<|lI!

MQSeries™

Application Programming Guide

SC33-0807-10

<|lI!

MQSeries™

Application Programming Guide

SC33-0807-10

Note!
Before using this information and the product it supports, be sure to read the general information under [Appendix Gl

Eleventh edition (March 2000)

This edition applies to the following products:

« MQSeries for AIX® V5.1

» MQSeries for AS/400® V5.1

+ MQSeries for AT&T GIS UNIX® V2.2

* MQSeries for Compaq (DIGITAL) OpenVMS, V2.2.1.1
* MQSeries for DIGITAL UNIX (Compaqg Tru64 UNIX), V2.2.1
* MQSeries for HP-UX, V5.1

« MQSeries for 0S/390® V2.1

« MQSeries for 0S/2® Warp V5.1

* MQSeries for SINIX and DC/0OSx, V2.2

* MQSeries for Sun Solaris, V5.1

* MQSeries for Tandem NonStop Kernel, V2.2.0.1

« MQSeries for VSE/ESA™ V2.1

« MQSeries for Windows® V2.0

* MQSeries for Windows V2.1

« MQSeries for Windows NT® V5.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures R | Applications for more than one platform . . . 18
Testing MQSeries applications18
Tables.xi)
Chapter 3. MQSeries messages 19
About thisbookxv Message descriptor.20
Who this book is for XV Types of message gg
What you need to know to understand thls book . XV Datagrams.
How to use this book. . . . S 4/ RequJESt messages20
Appearance of text in this book A Y Reply messages2
Terms used in thisbook xvi Report messages. . . . e 2
Reports and segmented messages L . 23
. Format of message control information and message
Summary of changes XIX data . T o5
Changes for this edition (SC33-0807- 10) C oL Xix Format of message control information25
Changes for the tenth edition (SC33-0807-09) . . . Xxix Format of message data26
Changes for the ninth edition (SC33-0807-08) . . . xx Application data conversion.26
Message priorities28
Part 1. Designing applications that Message groups28
use MQSeries1 Message persistence . . . e %0
Selecting messages from queues B 10
. Messages that fail to be delivered31
Chapter 1. Introduction to message Messages that are backedout31
queuing . .3 Reply-to queue and queue manager32
What is message queumg’? .3 Message context.32
What is a message? . .4 Identitycontext33
Message descriptor . .4 Origincontext33
Message channel agent . .4
What is a message queue?. 4 Chapter 4. MQSeries objects35
What is a queue manager?. .5 Queue managers 35
What is a cluster?. :] Attributes of queue managers S .35
What is an MQSeries client? . - 6 Queue managers and workload management . 36
Main features of message queuing . . 6 Queues. . . R 1
MQSeries clients and servers8 Types of queue < v
Benefits of message queuing to the appllcatlon Attributes of queues38
designer and developer. : .9 Remote queues39
What can you do with MQSerles products7 . .9 Alias queues40
MQSeries for OS/390 : : .9 Model queues40
MQSeries for non-0S/390 platforms . . 10 Dynamic queues.41
Transmission queues42
Chapter 2. Overview of application Initiation queues. . . . Ak
design N I Dead-letter (undelivered- message) queues .. .43
Planning your design11 System command queues.43
Using MQSeries objects12 System default queves.43
Designing your messages.13 Namelists43
MQSerieS techniques L 14 Process definitions44
Waiting for messages14 Channels4
Correlating replies . . . B | Storage classes . . . N
Setting and using context information14 Rules for naming MQSGFIES ObJeCtS45
Starting MQSeries programs automatically . . . 14 Queue names. 45
Generating MQSeries reports15 Process definition and namellst names46
Clusters and message affinities.15 Channel names46
App“caﬂon programming15 Reserved ObjeCt names.46
Call interface15
Design for performance hints and tlps .. .16 Chapter 5. Handling program errors . . 47
Programming platforms16 Locally determined errors47

© Copyright IBM Corp. 1993, 2000 i

Failure of an MQI call . . AT
System interruptions . A7
Messages containing incorrect data . 49

Using report messages for problem determlnat|on 49
Creating report messages . . 49

Remotely determined errors . . 50
Problems delivering a message . . 50
Using the dead-letter (undelivered- message)
queue .51

Part 2. Writing an MQSerles

application 55

Chapter 6. Introducing the Message

Queue Interface . 59

What is in the MQI? . 59
Calls. . 60
Syncpoint calls . 61
Data conversion . . 62
Structures . . 62
Elementary data types . 62
MQSeries data definitions . 63
MQSeries stub programs and I|brary f|les . 63

Parameters common to all the calls . 68
Using connection and object handles . . 68
Understanding return codes . . 68

Specifying buffers . 69

Programming language con5|derat|ons . 69
Coding in C . . . 70
Coding in COBOL . .12
Coding in System/390® assembler Ianguage .73
Specifying the form of a structure . .74
Coding in RPG . . 76
Coding in PL/1 . . 76
Coding in TAL .17

0S/390 batch con5|derat|ons .77

UNIX signal handling on MQSeries Ver5|on 5

products . . 78
Unthreaded appllcatlons . .79
Threaded applications . . .79
Fastpath (trusted) applications . . . 80
MQI function calls within signal handlers . . 80
Signals during MQlI calls . .81
User exits and installable services . . 81

Chapter 7. Connecting and

disconnecting a queue manager . 83

Connecting to a queue manager using the

MQCONN call . 84
Scope of MQCONN . . . 85

Connecting to a queue manager usrng the

MQCONNX call . .o . 86
MQCNO_STANDARD | BINDING . 86
MQCNO_FASTPATH_BINDING . 86
Restrictions . . 86
Environment var|able . . 88

Disconnecting programs from a queue manager

using MQDISC . . 88
Authority checking . . 89

iV MQSeries Application Programming Guide

Chapter 8. Opening and closing objects 91

Opening objects using the MQOPEN call
Scope of an object handle.
Identifying objects (the MQOD structure)
Name resolution.
Using the options of the MQOPEN calI
Creating dynamic queues.
Opening remote queues
Closing objects using the MQCLOSE call

Chapter 9. Putting messages on a
queue.
Putting messages on a Iocal queue using the
MQPUT call. .

Specifying handles

Defining messages using the MQMD structure

Specifying options using the MQPMO structure

The data in your message . .
Putting messages on a remote queue
Controlling context information

Passing identity context .

Passing all context.

Setting identity context .

Setting all context . .

Putting one message on a queue usmg the
MQPUT1 call
Distribution lists

Opening distribution I|sts .

Putting messages to a distribution I|st .
Some cases where the put calls fail

Chapter 10. Getting messages from a
queue .

call .
Specifying connectlon handles

Describing messages using the MQMD structure

and the MQGET call .

Specifying MQGET options using the MQGMO

structure .
Specifying the size of the buffer area

The order in which messages are retrieved from a

queue .
Priority
Logical and physrcal orderlng

Getting a particular message

Type of index

Handling large messages .
Increasing the maximum message Iength .
Message segmentation
Reference messages

Waiting for messages .

Signaling . .
To set a signal . oo
When the message arrives .

Skipping backout . .

Application data conversion .
Conversion of EBCDIC newline characters

Browsing messages on a queue
The browse cursor.

. 92
. 92
. 93
. 93
. 95
. 98
. 98
.99

. 101

. 101
. 102

102
102

. 105
. 106
. 106
. 106
. 107
. 107
. 107

. 107
. 109
. 110
. 112
. 114

. 115
Getting messages from a queue usrng the MQGET
. 115

. 116

. 116

. 116
. 119

. 120
. 120
. 120
. 127
. 128
. 129
. 129
. 130
. 133
. 135
. 136
. 136
. 137
. 138
. 141
. 142
. 143
. 143

Browsing messages when message length
unknown. .
Removing a message you have browsed
Browsing messages in logical order .
Browsing messages in groups .
Some cases where the MQGET call fails

Chapter 11. Writing data-conversion
exits .
Invoking the data—conversmn eX|t
Data conversion on OS/390
Writing a data-conversion exit program
Skeleton source file
Convert characters call
Utility for creating conversion-exit code
Valid syntax .
Writing a data-conversion eX|t program for
MQSeries for AS/400.
Writing a data-conversion exit for MQSenes for
OS/2 Warp . .
Writing a data-conversion eX|t program for
MQSeries for OS/390.
Writing a data-conversion exit for MQSenes for
Tandem NonStop Kernel .o
Reusing data-conversion exit programs
Writing a data-conversion exit for MQSeries on

UNIX systems and Compaq (DIGITAL) OpenVMS .
. 161

UNIX environment

Compiling data-conversion exns on D|g|tal

OpenVMS .

Compiling data-conversion eX|ts on UNIX
Writing a data-conversion exit for MQSeries for
Windows NT

Chapter 12. Inquiring about and
setting object attributes .
Inquiring about the attributes of an obJect
Some cases where the MQINQ call fails
Setting queue attributes .

Chapter 13. Committing and backing
out units of work

. 144
. 145
. 145
. 146
. 148

. 149
. 150
. 150
. 151
. 151
. 152
. 152
. 153

. 155
. 156
. 158

. 159
. 159

160

. 162
. 162

. 165

. 167
. 168
. 169
. 169

171

Syncpoint considerations in MQSenes appllcatlons 172

Syncpoints in MQSeries for OS/390 applications
Syncpoints in CICS Transaction Server for
0S/390 and CICS for MVS/ESA applications.
Syncpoints in IMS applications .
Syncpoints in OS/390 batch appllcatlons

Syncpoints in CICS for AS/400 applications .

Syncpoints in MQSeries for OS/2 Warp, MQSeries

for Windows NT, MQSeries for AS/400, and

MQSeries on UNIX systems
Local units of work
Global units of work . .

Interfaces to external syncpomt managers
Interfaces to the AS/400 external syncpoint
manager . .

Syncpoints in MQSerles for Tandem NonStop

Kernel applications

General XA support .

173

. 173
. 174
. 174
. 176

. 176
. 177
L 177
. 179

. 181

. 182
. 183

Chapter 14. Starting MQSeries

applications using triggers
What is triggering?
Prerequisites for triggering .
Conditions for a trigger event .
Controlling trigger events
Example of the use of trigger type EVERY
Example of the use of trigger type FIRST .
Example of the use of trigger type DEPTH
Special case of trigger type FIRST
Designing an application that uses triggered
queues .
Trigger messages and unlts of Work
Getting messages from a triggered queue .
Trigger monitors
MQSeries for OS/390 trlgger monltors
MQSeries for OS/2 Warp, Digital OpenVMS,
Tandem NSK, UNIX systems, AS/400, and
Windows NT trigger monitors. .
MQSeries for AS/400 trigger monitors .
Properties of trigger messages . . .
Persistence and priority of trigger messages .
Queue manager restart and trigger messages
Trigger messages and changes to object
attributes .
Format of trigger messages
When triggering does not work
How CKTI detects errors .
How CSQQTRMN detects errors .
How RUNMQTRM detects errors

Chapter 15. Using and writing

. 185
. 185
. 189
. 191
. 195
. 196
. 196
. 196
. 197

. 197
. 197
. 198
. 199
. 199

. 200
. 202
. 202
. 202

202

. 202
. 203
. 204
. 204
. 204
. 204

applications on MQSeries for OS/390 . 207

Environment-dependent MQSeries for OS/390
functions . .
Program debugglng faC|I|t|es .
Syncpoint support.
Recovery support . .
The MQSeries for OS/390 mterface W|th the
application environment.
The batch adapter .
RRS batch adapter.
The CICS adapter .
The IMS adapter
Writing 0S/390 OpenEdition® appllcatlons
The API-crossing exit for OS/390.
Using the API-crossing exit.
Writing your own exit program
The sample API-crossing exit program,
CSQCAPX
Preparing and using the API crossmg eXIt
Writing MQSeries-CICS bridge applications
Structure of the MQSeries message .
Handling a unit of work .o
Programming considerations for runnlng 3270
transactions .
Scenarios .
Writing MQSeries- IMS bndge appllcatlons
How the MQSeries-IMS bridge deals with
messages .

Contents

. 207
. 208
. 208
. 208

. 209
. 209
. 209
. 210
211
. 212
. 213
. 213
. 214

. 216
. 216
. 217
. 217
. 220

. 220
. 221
. 225

. 225

\

Writing your program . . 229
Writing IMS applications using MQSerles . . 230
Syncpoints in IMS applications . 231
MQI calls in IMS applications . . 231
MQSeries Workflow . . . 234
Chapter 16. Object-oriented
programming with MQSeries . 237
What is in the MQSeries Object Model? . 237
Classes e . 237
Object references . . 238
Return codes . 238
Programming language con3|derat|ons . 238
Coding in C++ . . 238
Coding in Java . . 239
Coding in LotusScript . 239
Coding in ActiveX. . 239
Part 3. Building an MQSeries
application 241
Chapter 17. BU|Id|ng your appllcatlon
on AIX . 243
Preparing C programs . 243
Linking libraries . . 243
Preparing COBOL programs . . 244
Preparing COBOL programs using IBM COBOL
SET for AIX.. . 245
Preparing COBOL programs usmg Mlcro Focus
COBOLo245
Preparing PL/I programs . 245
Preparing CICS programs . . . 245
CICS on Open Systems support . . 246
Chapter 18. Building your appllcatlon
on AS/400 . . 249
Preparing C programs . 249
Preparing COBOL programs . 249
Preparing CICS programs . . 251
Preparing RPG programs . 251
SQL programming considerations . 251
AS/400 programming considerations . 252
QMQM activation group . 252
Chapter 19. Building your appllcatlon
on AT&T GIS UNIX . 253
Preparing C programs . 253
C compiler flags . 253
Linking libraries . 253
Chapter 20. Building your appllcatlon
on Digital OpenVMS . 255
Preparing C programs . 255
C compiler version . 255
C compiler flags . 255
Linking libraries . . 255
Preparing COBOL programs . 256
COBOL compiler flags . 256

Vi MQSeries Application Programming Guide

Linking libraries

Chapter 21. Building your appllcatlon
on Digital UNIX

Preparing C programs
Linking libraries

Chapter 22. Building your appllcatlon
on HP-UX .
Preparing C programs

Preparing C programs on HP- UX VlO 20 .
Preparing C programs on HP-UX V11.00 .

Linking libraries .

Preparing COBOL programs
Programs to run in the MQSeries cllent
environment. .

Preparing CICS programs . .o
CICS on Open Systems support .

Chapter 23. Building your appllcatlon

on OS/390 .

Preparing your program to run .
Building OS/390 batch applications .
Building CICS applications .

Building IMS (BMP or MPP) appllcatlons .

Dynamically calling the MQSeries stub.

Debugging your programs .
Debugging CICS programs.
Debugging TSO programs .

Chapter 24. Building your appllcatlon
on OS/2 Warp
Preparing C programs
Preparing CICS and Transactlon Server
programs.
Preparing COBOL programs
Preparing Transaction Server programs
Preparing PL/1 programs

Chapter 25. Building your appllcatlon
on SINIX or DC/OSx
Preparing C programs
C compiler flags
Preparing COBOL programs
Compiling COBOL programs .
Preparing CICS programs . .
CICS on Open Systems support .
CICS sample transaction.
Linking libraries

Chapter 26. Building your appllcatlon
on Sun Solaris
Preparing C programs
Linking libraries .
Preparing COBOL programs
Preparing CICS programs . .
CICS on Open Systems support .

. 256

. 257
. 257
. 257

. 259
. 259
. 259
. 259
. 260
. 261

. 261
. 262
. 262

. 263
. 263
. 264
. 265
. 266
. 267
. 272
. 272
. 274

. 275
. 275

. 276
. 277
. 278
. 278

. 279
. 279
. 279
. 280
. 280
. 281
. 281
. 281
. 282

. 283
. 283
. 284
. 284
. 285
. 285

Chapter 27. Building your application

on Tandem NSK 287
Unit of work (transaction) management 287
General design considerations. . . . 287
MQGMO_BROWSE_* with MQGMO __ LOCK 287
Triggered applications 287
Compiling and binding appllcatlons288
Running applications. 288

Chapter 28. Building your appllcatlon

on VSE/ESA 291
Linking library . . . e e e 291
Using the batch mterface e e e 291
Preparing C programs291
Preparing COBOL programs291
Preparing PL/I programs291

Chapter 29. Building your appllcatlon

on Windows 293
Linking libraries . . . Co 293
Preparing Visual Basic programs 293

Chapter 30. Building your appllcatlon

on Windows NT 295
Preparing C programs 295
Preparing CICS and Transactlon Server
programs. 296
Preparing COBOL programs S .. 297
Preparing CICS and Transaction Server
programs. 298
Preparing PL/1 programs e 0299
Preparing Visual Basic programs 299

Chapter 31. Using lightweight
directory access protocol services

with MQSeries for Windows NT . . . 301
What is a directory service?301
What is LDAP?. . . . < (01
Using LDAP with MQSerles N 0
LDAP sample program303
Building the sample program 303
Configuring the directory 303
Configuring the IBM eNetwork LDAP server 304
Configuring the Netscape directory server. . . 305
Running the sample program 306
Program design 306

Part 4. Sample MQSeries

programs 309

Chapter 32. Sample programs (all

platforms except 0OS/390) 311

Features demonstrated in the sample programs . . 312
Samples for Compaq (DIGITAL) OpenVMS and
UNIX systems 2312
Samples for OS/2 Warp and Wlndows NT . .314

PL/I samples for AIX, OS/2 Warp, and
Windows NT

Visual Basic samples for Wlndows NT
Samples for AS/400 .

Samples for Tandem NonStop Kernel
Samples for VSE/ESA .

Preparing and running the sample programs
AS/400
UNIX systems .

Digital OpenVMS .

0S/2 and Windows NT .
Tandem NSK

Windows.

Running the sample programs

The Put sample programs .

Running the amgsput and amqsputc samples
Running the amgsputw sample

Running the amqgOput sample .

Running the AMQSPUT4 C sample .
Running the AMQOPUT4 COBOL sample .
Design of the Put sample program

The Distribution List sample program . .
Running the Distribution List sample, amqsptIO
Design of the Distribution List sample .

The Browse sample programs . .
0S/2, UNIX systems, D|g|tal OpenVMS and
Windows NT . o
AS/400 .
Design of the Browse sample program .

The Browser sample program .

The Get sample programs .

Running the amgsget and amqsgetc samples
Running the amqgsgetw sample

Running the amqOget sample . .

Running the AMQSGET4 and the AMQOGET4
samples . e
Design of the Get sample program .

The Reference Message sample programs .
Notes for AS/400 users . .
Running the Reference Message samples .
Design of the Put Reference Message sample
(amgsprma.c, AMQSPRM4).

Design of the Reference Message Exit sample
(amgsxrma.c, AMQSXRM4).
Design of the Get Reference Message sample
(amgsgrma.c, AMQSGRM4)

The Request sample programs. .
Running the amqgsreq0.c, amgsreq, and
amgqsreqc samples . .
Running the amqOreq0.cbl sample
Running the AMQSREQ4 sample.

Running the AMQOREQ4 sample.
Running the Request sample using tnggerlng
Design of the Request sample program.

The Inquire sample programs . .
Design of the Inquire sample program .

The Set sample programs
Design of the Set sample program

The Echo sample programs. .

Design of the Echo sample programs

The Data-Conversion sample program .

Contents

. 316
. 316
. 316
. 318
. 318
. 319
. 319
. 319
. 320
. 320
. 321
. 323
. 323
. 325

325

. 325
. 326
. 326
. 327
. 327
. 327

327

. 328
. 328

. 328
. 329
. 329
. 330
. 330

330

. 331
. 331

. 331
. 332
. 332
. 333
. 334

. 338

. 338

. 340
. 340

. 340
. 340
. 341
. 341

341

. 344
. 346
. 347
. 347
. 348
. 349
. 349
. 350

Vii

Design of the data-conversion sample 350

The Triggering sample programs 350
Running the amqstrg0.c, amgstrg, and amqstrgc
samples35
Running the AMQSTRG4 sample35
Design of the triggering sample 351
Running the AMQSERV4 sample. 351
Design of the trigger server 352
Ending the triggering sample programs on
AS/400 352

Running the samples usmg remote queues .. . 352

Database coordination samples 352
Creating the databases and tables 354
Precompiling, compiling, and linking the
samples35
Running the samples . [Y4

The CICS transaction sample 359

TUXEDO samples.35
Building the server envwonment 359
Server sample program for TUXEDO 367
Put sample program for TUXEDO 368
Get sample for TUXEDO 368

Encina sample program 369
Building the AMQSXAEOQ.C sample 369

Dead-letter queue handler sample 370

The Connect sample program. 370
Running the amgscnxc sample 370

Chapter 33. Sample programs for

MQSeries for OS/390 373
Features demonstrated in the sample appllcatlons 373
Putsamples.373
Getsamples.374
Browse sample.374
Print Message sample374
Queue Attributes sample 375
Mail Manager sample375
Credit Check sample375
The Message Handler sample 376
Distributed queuing exit samples. 376
Data-conversion exit samples 377
Preparing and running sample appllcatlons for the
batch environment 377
Names of the sample batch appllcatlons . . . 378
Preparing sample applications for the TSO
environment. 378
Names of the sample TSO appllcatlons .. . 379
Preparing the sample applications for the CICS
environment.380
QLOP abend 381
Names of the sample CICS appllcatlons .. . 381
Preparing the sample application for the IMS
environment.383
Names of the sample IMS appllcatlon38
The Put samples38
Design of the Put sample o .. 384
The Put samples for the batch enV|ronment . . 385
The Put samples for the CICS environment . . 386
The Get samples386
Design of the Get sample o .. 387
The Get samples for the CICS enwronment . . 388

Vill MQsSeries Application Programming Guide

The Browse sample . . 389
Design of the Browse sample . . 390
Language-dependent design con3|derat|ons . 301

The Print Message sample . . 391
Design of the sample. . 393

The Queue Attributes sample . . 395
Design of the sample. . 395

The Mail Manager sample . . 396
Preparing the sample. . 396
Running the sample . . 397
Design of the sample. . 399

The Credit Check sample . . 403
Preparing and running the Credlt Check sample 404
Design of the sample. . 405
Design considerations . . 412
The Credit Check sample with multlple queue
managers. . . 414
The IMS extension to the Credlt Check sample 414

The Message Handler sample415
Preparing and running the sample . 416
Using the sample . . 416
Design of the sample. . 418

Part 5. Appendixes . 421

Appendix A. Language compilers and

assemblers . 423

Appendix B. C language examples 427

Connecting to a queue manager . . 428

Disconnecting from a queue manager . 429

Creating a dynamic queue . . 430

Opening an existing queue . . 431

Closing a queue . 433

Putting a message using MQPUT . 434

Putting a message using MQPUT1 . 435

Getting a message . . . 436

Getting a message using the walt optlon . 438

Getting a message using signaling . . 439

Inquiring about the attributes of an object . . 442

Setting the attributes of a queue . . 444

Appendix C. COBOL examples . 447

Connecting to a queue manager . . 448

Disconnecting from a queue manager . 448

Creating a dynamic queue . . 449

Opening an existing queue . . 451

Closing a queue . 453

Putting a message using MQPUT . 454

Putting a message using MQPUT1 . 456

Getting a message . . 458

Getting a message using the walt optlon . 459

Getting a message using signaling . . 461

Inquiring about the attributes of an object . . 465

Setting the attributes of a queue . . 467

Appendix D. System/390

assembler-language examples . 471

Connecting to a queue manager . . 472

Disconnecting from a queue manager
Creating a dynamic queue .

Opening an existing queue .

Closing a queue

Putting a message using MQPUT

Putting a message using MQPUT1

Getting a message .

Getting a message using the walt optlon
Getting a message using signaling .
Inquiring about and setting the attributes of a
queue .

Appendix E. PL/I examples
Connecting to a queue manager .
Disconnecting from a queue manager
Creating a dynamic queue .

Opening an existing queue .

Closing a queue .

Putting a message using MQPUT

Putting a message using MQPUT1

Getting a message . .

Getting a message using the Walt optlon
Getting a message using signaling .
Inquiring about the attributes of an object .
Setting the attributes of a queue .

Appendix F. MQSeries data definition
files . .

C language include flles

Visual Basic module files

COBOL copy files .

System/390 assembler- Ianguage macros
PL/1 include files .

. 473
. 474
. 475
. ATT7
. 478
. 480
. 482
. 484
. 486

. 490

. 495
. 496
. 496
. 497
. 499
. 499
. 500
. 502
. 504
. 505
. 507
. 511
. 513

. 515
. 516
. 516
. 517
. 520
. 520

Appendix G. Notices .
Programming interface information .
Trademarks .

Glossary of terms and abbreviations

Bibliography .
MQSeries cross-platform publlcatlons
MQSeries platform-specific publications
Softcopy books .
BookManager format .
HTML format .
Portable Document Format (PDF)
PostScript format .
Windows Help format

MQSeries information available on the Internet .

Related publications .
CICS
IMS
MVS/ESA
Design
C
C++
COBOL
LDAP .
RPG

Index .

Sending your comments to IBM

. 523
. 524
. 525

527

. 539
. 539
. 541
. 542
. 542
. 542
. 542
. 542
. 542
. 542
. 542
. 542
. 543
. 543
. 543
. 543
. 543
. 543
. 543
. 543

. 545

. 557

Contents X

X MQSeries Application Programming Guide

Figures

1.

© NGO RA~WN

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

3L

32.

Message queuing compared with traditional
communication. .

Representation of a message

Group of logical messages

Segmented messages

How distribution lists work.

Opening a distribution list in C

Opening a distribution list in COBOL
Putting a message to a distribution list in C
Putting a message to a distribution list in
COBOL

Logical order on a queue

Physical order on a queue

Skipping backout using
MQGMO_MARK_SKIP_BACKOUT .
Sample JCL used to invoke the CSQUCVX
utility . . .
Flow of appl|cat|on and trlgger messages
Relationship of queues within triggering
Setting of key fields for a single CICS user
program in a unit of work, or
non-conversational 3270 transaction .
Setting of key fields for many CICS user
programs in a unit of work .

Setting of key fields: MQSeries -
conversational 3270 transaction

User program abends (only program in the
unit of work)

Fragments of JCL to I|nk-ed|t the obJect
module in the batch environment, using
single-phase commit .

Fragments of JCL to link-edit the obJect
module in the batch environment, using
two-phase commit .

Fragments of JCL to link- edlt the obJect
module in the CICS environment .
Fragments of JCL to link-edit the object
module in the IMS environment .
Dynamic linking using COBOL in the batch
environment .

Dynamic linking usmg COBOL in the CICS
environment .

Dynamic linking usmg COBOL in the IMS
environment .

Dynamic linking usmg assembler Ianguage in
the batch environment

Dynamic linking using assembler Ianguage in
the CICS environment

Dynamic linking using assembler Ianguage in
the IMS environment . .
Dynamic linking using C Ianguage in the
batch environment . .
Dynamic linking using C Ianguage in the
CICS environment .

Dynamic linking using C Ianguage in the IMS
environment .

© Copyright IBM Corp. 1993, 2000

.19
. 29
. 29
. 110
. 112

112
113

. 114
. 121
. 122
. 140

. 153

187
189

. 221

. 222

. 223

. 224

. 264

. 265

. 266

. 267

. 268

. 269

. 269

. 270

. 270

. 270

. 270

. 271

. 271

34.
35.
36.
37.

38.
39.

40.
41.

42.
43.

44.

45.

46.

47.

48.

49.

50.
51.

52.
53.
54.
55.

56.

57.
58.
59.
60.
61.

62.
63.
64.
65.
66.
67.
68.

69.

Dynamic linking using PL/1 in the batch
environment .
Dynamic linking usmg PL/I in the IMS
environment . .
Running the reference message samples
Request and Inquire samples using triggering
Sample Client/Server (Echo) program
flowchart .
The database coordlnatlon samples
Example of ubbstxcx.cfg file for UNIX
systems
Example of ubbstxcn cfg f|le for Wlndows NT
Sample TUXEDO makefile for MQSeries for
Windows NT .o .
How TUXEDO samples Work together
Example of a report from the Print Message
sample application.
Programs and panels for the TSO versions of
the Mail Manager .
Programs and panels for the CICS version of
the Mail Manager .
Example of a panel showmg a I|st of Wa|t|ng
messages .
Example of a panel showmg the contents of a
message
Immediate Inquiry panel for the Credlt Check
sample application.
Programs and queues for the Credlt Check
sample application (COBOL programs only)
Initial screen for Message Handler sample
Message list screen for Message Handler
sample.
Chosen message is d|splayed .
Using the MQCONN call (C Ianguage)
Using the MQDISC call (C language)

Using the MQOPEN call to create a dynamic
queue (C language)
Using the MQOPEN call to open an eX|st|ng
queue (C language) .
Using the MQCLOSE call (C Ianguage)
Using the MQPUT call (C language) .
Using the MQPUT1 call (C language)
Using the MQGET call (C language) .
Using the MQGET call with the wait option
(C language) . .
Using the MQGET call W|th 5|gnal|ng (C
language) . .
Using the MQINQ call (C Ianguage)
Using the MQSET call (C language) .
Using the MQCONN call (COBOL) .
Using the MQDISC call (COBOL). .
Using the MQOPEN call to create a dynamic
queue (COBOL).
Using the MQOPEN call to open an eX|st|ng
queue (COBOL).
Using the MQCLOSE call (COBOL)

. 271

. 272

334
342

. 346
. 353

. 364
366

. 367

368

. 392

. 399

. 400

. 401

. 402

. 404

. 406

416

. 417
. 418

428
429

. 430

. 432

433

. 434

435

. 437

. 438

. 440
. 442
. 444
. 448

. 449

. 450

. 452
. 454

Xi

70.
71.
72.
73.

74.
75.
76.
7.

78.
79.

80.
8L
82.

83.
84.

Xii

Using the MQPUT call (COBOL) 455

Using the MQPUT1 call (COBOL). 456
Using the MQGET call (COBOL) 458
Using the MQGET call with the wait opt|on
(coBoL) 460
Using the MQGET call W|th S|gnal|ng

(coBoL) 462
Using the MQINQ call (COBOL) 466
Using the MQSET call (COBOL) 468
Using the MQCONN call (Assembler

language). . . . 472

Using the MQDISC call (Assembler Ianguage) 473
Using the MQOPEN call to create a dynamic

queue (Assembler language) 474
Using the MQOPEN call to open an eX|st|ng
queue (Assembler language) 476
Using the MQCLOSE call (Assembler

language). . . . AT7

Using the MQPUT call (Assembler Ianguage) 479
Using the MQPUT1 call (Assembler language) 481
Using the MQGET call (Assembler language) 483

MQSeries Application Programming Guide

85.

86.

87.

88.
89.
90.

9L

92.
93.
94.
95.
96.

97.
98.
99.

Using the MQGET call with the wait option
(Assembler language) . . .o
Using the MQGET call with S|gnal|ng
(Assembler language) . .

Using the MQINQ and MQSET calls
(Assembler language) . .

Using the MQCONN call (PL/I)

Using the MQDISC call (PL/1).

Using the MQOPEN call to create a dynamlc
queue (PL/1).

Using the MQOPEN call to open an eX|st|ng
queue (PL/1). . S
Using the MQCLOSE call (PL/I)

Using the MQPUT call (PL/1) .

Using the MQPUT1 call (PL/1).

Using the MQGET call (PL/1) . .
Using the MQGET call with the wait opt|on
(PLZT) .

Using the MQGET call W|th 5|gnal|ng (PL/I)
Using the MQINQ call (PL/1) .

Using the MQSET call (PL/1)

. 484

. 487

. 491
. 496

. 497

. 498

. 499
. 500
. 501
. 503
. 504

. 506
508

. 512
. 513

Tables

> w

© N oG

10.
11.

12.
13.

14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24,

25.

Visual Basic equivalents of the C elementary
data types . .
Environment vanable .

. 62
. 88

Resolving queue names when usmg MQOPEN 94

How queue attributes and options of the
MQOPEN call affect access to queues .

Using message and correlation identifiers
Using the group identifier

Skeleton source files

Linking MQSeries for OS/2 Warp Wlth CICS
Version 3 applications.

Essential Code for CICS appllcat|ons

0S/390 environmental features

Mapping MQSeries messages to IMS
transaction types .

Essential Code for CICS appllcatlons (AIX)
Example of CRTPGM in the nonthreaded
environment .

Example of CRTPGM in the threaded
environment .

Essential Code for CICS appllcatlons (HP UX)
Call names for dynamic linking

CICS adapter trace entries

Essential Code for CICS applications (SINIX)
Essential Code for CICS applications (Sun
Solaris).

MQSeries on UNIX and D|g|tal OpenVMS
sample programs demonstrating use of the
MQl . . .

MQSeries for OS/2 Warp and W|ndows NT
sample programs demonstrating use of the
MQl . . .

MQSeries for AIX OS/2 Warp, and Wlndows
NT sample programs demonstrating use of
the MQI

MQSeries for W|ndows NT sample programs
demonstrating use of the MQI . .
MQSeries for AS/400 sample programs
demonstrating use of the MQI . .
MQSeries for Tandem NonStop Kernel C and
COBOL sample programs demonstrating use
of the MQI

© Copyright IBM Corp. 1993, 2000

. 96

127

. 127

. 151

. 180

183

. 208

. 226

245

. 249

. 249
262

. 267

. 272
281

. 285

. 312

. 314

. 316

. 316

. 316

. 318

217.

28.

29.

30.

31.
32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.

50.
51.

MQSeries for Tandem NonStop Kernel TAL
sample programs demonstrating use of the
MQl . . .

MQSeries for VSE/ESA COBOL sample
programs demonstrating use of the MQI
Where to find the samples for MQSeries on
UNIX systems .

Where to find the samples for MQSenes for
Compaqg (DIGITAL) OpenVMS.

Where to find the samples for MQSeries for
0OS/2 Warp and MQSeries for Windows NT
Client/server sample program details
Source for the distributed queuing exit
samples

Source for the data conversion eX|t samples
(Assembler language only) .

Source and JCL for the Put and Get samples
Source and JCL for the Browse sample
Source for the Print Message sample (C
language only) . .o

Source and JCL for the Ma|l Manager (TSO)
sample.

Source for the Message Handler sample
Source and JCL for the Put and Get samples
Source for the Queue Attributes sample
Source and JCL for the Mail Manager (CICS)
sample (COBOL only).

Source and JCL for the Credit Check CICS
sample. .o .
Source and JCL for the Cred|t Check IMS
sample (C only).

Language compilers and assemblers

C include files for MQSeries .
Visual Basic module files for MQSeries for
Windows V2.0 . .
Visual Basic module flles for MQSenes for
Windows V2.1 . .
Visual Basic module files for MQSenes for
Windows NT, V5.1.

COBOL copy files . .

System/390 assembler- Ianguage macros
PL/1 include files .

. 318

. 318

. 319

. 320

. 320

345

. 376

. 377

378
378

. 378

. 379

380
381
382

. 382
. 382
. 384
. 423
. 516
. 516
. 517

. 517
. 518

520

. 521

Xiii

XiV MQSeries Application Programming Guide

About this book

This book introduces the concepts of messages and queues, and shows you in detail
how to design and write applications that use the services that MQSeries provides.

The IBM MQSeries Level 2 products comprise:

* MQSeries for AIX

+ MQSeries for AS/400 (formerly known as MQSeries for OS/400%)
+ MQSeries for AT&T GIS UNIX®!

* MQSeries for Compaq (DIGITAL) OpenVMS

* MQSeries for DIGITAL UNIX (Compaqg Tru64 UNIX)

* MQSeries for HP-UX

+ MQSeries for 0S/390 (formerly known as MQSeries for MVS/ESA™)
* MQSeries for OS/2 Warp

* MQSeries for SINIX and DC/OSx

* MQSeries for Sun Solaris

* MQSeries for Tandem NonStop Kernel

* MQSeries for VSE/ESA

* MQSeries for Windows

* MQSeries for Windows NT

They are referred to in this book collectively as MQSeries. They provide
application programming services that enable you to write applications in which
the constituent programs communicate with each other using message queues.

For a full description of the MQSeries programming interface, see the MQSeries
Application Programming Reference manual for your platform. The manuals are;

+ IMQSeries Application Programming Referencd manual, SC33-1673

* MQSeries for AS/400 Application Programming Reference (ILE RPG), SC 34-5559

For information on the use of C++, see the IMQSeries Using C+4H book.

IBM ships sample programs with IBM MQSeries which are explained in Epart 4]

page 311*Chapter 33 Sample programs for MQSeries for OS/390” on page 373 You

may find it useful to refer to these.

Who this book is for

This book is for the designers of applications that use message queuing techniques,
and for the programmers who have to implement those designs.

What you need to know to understand this book

To write message queuing applications using MQSeries, you need to know how to
write programs in at least one of the programming languages that MQSeries
supports. EAppendix A_| anguage compilers and assemblers” an page 423 contains
details of supported compilers and assemblers listed by MQSeries platform.

1. This platform has become NCR UNIX SVR4 MP-RAS, R3.0.

© Copyright IBM Corp. 1993, 2000 XV

About this book

If the applications you are writing will run within a CICS® or IMS™ system, you
must also be familiar with CICS or IMS, and their application programming
interfaces.

To understand this book, you do not need to have written message queuing
programs before.

How to use this book

XVi

This book contains guidance information to help you design an application, and
procedural information to help you to write an application.

The book is divided into five parts:

Introduces the message queuing style of application design, describes
MQSeries messages and queues, and shows how to design a message
queuing application.

Describes how to use the IBM Message Queue Interface (MQI) to write the
programs that comprise a message queuing application. The chapters guide
you through the coding of each MQI call, showing you what information
to supply as input and what returns to expect. These chapters first describe
simple uses of the MQI calls, then go on to describe how to use all the
features of each call.

Read tPart 1 _Designing applications that nse MQSeries” on page 1l to

understand the concepts involved when designing MQSeries applications.
The second part is self-contained: use an individual chapter when you are
performing the task described in it.

Explains how to build your MQSeries application on each platform.

Lists and explains how the sample programs work, for all platforms.

The appendixes
Contain examples of how to use the MQI calls in each of the programming
languages supported by MQSeries.

Appearance of text in this book
This book uses the following type style:

CompCode
Example of the name of a parameter of a call, or the attribute of an object

Terms used in this book

In the body of this book, the following shortened names are used for these
products and a qualifier:

CICS CICS for AS/400, CICS for MVS/ESA, CICS for VSE/ESA, CICS
Transaction Server for OS/2, CICS Transaction Server for OS/390, TXSeries
for AIX, TXSeries for HP-UX, TXSeries for Sun Solaris, and TXSeries for
Windows NT products.

IMS The IMS/ESA® product.

MQSeries Application Programming Guide

About this book

MQSeries
MQSeries for AIX, MQSeries for AS/400, MQSeries for AT&T GIS UNIX,
MQSeries for Compaq (DIGITAL) OpenVMS, MQSeries for DIGITAL UNIX
(Compag Tru64 UNIX), MQSeries for HP-UX, MQSeries for OS/2 Warp,
MQSeries for OS/390, MQSeries for SINIX and DC/0OSx, MQSeries for Sun
Solaris, MQSeries for Tandem NonStop Kernel, MQSeries for VSE/ESA,
MQSeries for Windows, and MQSeries for Windows NT.

MQSeries on UNIX systems
MQSeries for AIX, MQSeries for AT&T GIS UNIX, MQSeries for DIGITAL
UNIX (Compaq Tru64 UNIX), MQSeries for HP-UX, MQSeries for SINIX
and DC/0Sx, and MQSeries for Sun Solaris.

MQSeries Version 5 products
V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT.

0OS/390
The OS/390 System Product.

thiqual
The high-level qualifier of the installation library on OS/390.

About this book XVil

About this book

XViil MQSeries Application Programming Guide

Summary of changes

This section describes changes to this edition of MQSeries Application Programming
Guide. Changes since the previous edition of the book are marked by vertical lines
to the left of the changes.

Changes for this edition (SC33-0807-10)

The main change to this edition of the Application Programming Guide is the
enhancement of MQSeries for AS/400 bringing it to the same level of function as
the other MQSeries Version 5 Release 1 products.

Also included in this edition is a section regarding SQL programming
considerations on MQSeries for AS/400. There is a new section about building

CICS applications on MQSeries for AS/400. See t‘Chapter 18 Building youd
application an AS/400” on page 249

for these new sections.

[Cable 24 on page 316 has been expanded to include information on RPG samples
for MQSeries for AS/400.

Changes for the tenth edition (SC33-0807-09)

In this edition, the book has been updated to reflect the new function in the

following new versions of the MQSeries products:

* V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT

* V2.1 of MQSeries for OS/390, MQSeries for VSE/ESA, and MQSeries for
Windows

* V4R2M1 of MQSeries for AS/400

The changes to the book include:

* Queue manager clusters (applicable to the V5.1 products, and MQSeries for
0S/390 only). There are many references throughout the book to this new
function.

* Recoverable resource services (applicable to MQSeries for OS/390 in the
Batch/TSO enwronment) ThIS prowdes two-phase syncpomt support.

m contains information about it.

« UNIX signal handling on MQSeries Version 5 products. ELINIX signal handling
lon MQSeries \ersion 5 products” on page 78 explains the changes to signal
handling in threaded and non-threaded environments in MQSeries for AlX,
MQSeries for HP-UX, and MQSeries for Sun Solaris.

* Writing MQSeries-CICS bridge applications (aplicable to MQSeries for OS/390
only). EWriting MQSeries-CICS hridge applications” on page 217 provides
information.

* MQSeries Workflow is how MQSeries supports the OS/390 workoad manager

(WLM). EMQSeries Workflow’ an page 234 provides information.
. Object orlented programmlng Wlth MQSerles A new chapter, m
= 2 , gives an introduction
to the MQSeries object model and the base classes. There are further references
to language-specific information.

© Copyright IBM Corp. 1993, 2000 XiX

Changes

» Using lightweight directory access protocol services (LDAP) with MQSeries for
Windows NT. A new chapter, [i i i i

lorotacol services with MQSeries for Windows NT” on page 301, is an

introduction to LDAP and contains an example of an MQSeries application
using an LDAP directory.

A new chapter, EChapter 28_Building your application on VSEZESA” od

is included.

Changes for the ninth edition (SC33-0807-08)

Changes for edition number SC33-0807-08 include:

e A new release of:
— MQSeries for AS/400 V4R2

* Inclusion of a new MQSeries product;
— MQSeries for Tandem NonStop Kernel, V2.2

XX MQSeries Application Programming Guide

Part 1. Designing applications that use MQSeries

Chapter 1. Introduction to message queuing

What is message queuing?.

What is a message? .
Message descriptor .
Message channel agent .

What is a message queue? .

What is a queue manager?.

What is a cluster?. .

What is an MQSeries clrent’> .

Main features of message queuing .
MQSeries clients and servers .

Benefits of message queuing to the appllcatlon

designer and developer. .

What can you do with MQSerles products7 .
MQSeries for OS/390 .
MQSeries for non-0OS/390 platforms .

Chapter 2. Overview of application design
Planning your design .
Using MQSeries objects
Designing your messages.
MQSeries techniques
Waiting for messages .
Correlating replies . .
Setting and using context mformatlon

Starting MQSeries programs automatically .

Generating MQSeries reports

Clusters and message affinities .
Application programming

Call interface .

Design for performance hlnts and t|ps

Programming platforms

Applications for more than one platform
Testing MQSeries applications .

Chapter 3. MQSeries messages
Message descriptor .
Types of message

Datagrams.

Request messages

Reply messages .

Report messages. .
Types of report message .
Report message options

Reports and segmented messages .
MQSeries-generated reports .
Application-generated reports .
Retrieval of reports .

Back-level queue managers .

Format of message control information and message

data . .
Format of message control |nformat|on .
Format of message data
Application data conversion .

Conversion at the sending queue manager
Conversion at the receiving queue manager

© Copyright IBM Corp. 1993, 2000

O © © ©

cCooouahbAbDADdDoww

11
.12
. 13
.14
.14
.14
.14
.14
.15
. 15
.15
.15
. 16
. 16
. 18
. 18

. 19
. 20
. 20
. 20
. 20
.21
.21
.21
.22
.23
. 23
. 24
. 24

. 25

. 25
. 25
. 26
. 26
.27

27

Coded character sets

Message priorities .
Message groups .
Message persistence .
Selecting messages from queues
Messages that fail to be delivered .
Messages that are backed out
Reply-to queue and queue manager .
Message context .

Identity context .

Origin context

Chapter 4. MQSeries objects
Queue managers
Attributes of queue managers .
Queue managers and workload management .
Queues. .
Types of queue .
Types of local queue
Attributes of queues
Remote queues .
Alias queues .
Model queues
Dynamic queues.
Properties of temporary dynamlc queues
Properties of permanent dynamic queues
Uses of dynamic queues .
Recommendations for uses of dynamlc queues
Transmission queues
Initiation queues. .
Dead-letter (undelivered- message) queues .
System command queues.
System default queues.
Namelists . .
Process definitions .
Channels .
Storage classes
Rules for naming MQSerles objects
Queue names. .
Process definition and namellst names
Channel names .
Reserved object names.

Chapter 5. Handling program errors
Locally determined errors
Failure of an MQI call .
System interruptions
Messages containing incorrect data
Using report messages for problem determlnatlon
Creating report messages .
Requesting and receiving (MQGET) report
messages .
Remotely determined errors .
Problems delivering a message .
Retry message delivery
Return message to sender

.27
. 28
. 28
. 30
. 30
.31
.31
.32
.32
. 33
. 33

. 35
. 35
. 35
. 36
. 36
. 37
. 38
. 38
. 39
. 40
. 40
.41
.41
.41
.42

42

. 42
. 43
. 43
. 43
. 43
. 43
.44
. 44
.44
. 45
. 45
. 46
. 46
. 46

. 47
.47
Y
.47
. 49

49

. 49

. 50
. 50
. 50
. 51
.51

Using the dead-letter (undelivered-message)
queue
Dead-letter queue processing

2 MQSeries Application Programming Guide

. 52

Chapter 1. Introduction to message queuing

The MQSeries products enable programs to communicate with one another across
a network of unlike components — processors, operating systems, subsystems and
communication protocols — using a consistent application programming interface.

Applications designed and written using this interface are known as message
queuing applications, as they use the messaging and queuing style:

Messaging
Programs communicate by sending each other data in messages rather
than calling each other directly.

Queuing
Messages are placed on queues in storage, allowing programs to run
independently of each other, at different speeds and times, in different
locations, and without having a logical connection between them.

This chapter introduces messaging and queuing concepts, under these headings:

.k i 2

.k i 2

o I i o

. i ?”

. [i i ient?”

What is message queuing?

Message queuing has been used in data processing for many years. It is most
commonly used today in electronic mail. Without queuing, sending an electronic
message over long distances requires every node on the route to be available for
forwarding messages, and the addressees to be logged on and conscious of the fact
that you are trying to send them a message. In a queuing system, messages are
stored at intermediate nodes until the system is ready to forward them. At their
final destination they are stored in an electronic mailbox until the addressee is
ready to read them.

Even so, many complex business transactions are processed today without
gueuing. In a large network, the system might be maintaining many thousands of
connections in a ready-to-use state. If one part of the system suffers a problem,
many parts of the system become unusable.

You can think of message queuing as being electronic mail for programs. In a
message queuing environment, each program from the set that makes up an
application suite is designed to perform a well-defined, self-contained function in
response to a specific request. To communicate with another program, a program
must put a message on a predefined queue. The other program retrieves the
message from the queue, and processes the requests and information contained in
the message. So message queuing is a style of program-to-program communication.

© Copyright IBM Corp. 1993, 2000 3

Definition of terms
Queuing is the mechanism by which messages are held until an application is
ready to process them. Queuing allows you to:

* Communicate between programs (which may each be running in different
environments) without having to write the communication code.

» Select the order in which a program processes messages.

» Balance loads on a system by arranging for more than one program to service a
queue when the number of messages exceeds a threshold.

* Increase the availability of your applications by arranging for an alternative
system to service the queues if your primary system is unavailable.

What is a message?

In message queuing, a message is simply a collection of data sent by one program
and intended for another program.

MQSeries defines four types of message:

Datagram A simple message for which no reply is expected

Request A message for which a reply is expected

Reply A reply to a request message

Report a message that describes an event such as the occurrence of an error

See I‘Types of message” an page 20 for more information about these messages.

