
	Segmentation and reassembly by queue manager
	Application segmentation
	Application segmentation of logical messages
	Putting and getting a segmented message that spans units ofwork

	Reference messages
	Using the MQRMH and MQMD structures

	Waiting for messages
	Signaling
	To set a signal
	When the message arrives

	Skipping backout
	Application data conversion
	Conversion of EBCDIC newline characters

	Browsing messages on a queue
	The browse cursor
	Queues in FIFO (first in, first out) sequence
	Queues in priority sequence
	Uncommitted messages
	Change to queue sequence

	Browsing messages when message length unknown
	Removing a message you have browsed

	Browsing messages in logical order
	Browsing messages in groups
	Browsing and retrieving destructively

	Some cases where the MQGET call fails

	Chapter 11. Writing data-conversion exits
	Invoking the data-conversion exit
	Data conversion on OS/390

	Writing a data-conversion exit program
	Skeleton source file
	Convert characters call
	Utility for creating conversion-exit code
	Invoking the CSQUCVX utility on OS/390
	Data definition statements
	Error messages in OS/2, Windows NT, and UNIX systems

	Valid syntax
	Example of valid syntax for the input data set

	Writing a data-conversion exit program for MQSeries for AS/400
	Writing a data-conversion exit for MQSeries for OS/2 Warp
	Writing a data-conversion exit program for MQSeries for OS/390
	Writing a data-conversion exit for MQSeries for Tandem NonStopKernel
	Reusing data-conversion exit programs

	Writing a data-conversion exit for MQSeries on UNIX systems andCompaq (DIGITAL) OpenVMS
	UNIX environment
	Non-threaded environment
	Threaded environment

	Compiling data-conversion exits on Digital OpenVMS
	Compiling data-conversion exits on UNIX
	On AIX 4.2
	On AIX 4.3
	On AT&T GIS UNIX
	On DIGITAL UNIX
	On HP-UX Version 10.20
	On HP-UX Version 11.00
	On SINIX
	On DC/OSx
	On Sun Solaris

	Writing a data-conversion exit for MQSeries for Windows NT

	Chapter 12. Inquiring about and setting object attributes
	Inquiring about the attributes of an object
	Some cases where the MQINQ call fails
	Setting queue attributes

	Chapter 13. Committing and backing out units of work
	Syncpoint considerations in MQSeries applications
	Syncpoints in MQSeries for OS/390 applications
	Syncpoints in CICS Transaction Server for OS/390 and CICSfor MVS/ESA applications
	Syncpoints in IMS applications
	Syncpoints in OS/390 batch applications
	Committing changes using the MQCMIT call
	Backing out changes using the MQBACK call
	Transaction management and recoverable resource managerservices

	Syncpoints in CICS for AS/400 applications
	Syncpoints in MQSeries for OS/2 Warp, MQSeries for Windows NT,MQSeries for AS/400, and MQSeries on UNIX systems
	Local units of work
	Global units of work
	Internal syncpoint coordination
	External syncpoint coordination

	Interfaces to external syncpoint managers

	Interfaces to the AS/400 external syncpoint manager
	Syncpoints in MQSeries for Tandem NonStop Kernel applications
	General XA support

	Chapter 14. Starting MQSeries applications using triggers
	What is triggering?
	Prerequisites for triggering
	Conditions for a trigger event
	Controlling trigger events
	Example of the use of trigger type EVERY
	Example of the use of trigger type FIRST
	Example of the use of trigger type DEPTH
	Special case of trigger type FIRST

	Designing an application that uses triggered queues
	Trigger messages and units of work
	Getting messages from a triggered queue

	Trigger monitors
	MQSeries for OS/390 trigger monitors
	MQSeries for OS/2 Warp, Digital OpenVMS, Tandem NSK,UNIX systems, AS/400, and Windows NT trigger monitors
	For CICS:

	MQSeries for AS/400 trigger monitors

	Properties of trigger messages
	Persistence and priority of trigger messages
	Queue manager restart and trigger messages
	Trigger messages and changes to object attributes
	Format of trigger messages

	When triggering does not work
	How CKTI detects errors
	How CSQQTRMN detects errors
	How RUNMQTRM detects errors