Message descriptor

An MQSeries message consists of control information and application data. The
control information is defined in a message descriptor structure (MQMD) and
contains such things as:

* The type of the message

* An identifier for the message

» The priority for delivery of the message

The structure and content of the application data is determined by the
participating programs, not by MQSeries.

Message channel agent

A message channel agent moves messages from one queue manager to another.
References are made to them in this book when dealing with report messages and

you will need to consider them when designing your application. See the
Ilntercommunicatiod book for more information.

What is a message queue?

A message queue, known simply as a queue, is a named destination to which
messages can be sent. Messages accumulate on queues until they are retrieved by
programs that service those queues.

Queues reside in, and are managed by, a queue manager (see 'What is a queud

27 . The physical nature of a queue depends on the operating
system on which the queue manager is running. A queue can either be a volatile
buffer area in the memory of a computer, or a data set on a permanent storage
device (such as a disk). The physical management of queues is the responsibility of
the queue manager and is not made apparent to the participating application
programs.

4 MQSeries Application Programming Guide

Definition of terms

Programs access queues only through the external services of the queue manager.
They can open a queue, put messages on it, get messages from it, and close the
queue. They can also set, and inquire about, the attributes of queues.

What is a queue manager?

A queue manager is a system program that provides queuing services to
applications. It provides an application programming interface so that programs
can put messages on, and get messages from, queues. A queue manager provides
additional functions so that administrators can create new queues, alter the
properties of existing queues, and control the operation of the queue manager.

For MQSeries message queuing services to be available on a system, there must be
a queue manager running:

* On 0S/400, OS/390, OS/2, Windows NT, Digital OpenVMS, and UNIX systems,
you can have more than one queue manager running on a single system (for
example, to separate a test system from a “live” system). To an application, each
queue manager is identified by a connection handle (Hconn).

* On the VSE/ESA and Windows platforms, you can have only one queue
manager running on a single system. Hconn is still used, but only to give
compatibility with other MQSeries platforms.

Many different applications can make use of the queue manager’s services at the
same time and these applications can be entirely unrelated. For a program to use
the services of a queue manager, it must establish a connection to that queue
manager.

For applications to be able to send messages to applications that are connected to
other queue managers, the queue managers must be able to communicate among
themselves. MQSeries implements a store-and-forward protocol to ensure the safe
delivery of messages between such applications.

What is a cluster?

A cluster is a network of queue managers that are logically associated in some way.
Clustering is available to queue managers on the following platforms:

* MQSeries for AlX, V5.1

* MQSeries for AS/400, V5.1

* MQSeries for HP-UX, V5.1

* MQSeries for OS/2 Warp, V5.1

* MQSeries for 0OS/390, V2.1

* MQSeries for Sun Solaris, V5.1

* MQSeries for Windows NT, V5.1

In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another
it must have defined a transmission queue, a channel to the remote queue
manager, and a remote queue definition for every queue to which it wants to send
messages.

If you group queue managers in a cluster, the queue managers can make the

queues that they host available to every other queue manager in the cluster. Then,
assuming you have the necessary network infrastructure in place, any queue

Chapter 1. Introduction to message queuing 5

Definition of terms

manager can send a message to any other queue manager in the same cluster
without the need for explicit channel definitions, remote queue definitions, or
transmission queues.

There are two quite different reasons for using clusters: to reduce system
administration and to improve availability and workload balancing.

As soon as you establish even the smallest cluster you will benefit from simplified
system administration. Queue managers that are part of a cluster need fewer
definitions and so the risk of making an error in your definitions is reduced.

For details of all aspects of clustering, see the MQSeries Queue Manager Clusters
book, SC34-5349.

What is an MQSeries client?

An MQSeries client is an independently installable component of an MQSeries
product. It allows you to run MQSeries applications, by means of a
communications protocol, to interact with one or more Message Queue Interface
(MQI) servers on other platforms and to connect to their queue managers.

For full details on how to install the MQSeries client component and use the

environment, see the MQSeries Clientd book.

Main features of message queuing

The main features of applications that use message queuing techniques are:
* There are no direct connections between programs.

* Communication between programs can be time-independent.

* Work can be carried out by small, self-contained programs.

* Communication can be driven by events.

* Applications can assign a priority to a message.

e Security.

» Data integrity.

* Recovery support.

No direct connections between programs
Message queuing is a technique for indirect program-to-program
communication. It can be used within any application where programs
communicate with each other. Communication occurs by one program
putting messages on a queue (owned by a queue manager) and another
program getting the messages from the queue.

Programs can get messages that were put on a queue by other programs.
The other programs can be connected to the same queue manager as the
receiving program, or to another queue manager. This other queue
manager might be on another system, a different computer system, or even
within a different business or enterprise.

There are no physical connections between programs that communicate
using message queues. A program sends messages to a queue owned by a
gueue manager, and another program retrieves messages from the queue
(see Ei

6 MQSeries Application Programming Guide

Main features

Traditional communication between programs

Program A Program B

Comms code Comms code

Networking software

Communication by message queuing

Program A Program B

MOQSeries
Comms code

(Queue Manager)

Networking software

Figure 1. Message queuing compared with traditional communication

As with electronic mail, the individual messages that may be part of a
transaction, travel through a network on a store-and-forward basis. If a
link between nodes fails, the message is kept until the link is restored, or
the operator or program redirects the message.

The mechanism by which a message moves from queue to queue is hidden
from the programs. Therefore the programs are simpler.

Time-independent communication
Programs requesting others to do work do not have to wait for the reply to
a request. They can do other work, and process the reply either when it
arrives or at a later time. When writing a messaging application, you need
not know (or be concerned) when a program sends a message, or when the
target is able to receive the message. The message is not lost; it is retained
by the queue manager until the target is ready to process it. The message
stays on the queue until it is removed by a program.

Small programs
Message queuing allows you to exploit the advantages of using small,
self-contained programs. Instead of a single, large program performing all
the parts of a job sequentially, you can spread the job over several smaller,
independent programs. The requesting program sends messages to each of
the separate programs, asking them to perform their function; when each
program is complete, the results are sent back as one or more messages.

Chapter 1. Introduction to message queuing 7/

Main features

Event-driven processing
Programs can be controlled according to the state of queues. For example,
you can arrange for a program to start as soon as a message arrives on a
queue, or you can specify that the program does not start until there are,
for example, 10 messages above a certain priority on the queue, or 10
messages of any priority on the queue.

Message priority
A program can assign a priority to a message when it puts the message on
a queue. This determines the position in the queue at which the new
message is added.

Programs can get messages from a queue either in the order in which the
messages appear in the queue, or by getting a specific message. (A
program may want to get a specific message if it is looking for the reply to
a request it sent earlier.)

Security
Authorization checks are carried out on each resource, using the tables that
are set up and maintained by the MQSeries administrator.

« RACF® or other external security managers may be used within
MQSeries for OS/390.

* There is no authorization checking within MQSeries for OS/2 Warp;
however, an interface is provided to enable you to build and install your
own.

» Within MQSeries on UNIX systems, AS/400, Compaq (DIGITAL)
OpenVMS, Tandem NonStop Kernel, and Windows NT, a security
manager, the Object Authority Manager (OAM), is provided as an
installable service. By default, the OAM is active.

* On VSE/ESA, security is provided by CICS.

Data integrity
Data integrity is provided via units of work. The synchronization of the
start and end of units of work is fully supported as an option on each
MQGET/MQPUT, allowing the results of the unit of work to be committed
or rolled back. Syncpoint support operates either internally or externally to
MQSeries depending on the form of syncpoint coordination selected for the
application.

Recovery support
For recovery to be possible, all persistent MQSeries updates are logged.
Hence, in the event that recovery is necessary, all persistent messages will
be restored, all in-flight transactions will be rolled back and any syncpoint
commit and backouts will be handled in the normal way of the syncpoint
manager in control. For more information on persistent messages, see

MQSeries clients and servers

A server application will not have to be changed to be able to support additional
MQSeries clients on new platforms.

Similarly, the MQSeries client will, without change, be able to function with
additional types of server. See the MQSeries Clients book for more information.

8 MQSeries Application Programming Guide

Benefits of message queuing

Benefits of message queuing to the application designer and
developer

Some of the benefits of message queuing are:

* You can design applications using small programs that you can share between
many applications.

* You can quickly build new applications by reusing these building blocks.

» Applications written to use message queuing techniques are not affected by
changes in the way queue managers work.

* You do not need to use any communication protocols. The queue manager deals
with all aspects of communication for you.

* Programs that receive messages need not be running at the time messages are
sent to them. The messages are retained on queues.

Designers can reduce the cost of their applications because development is faster,
fewer developers are needed, and demands on programming skill are lower than
those for applications that do not use message queuing.

What can you do with MQSeries products?

MQSeries products are queue managers and application enablers. They support the
IBM Message Queue Interface (MQI) through which programs can put messages
on a queue and get messages from a queue.

MQSeries for OS/390

With MQSeries for OS/390 you can write applications that:
* Use message queuing within CICS or IMS.

» Send messages between batch, CICS, and IMS applications, selecting the most
appropriate environment for each function.

* Send messages to applications that run on other MQSeries platforms.

* Process several messages together as a single unit of work that can be
committed or backed out.

* Send messages to and interact with IMS applications by means of the IMS
bridge.
» Participate in units of work coordinated by RRS.

See I‘Appendix A. | anguage compilers and assemblers” on page 423 for details of

the supported programming languages.

Each environment within OS/390 has its own characteristics, advantages, and
disadvantages. The advantage of MQSeries for OS/390 is that applications are not
tied to any one environment, but can be distributed to take advantage of the
benefits of each environment. For example, you can develop end-user interfaces
using TSO or CICS, you can run processing-intensive modules in OS/390 batch,
and you can run database applications in IMS or CICS. In all cases, the various
parts of the application can communicate using messages and queues.

Designers of MQSeries applications must be aware of the differences and
limitations imposed by these environments. For example:

* MQSeries provides facilities that allow intercommunication between queue
managers (this is known as distributed queuing).

Chapter 1. Introduction to message queuing 9

Uses of MQSeries

Methods of committing and backing out changes differ between the batch and
CICS environments.

MQSeries for OS/390 provides support in the IMS environment for online
message processing programs (MPPs), interactive fast path programs (IFPs), and
batch message processing programs (BMPs). If you are writing batch DL/1
programs, follow the guidance given in this book for OS/390 batch programs.

Although multiple instances of MQSeries for OS/390 can exist on a single
0S/390 system, a CICS region can connect to only one queue manager at a time.
However, more than one CICS region can be connected to the same queue
manager. In the IMS and OS/390 batch environments, programs can connect to
more than one queue manager.

The differences between the supported environments, and their limitations, are
discussed further in E i iti icati i

MQSeries for non-OS/390 platforms

With MQSeries for non-OS/390 platforms you can write applications that:

Send messages to other applications running under the same operating systems.
The applications can be on either the same or another system.

Send messages to applications that run on other MQSeries platforms.

Use message queuing from within CICS Transaction Server for OS/2, CICS for
AS/400, TXSeries for AlIX, TXSeries for HP-UX, CICS for Siemens Nixdorf
SINIX, TXSeries for Sun Solaris, and TXSeries for Windows NT, DOS, and
Windows 3.1 applications.

Use message queuing from within Encina for AIX, HP-UX, SINIX, Sun Solaris,
and Windows NT.

Use message queuing from within Sybase for AlX, Sun Solaris, and Windows
NT.

Use message queuing from within Tuxedo for AlX, AT&T, HP-UX, SINIX and
DC/0Sx, Sun Solaris, and Windows NT.

MQSeries can act as a transaction manager, and will coordinate updates made
by external resource managers within MQSeries units of work. These external
resource managers must comply to the X/OPEN XA interface.

Process several messages together as a single unit of work that can be
committed or backed out.

Run from a full MQSeries environment, or run from an MQSeries client
environment on the following platforms:
- AS/400

— Digital OpenVMS

- DOS

- 0S§/2

— UNIX systems

- VM/ESA®

— Windows NT

— Windows 3.1

— Windows 95 and Windows 98

See I‘Appendix A | anguage compilers and assemblers” on page 423 for details of

the supported programming languages.

10 MQSeries Application Programming Guide

Chapter 2. Overview of application design

This chapter introduces the design of MQSeries applications, under these headings:

These subjects are discussed in greater detail in the remaining chapters of this
book.

Planning your design

When you have decided how your applications are able to take advantage of the
platforms and environments available to you, you need to decide how to use the
features offered by MQSeries. Some of the key aspects are:

What types of queue should you use?
Do you want to create a queue each time you need one, or do you want to
use queues that have already been set up? Do you want to delete a queue
when you have finished using it, or is it going to be used again? Do you
want to use alias queues for application independence? To see what types

of queues are supported, refer to 'Queuies” on page 36.

What types of message should you use?
You may want to use datagrams for simple messages, but request messages
(for which you expect replies) for other situations. You may want to assign
different priorities to some of your messages.

How can you control your MQSeries programs?
You may want to start some programs automatically or make programs
wait until a particular message arrives on a queue, (using the MQSerles
triggering feature, see
triggers” on page 185). Alternatively, you may want to start up another
instance of an application when the messages on a queue are not getting
processed fast enough (using the MQSeries instrumentation events feature as

described in the MQSeries Programmable System Management book).

Will your application run on an MQSeries client?
The full MQI is supported in the client environment and this enables
almost any MQSeries application to be relinked to run on an MQSeries
client. Link the application on the MQSeries client to the MQIC library,
rather than to the MQI library. The exceptions are:

* An application that needs syncpoint coordination with other resource
managers.

* Get(signal) on OS/390 is not supported.

Note: An application running on an MQSeries client may connect to more
than one queue manager concurrently, or use a queue manager
name with an asterisk (*) on an MQCONN or MQCONNX call. The

© Copyright IBM Corp. 1993, 2000 11

Planning your design

application will have to be changed if you want to link to the queue
manager libraries instead of the client libraries, as this function will
not be available.

See the MQSeries Clientd book for more information.

How can you secure your data and maintain its integrity?
You can use the context information that is passed with a message to test
that the message has been sent from an acceptable source. You can use the
syncpointing facilities provided by MQSeries or your operating system to
ensure that your data remains consistent with other resources (see

for
further details). You can use the persistence feature of MQSeries messages to
assure the delivery of important messages.

How should you handle exceptions and errors?
You need to consider how to process messages that cannot be delivered,
and how to resolve error situations that are reported to you by the queue
manager. For some reports, you must set report options on MQPUT.

The remainder of this chapter introduces the features and techniques that
MQSeries provides to help you answer questions like these.

Using MQSeries objects

The MQI uses the following types of object:

* Queue managers

* Queues

* Namelists (MQSeries for OS/390 and MQSeries Version 5.1 products only)
* Process definitions

* Channels

» Storage classes (OS/390 only)

These objects are discussed in [‘Chapter 4 MQSeries objects” on page 35.

Each object is identified by an object descriptor (MQOD), which you use when you
write MQSeries programs. However, with the exception of dynamic queues, these
objects must be defined to the queue manager before you can work with them.

You define objects using:

« The PCF commands described in the MQSeries Programmable System Management
book (not on OS/390 or VSE/ESA)

+ The MQSC commands described in the MQSeries Command Referencd manual (not
on VSE/ESA)

* The MQSeries for OS/390 operations and control panels, described in the
MQSeries for OS/390 System Management Guide

* The MQSeries Explorer or MQSeries Web Administration (Windows NT only)
* The MQSeries Master Terminal (MQMT) transaction (VSE/ESA only)

You can also display or alter the attributes of objects, or delete the objects.

Alternatively, for sequences of MQSeries for OS/390 commands that you use
regularly, you can write administration programs that create messages containing
commands and that put these messages on the system-command input queue. The
gqueue manager processes the messages on this queue in the same way that it
processes commands entered from the command line or from the operations and

12 MQseries Application Programming Guide

Using MQSeries objects

control panels. This technique is described in the MQSeries for OS/390 System
Management Guide, and demonstrated in the Mail Manager sample application
delivered with MQSeries for OS/390. For a description of this sample, see

For sequences of MQSeries for AS/400 commands you use regularly you can write
CL programs.

For sequences of MQSeries commands on OS/2, Windows NT, and UNIX systems,
you can use the MQSC facility to run a series of commands held in a file. For

information on how to use this facility, see the MQSeries Command Referencd

manual.

Designing your messages

You create a message when you use an MQI call to put the message on a queue.
As input to the call, you supply some control information in a message descriptor
(MQMD) and the data that you want to send to another program. But at the
design stage, you need to consider the following questions, because they affect the
way Yyou create your messages:

What type of message should | use?
Are you designing a simple application in which you can send a message,
then take no further action? Or are you asking for a reply to a question? If
you are asking a question, you may include in the message descriptor the
name of the queue on which you want to receive the reply.

Do you want your request and reply messages to be synchronous? This
implies that you set a timeout period for the reply to answer your request,
and if you do not receive the reply within that period, it is treated as an
error.

Or would you prefer to work asynchronously, so that your processes do
not have to depend upon the occurrence of specific events, such as
common timing signals?

Another consideration is whether you have all your messages inside a unit
of work.

Should I assign different priorities to some of the messages | create?
You can assign a priority value to each message, and define the queue so
that it maintains its messages in order of their priority. If you do this,
when another program retrieves a message from the queue, it always gets
the message with the highest priority. If the queue does not maintain its
messages in priority order, a program that retrieves messages from the
queue will retrieve them in the order in which they were added to the
gueue.

Programs can also select a message using the identifier that the queue
manager assigned when the message was put on the queue. Alternatively,
you can generate your own identifiers for each of your messages.

Will my messages be discarded when the queue manager restarts?
The queue manager preserves all persistent messages, recovering them
when necessary from the MQSeries log files, when it is restarted.
Nonpersistent messages and temporary dynamic queues are not preserved.
Any messages that you do not want discarded must be defined as
persistent at the time they are created. When writing an application for
MQSeries for OS/2 Warp, MQSeries for Windows NT, or MQSeries on

Chapter 2. Overview of application design 13

Message design

UNIX systems, make sure that you know how your system has been set up
in respect of log file allocation to reduce the risk of designing an
application that will run to the log file limits.

Do | want to give information about myself to the recipient of my messages?
Normally, the queue manager sets the user ID, but suitably authorized
applications can also set this field, so that you can include your own user
ID and other information that the receiving program can use for
accounting or security purposes.

MQSeries techniques

For a simple MQSeries application, you need to decide which MQSeries objects to
use in your application, and which types of message you want to use. For a more
advanced application, you may want to use some of the techniques introduced in
the following sections.

Waiting for messages
A program that is serving a queue can await messages by:
* Making periodic calls on the queue to see whether a message has arrived
(polling).
» Waiting until either a message arrives, or a specified time interval expires (see
» Setting a signal so that the program is informed when a message arrives
(MQSeries for OS/390 and MQSeries for Windows V2.1 only). For information

about this, see I‘Signaling” on page 136,

Correlating replies

In MQSeries applications, when a program receives a message that asks it to do
some work, the program usually sends one or more reply messages to the
requester. To help the requester to associate these replies with its original request,
an application can set a correlation identifier field in the descriptor of each message.
Programs should copy the message identifier of the request message into the
correlation identifier field of their reply messages.

Setting and using context information

Context information is used for associating messages with the user who generated
them, and for identifying the application that generated the message. Such
information is useful for security, accounting, auditing, and problem determination.

When you create a message, you can specify an option that requests that the queue
manager associates default context information with your message.

For more information on using and setting context information, see iw

Starting MQSeries programs automatically

MQSeries triggering enables a program to be started automatically when messages
arrive on a queue. You can set trigger conditions on a queue so that a program is
started to process that queue:

» Every time a message arrives on the queue

* When the first message arrives on the queue

* When the number of messages on the queue reaches a predefined number

14 MQSeries Application Programming Guide

MQSeries techniques

For more information on triggering, see I‘Chapter 14 Starting MQSeried
Eonlicat - : = %l

Note: Triggering is just one way of starting a program automatically. For example,
you can start a program automatically on a timer using non-MQSeries
facilities.

Generating MQSeries reports

You can request the following reports within an application:
» Exception reports

* Expiry reports

» Confirm-on-arrival (COA) reports

* Confirm-on-delivery (COD) reports

» Positive action notification (PAN) reports

* Negative action notification (NAN) reports

These are described in EReport messages” on page 21.

Clusters and message affinities

Before starting to use clusters with multiple definitions for the same queue, you
must examine your applications to see whether there are any that require an
exchange of related messages. Within a cluster, a message may be routed to any
gueue manager that hosts an instance of the appropriate queue. Therefore, the
logic of applications with message affinities may be upset.

For example, you may have two applications that rely on a series of messages
flowing between them in the form of questions and answers. It may be important
that all the questions are sent to the same queue manager and that all the answers
are sent back to the other queue manager. In this situation, it is important that the
workload management routine does not send the messages to any queue manager
that just happens to host an instance of the appropriate queue.

You should attempt, where possible, to remove the affinities. Removing message
affinities improves the availability and scaleability of applications.

For more information see the IMQSeries Quetie Manager Clusterd book.

Application programming

MQSeries supports the IBM Message Queue Interface (MQI). The MQI includes a
set of calls with which you can send and receive messages, and manipulate
MQSeries objects.

Call interface
The MQI calls allow you to:
» Connect programs to, and disconnect programs from, a queue manager

* Open and close objects (such as queues, queue managers, namelists, and
processes)

* Put messages on queues
* Receive messages from a queue, or browse them (leaving them on the queue)

* Inquire about the attributes (or properties) of MQSeries objects, and set some of
the attributes of queues

Chapter 2. Overview of application design 15

Application programming

* Commit and back out changes made within a unit of work, in environments
where there is no natural syncpoint support, for example, OS/2 and UNIX
systems

» Coordinate queue manager updates and updates made by other resource
managers

The MQI provides structures (groups of fields) with which you supply input to,
and get output from, the calls. It also provides a large set of named constants to
help you supply options in the parameters of the calls. The definitions of the calls,
structures, and named constants are supplied in data definition files for each of the
supported programming languages. Also, default values are set within the MQI
calls.

Design for performance - hints and tips
Here are a few ideas to help you design efficient applications:
» Design your application so that processing goes on in parallel with a user’s
thinking time:
— Display a panel and allow the user to start typing while the application is still
initializing.
— Don’t be afraid to get the data you need in parallel from different servers.

» Keep connections and queues open if you are going to reuse them instead of
repeatedly opening and closing, connecting and disconnecting.

Note: However, a server application which is putting only one message should
use MQPUT1.

» Keep your messages within a unit of work, so that they can be committed or
backed out simultaneously.

» Use the nonpersistent option for messages that do not need to be recoverable.

Programming platforms

MQSeries for OS/390
MQSeries for OS/390 operates under OS/390 Version 2.4 and subsequent
compatible releases. You can run MQSeries for OS/390 programs in the
CICS Transaction Server for OS/390, CICS for MVS/ESA, IMS/ESA, and
0S/390 environments. See Appendix A. | anguage compilers and

assemblers” on page 423 for details of the programming languages
supported by MQSeries for OS/390.

UNIX systems
MQSeries for AIX operates under AIX Version 4.2, Version 4.3.x, and
subsequent compatible releases. You can run MQSeries for AIX programs
from within CICS for AIX, TXSeries for AlX, Encina for AlX, and Tuxedo
for AIX. Applications using threads are supported by MQSeries for AlX.

MQSeries for AT&T GIS UNIX operates under AT&T GIS UNIX Version 3 2
and subsequent compatible releases. You can run MQSeries for AT&T GIS
UNIX programs from within Tuxedo for AT&T.

MQSeries for Compaq (DIGITAL) OpenVMS operates under VMS Version
6.2 and VMS Version 7.1.

2. This platform has become NCR UNIX SVR4 MP-RAS, R3.0.

16 MQSeries Application Programming Guide

Application programming

MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX) operates under
DIGITAL UNIX Version 4.0.D, or later 4.0.x. Applications using threads are
supported by MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX).

MQSeries for HP-UX operates under HP-UX Version 10.20 and Version
11.0. You can run MQSeries for HP-UX programs from within TXSeries,
Encina, and Tuxedo for HP-UX. Applications using threads are supported
by MQSeries for HP-UX.

MQSeries for SINIX and DC/0OSx operates under SINIX and DC/QOSx
Version 2.1 and subsequent compatible releases. You can run MQSeries for
SINIX and DC/0Sx programs from within CICS for Siemens Nixdorf
SINIX, and Tuxedo for SINIX and DC/OSx. You can also run MQSeries for
SINIX programs from within Encina for SINIX.

MQSeries for Sun Solaris operates under Sun Solaris Version 2.6 (with
patches 105210-13 and 105568-10), Version 7, and subsequent compatible
releases. You can run MQSeries for Sun Solaris programs from within
CICS, TXSeries, Encina, and Tuxedo for Sun Solaris. Applications using
threads are supported by MQSeries for Sun Solaris.

See FAppendix A | anguage compilers and assemblers” an page 423 for

details of the programming languages supported by MQSeries on UNIX
systems.

MQSeries for AS/400

MQSeries for AS/400 operates under OS/400 Version 4 Release 4 and
subsequent compatible releases. You can run MQSeries for AS/400
programs in the CICS for AS/400 environment. See

Language compilers and assemblers” on page 423 for details of the
programming languages supported by MQSeries for AS/400. Applications
using threads are supported by MQSeries for AS/400.

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp operates under OS/2 Warp Version 4.0, OS/2
Warp Server V4.0, OS/2 Warp Server Advanced SMP feature, OS/?2
Workspace On-Demand, OS/2 e-business Server, and subsequent
compatible releases. You can run MQSeries for OS/2 Warp programs in the
CICS and CICS Transaction Server environment. See

Language compilers and assemblers” on page 423 for details of the

programming languages supported by MQSeries for OS/2 Warp.

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel operates under Tandem NSK
operating system version D3x, D4x, G02, or later GOx with TMF and
PATHWAY. See EAppendix A Language compilers and assemblers” on

for details of the programming languages supported by MQSeries
for Tandem NonStop Kernel.

MQSeries for VSE/ESA

MQSeries for VSE/ESA V2.1 operates under VSE/ESA V2.3 and
subsequent compatible releases, with CICS for VSE/ESA V2.3. See

LAppendnLA_Language_mmpuem_and_assemblamlon_page.Azﬂ for details

of the programming languages supported by MQSeries for VSE/ESA.

MQSeries for Windows

MQSeries for Windows V2.0 operates under Windows \ersion 3.1,
Windows 95, and the WIN-OS/2 environment within OS/2. MQSeries for
Windows V2.1 operates under Windows 95, Windows 98, and Windows

Chapter 2. Overview of application design 17

Application programming

NT V4. See t‘Appendix A. | anguage compilers and assemblers” on
hage 423 for details of the programming languages supported by MQSeries
for Windows.

MQSeries for Windows NT
MQSeries for Windows NT operates under Windows NT Version 4.0
(service pack 4) and subsequent compatible releases. You can run MQSeries
for Windows NT programs from within CICS, TXSeries, Encina, and
Tuxedo for Windows NT. See L i i

ssemblers” an page 423 for details of the programming languages

supported by MQSeries for Windows NT.

Applications for more than one platform

Will your application run on more than one platform? Do you have a strategy to
move to a different platform from the one you use today? If the answer to either of
these questions is “yes,” you need to make sure that you code your programs for
platform independence.

If you are using C, make sure that you code in ANSI standard C. Use a standard C
library function rather than an equivalent platform-specific function even if the
platform-specific function is faster or more efficient. The exception is when
efficiency in the code is paramount, when you should code for both situations
using #ifdef. For example:
#ifdef 0S2

0S/2 specific code
#else

generic code
#endif

When the time comes to move the code to another platform, you can now search
the source for #ifdef with the platform specific identifiers, in this example _OS2,
and add or change code as necessary.

It is worth considering keeping portable code in separate source files from the
platform-specific code, and using a simple naming convention to split the
categories.

Testing MQSeries applications

The application development environment for MQSeries programs is no different
from that for any other application, so you can use the same development tools as
well as the MQSeries trace facilities. This is most noticeable on OS/2 and UNIX
systems where there is a wide selection.

When testing CICS applications with MQSeries for OS/390, you can use the CICS
Execution Diagnostic Facility (CEDF). CEDF traps the entry and exit of every MQI
call as well as calls to all CICS services. Also, in the CICS environment, you can
write an API-crossing exit program to provide diagnostic information before and
after every MQI call. For information on how to do this, see EChapter 15._Llsing

When testing AS/400 applications, you can use the Extended Program Model
Debugger. To start this, use the STRDBG command.

18 MQSeries Application Programming Guide

Chapter 3. MQSeries messages

An MQSeries message consists of two parts:
* Message descriptor
* Application data

m represents a message and shows how it is logically divided into message
data and application data.

le——— Message descriptor ———»«————— Application data ——— |
(MQMD)
TT T T T T [T T T T T T T T T T T T [T T T [T T T T T T T [T T T T T T T T T1

'« Message ID »= Control information . . . »<Name®»< Account name »< Amount requested . . .»

Figure 2. Representation of a message

The application data carried in an MQSeries message is not changed by a queue
manager unless data conversion is carried out on it. Also, MQSeries does not put
any restrictions on the content of this data. The length of the data in each message
cannot exceed the value of the MaxMsgLength attribute of both the queue and queue
manager. In MQSeries for AlX, MQSeries for AS/400, MQSeries for HP-UX,
MQSeries for OS/2 Warp, MQSeries for Sun Solaris, and MQSeries for Windows
NT, the MaxMsgLength defaults to 100 MB (104 857 600 bytes). In MQSeries for
AT&T GIS UNIX, MQSeries for Compaq (DIGITAL) OpenVMS, MQSeries for
DIGITAL UNIX (Compag Tru64 UNIX), MQSeries for OS/390, MQSeries for SINIX
and DC/0Sx, MQSeries for Tandem NonStop Kernel, MQSeries for VSE/ESA,
16-bit Windows, and 32-bit Windows, the MaxMsglLength defaults to 4 MB (4 194
304 bytes). However, you should make your messages slightly shorter than the
value of the MaxMsglLength attribute in some circumstances. See I‘The data in yout

essage” on page 108 for more information.

You create a message when you use the MQPUT or MQPUT1 MQI call. As input
to these calls, you supply the control information (such as the priority of the
message, and the name of a reply queue) and your data. These calls put the
message on a queue. See the MQSeries Application Programming Referencd manual
for more information on these calls.

This chapter mtroduces MQSeries messages, under these headings:

© Copyright IBM Corp. 1993, 2000 19

Message descriptor

Message descriptor

You can access message control information using the MQMD structure, which
defines the message descriptor. For a full description of the MQMD structure, see the

MQSeries Application Programming Referencd manual.
See EMessage context” on page 32 for a description of how to use the fields within

the MQMD that contain information about the origin of the message.

Additional information for grouping and segmenting messages (see m
2) is provided in Version 2 of the Message Descriptor (or the
MQMDE). This is the same as the Version 1 Message Descriptor but has additional

fields as described in the MQSeries Application Pragramming Referencd manual.

Types of message

There are four types of message defined by MQSeries:
» Datagram

* Request

* Reply

* Report

Applications can use the first three types of messages to pass information between
themselves. The fourth type, report, is for applications and queue managers to use
to report information about events such as the occurrence of an error.

Each type of message is identified by an MQMT_* value. You can also define your
own types of message. For the range of values you can use, see the description of

the MsgType field in the MQSeries Application Programming Referencd manual.

Datagrams

You should use a datagram when you do not require a reply from the application
that receives the message (that is, gets the message from the queue).

An example of an application that could use datagrams is one that displays flight
information in an airport lounge. A message could contain the data for a whole
screen of flight information. Such an application is unlikely to request an
acknowledgement for a message because it probably does not matter if a message
is not delivered. The application will send an update message after a short period
of time.

Reguest messages

You should use a request message when you want a reply from the application that
receives the message.

An example of an application that could use request messages is one that displays
the balance of a checking account. The request message could contain the number
of the account, and the reply message would contain the account balance.

If you want to link your reply message with your request message, there are two
options:

* You can give your application the responsibility of ensuring that it puts
information into the reply message that relates to the request message.

20 MQsSeries Application Programming Guide

Types of message

* You can use the report field in the message descriptor of your request message
to specify the content of the MsgId and CorrelId fields of the reply message:

— You can request that either the MsgId or the Correlld of the original message
is to be copied into the CorrelId field of the reply message (the default action
is to copy MsglId).

— You can request that either a new MsgId is generated for the reply message, or
that the MsgId of the original message is to be copied into the MsgId field of
the reply message (the default action is to generate a new message identifier).

Reply messages
You should use a reply message when you reply to another message.

When you create a reply message, you should respect any options that were set in
the message descriptor of the message to which you are replying. Report options
specify the content of the message identifier (MsgId) and correlation identifier
(CorrellId) fields. These fields allow the application that receives the reply to
correlate the reply with its original request.

Report messages

Report messages inform applications about events such as the occurrence of an error
when processing a message. They can be generated by:

* A gueue manager,
* A message channel agent (for example, if they cannot deliver the message),

or
* An application (for example, if it cannot use the data in the message).

Note that report messages can be generated at any time, and they may arrive on a
queue when your application is not expecting them.

Types of report message

When you put a message on a queue, you can select to receive:

* An exception report message. This is sent in response to a message that had the
exceptions flag set. It is generated by the message channel agent (MCA) or the
application.

* An expiry report message. This indicates that an application attempted to retrieve
a message that had reached its expiry threshold; the message is marked to be
discarded. This type of report is generated by the queue manager.

» A confirmation of arrival (COA) report message. This indicates that the message has
reached its target queue. It is generated by the queue manager.

* A confirmation of delivery (COD) report message. This indicates that the message
has been retrieved by a receiving application. It is generated by the queue
manager.

» A positive action notification (PAN) report message. This indicates that a request has
been successfully serviced (that is, the action requested in the message has been
performed successfully). This type of report is generated by the application.

* A negative action notification (NAN) report message. This indicates that a request
has not been successfully serviced (that is, the action requested in the message
has not been performed successfully). This type of report is generated by the
application.

Note: Each type of report message contains one of the following:

Chapter 3. MQSeries messages 21

Types of message

* The entire original message
* The first 100 bytes of data in the original message
* No data from the original message

You may request more than one type of report message when you put a message
on a queue. If you select the delivery confirmation report message and the
exception report message options, in the event that the message fails to be
delivered, you will receive an exception report message. However, if you select
only the delivery confirmation report message option and the message fails to be
delivered, you will not get an exception report message.

The report messages you request, when the criteria for generating a particular
message are met, are the only ones you will receive.

Report message options
You have the option to discard a message after an exception has arisen. If you

select the discard option, and have requested an exception report message, the
report message goes to the ReplyToQ and ReplyToQMgr, and the original message is
discarded.

Note: A benefit of this is you can reduce the number of messages going to the
dead-letter queue. However, it does mean that your application, unless it
sends only datagram messages, has to deal with returned messages. When
an exception report message is generated, it inherits the persistence of the
original message.

If a report message cannot be delivered (if the queue is full, for instance), the
report message will be placed on the dead-letter queue.

If you wish to receive a report message, you must specify the name of your
reply-to queue in the ReplyToQ field; otherwise the MQPUT or MQPUT1 of your
original message will fail with MQRC_MISSING_REPLY_TO_Q.

You can use other report options in the message descriptor (MQMD) of a message
to specify the content of the MsgId and CorrelId fields of any report messages that
are created for the message:

* You can request that either the MsgId or the CorrelId of the original message is
to be copied into the Correlld field of the report message. The default action is
to copy the message identifier. MQRO_COPY_MSG_ID_TO_CORRELID should
be used because it enables the sender of a message to correlate the reply or
report message with the original message. The correlation identifier of the reply
or report message will be identical to the message identifier of the original
message.

* You can request that either a new MsgId is generated for the report message, or
that the MsgId of the original message is to be copied into the MsgId field of the
report message. The default action is to generate a new message identifier.
MQRO_NEW_MSG_ID should be used because it ensures that each message in
the system has a different message identifier, and therefore can be distinguished
unambiguously from all other messages in the system.

» Specialized applications may need to use MQRO_PASS MSG_ID and, or
MQRO_PASS_CORREL_ID. However, the application that reads the messages
from the queue may need careful design in order to ensure that it will work
correctly. In particular when the queue contains multiple messages with the
same message identifier.

22 MQSeries Application Programming Guide

Types of message

Server applications should check the settings of these flags in the request
message, and set the MsgId and CorrellId fields in the reply or report message
appropriately.

Applications which act as intermediaries between a requester application and a
server application should not need to check the settings of these flags. This is
because these applications usually need to forward the message to the server
application with the MsgId, Correlld, and Report fields unchanged. This allows
the server application to copy the MsgId from the original message in the
Correlld field of the reply message.

When generating a report about a message, server applications should test to see if
any of these options have been set.

For more information on how to use report messages, see the description of the
Report field in the IMQSeries Application Programming Referencd manual.

To indicate the nature of the report, queue managers use a range of feedback
codes. They put these codes in the Feedback field of the message descriptor of a
report message. Queue managers can also return MQI reason codes in the Feedback
field. MQSeries defines a range of feedback codes for applications to use.

For more information on feedback and reason codes, see the description of the

Feedback field in the IMQSeries Application Programming Referencd manual.

An example of a program that could use a feedback code is one that monitors the
work loads of other programs serving a queue. If there is more than one instance
of a program serving a queue, and the number of messages arriving on the queue
no longer justifies this, such a program could send a report message (with the
feedback code MQFB_QUIT) to one of the serving programs to indicate that the
program should terminate its activity. (A monitoring program could use the
MQINQ call to find out how many programs are serving a queue.)

Reports and segmented messages

Segmented messages are supported on MQSeries Version 5 products only.

If a message is segmented (see ‘Message segmentation” on page 130 for a

description of this) and you ask for reports to be generated, you may receive more
reports than you would have done had the message not been segmented.

MQSeries-generated reports

If you segment your messages or allow the queue manager to do so, there is only
one case in which you can expect to receive a single report for the entire message.
This is when you have requested only COD reports, and you have specified
MQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports;
usually one for each segment.

Note: If you segment your messages, and you need only the first 100 bytes of the
original message data to be returned, you must change the setting of the
report options to ask for reports with no data for segments that have an
offset of 100 or more. If you do not do this, and you leave the setting so that
each segment requests 100 bytes of data, and you retrieve the report
messages with a single MQGET specifying MQGMO_COMPLETE_MSG, the
reports assemble into a large message containing 100 bytes of read data at

Chapter 3. MQSeries messages 23

Types of message

each appropriate offset. If this happens, you need a large buffer or you need
to specify MQGMO_ACCEPT_TRUNCATED_MSG.

Application-generated reports

If your application generates reports, you should always copy the MQSeries
headers that are present at the start of the original message data to the report
message data. Then add none, 100 bytes, or all of the original message data (or
whatever other amount you would normally include) to the report message data.

You can recognize the MQSeries headers that must be copied by looking at the
successive Format names, starting with the MQMD and continuing through any
headers present. The following Format names indicate these MQSeries headers:
« MQMDE

* MQDLH

* MQXQH

* MQIIH

« MQH*

MQH* means any name starting with the characters MQH.

The Format name occurs at specific positions for MQDLH and MQXQH, but for the
other MQSeries headers it occurs at the same position. The length of the header is
contained in a field that also occurs at the same position for MQMDE, MQIMS and
all MQH* headers.

If you are using a Version 1 of the MQMD, and you are reporting on a segment, or
a message in a group, or a message for which segmentation is allowed, the report
data must start with an MQMDE. You should set the OriginallLength field to the
length of the original message data excluding the lengths of any MQSeries headers
that you find.

Retrieval of reports

If you ask for COA or COD reports, you can ask for them to be reassembled for
you with MQGMO_COMPLETE_MSG. An MQGET with
MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single
type, for example COA, and with the same GroupId) are present on the queue to
represent one complete original message. This is true even if the report messages
themselves do not contain the complete original data; the Originallength field in
each report message gives the length of original data represented by that report
message, even if the data itself is not present.

This technique can be used even if there are several different report types present
on the queue (for example, both COA and COD), because an MQGET with
MQGMO_COMPLETE_MSG reassembles report messages only if they have the
same Feedback code. Note, however, that you cannot normally use the technique
for exception reports, since in general these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has
arrived. However, in most circumstances you need to cater for the possibility that
some segments arrive while others may generate an exception (or expiry, if you
have allowed this). You cannot use MQGMO_COMPLETE_MSG in this case
because in general you may get different Feedback codes for different segments
and, as noted above, you may get more than one report for a given segment. You
can, however, use MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you may need to retrieve reports as they arrive, and build up a
picture in your application of what happened to the original message. You can use

24 MQSeries Application Programming Guide

Types of message

the GrouplId field in the report message to correlate reports with the GroupId of the
original message, and the Feedback field to identify the type of each report
message. The way in which you do this depends on your application requirements.

One approach is as follows:
» Ask for COD reports and exception reports.

» After a specific time, check whether a complete set of COD reports has been
received using MQGMO_COMPLETE_MSG. If so, your application knows that
the entire message has been processed.

» If not, and exception reports relating to this message are present, the problem
should be handled just as for unsegmented messages, though provision must
also be made for ‘orphan’ segments to be cleaned up at some point.

» If there are segments for which there are no reports of any kind, the original
segments (or the reports) may be waiting for a channel to be reconnected, or the
network might be overloaded at some point. If no exception reports at all have
been received (or if you think that the ones you have may be temporary only),
you may decide to let your application wait a little longer.

As before, this is similar to the considerations you have when dealing with
unsegmented messages, except that you must also consider the possibility of
‘orphan’ segments which have to be cleaned up.

If the original message is not critical (for example, if it is a query, or a message that
can be repeated later), set an expiry time to ensure that orphan segments are
removed.

Back-level queue managers

When a report is generated by a queue manager that supports segmentation, but is
received on a queue manager that does not support segmentation, the MQMDE
structure (which identifies the 0ffset and Originallength represented by the
report) is always included in the report data, in addition to zero, 100 bytes, or all
of the original data in the message.

However, if a segment of a message passes through a queue manager that does not
support segmentation, you should be aware that if a report is generated there, the
MQMDE structure in the original message will be treated purely as data. It will
not therefore be included in the report data if zero bytes of the original data have
been requested. Without the MQMDE, the report message may not be useful.

You should therefore request at least 100 bytes of data in reports if there is a
possibility that the message might travel through a back-level queue manager.

Format of message control information and message data

The queue manager is only interested in the format of the control information
within a message, whereas applications that handle the message are interested in
the format of both the control information and the data.

Format of message control information

Control information in the character-string fields of the message descriptor must be
in the character set used by the queue manager. The CodedCharSetId attribute of
the queue manager object defines this character set. Control information must be in
this character set because when applications pass messages from one queue
manager to another, message channel agents that transmit the messages use the
value of this attribute to determine what data conversion they must perform.

Chapter 3. MQSeries messages 25

Message format

Format of message data

You can specify any of the following:

* The format of the application data

* The character set of the character data
e The format of numeric data

To do this, use these fields:

Format This indicates to the receiver of a message the format of the application
data in the message.

When the queue manager creates a message, in some circumstances it uses
the Format field to identify the format of that message. For example, when
a queue manager cannot deliver a message, it puts the message on a
dead-letter (undelivered-message) queue. It adds a header (containing
more control information) to the message, and changes the Format field to
show this.

The queue manager has a number of built-in formats with names beginning
“MQ?”, for example MQFMT_STRING. If these do not meet your needs,
you must define your own formats (user-defined formats), but you should
not use names beginning with “MQ” for these.

When you create and use your own formats, you must write a
data-conversion exit to support a program getting the message using
MQGMO_CONVERT.

CodedCharSetId
This defines the character set of character data in the message. If you want
to set this character set to that of the queue manager, you can set this field
to the constant MQCCSI_Q_MGR.

When you get a message from a queue, you should compare the value of
the CodedCharSetId field with the value that your application is expecting.
If the two values differ, you may need to convert any character data in the
message or use a data-conversion message exit if one is available.

Encoding
This describes the format of numeric message data that contains binary
integers, packed-decimal integers, and floating point numbers. It is usually
encoded according to the particular machine on which the queue manager
is running.

When you put a message on a queue, you should normally specify the
constant MQENC_NATIVE in the Encoding field. This means that the
encoding of your message data is the same as that of the machine on
which your application is running.

When you get a message from a queue, you should compare the value of
the Encoding field in the message descriptor with the value of the constant
MQENC_NATIVE on your machine. If the two values differ, you may need
to convert any numeric data in the message or use a data-conversion
message exit if one is available.

Application data conversion

Application data may need to be converted to the character set and the encoding
required by another application where different platforms are concerned. It may be
converted at the sending queue manager, or at the receiving queue manager. If the
library of built-in formats does not meet your needs, you must define your own.

26 MQSeries Application Programming Guide

Message format

The type of conversion depends on the message format which is specified in the
format field of the message descriptor, MQMD.

Conversion at the sending queue manager
You must set the CONVERT channel attribute to YES if you need the sending
message channel agent (MCA) to convert the application data.

The conversion is performed at the sending queue manager for certain built-in
formats and for user-defined formats if a suitable user exit is supplied.

Built-in formats: These include:
* Messages that are all characters (using the format name MQFMT_STRING)
* MQSeries defined messages, for example Programmable Command Formats

MQSeries uses Programmable Command Format messages for administration
messages and events (the format name used is MQFMT_ADMIN in this case).
You can use the same format (using the format name MQFMT_PCF) for your
own messages, and take advantage of the built-in data conversion.

Note: Messages with MQFMT_NONE specified are not converted.
The queue manager built-in formats all have names beginning with MQFMT. They

are listed and described in the MQSeries Application Programming Referencd manual
under the Format field of the Message descriptor (MQMD).

Application-defined formats: For user-defined formats, application data
conversion must be performed by a data-conversion exit program (for more
information, see F‘Chapter 11 \Writing data-conversion exits” on page 144d). In a
client-server environment, the exit is loaded at the server and conversion takes

place there.

Conversion at the receiving queue manager
Application message data may be converted by the receiving queue manager for

the built-in formats and user-defined formats. The conversion is performed during
the processing of an MQGET call if the MQGMO CONVERT option is specified.

For details, see the MQSeries Application Programming Referencd manual.

Coded character sets
MQSeries products support the coded character sets that are provided by the
underlying operating system.

When you create a queue manager, the queue manager coded character set 1D
(CCsSID) used is based on that of the underlying environment. If this is a mixed
code page, MQSeries uses the SBCS part of the mixed code page as the queue
manager CCSID.

For general data conversion, if the underlying operating system supports DBCS
code pages then MQSeries is able to use it.

See the documentation for your operating system for details of the coded character
sets that it supports.

You need to consider application data conversion, format names, and user exits
when writing applications that span multiple platforms. For details of the MQGET
call, the Convert characters call, the MQGMO_CONVERT option, and the built-in

formats, see the MQSenes_ApphcaImn_Bmgxa.mmmg_Retecencd manual. See

Chapter 3. MQSeries messages 27

Message format

I‘Chapter 11. Writing data-conversion exits” on page 149 for information about

invoking and writing data-conversion exits.

Message priorities

You set the priority of a message (in the Priority field of the MQMD structure)
when you put the message on a queue. You can set a numeric value for the
priority, or you can let the message take the default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on
the queue are stored in FIFO (first in, first out) sequence, or in FIFO within priority
sequence. If this attribute is set to MQMDS_PRIORITY, messages are enqueued
with the priority specified in the Priority field of their message descriptors; but if
it is set to MQMDS_FIFO, messages are enqueued with the default priority of the
queue. Messages of equal priority are stored on the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages
being put on that queue. This value is set when the queue is created, but it can be
changed afterwards. Alias queues, and local definitions of remote queues, may
have different default priorities from the base queues to which they resolve. If
there is more than one queue definition in the resolution path (see
tesolution” an page 93), the default priority is taken from the value (at the time of
the put operation) of the DefPriority attribute of the queue specified in the open
command.

The value of the MaxPriority attribute of the queue manager is the maximum
priority that you can assign to a message processed by that queue manager. You
cannot change the value of this attribute. In MQSeries, the attribute has the value
9; you can create messages having priorities between 0 (the lowest) and 9 (the
highest).

Message groups

Message groups are supported on MQSeries Version 5 products only.