	Chapter 15. Using and writing applications on MQSeries forOS/390
	Environment-dependent MQSeries for OS/390 functions
	Program debugging facilities
	Syncpoint support
	Recovery support
	The MQSeries for OS/390 interface with the application environment
	The batch adapter
	RRS batch adapter
	Migration

	The CICS adapter
	Adapter trace points
	Abends
	Using the CICS Execution Diagnostic Facility

	The IMS adapter

	Writing OS/390 OpenEdition® applications
	The API-crossing exit for OS/390
	Using the API-crossing exit
	Defining the exit program
	How the exit is invoked
	Communicating with the exit program

	Writing your own exit program
	Usage notes

	The sample API-crossing exit program, CSQCAPX
	Design of the sample exit program

	Preparing and using the API-crossing exit

	Writing MQSeries-CICS bridge applications
	Structure of the MQSeries message
	MQMD attributes
	Using the MQCIH header
	Messages returned from the CICS bridge
	Error handling by the CICS bridge

	Handling a unit of work
	Programming considerations for running 3270 transactions
	Scenarios

	Writing MQSeries-IMS bridge applications
	How the MQSeries-IMS bridge deals with messages
	Mapping MQSeries messages to IMS transaction types
	If the message cannot be put to the IMS queue
	IMS bridge feedback codes
	Reply messages from IMS
	Message segmentation
	Data conversion

	Writing your program
	Dealing with unsolicited messages from IMS
	Writing MQSeries applications to invoke IMS conversationaltransactions
	Triggering

	Writing IMS applications using MQSeries
	Syncpoints in IMS applications
	MQI calls in IMS applications
	Server applications
	Enquiry applications

	MQSeries Workflow

	Chapter 16. Object-oriented programming with MQSeries
	What is in the MQSeries Object Model?
	Classes
	Object references
	Return codes

	Programming language considerations
	Coding in C++
	Coding in Java
	Coding in LotusScript
	Coding in ActiveX

	Part 3. Building an MQSeries application
	Chapter 17. Building your application on AIX
	Preparing C programs
	Linking libraries

	Preparing COBOL programs
	Preparing COBOL programs using IBM COBOL SET for AIX
	Preparing COBOL programs using Micro Focus COBOL

	Preparing PL/I programs
	Preparing CICS programs
	CICS on Open Systems support
	Preparing CICS COBOL programs using IBM COBOL SET for AIX
	Preparing CICS COBOL programs using Micro Focus COBOL
	Preparing CICS C programs

	Chapter 18. Building your application on AS/400
	Preparing C programs
	Preparing COBOL programs
	Preparing CICS programs
	Preparing RPG programs
	SQL programming considerations
	AS/400 programming considerations
	QMQM activation group

	Chapter 19. Building your application on AT&T GIS UNIX
	Preparing C programs
	C compiler flags
	Linking libraries

	Chapter 20. Building your application on Digital OpenVMS
	Preparing C programs
	C compiler version
	C compiler flags
	Linking libraries

	Preparing COBOL programs
	COBOL compiler flags
	Linking libraries

	Chapter 21. Building your application on Digital UNIX
	Preparing C programs
	Linking libraries

	Chapter 22. Building your application on HP-UX
	Preparing C programs
	Preparing C programs on HP-UX V10.20
	Preparing C programs on HP-UX V11.00
	Linking libraries

	Preparing COBOL programs
	Programs to run in the MQSeries client environment

	Preparing CICS programs
	CICS on Open Systems support
	CICS C sample transaction
	Preparing CICS COBOL programs using Micro Focus COBOL

	Chapter 23. Building your application on OS/390
	Preparing your program to run
	Building OS/390 batch applications
	Building CICS applications
	Building IMS (BMP or MPP) applications

	Dynamically calling the MQSeries stub
	Debugging your programs
	Debugging CICS programs
	CICS trace

	Debugging TSO programs

	Chapter 24. Building your application on OS/2 Warp
	Preparing C programs
	Preparing CICS and Transaction Server programs

	Preparing COBOL programs
	Preparing Transaction Server programs

	Preparing PL/I programs

	Chapter 25. Building your application on SINIX or DC/OSx
	Preparing C programs
	C compiler flags

	Preparing COBOL programs
	Compiling COBOL programs

	Preparing CICS programs
	CICS on Open Systems support
	CICS sample transaction

	Linking libraries

	Chapter 26. Building your application on Sun Solaris
	Preparing C programs
	Linking libraries

	Preparing COBOL programs
	Preparing CICS programs
	CICS on Open Systems support
	Preparing CICS COBOL programs using Micro Focus COBOL
	Preparing CICS C programs

	Chapter 27. Building your application on Tandem NSK
	Unit of work (transaction) management
	General design considerations
	MQGMO_BROWSE_* with MQGMO_LOCK
	Triggered applications

	Compiling and binding applications
	Running applications

	Chapter 28. Building your application on VSE/ESA
	Linking library
	Using the batch interface
	Preparing C programs
	Preparing COBOL programs
	Preparing PL/I programs

	Chapter 29. Building your application on Windows
	Linking libraries
	Preparing Visual Basic programs

	Chapter 30. Building your application on Windows NT
	Preparing C programs
	Preparing CICS and Transaction Server programs

	Preparing COBOL programs
	Preparing CICS and Transaction Server programs

	Preparing PL/I programs
	Preparing Visual Basic programs

	Chapter 31. Using lightweight directory access protocolservices with MQSeries for Windows NT
	What is a directory service?
	What is LDAP?
	Using LDAP with MQSeries
	LDAP sample program
	Building the sample program
	Configuring the directory
	Configuring the IBM eNetwork LDAP server
	Configuring the Netscape directory server
	Running the sample program
	Program design

	Part 4. Sample MQSeries programs
	Chapter 32. Sample programs (all platforms except OS/390)
	Features demonstrated in the sample programs
	Samples for Compaq (DIGITAL) OpenVMS and UNIX systems
	Samples for OS/2 Warp and Windows NT
	PL/I samples for AIX, OS/2 Warp, and Windows NT
	Visual Basic samples for Windows NT
	Samples for AS/400
	Samples for Tandem NonStop Kernel
	Samples for VSE/ESA

	Preparing and running the sample programs
	AS/400
	UNIX systems
	Digital OpenVMS
	OS/2 and Windows NT
	Tandem NSK
	Building C sample programs
	Building COBOL sample programs
	Building TAL sample programs

	Windows
	Running the sample programs
	On all platforms except AS/400
	On AS/400
	Length of queue name
	Inquire, Set, and Echo examples

	The Put sample programs
	Running the amqsput and amqsputc samples
	Running the amqsputw sample
	Running the amq0put sample
	Running the AMQSPUT4 C sample
	Running the AMQ0PUT4 COBOL sample
	Design of the Put sample program

	The Distribution List sample program
	Running the Distribution List sample, amqsptl0
	Design of the Distribution List sample

	The Browse sample programs
	OS/2, UNIX systems, Digital OpenVMS, and Windows NT
	AS/400
	Design of the Browse sample program

	The Browser sample program
	The Get sample programs
	Running the amqsget and amqsgetc samples
	Running the amqsgetw sample
	Running the amq0get sample
	Running the AMQSGET4 and the AMQ0GET4 samples
	Design of the Get sample program

	The Reference Message sample programs
	Notes for AS/400 users
	Running the Reference Message samples
	Design of the Put Reference Message sample (amqsprma.c,AMQSPRM4)
	Design of the Reference Message Exit sample (amqsxrma.c,AMQSXRM4)
	Compiling the Reference Message Exit sample

	Design of the Get Reference Message sample (amqsgrma.c,AMQSGRM4)

	The Request sample programs
	Running the amqsreq0.c, amqsreq, and amqsreqc samples
	Running the amq0req0.cbl sample
	Running the AMQSREQ4 sample
	Running the AMQ0REQ4 sample
	Running the Request sample using triggering
	OS/2, UNIX systems, and Windows NT
	AS/400

	Design of the Request sample program

	The Inquire sample programs
	Design of the Inquire sample program

	The Set sample programs
	Design of the Set sample program

	The Echo sample programs
	Design of the Echo sample programs

	The Data-Conversion sample program
	Design of the data-conversion sample

	The Triggering sample programs
	Running the amqstrg0.c, amqstrg, and amqstrgc samples
	Running the AMQSTRG4 sample
	Design of the triggering sample
	Running the AMQSERV4 sample
	Design of the trigger server
	Ending the triggering sample programs on AS/400