Messages can occur within groups. This allows ordering of messages (see m

and physical ordering” on page 120), and segmentation of large messages (see
‘Message segmentation” on page 130) within the same group.

The hierarchy within a group is as follows:

Group This is the highest level in the hierarchy and is identified by a GroupId. It
consists of one or more messages that contain the same GroupId. These
messages can be stored anywhere on the queue.

Note: The term “message” is used here to denote one item on a queue,

such as would be returned by a single MQGET that does not specify
MQGMO_COMPLETE_MSG.

Eigure 3 an page 29 shows a group of logical messages:

28 MQSeries Application Programming Guide

Message groups
Group
|

LOGMSGH1 LOGMSG2 LOGMSG3

Figure 3. Group of logical messages

Logical message
Logical messages within a group are identified by the GroupId and
MsgSeqNumber fields. The MsgSeqNumber starts at 1 for the first message
within a group, and if a message is not in a group, the value of the field is
1.

Logical messages within a group can be used to:

* Ensure ordering (if this is not guaranteed under the circumstances in
which the message is transmitted).

* Allow applications to group together similar messages (for example,
those that must all be processed by the same server instance).

Each message within a group consists of one physical message, unless it is
split into segments. Each message is logically a separate message, and only
the GroupId and MsgSegNumber fields in the MQMD need bear any
relationship to other messages in the group. Other fields in the MQMD are
independent; some may be identical for all messages in the group whereas
others may be different. For example, messages in a group may have
different format names, CCSIDs, encodings, and so on.

Segment
Segments are used to handle messages that are too large for either the
putting or getting application or the queue manager (including intervening
gueue managers through which the message passes). For more information

about this, see EMessage segmentation” on page 130,

A segment of a message is identified by the GroupId, MsgSeqNumber, and
Offset fields. The Offset field starts at zero for the first segment within a
message.

Each segment consists of one physical message that may or may not
belong to a group (El shows an example of messages within a group). A
segment is logically part of a single message, so only the MsgId, Offset,
and SegmentFlag fields in the MQMD should differ between separate
segments of the same message.

m shows a group of logical messages, some of which are segmented:

Group

LOGMSGH1 LOGMSG2 LOGMSG3

—

SEG1 SEG2 SEG1 SEG2 SEG3

Figure 4. Segmented messages

Chapter 3. MQSeries messages 29

Message groups

For a description of logical and physical messages, see I‘Logical and physical
btdannglon_page_lzd For further information about segmenting messages, see

Message persistence

Persistent messages are written out to logs and queue data files. If a queue
manager is restarted after a failure, it recovers these persistent messages as
necessary from the logged data. Messages that are not persistent are discarded if a
queue manager stops, whether the stoppage is as a result of an operator command
or because of the failure of some part of your system.

When you create a message, if you initialize the message descriptor (MQMD)
using the defaults, the persistence for the message will be taken from the
DefPersistence attribute of the queue specified in the MQOPEN command.
Alternatively, you may set the persistence of the message using the Persistence
field of the MQMD structure to define the message as persistent or not persistent.

The performance of your application is affected when you use persistent messages;
the extent of the effect depends on the performance characteristics of the machine’s
1/0 subsystem and how you use the syncpoint options on each platform:

* A persistent message, outside the current unit of work, is written to disk on

every put and get operation. See [‘Chapter 13_Committing and backing out unitd
of work” on page 171l

* In MQSeries on UNIX systems, MQSeries for Compaq (DIGITAL) OpenVMS,
MQSeries for OS/390, MQSeries for OS/2 Warp, MQSeries for VSE/ESA, and
MQSeries for Windows NT, a persistent message within the current unit of work
is logged only when the unit of work is committed (and the unit of work could
contain many queue operations).

Nonpersistent messages can be used for fast messaging if retrieved outside

syncpoint. See the MQSeries Application Programming Referencd and the m
Lntercommunication

books for further information about fast messages.

Selecting messages from queues

To get a particular message from a queue, you need to use the MsgId and Correlld
fields of the message descriptor. If you specify Version 2 of the MQMD, the

GroupId can also be used. (See [‘Getting a particular message” on page 127.)

The message identifier is usually generated by the queue manager when the
message is put on a queue. The queue manager tries to ensure that message
identifiers are unique. However, an MQSeries application can specify a particular
value for the message identifier.

You can use the correlation identifier in any way you like. However, an intended
use of this field is for applications to copy the message identifier of a request
message into the CorrelId field of a reply message.

The group identifier is usually generated by the queue manager when the first
message of a group is put onto a queue. The MsgSegNumber field identifies the
position of the message within the group and the 0ffset field identifies the
segments within the message.

30 MQsSeries Application Programming Guide

Message selection

Where more than one message meets the combined selection criteria, the
MsgDeliverySequence attribute of the queue determines whether messages are
selected in FIFO (first in, first out) or priority order. When messages have equal
priority, they are selected in FIFO order. For more information, see

For an example of an application that uses correlation identifiers, see EThe Credid

Check sample” on page 403,

Messages that fail to be delivered

When a queue manager is unable to put a message on a queue, you have various
options. You can:

» Attempt to put the message on the queue again.

* Request that the message is returned to the sender.

* Put the message on the dead-letter queue.

See I‘Chapter 5_Handling program errors” an page 47 for more information.

Messages that are backed out

When processing messages from a queue under the control of a unit of work, the
unit of work could consist of one or more messages. If a backout occurs, the
messages which were retrieved from the queue are reinstated on the queue, and
they can be processed again in another unit of work. If the processing of a
particular message is causing the problem, the unit of work is backed out again.
This could cause a processing loop. Messages which were put to a queue are
removed from the queue.

An application can detect messages that are caught up in such a loop by testing
the BackoutCount field of MQMD. The application can either correct the situation,
or issue a warning to an operator.

In MQSeries for OS/390, to ensure that the back-out count survives restarts of the
gueue manager, set the HardenGetBackout attribute to
MQQA_BACKOUT_HARDENED; otherwise, if the queue manager has to restart, it
does not maintain an accurate back-out count for each message. Setting the
attribute this way adds the penalty of extra processing.

In MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for Windows NT,
MQsSeries for Compaq (DIGITAL) OpenVMS, and MQSeries on UNIX systems, the
back-out count always survives restarts of the queue manager. Any change to the
HardenGetBackout attribute is ignored.

Note: In MQSeries for VSE/ESA, the BackoutCount field is reserved and so cannot
be used as described here.

For more information on committing and backing out messages, see m

Chapter 3. MQSeries messages 31

Message response

Reply-to queue and queue manager

There are occasions when you may receive messages in response to a message you
send:

* A reply message in response to a request message
* A report message about an unexpected event or expiry

* A report message about a COA (Confirmation Of Arrival) or a COD
(Confirmation Of Delivery) event

* A report message about a PAN (Positive Action Notification) or a NAN
(Negative Action Notification) event

Using the MQMD structure, specify the name of the queue to which you want
reply and report messages sent, in the ReplyToQ field. Specify the name of the
gueue manager that owns the reply-to queue in the ReplyToQMgr field.

If you leave the ReplyToQMgr field blank, the queue manager sets the contents of
the following fields in the message descriptor on the queue:

ReplyToQ
If ReplyToQ is a local definition of a remote queue, the ReplyToQ field is set
to the name of the remote queue; otherwise this field is not changed.

ReplyToQMgr
If ReplyToQ is a local definition of a remote queue, the ReplyToQMgr field is
set to the name of the queue manager that owns the remote queue;
otherwise the ReplyToQMgr field is set to the name of the queue manager to
which your application is connected.

Note: You can request that a queue manager makes more than one attempt to
deliver a message, and you can request that the message is discarded if it
fails. If the message, after failing to be delivered, is not to be discarded, the
remote queue manager puts the message on its dead-letter

(undelivered-message) queue (see FUsing the dead-letted

Message context

Message context information allows the application that retrieves the message to
find out about the originator of the message. The retrieving application may want
to:

» Check that the sending application has the correct level of authority

» Perform some accounting function so that it can charge the sending application
for any work it has to perform

» Keep an audit trail of all the messages it has worked with

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can
specify that the queue manager is to add some default context information to the
message descriptor. Applications that have the appropriate level of authority can
add extra context information. For more information on how to specify context

information, see EControlling context information” on page 106.

All context information is stored in the eight context fields of the message
descriptor. The type of information falls into two categories: identity and origin
context information.

32 MQSeries Application Programming Guide

Message context

ldentity context

Identity context information identifies the user of the application that first put the
message on a queue:

* The queue manager fills the UserIdentifier field with a name that identifies the
user—the way that the queue manager can do this depends on the environment
in which the application is running.

* The queue manager fills the AccountingToken field with a token or number that
it determined from the application that put the message.

» Applications can use the ApplIdentityData field for any extra information that
they want to include about the user (for example, an encrypted password).

Suitably authorized applications may set the above fields.

A Windows NT security identifier (SID) is stored in the AccountingToken field
when a message is created under MQSeries for Windows NT. The SID can be used
to supplement the UserIdentifier field and to establish the credentials of a user.

For information on how the queue manager fills the UserIdentifier and
AccountingToken fields, see the descriptions of these fields in the

Bpplication Programming Referencd manual.

Applications that pass messages from one queue manager to another should also
pass on the identity context information so that other applications know the
identity of the originator of the message.

Origin context

Origin context information describes the application that put the message on the
queue on which the message is currently stored. The message descriptor contains
the following fields for origin context information:

PutApplType
The type of application that put the message (for example, a CICS
transaction).

PutApplName
The name of the application that put the message (for example, the name
of a job or transaction).

PutDate
The date on which the message was put on the queue.

PutTime
The time at which the message was put on the queue.

ApplOriginData
Any extra information that an application may want to include about the
origin of the message. For example, it could be set by suitably authorized
applications to indicate whether the identity data is trusted.

Origin context information is usually supplied by the queue manager. Greenwich
Mean Time (GMT) is used for the PutDate and PutTime fields. See the descriptions
of these fields in the MQSeries Application Programming Referencd manual.

Within MQSeries for OS/2 Warp only, the TZ environment variable is used to
calculate the GMT PutDate and PutTime of a message.

Chapter 3. MQSeries messages 33

Message context

An application with enough authority can provide its own context. This allows
accounting information to be preserved when a single user has a different user ID
on each of the systems that process a message they have originated.

34 MQSeries Application Programming Guide

Chapter 4. MQSeries objects

The MQSeries objects are:

* Queue managers

* Queues

* Namelists (MQSeries for OS/390 and MQSeries Version 5.1 products only)
* Process definitions

* Channels

» Storage classes (MQSeries for OS/390 only)

Queue managers define the properties (known as attributes) of these objects. The
values of these attributes affect the way in which these objects are processed by
MQSeries. From your applications, you use the Message Queue Interface (MQI) to
control these objects. Each object is identified by an object descriptor (MQOD) when
addressed from a program.

When you use MQSeries commands to define, alter, or delete objects, for example,
the queue manager checks that you have the required level of authority to perform
these operations. Similarly, when an application uses the MQOPEN call to open an
object, the queue manager checks that the application has the required level of
authority before it allows access to that object. The checks are made on the name
of the object being opened.

This chapter introduces MQSeries objects, under these headings:

Queue managers

A queue manager supplies an application with MQSeries services. A program must
have a connection to a queue manager before it can use the services of that queue
manager. A program can make this connection explicitly (using the MQCONN
call), or the connection might be made implicitly (this depends on the platform
and the environment in which the program is running).

Queues belong to queue managers, but programs can send messages to queues
that belong to any queue manager.

Attributes of queue managers

Associated with each queue manager is a set of attributes (or properties) that
define its characteristics. Some of the attributes of a queue manager are fixed when
it is created; you can change others using the MQSeries commands. You can
inquire about the values of all the attributes using the MQINQ call.

The fixed attributes include:
* The name of the queue manager
* The platform on which the queue manager runs (for example, AS/400)

© Copyright IBM Corp. 1993, 2000 35

Queue managers

Queue

* The level of system control commands that the queue manager supports

* The maximum priority that you can assign to messages processed by the queue
manager

* The name of the queue to which programs can send MQSeries commands

* The identifier of the character set the queue manager uses for character strings
when it processes MQI calls (this can be changed in OS/390 using the system
parameters)

* The maximum length of messages the queue manager can process

* Whether the queue manager supports syncpointing when programs put and get
messages

The changeable attributes include:
* A text description of the queue manager

* The time interval that the queue manager uses to restrict the number of trigger
messages

* The name of the queue manager’s dead-letter (undelivered-message)queue
* The name of the queue manager’s default transmission queue

* The maximum number of open handles for any one connection

* The enabling and disabling of various categories of event reporting

e The maximum number of uncommitted messages within a unit of work

For a full description of all the attributes, see the MQSeries Application Programming

manual.

managers and workload management

You can set up a cluster of queue managers that has more than one definition for
the same queue (for example, the queue managers in the cluster could be clones of
each other). Messages for a particular queue can be handled by any queue
manager which hosts an instance of the queue. A workload-management algorithm
decides which queue manager handles the message and so spreads the workload

between your queue managers. See the IMQSeries Queue Manager Clusterd book for

further information.

Queues

An MQSeries queue is a named object on which applications can put messages, and
from which applications can get messages. Messages are stored on a queue, so if
the putting application is expecting a reply to its message, it is free to do other
work while waiting for that reply. Applications access a queue by using the

Message Queue Interface (MQI), described in EChapter 6. Introducing the Messagd
Queue Interface” on page 5d

Before a message can be put on a queue, the queue must have already been
created. A queue is owned by a queue manager, and that queue manager can own
many queues. However, each queue must have a name that is unique within that
gueue manager.

A queue is maintained through a queue manager. Queues are managed physically
by their queue managers but this is transparent to an application program.

36 MQSeries Application Programming Guide

Queues

To create a queue you can use MQSeries commands (MQSC), PCF commands, or
platform-specific interfaces such as the MQSeries for OS/390 operations and
control panels.

On all platforms except MQSeries for VSE/ESA, you can create local queues for
temporary jobs “dynamically” from your application. For example, you can create
reply-to queues (which are not needed after an application ends). For more

information, see EDynamic queues” on page 41,

Before using a queue, you must open the queue, specifying what you want to do
with it. For example, you can open a queue:

* For browsing messages only (not retrieving them)

» For retrieving messages (and either sharing the access with other programs, or
with exclusive access)

» For putting messages on the queue
* For inquiring about the attributes of the queue
» For setting the attributes of the queue

For a complete list of the options you can specify when you open a queue, see the
description of the MQOPEN call in the i icati i
manual.

Types of queue

The types of queue that MQSeries supports for applications to use are:

Local and remote queues
A queue is known to a program as local if it is owned by the queue
manager to which the program is connected; the queue is known as remote
if it is owned by a different queue manager. The important difference
between these two types of queue is that you can get messages only from
local queues. (You can put messages on both types of queue.)

The queue definition object, created when you define a local queue, will
hold the definition information of the queue as well as the physical
messages put on the queue. The queue definition object, created when you
‘define’ a remote queue, will only hold the information necessary for the
local queue manager to be able to locate the queue to which you want
your message to go. This object is known as the local definition of a remote
queue. All the attributes of the remote queue are held by the queue
manager that owns it, because it is a local queue to that queue manager.

Alias queues
To your program, an alias queue appears to be a queue, but it is really an
MQSeries object that you can use to access another queue. This means that
more than one program can work with the same queue, accessing it using
different names.

Model and dynamic queues
A model queue is a template of a queue definition used only when you
want to create a dynamic local queue.

You can create a local queue dynamically from an MQSeries program,
naming the model queue you wish to use as the template for the queue
attributes. You may now, if you wish, change some attributes of the new
gueue. However, you cannot change the DefinitionType. If, for example, you
require a permanent queue, you must select a model queue with the
definition type set to permanent. Some conversational applications could

Chapter 4. MQSeries objects 37

Queues

make use of dynamic queues to hold replies to their queries because they
probably would not need to maintain these queues after they have
processed the replies.

Cluster queues
A cluster queue is a queue that is hosted by a cluster queue manager and
made available to other queue managers in the cluster.

The cluster queue manager makes a local queue definition for the queue
specifying the name of the cluster that the queue is to be available in. This
definition has the effect of advertising the queue to the other queue
managers in the cluster. The other queue managers in the cluster can put
messages to a cluster queue without needing a corresponding
remote-queue definition. A cluster queue can be advertised in more than
one cluster. See I'What is a cluster?” on page § and the

Manager Clusterd book for further information.

Types of local queue
Each queue manager can have some local queues that it uses for special purposes:

Transmission queues
A transmission queue is a local queue which holds messages destined for a
remote queue. The messages are forwarded to their destination queue by
MQSeries when a communication program and link are available.

Initiation queues
An initiation queue is a local queue on which the queue manager puts a
message for the purpose of automatically starting an application when
certain conditions (such as more than 10 messages arriving, for example)
are met on a local queue.

Dead-letter (undelivered-message) queue
The dead-letter queue is a local queue on which the queue manager and
applications put messages they cannot deliver. You should plan to process
any messages that arrive on this queue.

System command queue
The system command queue is a queue to which suitably authorized
applications can send MQSeries commands.

System default queues
When you create a queue (other than a dynamic queue), MQSeries uses the
queue definitions stored in the system default queues.

Channel queues
Channel queues are used for distributed queue management.

Event queues
Event queues hold event messages. These messages are reported by the
gueue manager or a channel.

These special queues are described in greater detail in the following sections.

Attributes of queues

Some of the attributes of a queue are specified when the queue is defined, and
may not be changed afterwards (for example, the type of the queue). Other
attributes of queues can be grouped into those that can be changed:

* By the queue manager during the processing of the queue (for example, the
current depth of a queue)

* Only by commands (for example, the text description of the queue)

38 MQsSeries Application Programming Guide

Queues
* By applications, using the MQSET call (for example, whether or not put
operations are allowed on the queue)

You can find the values of all the attributes using the MQINQ call.

The attributes that are common to more than one type of queue are:
QName Name of the queue

QType Type of the queue

QDesc Text description of the queue

InhibitGet
Whether or not programs are allowed to get messages from the queue
(although you can never get messages from remote queues)

InhibitPut
Whether or not programs are allowed to put messages on the queue

DefPriority
Default priority for messages put on the queue

DefPersistence
Default persistence for messages put on the queue

Scope (not supported on OS/390 or VSE/ESA)
Controls whether an entry for this queue also exists in a name service

For a full description of these attributes, see the IMQSeries Application Programming

manual.

Remote queues

To a program, a queue is remote if it is owned by a different queue manager to the
one to which the program is connected. Where a communication link has been
established, it is possible for a program to send a message to a remote queue. A
program can never get a message from a remote queue.

When opening a remote queue, to identify the queue you must specify either:
» The name of the local definition that defines the remote queue.

To create a local definition of a remote queue use the DEFINE QREMOTE
command; in MQSeries for AS/400, alternatively use the CRTMQMQ command;
in MQSeries for Tandem NonStop Kernel, you can use the MQM screen-based
interface; in MQSeries for VSE/ESA, you can use the MQMT transaction.

From the viewpoint of an application, this is the same as opening a local queue.
An application does not need to know if a queue is local or remote.

* The name of the remote queue manager and the name of the queue as it is
known to that remote queue manager.

Local definitions of remote gueues have three attributes in addition to the common
attributes described in EAttributes of queues” on page 38, These are RemoteQName
(the name that the queue’s owning queue manager knows it by), RemoteQMgrName
(the name of the owning queue manager), and XmitQName (the name of the local
transmission queue that is used when forwarding messages to other queue
managers). For a fuller description of these attributes, see the MQSeries Application
Brogramming Referencd manual.

Chapter 4. MQSeries objects 39

Queues

If you use the MQINQ call against the local definition of a remote queue, the
queue manager returns the attributes of the local definition only, that is the remote
gqueue name, the remote queue manager name and the transmission queue name,
not the attributes of the matching local queue in the remote system.

See also ETransmission queues” on page 42,

Alias queues

An alias queue is an MQSeries object that you can use to access another queue. The
queue resulting from the resolution of an alias name (known as the base queue)
can be either a local queue or the local definition of a remote queue. It can also be
either a predefined queue or a dynamic queue, as supported by the platform.

Note: An alias cannot resolve to another alias.

An example of the use of alias queues is for a system administrator to give
different access authorities to the base queue name (that is, the queue to which the
alias resolves) and to the alias queue name. This would mean that a program or
user could be authorized to use the alias queue, but not the base queue.

Alternatively, authorization can be set to inhibit put operations for the alias name,
but allow them for the base queue.

In some applications, the use of alias queues means that system administrators can
easily change the definition of an alias queue object without having to get the
application changed.

MQSeries makes authorization checks against the alias name when programs try to
use that name. It does not check that the program is authorized to access the name
to which the alias resolves. A program can therefore be authorized to access an
alias queue name, but not the resolved queue name.

In addition to the general queue attributes described in EAttributes of quenes” on

, alias queues have a BaseQName attribute. This is the name of the base
queue to which the alias name resolves. For a fuller description of this attribute,

see the MQSeries Application Programming Referencd manual.
The InhibitGet and InhibitPut attributes (see F*‘Attributes of quenies” on page 38)

of alias queues belong to the alias name. For example, if the alias-queue name
ALIAS1 resolves to the base-queue name BASE, inhibitions on ALIAS1 affect
ALIAS1 only and BASE is not inhibited. However, inhibitions on BASE also affect
ALIASL

The DefPriority and DefPersistence attributes also belong to the alias name. So,
for example, you can assign different default priorities to different aliases of the
same base queue. Also, you can change these priorities without having to change
the applications that use the aliases.

Model queues

A model queue is a template of a queue definition, that you use when creating a
dynamic queue. You specify the name of a model queue in the object descriptor
(MQOD) of your MQOPEN call. Using the attributes of the model queue, the
queue manager dynamically creates a local queue for you.

40 MQSeries Application Programming Guide

Queues

You can specify a name (in full) for the dynamic queue, or the stem of a name (for
example, ABC) and let the queue manager add a unique part to this, or you can let
the queue manager assign a complete unique name for you. If the queue manager

assigns the name, it puts it in the MQOD structure.

You can not issue an MQPUT1 call directly to a model queue, however, once a
model queue has been opened, you can issue an MQPUTL1 to the dynamic queue.

The attributes of a model queue are a subset of those of a local queue. For a fuller
description, see the MQSeries Application Programming Referencd manual.

Dynamic queues
On all platforms except for MQSeries for VSE/ESA, when an application program
issues an MQOPEN call to open a model queue, the queue manager dynamically
creates an instance of a local queue with the same attributes as the model queue.
Depending on the value of the DefinitionType field of the model queue, the queue
manager creates either a temporary or permanent dynamic queue (See m

Properties of temporary dynamic queues
Temporary dynamic queues have the following properties:
* They hold nonpersistent messages only.

* They are non-recoverable.

* They are deleted when the queue manager is started

* They are deleted when the application that issued the MQOPEN call which
resulted in the creation of the queue closes the queue or terminates.

— If there are any committed messages on the queue, they will be deleted.

— If there are any uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding
against the queue at this time, the queue is marked as being logically deleted,
and is only physically deleted (after these calls have been committed) as part
of close processing, or when the application terminates.

— If the queue happens to be in use at this time (by the creating, or another
application), the queue is marked as being logically deleted, and is only
physically deleted when closed by the last application using the queue.

— Attempts to access a logically deleted queue (other than to close it) fail with
reason code MQRC_Q_DELETED.
— MQCO_NONE, MQCO_DELETE and MQCO_DELETE_PURGE are all treated

as MQCO_NONE when specified on an MQCLOSE call for the corresponding
MQOPEN call that created the queue.

Properties of permanent dynamic queues
Permanent dynamic queues have the following properties:

* They hold persistent or nonpersistent messages.
* They are recoverable in the event of system failures.

* They are deleted when an application (not necessarily the one that issued the
MQOPEN call which resulted in the creation of the queue) successfully closes
the queue using the MQCO_DELETE, or the MQCO_DELETE_PURGE option.

— A close request with the MQCO_DELETE option fails if there are any
messages (committed or uncommitted) still on the queue. A close request with
the MQCO_DELETE_PURGE option succeeds even if there are committed
messages on the queue (the messages being deleted as part of the close), but
fails if there are any uncommitted MQGET, MQPUT, or MQPUT1 calls
outstanding against the queue.

Chapter 4. MQSeries objects 41

Queues

— If the delete request is successful, but the queue happens to be in use (by the
creating, or another application), the queue is marked as being logically
deleted and is only physically deleted when closed by the last application
using the queue.

* They can not be deleted by an application closing the queue, unless it was the
application that issued the MQOPEN which created the queue. Authorization
checks are performed against the user identifier (or alternate user identifier if
MQOO_ALTERNATE_USER_AUTHORITY was specified) which was used to
validate the corresponding MQOPEN call.

* They can be deleted in the same way as a normal queue.

Uses of dynamic queues

You can use dynamic queues for:

* Applications that do not require queues to be retained after the application has
terminated.

» Applications that require replies to messages to be processed by another
application can dynamically create a reply-to queue by opening a model queue.
For example, a client application could:

1. Create a dynamic queue.

2. Supply its name in the ReplyToQ field of the message descriptor structure of
the request message.

3. Place the request on a queue being processed by a server.

The server could then place the reply message on the reply-to queue. Finally, the
client could process the reply, and close the reply-to queue with the delete option.

Recommendations for uses of dynamic queues

You should consider the following points when using dynamic queues:

* In a client-server model, each client should create and use its own dynamic
reply-to queue. If a dynamic reply-to queue is shared between more than one
client, the deletion of the reply-to queue may be delayed because there is
uncommitted activity outstanding against the queue, or because the queue is in
use by another client. Additionally, the queue might be marked as being
logically deleted, and hence inaccessible for subsequent API requests (other than
MQCLOSE).

» If your application environment requires that dynamic queues must be shared
between applications, you should ensure that the queue is only closed (with the
delete option) when all activity against the queue has been committed. This
should be by the last user preferably. This ensures that deletion of the queue is
not delayed, and should minimize the period that the queue is inaccessible
because it has been marked as being logically deleted.

Transmission queues

When an application sends a message to a remote queue, the local queue manager
stores the message in a special local queue, called a transmission queue.

A message channel agent (channel program) will be associated with the transmission
queue and the remote queue manager, and it is this that deals with the
transmitting of the message. When the message has been transmitted, it is deleted
from the transmission queue.

The message may have to pass through many queue managers (or nodes) on its
journey to its final destination. There must be a transmission queue defined at each
queue manager along the route, each holding messages waiting to be transmitted

42 MQseries Application Programming Guide

Queues

to the next node. There can be several transmission queues defined at a particular
queue manager. A given transmission queue holds messages whose next
destination is the same queue manager, although the messages may have different
eventual destinations. There may also be several transmission queues for the same
remote queue manager, with each one being used for a different type of service, for
example.

Transmission queues can be used to trigger a message channel agent to send
messages onward. For information about this, see EChapter 14.Starting MQSeried
bpplications using triggers” an page 1859, These attributes are defined in the
transmission queue definition (for triggered channels) or the process definition

object (see EProcess definitions” on page 44).

Initiation queues

An initiation queue is a local queue on which the queue manager puts a trigger
message when a trigger event occurs on an application queue. A trigger event is an
event (for example, more than 10 messages arriving) that an application designer
intends the queue manager to use as a cue, or trigger, to start a program that will
process the gueue. For more information on how triggering works, see

Dead-letter (undelivered-message) queues

A dead-letter (undelivered-message) queue is a local queue on which the queue
manager puts messages it cannot deliver.

When the queue manager puts a message on the dead-letter queue, it adds a
header to the message. This includes such information as the intended destination
of the original message, the reason the queue manager put the message on the
dead-letter queue, and the date and time it did this.

Applications can also use the queue for messages they cannot deliver. For more
information, see - = >

System command queues
System command queues are not supported on MQSeries for VSE/ESA.

These queues receive the PCF, MQSC, and CL commands, as supported on your
platform, in readiness for the queue manager to action them. In MQSeries for
0S/390 the queue is known as the SYSTEM.COMMAND.INPUT.QUEUE and
accepts MQSC commands. On other platforms it is known as the
SYSTEM.ADMIN.COMMAND.QUEUE and the commands accepted vary by
platform. See the IMQSeries Programmahle System Management book for details.

System default queues

The system default queues contain the initial definitions of the queues for your
system. When you create a new queue, the queue manager copies the definition
from the appropriate system default queue.

Namelists

Namelists are supported on MQSeries for OS/390 and MQSeries Version 5.1 products
only.

Chapter 4. MQSeries objects 43

Namelists

A namelist is an MQSeries object that contains a list of cluster names or queue
names. In a cluster, it can be used to identify a list of clusters for which the queue
manager holds the repositories.

You can define and modify namelists using only the commands or operations and
control panels of MQSeries for OS/390 or the MQSC of MQSeries Version 5.1
products.

Programs can use the MQI to find out which queues are included in these
namelists. The organization of the namelists is the responsibility of the application
designer and system administrator.

For a full description of the attributes of namelists, see the MQSeries Application]
Programming Referencd manual.

Process definitions

Note: Process definition objects are not supported on VSE/ESA.

To allow an application to be started without the need for operator intervention

(described in FChapter 14 Starting MQSeries applications using triggers” an

), the attributes of the application must be known to the queue manager.
These attributes are defined in a process definition object.

The ProcessName attribute is fixed when the object is created; you can change the
others using the MQSeries commands or the MQSeries for OS/390 operations and
control panels. You can inquire about the values of all the attributes using the
MQINQ call.

For a fuII descrlptlon of the attributes of process definitions, see the m
manual.

Channels

A channel is a communication link used by distributed queue managers. There are
two categories of channel in MQSeries:

* Message channels, which are unidirectional, and transfer messages from one
gueue manager to another.

* MQI channels, which are bidirectional, and transfer MQI calls from an MQSeries
client to a queue manager, and responses from a queue manager to an MQSeries
client.

These need to be considered when designing your application, but a program will
be unaware of MQSerles channel objects. For more information, see the é@
' and IMQSeries Clientd books.

Storage classes
Storage classes are supported on MQSeries for OS/390 only.

A storage class maps one or more queues to a page set. This means that messages
for that queue are stored (subject to buffering) on that page set.

For further information about storage classes, see the MQSeries for OS/390 System
Management Guide.

44 MQSeries Application Programming Guide

Naming objects

Rules for naming MQSeries objects

An MQSeries queue, process definition, namelist, and channel can all have the
same name. However, an MQSeries object cannot have the same name as any other
object of the same type. Names in MQSeries are case sensitive.

The character set that can be used for naming all MQSeries objects is as follows:
* Uppercase A-Z

* Lowercase a-z (but there are restrictions on the use of lowercase letters for
0OS/390 console support)

On systems using EBCDIC Katakana you cannot use lowercase characters.
* Numerics 0-9
* Period (.)
* Forward slash (/)
* Underscore ()
» Percent sign (%)

Notes:
1. Leading or embedded blanks are not allowed.

2. You should also avoid using names with leading or trailing underscores,
because they cannot be handled by the MQSeries for OS/390 operations and
control panels.

3. Any name that is less than the full field length can be padded to the right with
blanks. All short names that are returned by the queue manager are always
padded to the right with blanks.

4. Any structure to the names (for example, the use of the period or underscore)
is not significant to the queue manager.

5. On AS/400 systems lowercase a-z, forward slash (/), and percent (%) are
special characters. If you use any of these characters in a name, the name must
be enclosed in quotation marks. Lowercase a-z characters are changed to
uppercase if the name is not enclosed in quotation marks.

6. The gshell environment is case sensitive.

Queue names

The name of a queue has two parts:
* The name of a queue manager
* The local name of the queue as it is known to that queue manager

Each part of the queue name is 48 characters long.

To refer to a local queue, you can omit the name of the queue manager (by
replacing it with blank characters or using a leading null character). However, all
queue names returned to a program by MQSeries contain the name of the queue
manager.

To refer to a remote queue, a program must include the name of the queue
manager in the full queue name, or there must be a local definition of the remote
queue.

Note that when an application uses a queue name, that name can be either the

name of a local queue (or an alias to one) or the name of a local definition of a
remote queue, but the application does not need to know which, unless it needs to

Chapter 4. MQSeries objects 45

Naming objects

get a message from the queue (when the queue must be local). When the
application opens the queue object, the MQOPEN call performs a name resolution
function to determine on which queue to perform subsequent operations. The
significance of this is that the application has no built-in dependency on particular
queues being defined at particular locations in a network of queue managers.
Therefore, if a system administrator relocates queues in the network, and changes
their definitions, the applications that use those queues do not need to be changed.

Process definition and namelist names
Process definitions and namelists can have names up to 48 characters long.

Channel names

Channels can have names up to 20 characters long. See the m
Lntercommunication book for further information on channels.

Reserved object names

Names that start with SYSTEM. are reserved for objects defined by the queue
manager.

46 MQSeries Application Programming Guide

Chapter 5. Handling program errors

Your application may encounter errors associated with its MQI calls either when it
makes a call or when its message is delivered to its final destination:

* Whenever possible, the queue manager returns any errors as soon as an MQlI
call is made. These are locally determined errors.

* When sending messages to a remote queue, errors may not be apparent when
the MQI call is made. In this case, the queue manager that identifies the errors
reports them by sending another message to the originating program. These are
remotely determined errors.

This chapter gives advice on how to handle both types of error, under these
headings:

Locally determined errors

The three most common causes of errors that the queue manager can report
immediately are:

* Failure of an MQI call; for example, because a queue is full

* An interruption to the running of some part of the system on which your
application is dependent; for example, the queue manager

* Messages containing data that cannot be processed successfully

Failure of an MQI call

The queue manager can report immediately any errors in the coding of an MQI
call. It does this using a set of predefined return codes. These are divided into
completion codes and reason codes.

To show whether or not a call is successful, the queue manager returns a completion
code when the call completes. There are three completion codes, indicating success,
partial completion, and failure of the call. The queue manager also returns a reason
code which indicates the reason for the partial completion or the failure of the call.

The completion and reason codes for each call are listed with the description of
that call in the MQSeries Application Programming Referencd manual. You will also
find further information (including some |deas for correctlve actlon) for each
completion and reason code, in the

manual. You should design your programs to handle all the return codes that
could arise from each call.

System interruptions

Your application may be unaware of any interruption if the queue manager to
which it is connected has to recover from a system failure. However, you must
design your application to ensure that your data is not lost if such an interruption
occurs.

© Copyright IBM Corp. 1993, 2000 47

Locally determined errors

The methods you can use to make sure that your data remains consistent depends
on the platform on which your queue manager is running:

0S/390

In the CICS and IMS environments, you can make MQPUT and MQGET
calls within units of work that are managed by CICS or IMS. In the batch
environment, you can make MQPUT and MQGET calls in the same way,
but you must declare syncpoints by using the MQSeries for OS/390
MQCMIT and MQBACK calls (see E itti

i 2), or you can use the OS/390 Transaction
Management and Recoverable Resource Manager Services (RRS) to provide
two-phase syncpoint support. RRS allows you to update both MQSeries
and other RRS-enabled product resources, such as DB2® stored procedure
resources, within a single logical unit of work. For information on RRS
syncpoint support see L i

AS/400
You can make your MQPUT and MQGET calls within global units of work
that are managed by OS/400 commitment control. You can declare
syncpoints by using the native OS/400 COMMIT and ROLLBACK
commands or the language-specific commands. Local units of work are
managed by MQSeries via the MQCMIT and MQBACK calls.

Digital OpenVMS, DOS, 0OS/2, UNIX systems, Windows NT, and Windows 3.1
In these environments, you can make your MQPUT and MQGET calls in
the normal way, but you must declare syncpoints by using the MQCMIT
and MQBACK calls (see L itti i i
lwvork” on page 171). In the CICS environment, MQCMIT and MQBACK
commands are disabled as you can make your MQPUT and MQGET calls
within units of work that are managed by CICS.

Tandem NSK
You can make your MQPUT and MQGET calls within units of work that
are managed by Tandem’s TM/MP product.

VSE/ESA
CICS controls the unit of work in the VSE/ESA environment. If the system
fails and is restarted, the logical unit of work rollback occurs automatically.

You should use persistent messages for carrying all data you cannot afford to lose.
Persistent messages are reinstated on queues if the queue manager has to recover
from a failure. With MQSeries on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, note that an MQGET or MQPUT call within your
application will fail at the point of filling up all the log files, with the message
MQRC_RESOURCE_PROBLEM. For more information on log files, see the
MQSeries System Administration Guide for MQSeries for AIX, HP-UX, OS/2, Sun
Solaris, and Windows NT; for other platforms, see the appropriate System
Management Guide.

If the queue manager is stopped by an operator while an application is running,
the quiesce option is normally used. The queue manager enters a quiescing state in
which applications can continue to do work, but they should terminate as soon as
it is convenient. Small, quick applications can probably ignore the quiescing state
and continue until they terminate as normal. Longer running applications, or ones
that wait for messages to arrive, should use the fail if quiescing option when they
use the MQCONN, MQPUT, MQPUT1, and MQGET calls. These options mean that
the calls fail when the queue manager quiesces, but the application may still have

48 MQSeries Application Programming Guide

Locally determined errors

time to terminate cleanly by issuing calls that ignore the quiescing state. Such
applications could also commit, or back out, changes they have made, and then
terminate.

If the queue manager is forced to stop (that is, stop without quiescing),
applications will receive the MQRC_CONNECTION_BROKEN reason code when
they make MQI calls. At this point you must exit the application or, alternatively,
on MQSeries for AS/400, MQSeries on UNIX systems, MQSeries for OS/2 Warp,
and MQSeries for Windows NT, you can issue an MQDISC call.

Messages containing incorrect data

When you use units of work in your application, if a program cannot successfully
process a message that it retrieves from a queue, the MQGET call is backed out.
The queue manager maintains a count (in the BackoutCount field of the message
descriptor) of the number of times this happens. It maintains this count in the
descriptor of each message that is affected. This count can provide valuable
information about the efficiency of an application. Messages whose backout counts
are increasing over time are being repeatedly rejected—you should design your
application so that it analyzes the reasons for this and handles such messages
accordingly.

In MQSeries for OS/390, to make the backout count survive restarts of the queue
manager, set the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED;
otherwise, if the queue manager has to restart, it does not maintain an accurate
backout count for each message. Setting the attribute this way adds the penalty of
extra processing.

In MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for Windows NT,
and MQSeries on UNIX systems, the backout count always survives restarts of the
gueue manager.

Also, in MQSeries for OS/390, when you remove messages from a queue within a
unit of work, you can mark one message so that it is not made available again if
the unit of work is backed out by the application. The marked message is treated
as if it has been retrieved under a new unit of work. You mark the message that is
to skip backout using the MQGMO_MARK_SKIP_BACKOUT option (in the
MQGMO structure) when you use the MQGET call. See [‘Skipping backout” on

for more information about this technique.

Note: In MQSeries for VSE/ESA, BackoutCount is a reserved field. It cannot be
used as described in this section.

Using report messages for problem determination

The remote queue manager cannot report errors such as failing to put a message
on a queue when you make your MQI call, but it can send you a report message
to say how it has processed your message.

Within your application you can create (MQPUT) report messages as well as select
the option to receive them (in which case they will be sent by either another
application or by a queue manager).

Creating report messages

Report messages provide a mechanism for an application to inform another
application that it is unable to deal with the message that was sent. However, the

Chapter 5. Handling program errors 49

Report messages for error handling

Report field must initially be analyzed to determine whether or not the application
that sent the message is interested in being informed of any problems. Having
determined that a report message is required, you have to decide:

* Whether you want to include all the original message (not an option on
0S/390), just the first 100 bytes of data, or none of the original message.

* What to do with the original message. You can discard it or let it go to the
dead-letter queue.

* Whether the content of the MsgId and CorrelId fields are needed as well.

Use the Feedback field to indicate the reason for the report message being
generated. Put your report messages on an application’s reply-to queue. Refer to
the i icati i manual for further information.

Requesting and receiving (MQGET) report messages
When you send a message to another application, you will not be informed of any
problems unless you complete the Report field to indicate the feedback you

reguire. The options available to you are in the MQSeries Application Programming

manual.

Queue managers always put report messages on an application’s reply-to queue
and it is recommended that your own applications do the same. When you use the
report message facility you must specify the name of your reply-to queue in the
message descriptor of your message; otherwise, the MQPUT call fails.

Your application should contain procedures that monitor your reply-to queue and
process any messages that arrive on it. Remember that a report message can
contain all the original message, the first 100 bytes of the original message, or none
of the original message.

The queue manager sets the Feedback field of the report message to indicate the

reason for the error; for example, the target queue does not exist. Your programs
should do the same.

For more information on report messages, see [‘Repart messages” on page 21.

Remotely determined errors

When you send messages to a remote queue, even when the local queue manager
has processed your MQI call without finding an error, other factors can influence
how your message is handled by a remote queue manager. For example, the queue
you are targeting may be full, or may not even exist. If your message has to be
handled by other intermediate queue managers on the route to the target queue,
any of these could find an error.

Problems delivering a message

When an MQPUT call fails, you have the choice of attempting to put the message
on the queue again, returning it to the sender, or putting it on the dead-letter
queue.

Each option has its own merits, but you may not want to retry putting a message
if the reason that the MQPUT failed was because the destination queue was full. In
this instance, putting it on the dead-letter queue allows you to deliver it to the
correct destination queue later on.

50 MQsSeries Application Programming Guide

Remotely determined errors

Retry message delivery
Before the message is put on a dead-letter queue, a remote queue manager

attempts to put the message on the queue again if the attributes MsgRetryCount
and MsgRetryInterval have been set for the channel, or if there is a retry exit
program for it to use (the name of which is held in the channel attribute
MsgRetryExitId field).

If the MsgRetryExitId field is blank, the values in the attributes MsgRetryCount and
MsgRetryInterval are used.

If the MsgRetryExitId field is not blank, the exit program of this name runs. For
more information on using your own exit programs, see the
ion book.

Return message to sender
You return a message to the sender by requesting a report message to be generated

to include all of the original message. See t‘Repart messages” an page 21 for details

on report message options.

Using the dead-letter (undelivered-message) queue

When a queue manager cannot deliver a message, it attempts to put the message
on its dead-letter queue. This queue should be defined when the queue manager is
installed.

Your programs can use the dead-letter queue in the same way that the queue
manager uses it. You can find the name of the dead-letter queue by opening the
queue manager object (using the MQCONN call) and inquiring about the
DeadLetterQName attribute (using the MQINQ call).

When the queue manager puts a message on this queue, it adds a header to the
message, the format of which is described by the dead-letter header (MQDLH)
structure, in the IMQSeries Application Programming Referencd manual. This header
includes the name of the target queue and the reason the message was put on the
dead-letter queue. It must be removed and the problem must be resolved before
the message is put on the intended queue. Also, the queue manager changes the
Format field of the message descriptor (MQMD) to indicate that the message
contains an MQDLH structure.

MQDLH structure
You are recommended to add an MQDLH structure to all messages that you
put on the dead-letter queue; however, if you intend to use the dead-letter
handler provided by certain MQSeries products, you must add an MQDLH
structure to your messages.

The addition of the header to a message may make the message too long for the
dead-letter queue, so you should always make sure that your messages are shorter
than the maximum size allowed for the dead-letter queue, by at least the value of
the MQ_MSG_HEADER_LENGTH constant. The maximum size of messages
allowed on a queue is determined by the value of the MaxMsgLength attribute of the
queue. For the dead-letter queue, you should make sure that this attribute is set to
the maximum allowed by the queue manager. If your application cannot deliver a
message, and the message is too long to be put on the dead-letter queue, follow
the advice given in the description of the MQDLH structure.

Chapter 5. Handling program errors 51

Remotely determined errors

You need to ensure that the dead-letter queue is monitored, and that any messages
arriving on it get processed. A dead-letter queue handler is provided by MQSeries
on all platforms except OS/390 and VSE/ESA. It runs as a batch utility and can be
used to perform various actions on selected messages on the dead-letter queue. If
you have a queue manager on one of the platforms that does not provide a
dead-letter queue handler, you will need to provide your own. The program could
be triggered, or run at regular intervals. For further details, see the MQSeries
System Administration Guide for MQSeries for AlX, HP-UX, OS/2, Sun Solaris, and
Windows NT; for other platforms, see the appropriate System Management Guide.

If data conversion is necessary, the queue manager converts the header information
when you use the MQGMO_CONVERT option on the MQGET call. If the process
putting the message is an MCA, the header is followed by all the text of the
original message.

You should be aware that messages put on the dead-letter queue may be truncated
if they are too long for this queue. A possible indication of this situation is the
messages on the dead-letter queue being the same length as the value of the
MaxMsglength attribute of the queue.

Dead-letter queue processing
The rest of this chapter contains general-use programming interface information.

Dead-letter queue processing is dependent on local system requirements, but you
should consider the following when you draw up the specification:

* The message can be identified as having a dead-letter queue header because the
value of the format field in the MQMD, is MQFMT_DEAD_LETTER_HEADER.

* In MQSeries for OS/390 using CICS, if an MCA puts this message to the
dead-letter queue, the PutApplType field is MQAT_CICS, and the PutApplName
field is the ApplId of the CICS system followed by the transaction name of the
MCA.

* The reason for the message to be routed to the dead-letter queue is contained in
the Reason field of the dead-letter queue header.

* The dead-letter queue header contains details of the destination queue name and
gueue manager name.

* The dead-letter queue header contains fields that have to be reinstated in the
message descriptor before the message is put to the destination queue. These
are:

1. Encoding
2. CodedCharSetId
3. Format

* The message descriptor is the same as PUT by the original application, except

for the three fields shown above.

Your dead-letter queue application should do one or more of the following:

* Examine the Reason field. A message may have been put by an MCA for the
following reasons:

— The message was longer than the maximum message size for the channel

The reason will be MQRC_MSG_TOO_BIG_FOR_CHANNEL (or
MQRC_MSG_TOO _BIG_FOR_Q_MGR if you are using CICS for distributed
queuing on MQSeries for OS/390)

— The message could not be put to its destination queue

52 MQSeries Application Programming Guide

Remotely determined errors
The reason will be any MQRC_* reason code that can be returned by an
MQPUT operation
— A user exit has requested this action

The reason code will be that supplied by the user exit, or the default
MQRC_SUPPRESSED_BY_EXIT

* Try to forward the message to its intended destination, where this is possible.
* Retain the message for a certain length of time before discarding when the
reason for the diversion is determined, but not immediately correctable.

» Give instructions to administrators for the correction of problems where these
have been determined.

» Discard messages that are corrupted or otherwise not processible.

There are two ways that you deal with the messages you have recovered from the
dead-letter queue:
1. If the message is for a local queue, you should:
» Carry out any code translations required to extract the application data
» Carry out code conversions on that data if this is a local function
» Put the resulting message on the local queue with all the detail of the
message descriptor restored

2. If the message is for a remote queue, put the message on the queue.

For information on how undelivered messages are handled in a distributed

queuing environment, see the IMQSeries Intercommunication book.

Chapter 5. Handling program errors 53

Changes

54 MQsSeries Application Programming Guide

Part 2. Writing an MQSeries application

Chapter 6. Introducing the Message Queue UsingCEDF76
Interface . . . N o CodinginRPG76
What is in the MQI’> ¢ CodinginPL/l76
calls.60 Structures76
Syncpointcalls I o 1 Named constants76
MQSeries for OS/390 caIIs o CodinginTAL717
OS/400 calls 61 0S/390 batch considerations . . Lo T7
MQSeries for Tandem NonStop Kernel calls 61 UNIX signal handling on MQSeries VerS|0n 5
MQSeries for VSE/ESAcalls.61 products . . . N -
MQSeries calls on other platforms.61 Unthreaded appllcatlons Y £°)
Data conversion.62 Threaded applications.79
Structures . . . N ¢ 74 Synchronous signals79
Elementary data types N V4 Asynchronous signals80
MQSeries data definitions63 MQSeries use of SIGALRM80
MQSeries stub programs and I|brary flles . . .63 Threaded client applications - addltlonal
MQSeries forOS/3%063 considerations80
MQSeries for AS/40064 Fastpath (trusted) appllcatlons o .. .80
MQsSeries for OS/2 Warp.64 MQI function calls within signal handlers .. .80
MQSeries for Windows65 Signals during MQl calls.81
MQSeries for Windows NT65 User exits and installable services81
MQSeries for AIX65
MQsSeries for AT&T GIS UNIX 66 Chapter 7. Connecting and disconnecting a
MQSeries for Compaq (DIGITAL) OpenVMS 66 queue manager83
MQSeries for DIGITAL UNIX (Compag Tru64 Connecting to a queue manager usmg the
UNIX)66 MQCONNeccall84
MQSeries for HP UX S66 Scope of MQCONN85
MQSeries for SINIX and DC/OSx.67 Connecting to a queue manager usmg the
DOS and Windows 3.1 clients67 MQCONNXcall.86
MQSeries for Sun Solaris.68 MQCNO_STANDARD | BINDING86
MQSeries for VSE/ESA68 MQCNO_FASTPATH_BINDING86
MQSeries for Tandem NonStop Kernel . . .68 Restrictions&86
Parameters common to all thecalls68 Environment vanable o . .88
Using connection and object handles 68 Disconnecting programs from a queue manager
Understanding returncodes.68 usingMQ@DISC@88
Specifying buffers . . . B - Authority checking.89
Programming language con5|derat|ons69
CodinginC . . -70 Chapter 8. Opening and closing objects 91
Parameters of the MQ' calls.70 Opening objects using the MQOPEN call 92
Parameters with undefined data type. . . . 70 Scope of an object handle.92
Data types. . . . T Identifying objects (the MQOD structure) .. .93
Manipulating binary strlngs P 4 Name resolution.93
Manipulating character strings71 Using the options of the MQOPEN call95
Initial values for structures71 MQOPEN 0pt|0n for cluster queue 95
Initial values for dynamic structures 72 MQOPEN option for putting messages . . . 96
Use fromC++72 MQOPEN option for browsing messages . . 96
CodingincoBoL72 MQOPEN options for removing messages . . 96
Named constants73 MQOPEN options for setting and inquiring
Coding in System/390® assembler Ianguage .. 73 about attributes97
Names . . . R < MQOPEN options relatlng to message context 97
Using the MQI calls73 MQOPEN option for alternate user authority 97
Declaring constants. T4 MQOPEN option for queue manager
Specifying the name of a structure ... T4 quiescing97
Specn‘ymg the form of a structure74 Creating dynamic queues. 98
Controlling the listing . . . Y £ Opening remote queues98
Specifying initial values for fields75 Closing objects using the MQCLOSE call99
Writing reenterable programs75

© Copyright IBM Corp. 1993, 2000 55

Chapter 9. Putting messages on a queue
Putting messages on a local queue using the
MQPUT call.
Specifying handles
Defining messages using the MQMD structure
Specifying options using the MQPMO structure
The data in your message . .
Putting messages on a remote queue
Controlling context information
Passing identity context .
Passing all context.
Setting identity context .
Setting all context . .
Putting one message on a queue usmg the
MQPUT1 call
Distribution lists
Opening distribution Ilsts
Using the MQOD structure .
Using the MQOR structure .
Using the MQRR structure .
Using the MQOPEN options
Putting messages to a distribution list .
Using the MQPMR structure
Using MQPUT1
Some cases where the put calls fall

Chapter 10. Getting messages from a queue
Getting messages from a queue using the MQGET
call . .

Specifying connectlon handles

Describing messages using the MQMD structure

and the MQGET call . .

Specifying MQGET options using the MQGMO

structure .

Specifying the size of the buffer area .
The order in which messages are retrieved from a
queue .

Priority

Logical and physmal ordenng

Grouping logical messages . .
Putting and getting a group that spans unlts
of work
Getting a particular message
Type of index
Handling large messages .
Increasing the maximum message Iength .
Message segmentation
Segmentation and reassembly by queue
manager . .
Application segmentatlon
Application segmentation of logical messages
Putting and getting a segmented message
that spans units of work.
Reference messages
Using the MQRMH and MQMD structures
Waiting for messages .
Signaling . .
To set a signal . .
When the message arrives .
Skipping backout . .
Application data conversion

56 MQSeries Application Programming Guide

. 101

. 101
. 102

102
102

. 105
. 106
. 106
. 106
. 107
. 107
. 107

. 107
. 109
. 110
. 110
. 110
. 112
. 112
. 112
. 113
. 114
. 114

115

. 115
. 116

. 116

. 116
. 119

. 120
. 120
. 120
. 123

. 124
. 127
. 128
. 129
. 129
. 130

. 130
. 131

132

. 132
. 133

134

. 135
. 136
. 136
. 137
. 138
. 141

Conversion of EBCDIC newline characters
Browsing messages on a queue
The browse cursor.
Queues in FIFO (first in, flrst out) sequence
Queues in priority sequence
Uncommitted messages .
Change to queue sequence .
Browsing messages when message Iength
unknown. .
Removing a message you have browsed
Browsing messages in logical order .
Browsing messages in groups . .
Browsing and retrieving destructlvely .
Some cases where the MQGET call fails

Chapter 11. Writing data-conversion exits
Invoking the data-conversion exit
Data conversion on OS/390
Writing a data-conversion exit program
Skeleton source file
Convert characters call
Utility for creating conversion-exit code
Invoking the CSQUCVX utility on OS/390
Data definition statements .
Error messages in OS/2, Windows NT and
UNIX systems .
Valid syntax.
Example of valid syntax for the |nput data
set oL
Writing a data-conversion exit program for
MQSeries for AS/400.
Writing a data-conversion exit for MQSerles for
0OS/2 Warp . .
Writing a data-conversion eX|t program for
MQSeries for OS/390.
Writing a data-conversion exit for MQSenes for
Tandem NonStop Kernel oo
Reusing data-conversion exit programs
Writing a data-conversion exit for MQSeries on

UNIX systems and Compaq (DIGITAL) OpenVMS .
. 161
. 161
. 161

UNIX environment
Non-threaded environment.
Threaded environment
Compiling data-conversion exits on Dlgltal
OpenVMS .
Compiling data-conversion eX|ts on UNIX
On AIX 4.2 .
On AIX 4.3 . .
On AT&T GIS UNIX .
On DIGITAL UNIX
On HP-UX Version 10.20
On HP-UX Version 11.00
On SINIX.
On DC/0OSx.
On Sun Solaris .
Writing a data-conversion exit for MQSenes for
Windows NT

Chapter 12. Inquiring about and setting object
attributes
Inquiring about the attnbutes of an object

. 142
. 143
. 143

143

. 144
. 144
. 144

. 144
. 145
. 145
. 146
. 147
. 148

. 149
. 150
. 150
. 151
. 151
. 152
. 152

153

. 153

. 153
. 153

. 154

. 165

. 156

. 158

. 159
. 159

160

. 162
. 162
. 162
. 163
. 163
. 163
. 163
. 163
. 164
. 164
. 164

. 165

. 167
. 168

Some cases where the MQINQ call fails
Setting queue attributes .

Chapter 13. Committing and backing out units
of work

Syncpoint con5|derat|ons in MQSerles appllcatlons

Syncpoints in MQSeries for OS/390 applications
Syncpoints in CICS Transaction Server for

0S/390 and CICS for MVS/ESA applications.

Syncpoints in IMS applications .
Syncpoints in OS/390 batch appllcatlons

Committing changes using the MQCMIT call
Backing out changes using the MQBACK call

Transaction management and recoverable
resource manager services . .
Syncpoints in CICS for AS/400 appllcatlons .

Syncpoints in MQSeries for OS/2 Warp, MQSeries

for Windows NT, MQSeries for AS/400, and
MQSeries on UNIX systems
Local units of work
Global units of work . .
Internal syncpoint coordlnatlon
External syncpoint coordination .
Interfaces to external syncpoint managers .
Interfaces to the AS/400 external syncpoint
manager . .
Syncpoints in MQSerles for Tandem NonStop
Kernel applications
General XA support .

Chapter 14. Starting MQSeries appllcatlons
using triggers .
What is triggering? .
Prerequisites for triggering .
Conditions for a trigger event .
Controlling trigger events .
Example of the use of trigger type EVERY
Example of the use of trigger type FIRST .
Example of the use of trigger type DEPTH
Special case of trigger type FIRST
Designing an application that uses triggered
queues
Trigger messages and unlts of work
Getting messages from a triggered queue .
Trigger monitors
MQSeries for OS/390 trlgger monltors
MQSeries for OS/2 Warp, Digital OpenVMS,
Tandem NSK, UNIX systems, AS/400, and
Windows NT trigger monitors.
For CICS.. .
MQSeries for AS/400 trlgger monltors .
Properties of trigger messages .

Persistence and priority of trigger messages .

Queue manager restart and trigger messages
Trigger messages and changes to object
attributes. .
Format of trigger messages
When triggering does not work
How CKTI detects errors .
How CSQQTRMN detects errors .
How RUNMQTRM detects errors

. 169
. 169

171
172
173

. 173
. 174
. 174

174
175

. 175
. 176

. 176
. 177
. 177
. 177
. 178
. 179

. 181

. 182
. 183

. 185
. 185
. 189
. 191
. 195
. 196
. 196
. 196
. 197

. 197
. 197
. 198
. 199
. 199

. 200
. 201
. 202
. 202
. 202

202

. 202
. 203
. 204
. 204
. 204
. 204

Chapter 15. Using and writing applications on
MQSeries for OS/390 .
Environment-dependent MQSerles for OS/39O
functions . e
Program debugglng faC|I|t|es .
Syncpoint support.
Recovery support . .
The MQSeries for OS/390 mterface W|th the
application environment.
The batch adapter .
RRS batch adapter.
Migration
The CICS adapter .
Adapter trace points .
Abends

Using the CICS Executlon Dlagnostlc FaC|I|ty

The IMS adapter
Writing OS/390 OpenEdition® appllcatlons
The API-crossing exit for OS/390.
Using the API-crossing exit.
Defining the exit program .
How the exit is invoked . .o
Communicating with the exit program .
Writing your own exit program
Usage notes .
The sample API- crossmg eX|t program
CSQCAPX . .
Design of the sample eX|t program .
Preparing and using the API-crossing exit .
Writing MQSeries-CICS bridge applications
Structure of the MQSeries message .
MQMD attributes . .
Using the MQCIH header . .
Messages returned from the CICS brldge .
Error handling by the CICS bridge .
Handling a unit of work
Programming considerations for runnlng 3270
transactions .
Scenarios .

Writing MQSeries- IMS brldge appllcatlons
How the MQSeries-IMS bridge deals with
messages .

Mapping MQSerles messages to IMS
transaction types
If the message cannot be put to the IMS
queue .
IMS bridge feedback codes
Reply messages from IMS .
Message segmentation
Data conversion
Writing your program

Dealing with unsolicited messages from IMS
Writing MQSeries applications to invoke IMS

conversational transactions .
Triggering
Writing IMS appllcatlons usmg MQSerles
Syncpoints in IMS applications
MQI calls in IMS applications .
Server applications
Enquiry applications .
MQSeries Workflow .

Part 2. Writing an MQSeries application

. 207

. 207
. 208
. 208
. 208

. 209
. 209
. 209
. 210
. 210
. 210
. 210

211

211
. 212
. 213
. 213
. 213
. 213
. 214
. 214
. 215

. 216
. 216
. 216
. 217
. 217
. 218
. 219
. 219
. 219
. 220

. 220
. 221
. 225

. 225

. 226

. 226
. 227
. 227
. 228
. 228
. 229

230

. 230
. 230
. 230
. 231
. 231
. 231
. 234
. 234

57

Chapter 16. Object-oriented programming with
MQSeries
What is in the MQSeries Object Model?

Classes

Obiject references

Return codes e
Programming language considerations .

Coding in C++ .

Coding in Java .

Coding in LotusScript

Coding in ActiveX.

58 MQSeries Application Programming Guide

. 237
. 237
. 237
. 238
. 238
. 238
. 238
. 239
. 239
. 239

Chapter 6. Introducing the Message Queue Interface

This chapter introduces the features of the Message Queue Interface (MQI).

The remaining chapters in this part of the book describe how to use these features.
Detailed descriptions of the calls, structures, data types, return codes, and

constants are given in the IMQSeries Application Programming Referencd manual.

The MQI is introduced under these headings:

Fvha the MOL?]

3 H H H H E1]

What is in the MQI?

The Message Queue Interface comprises the following:

Calls through which programs can access the queue manager and its facilities

Structures that programs use to pass data to, and get data from, the queue
manager

Elementary data types for passing data to, and getting data from, the queue
manager

MQSeries for OS/390 also supplies:
Two extra calls through which OS/390 batch programs can commit and back out

changes.

Data definition files (sometimes known as copy files, macros, include files, and
header files) that define the values of constants supplied with MQSeries for
0S5/390.

Stub programs to link-edit to your applications.

A suite of sample programs that demonstrate how to use the MQI on the
0S/390 platform. For further information about these samples, see

MQSeries for AS/400 also supplies:

Data definition files (sometimes known as copy files, macros, include files, and
header files) that define the values of constants supplied with MQSeries for
AS/400.

Three stub programs to link-edit to your ILE C, ILE COBOL, and ILE RPG
applications.

A suite of sample programs that demonstrate how to use the MQI on the
AS/400 platform. For further information about these samples, see

MQSeries for OS/2 Warp, MQSeries for Windows NT, MQSeries for Compaq
(DIGITAL) OpenVMS, and MQSeries on UNIX systems also supply:

© Copyright IBM Corp. 1993, 2000

59

MQI contents

Calls

» Calls through which MQSeries for OS/2 Warp, MQSeries for Windows NT,
MQSeries for AS/400, and MQSeries on UNIX systems programs can commit
and back out changes.

* Include files that define the values of constants supplied on these platforms.

 Library files to link your applications.

* A suite of sample programs that demonstrate how to use the MQI on these
platforms.

» Sample source and executable code for bindings to external transaction
managers.

MQSeries for Tandem NonStop Kernel also supplies:

* Include files that define the values of constants supplied with MQSeries for
Tandem NonStop Kernel.

 Library files to link your applications.

* A suite of sample programs that demonstrate how to use the MQI on the
Tandem NSK platform.

MQSeries for VSE/ESA also supplies:

* Include files that define the values of constants supplied with MQSeries for
VSE/ESA.

* A suite of sample programs that demonstrate how to use the MQI on the
VSE/ESA platform.

MQSeries for Windows provides a subset of the MQI. For more information, see
the following:

* MQSeries for Windows V2.0 User’s Guide.

* MQSeries for Windows V2.1 User’s Guide.

The calls in the MQI can be grouped as follows:

MQCONN, MQCONNX, and MQDISC
Use these calls to connect a program to (with or without options), and
disconnect a program from, a queue manager. If you write CICS programs
for OS/390, or VSE/ESA, you do not need to use these calls. However, you
are recommended to use them if you want your application to be portable
to other platforms.

MQOPEN and MQCLOSE
Use these calls to open and close an object, such as a queue.

MQPUT and MQPUT1
Use these calls to put a message on a queue.

MQGET
Use this call to browse messages on a queue, or to remove messages from
a queue.

MQINQ
Use this call to inquire about the attributes of an object.

MQSET
Use this call to set some of the attributes of a queue. You cannot set the
attributes of other types of object.

MQBEGIN, MQCMIT, and MQBACK
Use these calls when MQSeries is the coordinator of a unit of work.
MQEBGIN starts the unit of work. MQCMIT and MQBACK end the unit

60 MQsSeries Application Programming Guide

MQI contents

of work, either committing or rolling back the updates made during the
unit of work. OS/400 committment controller is used to coordinate global
units of work on AS/400. Native start commitment control, commit, and
rollback commands are used.

The MQI calls are described fully in the MQSeries Application Programming Referencd

manual.

Syncpoint calls

Syncpoint calls are available as follows:

MQSeries for OS/390 calls
MQSeries for OS/390 provides the MQCMIT and MQBACK calls. Use these calls

in OS/390 batch programs to tell the queue manager that all the MQGET and
MQPUT operations since the last syncpoint are to be made permanent (committed)
or are to be backed out. To commit and back out changes in other environments:

CICS Use commands such as EXEC CICS SYNCPOINT and EXEC CICS
SYNCPOINT ROLLBACK.

IMS Use the IMS syncpoint facilities, such as the GU (get unique) to the IOPCB,
CHKP (checkpoint), and ROLB (rollback) calls.

RRS Use MQCMIT and MQBACK or SRRCMIT and SRRBACK as appropriate.
(See L i ices’
)

Note: SRRCMIT and SRRBACK are ‘native’ RRS commands, they are not
MQI calls.

For backward compatibility, the CSQBCMT and CSQBBAK calls are available as
synonyms for MQCMIT and MQBACK. These are described fully in the
icati i manual.

0S/400 calls
MQSeries for AS/400 provides the MQCMIT and MQBACK commands. You can

also use the OS/400 COMMIT and ROLLBACK commands, or any other
commands or calls that initiate the OS/400 commitment control facilities (for
example, EXEC CICS SYNCPOINT).

MQSeries for Tandem NonStop Kernel calls
The default SYNCPOINT option for the MQPUT and MQGET calls is

SYNCPOINT, rather than NO_SYNCPOINT. To use the default (SYNCPOINT)
option for MQPUT, MQGET and MQPUT1 operations, the application must have
an active TM/MP Transaction that defines the unit of work to be committed.

MQSeries for VSE/ESA calls
Use CICS commands such as EXEC CICS SYNCPOINT and EXEC CICS

SYNCPOINT ROLLBACK. The batch interface and server support the MQCMIT
and MQBACK calls which are translated into the CICS commands EXEC CICS
SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK respectively. Use these
calls in programs to tell the queue manager that all the MQGET and MQPUT
operations since the last syncpoint are to be made permanent (committed) or are to
be backed out.

MQSeries calls on other platforms

The following products provide the MQCMIT and MQBACK calls:
* MQSeries for OS/2 Warp

Chapter 6. Introducing the Message Queue Interface 61

MQI contents

* MQSeries for Windows

* MQSeries for Windows NT

* MQSeries for Compag (DIGITAL) OpenVMS
* MQSeries on UNIX systems

Use syncpoint calls in programs to tell the queue manager that all the MQGET and
MQPUT operations since the last syncpoint are to be made permanent (committed)
or are to be backed out. To commit and back out changes in the CICS environment,
use commands such as EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT
ROLLBACK.

Data conversion

The MQXCNVC - convert characters call is used only from a data-conversion exit.
This call converts message character data from one character set to another.

See the MQSeries Application Programming Referencd manual for the syntax used
with the MQXCNVC call, and EChapter 11 _\Writing data-conversion exits” ad

for guidance on writing and invoking data conversion exits.

Structures

Structures, used with the MQI calls listed in ECalls” on page &0, are supplied in
data definition files for each of the supported programming languages. MQSeries

for OS/390 and MQSeries for AS/400 supply files that contain constants for you to
use when filling in some of the fields of these structures. For more information on

these, see ‘MQSeries data definitions” on page 63.
All the structures are described fully in the MQSeries Application Programming

manual.

Elementary data types

For the C language, the MQI provides the following elementary data types or
unstructured fields:

MQBYTE A single byte of data

MQBYTEnN A string of 16, 24, 32, 40, or 64 bytes

MQCHAR One single-byte character

MQCHARN A string of 4, 8, 12, 16, 20, 28, 32, 48, 64, 128, or 256 single-byte
characters

MQHCONN A connection handle (this data is 32 bits long)

MQHOBJ An object handle (this data is 32 bits long)

MQLONG A 32-bit signed binary integer

PMQLONG A pointer to data of type MQLONG

These data types are described fully in the MQSeries Application Programming
Referencd

manual.

[rante 4 shows the Visual Basic equivalents of the C elementary data types.

Table 1. Visual Basic equivalents of the C elementary data types

C data type Visual Basic data type
MQBYTE String * 1
MQBYTEnN String * n
MQCHAR String * 1

62 MQSeries Application Programming Guide

MQI contents

Table 1. Visual Basic equivalents of the C elementary data types (continued)

C data type Visual Basic data type
MQCHARN String * n

MQHCONN Long

MQHOBJ Long

MQLONG Long

PMQLONG No equivalent

For COBOL, assembler, PL/1, or RPG, use the equivalent declarations shown in the
relevant native language manual.

MQSeries data definitions

MQSeries for OS/390 supplies data definitions in the form of COBOL copy files,
assembler-language macros, a single PL/1 include file, a single C language include
file, and C++ language include files.

MQSeries for AS/400 supplies data definitions in the form of COBOL copy files,
RPG copy files, C language include files, and C++ language include files.

MQSeries for VSE/ESA supplies data definitions in the form of a C language
include file, COBOL copy files, and PL/I include files.

The data definition files supplied with MQSeries contain:

» Definitions of all the MQSeries constants and return codes

» Definitions of the MQSeries structures and data types

» Constant definitions for initializing the structures

» Function prototypes for each of the calls (for PL/I and the C language only)

For a full description of MQSeries data definition files, see tAppendix E_MQSeried

MQSeries stub programs and library files

The stub programs and library files provided are listed here, for each platform.

For more information about how to use stub programs and Ilbrary flles When you
build an executable application, see

. For information about linking to C++ library files, see the
book.

MQSeries for OS/390
Before you can run an MQSeries for OS/390 program, you must link-edit it to the

stub program supplied with MQSeries for OS/390 for the environment in which
you are running the application. The stub program provides the first stage of the
processing of your calls into requests that MQSeries for OS/390 can process.

mm

MQSeries for OS/390 supplies the following stub programs:

CSQBSTUB Stub program for OS/390 batch programs

CSQBRRSI Stub program for OS/390 batch programs using RRS via the MQI
CSQBRSTB Stub program for OS/390 batch programs using RRS directly
CSQCSTUB Stub program for CICS programs

CSQQSTUB Stub program for IMS programs

Chapter 6. Introducing the Message Queue Interface 63

MQI contents

CSQXSTUB Stub program for distributed queuing non-CICS exits
CSQASTUB Stub program for data-conversion exits

Note: If you use the CSQBRSTB stub program you must link-edit with ATRSCSS
from SYS1.CSSLIB. (SYS1.CSSLIB is also known as the “Callable Services

Library”). For more information about RRS see Utansacﬂan_managememl

Alternatively, you can dynamically call the stub from within your program. This
technique is described in L i i i 2

In IMS, you may also need to use a special language interface module that is
supplied by MQSeries.

MQSeries for AS/400

In MQSeries for AS/400, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

For non-threaded 4.2.1 applications:

AMQZSTUB Server service program provided for compatibilty with previous
releases
AMQVSTUB Data conversion service program provided for compatibility with

previous releases. For a non-threaded application:

LIBMQM Server service program
LIBMQIC Client service program
IMQB2314 C++ base service program
IMQS2314 C++ server service program
LIBMQMZF Installable exits for C

In a threaded application:

LIBMQM_R Server service program
IMQB2314_R C++ base service program
IMQS2314_R C++ server service program
LIBMQMZF_R Installable exits for C

If you are using MQSeries for AS/400 you can write your applications in C++. To
see how to link your C++ applications, and for full details of all aspects of using

C++, see the MQSeries Using C+4+ manual.

MQSeries for OS/2 Warp

In MQSeries for OS/2 Warp, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

MQM.LIB Server for 32-bit C

MQIC.LIB Client for C

MQMXA.LIB Static XA interface for C

MQMCICS.LIB CICS for OS/2 V2 exits for C
MQMCICS3.LIB CICS Transaction Server for OS/2, V4 exits
MQMZFELIB Installable services exits for C

64 MQSeries Application Programming Guide

MQICCB16.LIB
MQMCBI16.LIB
MQMCBB.LIB
MQMCB32.LIB
MQICCBB.LIB
MQICCB32.LIB
IMQ*.LIB

MQI contents

Client for 16-bit Micro Focus COBOL
Server for 16-bit Micro Focus COBOL
Server for 32-bit IBM VisualAge® COBOL
Server for 32-bit Micro Focus COBOL
Client for 32-bit IBM VisualAge COBOL
Client for 32-bit Micro Focus COBOL
Server for C++

MQSeries for Windows

In MQSeries for Windows, you must link your program to the MQI library files

supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

MQM16.LIB
MQM.LIB

Server for 16-bit C
Server for 32-bit C

MQSeries for Windows NT
In MQSeries for Windows NT, you must link your program to the MQI library files

supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

MQM.LIB
MQIC.LIB
MQIC32.LIB
MQMXA.LIB
MQMCICS.LIB
MQMCICS4.LIB
MQMZF.LIB
MQMCBB.LIB
MQMCB32
MQICCBB.LIB
MQICCB32
IMQ*.LIB
MQMENC.LIB
MQMTUX.LIB

MQSeries for AlX

Server for 32-bit C

Client for 16-bit C

Client for 32-bit C

Static XA interface for C

CICS for Windows NT V2 exits for C
TXSeries for Windows NT, V4 exits for C
Installable services exits for C

Server for 32-bit IBM COBOL

Server for 32-bit Micro Focus COBOL
Client for 32-bit IBM COBOL

Client for 32-bit Micro Focus COBOL
Server for C++

Dynamic XA interface in C for Encina
Dynamic XA interface in C for Tuxedo

In MQSeries for AlX, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

In a non-threaded application:

libmgm.a
libmqic.a
libmgmzf.a
libmgmxa.a
libmgmcbrt.o
libmgmcb.a
libmqicb.a
libimg*.a

Server for C

Client for C

Installable service exits for C

XA interface for C

MQSeries run-time library for Micro Focus COBOL support
Server for COBOL

Client for COBOL

Client for C++

Chapter 6. Introducing the Message Queue Interface

65

MQI contents

In a threaded application:

libmgm_r.a Server for C

libmgmzf_ra Installable service exits for C
libmgmxa_r.a XA interface for C
libimg*_r.a Client for C++
libmgmxa_r.a For Encina

MQSeries for AT&T GIS UNIX

In MQSeries for AT&T GIS UNIX, you must link your program to the MQI library
files supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

libmgm.so Server for C

libmgmzse.so For C

libmqic.so Client for C

libmgmcs.so Client for C

libmgmzf.so Installable service exits for C
libmgmxa.a XA interface for C

MQSeries for Compaq (DIGITAL) OpenVMS

In MQSeries for Compaq (DIGITAL) OpenVMS, you must link your program to
the MQI library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system:

mgm.exe Server for C

mgic.exe Client for C

mgmzf.exe Installable service exits for C
mgmxa.exe XA interface for C
mqcbrt.exe MQSeries COBOL run-time
mgmcb.exe Server for COBOL
mgqicb.exe Client for COBOL

MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

In MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX), you must link your
program to the MQI library files supplied for the environment in which you are
running your application, in addition to those provided by the operating system:

In a non-threaded application:

libmgm.so Server for C
libmgic.so Client for C
libmgmzf.sl Installable service exits for C

MQSeries for HP-UX

In MQSeries for HP-UX, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

In a non-threaded application:

libmgm.sl Server for C

libmqic.sl Client for C

libmgmzf.sl Installable service exits for C
libmgmxa.sl XA interface for C

66 MQSeries Application Programming Guide

MQI contents

libmgmcbrt.o MQSeries run-time library for Micro Focus COBOL support
libmgmcb.sl Server for COBOL
libmqicb.sl Client for COBOL

In a threaded application:

libmgm_r.sl Server for C
libmgmzf_r.sl Installable service exits for C
libmgmxa_r.sl XA interface for C

MQSeries for SINIX and DC/OSx
In MQSeries for SINIX and DC/0Sx, you must link your program to the MQI

library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system.

In a non-threaded application:

libmgm.so Server for C

libmgmzse.so For C

libmgic.so Client for C

libmgmcs.so Client for C

libmgmzf.so Installable service exits for C
libmgmxa.a XA interface for C
libmgmcbrt.o MQSeries COBOL run-time
libmgmcb.so Server for COBOL
libmqicb.so Client for COBOL

In a threaded application:

libmgm_r.so For C

libmgmcs_r.so For C
libmgmcics_r.so For CICS
libmgmxa_r.a For XA interface in C

DOS and Windows 3.1 clients
In DOS and Windows 3.1, you must link your program to the MQIC.LIB library

file (or img*vw.lib for C++), followed by the protocol libraries, indicating the
protocol you do and do not want.

maqicn.lib NetBIOS required
mqicdn.lib NetBIOS not required
maqict.lib TCP/IP required
mqicdt.lib TCP/IP not required
libmgm.so Server for C
libmgmzse.so For C

libmgic.so Client for C
libmgmcs.so Client for C
libmgmzf.so Installable service exits for C
libmgmxa.a XA interface for C
img*.so C++

Chapter 6. Introducing the Message Queue Interface 67

MQI contents

MQSeries for Sun Solaris

In MQSeries for Sun Solaris, you must link your program to the MQI library files
supplied for the environment in which you are running your application in
addition to those provided by the operating system.

libmgm.so Server for C

libmgmzse.so For C

libmgic.so Client for C

libmgmcs.so Client for C

libmgmzf.so Installable service exits for C
libmgmxa.a XA interface for C

img*.so C++

MQSeries for VSE/ESA

In MQSeries for VSE/ESA you must link your program to the install sublibrary
PRD2.MQSERIES (this is its default name). This sublibrary contains all the required
object decks.

MQSeries for Tandem NonStop Kernel

In MQSeries for Tandem NonStop Kernel, you must link your program to the MQI
library files supplied for the environment in which you are running your
application in addition to those provided by the operating system.

mqgmlibc For C, non-native

mgmlibt For TAL or COBOL, non-native
mgmlibnc For native C

mgmlibnt For native TAL or COBOL

Parameters common to all the calls

There are two types of parameter common to all the calls: handles and return
codes.

Using connection and object handles

For a program to communicate with a queue manager, the program must have a
unique identifier by which it knows that queue manager. This identifier is called a
connection handle. For CICS programs, the connection handle is always zero. For all
other platforms or styles of programs, the connection handle is returned by the
MQCONN or MQCONNKX call when the program connects to the queue manager.
Programs pass the connection handle as an input parameter when they use the
other calls.

For a program to work with an MQSeries object, the program must have a unique
identifier by which it knows that object. This identifier is called an object handle.
The handle is returned by the MQOPEN call when the program opens the object to
work with it. Programs pass the object handle as an input parameter when they
use subsequent MQPUT, MQGET, MQINQ, MQSET, or MQCLOSE calls.

Understanding return codes

A completion code and a reason code are returned as output parameters by each
call. These are known collectively as return codes.

To show whether or not a call is successful, each call returns a completion code
when the call is complete. The completion code is usually either MQCC_OK or

68 MQsSeries Application Programming Guide

MQI common parameters

MQCC_FAILED, showing success and failure, respectively. Some calls can return
an intermediate state, MQCC_WARNING, indicating partial success.

Each call also returns a reason code that shows the reason for the failure, or partial
success, of the call. There are many reason codes, covering such circumstances as a
queue being full, get operations not being allowed for a queue, and a particular
queue not being defined for the queue manager. Programs can use the reason code
to decide how to proceed. For example, they could prompt the user of the program
to make changes to his input data, then make the call again, or they could return
an error message to the user.

When the completion code is MQCC_OK, the reason code is always
MQRC_NONE.

The completion and reason codes for each call are listed with the description of
that call in the MQSeries Application Programming Reference

You will also find further information (including some ideas for corrective action)

for each completion and reason code, in the IMQSeries Application Programming
Referencd

manual.

Specifying buffers

The queue manager refers to buffers only if they are required. If you do not
require a buffer on a call or the buffer is zero in length, you can use a null pointer
to a buffer.

Always use datalength when specifying the size of the buffer you require.

When you use a buffer to hold the output from a call (for example, to hold the
message data for an MQGET call, or the values of attributes queried by the
MQINQ call), the queue manager attempts to return a reason code if the buffer
you specify is not valid or is in read-only storage. However, it may not be able to
return a reason code in some situations.

Programming language considerations

MQSeries provides support for the following programming languages:
* C.
e C++ (MQSeries for AIX, AS/400, HP-UX, OS/2, OS/390, Sun Solaris, and

Windows NT only). See the MQSeries Using C+4 book for information about
coding MQSeries programs in C++.

* Visual Basic (MQSeries for Windows and Windows NT only). See the MQSeries
for Windows Version 2.0 User’s Guide and the MQSeries for Windows Version 2.1
User’s Guide for information about coding MQSeries programs in Visual Basic.

* COBOL (not MQSeries Digital Unix (Compac Tru64 Unix) V2.2.1

* Assembler language (MQSeries for OS/390 only).

* RPG (MQSeries for AS/400 only).

* PL/1 (MQSeries for OS/390, AlX, OS/2 Warp, VSE/ESA, and Windows NT
only).

* TAL (MQSeries for Tandem NonStop Kernel only).

The call interface, and how you can code the calls in each of these languages, is

described in the MQSeries Application Programming Referencd manual.

Chapter 6. Introducing the Message Queue Interface 69

Programming language considerations

MQSeries provides data definition files to assist you with the writing of your

applications. For a full description, see ‘Appendix F. MQSeries data definition
files” on page 515.

If you can choose which language to code your programs in, you should consider
the maximum length of the messages that your programs will process. If your
programs will process only messages of a known maximum length, you can code
them in any of the supported programming languages. But if you do not know the
maximum length of the messages the programs will have to process, the language
you choose will depend on whether you are writing a CICS, IMS, or batch
application:

IMS and batch
Code the programs in C, PL/1, or assembler language to use the facilities
these languages offer for obtaining and releasing arbitrary amounts of
memory. Alternatively, you could code your programs in COBOL, but use
assembler language, PL/I, or C subroutines to get and release storage.

CICS Code the programs in any language supported by CICS. The EXEC CICS
interface provides the calls for managing memory, if necessary.

Coding in C
See EAppendix A | anguage compilers and assemblers” an page 423 for the

compilers that you can use to process your C programs.

Note the information in the following sections when coding MQSeries programs in
C.

Parameters of the MQI calls

Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG
are passed by value; for all other parameters, the address of the parameter is passed
by value.

Not all parameters that are passed by address need to be specified every time a
function is invoked. Where a particular parameter is not required, a null pointer
can be specified as the parameter on the function invocation, in place of the
address of the parameter data. Parameters for which this is possible are identified
in the call descriptions.

No parameter is returned as the value of the function; in C terminology, this means
that all functions return void.

The attributes of the function are defined by the MQENTRY macro variable; the
value of this macro variable depends on the environment.

Parameters with undefined data type

The MQGET, MQPUT, and MQPUT1 functions each have one parameter that has
an undefined data type, namely the Buffer parameter. This parameter is used to
send and receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is
valid to declare the parameters in this way, but it is usually more convenient to
declare them as the particular structure that describes the layout of the data in the
message. The function parameter is declared as a pointer-to-void, and so the
address of any sort of data can be specified as the parameter on the function
invocation.

70 MQSeries Application Programming Guide

Programming language considerations

Data types
All data types are defined by means of the typedef statement. For each data type,

the corresponding pointer data type is also defined. The name of the pointer data
type is the name of the elementary or structure data type prefixed with the letter
“P” to denote a pointer. The attributes of the pointer are defined by the
MQPOINTER macro variable; the value of this macro variable depends on the
environment. The following illustrates how pointer data types are declared:

#define MQPOINTER /* depends on environment =/

typedef MQLONG MQPOINTER PMQLONG; /* pointer to MQLONG */
typedef MQMD MQPOINTER PMQMD; /* pointer to MQMD */

Manipulating binary strings

Strings of binary data are declared as one of the MQBYTEnN data types. Whenever
you copy, compare, or set fields of this type, use the C functions memcpy, memcmp, or
memset:

#include <string.h>
#include "cmgc.h"

MQMD MyMsgDesc;

memcpy (MyMsgDesc.Msgld, /* set "MsgId" field to nulls */
MQMI_NONE, /* ...using named constant x/
sizeof (MyMsgDesc.MsgId));

memset (MyMsgDesc.Correlld, /* set "Correlld" field to nulls =/
0x00, /* ...using a different method =/
sizeof (MQBYTE24)) 3

Do not use the string functions strcpy, strcmp, strncpy, or strncmp because these
do not work correctly with data declared as MQBYTE24.

Manipulating character strings

When the queue manager returns character data to the application, the queue
manager always pads the character data with blanks to the defined length of the
field. The queue manager does not return null-terminated strings, but you can use
them in your input. Therefore, when copying, comparing, or concatenating such
strings, use the string functions strncpy, strncmp, or strncat.

Do not use the string functions that require the string to be terminated by a null
(strcpy, stremp, and strcat). Also, do not use the function strlen to determine the
length of the string; use instead the sizeof function to determine the length of the
field.

Initial values for structures
The include file <cmgc.h> defines various macro variables that may be used to

provide initial values for the structures when instances of those structures are
declared. These macro variables have names of the form MQxxx_DEFAULT, where
MQxxx represents the name of the structure. Use them like this:

MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields, the MQI defines particular values that are valid (for

example, for the StruclId fields or for the Format field in MQMD). For each of the

valid values, two macro variables are provided:

* One macro variable defines the value as a string whose length, excluding the
implied null, matches exactly the defined length of the field. For example, (the
symbol b represents a blank character):

Chapter 6. Introducing the Message Queue Interface 71

Programming language considerations

#define MQMD_STRUC_ID "MDbb"
#define MQFMT_STRING "MQSTRbbb"

Use this form with the memcpy and memcmp functions.

The other macro variable defines the value as an array of char; the name of this
macro variable is the name of the string form suffixed with “_ARRAY”. For
example:

#define MQMD_STRUC_ID_ARRAY 'M','D','b','b'

#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','b','b','b’

Use this form to initialize the field when an instance of the structure is declared
with values different from those provided by the MQMD_DEFAULT macro
variable.

Initial values for dynamic structures
When a variable number of instances of a structure are required, the instances are

usually created in main storage obtained dynamically using the calloc or malloc
functions. To initialize the fields in such structures, the following technique is
recommended:

1.

Declare an instance of the structure using the appropriate MQxxx_DEFAULT
macro variable to initialize the structure. This instance becomes the “model” for
other instances:

MQMD ModelMsgDesc = {MQMD DEFAULT};
/* declare model instance */

The static or auto keywords can be coded on the declaration in order to give
the model instance static or dynamic lifetime, as required.

Use the calloc or malloc functions to obtain storage for a dynamic instance of
the structure:

PMQMD InstancePtr;
InstancePtr = malloc(sizeof (MQMD));
/* get storage for dynamic instance */

Use the memcpy function to copy the model instance to the dynamic instance:

memcpy (InstancePtr,&Vode1MsgDesc,sizeof (MQMD));
/* initialize dynamic instance x/

Use from C++
For the C++ programming language, the header files contain the following
additional statements that are included only when a C++ compiler is used:

#ifdef _ cplusplus

extern "C" {

#endif

/* rest of header file =/

#ifdef _ cplusplus

}

#endif

Coding in COBOL
See Appendix AL anguage compilers and assemblers” on page 423 for the

compilers that you can use to process your COBOL programs.

Note the information in the following sections when coding MQSeries programs in
COBOL.

72 MQSeries Application Programming Guide

Programming language considerations

Named constants

In this book, the names of constants are shown containing the underscore character
() as part of the name. In COBOL, you must use the hyphen character (-) in place
of the underscore.

Constants that have character-string values use the single quotation mark character
(') as the string delimiter. To make the compiler accept this character, use the
compiler option APOST.

The copy file CMQV contains declarations of the named constants as level-10
items. To use the constants, declare the level-01 item explicitly, then use the COPY
statement to copy in the declarations of the constants:

WORKING-STORAGE SECTION.

01 MQM-CONSTANTS.
COPY CMQV.

However, this method causes the constants to occupy storage in the program even
if they are not referred to. If the constants are included in many separate programs
within the same run unit, multiple copies of the constants will exist—this may
result in a significant amount of main storage being used. You can avoid this
situation by adding the GLOBAL clause to the level-01 declaration:

* Declare a global structure to hold the constants

01 MQM-CONSTANTS GLOBAL.
COPY CMQV.

This causes storage to be allocated for only one set of constants within the run
unit; the constants, however, can be referred to by any program within the run
unit, not just the program that contains the level-01 declaration.

Coding in System/390 ® assembler language
System/390 assembler is supported on OS/390 only.

See Appendix A | anguage compilers and assemblers” on page 423 for the

assemblers that you can use to process your assembler-language programs.

Note the information in the following sections when coding MQSeries for OS/390
programs in assembler language.

Names

In this book, the names of parameters in the descriptions of calls, and the names of
fields in the descriptions of structures are shown in mixed case. In the
assembler-language macros supplied with MQSeries, all names are in uppercase.

Using the MQI calls

The MQI is a call interface, so assembler-language programs must observe the OS
linkage convention. In particular, before they issue an MQI call,
assembler-language programs must point register R13 at a save area of at least 18
full words. This save area is to provide storage for the called program. It stores the
registers of the caller before their contents are destroyed, and restores the contents
of the caller’s registers on return.

Note: This is of particular importance for CICS assembler-language programs that
use the DFHEIENT macro to set up their dynamic storage, but that choose
to override the default DATAREG from R13 to other registers. When the
CICS Resource Manager Interface receives control from the stub, it saves the
current contents of the registers at the address to which R13 is pointing.

Chapter 6. Introducing the Message Queue Interface 73

Programming language considerations

Failing to reserve a proper save area for this purpose gives unpredictable
results, and will probably cause an abend in CICS.

Declaring constants
Most constants are declared as equates in macro CMQA. However, the following
constants cannot be defined as equates, and these are not included when you call
the macro using default options:

MQACT_NONE

MQCI_NONE

MQFMT_NONE

MQFMT_ADMIN

MQFMT_COMMAND_1

MQFMT_COMMAND_2

MQFMT_DEAD_LETTER_HEADER

MQFMT_EVENT

MQFMT_IMS

MQFMT_IMS_VAR_STRING

MQFMT_PCF

MQFMT_STRING

MQFMT_TRIGGER

MQFMT_XMIT_Q_HEADER

MQMI_NONE

To include them, add the keyword EQUONLY=NO when you call the macro.

CMQA is protected against multiple declaration, so you can include it many times.
However, the keyword EQUONLY takes effect only the first time the macro is
included.

Specifying the name of a structure
To allow more than one instance of a structure to be declared, the macro that

generates the structure prefixes the name of each field with a user-specifiable string
and an underscore character (). Specify the string when you invoke the macro. If
you do not specify a string, the macro uses the name of the structure to construct

the prefix:
* Declare two object descriptors

CMQODA Prefix used="MQOD_" (the default)
MY_MQOD CMQODA Prefix used="MY_MQOD_"

The structure declarations in the MQSeries Application Programming Referencd

manual show the default prefix.

Specifying the form of a structure

The macros can generate structure declarations in one of two forms, controlled by
the DSECT parameter:

DSECT=YES An assembler-language DSECT instruction is used to start a new data
section; the structure definition immediately follows the DSECT
statement. No storage is allocated, so no initialization is possible. The
label on the macro invocation is used as the name of the data section; if
no label is specified, the name of the structure is used.

DSECT=NO Assembler-language DC instructions are used to define the structure at
the current position in the routine. The fields are initialized with values,
which you can specify by coding the relevant parameters on the macro
invocation. Fields for which no values are specified on the macro
invocation are initialized with default values.

DSECT=NO is assumed if the DSECT parameter is not specified.

74 MQSeries Application Programming Guide

Programming language considerations

Controlling the listing
You can control the appearance of the structure declaration in the
assembler-language listing by means of the LIST parameter:

LIST=YES The structure declaration appears in the assembler-language listing.
LIST=NO The structure declaration does not appear in the assembler-language
listing. This is assumed if the LIST parameter is not specified.

Specifying initial values for fields

You can specify the value to be used to initialize a field in a structure by coding
the name of that field (without the prefix) as a parameter on the macro invocation,
accompanied by the value required.

For example, to declare a message descriptor structure with the MsgType field
initialized with MQMT_REQUEST, and the ReplyToQ field initialized with the
string MY_REPLY_TO_QUEUE, you could use the following code:

MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X
REPLYT0Q=MY_REPLY TO_QUEUE

If you specify a named constant (or equate) as a value on the macro invocation,
you must use the CMQA macro to define the named constant. You must not
enclose in single quotation marks (* ’) values that are character strings.

Writing reenterable programs
MQSeries uses its structures for both input and output. If you want your program
to remain reenterable, you should:

1. Define working storage versions of the structures as DSECTSs, or define the
structures inline within an already-defined DSECT. Then copy the DSECT to
storage that is obtained using:

* For batch and TSO programs, the STORAGE or GETMAIN 0S/390
assembler macros

» For CICS, the working storage DSECT (DFHEISTG) or the EXEC CICS
GETMAIN command

To correctly initialize these working storage structures, copy a constant version
of the corresponding structure to the working storage version.

Note: The MQMD and MQXQH structures are each more than 256 bytes long.
To copy these structures to storage, you will have to use the MVCL
assembler instruction.

2. Reserve space in storage by using the LIST form (MF=L) of the CALL macro.
When you use the CALL macro to make an MQI call, use the EXECUTE form
(MF=E) of the macro, using the storage reserved earlier, as shown in the example
under Elsing CEDE” on page 76. For more examples of how to do this, see the
assembler language sample programs as shipped with MQSeries.

Use the assembler language RENT option to help you determine if your program
is reenterable.

For information on writing reenterable programs, see the MVS/ESA Application
Development Guide: Assembler Language Programs, GC28-1644.

Chapter 6. Introducing the Message Queue Interface 75

Programming language considerations

Using CEDF

If you want to use the CICS-supplied transaction, CEDF (CICS Execution
Diagnostic Facility) to help you to debug your program, you must add the ,VL
keyword to each CALL statement, for example:

CALL MQCONN, (NAME,HCONN,COMPCODE,REASON) ,MF=(E, PARMAREA) , VL

The above example is reenterable assembler-language code where PARMAREA is an
area in the working storage you specified.

Coding in RPG
RPG is supported on OS/400 only.

See I‘Appendix A | anguage compilers and assemblers” on page 423 for the

compilers that you can use to process your RPG programs.

In this book, the parameters of calls, the names of data types, the fields of
structures, and the names of constants are described using their long names. In
RPG, these names are abbreviated to six or fewer uppercase characters. For
example, the field MsgType becomes MDMT in RPG. For more information, see the
MQSeries for AS/400 Application Programming Reference (ILE RPG) manual.

Coding in PL/I
PL/I is supported on AlX, OS/390, OS/2 Warp, VSE/ESA, and Windows NT only.

See I‘Appendix A_| anguage compilers and assembhlers” on page 423 for the

compilers that you can use to process your PL/I programs.

Note the information in the following sections when coding MQSeries for OS/390
programs in PL/I.

Structures
Structures are declared with the BASED attribute, and so do not occupy any
storage unless the program declares one or more instances of a structure.

An instance of a structure can be declared by using the 1ike attribute, for example:

dc1 my_mgmd like MQMD; /* one instance */
dc1 my_other_mgmd 1ike MQMD; /* another one */

The structure fields are declared with the INITIAL attribute; when the Tike
attribute is used to declare an instance of a structure, that instance inherits the
initial values defined for that structure. Thus it is necessary to set only those fields
where the value required is different from the initial value.

PL/I1 is not sensitive to case, and so the names of calls, structure fields, and
constants can be coded in lowercase, uppercase, or mixed case.

Named constants

The named constants are declared as macro variables; as a result, named constants
which are not referenced by the program do not occupy any storage in the
compiled procedure. However, the compiler option which causes the source to be
processed by the macro preprocessor must be specified when the program is
compiled.

76 MQSeries Application Programming Guide

Programming language considerations

All of the macro variables are character variables, even the ones which represent
numeric values. Although this may seem counter intuitive, it does not result in any
data-type conflict after the macro variables have been substituted by the macro
processor, for example:

%dc1 MQMD_STRUC_ID char;
%MQMD_STRUC_ID = '''MD ''';

%dc1 MQMD_VERSION_1 char;
%MQMD_VERSION 1 = '1';

Coding in TAL
TAL is supported on Tandem NonStop Kernel only.

Se

e tAppendix A_| anguage compilers and assemblers” on page 423 for the

compilers that you can use to process your TAL programs.

Note the following when coding MQSeries for Tandem NonStop Kernel programs
in TAL:

The MQI library (bound into the application process) does not open $RECEIVE
and does not open $TMP (TM/MP transaction pseudo-file) itself, so you may
code your application to use these features.