	Running the samples using remote queues
	Database coordination samples
	Creating the databases and tables
	Precompiling, compiling, and linking the samples
	Precompiling in C
	Precompiling in COBOL
	Compiling and linking

	Running the samples
	C samples
	COBOL samples

	The CICS transaction sample
	TUXEDO samples
	Building the server environment
	To build the server environment for MQSeries for AIX:
	To build the server environment for MQSeries for AT&T GIS UNIXand MQSeries for Sun Solaris:
	To build the server environment for MQSeries for HP-UX:
	To build the server environment for MQSeries for SINIX andDC/OSx
	To build the server environment for MQSeries for Windows NT:

	Server sample program for TUXEDO
	Put sample program for TUXEDO
	Get sample for TUXEDO

	Encina sample program
	Building the AMQSXAE0.C sample
	Compiling and linking on Windows NT
	Compiling and linking on Sun Solaris

	Dead-letter queue handler sample
	The Connect sample program
	Running the amqscnxc sample

	Chapter 33. Sample programs for MQSeries for OS/390
	Features demonstrated in the sample applications
	Put samples
	Get samples
	Browse sample
	Print Message sample
	Queue Attributes sample
	Mail Manager sample
	Credit Check sample
	The Message Handler sample
	Distributed queuing exit samples
	Data-conversion exit samples

	Preparing and running sample applications for the batch environment
	Names of the sample batch applications

	Preparing sample applications for the TSO environment
	Names of the sample TSO applications

	Preparing the sample applications for the CICS environment
	QLOP abend
	Names of the sample CICS applications

	Preparing the sample application for the IMS environment
	Names of the sample IMS application

	The Put samples
	Design of the Put sample
	The Put samples for the batch environment
	Usage notes

	The Put samples for the CICS environment
	Usage notes

	The Get samples
	Design of the Get sample
	The Get samples for the batch environment
	Usage notes

	The Get samples for the CICS environment
	Usage notes

	The Browse sample
	Design of the Browse sample
	Language-dependent design considerations

	The Print Message sample
	Design of the sample

	The Queue Attributes sample
	Design of the sample

	The Mail Manager sample
	Preparing the sample
	Preparing the sample for the TSO environment

	Running the sample
	Design of the sample
	Menu program
	Get-mail and display-message programs
	Send-mail program
	Nickname program

	The Credit Check sample
	Preparing and running the Credit Check sample
	Entering information in the inquiry panels

	Design of the sample
	User-interface program (CSQ4CVB1)
	Credit application manager (CSQ4CVB2)
	Checking-account program (CSQ4CVB3)
	Distribution program (CSQ4CVB4)
	Agency-query program (CSQ4CVB5/CSQ4CCB5)

	Design considerations
	Separate inquiry and reply queues in the CAM
	How the sample handles errors
	How the sample handles unexpected messages
	How the sample uses syncpoints
	How the sample uses message context information
	Use of message and correlation identifiers in the CAM

	The Credit Check sample with multiple queue managers
	The IMS extension to the Credit Check sample
	Design of the IMS checking-account program (CSQ4ICB3)

	The Message Handler sample
	Preparing and running the sample
	Using the sample
	Design of the sample
	Object validation program
	Message list program
	Message content program

	Part 5. Appendixes
	Appendix A. Language compilers and assemblers
	Appendix B. C language examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue

	Appendix C. COBOL examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue

	Appendix D. System/390 assembler-language examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about and setting the attributes of a queue

	Appendix E. PL/I examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue

	Appendix F. MQSeries data definition files
	C language include files
	Visual Basic module files
	COBOL copy files
	System/390 assembler-language macros
	PL/I include files

	Appendix G. Notices
	Programming interface information
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	BookManager format
	HTML format
	Portable Document Format (PDF)
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications
	CICS
	IMS
	MVS/ESA
	Design
	C
	C++
	COBOL
	LDAP
	RPG

	Index
	Sending your comments to IBM