The MQI library uses a SERVERCLASS_SEND_() call in initial communication
with the Queue Manager. While connected, it maintains two process file opens
(with the LINKMON process and a Local Queue Manager Agent) and a small
number of disk file opens (fewer than 10).

0S/390 batch considerations

0S/390 batch programs that call the MQI can be in either supervisor or problem
state. However, they must meet the following conditions:

They must be in task mode, not service request block (SRB) mode.

They must be in Primary address space control (ASC) mode (not Access Register
ASC mode).

They must not be in cross-memory mode. The primary address space number
(ASN) must be equal to the secondary ASN and the home ASN.

No 0S/390 locks can be held.
There can be no function recovery routines (FRRs) on the FRR stack.

Any program status word (PSW) key can be in force for the MQCONN call
(provided the key is compatible with using storage that is in the TCB key), but
subsequent calls that use the connection handle returned by MQCONN:

— Must have the same PSW key that was used on the MQCONN call

— Must have parameters accessible (for write, where appropriate) under the
same PSW key

— Must be issued under the same task (TCB), but not in any subtask of the task

They can be in either 24-bit or 31-bit addressing mode. However, if 24-bit
addressing mode is in force, parameter addresses must be interpreted as valid
31-bit addresses.

If any of these conditions is not met, a program check may occur. In some cases
the call will fail and a reason code will be returned.

Chapter 6. Introducing the Message Queue Interface 77

UNIX signal handling

UNIX signal handling on MQSeries Version 5 products

In general, UNIX and AS/400 systems have moved from a nonthreaded (process)
environment to a multithreaded environment. In the nonthreaded environment,
some functions could be implemented only by using signals, though most
applications did not need to be aware of signals and signal handling. In the
multithreaded environment, thread-based primitives support some of the functions
that used to be implemented in the nonthreaded environments using signals. In
many instances, signals and signal handling, although supported, do not fit well
into the multithreaded environment and various restrictions exist. This can be
particularly problematic when you are integrating application code with different
middleware libraries (running as part of the application) in a multithreaded
environment where each is trying to handle signals. The traditional approach of
saving and restoring signal handlers (defined per process), which worked when
there was only one thread of execution within a process, does not work in a
multithreaded environment: many threads of execution could be trying to save and
restore a process-wide resource, with unpredictable results.

For a standard application, MQSeries supports both nonthreaded and threaded
application environments on AlX, AS/400, and HP-UX.

MQSeries for AS/400 uses ILE/C condition and cancel handlers as its exception
processing mechanisms. Because of this, applications must not use the ILE/C
signal() APl when connected to MQSeries. The signal() API is implemented by ILE
to handle ILE/C conditions as if they were signals, and can interfere with the
ILE/C condition handlers used by MQSeries.

Sigaction() and sigwait() are safe to use with MQSeries, because they do not
interact with ILE conditions at all. The ILE condition and cancel handler APIs are
also safe to use in all circumstances. These APIs, when used together, will handle
the same combination of exception conditions as signal().

All MQSeries applications in the Sun Solaris environment are threaded. MQSeries
for Sun Solaris V2.2 supported only single-threaded applications (though there was
no way to enforce this) and, because there was only one thread of execution, was
able to make use of the traditional signal handling functions. In MQSeries for Sun
Solaris, V5.0, and subsequent releases, true multithreaded applications are
supported and so the signal behavior has changed.

The library libmgm is provided for migration of nonthreaded applications from
Version 2 of MQSeries for AIX or MQSeries for HP-UX to Version 5. The goal of
this library is to maintain the Version 2 behavior (including signals) for
nonthreaded applications. Within an application in this environment there is only
one thread of execution, which means that signal handlers can be saved and
restored safely across MQSeries API calls (as can any middleware library that is
part of the application). Therefore, if you have an application suite on V2 of
MQSeries for AIX or MQSeries for HP-UX that uses signals, and you do not want
to move to the threaded environment, the suite should run unchanged on V5 using
the nonthreaded library, libmgm.

The library libmgm_r is provided for threaded applications on MQSeries for AIX
or MQSeries for HP-UX. On AS/400 libmgm_r is provided as a service program.
However, the behavior, particularly for signals, is different:

* As in the nonthreaded environment, MQSeries still establishes signal handlers
for synchronous terminating signals (SIGBUS, SIGFPE, SIGSEGV).

78 MQSeries Application Programming Guide

UNIX signal handling

* MQSeries must run some clean-up code during abnormal termination. This is
achieved by setting up a sigwait thread to handle terminating, asynchronous
signals. While this approach is suitable for an application that does not handle
signals, it can cause problems when the signals being trapped on the MQSeries
sigwait thread overlap with signals that an application wishes to intercept.

* Even in the threaded environment MQSeries needs a signal for its internal
processing. As was stated earlier, use of signals in a threaded environment may
cause problems when you are integrating a middleware stack. (With many
threads all independently trying to handle signals, saving and restoring signal
handlers, results are unpredictable.) MQSeries must use one signal: SIGALRM.

Note: Some system functions may use signals internally (for example, SIGALRM
in a nonthreaded environment). For a particular operating system, some
of these functions may have thread-safe equivalents or it may be stated
that they are not multithread safe. Any non-thread-safe operating system
call should be replaced if moving to a multithreaded environment.

Unthreaded applications

Each MQI function sets up its own signal handler for the signals:
SIGALRM
SIGBUS
SIGFPE
SIGSEGV

Users’ handlers for these are replaced for the duration of the MQI function call.
Other signals can be caught in the normal way by user-written handlers. If you do
not install a handler, the default actions (for example, ignore, core dump, or exit)
are left in place.

Note: On Sun Solaris all applications are threaded even if they use a single thread.

Threaded applications

A thread is considered to be connected to MQSeries from MQCONN (or
MQCONNX) until MQDISC.

Synchronous signals
Synchronous signals arise in a specific thread. UNIX safely allows the setting up of

a signal handler for such signals for the whole process. However, MQSeries sets up
its own handler for the following signals, in the application process, while any
thread is connected to MQSeries:

SIGBUS

SIGFPE

SIGSEGV

If you are writing multithreaded applications, you should note that there is only
one process-wide signal handler for each signal. MQSeries alters this signal

handler when the application is connected to MQSeries. If one of these signals
occurs while not on a thread connected to MQSeries, MQSeries attempts to call the
signal handler that was in effect at the time of the first MQSeries connection within
the process. Application threads must not establish signal handlers for these signals
while there is any possibility that another thread of the same process is also
connected to MQSeries.

Chapter 6. Introducing the Message Queue Interface 79

UNIX signal handling

Asynchronous signals
Asynchronous signals arise outside the whole process. UNIX does not guarantee
predictable behavior for handling asynchronous signals, in certain situations, when
running multithreaded. MQSeries must perform clean-up of thread and process
resources as part of the termination from these asynchronous signals:

SIGCHLD

SIGHUP

SIGINT

SIGQUIT

SIGTERM

MQSeries establishes a sigwait thread in the application process to intercept these
signals.

These signals must not be used by the application when running multithreaded
and when any thread is within an MQSeries connection. These signals should not
be unmasked within any application thread; be aware of the default status of the
signal mask for threads that do not make MQSeries calls.

MQSeries use of SIGALRM

For communication purposes MQSeries needs a signal for its internal use. This
signal should not be used by the application while any thread is within an
MQSeries connection.

Threaded client applications - additional considerations
MQSeries handles the following signals during 1/0 to a server. These signals are

defined by the communications stack. The application should not establish a signal
handler for these signals while a thread of the process is making an MQSeries call:
SIGPIPE

(for TCP/IP)
SIGUSR1

(for LU 6.2)

Fastpath (trusted) applications

Fastpath applications run in the same process as MQSeries and so are running in
the multithreaded environment. In this environment the application should not use
any signals or timer interrupts. If a Fastpath application intercepts such an event,
the queue manager must be stopped and restarted, or it may be left in an
undefined state. For a full list of the restrictions for Fastpath applications under

MQCONNX see ‘Connecting to a queue manager using the MQCONNX call” od
hage &d.

MQI function calls within signal handlers

While you are in a signal handler, you cannot call an MQI function. If you call an
MQI function, while another MQI function is active, MQRC_CALL_IN_PROGRESS
is returned. If you call an MQI function, while no other MQI function is active, it is
likely to fail because of the operating system restrictions on which calls can be
issued from within a handler.

In the case of C++ destructor methods, which may be called automatically during
program exit, you may not be able to stop the MQI functions from being called.
Therefore, ignore any errors about MQRC_CALL_IN_PROGRESS. If a signal
handler calls exit(), MQSeries backs out uncommitted messages in syncpoint as
normal and closes any open queues.

80 MQsSeries Application Programming Guide

UNIX signal handling
Signals during MQI calls

MQI functions do not return the code EINTR or any equivalent to application
programs. If a signal occurs during an MQI call, and the handler calls ‘return’, the
call continues to run as if the signal had not happened. In particular, MQGET
cannot be interrupted by a signal to return control immediately to the application.
If you want to break out of an MQGET, set the queue to GET_DISABLED;
alternatively, use a loop around a call to MQGET with a finite time expiry
(MQGMO_WAIT with gmo.Waitlnterval set), and use your signal handler (in a
nonthreaded environment) or equivalent function in a threaded environment to set
a flag which breaks the loop.

In the AIX environment, MQSeries requires that system calls interrupted by signals
are restarted. You must establish the signal handler with sigaction(2) and set the
SA_RESTART flag in the sa_flags field of the new action structure. The default
behavior is that calls are not restarted (the SA_RESTART flag is not set).

User exits and installable services

User exits and installable services that run as part of an MQSeries process in a
multithreaded environment have the same restrictions as for Fastpath applications.
They should be considered as permanently connected to MQSeries and so not use
signals or non-threadsafe operating system calls.

Chapter 6. Introducing the Message Queue Interface 81

Changes

82 MQSeries Application Programming Guide

Chapter 7. Connecting and disconnecting a queue manager

To use MQSeries programming services, a program must have a connection to a
queue manager. The way this connection is made depends on the platform and the
environment in which the program is operating:

0S/390 batch, MQSeries for AS/400, MQSeries for Compaq (DIGITAL)
OpenVMS, MQSeries for OS/2 Warp, MQSeries for Tandem NonStop Kernel,
MQSeries on UNIX systems, MQSeries for Windows, and MQSeries for
Windows NT

IMS

Programs that run in these environments can use the MQCONN MQI call
to connect to, and the MQDISC call to disconnect from, a queue manager.
Alternatively, MQSeries on UNIX systems (with the exception of MQSeries
for DIGITAL UNIX (Compaqg Tru64 UNIX)), MQseries for AS/400,
MQSeries for OS/2 Warp, and MQSeries for Windows NT can use the
MQCONNX call. This chapter describes how writers of such programs
should use these calls.

0S/390 batch programs can connect, consecutively or concurrently, to
multiple queue managers on the same TCB.

The IMS control region is connected to one or more queue managers when
it starts. This connection is controlled by IMS commands. (For information
on how to control the IMS adapter of MQSeries for OS/390, see the
MQSeries for OS/390 System Management Guide.) However, writers of
message queuing IMS programs must use the MQCONN MQI call to
specify the queue manager to which they want to connect. They can use
the MQDISC call to disconnect from that queue manager. This chapter
describes how writers of such programs should use these calls. Before the
IMS adapter processes a message for another user following a Get Unique
call from the IOPCB, or one implied by a checkpoint call, the adapter
ensures that the application closes handles and disconnects from the queue
manager.

IMS programs can connect, consecutively or concurrently, to multiple
queue managers on the same TCB.

CICS Transaction Server for OS/390 and CICS for MVVS/ESA

© Copyright IBM Corp. 1993, 2000

CICS programs do not need to do any work to connect to a queue
manager because the CICS system itself is connected. This connection is
usually made automatically at initialization, but you can also use the
CQKC transaction, which is supplied with MQSeries for OS/390. CQKC is
discussed in the MQSeries for OS/390 System Management Guide.

CICS tasks can connect only to the queue manager to which the CICS
region, itself, is connected.

Note: CICS programs can also use the MQI connect and disconnect calls
(MQCONN and MQDISC). You may want to do this so that you can
port these applications to hon-CICS environments with a minimum
of recoding. Be warned, though, that these calls always complete
successfully in a CICS environment. This means that the return code
may not reflect the true state of the connection to the queue
manager.

83

Connecting and disconnecting

TXSeries for Windows NT and Open Systems
These programs do not need to do any work to connect to a queue
manager because the CICS system itself is connected. Therefore, only one
connection at a time is supported. CICS applications must issue an
MQCONN call to obtain a connection handle, and should issue an
MQDISC call before they exit.

MQSeries for VSE/ESA
In your VSE/ESA application, make an explicit call to MQCONN to
establish a connection to the VSE/ESA queue manager. Ensure that your
application issues an MQDISC call to disconnect. The performance of your
application is better if you connect and disconnect as infrequently as
possible.

This chapter introduces connecting to and disconnecting from a queue manager,
under these headings:

. Ec Y o the MOCONN calld

Connecting to a queue manager using the MQCONN call

In general, you can connect either to a specific queue manager, or to the default
gueue manager:

* For MQSeries for OS/390, in the batch environment, the default queue manager
is specified in the CSQBDEFV module.

* For MQSeries for AS/400, MQSeries for Compaq (DIGITAL) OpenVMS,
MQSeries for OS/2 Warp, MQSeries for Tandem NonStop Kernel, and MQSeries
on UNIX systems, the default queue manager is specified in the mgs.ini file.

* For MQSeries for Tandem NonStop Kernel, the default queue manager is
specified in the MQSINI file, resident in the ZMQSSYS subvolume.

* For MQSeries for Windows NT, the default queue manager is specified in the
registry.

* MQSeries for Windows allows only one queue manager to run at a time; it uses
the running queue manager as its default.

* MQSeries for VSE/ESA allows only one queue manager to run at a time; its
name is specified in the Global System Definition of the System Management
Facility (SMF). Your application can specify the name or use the default value.

The queue manager you connect to must be local to the task. This means that it
must belong to the same system as the MQSeries application.

In the IMS environment, the queue manager must be connected to the IMS control
region and to the dependent region that the program uses. The default queue
manager is specified in the CSQQDEFV module when MQSeries for OS/390 is
installed.

With the CICS on Open Systems environment, and TXSeries for Windows NT and
AlX, the queue manager must be defined as an XA resource to CICS.

To connect to the default queue manager, call MQCONN, specifying a name
consisting entirely of blanks or starting with a null (X'00") character.

Within MQSeries on UNIX systems, an application must be authorized for it to
successfully connect to a queue manager. For more information, see the MQSeries

84 MQSeries Application Programming Guide

Using MQCONN

System Administration Guide for MQSeries for AlX, HP-UX, and Sun Solaris; for
other platforms, see the appropriate System Management Guide.

The output from MQCONN is:
* A connection handle

* A completion code

* A reason code

You will need to use the connection handle on subsequent MQI calls.

If the reason code indicates that the application is already connected to that queue
manager, the connection handle that is returned is the same as the one that was
returned when the application first connected. So the application probably should
not issue the MQDISC call in this situation because the calling application will
expect to remain connected.

The scope of the connectlon handle is the same as that for the object handle (see

Descriptions of the parameters are given in the description of the MQCONN call in

the MQSeries Application Programming Referencd manual.

The MQCONN call fails if the queue manager is in a quiescing state when you
issue the call, or if the queue manager is shutting down.

Scope of MQCONN

Within MQSeries for AS/400, MQSeries for Compaq (DIGITAL) OpenVMS,
MQSeries for OS/2 Warp, MQSeries on UNIX systems, MQSeries for Windows,
and MQSeries for Windows NT, the scope of an MQCONN call is the thread that
issued it. That is, the connection handle returned from an MQCONN call is valid
only within the thread that issued the call. Only one call may be made at any one
time using the handle. If it is used from a different thread, it will be rejected as
invalid. If you have multiple threads in your application and each wishes to use
MQSeries calls, each one must individually issue MQCONN.

Each thread can connect to a different queue manager on OS/2 and Windows NT,
but not on OS/400 or UNIX.

If your application is running as a client, it may connect to more than one queue
manager within a thread. This does not apply if your application is not running as
a client.

0OS/2 has a limit of 4095 active threads in a system. However, the default is 64.
This value may be controlled by the THREADS=xxxx parameter in CONFIG.SYS.
Limitations on the number of concurrent MQCONN calls that can be made within
a system are dependent on this value, although other factors to consider are disk
space availability for the swapper.dat file and shared memory availability.

On MQSeries for Windows, the scope of an MQCONN call is the application
process.

On MQSeries for VSE/ESA, there is a maximum of 1000 concurrently-connected

tasks. The connection handle is unique to the ID of the transaction that is executing
and only valid for the duration of that transaction.

Chapter 7. Connecting and disconnecting a queue manager 85

Using MQCONNX

Connecting to a queue manager using the MQCONNX call

MQCONNX is not supported on Compaq (DIGITAL) OpenVMS, DIGITAL UNIX,
0S/390, Tandem NonStop Kernel, and VSE/ESA.

The MQCONNX call is similar to the MQCONN call, but includes options to
control the way that the call actually works.

As input to MQCONNX, you must supply a queue manager name. The output
from MQCONNX is;

* A connection handle

* A completion code

* A reason code

You will need to use the connection handle on subsequent MQI calls.

A description of all of the parameters of MQCONNX is given in the M
Bpplication Programming Referencd manual. The Options field allows you to set

STANDARD_BINDING or FASTPATH_BINDING:

MQCNO_STANDARD_BINDING

By default, MQCONNX (like MQCONN) implies two logical threads where the
MQSeries application and the local queue manager agent run in separate processes.
The MQSeries application performs the MQSeries operation and the local queue
manager agent performs the application operation. This is defined by the
MQCNO_STANDARD_BINDING option on the MQCONNX call.

Note: This default maintains the integrity of the queue manager (that is, it makes
the queue manager immune to errant programs), but impairs the
performance of the MQI calls.

MQCNO_FASTPATH_BINDING

Trusted applications imply that the MQSeries application and the local queue
manager agent become the same process. Since the agent process no longer needs
to use an interface to access the queue manager, these applications become an
extension of the queue manager. This is defined by the
MQCNO_FASTPATH_BINDING option on the MQCONNX call.

You need to link trusted applications to the threaded MQSeries libraries. For
instructions on how to set up an MQSeries application to run as trusted, see the

MQSeries Application Programming Referencd manual.

Note: This option compromises the integrity of the queue manager as there is
no protection from overwriting its storage. This also applies if the
application contains errors which can be exposed to messages and other
data in the queue manager too. These issues must be considered before
using this option.

Restrictions
The following restrictions apply to trusted applications:

* On MQSeries on UNIX systems, it is necessary to use mgm as the effective
userID and grouplID for all MQI calls. You may change these I1Ds before making
a non-MQI call requiring authentication (for example, opening a file), but you
must change it back to mgm before making the next MQI call.

86 MQSeries Application Programming Guide

Using MQCONNX

On MQSeries on UNIX systems, trusted applications must run in threaded
processes but only one thread can be connected at a time.

On MQSeries for AS/400 trusted applications must be run under the QMQM
user profile. It is not sufficient that the user profile be member of the QMQM
group or that the program adopt QMQM authority. It may not be possible, or
desirable, for the QMQM user profile to be used to sign on to interactive jobs, or
be specified in the job description for jobs running trusted applications. In this
case one approach is to use the OS/400 profile swapping API functions,
QSYGETPH, QWTSETP and QSYRLSPH to temporarily change the current user
of the job to QMQM while the MQ programs run. Details of these functions
together with an example of their use is provided in the Security APIs section of
the AS/400 System API Reference.

On MQSeries for OS/2 Warp and MQSeries for Windows NT, a thread within a
trusted application cannot connect to a queue manager while another thread in
the same process is connected to a different queue manager.

You must explicitly disconnect trusted applications from the queue manager.

You must stop trusted applications before ending the queue manager with the
endmgm command.

You must not use asynchronous signals and timer interrupts (such as sigkill)
with MQCNO_FASTPATH_BINDING.

On MQSeries for AS/400 trusted applications must not be cancelled through the
use of System-Request Option 2, or by the jobs in which they are running being
ended using ENDJOB.

On MQSeries for AlX, trusted applications cannot be compiled using the PL/I
programming language.

On MQSeries for AlX, there are restrictions on the use of shared memory
segments:

MQSeries uses a single “shmat()” command to connect to shared memory
resources. However, on AlX, one process cannot attach to more than 10 memory
segments.

MQSeries uses two additional shared memory segments for trusted applications,
reducing the amount of shared storage available. Therefore, it is important that
your applications do not connect to too many shared segments, causing a failure
in the application code.

Here is a breakdown of the memory segments:

Segment Use

Reserved for AIX

Reserved for AIX

Stack and heap

CICs MQSeries (trusted applications only)
DB2 and DT/6000

MQSeries (trusted applications only)
MQSeries

CICS

CICs

CICs

DB2

Reserved for AIX

Reserved for AIX

Reserved for AIX

Chapter 7. Connecting and disconnecting a queue manager 87

Using MQCONNX

This also implies that trusted applications cannot use the maxdata binder option
to specify a greater user data area: this conflicts with the queue manager use of
shared memory within the application process as it causes the program data to
be placed in shared memory segment 3.

Environment variable

On MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for Windows NT,
and MQSeries on UNIX systems, the environment variable, MQ_CONNECT_TYPE,
can be used in combination with the type of binding specified in the Options field.
This environment variable allows you to execute the application with the
STANDARD_BINDING if any problems occur with the FASTPATH_BINDING. If
the environment variable is specified, it should have the value FASTPATH or
STANDARD to select the type of binding required. However, the FASTPATH
bindinig is used only if the connect option is appropriately specified as shown in

Table 2. Environment variable

MQCONNX Environment variable Result
STANDARD UNDEFINED STANDARD
FASTPATH UNDEFINED FASTPATH
STANDARD STANDARD STANDARD
FASTPATH STANDARD STANDARD
STANDARD FASTPATH STANDARD
FASTPATH FASTPATH FASTPATH

So, to run a trusted application, either:
1. Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and
the FASTPATH environment variable,

or
2. Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and
leave the environment variable undefined.

If neither MQCNO_STANDARD_BINDING nor MQCNO_FASTPATH_BINDING is
specified, you can use MQCNO_NONE, which defaults to
MQCNO_STANDARD_BINDING.

Disconnecting programs from a queue manager using MQDISC

When a program that has connected to a queue manager using the MQCONN call
has finished all interaction with the queue manager, it must break the connection
using the MQDISC call.

On CICS Transaction Server for OS/390 applications, the call is optional.

After MQDISC is called, the connection handle (Hconn) is no longer valid, and you
cannot issue any further MQI calls until you call MQCONN again. MQDISC does
an implicit MQCLOSE for any objects that are still open using this handle.

In MQSeries for AS/400, when you sign off from the operating system, an implicit
MQDISC call is made.

88 MQseries Application Programming Guide

Using MQDISC

As input to the MQDISC call, you must supply the connection handle (Hconn) that
was returned by MQCONN when you connected to the queue manager.

The output from this call is a completion code and a reason code, with the
connection handle set to the value MQHC _UNUSABLE _HCONN.

On MQSeries for VSE/ESA, if your application does not issue the MQDISC call
explicitly, the MQSeries for VSE/ESA housekeeping routine issues the MQDISC
call on its behalf and unwanted messages appear in the SYSTEM.LOG queue.

Descriptions of the parameters are given in the description of the MQDISC call in

the MQSeries Application Programming Referencd manual.

Authority checking

The MQCLOSE and MQDISC calls usually perform no authority checking. In the
normal course of events a job which has the authority to open or connect to an
MQSeries object will close or disconnect from that object. Even if the authority of a
job that has connected to, or opened an MQSeries object is revoked, the MQCLOSE
and MQDISC calls are accepted.

Chapter 7. Connecting and disconnecting a queue manager 89

Changes

90 MQsSeries Application Programming Guide

Chapter 8. Opening and closing objects

To perform any of the following operations, you must first open the relevant
MQSeries object:

* Put messages on a queue

» Get (browse or retrieve) messages from a queue

» Set the attributes of an object

* Inquire about the attributes of any object

Use the MQOPEN call to open the object, using the options of the call to specify
what you want to do with the object. The only exception is if you want to put a
single message on a queue, then close the queue immediately. In this case, you can

bypass the “opening” stage by using the MQPUT1 call (see LBLmng_ane_messagﬁl

Before you open an object using the MQOPEN call, you must connect your
program to a queue manager. This is explained in detail, for all environments, in

There are four types of MQSeries object that can be opened:

* Queue

* Namelist (MQSeries for OS/390 and MQSeries Version 5.1 products only)
* Process definition

* Queue manager

You open all of these objects in a similar way using the MQOPEN call. For more

information about MQSeries objects, see [‘Chapter 4 MQSeries ohjects” on page 35.

You can open the same object more than once, and each time you get a new object
handle. You might want to browse messages on a queue using one handle, and
remove messages from the same queue using another handle. This saves using up
resources to close and reopen the same object. You can also open a queue for
browsing and removing messages at the same time.

Moreover, you can open multiple objects with a single MQOPEN and close them

using MQCLOSE. See [‘Distribution lists” on page 109 for information about how

to do this.

When you attempt to open an object, the queue manager checks that you are
authorized to open that object for the options you specify in the MQOPEN call.

Objects are closed automatically when a program disconnects from the queue
manager. In the IMS environment, disconnection is forced when a program starts
processing for a new user following a GU (get unique) IMS call. On the AS/400
platform, objects are closed automatically when a job ends.

It is good programming practice to close objects you have opened. Use the
MQCLOSE call to do this.

This chapter introduces opening and closing MQSeries objects, under these
headings:

© Copyright IBM Corp. 1993, 2000 91

Opening and closing

Opening objects using the MQOPEN call

Scope

As input to the MQOPEN call, you must supply:

* A connection handle. For CICS applications, you can specify the constant
MQHC_DEF_HCONN (which has the value zero), or use the connection handle
returned by the MQCONN call. For other programs, always use the connection
handle returned by the MQCONN call.

» A description of the object you want to open, using the object descriptor
structure (MQOD).

* One or more options that control the action of the call.

The output from MQOPEN is:

* An object handle that represents your access to the object. Use this on input to
any subsequent MQI calls.

* A modified object-descriptor structure, if you are creating a dynamic queue (and
it is supported on your platform).

* A completion code.

* A reason code.

Namelists can be opened only on AIX, OS/400, HP-UX, OS/2 Warp, 0OS/390, Sun
Solaris, and Windows NT.

of an object handle

The scope of an object handle is the same as the scope of a connection handle,
however there are variations between platforms:

CICS In a CICS program, you can use the handle only within the same CICS
task from which you made the MQOPEN call.

IMS and OS/390 batch
In the IMS and batch environments, you can use the handle within the
same task, but not within any subtasks.

MQSeries for AS/400
In an MQSeries for AS/400 program, you can use the handle only within
the same job from which you made the MQOPEN call.

MQSeries for OS/2 Warp
In the MQSeries for OS/2 Warp environment, you can use the same handle
within the same thread.

MQSeries for Windows NT
In the MQSeries for Windows NT environment, you can use the same
handle within the same thread.

MQSeries on Tandem NonStop Kernel
In this environment, you can use the same handle within the same process.

MQSeries on UNIX systems
In these environments, you can use the same handle within the same
thread.

DOS In the DOS environment, there are no restrictions on where you can use
the handle.

92 MQSeries Application Programming Guide

Using MQOPEN

MQSeries for VSE/ESA
In the VSE/ESA environment, you can use the handle only within the
same application transaction from which you made the MQOPEN call.

Windows 3.1
In the Windows 3.1 environment, you can use the handle in the same
Windows 3.1 instance.

Descriptions of the parameters of the MQOPEN call are given in the m
icati i manual.

The following sections describe the information you must supply as input to
MQOPEN.

Identifying objects (the MQOD structure)

Use the MQOD structure to identify the object you want to open. This structure is
an input parameter for the MQOPEN call. (The structure is modified by the queue
manager when you use the MQOPEN call to create a dynamic queue.)

For full details of the MQOD structure see the IMQSeries Application Programming

manual.

For information about using the MQOD structure for distribution lists, see m

the MQQD structird under EDistribution lists” an page 109,

Name resolution

Note: A Queue manager alias is a remote queue definition without an RNAME field.

When you open an MQSeries queue, the MQOPEN call performs a name
resolution function on the queue name you specify. This determines on which
queue the queue manager performs subsequent operations. This means that when
you specify the name of an alias queue or a remote queue in your object descriptor
(MQOD), the call resolves the name either to a local queue or to a transmission
queue. If a queue is opened for any type of input, browse, or set, it resolves to a
local queue if there is one, and fails otherwise. It resolves to a nonlocal queue only
if it is opened for output only, inquire only, or output and inquire only. See

for an overview of the name resolution process. Note that the name
you supply in ObjectQMgriName is resolved before that in ObjectName.

[able 3 on page 94 also shows how you can use a local definition of a remote
queue to define an alias for the name of a queue manager. This allows you to
select which transmission queue is used when you put messages on a remote
queue, so you could, for example, use a single transmission queue for messages
destined for many remote queue managers.

To use the following table, first read down the two left-hand columns, under the
heading ’Input to MQOD’, and select the appropriate case. Then read across the
corresponding row, following any instructions. Following the instructions in the
’Resolved names’ columns, you can either return to the ’Input to MQOD’ columns
and insert values as directed, or you can exit the table with the results supplied.
For example, you may be required to input ObjectName.

Chapter 8. Opening and closing objects 93

Using MQOPEN

Table 3. Resolving queue names when using MQOPEN

Input to MQOD

Resolved names

manager

ObjectQMgrName ObjectName ObjectQMgrName ObjectName Transmission queue
Blank or local queue Local queue Local queue manager Input Not applicable (local
manager with no ObjectName queue used)
CLUSTER
attribute
Blank queue manager Local queue Workload management Input SYSTEM.CLUSTER.
with CLUSTER |selected cluster queue ObjectName TRANSMIT.QUEUE and
attribute manager or specific local queue used
cluster queue manager
selected on PUT
Local queue manager Local queue Local queue manager Input Not applicable (local
with CLUSTER ObjectName queue used)
attribute
Blank or local queue Model queue Local queue manager Generated name | Not applicable (local

queue used)

Blank or local queue
manager

Alias queue with
or without
CLUSTER
attribute

Perform name resolution
again with
ObjectQMgrName
unchanged, and input
ObjectName set to the
BaseQName in the alias
queue definition object.
Must not resolve to an
alias queue

Blank or local queue

Local definition

Perform name resolution

Name of XmitQName

cluster queue
found

manager or specific
cluster queue manager
selected on PUT

manager of a remote again with attribute, if non-blank;
queue with or ObjectQMgriName set to otherwise
without RemoteQMgrName, and RemoteQMgrName in the
CLUSTER ObjectName set to remote queue definition
attribute RemoteQName. Must not object

resolve remote queues

Blank queue manager No matching Workload management Input SYSTEM.CLUSTER.

local object; selected cluster queue ObjectName TRANSMIT.QUEUE

Blank or local queue

No matching

Error, queue not

Not applicable

object; cluster queue
managers or queue
manager alias found

manager selected on PUT

manager local object; found
cluster queue
not found
Name of a local (Not resolved) Input ObjectQMgrName Input Input 0bjectQMgrName
transmission queue ObjectName
Queue manager alias (Not resolved, Perform name resolution | Input Name of XmitQName
definition remote queue) again with ObjectName attribute, if non-blank;
(RemoteQ@MgrName may be ObjectQMgrName set to otherwise
the local queue manager) RemoteQMgrName. Must RemoteQMgrName in the
not resolve to remote remote queue definition
queues object
Queue manager is not (Not resolved) ObjectQMgrName or Input SYSTEM.CLUSTER.
the name of any local specific cluster queue ObjectName TRANSMIT.QUEUE

94 MQSeries Application Programming Guide

Using MQOPEN

Table 3. Resolving queue names when using MQOPEN (continued)

Queue manager is not (Not resolved) Input 0bjectQMgrName Input DefXmitQName attribute of
the name of any local ObjectName the queue manager.
object; no cluster objects Where DefXmitQName is
found supported

Notes:

1. BaseQName is the name of the base queue from the definition of the alias queue.

2. RemoteQName is the name of the remote queue from the local definition of the
remote queue.

3. RemoteQMgrName is the name of the remote queue manager from the local
definition of the remote queue.

4. XmitQName is the name of the transmission queue from the local definition of
the remote queue.

Opening an alias queue also opens the base queue to which the alias resolves, and
opening a remote queue also opens the transmission queue. Therefore you cannot
delete either the queue you specify or the queue to which it resolves while the
other one is open.

The resolved queue name and the resolved queue manager name are stored in the
ResolvedQName and ResolvedQMgrName fields in the MQOD.

For more information about name resolution in a distributed queuing environment

see the MQSeries Intercommunicatiod book.

Using the options of the MQOPEN call

In the Options parameter of the MQOPEN call, you must choose one or more

options to control the access you are given to the object you are opening. With

these options you can:

* Open a queue and specify that all messages put to that queue must be directed
to the same instance of it

* Open a queue to allow you to put messages on it
* Open a queue to allow you to browse messages on it
* Open a queue to allow you to remove messages from it

* Open an object to allow you to inquire about and set its attributes (but you can
set the attributes of queues only)

» Associate context information with a message
* Nominate an alternate user identifier to be used for security checks
» Control the call if the queue manager is in a quiescing state

MQOPEN option for cluster queue

To specify that all messages MQPUT to a queue are to be routed to the same queue
manager by the same route use the MQOO_BIND_ON_OPEN option on the
MQOPEN call. To specify that a destination is to be selected at MQPUT time, that
is, on a message-by-message basis, use the MQOO_BIND_NOT_FIXED option on
the MQORPEN call. If you specify neither of these options the default,

MQOO _BIND_AS Q DEF, is used. In this case the binding used for the queue
handle is taken from the DefBind queue attribute, which can take the value
MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED. If the queue you
open is not a cluster queue the MQOO_BIND_* options are ignored. If you specify
the name of the local queue manager in the MQOD the local instance of the cluster

Chapter 8. Opening and closing objects 95

Using MQOPEN

queue is selected. If the queue manager name is blank, any instance can be

selected. See the MQSeries Queue Manager Clusters book for more information.

MQOPEN option for putting messages
To open a queue in order to put messages on it, use the MQOO_OUTPUT option.

MQOPEN option for browsing messages

To open a queue so that you can browse the messages on it, use the MQOPEN call
with the MQOO_BROWSE option. This creates a browse cursor that the queue
manager uses to identify the next message on the queue. For more information, see

Notes:

1. You cannot browse messages on a remote queue. Therefore you cannot open a
remote queue using the MQOO_BROWSE option.

2. You cannot specify this option when opening a distribution list. For further

information about distribution lists, see EDistribution lists” on page 10d.

MQOPEN options for removing messages

There are three options that control the opening of a queue in order to remove
messages from it. You can use only one of them in any MQOPEN call. These
options define whether your program has exclusive or shared access to the queue.
Exclusive access means that, until you close the queue, only you can remove
messages from it. If another program attempts to open the queue to remove
messages, its MQOPEN call fails. Shared access means that more than one program
can remove messages from the queue.

The most advisable approach is to accept the type of access that was intended for
the queue when the queue was defined. The queue definition involved the setting
of the Shareability and the DefInputOpenOption attributes. To accept this access,
use the MQOO_INPUT_AS_Q_DEF option. Refer to [lahle 4 to see how the setting
of these attributes affects the type of access you will be given when you use this
option.

Table 4. How queue attributes and options of the MQOPEN call affect access to queues

Queue attributes Type of access with MQOPEN options
Shareability DefInputOpenOption |AS_Q_DEF SHARED EXCLUSIVE
SHAREABLE SHARED shared shared exclusive
SHAREABLE EXCLUSIVE exclusive shared exclusive
NOT_SHAREABLE* |SHARED* exclusive exclusive exclusive
NOT_SHAREABLE |EXCLUSIVE exclusive exclusive exclusive
Note: * Although you can define a queue to have this combination of attributes, the
default input open option is overridden by the shareability attribute.

Alternatively:

* If you know that your application can work successfully even if other programs
can remove messages from the queue at the same time, use the
MQOO_INPUT_SHARED option. [ahle 4 shows how, in some cases you will be
given exclusive access to the queue, even with this option.

* If you know that your application can work successfully only if other programs
are prevented from removing messages from the queue at the same time, use the
MQOO_INPUT_EXCLUSIVE option.

96 MQSeries Application Programming Guide

Using MQOPEN

Notes:

1. You cannot remove messages from a remote queue. Therefore you cannot open
a remote queue using any of the MQOO_INPUT_* options.

2. You cannot specify this option when opening a distribution list. For further
information, see EDistributi ists”

MQOPEN options for setting and inquiring about attributes
To open a queue so that you can set its attributes, use the MOOO_SET option. You

cannot set the attributes of any other type of object (see EChapter 12_Inquiring

To open an object so that you can inquire about its attributes, use the
MQOO_INQUIRE option.

Note: You cannot specify this option when opening a distribution list.

MQOPEN options relating to message context

If you want to be able to associate context information with a message when you
put it on a queue, you must use one of the message context options when you
open the queue.

The options allow you to differentiate between context information that relates to
the user who originated the message, and that which relates to the application that
originated the message. Also, you can opt to set the context information when you
put the message on the queue, or you can opt to have the context taken
automatically from another queue handle.

For more information about the subject of message context, see [‘Message context’]

MQOPEN option for alternate user authority
This is not supported on MQSeries for Windows.

When you attempt to open an object using the MQOPEN call, the queue manager
checks that you have the authority to open that object. If you are not authorized,
the call fails.

However, server programs may want the queue manager to check the
authorization of the user on whose behalf they are working, rather than the
server’s own authorization. To do this, they must use the
MQOO_ALTERNATE_USER_AUTHORITY option of the MQOPEN call, and
specify the alternate user ID in the AlternatelUserId field of the MQOD structure.
Typically, the server would get the user ID from the context information in the
message it is processing.

MQOPEN option for queue manager quiescing
This is not supported on MQSeries for Windows.

In the CICS environment, if you use the MQOPEN call when the queue manager is
in a quiescing state, the call always fails. In other OS/390 environments, AS/400,
0S/2, Windows NT, and in UNIX systems environments, the call fails when the
queue manager is quiescing only if you use the MQOO_FAIL_IF_QUIESCING
option of the MQOPEN call.

Chapter 8. Opening and closing objects 97

Creating dynamic queues

Creating dynamic queues

Dynamic queues are supported on MQSeries for AS/400, MQSeries for OS/2 Warp,
MQSeries for OS/390, MQSeries for Tandem NonStop Kernel, MQSeries on UNIX
systems, and MQSeries for Windows NT only.

You should use a dynamic queue for those cases where you do not need the queue
after your application ends. For example, you may want to use a dynamic queue
for your “reply-to” queue. You specify the name of the reply-to queue in the
ReplyToQ field of the MQMD structure when you put a message on a queue (see

To create a dynamic queue, you use a template known as a model queue, together
with the MQOPEN call. You create a model queue using the MQSeries commands
or the operations and control panels. The dynamic queue you create takes the
attributes of the model queue.

When you call MQOPEN, specify the name of the model queue in the 0ObjectName
field of the MQOD structure. When the call completes, the ObjectName field is set
to the name of the dynamic queue that is created. Also, the ObjectQMgriName field is
set to the name of the local queue manager.

There are three ways to specify the name of the dynamic queue you create:
* Give the full name you want in the DynamicQName field of the MQOD structure.

» Specify a prefix (fewer than 33 characters) for the name, and allow the queue
manager to generate the rest of the name. This means that the queue manager
generates a unique name, but you still have some control (for example, you may
want each user to use a certain prefix, or you may want to give a special
security classification to queues with a certain prefix in their name). To use this
method, specify an asterisk (*) for the last non-blank character of the
DynamicQName field. Do not specify a single asterisk (*) for the dynamic queue
name.

* Allow the queue manager to generate the full name. To use this method, specify
an asterisk (*) in the first character position of the DynamicQName field.

For more information about these methods, see the description of the DynamicQName

field in the MQSeries Application Programming Referencd manual.
There is more information on dynamic queues in EDynamic queues” on page 41|

Opening remote queues

A remote queue is a queue owned by a queue manager other than the one to
which the application is connected.

To open a remote queue, use the MQOPEN call as for a local queue, but there are
two ways you can specify the name of the queue:

1. In the ObjectName field of the MQOD structure, specify the name of the remote
queue as known to the local queue manager.

2. In the ObjectName field of the MQOD structure, specify the name of the remote
queue, as known to the remote queue manager. In the ObjectQMgriame field,
specify either:

* The name of the transmission queue that has the same name as the remote
gueue manager.

98 MQSeries Application Programming Guide

Opening remote queues

* The name of an alias queue object that resolves to the transmission queue
that has the same name as the remote queue manager.

This tells the queue manager the destination of the message as well as the
transmission queue it needs to be put on to get there.

3. If DefXmitQname is supported, in the ObjectName field of the MQOD structure,
specify the name of the remote queue as known by the remote queue manager.

Only local names are validated when you call MQOPEN; the last check is for the
existence of the transmission queue to be used.

These three methods are summarized in [fable 3 an page 94.
Closing objects using the MQCLOSE call

To close an object, you use the MQCLOSE call. If the object is a queue, you should
note the following:

* There is no need to empty a temporary dynamic queue before you close it.

When you close a temporary dynamic queue, the queue is deleted, along with
any messages that may still be on it. This is true even if there are uncommitted
MQGET, MQPUT, or MQPUT1 calls outstanding against the queue.

* In MQSeries for OS/390, if you have any MQGET requests with an
MQGMO_SET_SIGNAL option outstanding for that queue, they are canceled.

* If you opened the queue using the MQOO_BROWSE option, your browse cursor
is destroyed.

Namelists can be closed only on AlX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun
Solaris, and Windows NT.

In MQSeries for VSE/ESA, ensure that your application issues a matching
MQCLOSE call for each MQOPEN call. If your application does not issue the
MQCLOSE call, the MQSeries for VSE/ESA housekeeping routine issues the
MQCLOSE call on its behalf and unwanted messages appear in the SYSTEM.LOG
queue.

Closure is unrelated to syncpoint, so you can close queues before or after
syncpoint.

As input to the MQCLOSE call, you must supply:

* A connection handle. Use the same connection handle used to open it, or
alternatively, for CICS applications, you can specify the constant
MQHC_DEF _HCONN (which has the value zero).

* The handle of the object you want to close. Get this from the output of the
MQOPEN call.

* MQCO_NONE in the Options field (unless you are closing a permanent
dynamic queue).

* The control option to determine whether the queue manager should delete the
queue even if there are still messages on it (when closing a permanent dynamic
queue).

Chapter 8. Opening and closing objects 99

Using MQCLOSE

The output from MQCLOSE is:

* A completion code

* A reason code

* The object handle, reset to the value MQHO_UNUSABLE_HOBJ

Descriptions of the parameters of the MQCLOSE call are given in the m
icati i manual.

100 MQSeries Application Programming Guide

Chapter 9. Putting messages on a queue

Use the MQPUT call to put messages on the queue. You can use MQPUT
repeatedly to put many messages on the same queue, following the initial
MQOPEN call. Call MQCLOSE when you have finished putting all your messages
on the queue.

If you want to put a single message on a queue and close the queue immediately
afterwards, you can use the MQPUT1 call. MQPUT1 performs the same functions
as the following sequence of calls:

+ MQOPEN

« MQPUT

* MQCLOSE

Generally however, if you have more than one message to put on the queue, it is
more efficient to use the MQPUT call. This depends on the size of the message and
the platform you are working on.

This chapter introduces putting messages to a queue, under these headings:

Putting messages on a local queue using the MQPUT call

As input to the MQPUT call, you must supply:
» A connection handle (HCONN).
* A queue handle (HObj).

* A description of the message you want to put on the queue. This is in the form
of a message descriptor structure (MQMD).

» Control information, in the form of a put-message options structure (MQPMO).
* The length of the data contained within the message (MQLONG).
* The message data itself.

The output from the MQPUT call is
* A reason code (MQLONG)
* A completion code (MQLONG)

If the call completes successfully, it also returns your options structure and your
message descriptor structure. The call modifies your options structure to show the
name of the queue and the queue manager to which the message was sent. If you
request that the queue manager generates a unique value for the identifier of the
message you are putting (by specifying binary zero in the MsgId field of the
MQMD structure), the call inserts the value in the MsgId field before returning this
structure to you. This value must be reset before you issue another MQPUT.

There is a description of the MQPUT call in the MQSeries Application Programming

manual.

© Copyright IBM Corp. 1993, 2000 101

MQPUT to local queue

The following sections describe the information you must supply as input to the
MQPUT call.

Specifying handles
For the connection handle (Hconn) in CICS on OS/390 applications, you can specify
the constant MQHC_DEF_HCONN (which has the value zero), or you can use the
connection handle returned by the MQCONN call. For other applications, always
use the connection handle returned by the MQCONN call.

Whatever environment you are working in, use the same queue handle (Hobj) that
is returned by the MQOPEN call.

Defining messages using the MQMD structure
The message descriptor structure (MQMD) is an input/output parameter for the

MQPUT and MQPUT1 calls. You use it to define the message you are putting on a
queue.

If MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF is
specified for the message and the queue is a cluster queue the values used will be
those of the queue the MQPUT resolves to. If that queue is disabled for MQPUT

the call will fail. See the MQSeries Queie Manager Clusterd book for more

information.

Note: You must reset the MsgId and CorrelId to null prior to putting a new
message in order to ensure they are unique. The values in these fields are
returned on a successful MQPUT. However, if you set the Version field of
the MQMD structure to 2, you can use the MQMO_MATCH_MSG _ID and
MQMO_MATCH_CORREL_ID flags instead of resetting.

There is an mtroductlon to the message properties that MQMD describes in
: , and there is a description of the

structure itself in the MQS&U&S_AppJJ.ca.tlm_Emgmmmmg_Rﬂtemncd manual.

Specifying options using the MQPMO structure

You use the MQPMO (Put Message Option) structure to pass options to the
MQPUT and MQPUTL calls.

The following sections give you help on filling in the fields of this structure. There

is a description of the structure in the MQSeries Application Programming Referencd

manual.

The fields of the structure include:
e Strucld

e lersion

e Options

e (Context

* ResolvedQName

* ResolvedQMgrName

These fields are described below.

Strucld
This identifies the structure as a put-message options structure. This is a
4-character field. Always specify MQPMO_STRUC_ID.

102 MQseries Application Programming Guide

MQPUT to local queue

Version
This describes the version number of the structure. The default is
MQPMO_VERSION_1. If you enter MQPMO_ VERSION_2, you can use
distribution lists (see FDistribution lists” on page 109). If you enter
MQPMO_CURRENT_VERSION, your application is set always to use the
most recent level.

Options
This controls the following:
* Whether the put operation is included in a unit of work
* How much context information is associated with a message
* Where the context information is taken from
* Whether the call fails if the queue manager is in a quiescing state
* Whether grouping and, or segmentation is allowed
* Generation of a new message identifier and correlation identifier
* The order in which messages and segments are put on a queue

If you leave the Options field set to the default value (MQPMO_NONE),
the message you put has default context information associated with it.

Also, the way that the call operates with syncpoints is determined by the
platform. The syncpoint control default is ‘yes’ in OS/390; for other
platforms, it is ‘no’.

Context
This states the name of the queue handle that you want context
information to be copied from (if requested in the Options field).

For an introduction to message context, see EMessage cantext” an page 3.

For information about using the MQPMO structure to control the context

information in a message, see [‘Controlling context information” on

ResolvedQName
This contains the name (after resolution of any alias name) of the queue
that was opened to receive the message. This is an output field.

ResolvedQMgrName
This contains the name (after resolution of any alias name) of the queue
manager that owns the queue in ResolvedQName. This is an output field.

The MQPMO can also accommodate fields required for distribution lists (see

tDistribution lists” on page 109). If you wish to use this facility, Version 2 of the

MQPMO structure is used. This includes the following fields:

Version
This field describes the version number of the structure. For distribution
lists, you are required to specify MQPMO_VERSION_2.

RecsPresent
This field contains the number queues in the distribution list. That is the
number of Put Message Records (MQPMR) and corresponding Response
Records (MQRR) present.

The value you enter can be the same as the number of Object Records
provided at MQOPEN. However, if the value is less than the number of
Object Records provided on the MQOPEN call (or if no Put Message
Records are provided), the values of the queues that are not defined are
taken from the default values provided by the message descriptor. Also, if

Chapter 9. Putting messages on a queue 103

MQPUT to local queue

the value is greater than the number of Object Records provided, the
excess Put Message Records are ignored.

You are recommended to do one of the following:

» If you want to receive a report or reply from each destination, enter the
same value as appears in the MQOR structure and use MQPMRs
containing MsglId fields. Either initialize these MsgId fields to zeros or
specify MQPMO_NEW_MSG_ID.

When you have put the message to the queue, MsgId values that the
gueue manager has created become available in the MQPMRs; you can
use these to identify which destination is associated with each report or
reply.

» If you do not want to receive reports or replies, choose one of the
following:

1. If you want to identify destinations that fail immediately, you may
still want to enter the same value in the RecsPresent field as appears
in the MQOR structure and provide MQRRs to identify these
destinations. Do not specify any MQPMRs.

2. If you do not want to identify failed destinations, enter zero in the
RecsPresent field and do not provide MQPMRs nor MQRRs.

Note: If you are using MQPUT1, the number of Response Record Pointers
and Response Record Offsets must be zero.

For a full description of Put Message Records (MQPMR) and Response
Records (MQRR), see the
manual.

PutMsgRecFields
This indicates which fields are present in each Put Message Record

(MQPMR). For a list of these fields, see I'Using the MQPMR striictire” on
hage 113

PutMsgRecOffset and PutMsgRecPtr
Pointers (typically in C) and offsets (typically in COBOL) are used to
address the Put Message Records (see [‘Using the MQPMR striicture” on

for an overview of the MQPMR structure).

Use the PutMsgRecPtr field to specify a pointer to the first Put Message
Record, or the PutMsgRecOffset field to specify the offset of the first Put
Message Record. This is the offset from the start of the MQPMO.
Depending on the PutMsgRecFields field, enter a nonnull value for either
PutMsgRecOffset or PutMsgRecPtr.

ResponseRecOffset and ResponseRecPtr
You also use pointers and offsets to address the Response Records (see

EUsing the MQRR structure” on page 113 for further information about

Response Records).

Use the ResponseRecPtr field to specify a pointer to the first Response
Record, or the ResponseRecOffset field to specify the offset of the first
Response Record. This is the offset from the start of the MQPMO structure.
Enter a nonnull value for either ResponseRecOffset or ResponseRecPtr.

Note: If you are using MQPUT1 to put messages to a distribution list,

ResponseRecPtr must be null or zero and ResponseRecOffset must
be zero.

104 MQseries Application Programming Guide

MQPUT to local queue

Additional information for putting to a distribution list (see [‘Distribution lists” onl
) is provided in Version 2 of the Put Message Option structure (MQPMR).

This is described in the MQSeries Application Programming Referencd manual.

The data in your message

Give the address of the buffer that contains your data in the Buffer parameter of
the MQPUT call. You can include anything in the data in your messages. The
amount of data in the messages, however, affects the performance of the
application that is processing them.

The maximum size of the data is determined by:
* The MaxMsglLength attribute of the queue manager
* The MaxMsgLength attribute of the queue on which you are putting the message

* The size of any message header added by MQSeries (including the Dead-letter
header, MQDLH and the Distribution list header, MQDH)

The MaxMsgLength attribute of the queue manager holds the size of message that
the queue manager can process. This has a default of 4 MB (1 MB=1048576 bytes).
To determine the value of this attribute, use the MQINQ call on the queue
manager object. For large messages, you can change this value.

The MaxMsglLength attribute of a queue determines the maximum size of message
you can put on the queue. If you attempt to put a message with a size larger than
the value of this attribute, your MQPUT call fails. If you are putting a message on
a remote queue, the maximum size of message that you can successfully put is
determined by the MaxMsglLength attribute of the remote queue, of any intermediate
transmission queues that the message is put on along the route to its destination,
and of the channels used.

For an MQPUT operation, the size of the message must be smaller than or equal to
the MaxMsglLength attribute of both the queue and the queue manager. The values of
these attributes are independent, but you are recommended to set the
MaxMsglLength of the queue to a value less than or equal to that of the queue
manager.

MQSeries adds header information to messages in the following circumstances:

* When you put a message on a remote queue, MQSeries adds a transmission
header, MQXQH, structure to the message. This structure includes the name of
the destination queue and its owning queue manager.

» If MQSeries cannot deliver a message to a remote queue, it attempts to put the
message on the dead-letter (undelivered-message) queue. It adds an MQDLH
structure to the message. This structure includes the name of the destination
queue and the reason the message was put on the dead-letter
(undelivered-message) queue.

» If you want to send a message to multiple destination queues, MQSeries adds an
MQDH header to the message. This describes the data that is present in a
message, belonging to a distribution list, on a transmission queue. This point
should be considered when choosing an optimum value for the maximum
message length.

These structures are described in the MQSeries Application Programming Referencd

manual.

Chapter 9. Putting messages on a queue 105

MQPUT to local queue

If your messages are of the maximum size allowed for these queues, the addition
of these headers means that the put operations fail because the messages are how
too big. To reduce the possibility of the put operations failing:

* Make the size of your messages smaller than the MaxMsglLength attribute of the
transmission and dead-letter (undelivered-message) queues. Allow at least the
value of the MQ_MSG_HEADER_LENGTH constant (more for large distribution
lists).

* Make sure that the MaxMsglLength attribute of the dead-letter
(undelivered-message) queue is set to the same as the MaxMsgLength of the queue
manager that owns the dead-letter queue.

The attributes for the queue manager and the message queuing constants are

described in the MQSeries Application Pragramming Referencd manual.

For information on how undelivered messages are handled in a distributed

queuing environment, see the IMQSeries Intercommunicatiod book.

Putting messages on a remote queue

When you want to put a message on a remote queue (that is, a queue owned by a
queue manager other than the one to which your application is connected) rather
than a local queue, the only extra consideration is how you specify the name of the
ueue when you open it. This is described in EQpening remate queues” on
. There is no change to how you use the MQPUT or MQPUT1 call for a
local queue.

For more information on using remote and transmission queues, see the m

Lntercommunication book.

Controlling context information

To control context information, you use the Options field in the MQPMO structure.

If you don’t, the queue manager will overwrite context information that may
already be in the message descriptor with the identity and context information it
has generated for your message. This is the same as specifying the
MQPMO_DEFAULT_CONTEXT option. You may want this default context
information when you create a new message (for example, when processing user
input from an inquiry screen).

If you want no context information associated with your message, use the
MQPMO_NO_CONTEXT option.

Passing identity context

In general, programs should pass identity context information from message to
message around an application until the data reaches its final destination.
Programs should change the origin context information each time they change the
data. However, applications that want to change or set any context information
must have the appropriate level of authority. The queue manager checks this
authority when the applications open the queues; they must have authority to use
the appropriate context options for the MQOPEN call.

If your application gets a message, processes the data from the message, then puts
the changed data into another message (possibly for processing by another

106 MQSeries Application Programming Guide

MQPUT context information

application), the application should pass the identity context information from the
original message to the new message. You can allow the queue manager to create
the origin context information.

To save the context information from the original message, you must use the
MQOO_SAVE_ALL_CONTEXT option when you open the queue for getting the
message. This is in addition to any other options you use with the MQOPEN call.
Note, however, that you cannot save context information if you only browse the
message.

When you create the second message, you must;

* Open the queue using the MQOO_PASS_IDENTITY_CONTEXT option (in
addition to the MQOO_OUTPUT option).

* In the Context field of the put-message options structure, give the handle of the
queue from which you saved the context information.

* In the Options field of the put-message options structure, specify the
MQPMO_PASS IDENTITY_CONTEXT option.

Passing all context

If your application gets a message, and puts the message data (unchanged) into
another message, the application should pass both the identity and the origin
context information from the original message to the new message. An example of
an application that might do this is a message mover, which moves messages from
one queue to another.

Follow the same procedure as for passing identity context, except you use the
MQOPEN option MQOO_PASS _ALL_CONTEXT and the put-message option
MQPMO_PASS_ALL_CONTEXT.

Setting identity context

If you want to set the identity context information for a message, leaving the
queue manager to set the origin context information:

* Open the queue using the MQOO_SET _IDENTITY_CONTEXT option.

» Put the message on the queue, specifying the
MQPMO_SET_IDENTITY_CONTEXT option. In the message descriptor, specify
whatever identity context information you require.

Setting all context

If you want to set both the identity and the origin context information for a
message:

* Open the queue using the MQOO_SET_ALL_CONTEXT option.

» Put the message on the queue, specifying the MQPMO_SET_ALL_CONTEXT
option. In the message descriptor, specify whatever identity and origin context
information you require.

Appropriate authority is needed for each type of context setting.

Putting one message on a queue using the MQPUT1 call

Use the MQPUT1 call when you want to close the queue immediately after you
have put a single message on it. For example, a server application is likely to use
the MQPUT1 call when it is sending a reply to each of the different queues.

Chapter 9. Putting messages on a queue 107

Using MQPUT1

MQPUT1 is functionally equivalent to calling MQOPEN followed by MQPUT,
followed by MQCLOSE. The only difference in the syntax for the MQPUT and
MQPUT1 calls is that for MQPUT you must specify an object handle, whereas for
MQPUT1 you must specify an object descriptor structure (MQOD) as defined in
MQOPEN (see tldentifying objects (the MQQD structure)” on page 93). This is
because you need to give information to the MQPUTL call about the queue it has
to open, whereas when you call MQPUT, the queue must already be open.

As input to the MQPUT1 call, you must supply:
* A connection handle.

* A description of the object you want to open. This is in the form of an object
descriptor structure (MQOD).

» A description of the message you want to put on the queue. This is in the form
of a message descriptor structure (MQMD).

* Control information in the form of a put-message options structure (MQPMO).
* The length of the data contained within the message (MQLONG).
* The address of the message data.

The output from MQPUTL is:
* A completion code
* A reason code

If the call completes successfully, it also returns your options structure and your
message descriptor structure. The call modifies your options structure to show the
name of the queue and the queue manager to which the message was sent. If you
request that the queue manager generate a unique value for the identifier of the
message you are putting (by specifying binary zero in the MsgId field of the
MQMD structure), the call inserts the value in the MsgId field before returning this
structure to you.

Note: You cannot use MQPUT1 with a model queue name; however, once a model
gueue has been opened, you can issue an MQPUTL1 to the dynamic queue.

The six input parameters for MQPUT1 are:

Hconn This is a connection handle. For CICS applications, you can specify the
constant MQHC_DEF _HCONN (which has the value zero), or use the
connection handle returned by the MQCONN call. For other programs,
always use the connection handle returned by the MQCONN call.

ObjDesc
This is an object descriptor structure (MQOD).

In the ObjectName and ObjectQMgrName fields, give the name of the queue
on which you want to put a message, and the name of the queue manager
that owns this queue.

The DynamicQName field is ignored for the MQPUT1 call because it cannot
use model queues.

Use the AlternateUserId field if you want to nominate an alternate user
identifier that is to be used to test authority to open the queue.

MsgDesc
This is a message descriptor structure (MQMD). As with the MQPUT call,
use this structure to define the message you are putting on the queue.

108 MQSeries Application Programming Guide

Using MQPUT1

PutMsgOpts
This is a put-message options structure (MQPMO). Use it as you would for
the MQPUT call (see [‘Specifying options using the MQPMO structure” onf
).

When the Options field is set to zero, the queue manager uses your own
user ID when it performs tests for authority to access the queue. Also, the
queue manager ignores any alternate user identifier given in the
AlternatelUserlId field of the MQOD structure.

BufferLength
This is the length of your message.

Buffer This is the buffer area that contains the text of your message.

When you use clusters, MQPUTL1 operates as though MQOO_BIND_NOT_FIXED
is in effect. Applications must use the resolved fields in the MQPMO structure
rather than the MQOD structure to determine where the message was sent. See the

MQSeries Queue Manager Clusterd book for more information.
There is a description of the MQPUT1 call in the MQSeries Application Pragramming

manual.

Distribution lists

These are supported on MQSeries Version 5 products.

Distribution lists allow you to put a message to multiple destinations in a single
MQPUT or MQPUTL call. Multiple queues can be opened using a single MQOPEN
and a message can then be put to each of those queues using a single MQPUT.
Some generic information from the MQI structures used for this process can be
superseded by specific information relating to the individual destinations included
in the distribution list.

When an MQOPEN call is issued, generic information is taken from the Object
Descriptor (MQOD). If you specify MQOD_VERSION_2 in the Version field and a
value greater than zero in the RecsPresent field, the Hobj can be defined as a
handle of a list (of one or more queues) rather than of a queue. In this case,
specific information is given through the object records (MQORs), which give
details of destination (that is, ObjectName and ObjectQMgriName).

The object handle (Hobj) is passed to the MQPUT call, allowing you to put to a list
rather than to a single queue.

When a message is put on the queues (MQPUT), generic information is taken from
the Put Message Option structure (MQPMO) and the Message Descriptor
(MQMD). Specific information is given in the form of Put Message Records
(MQPMRs).

Response Records (MQRR) can receive a completion code and reason code specific
to each destination queue.

Eigure 5 an page 110 shows how distribution lists work:

Chapter 9. Putting messages on a queue 109

Distribution lists

Local | Remote

QMgrl | QMgr2
a . Locall Local2 Remotel Remote2
5 Xmit2 ;
= queue queue 3 queue queue
B | T

MQOpen
% | MQORs —~ Locall ! | Remotel ‘ Remote2 ‘
i QName QMgrName ‘
2 locall ‘
2 1
2 local2 ' Local2]
% remotel QMgr2
Q remote2 QMgr2]
5 = XmitQ Pl message transmitted
o { through channel

Key:

Empty queue Queue containing one message

Figure 5. How distribution lists work. This diagram shows that one message is transmitted
through the channel and can be put on more than one remote queue.

Opening distribution lists

Use the MQOPEN call to open a distribution list, and use the options of the call to
specify what you want to do with the list.

As input to MQOPEN, you must supply:

+ A connection handle (see I‘Chapter 9_Putting messages on a gueue” on page 101

for a description)
* Generic information in the Object Descriptor structure (MQOD)

* The name of each queue you want to open, using the Object Record structure
(MQOR)

The output from MQOPEN is:

* An object handle that represents your access to the distribution list

* A generic completion code

* A generic reason code

* Response Records (optional), containing a completion code and reason for each
destination

Using the MQOD structure

Use the MQOD structure to identify the queues you want to open. To define a
distribution list, you must specify MQOD_VERSION_2 in the Version field, a value
greater than zero in the RecsPresent field, and MQOT_Q in the ObjectType field.

See the MQSeries Application Programming Referencd manual for a description of all

the fields of the MQOD structure.

Using the MQOR structure

An MQOR structure must be provided for each destination. The structure contains
the destination queue and queue manager names. The ObjectName and
Object@MgrName fields in the MQOD are not used for distribution lists. There must

110 MQsSeries Application Programming Guide

Distribution lists

be one or more object records. If the ObjectQMgrName is left blank, the local queue

manager is used. See the IMQSeries Application Programming Referencd manual for

further information about these fields.

You can specify the destination queues in two ways:
* By using the offset field ObjectRecOffset.

In this case, the application should declare its own structure containing an
MQOD structure, followed by the array of MQOR records (with as many array
elements as are needed), and set ObjectRecOffset to the offset of the first
element in the array from the start of the MQOD. Care must be taken to ensure
that this offset is correct.

Use of built-in facilities provided by the programming language is
recommended, if these are available in all of the environments in which the
application must run. The following illustrates this technique for the COBOL
programming language:
01 MY-OPEN-DATA.

02 MY-MQOD.

COPY CMQODV.
02 MY-MQOR-TABLE OCCURS 100 TIMES.

COPY CMQORV.
MOVE LENGTH OF MY-MQOD TO MQOD-OBJECTRECOFFSET.

Alternatively, the constant MQOD_CURRENT_LENGTH can be used if the
programming language does not support the necessary built-in facilities in all of
the environments concerned. The following illustrates this technique:
01 MY-MQ-CONSTANTS.
COPY CMQV.
01 MY-OPEN-DATA.
02 MY-MQOD.
COPY CMQODV.
02 MY-MQOR-TABLE OCCURS 100 TIMES.
COPY CMQORV.
MOVE MQOD-CURRENT-LENGTH TO MQOD-OBJECTRECOFFSET.

However, this will work correctly only if the MQOD structure and the array of
MQOR records are contiguous; if the compiler inserts skip bytes between the
MQOD and the MQOR array, these must be added to the value stored in
ObjectRecOffset.

Using ObjectRecOffset is recommended for programming languages that do not
support the pointer data type, or that implement the pointer data type in a way
that is not portable to different environments (for example, the COBOL
programming language).

* By using the pointer field ObjectRecPtr.

In this case, the application can declare the array of MQOR structures separately
from the MQOD structure, and set ObjectRecPtr to the address of the array. The
following illustrates this technique for the C programming language:

MQOD MyMqod;

MQOR MyMqor[100];

MyMgod.ObjectRecPtr = MyMgor;

Using ObjectRecPtr is recommended for programming languages that support

the pointer data type in a way that is portable to different environments (for
example, the C programming language).

Chapter 9. Putting messages on a queue 111

Distribution lists

Whichever technique is chosen, one of ObjectRecOffset and ObjectRecPtr must be
used; the call fails with reason code MQRC_OBJECT_RECORDS_ERROR if both
are zero, or both are nonzero.

Using the MQRR structure
These structures are destination specific as each Response Record contains a

CompCode and Reason field for each queue of a distribution list. You must use this
structure to enable you to distinguish where any problems lie.

For example, if you receive a reason code of MQRC_MULTIPLE_REASONS and
your distribution list contains five destination queues, you will not know which
queues the problems apply to if you do not use this structure. However, if you
have a completion code and reason code for each destination, you can locate the
errors more easily.

See the MQSeries Application Programming Referencd manual for further information

about the MQRR structure.

m shows how you can open a distribution list in C:

‘MQOD‘Z‘ ‘n‘ ptr ‘ ‘ ptr ‘
¥ | 3
MQOR MQRR
0 Q QMgr 0 | CompCode Reason
Q QMgr CompCode Reason
n-1 Q QMgr n-1| CompCode Reason

Figure 6. Opening a distribution list in C. The MQOD uses pointers to the MQOR and MQRR
structures.

Eigure 4 shows how you can open a distribution list in COBOL:

0 x 0 n-1 y
‘MQOD‘Z‘ ‘n ‘ offset‘ offset‘ Q QMgr‘Q QMgr gg%’ F:’eason‘ 88&”5 R>
X y

Figure 7. Opening a distribution list in COBOL. The MQOD uses offsets in COBOL.

Using the MQOPEN options

The following options can be specified when opening a distribution list:
* MQOO_OUTPUT

* MQOO_FAIL_IF_QUIESCING (optional)

* MQOO_ALTERNATE_USER_AUTHORITY (optional)

« MQOO_* CONTEXT (optional)

See EChapter 8 Qpening and closing objects” on page 91 for a description of these

options.

Putting messages to a distribution list

To put messages to a distribution list, you can use MQPUT or MQPUTL. As input,
you must supply:

+ A connection handle (see I‘Chapter 9 Putting messages on a queue” on page 101l

for a description).

112 MQSeries Application Programming Guide

Putting messages to a distribution list

* An object handle. If a distribution list is opened using MQOPEN, the Hobj
allows you only to put to the list.

« A message descriptor structure (MQMD). See the MQSeries Application
Programming Referencd manual for a description of this structure.

. Control information in the form of a put-message option structure (MQPMO).

ee I‘Specifying options using the MQPMOQ structure” on page 102 for

mformatlon about filling in the fields of the MQPMO structure.
» Control information in the form of Put Message Records (MQPMR).
* The length of the data contained within the message (MQLONG).
* The message data itself.

The output is:

* A completion code

* A reason code

* Response Records (optional)

Using the MQPMR structure
This structure is optional and gives destination-specific information for some fields
that you may want to identify differently from those already identified in the

MIQEMD For a description of these fields, see the MQSeries Application Programming

manual.

The content of each record depends on the information given in the
PutMsgRecFields field of the MQPMO. For example, in the sample program
AMQSPTLO.C (see EThe Distribution | ist sample program” an page 327 for a
description) showing the use of distribution lists, the sample chooses to provide
values for MsgId and Correlld in the MQPMR. This section of the sample program
looks like this:

typedef struct

{

MQBYTE24 Msgld;
MQBYTE24 Correlld;
} PutMsgRec;...

/**********************

MQLONG PutMsgRecFields=MQPMRF_MSG_ID | MQPMRF_CORREL_ID;

This implies that MsgId and Correlld are provided for each destination of a
distribution list. The Put Message Records are provided as an array.

Eigure d shows how you can put a message to a distribution list in C:

‘MQPMO‘Z‘ ‘f‘ ‘n‘ ptr ‘ ptr ‘
I
v
MQPMR MQRR
e.g. Msgld, Correlld <deg§?)d‘”9 CompCode Reason

CompCode Reason
CompCode Reason

Figure 8. Putting a message to a distribution list in C. The MQPMO uses pointers to the
MQPMR and MQRR structures.

Eigure 9 an page 114 shows how you can put a message to a distribution list in
COBOL:

Chapter 9. Putting messages on a queue 113

Putting messages to a distribution list

X y
‘MQPMO‘ 2‘ ‘ f ‘ ‘ n ‘ offset1 ‘ offsetz‘ MQPMR‘MQRR‘
X y

Figure 9. Putting a message to a distribution list in COBOL. The MQPMO uses offsets in
COBOL.

Using MQPUT1
If you are using MQPUT1, consider the following:

1. The values of the ResponseRecOffset and ResponseRecPtr fields must be null or
Zero.

2. The Response Records, if required, must be addressed from the MQOD.

Some cases where the put calls fall

If certain attributes of a queue are changed using the FORCE option on a
command during the interval between you issuing an MQOPEN and an MQPUT
call, the MQPUT call fails and returns the MQRC_OBJECT_CHANGED reason
code. The queue manager marks the object handle as being no longer valid. This
also happens if the changes are made while an MQPUT1 call is being processed, or
if the changes apply to any queue to which the queue name resolves. The
attributes that affect the handle in this way are listed in the description of the
MQOPEN call in the MQSeries Application Programming Referencd manual. If your
call returns the MQRC_OBJECT_CHANGED reason code, close the queue, reopen
it, then try to put a message again.

If put operations are inhibited for a queue on which you are attempting to put
messages (or any queue to which the queue name resolves), the MQPUT or
MQPUT1 call fails and returns the MQRC_PUT_INHIBITED reason code. You may
be able to put a message successfully if you attempt the call at a later time, if the
design of the application is such that other programs change the attributes of
queues regularly.

Further, if the queue that you are trying to put your message on is full, the
MQPUT or MQPUTL1 call fails and returns MQRC_Q FULL.

If a dynamic queue (either temporary or permanent) has been deleted, MQPUT
calls using a previously acquired object handle fail and return the
MQRC_Q_DELETED reason code. In this situation, it is good practice to close the
object handle as it is no longer of any use to you.

In the case of distribution lists, multiple completion codes and reason codes can
occur in a single request. These cannot be handled using only the CompCode and
Reason output fields on MQOPEN and MQPUT.

When distribution lists are used to put messages to multiple destinations, the
Response Records contain the specific CompCode and Reason for each destination. If
you receive a completion code of MQCC_FAILED, no message is put on any
destination queue successfully. If the completion code is MQCC_WARNING, the
message is successfully put on one or more of the destination queues. If you
receive a return code of MQRC_MULTIPLE_REASONS, the reason codes are not
all the same for every destination. Therefore, it is recommended to use the MQRR
structure so that you can determine which queue or queues caused an error and
the reasons for each.

114 MQSeries Application Programming Guide

Chapter 10. Getting messages from a queue

You can get messages from a queue in two ways:

1. You can remove a message from the queue so that other programs can no
longer see it.

2. You can copy a message, leaving the original message on the queue. This is
known as browsing. You can easily remove the message once you have browsed
it.

In both cases, you use the MQGET call, but first your application must be
connected to the queue manager, and you must use the MQOPEN call to open the
queue (for input, browse, or both). These operations are described in E;IELLZl
Connecting and disconnecting a queue manager” an page 83 and EChapter 8]
bpemng_aﬂd_dmﬂg_ﬂmﬂm_ﬂn_pagﬁ_gj- i i ” .

When you have opened the queue, you can use the MQGET call repeatedly to
browse or remove messages on the same queue. Call MQCLOSE when you have
finished getting all the messages you want from the queue.

This chapter introduces getting messages from a queue, under these headings:

Getting messages from a queue using the MQGET call

The MQGET call gets a message from an open local queue. It cannot get a message
from a queue on another system.

As input to the MQGET call, you must supply:
* A connection handle.
* A queue handle.

* A description of the message you want to get from the queue. This is in the
form of a message descriptor (MQMD) structure.

* Control information in the form of a Get Message Options (MQGMO) structure.
* The size of the buffer you have assigned to hold the message (MQLONG).
* The address of the storage in which the message must be put.

The output from MQGET is:
* A reason code
* A completion code

© Copyright IBM Corp. 1993, 2000 115

Using MQGET

* The message in the buffer area you specified, if the call completes successfully

* Your options structure, modified to show the name of the queue from which the
message was retrieved

* Your message descriptor structure, with the contents of the fields modified to
describe the message that was retrieved

* The length of the message (MQLONG)

There is a description of the MQGET call in the IMQSeries Application Programming
Referencd

manual.

The following sections describe the information you must supply as input to the
MQGET call.

Specifying connection handles

For CICS on OS/390 and VSE/ESA applications, you can specify the constant
MQHC_DEF _HCONN (which has the value zero), or use the connection handle
returned by the MQCONN call. For other applications, always use the connection
handle returned by the MQCONN call.

Use the queue handle (Hobj) that is returned when you call MQOPEN.

Describing messages using the MQMD structure and the
MQGET call

To identify the message you want to get from a queue, use the message descriptor
structure (MQMD). This is an input/output parameter for the MQGET call. There
is an introduction to the message properties that MQMD describes in

MQSeries messages” on page 19 and there is a description of the structure itself in
the MQSeries Application Programming Referencd manual.

If you know which message you want to get from the queue, see m

If you do not specify a particular message, MQGET retrieves the first message in

the queue. I‘The order in which messages are retrieved from a queue” on page 120

describes how the priority of a message, the MsgDeliverySequence attribute of the
queue, and the MQGMO_LOGICAL_ORDER option determine the order of the
messages in the queue.

Note: If you want to use MQGET more than once (for example, to step through
the messages in the queue), you must set the MsgId and Correlld fields of
this structure to null after each call. This clears these fields of the identifiers
of the message that was retrieved.

However, if you want to group your messages, the GroupId should be the
same for messages in the same group, so that the call will look for a
message having the same identifiers as the previous message in order to
make up the whole group.

Specifying MQGET options using the MQGMO structure

The MQGMO structure is an input/output variable for passing options to the
MQGET call.

116 MQSeries Application Programming Guide

Using MQGET

The following sections give you help on filling in some of the fields of this

structure. There is a description of the structure in the MQSeries Applicatior]
Programming Referencd manual.

Strucld
Strucld is a 4-character field used to identify the structure as a
get-message options structure. Always specify MQGMO_STRUC_ID.

Version
Version describes the version number of the structure.
MQGMO_VERSION 1 is the default. If you wish to use the Version 2
fields or retrieve messages in logical order, specify MQGMO_VERSION 2.
If you wish to use the Version 3 fields or retrieve messages in logical order,
specify MQGMO_VERSION_3. MQGMO_CURRENT_VERSION sets your
application to use the most recent level.

Options
Within your code, you can select the options in any order as each option is
represented by a bit in the Options field.
The Options field controls:
* Whether the MQGET call waits for a message to arrive on the queue

before it completes (see FWaiting for messages” an page 135)

* Whether the get operation is included in a unit of work.

* Whether a nonpersistent message is retrieved outside syncpoint,
allowing fast messaging

* In MQSeries for OS/390, whether the message retrieved is marked as
skipping backout (see I‘Skipping hackout” on page 138)
* Whether the message is removed from the queue, or merely browsed

* Whether to select a message by using a browse cursor or by other
selection criteria

* Whether the call succeeds even if the message is longer than your buffer

* In MQSeries for OS/390, whether to allow the call to complete, but set a
signal to indicate that you want to be notified when a message arrives

* Whether the call fails if the queue manager is in a quiescing state
* On 0OS/390, whether the call fails if the connection is in a quiescing state
. Whether appllcatlon message data conversion is required (see
7)
* On MQSeries Version 5 products, the order in which messages and
segments are retrieved from a queue

* On MQSeries Version 5 products, whether complete, logical messages
only are retrievable

* On MQSeries Version 5 products, whether messages in a group can be
retrieved only when all messages in the group are available

* On MQSeries Version 5 products, whether segments in a logical message
can be retrieved only when all segments in the logical message are
available

If you leave the Options field set to the default value
(MQGMO_NO_WAIT), the MQGET call operates this way:

» |f there is no message matching your selection criteria on the queue, the
call does not wait for a message to arrive, but completes immediately.
Also, in MQSeries for OS/390, the call does not set a signal requesting
notification when such a message arrives.

Chapter 10. Getting messages from a queue 117

Using MQGET
* The way that the call operates with syncpoints is determined by the

platform:
Platform Under syncpoint control
AS/400 No
UNIX systems No
0S/390 Yes
0Ss/2 No
Tandem NSK Yes
VSE/ESA Yes
Windows NT No
Windows No

* In MQSeries for OS/390, the message retrieved is not marked as
skipping backout.

* The selected message is removed from the queue (not browsed).
* No application message data conversion is required.
* The call fails if the message is longer than your buffer.

WaitInterval
The WaitiInterval field specifies the maximum time (in milliseconds) that
the MQGET call waits for a message to arrive on the queue when you use
the MQGMO_WAIT option. If no message arrives within the time specified
in WaitInterval, the call completes and returns a reason code showing that
there was no message that matched your selection criteria on the queue.

In MQSeries for OS/390, if you use the MQGMO_SET_SIGNAL option, the
WaitInterval field specifies the time for which the signal is set.

For more information on these options, see I'Waiting for messages” on
page 135 and I‘Signaling” on page 136.

Signall
Signall is supported on MQSeries for OS/390, MQSeries for Tandem NonStop
Kernel, and MQSeries for Windows Version 2.1 only.

If you have chosen to use the MQGMO_SET_SIGNAL option to request
that your application is notified when a suitable message arrives, you must
specify the type of signal in the Signall field. In MQSeries on all other
platforms, the Signall field is reserved and its value is not significant.

For more information, see t‘Signaling” on page 134,

Signal2
On MQSeries for Windows Version 2.1 this specifies an identifier for the
signal message. The Signal2 field is reserved on all other platforms and its
value is not significant.

For more information, see £Signaling” on page 138,

ResolvedQName
ResolvedQName is an output field in which the queue manager returns the
name of the queue (after resolution of any alias) from which the message
was retrieved.

MatchOptions
MatchOptions controls the selection criteria for MQGET.

118 MQsSeries Application Programming Guide

Using MQGET

GroupStatus
GroupStatus indicates whether the message you have retrieved is in a
group.

SegmentStatus
SegmentStatus indicates whether the item you have retrieved is a segment
of a logical message.

Segmentation
Segmentation indicates whether segmentation is allowed for the message
retrieved.

MsgToken
MsgToken is supported on MQSeries for OS/390 only.

MsgToken uniquely identifies a message.

For more information, see £MQSeries Warkflow” on page 234,

ReturnedlLength
ReturnedLength is an output field in which the queue manager returns the
length of message data returned (in bytes).

Specifying the size of the buffer area

In the BufferLength parameter of the MQGET call, specify the size of the buffer
area you want to use to hold the message data that you retrieve. There are three
ways to decide how big this should be:

1. You may already know what length of messages to expect from this program. If
so, specify a buffer of this size.

However, you can use the MQGMO_ACCEPT_TRUNCATED_MSG option in
the MQGMO structure if you want the MQGET call to complete even if the
message is too big for the buffer. In this case:

» The buffer is filled with as much of the message as it can hold
* The call returns a warning completion code

* The message is removed from the queue (discarding the remainder of the
message), or the browse cursor is advanced (if you are browsing the queue)

* The real length of the message is returned in Datalength

Without this option, the call still completes with a warning, but it does not
remove the message from the queue (or advance the browse cursor).

2. Estimate a size for the buffer (or even specify a size of zero bytes) and do not
use the MQGMO_ACCEPT_TRUNCATED_MSG option. If the MQGET call fails
(for example, because the buffer is too small), the length of the message is
returned in the Datalength parameter of the call. (The buffer is still filled with
as much of the message as it can hold, but the processing of the call is not
completed.) Store the MsgId of this message, then repeat the MQGET call,
specifying a buffer area of the correct size, and the MsgId you noted from the
first call.

If your program is serving a queue that is also being served by other programs,
one of those other programs may remove the message you want before your
program can issue another MQGET call. Your program could waste time
searching for a message that no longer exists. To avoid this, first browse the
queue until you find the message you want, specifying a BufferLength of zero
and using the MQGMO_ACCEPT_TRUNCATED_MSG option. This positions
the browse cursor under the message you want. You can then retrieve the
message by calling MQGET again, specifying the
MQGMO_MSG_UNDER_CURSOR option. If another program removes the

Chapter 10. Getting messages from a queue 119

Using MQGET

message between your browse and removal calls, your second MQGET fails
immediately (without searching the whole queue), because there is no message
under your browse cursor.

3. The MaxMsglLength queue attribute determines the maximum length of messages
accepted for that queue’ and the MaxMsglLength queue manager attribute
determines the maximum length of messages accepted for that queue manager.
If you do not know what length of message to expect, you can inquire about
the MaxMsgLength attribute (using the MQINQ call), then specify a buffer of this
size.

For further information about the MaxMsglLength attribute, see W

The order in which messages are retrieved from a queue

Priority

You have control over the order in which you retrieve messages from a queue. This
section looks at the options.

A program can assign a priority to a message when it puts the message on a queue

(see Message priarities” on page 28). Messages of equal priority are stored in a

gueue in order of arrival, not the order in which they are committed.

The queue manager maintains queues either in strict FIFO (first in, first out)
sequence, or in FIFO within priority sequence. This depends on the setting of the
MsgDeliverySequence attribute of the queue. When a message arrives on a queue, it
is inserted immediately following the last message that has the same priority.

Programs can either get the first message from a queue, or they can get a
particular message from a queue, ignoring the priority of those messages. For
example, a program may want to process the reply to 2 particular message that it
sent earlier. For more information, see

If an application puts a sequence of messages on a queue, another application can
retrieve those messages in the same order that they were put, provided:

* The messages all have the same priority

* The messages were all put within the same unit of work, or all put outside a
unit of work

* The queue is local to the putting application

If these conditions are not met, and the applications depend on the messages being
retrieved in a certain order, the applications must either include sequencing
information in the message data, or establish a means of acknowledging receipt of
a message before the next one is sent.

On MQSeries for OS/390, the queue attribute, IndexType, can be used to increase
the speed of MOGET operations on the queue. For more information, see

Logical and physical ordering

Logical and physical ordering is supported on MQSeries Version 5 products only.

Messages on queues can occur (within each priority level) in physical or logical
order:

120 MQseries Application Programming Guide

MQGET retrieval sequence

Order Meaning

Physical
This is the order in which messages arrive on a queue.

Logical
This is when all of the messages and segments within a group are in their

logical sequence, adjacent to each other, in the position determined by the
physical position of the first item belonging to the group.

For a description of groups, messages, and segments, see tMessage groups” an

. These physical and logical orders may differ because:

* Groups can arrive at a destination at similar times from different applications,
therefore losing any distinct physical order.

« Even within a single group, messages may get out of order due to rerouting or
delay of some of the messages in the group.

For example, the logical order might look like Figure id
These messages would appear in the following logical order on a queue:

Group Message Segment
A
Y
I
I
Y1
|
Y2
1
Y3 (last)
I
I
Y3.1
|
Y3.2
z
I
I
Z1
|
Z2 (last)
B

Figure 10. Logical order on a queue

Message A (not in a group)

Logical message 1 of group Y

Logical message 2 of group Y

Segment 1 of (last) logical message 3 of group Y
(Last) segment 2 of (last) logical message 3 of group Y
Logical message 1 of group Z

(Last) logical message 2 of group Z

Message B (not in a group)

NN

Chapter 10. Getting messages from a queue 121

MQGET retrieval sequence

The physical order, however, might be entirely different. As stated on page fizd, the
physical position of the first item within each group determines the logical
position of the whole group. For example, if groups Y and Z arrived at similar
times, and message 2 of group Z overtook message 1 of the same group, the
physical order would look like Figure i

Group Message Segment
A
Y
I
|
Y1
z
I
|
Z2 (last)
Y
I
|
Y2
I
Y3 (last)
I
|
Y3.1
I
Y3.2
4
I
I
Z1
B

Figure 11. Physical order on a queue

These messages appear in the following logical order on the queue:
Message A (not in a group)

Logical message 1 of group Y

Logical message 2 of group Z

Logical message 2 of group Y

Segment 1 of (last) logical message 3 of group Y

(Last) segment 2 of (last) logical message 3 of group Y

Logical message 1 of group Z

Message B (not in a group)

NGO~

When getting messages, you can specify MQGMO_LOGICAL_ORDER to retrieve
messages in logical rather than physical order.

If you issue an MQGET call with MQGMO_BROWSE_FIRST and
MQGMO_LOGICAL_ORDER, subsequent MQGET calls with
MQGMO_BROWSE_NEXT must also specify this option. Conversely, if the
MQGET with MQGMO_BROWSE_FIRST does not specify
MQGMO_LOGICAL_ORDER, neither must the following MQGETs with
MQGMO_BROWSE_NEXT.

122 MQseries Application Programming Guide

MQGET retrieval sequence

The group and segment information that the queue manager retains for MQGET
calls that browse messages on the queue is separate from the group and segment
information that the queue manager retains for MQGET calls that remove
messages from the queue. When MQGMO_BROWSE_FIRST is specified, the queue
manager ignores the group and segment information for browsing, and scans the
queue as though there were no current group and no current logical message.

Note: Special care is needed if an MQGET call is used to browse beyond the end of
a message group (or logical message not in a group) when
MQGMO_LOGICAL_ORDER is not specified. For example, if the last
message in the group happens to precede the first message in the group on
the queue, using MQGMO_BROWSE_NEXT to browse beyond the end of
the group, specifying MQMO_MATCH_MSG_SEQ_NUMBER with
MsgSeqNumber set to 1 (to find the first message of the next group) would
return again the first message in the group already browsed. This could
happen immediately, or a number of MQGET calls later (if there are
intervening groups).

The possibility of an infinite loop can be avoided by opening the queue twice for
browse:

» Use the first handle to browse only the first message in each group.
» Use the second handle to browse only the messages within a specific group.

* Use the MQMO _* options to move the second browse cursor to the position of
the first browse cursor, before browsing the messages in the group.

* Do not use the MQGMO_BROWSE_NEXT browse beyond the end of a group.

For further information about this, see the MQSeries Application Programming

manual.

For most applications you will probably choose either logical or physical ordering
when browsing. However, if you want to switch between these modes, remember
that when you first issue a browse with MQGMO_LOGICAL_ORDER, your
position within the logical sequence is established.

If the first item within the group is not present at this time, the group you are in is
not considered to be part of the logical sequence.

Once the browse cursor is within a group, it can continue within the same group,
even if the first message is removed. Initially though, you can never move into a
group using MQGMO_LOGICAL_ORDER where the first item is not present.

Grouping logical messages

There are two main reasons for using logical messages in a group:

* The messages may need to be processed in the correct order

» Each of the messages in a group may need to be processed in a related way.

In either case, retrieval of the entire group must be carried out by the same getting
application instance.

For example, assume that the group consists of four logical messages. The putting
application looks like this:

PMO.Options = MQPMO_LOGICAL ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

Chapter 10. Getting messages from a queue 123

MQGET retrieval sequence

MQPUT MD.MsgFlags
MQPUT MD.MsgFlags

MQMF_MSG_IN_GROUP
MQMF_LAST MSG_IN_GROUP

MQCMIT

The getting application chooses not to start processing any group until all of the
messages within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is therefore
specified for the first message in the group; the option is ignored for subsequent
messages within the group.

Once the first logical message of the group is retrieved,
MQGMO_LOGICAL_ORDER is used to ensure that the remaining logical messages
of the group are retrieved in order.

So, the getting application looks like this:

/* Wait for the first message in a group, or a message not in a group */
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT
| MQGMO ALL MSGS_AVAILABLE | MQGMO_LOGICAL ORDER
do while (GroupStatus == MQGS_MSG_IN_GROUP)
MQGET
/* Process each remaining message in the group */

MQCMIT

For further examples of grouping messages, see FApplication segmentation of

%_m&ssag&an_pagﬂ&ﬂand ‘

Putting and getting a group that spans units of work
In the previous case, messages or segments cannot start to leave the node (if its

destination is remote) or start to be retrieved until all of the group has been put
and the unit of work is committed. This may not be what you want if it takes a
long time to put the whole group, or if queue space is limited on the node. To
overcome this, the group can be put in several units of work.

If the group is put within multiple units of work, it is possible for some of the
group to commit even when a failure of the putting application occurs. The
application must therefore save status information, committed with each unit of
work, which it can use after a restart to resume an incomplete group. The simplest
place to record this information is in a STATUS queue. If a complete group has
been successfully put, the STATUS queue is empty.

If segmentation is involved, the logic is similar. In this case, the Statusinfo must
include the Offset.

Here is an example of putting the group in several units of work:

PMO.Options = MQPMO_LOGICAL ORDER | MQPMO_SYNCPOINT
/* First UOW =/
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD

MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

/* Next and subsequent UOWs +*/
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

124 MQseries Application Programming Guide

MQGET retrieval sequence

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
StatusInfo = Groupld,MsgSegNumber from MQMD

MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

/* Last UOW */
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_LAST MSG_IN_GROUP

MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT

MQCMIT

If all the units of work have been committed, the entire group has been put
successfully, and the STATUS queue is empty. If not, the group must be resumed at
the point indicated by the status information. MQPMO_LOGICAL_ORDER cannot
be used for the first put, but can thereafter.

Restart processing looks like this:
MQGET (StatusInfo from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)
/* Proceed to normal processing x/

else
/* Group was terminated prematurely =*/
Set GroupId, MsgSegNumber in MQMD to values from Status message
PMO.Options = MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

/* Now normal processing is resumed.
Assume this is not the Tast message */
PMO.Options = MQPMO_LOGICAL ORDER | MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

From the getting application, you may want to start processing the messages in a
group before the whole group has arrived. This improves response times on the
messages within the group, and also means that storage is not required for the
entire group.

For recovery reasons, each message must be retrieved within a unit of work.
However, in order to realize the above benefits, several units of work must be used
for each group of messages.

As with the corresponding putting application, this requires status information to
be recorded somewhere automatically as each unit of work is committed. Again,
the simplest place to record this information is on a STATUS queue. If a complete
group has been successfully processed, the STATUS queue is empty.

Note: For intermediate units of work, you can avoid the MQGET calls from the
STATUS queue by specifying that each MQPUT to the status queue is a
segment of a message (that is, by setting the MQMF_SEGMENT flag),
instead of putting a complete new message for each unit of work. In the last
unit of work, a final segment is put to the status queue specifying
MQMF_LAST _SEGMENT, and then the status information is cleared with an
MQGET specifying MQGMO_COMPLETE_MSG.

Chapter 10. Getting messages from a queue 125

MQGET retrieval sequence

During restart processing, instead of using a single MQGET to get a possible
status message, browse the status queue with MQGMO_LOGICAL_ORDER
until you reach the last segment (that is, until no further segments are
returned). In the first unit of work after restart, also specify the offset
explicitly when putting the status segment.

In the following example, we consider only messages within a group. It is assumed
that the application’s buffer is always large enough to hold the entire message,
whether or not the message has been segmented. MQGMO_COMPLETE_MSG is
therefore specified on each MQGET. The same principles apply if segmentation is
involved (in this case, the Statusinfo must include the 0ffset).

For simplicity, we assume that a maximum of 4 messages should be retrieved
within a single UOW:

msgs = 0 /* Counts messages retrieved within UOW */
/* Should be no status message at this point */

/* Retrieve remaining messages in the group */
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/* Process up to 4 messages in the group */
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT
| MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))
MQGET
msgs = msgs + 1
/* Process this message */

/* end while

/* Have retrieved last message or 4 messages */
/* Update status message if not last in group */
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT
msgs = 0
/* end while

if (msgs >0)
/* Come here if there was only 1 message in the group */
MQCMIT

If all of the units of work have been committed, then the entire group has been
retrieved successfully, and the STATUS queue is empty. If not, then the group must
be resumed at the point indicated by the status information.
MQGMO_LOGICAL_ORDER cannot be used for the first retrieve, but can
thereafter.

Restart processing looks like this:

MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)
/* Proceed to normal processing */

else

/* Group was terminated prematurely =*/

/* The next message on the group must be retrieved by matching
the sequence number and group id with those retrieved from the
status information. =/

GMO.Options = MQGMO_COMPLETE MSG | MQGMO_SYNCPOINT | MQGMO_WAIT

126 MQseries Application Programming Guide

MQGET retrieval sequence

MQGET GMO0.MatchOptions = MQMO_MATCH_GROUP_ID | MQMO_MATCH_MSG_SEQ NUMBER,
MQMD.GroupId = value from Status message,
MQMD.MsgSeqNumber = value from Status message plus 1

msgs = 1

/* Process this message =*/

/* Now normal processing is resumed »*/
/* Retrieve remaining messages in the group */
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/* Process up to 4 messages in the group */
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT
| MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN GROUP) && (msgs < 4))
MQGET
msgs = msgs + 1
/* Process this message */

/* Have retrieved Tast message or 4 messages */
/* Update status message if not Tast in group */
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)
StatusInfo = GroupId,MsgSegNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT
msgs = 0

Getting a particular message

To get a particular message from a queue, use the MsgId and Correlld fields of the
MQMD structure. Note, however, that applications can explicitly set these fields, so
the values you specify may not identify a unique message. mé shows which
message is retrieved for the possible settings of these fields. These fields are
ignored on input if you specify MQGMO_MSG_UNDER_CURSOR in the
GetMsgOpts parameter of the MQGET call.

Table 5. Using message and correlation identifiers

To retrieve ... MsglId Correlld
First message in the queue MQMI_NONE MQCI_NONE
First message that matches MsgId Nonzero MQCI_NONE
First message that matches Correlld MQMI_NONE Nonzero
First message that matches both MsgId and Correlld | Nonzero Nonzero

In each case, first means the first message that satisfies the selection criteria (unless
MQGMO_BROWSE_NEXT is specified, when it means the next message in the
sequence satisfying the selection criteria).

On return, the MQGET call sets the MsgId and CorrelId fields to the message and
correlation identifiers (respectively) of the message returned (if any).

If you set the Version field of the MQMD structure to 2 or 3, you can use the

GroupId, MsgSeqNumber, and Offset fields. [[ahle 6 on page 124 shows which
message is retrieved for the possible settings of these fields.

Chapter 10. Getting messages from a queue 127

Getting a specific message

Table 6. Using the group identifier

To retrieve ... Match options

First message in the queue MQMO_NONE

First message that matches MsgId MQMO_MATCH_MSG_ID

First message that matches Correlld MQMO_MATCH_CORREL_ID

First message that matches GroupId MQMO_MATCH_GROUP_ID

First message that matches MsgSeqNumber MQMO_MATCH_MSG_SEQ_NUMBER
First message that matches MsgToken MQMO_MATCH_MSG_TOKEN

First message that matches Offset MQMO_MATCH_OFFSET

Notes:

1. MQMO_MATCH_XXX implies that the XXX field in the MQMD structure is set to the

value to be matched.

The MQMO flags can be used in combination. For example,
MQMO_MATCH_GROUP_ID, MQMO_MATCH_MSG_SEQ_NUMBER, and
MQMO_MATCH_OFFSET can be used together to give the segment identified by the
GroupId, MsgSegNumber, and Offset fields.

If you specify MQGMO_LOGICAL_ORDER, the message you are trying to retrieve is
affected because the option depends on state information controlled for the queue

handle. For information about this, see ELagical and physical ardering” an page 120
and the MQSeries Application Programming Referencd manual.
MQMO_MATCH_MSG_TOKEN is used only on queues managed by the OS/390
workload manager.

MQSeries for OS/390 does not support MQMO_MATCH_GROUP_ID,
MQMO_MATCH_MSG_SEQ NUMBER, or MQMO_MATCH_OFFSET.

Notes:

1.

The MQGET call usually retrieves the first message from a queue. If you
specify a particular message when you use the MQGET call, the queue
manager has to search the queue until it finds that message. This can affect the
performance of your application.

If you are using Version 2 or 3 of the MQMD structure, you can use the
MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID flags. This
avoids having to reset the MsgId and CorrelId fields between MQGETSs.

On MQSeries for OS/390, the queue attribute, IndexType, can be used to increase
the sEeed of MQGET operations on the queue. For more information, see

Type of index

This is supported on MQSeries for OS/390 only.

The queue attribute, IndexType, specifies the type of index that the queue manager
maintains in order to increase the speed of MQGET operations on the queue.

You have four options:

Value Description
NONE

No index is maintained. Use this when messages are retrieved sequentially

(see ['Priarity” on page 12d).

128 MQseries Application Programming Guide

Index type

MSGID
An index of message identifiers is maintained. Use this when messages are
retrieved using the MsgId field as a selection criterion on the MQGET call

(see ['Getting a particular message” on page 127).

MSGTOKEN
An index of message tokens is maintained. Use this when messages are
retrieved using the MsgToken field as a selection criterion on the MQGET
call (see EMQSeries Warkflow” on page 234).

CORRELID
An index of correlation identifiers is maintained. Use this when messages
are retrieved using the CorreZId fleld as a selection criterion on the
MQGET call (see L 2

Notes:

1. If you are indexing using the MSGID option or CORRELID option, set the
relative MsgId or CorrelId parameters in the MQMD. It is not beneficial to set
both.

2. Indexes are ignored when browsing messages on a queue (see m
Imessages on a quete” on page 143 for more information).

3. Avoid queues (indexed by MsgId or Correlld) containing thousands of
messages because this affects restart time. (This does not apply to nonpersistent
messages as they are deleted at restart.)

4. MSGTOKEN is used to define queues managed by the OS/390 workload
manager.

For a full description of the IndexType attribute, see the MQSeries Application]
Programming Referencd manual. For conditions needed to change the IndexType
attribute, see the MQSeries Command Referencd manual.

Handling large messages
This is supported on MQSeries Version 5 products only.

Messages can be too large for the application, queue, or queue manager. MQSeries
provides three ways of dealing with large messages:

1. Increase the queue and queue manager MaxMsglength attributes.

2. Use segmented messages. (Messages can be segmented by either the application
or the queue manager.)

3. Use reference messages.

Each of these approaches is described in the remainder of this section.

Increasing the maximum message length

The MaxMsglLength queue manager attribute defines the maximum length of a
message that can be handled by a queue manager. Similarly, the MaxMsgLength
queue attribute is the maximum length of a message that can be handled by a
queue. The default maximum message length supported depends on the
environment in which you are working.

If you are handling large messages, you can alter these attributes independently.
The attribute value can be set between 32768 bytes and 100 MB.

After changing one or both of the MaxMsgLength attributes, restart your applications
and channels to ensure that the changes take effect. When these changes are made,

Chapter 10. Getting messages from a queue 129

Handling large messages

the message length must be less than or equal to both the queue and the queue
manager MaxMsglLength attributes. However, existing messages may be longer than
either attribute.

If the message is too big for the queue, MQRC_MSG_TOO_BIG_FOR_Q is
returned. Similarly, if the message is too big for the queue manager,
MQRC_MSG_TOO _BIG_FOR_Q_MGR is returned.

This method of handling large messages is easy and convenient. However,
consider the following factors before using it:

* Uniformity among queue managers is reduced. The maximum size of message
data is determined by the MaxMsgLength for each queue (including transmission
queues) on which the message will be put. This value is often defaulted to the
queue manager’s MaxMsglLength, especially for transmission queues. This makes it
difficult to predict whether a message is too large when it is to travel to a
remote queue manager.

» Usage of system resources is increased. For example, applications need larger
buffers, and on some platforms, there may be increased usage of shared storage.
Note that queue storage should be affected only if actually required for larger
messages.

» Channel batching is affected. A large message still counts as just one message
towards the batch count but needs longer to transmit, thereby increasing
response times for other messages.

Message segmentation

Increasing the maximum message length as discussed on page fi2d has some
negative implications. Also, it could still result in the message being too large for
the queue or queue manager. In these cases, a message can be segmented. For

information about segments, see [‘“Message groups” on page 29,

The next sections look at common uses for segmenting messages. For putting and
destructively getting, it is assumed that the MQPUT or MQGET calls always
operate within a unit of work. It is strongly recommended that this technique is
always used, to reduce the possibility of incomplete groups being present in the
network. Single-phase commit by the queue manager is assumed, but of course
other coordination techniques are equally valid.

Also, in the getting applications, it is assumed that if multiple servers are
processing the same queue, each server executes similar code, so that one server
never fails to find a message or segment that it expects to be there (because it had
specified MQGMO_ALL_MSGS_AVAILABLE or

MQGMO_ALL _SEGMENTS_AVAILABLE earlier).

Segmentation and reassembly by queue manager

This is the simplest scenario, in which one application puts a message to be
retrieved by another. The message may be large: not too large for either the putting
or the getting application to handle in a single buffer, but possibly too large for the
queue manager or a queue on which the message is to be put.

The only changes necessary for these applications are for the putting application to
authorize the queue manager to perform segmentation if necessary,

PMO.Options = (existing options)
MQPUT MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED

130 MQSeries Application Programming Guide

Handling large messages

and for the getting application to ask the queue manager to reassemble the
message if it has been segmented:

GMO.Options = MQGMO_COMPLETE MSG | (existing options)
MQGET

The application buffer must be large enough to contain the reassembled message
(unless the MQGMO_ACCEPT_TRUNCATED_MSG option is included).

If data conversion is necessary, it may have to be done by the getting application
specifying MQGMO_CONVERT. This should be straightforward because the data
conversion exit is presented with the complete message. Attempting to do data
conversion in a sender channel will not be successful if the message is segmented,
and the format of the data is such that the data-conversion exit cannot carry out
the conversion on incomplete data.

Application segmentation
This example shows how to segment a single large message

Application segmentation is used for two main reasons:

1. Queue-manager segmentation alone is not adequate because the message is too
large to be handled in a single buffer by the applications.

2. Data conversion must be performed by sender channels, and the format is such
that the putting application needs to stipulate where the segment boundaries
are to be in order for conversion of an individual segment to be possible.

However, if data conversion is not an issue, or if the getting application always
uses MQGMO_COMPLETE_MSG, queue-manager segmentation can also be
allowed by specifying MQMF_SEGMENTATION_ALLOWED. In our example, the
application segments the message into four segments:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags
MQPUT MD.MsgFlags
MQPUT MD.MsgFlags
MQPUT MD.MsgFlags

MQMF_SEGMENT
MQMF_SEGMENT
MQMF_SEGMENT
MQMF_LAST SEGMENT

MQCMIT

If you do not use MQPMO_LOGICAL_ORDER, the application must set the Offset
and the length of each segment. In this case, logical state is not maintained
automatically.

The getting application cannot, or chooses not to, guarantee to have a buffer that
will hold any reassembled message. It must therefore be prepared to process
segments individually.

For messages that are segmented, this application does not want to start processing
one segment until all of the segments that constitute the logical message are
present. MQGMO_ALL_SEGMENTS_AVAILABLE is therefore specified for the first
segment. If you specify MQGMO_LOGICAL_ORDER and there is a current logical
message, MQGMO_ALL_SEGMENTS_AVAILABLE is ignored.

Once the first segment of a logical message has been retrieved,

MQGMO_LOGICAL_ORDER is used to ensure that the remaining segments of the
logical message are retrieved in order.

Chapter 10. Getting messages from a queue 131

Handling large messages

No consideration is given to messages within different groups. If such messages do
occur, they are processed in the order in which the first segment of each message
appears on the queue.
GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL ORDER
| MQGMO_ALL_SEGMENTS_AVAILABLE | MQGMO_WAIT
do while (SegmentStatus == MQSS_SEGMENT)
MQGET
/* Process each remaining segment of the Togical message */

MQCMIT

Application segmentation of logical messages
The messages must be maintained in logical order in a group, and some or all of
them may be so large that they require application segmentation.

In our example, a group of four logical messages is to be put. All but the third
message are large, and require segmentation which is performed by the putting
application:

PMO.Options = MQPMO_LOGICAL ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP MQMF_LAST_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

MQMF_SEGMENT
MQMF_SEGMENT
MQMF_LAST SEGMENT

MQCMIT

In the getting application, MQGMO_ALL_MSGS_AVAILABLE is specified on the
first MQGET. This means that no messages or segments of a group are retrieved
until the entire group is available. When the first physical message of a group has
been retrieved, MQGMO_LOGICAL_ORDER is used to ensure that the segments
and messages of the group are retrieved in order:

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL _MESSAGES_AVAILABLE | MQGMO_WAIT

do while ((GroupStatus != MQGS_LAST MSG_IN GROUP) ||
(SegmentStatus != MQGS_LAST_SEGMENT))
MQGET
/* Process a segment or complete logical message. Use the GroupStatus
and SegmentStatus information to see what has been returned */

MQCMIT

Note: If you specify MQGMO_LOGICAL_ORDER and there is a current group,
MQGMO_ALL_MSGS_AVAILABLE is ignored.

Putting and getting a segmented message that spans units of

work

You can put and get a segmented message that spans a unit of work in a similar
way to L i i i ”

132 MQseries Application Programming Guide

Handling large messages

You cannot, however, put or get segmented messages in a global unit of work.

Reference messages

This method allows a large object to be transferred from one node to another
without the need for the object to be stored on MQSeries queues at either the
source or the destination nodes. This is of particular benefit where the data already
exists in another form, for example, for mail applications.

To do this, you need to specify a message exit at both ends of a channel. For

information on how to do this, see the MQSeries Intercommunicatiod book.

MQSeries defines the format of a reference message header (MQRMH). See the

MQSeries Application Programming Referencd manual for a description of this. This is

recognized by means of a defined format name and may or may not be followed
by actual data.

To initiate transfer of a large object, an application can put a message consisting of
a reference message header with no data following it. As this message leaves the
node, the message exit retrieves the object in an appropriate way and appends it to
the reference message. It then returns the message (now larger than before) to the
sending Message Channel Agent for transmission to the receiving MCA.

Another message exit is configured at the receiving MCA. When this message exit
sees one of these messages, it creates the object using the object data that was
appended and passes on the reference message without it. The reference message
can now be received by an application and this application knows that the object
(or at least the portion of it represented by this reference message) has been
created at this node.

The maximum amount of object data that a sending message exit can append to
the reference message is limited by the negotiated maximum message length for
the channel. The exit can only return a single message to the MCA for each
message that it is passed, so the putting application can put several messages to
cause one object to be transferred. Each message must identify the logical length
and offset of the object that is to be appended to it. However, in cases where it is
not possible to know the total size of the object or the maximum size allowed by
the channel, the sending message exit can be designed so that the putting
application just puts a single message, and the exit itself puts the next message on
the transmission queue when it has appended as much data as it can to the
message it has been passed.

Before using this method of dealing with large messages, consider the following:

* The MCA and the message exit run under an MQSeries user ID. The message
exit (and therefore, the user ID) needs to access the object to either retrieve it at
the sending end or create it at the receiving end; this may only be feasible in
cases where the object is universally accessible. This raises a security issue.

 If the reference message with bulk data appended to it must travel through
several queue managers before reaching its destination, the bulk data is present
on MQSeries queues at the intervening nodes. However, no special support or
exits need to be provided in these cases.

» Designing your message exit is made difficult if rerouting or dead-letter queuing
is allowed. In these cases, the portions of the object may arrive out of order.

* When a reference message arrives at its destination, the receiving message exit
creates the object. However, this is not synchronized with the MCA'’s unit of

Chapter 10. Getting messages from a queue 133

Handling large messages

work, so if the batch is backed out, another reference message containing this
same portion of the object will arrive in a later batch, and the message exit may
attempt to recreate the same portion of the object. If the object is, for example, a
series of database updates, this might be unacceptable. If so, the message exit
must keep a log of which updates have been applied; this may require the use
of an MQSeries queue.

» Depending on the characteristics of the object type, the message exits and
applications may need to cooperate in maintaining use counts, so that the object
can be deleted when it is no longer needed. An instance identifier may also be
required; a field is provided for this in the reference message header (see the

i icati i manual).

» If a reference message is put as a distribution list, the object must be retrievable
for each resulting distribution list or individual destination at that node. You
may need to maintain use counts. Also consider the possibility that a given node
may be the final node for some of the destinations in the list, but an
intermediate node for others.

» Bulk data is not normally converted. This is because conversion takes place
before the message exit is invoked. For this reason, conversion should not be
requested on the originating sender channel. If the reference message passes
through an intermediate node, the bulk data is converted when sent from the
intermediate node, if requested.

* Reference messages cannot be segmented.

Using the MQRMH and MQMD structures
See the MQSeries Application Programming Referencd manual for a description of the
fields in the reference message header and the message descriptor.

In the MQMD structure, the Format field must be set to
MQFMT_REF_MSG_HEADER. The MQHREF format, when requested on MQGET,
is converted automatically by MQSeries along with any bulk data that follows.

Here is an example of the use of the DatalogicalOffset and Datalogicallength
fields of the MQRMH:

A putting application might put a reference message with:

* No physical data

* Datalogicallength = 0 (this message represents the entire object)
* DatalogicalOffset = 0.

Assuming that the object is 70,000 bytes long, the sending message exit sends the
first 40,000 bytes along the channel in a reference message containing:

* 40,000 bytes of physical data following the MQRMH

e Datalogicallength = 40,000

* DatalogicalOffset = 0 (from the start of the object).

It then places another message on the transmission queue containing:
* No physical data

* Datalogicallength = 0 (to the end of the object). You could specify a value of
30,000 here.

* DatalogicalOffset = 40,000 (starting from this point).
When this message exit is seen by the sending message exit, the remaining 30,000

bytes of data is appended, and the fields are set to:
» 30,000 bytes of physical data following the MQRMH

134 MQseries Application Programming Guide

Handling large messages

e Datalogicallength = 30,000
* DatalogicalOffset = 40,000 (starting from this point).

The MQRMHF_LAST flag is also set.

For a description of the sample programs provided for the use of reference

messages, see L

Waiting for messages

If you want a program to wait until a message arrives on a queue, specify the
MQGMO_WAIT option in the Options field of the MQGMO structure. Use the
WaitInterval field of the MQGMO structure to specify the maximum time (in
milliseconds) that you want an MQGET call to wait for a message to arrive on a
queue.

If the message does not arrive within this time, the MQGET call completes with
the MQRC_NO_MSG_AVAILABLE reason code.

You can specify an unlimited wait interval using the constant MQWI_UNLIMITED
in the WaitInterval field. However, events outside your control could cause your
program to wait for a long time, so use this constant with caution. IMS
applications should not specify an unlimited wait interval because this would
prevent the IMS system terminating. (When IMS terminates, it requires all
dependent regions to end.) Instead, IMS applications should specify a finite wait
interval; then, if the call completes without retrieving a message after that interval,
issue another MQGET call with the wait option.

In the Windows 3.1 environment, while your application is waiting for an MQGET
to return, MQSeries will still recover Windows messages to allow the application
and the rest of Windows to function normally. You must ensure that your code that
processes Windows program messages does not assume that the MQGET call
returns data to the application immediately. If it attempts to access data that is not
yet available, errors can easily occur. Also, if you attempt to make other MQI calls
while the MQGET call is waiting, MQRC_CALL_IN_PROGRESS is returned to
show that another call is busy.

Note: If more than one program is waiting on the same shared queue to remove a
message, only one program is activated by a message arriving. However, if
more than one program is waiting to browse a message, all the programs
can be activated. For more information, see the description of the Options
field of the MQGMO structure in the i icati i

manual.

Chapter 10. Getting messages from a queue 135

Waiting for messages

If the state of the queue or the queue manager changes before the wait interval
expires, the following actions occur:

* |If the queue manager enters the quiescing state, and you used the
MQGMO_FAIL_IF_QUIESCING option, the wait is canceled and the MQGET
call completes with the MQRC_Q _MGR_QUIESCING reason code. Without this
option, the call remains waiting.

* On 0OS/390, if the connection (for a CICS or IMS application) enters the
quiescing state, and you used the MQGMO_FAIL_IF QUIESCING option, the
wait is canceled and the MQGET call completes with the
MQRC_CONN_QUIESCING reason code. Without this option, the call remains
waiting.

 If the queue manager is forced to stop, or is canceled, the MQGET call completes
with either the MQRC_Q_MGR_STOPPING or the
MQRC_CONNECTION_BROKEN reason code.

» |f the attributes of the queue (or a queue to which the queue name resolves) are
changed so that get requests are now inhibited, the wait is canceled and the
MQGET call completes with the MQRC_GET_INHIBITED reason code.

 If the attributes of the queue (or a queue to which the queue name resolves) are
changed in such a way that the FORCE option is required, the wait is canceled
and the MQGET call completes with the MQRC_OBJECT_CHANGED reason
code.

If you want your application to wait on more than one queue, use the signal
facility of MQSeries for OS/390 (see) For more information about the
circumstances in which these actions occur, see the MQSeries Applicatior
Programming Referencd manual.

Signaling

Signaling is supported only on MQSeries for OS/390, MQSeries for Tandem NonStop
Kernel, and MQSeries for Windows Version 2.1.

Signaling is an option on the MQGET call to allow the operating system to notify
(or signal) a program when an expected message arrives on a queue. This is similar
to the “get with wait” function described on page f23 because it allows your
program to continue with other work while waiting for the signal. However, if you
use signaling, you can free the application thread and rely on the operating system
to notify the program when a message arrives.

To set a signal

To set a signal, do the following in the MQGMO structure that you use on your
MQGET call:

1. Set the MQGMO_SET_SIGNAL option in the Options field.

2. Set the maximum life of the signal in the WaitInterval field. This sets the
length of time (in milliseconds) for which you want MQSeries to monitor the
queue. Use the MQWI_UNLIMITED value to specify an unlimited life.

Note: IMS applications should not specify an unlimited wait interval because
this would prevent the IMS system from terminating. (When IMS
terminates, it requires all dependent regions to end.) Instead, IMS
applications should examine the state of the ECB at regular intervals (see
step E) A program can have signals set on several queue handles at the
same time:

136 MQSeries Application Programming Guide

Signaling

3. On MQSeries for Tandem NonStop Kernel, specify an application tag in the
Signall field. This can be used by an application to associate the IPC
notification message with a particular MQGET call (see ['When the messagd

. On MQSeries for Windows Version 2.1, specify the handle of the
window to which you want the signal sent in the Signall field. On MQSeries
for OS/390, specify the address of the Event Control Block (ECB) in the Signall
field. This notifies you of the result of your signal. The ECB storage must
remain available until the queue is closed.

4. On MQSeries for Windows Version 2.1, specify an identifier for the signal
message in the Signal?2 field. This specifies the Windows message that you
receive when a suitable message arrives. Use a RegisterWindow message to
find a suitable identifier.

Note: You cannot use the MQGMO_SET_SIGNAL option in conjunction with the
MQGMO_WAIT option.

When the message arrives
When a suitable message arrives, the following occurs:

* On MQSeries for Tandem NonStop Kernel An Inter-Process Communication
(IPC) message is sent to the $SRECEIVE queue of the process that made the
MQGET call.

* On MQSeries for Windows Version 2.1, MQSeries sends a Windows message
(identified in step B) to the window you specified in your Signall field. It also
puts a completion code in the WPARAM field of the Windows message.

* On MQSeries for OS/390, a completion code is returned to the ECB.

The completion code describes one of the following:

* The message you set the signal for has arrived on the queue. The message is not
reserved for the program that requested a signal, so the program must issue an
MQGET call again to get the message.

Note: Another application could get the message in the time between you
receiving the signal and you issuing another MQGET call.

* The wait interval you set has expired and the message you set the signal for did
not arrive on the queue. MQSeries has canceled the signal.

* The signal has been canceled. This happens, for example, if the queue manager
stops or the attribute of the queue is changed so that MQGET calls are no longer
allowed.

When a suitable message is already on the queue, the MQGET call completes in
the same way as an MQGET call without signaling. Also, if an error is detected
immediately, the call completes and the return codes are set.

When the call is accepted and no message is immediately available, control is
returned to the program so that it can continue with other work. None of the
output fields in the message descriptor are set, but the CompCode and Reason
parameters are set to MQCC_WARNING and
MQRC_SIGNAL_REQUEST_ACCEPTED, respectively.

For information on what MQSeries can return to your application when it makes
an MQGET call using signaling, see the i icati i
manual.

Chapter 10. Getting messages from a queue 137

Signaling

On MQSeries for OS/390, if the program has no other work to do while it is
waiting for the ECB to be posted, it can wait for the ECB using:

For a CICS Transaction Server for OS/390 program, the EXEC CICS WAIT
EXTERNAL command

For batch and IMS programs, the OS/390 WAIT macro

If the state of the queue or the queue manager changes while the signal is set (that
is, the ECB has not yet been posted), the following actions occur:

If the queue manager enters the quiescing state, and you used the
MQGMO_FAIL_IF_QUIESCING option, the signal is canceled. The ECB is
posted with the MQEC_Q_MGR_QUIESCING completion code. Without this
option, the signal remains set.

If the queue manager is forced to stop, or is canceled, the signal is canceled. The
signal is delivered with the MQEC_WAIT_CANCELED completion code.

If the attributes of the queue (or a queue to which the queue name resolves) are
changed so that get requests are now inhibited, the signal is canceled. The signal
is delivered with the MQEC_WAIT_CANCELED completion code.

Notes:

1.

If more than one program has set a signal on the same shared queue to remove
a message, only one program is activated by a message arriving. However, if
more than one program is waiting to browse a message, all the programs can
be activated. The rules that the queue manager follows when deciding which
applications to activate are the same as those for waiting applications: for more
information, see the description of the Options field of the MQGMO structure

in the MQSeries Application Programming Referencd manual.

If there is more than one MQGET call waiting for the same message, with a
mixture of wait and signal options, each waiting call is considered equally. For
more information, see the description of the Options field of the MQGMO

structure in the MQSeries Application Programming Referencd manual.

Under some conditions, it is possible both for an MQGET call to retrieve a
message and for a signal (resulting from the arrival of the same message) to be
delivered. This means that when your program issues another MQGET call
(because the signal was delivered), there could be no message available. You
should design your program to test for this situation.

For information about how to set a signal, see the description of the
MQGMO SET SIGNAL option and the Signall field in the MQSeries Applicatior]

Programming Referencd manual.

Skipping backout

Skipping backout is supported only on MQSeries for OS/390.

As part of a unit of work, an application program can issue one or more MQGET
calls to get messages from a queue. If the application program detects an error, it
can back out the unit of work. This restores all the resources updated during that
unit of work to the state they were in before the unit of work started, and
reinstates the messages retrieved by the MQGET calls.

Once reinstated, these messages are available to subsequent MQGET calls issued
by the application program. In many cases, this does not cause a problem for the
application program. However, in cases where the error leading to the backout

138 MQSeries Application Programming Guide

Skipping backout

cannot be circumvented, having the message reinstated on the queue can cause the
application program to enter an ‘MQGET-error-backout’ loop.

To avoid this problem, specify the MQGMO_MARK_SKIP_BACKOUT option on
the MQGET call. This marks the MQGET request as not being involved in
application-initiated backout; that is, it should not be backed out. Use of this
option means that when a backout occurs, updates to other resources are backed
out as required, but the marked message is treated as if it had been retrieved
under a new unit of work. The application program can then perform exception
handling, such as informing the originator that the message has been discarded,
and then commit the new unit of work, causing the message to be removed from
the queue. If the new unit of work is backed out (for any reason) the message is
reinstated on the queue.

Within a unit of work, there can be only one MQGET request marked as skipping
backout; however, there can be several other messages that are not marked as
skipping backout. Once a message has been marked as skipping backout, any
further MQGET calls within the unit of work that specify
MQGMO_MARK_SKIP_BACKOUT will fail with reason code
MQRC_SECOND_MARK_NOT_ALLOWED.

Notes:

1. The marked message only skips backout if the unit of work containing it is
terminated by an application request to back it out. If the unit of work is
backed out for any other reason, the message is backed out on to the queue in
the same way that it would be if it was not marked to skip backout.

2. Skip backout is not supported within DB2 stored procedures participating in
units of work controlled by RRS. For example, an MQGET call with the
MQGMO_MARK_SKIP_BACKOUT option will fail with the reason code
MQRC_OPTION_ENVIRONMENT_ERROR.

Chapter 10. Getting messages from a queue 139

Skipping backout

Step 1.
Initial processing, including
MQOPEN of queue specifying

one MQOO_INPUT_* option

’7 START-OF-UOW1

Step 2.
MQGET message, specifying
MQGMO_MARK_SKIP_BACKOUT
and MQGMO_SYNCPOINT

Step 3.
Other resource updates made

for uowa1i

Yes A No

v v

Step 4. Step 5.
Commit (message Application requests
removed from queue) backout

Step 6.

Updates from Step 3

L backed out

END-OF-UOW1
START-OF-UOW2

Step 7.
Message retrieved at
Step 2 skips backout

and enters new unit

v

Exception handling

YeSA No

v v

of work

Step 8.

Step 9. Step 10
Commit (message Application requests
removed from queue) backout (message

reinstated on queue)

L

END-OF-UOW?2

Figure 12. Skipping backout using MOQGMO_MARK_SKIP_BACKOUT
m illustrates a typical sequence of steps that an application program might
contain when an MQGET request is required to skip backout:

Step 1 Initial processing occurs within the transaction, including an MQOPEN call
to open the queue (specifying one of the MQOO _INPUT _* options in order
to get messages from the queue in Step 2).

Step 2 MQGET is called, with MQGMO_SYNCPOINT and
MQGMO_MARK_SKIP_BACKOUT. MQGMO_SYNCPOINT is required

140 MQseries Application Programming Guide

Skipping backout

because MQGET must be within a unit of work for
MQGMO_MARK_SKIP_BACKOUT to be effective. In Eigure 12 on page 144
this unit of work is referred to as UOW1.

Step 3 Other resource updates are made as part of UOW1. These may include
further MQGET calls (issued without MQGMO_MARK_SKIP_BACKOUT).

Step 4 All updates from Steps 2 and 3 complete as required. The application
program commits the updates and UOW1 ends. The message retrieved in
Step 2 is removed from the queue.

Step 5 Some of the updates from Steps 2 and 3 do not complete as required. The
application program requests that the updates made during these steps are
backed out.

Step 6 The updates made in Step 3 are backed out.

Step 7 The MQGET request made in Step 2 skips backout and becomes part of a
new unit of work, UOW?2.

Step 8 UOW?2 performs exception handling in response to UOW1 being backed
out. (For example, an MQPUT call to another queue, indicating that a
problem occurred that caused UOW!1 to be backed out.)

Step 9 Step 8 completes as required, the application program commits the activity,
and UOW?2 ends. As the MQGET request is part of UOW?2 (see Step 7), this
commit causes the message to be removed from the queue.

Step 10
Step 8 does not complete as required and the application program backs
out UOW?2. Because the get message request is part of UOW?2 (see Step 7),
it too is backed out and reinstated on the queue. It is now available to
further MQGET calls issued by this or another application program (in the
same way as any other message on the queue).

Application data conversion

When necessary, MCAs convert the message descriptor data into the required
character set and encoding. Either end of the link (that is, the local MCA or the
remote MCA) may do the conversion.

When an application puts messages on a queue, the local queue manager adds
control information to the message descriptors to facilitate the control of the
messages when they are processed by queue managers and MCAs. Depending on
the environment, the message header data fields will be created in the character set
and encoding of the local system.

When you move messages between systems, it is necessary, on some occasions, to
convert the application data into the character set and encoding required by the
receiving system. This can be done either from within application programs on the
receiving system or by the MCAs on the sending system. If data conversion is
supported on the receiving system, it is recommended to use application programs
to convert the application data, rather than depending on the conversion having
already occurred at the sending system.

Application data is converted within an application program when the

MQGMO_CONVERT option is specified in the Options field of the MQGMO
structure passed to an MQGET call, and all of the following are true:

Chapter 10. Getting messages from a queue 141

MQGET data conversion

* The CodedCharSetId or Encoding fields set in the MQMD structure associated
with the message on the queue differ from the CodedCharSetId or Encoding fields
set in the MQMD structure specified on the MQGET call.

* The Format field in the MQMD structure associated with the message is not
MQFMT_NONE.

* The BufferLength specified on the MQGET call is not zero.
* The message data length is not zero.

* The queue manager supports conversion between the CodedCharSetId and
Encoding fields specified in the MQMD structures associated with the message
and the MQGET call. See the MQSeries Application Programming Referencd manual
for details of the coded character set identifiers and machine encodings
supported.

* The queue manager supports conversion of the message format. If the Format
field of the MQMD structure associated with the message is one of the built-in
formats, the queue manager is able to convert the message. If the Format is not
one of the built-in formats, you need to write a data-conversion exit to convert
the message.

If the sending MCA is to convert the data, the CONVERT(YES) keyword must be
specified on the definition of each sender or server channel for which conversion is
required. If the data conversion fails, the message is sent to the DLQ at the sending
queue manager and the Feedback field of the MQDLH structure indicates the
reason. If the message cannot be put on the DLQ, the channel will close and the
unconverted message will remain on the transmission queue. Data conversion
within applications rather than at sending MCAs avoids this situation.

As a general rule, data in the message that is described as “character” data by the
built-in format or data-conversion exit is converted from the coded character set
used by the message to that requested, and “numeric” fields are converted to the
encoding requested.

For further details of the conversion processing conventions used when converting
the built-in formats, and for information about writing your own data-conversion
exits, see 'Chapter 11_\Writing data-conversion exits” on page 14d. See also the
MQSeries Application Programming Referencd manual for information about the

language support tables and about the supported machine encodings.

Conversion of EBCDIC newline characters

If you need to ensure that the data you send from an EBCDIC platform to an
ASCII one is identical to the data you receive back again, you must control the
conversion of EBCDIC newline characters. This can be done using a
platform-dependent switch that forces MQSeries to use the unmodified conversion
tables but you must be aware of the inconsistent behavior that may result.

The problem arises because the EBCDIC newline character is not converted
consistently across platforms or conversion tables. As a result, if the data is
displayed on an ASCII platform, the formatting may be incorrect. This would make
it difficult, for example, to administer an AS/400 remotely from an ASCII platform
using RUNMQSC.

See the MQSeries System Administration book for further information about
converting EBCDIC-format data to ASCII format.

142 MQseries Application Programming Guide

Browsing messages

Browsing messages on a queue

To use the MQGET call to browse the messages on a queue:

1. Call MQOPEN to open the queue for browsing, specifying the
MQOO_BROWSE option.

2. To browse the first message on the queue, call MQGET with the
MQGMO_BROWSE_FIRST option. To find the message you want, you can call
MQGET repeatedly with the MQGMO_BROWSE_NEXT option to step through
many messages.

You must set the MsgId and CorrelId fields of the MQMD structure to null after
each MQGET call in order to see all messages.

3. Call MQCLOSE to close the queue.

The browse cursor

When you open (MQOPEN) a queue for browsing, the call establishes a browse
cursor for use with MQGET calls that use one of the browse options. You can think
of the browse cursor as a logical pointer that is positioned before the first message
on the queue.

You can have more than one browse cursor active (from a single program) by
issuing several MQOPEN requests for the same queue.

When you call MQGET for browsing, use one of the following options in your
MQGMO structure:

MQGMO_BROWSE_FIRST
Gets a copy of the first message that satisfies the conditions specified in
your MQMD structure.

MQGMO_BROWSE_NEXT
Gets a copy of the next message that satisfies the conditions specified in
your MQMD structure.

In both cases, the message remains on the queue.

When you open a queue, the browse cursor is positioned logically just before the
first message on the queue. This means that if you make your MQGET call
immediately after your MQOPEN call, you can use the MQGMO_BROWSE_NEXT
option to browse the first message; you do not have to use the
MQGMO_BROWSE_FIRST option.

The order in which messages are copied from the queue is determined bg the
MsgDeliverySequence attribute of the queue. (For more information, see

5)

Queues in FIFO (first in, first out) sequence
The first message in a queue in this sequence is the message that has been on the
queue the longest.

Use MQGMO_BROWSE_NEXT to read the messages sequentially in the queue.
You will see any messages put to the queue while you are browsing, as a queue in
this sequence will have messages placed at the end. When the cursor has
recognized that it has reached the end of the queue, the browse cursor will stay
where it is and return with MQRC_NO_MSG_AVAILABLE. You may then either
leave it there waiting for further messages or reset it to the beginning of the queue
with a MQGMO_BROWSE_FIRST call.

Chapter 10. Getting messages from a queue 143

Browsing messages

Queues in priority sequence

The first message in a queue in this sequence is the message that has been on the
queue the longest and has the highest priority at the time the MQOPEN call is
issued.

Use MQGMO_BROWSE_NEXT to read the messages in the queue.

The browse cursor will point to the next message, working from the priority of the
first message to finish with the message at the lowest priority. It will browse any
messages put to the queue during this time as long as they are of equal or lower
priority to the message identified by the current browse cursor.

Any messages put to the queue of higher priority can only be browsed by:

* Opening the queue for browse again, at which point a new browse cursor is
established

* Using the MQGMO_BROWSE_FIRST option

Uncommitted messages
An uncommitted message is never visible to a browse, the browse cursor skips

past it. Messages within a unit-of-work cannot be browsed until the unit-of-work is
committed.

Change to queue sequence
If the message delivery sequence is changed from priority to FIFO while there are

messages on the queue, the order of the messages that are already queued is not
changed. Messages added to the queue subsequently take the default priority of
the queue.

Browsing messages when message length unknown

To browse a message when you do not know the size of the message, and you do
not wish to use the MsgId, Correlld, or GrouplId fields to locate the message, you
can use the MQGMO_BROWSE_MSG_UNDER_CURSOR option (not supported on
0S/390):
1. Issue an MQGET with:

» Either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option

* The MQGMO_ACCEPT_TRUNCATED_MSG option

» Buffer length zero

Note: If another program is likely to get the same message, consider using the
MQGMO_LOCK option as well.
MQRC_TRUNCATED_MSG_ACCEPTED should be returned.

2. Use the returned Datalength to allocate the storage needed.

3. Issue an MQGET with the MQGMO_BROWSE_MSG_UNDER_CURSOR.

The message pointed to is the last one that was retrieved; the browse cursor will
not have moved. You can choose either to lock the message using the
MQGMO_LOCK option, or to unlock a locked message using MQGMO_UNLOCK
option.

The call fails if no MQGET with either the MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT options has been issued successfully since the queue
was opened.

144 mQSeries Application Programming Guide

Browsing messages

Restriction
MQGMO_LOCK and MQGMO_UNLOCK are not available on MQSeries for
Tandem NonStop Kernel and MQSeries for OS/390.

Removing a message you have browsed

You can remove from the queue a message you have already browsed provided
you have opened the queue for removing messages as well as for browsing. (You
must specify one of the MQOO_INPUT_* options, as well as the MQOO_BROWSE
option, on your MQOPEN call.)

To remove the message, call MQGET again, but in the Options field of the
MQGMO structure, specify MQGMO_MSG_UNDER_CURSOR. In this case, the
MQGET call ignores the Msgld, CorrellId, and GroupId fields of the MQMD
structure.

In the time between your browsing and removal steps, another program may have
removed messages from the queue, including the message under your browse
cursor. In this case, your MQGET call returns a reason code to say that the
message is not available.

Browsing messages in logical order

Browsing messages in logical order is supported on MQSeries Version 5 products only.

Lagical and physical ardering” on page 120 discusses the difference between the
logical and physical order of messages on a queue. This distinction is particularly
important when browsing a queue, because, in general, messages are not being
deleted and browse operations do not necessarily start at the beginning of the
queue. If an application browses through the various messages of one group (using
logical order), it is important that logical order should be followed to reach the
start of the next group, since the last message of one group may occur physically
after the first message of the next group. The MQGMO_LOGICAL_ORDER option
ensures that logical order is followed when scanning a queue.

MQGMO_ALL_MSGS_AVAILABLE (or MQGMO_ALL_SEGMENTS_AVAILABLE)
needs to be used with care for browse operations. Consider the case of logical
messages with MQGMO_ALL_MSGS_AVAILABLE. The effect of this is that a
logical message is available only if all of the remaining messages in the group are
also present. If they are not, the message is passed over. This can mean that when
the missing messages arrive subsequently, they will not be noticed by a
browse-next operation.

For example, if the following logical messages are present,

Logical message 1 (not last) of group 123
Logical message 1 (not last) of group 456
Logical message 2 (last) of group 456

and a browse function is issued with MQGMO_ALL_MSGS_AVAILABLE, the first

logical message of group 456 is returned, leaving the browse cursor on this logical
message. If the second (last) message of group 123 now arrives,

Chapter 10. Getting messages from a queue 145

Browsing messages in logical order

Logical message 1 (not last) of group 123

Logical message 2 (last) of group 123
Logical message 1 (not last) of group 456 <=== browse cursor
Logical message 2 (last) of group 456

and the same browse-next function is issued, it will not be noticed that group 123
is now complete, because the first message of this group is before the browse
cursor.

In some cases (for example, if messages are retrieved destructively when the group
is present in its entirety), it may be acceptable to use
MQGMO_ALL_MSGS_AVAILABLE together with MQGMO_BROWSE_FIRST.
Otherwise, the browse scan must be repeated in order to take note of newly
arrived messages that have been missed; just issuing MQGMO_WAIT together
with MQGMO_BROWSE_NEXT and MQGMO_ALL_MSGS_AVAILABLE does not
take account of them. (This also happens to higher-priority messages that might
arrive after scanning the messages is complete.)

The next sections look at browsing examples that deal with unsegmented
messages; segmented messages follow similar principles.

Browsing messages in groups

In this example, the application browses through each message on the queue, in
logical order.

Messages on the queue may either be grouped or not. For grouped messages, the
application does not want to start processing any group until all of the messages
within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is therefore specified
for the first message in the group; for subsequent messages in the group, this
option is unnecessary.

MQGMO_WAIT is used in this example. However, although the wait can be
satisfied if a new group arrives, for the reasons in I'Browsing messages in logical
brder” on page 144, it will not be satisfied if the browse cursor has already passed
the first logical message in a group, and the remaining messages now arrive.
Nevertheless, waiting for a suitable interval ensures that the application does not
constantly loop while waiting for new messages or segments.

MQGMO_LOGICAL_ORDER is used throughout, to ensure that the scan is in
logical order. This contrasts with the destructive MQGET example, where because
each group is being removed, MQGMO_LOGICAL_ORDER is not used when
looking for the first (or only) message in a group.

It is assumed that the application’s buffer is always large enough to hold the entire
message, whether or not the message has been segmented.
MQGMO_COMPLETE_MSG is therefore specified on each MQGET.

The following gives an example of browsing logical messages in a group:

/* Browse the first message in a group, or a message not in a group */

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER
| MQGMO ALL | MSGS _AVAILABLE T MQGMO _| WAIT

MQGET GMO.MatchOptions = MQMO_MATCH_MSG_SEQ_NUMBER MD.MsgSegNumber = 1

/* Examine first or only message */

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

146 MQseries Application Programming Guide

Browsing messages in logical order

do while (GroupStatus == MQGS_MSG_IN_GROUP)
MQGET
/* Examine each remaining message in the group */

The above group is repeated until MQRC_NO_MSG_AVAILABLE is returned.

Browsing and retrieving destructively

In this example, the application browses each of the logical messages within a

group, before deciding whether to retrieve that group destructively.

The first part of this example is similar to the previous one. However in this case,
having browsed an entire group, we may decide to go back and retrieve it

destructively.

As each group is removed in this example, MQGMO_LOGICAL_ORDER is not

used when looking for the first or only message in a group.

The following gives an example of browsing and then retrieving destructively:
GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

| MQGMO_ALL MESSAGES_AVAILABE | MQGMO_WAIT
do while (GroupStatus == MQGS_MSG_IN_GROUP)
MQGET
/* Examine each remaining message in the group (or as many as
necessary to decide whether or not to get it destructively) =/

if (we want to retrieve the group destructively)

if (GroupStatus == "' ')
/* We retrieved an ungrouped message */
GMO.Options = MQGMO_MSG_UNDER_CURSOR | MQGMO_SYNCPOINT
MQGET GMO.MatchOptions = 0
/* Process the message */

else

/* We retrieved one or more messages in a group. The browse cursor */
/* will not normally be still on the first in the group, so we have */

/* to match on the GroupId and MsgSeqNumber = 1.

*/

/* Another way, which works for both grouped and ungrouped messages,*/

/* would be to remember the MsgIld of the first message when it was
/* browsed, and match on that.
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID
| MQMO_MATCH_MSG_SEQ_NUMBER,
(MQMD. GroupId = value already in the MD)
MQMD.MsgSegNumber = 1
/* Process first or only message */

GMO.Options = MQGMO_COMPLETE MSG | MQGMO_SYNCPOINT
| MQGMO_LOGICAL_ORDER
do while (GroupStatus == MQGS_MSG_IN_GROUP)
MQGET
/* Process each remaining message in the group */

Chapter 10. Getting messages from a queue

*/
*/

147

MQGET failure

Some cases where the MQGET call fails

If certain attributes of a queue are changed using the FORCE option on a
command between issuing an MQOPEN and an MQGET call, the MQGET call fails
and returns the MQRC_OBJECT_CHANGED reason code. The queue manager
marks the object handle as being no longer valid. This also happens if the changes
apply to any queue to which the queue name resolves. The attributes that affect
the handle in this way are listed in the description of the MQOPEN call in the
MQSeries Application Programming Referencd manual. If your call returns the
MQRC_OBJECT_CHANGED reason code, close the queue, reopen it, then try to
get a message again.

If get operations are inhibited for a queue from which you are attempting to get
messages (or any queue to which the queue name resolves), the MQGET call fails
and returns the MQRC_GET_INHIBITED reason code. This happens even if you
are using the MQGET call for browsing. You may be able to get a message
successfully if you attempt the MQGET call at a later time, if the design of the
application is such that other programs change the attributes of queues regularly.

If a dynamic queue (either temporary or permanent) has been deleted, MQGET

calls using a previously acquired object handle fail and return the
MQRC_Q_DELETED reason code.

148 MQseries Application Programming Guide

Chapter 11. Writing data-conversion exits

Data-conversion exits are not supported on MQSeries for Windows or VSE/ESA.

The Message Descriptor of a message is created by your application when you do
an MQPUT. Because MQSeries needs to be able to understand the contents of the

MQMD regardless of the platform it is created on, it is converted automatically by
the system.

Application data, however, is not converted automatically. If character data is being
exchanged between platforms where the CodedCharSetId and Encoding fields differ,
for example, between ASCII and EBCDIC, it is the responsibility of the application
to arrange for conversion of the message. Application data conversion may be
performed by the queue manager itself or by a user exit program, referred to as a
data-conversion exit. This chapter discusses the data-conversion exit facility that
MQSeries provides.

Control may be passed to the data-conversion exit during an MQGET call. This
avoids converting across different platforms before reaching the final destination.
However, if the final destination is a platform that does not support data
conversion on the MQGET, you must specify CONVERT(YES) on the sender
channel that sends the data to its final destination. This ensures that MQSeries
converts the data during transmission. In this case, your data-conversion exit must
reside on the system where the sender channel is defined.

The MQGET call can be issued directly by an application. Set the CodedCharSetId
field of the MQMD to MQCCSI_DEFAULT to pick up the default CCSID of the
queue manager. This ensures that MQSeries knows the correct target CCSID.

The conditions required for the data-conversion exit to be called are defined for the

MQGET call in the MQSeries Application Programming Referencd manual.

For a description of the parameters that are passed to the data-conversion exit, and

detailed usage notes, see the IMQSeries Application Programming Referencd manual

for the MQ_DATA_CONV_EXIT call and the MQDXP structure.

Programs that convert application data between different machine encodings and
CCSIDs must conform to the MQSeries data conversion interface (DCI).

This chapter introduces data- conver5|on exits, under these headings:

© Copyright IBM Corp. 1993, 2000 149

data-conversion exit invocation

Invoking the data-conversion exit

A data-conversion exit is a user-written exit that receives control during the
processing of an MQGET call. The exit is invoked if the following are true:

* The MQGMO_CONVERT option is specified on the MQGET call.

* The CodedCharSetId or Encoding fields in the MQMD structure associated with
the message on the queue differ from the CodedCharSetId or Encoding fields in
the MQMD structure specified on the MQGET call (see the code page support
tables in the MQSeries Application Programming Referencd manual).

* The Format field in the MQMD structure associated with the message is not
MQFMT_NONE (MQFMT_STRING indicates that the message consists entirely
of character data).

* The BufferLength specified on the MQGET call is not zero.
* The message data length is not zero.

» Either the message format is not one that can be handled by one of the built-in
conversion routines, or its format can be handled by one of the built-in
conversion routines but the routine is unable to convert the message itself. The
conversion routines supplied with the product always attempt to convert the
built-in format messages first; user-written routines are called only if these
product-supplied routines fail to convert.

There are some other conditions, described fully in the usage notes of the

MQ_DATA_CONV_EXIT call in the IMQSeries Application Programming Referencd

manual.

See the MQSeries Application Programming Referencd manual for details of the

MQGET call. Data-conversion exits cannot use MQI calls, other than MQXCNVC.

A new copy of the exit is loaded when an application attempts to retrieve the first
message that uses that Format since the application connected to the queue
manager. A new copy may also be loaded at other times if the queue manager has
discarded a previously-loaded copy.

The data-conversion exit runs in an environment similar to that of the program
which issued the MQGET call. As well as user applications, the program can be an
MCA (message channel agent) sending messages to a destination queue manager
that does not support message conversion. The environment includes address
space and user profile, where applicable. The exit cannot compromise the queue
manager’s integrity, since it does not run in the queue manager’s environment.

In a client-server environment, the exit is loaded at the server, and conversion
takes place there.

Data conversion on OS/390
On 0OS/390, you must also be aware of the following:
» Exit programs can be written in assembler language only.
» Exit programs must be re-entrant, and capable of running anywhere in storage.

» Exit programs must restore the environment on exit to that at entry, and must
free any storage obtained.

» Exit programs must not WAIT, or issue ESTAEs or SPIEs.

» Exit programs are normally invoked as if by OS/390 LINK in:
— Non-authorized problem program state
— Primary address space control mode

150 MQseries Application Programming Guide

data-conversion exit invocation

Non cross-memory mode

Non access-register mode

31 bit addressing mode

TCB-PRB mode

* When used by a CICS application, the exit is invoked by EXEC CICS LINK, and
should conform to the CICS programming conventions. The parameters are
passed by pointers (addresses) in the CICS communication area (COMMAREA).

Although not recommended, user exit programs can also make use of CICS API

calls, with the following caution:

— Do not issue syncpoints, as the results could influence units of work declared
by the MCA.

— Do not update any resources controlled by a resource manager other than
MQSeries for OS/390, including those controlled by CICS Transaction Server
for OS/390.

» For distributed queuing without CICS, the exit is loaded from the data set
referenced by the CSQXLIB DD statement. In other environments, the exit is
loaded from the same place as application programs.

» For distributed queuing using CICS, data-conversion exits are not supported.

Writing a data-conversion exit program

For OS/390, you must write data-conversion exits in assembler language. For other
platforms, it is recommended that you use the C programming language.

To help you create a data-conversion exit program, the following are supplied:
* A skeleton source file
* A convert characters call

» A utility that creates a fragment of code that performs data conversion on data
type structures This utility takes C input only. On OS/390, it produces assembler
code.

These are described in subsequent sections.

For the procedure for writing the programs see:

Skeleton source file

These can be used as your starting point when writing a data-conversion exit
program. The files supplied are listed in

Table 7. Skeleton source files

Platform File

AIX amaqsvfc0.c

AS/400 QMQMSAMP/QCSRC(AMQSVFC4)
AT&T GIS UNIX amgqsvfcx.c

Chapter 11. Writing data-conversion exits 151

Writing a data-conversion exit

Table 7. Skeleton source files (continued)

Platform File
Digital OpenVMS AMQSVFCX.C
HP-UX amqsvfc0.c
0S/2 AMQSVFCO.C
0S/390 CSQ4BAXS (il
CSQ4BAX9 (@)
CSQ4cAX9 (B)
SINIX and DC/OSx amgsvfcx.c
Sun Solaris amgqsvfc0.c
Tandem NSK amgsvfcn
Windows NT amgqsvfc0.c
Notes:
1. lllustrates the MQXCVNC call.
2. A wrapper for the code fragments generated by the utility for use in all environments
except CICS.
3. A wrapper for the code fragments generated by the utility for use in the CICS
environment.

Convert characters call

The MQXCNVC (Convert characters) call may be used from within a
data-conversion exit program to convert character message data from one character
set to another. For certain multibyte character sets (for example, UCS2 character
sets), the appropriate options must be used.

No other MQI calls can be made from within the exit; an attempt to make such a
call fails with reason code MQRC_CALL_IN_PROGRESS.

See the MQSeries Application Programming Referencd manual for further information

on the MQXCNVC call and appropriate options.

Utility for creating conversion-exit code
The commands for creating conversion-exit code are:

AS/400
CVTMQMDTA (Convert MQSeries Data Type)

0S/2, Digital OpenVMS, Tandem NSK, Windows NT, and UNIX systems
crtmqcvx (Create MQSeries conversion-exit)

0S/390
CSQUCVX

The command for your platform produces a fragment of code that performs data
conversion on data type structures, for use in your data-conversion exit program.
The command takes a file containing one or more C language structure definitions.
On 0OS/390, it then generates a data set containing assembler code fragments and
conversion functions. On other platforms, it generates a file with a C function to
convert each structure definition. The utility requires access to the LE/370 run-time
library SCEERUN.

152 MQseries Application Programming Guide

Writing a data-conversion exit

Invoking the CSQUCVX utility on OS/390
MShows an example of the JCL used to invoke the CSQUCVX utility.

//CVX EXEC PGM=CSQUCVX

//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE

// DD DISP=SHR,DSN=thlqual.SCSQLOAD

// DD DISP=SHR,DSN=1e370qual.SCEERUN
//SYSPRINT DD SYSOUT=+

//CSQUINP DD DISP=SHR,DSN=MY.MQSERIES.FORMATS (MSG1)
//CSQUOUT DD DISP=0LD,DSN=MY.MQSERIES.EXITS(MSG1)

Figure 13. Sample JCL used to invoke the CSQUCVX utility

Data definition statements
The CSQUCVX utility requires DD statements with the following DDnames:

SYSPRINT
This specifies a data set or print spool class for reports and error messages.

CSQUINP
This specifies the sequential data set containing the definitions of the data
structures to be converted.

CSQUOUT
This specifies the sequential data set where the conversion code fragments
are to be written. The logical record length (LRECL) must be 80 and the
record format (RECFM) must be FB.

Error messages in OS/2, Windows NT, and UNIX systems

The crtmgcvx command returns messages in the range AMQ7953 through
AMQ7970. For other platforms, see the appropriate System Management Guide for
your platform.

There are two main types of error:
* Major errors, such as syntax errors, when processing cannot continue.

A message is displayed on the screen giving the line number of the error in the
input file. The output file may have been partially created.

» Other errors when a message is displayed stating that a problem has been found
but parsing of the structure can continue.

The output file has been created and contains error information on the problems
that have occurred. This error information is prefixed by #error so that the code
produced will not be accepted by any compiler without intervention to rectify
the problems.

Valid syntax

Your input file for the ut|I|ty must conform to the C Ianguage syntax. If you are
unfamiliar with C, refer to

In addition, you must be aware of the following rules:
» typedef is recognized only before the struct keyword.
* A structure tag is required on your structure declarations.

* Empty square brackets [] may be used to denote a variable length array or
string at the end of a message.

* Multidimensional arrays and arrays of strings are not supported.

Chapter 11. Writing data-conversion exits 153

Writing a data-conversion exit

» The following additional data types are recognized:
MQBYTE
MQCHAR
MQSHORT
MQLONG

MQCHAR fields are code page converted, but MQBYTE is left untouched. If the
encoding is different, MQSHORT and MQLONG are converted accordingly.

* The following should not be used:
float
double
pointers
bit-fields

This is because the utility for creating conversion-exit code does not provide the
facility to convert these data types. To overcome this, you can write your own
routines and call them from the exit.

Other points to note:
» Do not use sequence numbers in the input data set.

 If there are fields for which you want to provide your own conversion routines,
declare them as MQBYTE, and then replace the generated CMQXCFBA macros
with your own conversion code.

Example of valid syntax for the input data set

struct TEST { MQLONG SERIAL_NUMBER;
MQCHAR ID[5];
MQSHORT ~ VERSION;
MQBYTE CODE[4];
MQLONG ~ DIMENSIONS[3];
MQCHAR NAME[24];
}s

This corresponds to the following declarations in the other programming
languages:

COBOL:

10 TEST.

15 SERIAL-NUMBER PIC S9(9) BINARY.

15 1D PIC X(5).

15 VERSION PIC S9(4) BINARY.

% CODE IS NOT TO BE CONVERTED

15 CODE PIC X(4).

15 DIMENSIONS PIC S9(9) BINARY OCCURS 3 TIMES.
15 NAME PIC X(24).

System/390 assembler: Supported on OS/390 only

TEST EQU =
SERIAL_NUMBER DS F

ID DS CL5
VERSION DS H
CODE DS XL4
DIMENSIONS DS 3F
NAME DS CL24

PL/I: Supported on AIX, OS/390, OS/2 Warp, and Windows NT only

DCL 1 TEST,
2 SERIAL_NUMBER FIXED BIN(31),
2 1D CHAR(5),

154 MmQSeries Application Programming Guide

Writing a data-conversion exit

2 VERSION FIXED BIN(15),

2 CODE CHAR(4), /* not to be converted x/
2 DIMENSIONS(3) FIXED BIN(31),

2 NAME CHAR(24);

Writing a data-conversion exit program for MQSeries for AS/400

Follow these steps:

1.

Name your message format. The name must fit in the Format field of the
MQMD. The Format name should not have leading embedded blanks, and
trailing blanks are ignored. The object’s name must have no more than eight
non-blank characters, because the Format is only eight characters long.
Remember to use this name each time you send a message (our example uses
the name Format).

Create a structure to represent your message. See E\alid syntax” on page 153
for an example.

Run this structure through the CVTMQMDTA command to create a code
fragment for your data-conversion exit.

The functions generated by the CVTMQMDTA command use macros that are
shipped in the file QMQM/H(AMQSVMHA). These macros are written
assuming that all structures are packed; they should be amended if this is not
the case.

Take a copy of the supplied skeleton source file,
QMQMSAMP/QCSRC(AMQSVFC4) and rename it. (Our example uses the
name EXIT_MOD.)

Find the following comment boxes in the source file and insert code as
described:

a. Towards the bottom of the source file, a comment box starts with:
/* Insert the functions produced by the data-conversion exit x/

Here, insert the code fragment generated in step ¢}
b. Near the middle of the source file, a comment box starts with:
/% Insert calls to the code fragments to convert the format's */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function you added in
step Ed above. Remove the comment characters to activate the function. If
there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in
step Ed above.

If the message contains character data, the generated code calls MQXCNVC,;
this can be resolved by binding the service program QMQM/LIBMQM.

Compile the source module, EXIT_MOD, as follows:

CRTCMOD MODULE(1ibrary/EXIT_MOD) +
SRCFILE(QCSRC) +
TERASPACE (*YES *TSIFC)

Create/link the program.
For nonthreaded applications, use the following:

Chapter 11. Writing data-conversion exits 155

MQSeries for AS/400 data-conversion exit

CRTSRVPGM SRVPGM(1ibrary/Format) +
MODULE (1ibrary/EXIT_MOD) +
BNDSRVPGM (QMQM/LIBMQM) +
ACTGRP (QMQM) +
USRPRF (*USER)

In addition to creating the data-conversion exit for the basic environment,
another is required in the threaded environment. This loadable object must be
followed by R. The LIBMQM_R library should be used to resolve calls to the
MQXCNVC. Both loadable objects are required for a threaded environment.
CRTSRVPGM PGM(1ibrary/Format R) +

MODULE(1ibrary/EXIT_MOD) +

BNDSRVPGM(QMQM/LIBMQM R) +

ACTGRP(QMQM) +

USRPRF (*USER)
Place the output in the library list for the MQSeries job. It is recommended
that, for production, data-conversion exit programs be stored in QSYS.

Notes:

1.

If CVTMQMDTA uses packed structures, all MQSeries applications must use
the _Packed qualifier.

Data-conversion exit programs must be re-entrant.

MQXCNVC is the only MQI call that may be issued from a data-conversion
exit.

The exit program should be compiled with the user profile compiler option set
to *USER, so that the exit runs with the authority of the user.

Teraspace memory enablement is required for all user exits with Version 5.1 of
MQSeries for AS/400, and TERASPACE(*YES *TSIFC) must be specified in the
CRTCMOD and CRTBNDC commands.

Writing a data-conversion exit for MQSeries for OS/2 Warp

Follow these steps:

1.

Name your message format. The name must fit in the Format field of the
MQMD. The Format name should not have leading blanks. Trailing blanks are
ignored. The object’s name must have no more than eight non-blank characters,
because the Format is only eight characters long.

A .DEF file called AMQSVFC2.DEF is also supplied in the samples directory;,
<drive:\directory>\MQM\TOOLS\C\SAMPLES. Take a copy of this file and
rename it, for example, to MYFORMAT.DEF. Make sure that the name of the
DLL being created and the name specified in MYFORMAT.DEF are the same.
Overwrite the name FORMAT1 in MYFORMAT.DEF with the new format name.

Remember to use this name each time you send a message.

Create a structure to represent your message. See b&hdsyn.taLan_pageJ.Sﬂ
for an example.

Run this structure through the CRTMQCVX command to create a code
fragment for your data-conversion exit.

The functions generated by the CRTMQCVX command use macros which are
written assuming that all structures are packed; they should be amended if this
is not the case.

Take a copy of the supplied skeleton source file, AMQSVFCO0.C, renaming it to
the name of your message format that you decided on in step Ul (that is,

156 MQseries Application Programming Guide

MQSeries for OS/2 Warp data-conversion exit

MYFORMAT.C in this example). AMQSVFCO0.C is in
<drive:\directory>\MQM\TOOLS\C\SAMPLES (where <drive:\directory>
was specified at installation).

The skeleton includes a sample header file AMQSVMHA H in the same
directory. Make sure that your include path points to this directory to pick up
this file.

The AMQSVMHA H file contains macros that are used by the code generated
by the CRTMQCVX command. If the structure to be converted contains
character data, then these macros call MQXCNVC.

Find the following comment boxes in the source file and insert code as
described:

a. Towards the bottom of the source file, a comment box starts with:
/* Insert the functions produced by the data-conversion exit x/

Here, insert the code fragment generated in step B
b. Near the middle of the source file, a comment box starts with:
/* Insert calls to the code fragments to convert the format's =*/

This is followed by a commented-out call to the function ConverttagSTRUCT.

Chan%e the name of the function to the name of the function you added in
step ba above. Remove the comment characters to activate the function. If
there are several functions, create calls for each of them.
c. Near the top of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in
step Ed above.

Resolve this call by linking the routine with the library MQMVX.LIB, in the
directory <drive:\directory>\MQMN\TOOLS\LIB.
Create the following command file:

icc /Ge- /I<drive:\directory>\mgm\tools\c\samples \
/I<drive:\directory>\mgm\tools\c\include MYFORMAT.C \
<drive:\directory>\mgm\tools\Tib\mgm.1ib MYFORMAT.DEF \
<drive:\directory>\mgm\tools\1ib\mgmvx.1ib

where <drive:\directory> is specified at installation.

Issue the command file to compile your exit as a DLL file.

Place the output in the \mgm\exits subdirectory. The path used to look for the
data-conversion exits is given in the gm.ini file as DefaultExitPath. This path is
set for each queue manager and the exit will only be looked for in that path or
paths.

Notes:

1.

If CVTMQCVX uses packed structures, all MQSeries applications must be
compiled in this way.

Data-conversion exit programs must be re-entrant.

MQXCNVC is the only MQI call that may be issued from a data-conversion
exit.

Chapter 11. Writing data-conversion exits 157

MQSeries for OS/390 data-conversion exit

Writing a data-conversion exit program for MQSeries for OS/390

Follow these steps:

1.

Take the supplied source skeleton CSQ4BAX9 (for non-CICS environments) or
CSQ4CAXQ (for CICS) as your starting point.

Run the CSQUCVX utility.

Follow the instructions in the prolog of CSQ4BAX9 or CSQ4CAX?9 to
incorporate the routines generated by the CSQUCVX utility, in the order that
the structures occur in the message you want to convert.

The utility assumes that the data structures are not packed, that the implied
alignment of the data is honored, and that the structures start on a full-word
boundary, with bytes being skipped as required (as between ID and VERSION
in the EExample of valid syntax for the input data set” on page 154). If the
structures are packed, you will need to omit the CMQXCALA macros that are
generated. You are therefore strongly recommended to declare your structures
in such a way that all fields are named and no bytes are skipped; in the

EExample of valid syntax for the input data set” on page 154, you would add a

field “MQBYTE DUMMY;” between ID and VERSION.

The supplied exit returns an error if the input buffer is shorter than the
message format to be converted. Although the exit converts as many complete
fields as possible, the error causes an unconverted message to be returned to
the application. If you want to allow short input buffers to be converted as far
as possible, including partial fields, change the TRUNC= value on the
CSQXCDFA macro to YES: no error is returned, so the application receives a
converted message. The application is responsible for handling the truncation.

Add any other special processing code that you need.
Rename the program to your data format name.

Compile and link-edit your program like a batch application program (unless it
is for use with CICS applications). The macros in the code generated by the
utility are in the library, thiqual. SCSQMACS.

If the message contains character data, the generated code will call MQXCNVC.
If your exit uses this call, link-edit it with the exit stub program CSQASTUB.
The stub is language-independent and environment-independent. Alternatively,
you can load the stub dynamically using the dynamic call name CSQXCNVC.

See I‘Dynamically calling the MQSeries stub” on page 267 for more information.

Place the link-edited module in your application load library, and in a data set
that is referenced by the CSQXLIB DD statement of your task procedure started
by your channel initiator.

If the exit is for use by CICS applications, compile and link-edit it like a CICS
application program, including CSQASTUB if required. Place it in your CICS
application program library. Define the program to CICS in the usual way;,
specifying EXECKEY(CICS) in the definition.

Note: Although the LE/370 run-time libraries are needed for running the

CSQUCVX utility (see step E) they are not needed for link-editing or
running the data-conversion exit itself (see steps B and E)

See UAlunng_M.QSeaesJMS_hudge_a.pphcaum:s_an_page_zﬂ for information about

data conversion within the MQSeries-IMS bridge.

158 MQseries Application Programming Guide

MQSeries for Tandem NonStop Kernel data-conversion exit

Writing a data-conversion exit for MQSeries for Tandem NonStop

Kernel

Dynamically bound libraries are not supported by MQSeries for Tandem NonStop
Kernel. Data conversion exits (and channel exits) are implemented by including
statically bound stub functions in the MQSeries libraries and executables that can
be replaced using the REPLACE bind option.

A data conversion exit must be called DATACONVEXIT (see sample AMQSVFCN),
and can be bound into the chosen executable (or library) using the TACL macro
BEXITE.

Note: This procedure modifies the target executable; you are recommended to
make a back-up copy of the target executable or library before using the
macro.

Exit functions, once compiled, must be bound directly into the target executable or
library to be accessible by MQSeries. The following TACL macro is used for this
purpose:

BEXITE
Usage: BEXITE target-executable-or-library source-exit-file-or-
library

For example, to bind the sample data conversion exit into the sample MQSGETA,
follow these steps:

1. Compile the exit function DATACONVEXIT (CSAMP AMQSVFCN).
2. Compile the get application (CSAMP AMQSGETO).

3. Bind the get application (BSAMP AMQSGET).
4

. Bind the exit function into the get application (BEXITE AMQSGET
AMQSVFCO).

Alternatively, if all applications are to have this data conversion exit, the following
steps would create both a user library and an application with the exit bound in:

1. Compile the exit function DATACONVEXIT (CSAMP AMQSVFCN).
2. Compile the get application (CSAMP AMQSGETO).

3. Bind the exit function into the user library (BEXITE ZMQSLIB.MQMLIBC
AMQSVFCO).

4. Bind the get application with the modified library (BSAMP AMQSGET).

If the data conversion exit is to be used by channels processing within MQSeries, it
must also be bound into the caller executable by the system administrator. For
example:

BEXITE ZMQSEXE.MQMCACAL AMQSVFCO

Use the TACL macro BDCXALL to bind the data conversion exit into all required
MQSeries processes. For example:

BDCXALL source-exit-file-or-library

Reusing data-conversion exit programs

In other MQSeries Version 2 products, a data-conversion exit is required for each
application-defined format to be supported. The data-conversion exit programs are
named according to the Format value (from MQMD) of the message to be

Chapter 11. Writing data-conversion exits 159

MQSeries for Tandem NonStop Kernel data-conversion exit

converted. The format for which conversion is being requested can be determined
from the Format field of the MsgDesc parameter. The appropriate data-conversion
exit program can therefore be invoked from MQDATACONVEXIT(). The
parameters supplied to MQDATACONVEXIT() can be supplied to the invoked
data-conversion function.

Writing a data-conversion exit for MQSeries on UNIX systems and
Compag (DIGITAL) OpenVMS

For SINIX and DC/OSx, data-conversion exits must not use DCE.

Follow these steps:

1. Name your message format. The name must fit in the Format field of the
MQMD, and be in uppercase, for example, MYFORMAT. The Format name
should not have leading blanks. Trailing blanks are ignored. The object’s name
must have no more than eight non-blank characters because the Format is only
eight characters long. Remember to use this name each time you send a
message.

2. Create a structure to represent your message. See \alid syntax” an page 153
for an example.

3. Run this structure through the crtmqgcvx command to create a code fragment
for your data-conversion exit.
The functions generated by the crtmqgcvx command use macros which are

written assuming that all structures are packed; they should be amended if this
is not the case.

4. Take a copy of the supplied skeleton source file renaming it to the name of
your message format that you decided on in step Ul (that is, MYFORMAT.C).

Note: On MQSeries for AlX, HP-UX, and Sun Solaris the skeleton source file is
called amgsvfc0.c. On MQSeries for AT&T GIS UNIX, Compaq
(DIGITAL) OpenVMS, DIGITAL UNIX, and SINIX and DC/OSx the
skeleton source file is called amgsvfcx.c.

The skeleton includes a sample header file amgsvmha.h in the directory
/usr/mgm/inc (on AlX) or Zopt/mgm/inc (on other UNIX systems). Make
sure that your include path points to this directory to pick up this file.

The amgsvmha.h file contains macros that are used by the code generated by
the crtmqgcvx command. If the structure to be converted contains character data,
then these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as
described:

a. Towards the bottom of the source file, a comment box starts with:
/* Insert the functions produced by the data-conversion exit =/

Here, insert the code fragment generated in step B
b. Near the middle of the source file, a comment box starts with:
/* Insert calls to the code fragments to convert the format's */

This is followed by a commented-out call to the function ConverttagSTRUCT.

160 MQSeries Application Programming Guide

MQSeries on UNIX systems, Compaq (DIGITAL) OpenVMS data-conversion exit

Change the name of the function to the name of the function you added in
step BEd above. Remove the comment characters to activate the function. If
there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in
step Ed above.

6. Resolve this call by linking the routine with the library libmgm. For threaded
programs, the routine must be linked with the library libmgm_r (AIX and
HP-UX only).

7. Compile your exit as a shared library, using MQStart as the entry point. To do

this, see L - ” , or

8. Place the output in the default system directory, /var/mgm/exits, to ensure
that it can be loaded when required. The path used to look for the
data-conversion exits is given in the gm.ini file. This path can be set for each
queue manager and the exit is only looked for in that path or paths.

Notes:
1. If crtmqcvx uses packed structures, all MQSeries applications must be compiled
in this way.

2. Data-conversion exit programs must be re-entrant.

3. MQXCNVC is the only MQI call that may be issued from a data-conversion
exit.

UNIX environment

There are two environments to consider: non threaded and threaded.

Non-threaded environment
The loadable object must have its name in upper case, for example MYFORMAT.

The libmgm library should be used to resolve the calls to MQXCNVC.

Threaded environment
In addition to creating the data-conversion exit for the basic environment, another

is required in the threaded environment. This loadable object must be followed by
_r (on AIX and HP-UX) and _d (on Sun Solaris) to indicate that it is a
DCE-threaded version. The libmgm_r library (on AIX and HP-UX) and the
Imgmcs_d library (on Sun Solaris) should be used to resolve the calls to
MQXCNVC. Note that both loadable objects (non-threaded and threaded) are
required for a threading environment.

If you are running MQI clients, all data conversion is performed by the proxy
running on the machine to which the client is attached. This means that any data
conversion exits are run on the server, in the environment of the proxy, and not as
part of the client application.

For most platforms, the proxy/responder program is a threaded program.
Consequently, the data conversion exit must be compiled with appropriate options
to run in this threaded environment. Whether or not the client application is
threaded is irrelevant.

On the MQSeries V5 for UNIX systems, the proxy is threaded. The model of
threads used depends on whether the DCE option has been installed.

Chapter 11. Writing data-conversion exits 161

MQSeries on UNIX systems, Compaq (DIGITAL) OpenVMS data-conversion exit

Note: If the data-conversion exits are in a mixed non-threaded and threaded
environment, the calling environment is detected and the appropriate object
loaded. The shared object should be placed in /var/mgm/exits to ensure it
can be loaded when required.

Compiling data-conversion exits on Digital OpenVMS
The names of the routines which are called by the data-conversion exit must be
made universal.

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE AMQSVFCX.C
$ LINK /SYS$SHARE: [SYSLIB]MYFORMAT AMQSVFCX.0BJ,MYFORMAT/OPTIONS

The contents of MYFORMAT.OPT vary depending on which platform you are
working on:

On Alpha:

SYS$SHARE :MQM/SHAREABLE
SYS$SHARE :MQMCS/SHAREABLE
SYMBOL_VECTOR=(MQSTART=PROCEDURE)

On VAX:

SYS$SHARE :MQM/SHAREABLE
SYS$SHARE :MQMCS/SHAREABLE
UNIVERSAL=MQSTART

If you are using threaded applications linked with the pthread library, you must
also build a second copy of the data-conversion exit with the thread options and
libraries:

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE AMQSVFCX.C
$ LINK /SYS$SHARE:[SYSLIB]MYFORMAT AMQSVFCX.0BJ,MYFORMAT/OPTIONS

Again, the contents of MYFORMAT.OPT vary depending on which platform you
are working on:

On Alpha:

SYS$SHARE :MQM_R/SHAREABLE

SYS$SHARE :MQMCS_R/SHAREABLE
SYS$SHARE : CMA$OPEN_RTL.EXE/SHAREABLE
SYMBOL_VECTOR- (MQSTART=PROCEDURE)

On VAX:

SYS$SHARE :MQM_R/SHAREABLE

SYS$SHARE :MQMCS_R/SHAREABLE
SYS$SHARE : CMA$OPEN_RTL.EXE/SHAREABLE
UNIVERSAL=MQSTART

Compiling data-conversion exits on UNIX

The following sections give examples of how to compile a data conversion exit on
the UNIX platforms.

On all platforms, the entry point to the module is MQStart.

On AIX 4.2

$ cc -c -I/usr/mgm/inc MYFORMAT.C
$ 1d MYFORMAT.o -e MQStart -o MYFORMAT -bM:SRE -H512 -T512 -Tmgm -1c
$ cp MYFORMAT /var/mgm/exits

162 MQseries Application Programming Guide

MQSeries on UNIX systems, Compaq (DIGITAL) OpenVMS data-conversion exit

If you are using threaded applications linked with the pthreads library or you are
running client applications, you must build a second copy of the conversion exit
with the thread options and libraries.

$ cc_r -c -I/usr/mgm/inc MYFORMAT.C

$ 1d MYFORMAT.o -e MQStart -o MYFORMAT r -bM:SRE -H512 \

-T512 -Tmgm_r -Tpthreads -Tc_r

$ cp MYFORMAT r /var/mgm/exits

On AIX 4.3

$ cc -c -I/usr/mgm/inc MYFORMAT.C
$ 1d MYFORMAT.o -e MQStart -o MYFORMAT -bM:SRE -H512 -T512 -Imgm -1c
$ cp MYFORMAT /var/mgm/exits

You must build conversion exits for the threaded environment using the draft 7
Posix threads interface rather than the draft 10 interface which is the AIX 4.3
default.

$ x1c_r7 -c -I/usr/mgm/inc MYFORMAT.C

$ 1d MYFORMAT.o -eMQStart -o MYFORMAT r -bm:SRE -H512 -T512 \

-Imgm_r -1pthreads_compat -Ipthreads -lc_r

$ cp MYFORMAT r /var/mgm/exits

On AT&T GIS UNIX

$ cc -c -K PIC -I/opt/mgm/inc MYFORMAT.C
$ 1d -G MYFORMAT.O -o MYFORMAT
$ cp MYFORMAT /opt/mgm/1ib

On DIGITAL UNIX

$ cc -stdl -c -I/opt/mgm/inc MYFORMAT.C
$ 1d MYFORMAT.o -shared -o MYFORMAT -L /opt/mgm/Tib -Tmgm -e MQStart -lc
$ cp MYFORMAT /opt/mgm/1ib

On HP-UX Version 10.20

$ CC -c -Aa +z -I/opt/mgm/inc MYFORMAT.C
$ 1d -b MYFORMAT.o -o MYFORMAT -L /opt/mgm/1ib -Tmgm +IMQStart
$ cp MYFORMAT /var/mgm/exits

If you are using threaded applications linked with the pthreads library or you are
running client applications, you must build a second copy of the conversion exit
with the thread options and libraries.

$ CC -c -Aa +z -I/opt/mgm/inc MYFORMAT.C

$ 1d -b MYFORMAT.o -o MYFORMAT r -L /opt/mgm/1ib \

-Imgm_r -lcma -lc_r +IMQStart

$ cp MYFORMAT r /var/mgm/exits

On HP-UX Version 11.00

$ CC -c -Aa +z -I/opt/mgm/inc MYFORMAT.C
$ 1d -b MYFORMAT.o -0 MYFORMAT -L /opt/mgm/Tib -Tmgm +IMQStart
$ cp MYFORMAT /var/mgm/exits

If you are using threaded applications linked with the POSIX Draft 10 pthreads
library, or you are running client applications, you must build the conversion exit
for Draft 10 threads.

$ CC -c -Aa +z -I/opt/mgm/inc MYFORMAT.C

$ 1d -b MYFORMAT.o -o MYFORMAT r -L/opt/mgm/1ib -Tmgm_r -l1pthread -1c

+IMQStart

$ cp MYFORMAT r /var/mgm/exits

Chapter 11. Writing data-conversion exits 163

MQSeries on UNIX systems, Compaq (DIGITAL) OpenVMS data-conversion exit

If you are using threaded applications linked with the POSIX Draft 4 (DCE)
pthreads library, or you are running client applications, you must build the
conversion exit for Draft 4 threads.

$ CC -c -Aa +z -I/opt/mgm/inc -D_PTHREADS DRAFT4 MYFORMAT.C

$ 1d -b MYFORMAT.o -o MYFORMAT d -L/opt/mgm/1ib -Tmgm_d -1dr -lcma -1lc

+IMQStart
$ cp MYFORMAT d /var/mgm/exits

On SINIX

$ cc -c -K PIC -I/opt/mgm/inc -Tmproc -Text MYFORMAT.C
$ 1d -G MYFORMAT.0 -0 MYFORMAT
$ cp MYFORMAT /opt/mgm/1ib

On DC/OSx

$ cc -c -K PIC -I/opt/mgm/inc -1iconv -Tmproc -Text MYFORMAT.C
$ 1d -G MYFORMAT.0 -0 MYFORMAT
$ cp MYFORMAT /opt/mgm/1ib

On Sun Solaris
If your application uses no threading calls or Posix V10 threading calls:

cc -c -KPIC -I/opt/mgm/inc MYFORMAT.C

1d -G /opt/SUNWspro/SC4.0/1ib/crtl.o \
/opt/SUNWspro/SC4.0/Tib/crti.o \
/opt/SUNWspro/SC4.0/1ib/crtn.o \
/opt/SUNWspro/SC4.0/1ib/values-xt.o \

MYFORMAT.o -o MYFORMAT -Tmgm -1thread -1socket -1c -Ins1 -1d1

cp MYFORMAT /var/mgm/exits

If your application requires DCE threading (for example, if it is a CICS
application):
cc -c -KPIC -I/opt/mgm/inc MYFORMAT.C

1d -G /opt/SUNWspro/SC4.0/1ib/crtl.o \
/opt/SUNWspro/SC4.0/1ib/crti.o \
/opt/SUNWspro/SC4.0/1ib/crtn.o \
/opt/SUNWspro/SC4.0/1ib/values-xt.o \

MYFORMAT.o -o MYFORMAT_d -1dce -Tns1 -Tthread -1m -l1socket \
-Imgmes_d -Tmgm -Tc -1d1

cp MYFORMAT /var/mgm/exits
Note: The SC4.0 directory name varies depending on the release of compiler.

If you want to run applications using both the Posix V10-threaded and the
DCE-threaded variants on a single queue manager:

1. Build a Posix V10 type of data-conversion exit. Name it MYFORMAT and place
it in the appropriate exit directory.

2. Build a DCE-threaded type of data-conversion exit. Name it MYFORMAT _d
and place it in the appropriate exit directory.

Two object files are generated; one of which loads the MYFORMAT
data-conversion exit, and the other of which loads the MYFORMAT _d
data-conversion exit.

164 MQseries Application Programming Guide

MQSeries for Windows NT data-conversion exit

Writing a data-conversion exit for MQSeries for Windows NT

Follow these steps:

1. Name your message format. The name must fit in the Format field of the
MQMD. The Format name should not have leading blanks. Trailing blanks are
ignored. The object’s name must have no more than eight non-blank characters,
because the Format is only eight characters long.

A .DEF file called amgsvfcn.def is also supplied in the samples directory,
<drive:\directory>\Program Files\MQSeries\Tools\C\Samples. Take a copy of
this file and rename it, for example, to MYFORMAT.DEF. Make sure that the
name of the DLL being created and the name specified in MYFORMAT.DEF are
the same. Overwrite the name FORMATL1 in MYFORMAT.DEF with the new
format name.

Remember to use this name each time you send a message.

2. Create a structure to represent your message. See Valid syntax” on page 153
for an example.

3. Run this structure through the CRTMQCVX command to create a code
fragment for your data-conversion exit.

The functions generated by the CVTMQCVX command use macros which are
written assuming that all structures are packed; they should be amended if this
is not the case.

4. Take a copy of the supplied skeleton source file, amgsvfc0.c, renaming it to the
name of your message format that you decided on in step fl (that is,
MYFORMAT).
amgsvfc0.c is in
<drive:\directory>\Program Files\MQSeries\Tools\C\Samples (where
<drive:\directory> was specified at installation).

The skeleton includes a sample header file amgsvmha.h in the same directory.
Make sure that your include path points to this directory to pick up this file.
The amgsvmbha.h file contains macros that are used by the code generated by
the CRTMQCVX command. If the structure to be converted contains character
data, then these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as
described:

a. Towards the bottom of the source file, a comment box starts with:
/* Insert the functions produced by the data-conversion exit =*/

Here, insert the code fragment generated in step B.
b. Near the middle of the source file, a comment box starts with:
/* Insert calls to the code fragments to convert the format's =/

This is followed by a commented-out call to the function ConverttagSTRUCT.

Chan&a the name of the function to the name of the function you added in
step ba above. Remove the comment characters to activate the function. If
there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in
step Ed above.

Chapter 11. Writing data-conversion exits 165

MQSeries for Windows NT data-conversion exit

6. Resolve this call by linking the routine with the library MQMVX.LIB, in the
directory <drive:\directory>\Program Files\MQSeries\Tools\Lib.
7. Create the following command file:

cl -1 <drive:\directory>\Program Files\MQSeries\Tools\C\Include -Tp \
MYFORMAT.C -LD -DEFAULTLIB \

<drive:\directory>\Program Files\MQSeries\Tools\Lib\mgm.1ib \
<drive:\directory>\Program Files\MQSeries\Tools\Lib\mgmvx.1ib \
MYFORMAT .DEF

where <drive:\directory> is specified at installation,

Issue the command file to compile your exit as a DLL file.

8. Place the output in the
CAWINNT\Profiles\AIll Users\Application Data\MQSeries\EXITS
subdirectory. The path used to look for the data-conversion exits is given in the
registry. This path can be set for each queue manager and the exit is only
looked for in that path or paths.

Notes:

1. If CVTMQCVX uses packed structures, all MQSeries applications must be
compiled in this way.

2. Data-conversion exit programs must be re-entrant.

3. MQXCNVC is the only MQI call that may be issued from a data-conversion
exit.

166 MQSeries Application Programming Guide

Chapter 12. Inquiring about and setting object attributes

Attributes are the properties that define the characteristics of an MQSeries object.
They affect the way that an object is processed by a queue manager. The attributes
of each type of MQSeries object are described in detail in the M.Q_Q.eues_Apphcamd

manual.

Some attributes are set when the object is defined, and can be changed only by
using the MQSeries commands; an example of such an attribute is the default
priority for messages put on a queue. Other attributes are affected by the operation
of the queue manager and may change over time; an example is the current depth
of a queue.

You can inquire about the current values of all these attributes using the MQINQ
call. The MQI also provides an MQSET call with which you can change some
queue attributes. You cannot use the MQI calls to change the attributes of any
other type of object; instead you must use;

For MQSeries for OS/390
The ALTER operator commands (or the DEFINE commands with the

REPLACE option), which are described in the MQSeries Command Referencd.

For MQSeries for AS/400
The CHGMQMx CL commands, which are described in the m
AS/400 /5 1 System Administration book, or you can use the MQSC facility.

For MQSeries for Tandem NonStop Kernel
The MQM screen-based interface, which is described in the MQSeries for
Tandem NonStop Kernel System Management Guide, or you can use the MQSC
facility.

For MQSeries for VSE/ESA
The panel interface, which is described in the MQSeries for VSE/ESA System
Management Guide.

For MQSeries for all other platforms

The MQSC facility, described in the MQSeries Command Referencd.

Note: The names of the attributes of objects are shown in this book in the form
that you use them with the MQINQ and MQSET calls. When you use
MQSeries commands to define, alter, or display the attributes, you must
identify the attributes using the keywords shown in the descriptions of the
commands in the above books.

Both the MQINQ and the MQSET calls use arrays of selectors to identify those
attributes you want to inquire about or set. There is a selector for each attribute
you can work with. The selector name has a prefix, determined by the nature of
the attribute:

MQCA_
These selectors refer to attributes that contain character data (for example,
the name of a queue).

MQIA_
These selectors refer to attributes that contain either numeric values (such

© Copyright IBM Corp. 1993, 2000 167

Object attributes

as CurrentQueueDepth, the number of messages on a queue) or a constant
value (such as SyncPoint, whether or not the queue manager supports
syncpoints).

Before you use the MQINQ or MQSET calls your application must be connected to
the queue manager, and you must use the MQOPEN call to open the object for
setting or inquiring about attributes. These operations are described in m
Connecting and disconnecting a gueue manager” on page 83 and EChapter 8]

| - | closi et]

Inquiring about the attributes of an object

Use the MQINQ call to inquire about the attributes of any type of MQSeries object.

As input to this call, you must supply:
* A connection handle.

* An object handle.

* The number of selectors.

* An array of attribute selectors, each selector having the form MQCA_* or
MQIA_*. Each selector represents an attribute whose value you want to inquire
about, and each selector must be valid for the type of object that the object
handle represents. You can specify selectors in any order.

* The number of integer attributes that you are inquiring about. Specify zero if
you are not inquiring about integer attributes.

* The length of the character attributes buffer in CharAttrLength. This must be at
least the sum of the lengths required to hold each character attribute string.
Specify zero if you are not inquiring about character attributes.

The output from MQINQ is:

* A set of integer attribute values copied into the array. The number of values is
determined by IntAttrCount. If either IntAttrCount or SelectorCount is zero,
this parameter is not used.

» The buffer in which character attributes are returned. The length of the buffer is
given by the CharAttrLength parameter. If either CharAttrLength or
SelectorCount is zero, this parameter is not used.

* A completion code. If the completion code gives a warning, this means that the
call completed only partially. In this case, you should examine the reason code.

* A reason code. There are three partial-completion situations:
— The selector does not apply to the queue type
— There is not enough space allowed for integer attributes
— There is not enough space allowed for character attributes

If more than one of these situations arise, the first one that applies is returned.

Namelists can be inquired only on AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun
Solaris, and Windows NT.

If you open a queue for output or inquire and it resolves to a non-local cluster
gueue you can only inquire the queue name, queue type, and common attributes.
The values of the common attributes are those of the chosen queue if
MQOO_BIND_ON_OPEN was used. The values are those of an arbitrary one of
the possible cluster queues if either MQOO_BIND_NOT_FIXED was used or

168 MQSeries Application Programming Guide

Using MQINQ

MQOO_BIND_AS Q DEF was used and the DefBind queue attribute was
MQBND_BIND_NOT_FIXED. See the IMQSeries Queue Manager Clusterd book for

more information.

Note: The values returned by the call are a snapshot of the selected attributes. The
attributes can change before your program acts on the returned values.

There is a description of the MQINQ call in the MQSeries Application Programming

manual.

Some cases where the MQINQ call fails

If you open an alias to inquire about its attributes, you are returned the attributes
of the alias queue (the MQSeries object used to access another queue), not those of
the base queue. However, the definition of the base queue to which the alias
resolves is also opened by the queue manager, and if another program changes the
usage of the base queue in the interval between your MQOPEN and MQINQ calls,
your MQINQ call fails and returns the MQRC_OBJECT_CHANGED reason code.
The call also fails if the attributes of the alias queue object are changed.

Similarly, when you open a remote queue to inquire about its attributes, you are
returned the attributes of the local definition of the remote queue only.

If you specify one or more selectors that are not valid for the type of queue about
whose attributes you are inquiring, the MQINQ call completes with a warning and
sets the output as follows:

» For integer attributes, the corresponding elements of IntAttrs are set to
MQIAV_NOT_APPLICABLE.

» For character attributes, the corresponding portions of the CharAttrs string are
set to asterisks.

If you specify one or more selectors that are not valid for the type of object about
whose attributes you are inquiring, the MQINQ call fails and returns the
MQRC_SELECTOR_ERROR reason code.

It is not possible to call MQINQ to look at a model queue. You will have to use
either the MQSC facility or use the commands available on your platform.

Setting queue attributes

You can set only the following queue attributes using the MQSET call:
* InhibitGet (but not for remote queues)

e DistlList

e InhibitPut

* TriggerControl

* TriggerType

e TriggerDepth

* TriggerMsgPriority

e TriggerData

The MQSET call has the same parameters as the MQINQ call. However for

MQSET, all parameters except the completion code and reason code are input
parameters. There are no partial-completion situations.

Chapter 12. Inquiring about and setting object attributes 169

Using MQSET

Note: You cannot use the MQI to set the attributes of MQSeries objects other than
locally-defined queues.

There is a description of the MQSET call in the IMQSeries Application Programming

manual.

170 MQseries Application Programming Guide

Chapter 13. Committing and backing out units of work

This chapter describes how to commit and back out any recoverable get and put
operations that have occurred in a unit of work. The following terms, described
below, are used in this topic:

* Commit

* Back out

» Syncpoint coordination

* Syncpoint

* Unit of work

* Single-phase commit

* Two-phase commit

If you are familiar with these transaction processing terms, you can skip to

Commit and back out
When a program puts a message on a queue within a unit of work, that
message is made visible to other programs only when the program commits
the unit of work. To commit a unit of work, all updates must be successful
to preserve data integrity. If the program detects an error and decides that
the put operation should not be made permanent, it can back out the unit
of work. When a program performs a back out, MQSeries restores the
message on the queue. The way in which the program performs the
commit and back out operations depends on the environment in which the
program is running.

Similarly, when a program gets a message from a queue within a unit of
work, that message remains on the queue until the program commits the
unit of work, but the message is not available to be retrieved by other
programs. The message is permanently deleted from the queue when the
program commits the unit of work. If the program backs out the unit of
work, MQSeries restores the queue to the state it was in before the
program performed the get operation.

Changes to queue attributes (either by the MQSET call or by commands)
are not affected by the committing or backing out of units of work.

Syncpoint coordination, syncpoint, unit of work
Syncpoint coordination is the process by which units of work are either
committed or backed out with data integrity.

The decision to commit or back out the changes is taken, in the simplest
case, at the end of a transaction. However, it can be more useful for an
application to synchronize data changes at other logical points within a
transaction. These logical points are called syncpoints (or synchronization
points) and the period of processing a set of updates between two
syncpoints is called a unit of work. Several MQGET calls and MQPUT calls
can be part of a single unit of work.

Single-phase commit
A single-phase commit process is one in which a program can commit
updates to a queue without coordinating its changes with other resource
managers.

Two-phase commit
A two-phase commit process is one in which updates that a program has

© Copyright IBM Corp. 1993, 2000 171

Commit and back out

made to MQSeries queues can be coordinated with updates to other
resources (for example, databases under the control of DB2). Under such a
process, updates to all resources are committed or backed out together.

To help handle units of work, MQSeries provides the BackoutCount
attribute. This is incremented each time a message, within a unit of work,
is backed out. If the message repeatedly causes the unit of work to abend,
the value of the BackoutCount finally exceeds that of the BackoutThreshold.
This value is set when the queue is defined. In this situation, the
application can choose to remove the message from the unit of work and
put it onto another queue, as defined in BackoutRequeueQName. When the

message is moved, the unit of work can commit.

This chapter introduces committing and backing out units of work, under these
headings:

ks Nt considerations in MOSeri ications]

Syncpoint considerations in MQSeries applications

Two-phase commit is supported under:

MQSeries for AIX

MQSeries for AS/400

MQSeries for HP-UX

MQSeries for OS/2 Warp

MQSeries for Sun Solaris

MQSeries for Tandem NonStop Kernel
MQSeries for Windows NT

CICS for MVS/ESA 4.1

CICS Transaction Server for OS/390
CICS on Open Systems

TXSeries for Windows NT

IMS/ESA

0S/390 batch with RRS

Other external coordinators using the X/Open XA interface

Single-phase commit is supported under:

MQSeries for AS/400

MQSeries for Compaq (DIGITAL) OpenVMS
MQSeries for OS/2 Warp

MQSeries for Tandem NonStop Kernel
MQSeries on UNIX systems

MQSeries for VSE/ESA

MQSeries for Windows

MQSeries for Windows NT

CICS for OS/2

CICS for Windows NT V2.0

0S/390 batch

172 MQseries Application Programming Guide

Syncpointing and MQSeries

Note: For further details on external interfaces see [‘lnterfaces to external syncpoint
managers” on page 179, and the XA documentation CAE Specification

Distributed Transaction Processing: The XA Specification, published by The
Open Group. Transaction managers (such as CICS, IMS, Encina, and Tuxedo)
can participate in two-phase commit, coordinated with other recoverable
resources. This means that the queuing functions provided by MQSeries can
be brought within the scope of a unit of work, managed by the transaction
manager.

Samples shipped with MQSeries show MQSeries coordinating XA-compliant
databases. For further information about these samples, see I‘Chapter 32_Sampld

In your MQSeries application, you can specify on every put and get call whether
you want the call to be under syncpoint control. To make a put operation operate
under syncpoint control, use the MQPMO_SYNCPOINT value in the Options field
of the MQPMO structure when you call MQPUT. For a get operation, use the
MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If you
do not explicitly choose an option, the default action depends on the platform. The
syncpoint control default on OS/390 and Tandem NSK is ‘yes’; for all other
platforms, it is ‘no’.

If a program issues the MQDISC call while there are uncommitted requests, an
implicit syncpoint occurs. If the program ends abnormally, an implicit backout
occurs. On OS/390, an implicit syncpoint occurs if the program ends normally
without first calling MQDISC.

For MQSeries for OS/390 programs, you can use the
MQGMO_MARK_SKIP_BACKOUT option to specify that a message should not be
backed out if backout occurs (in order to avoid an ‘MQGET-error-backout’ loop).

For information about using this option, see FSkipping backout” on page 134,

For information on committing and backing out units of work in MQSeries for
VSE/ESA, see the MQSeries for VSE/ESA V2R1 System Management Guide.

Syncpoints in MQSeries for OS/390 applications

This section explains how to use syncpoints in transaction manager (CICS and
IMS) and batch applications.

Syncpoints in CICS Transaction Server for OS/390 and CICS
for MVS/ESA applications

In a CICS application you establish a syncpoint by using the EXEC CICS
SYNCPOINT command. To back out all changes to the previous syncpoint, you
can use the EXEC CICS SYNCPOINT ROLLBACK command. For more
information, see the CICS Application Programming Reference manual.

If other recoverable resources are also involved in the unit of work, the queue
manager (in conjunction with the CICS syncpoint manager) participates in a
two-phase commit protocol; otherwise, the queue manager performs a single-phase
commit process.

Chapter 13. Committing and backing out units of work 173

Syncpointing and CICS

If a CICS application issues the MQDISC call, no implicit syncpoint is taken. If the
application closes down normally, any open queues are closed and an implicit
commit occurs. If the application closes down abnormally, any open queues are
closed and an implicit backout occurs.

Syncpoints in IMS applications

In an IMS application, you establish a syncpoint by using IMS calls such as GU
(get unique) to the IOPCB and CHKP (checkpoint). To back out all changes since
the previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see the following books:

* IMS/ESA Version 4 Application Programming: DL/I Calls

* IMS/ESA Version 4 Application Programming: Design Guide

* IMS/ESA Version 5 Application Programming: Database Manager

* IMS/ESA Version 5 Application Programming: Design Guide

The queue manager (in conjunction with the IMS syncpoint manager) participates
in a two-phase commit protocol if other recoverable resources are also involved in
the unit of work.

All open handles are closed by the IMS adapter at a syncpoint (except in a
nonmessage batch-oriented BMP). This is because a different user could initiate the
next unit of work and MQSeries security checking is performed when the
MQCONN and MQOPEN calls are made, not when the MQPUT or MQGET calls
are made. The handles are closed at the beginning of the MQI call following the
IMS call which initiated the syncpoint.

If you have not installed IMS APAR PNB83757, handles are also closed after a ROLB
call unless you are running IMS Version 3 or are running a nonmessage BMP.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open
queues are closed but no implicit syncpoint is taken. If the application closes down
normally, any open queues are closed and an implicit commit occurs. If the
application closes down abnormally, any open queues are closed and an implicit
backout occurs.

Syncpoints in OS/390 batch applications
For batch applications, you can use the MQSeries syncpoint management calls:
MQCMIT and MQBACK. For backward compatibility, CSQBCMT and CSQBBAK
are available as synonyms.

Note: If you need to commit or back out updates to resources managed by
different resource managers, such as MQSeries and DB2, within a single unit
of work you could use RRS. For further information see

Committing changes using the MQCMIT call
As input, you must supply the connection handle (Hconn), which is returned by the

MQCONN call.
The output from MQCMIT is a completion code and a reason code. The call

completes with a warning if the syncpoint was completed but the queue manager
backed out the put and get operations since the previous syncpoint.

174 MQSeries Application Programming Guide

Syncpointing and batch

Successful completion of the MQCMIT call indicates to the queue manager that the
application has reached a syncpoint and that all put and get operations made since
the previous syncpoint have been made permanent.

There is a description of the MQCMIT call in the MQSeries Application Programming

manual.

Backing out changes using the MQBACK call
As input, you must supply a connection handle (Hconn). Use the handle that is
returned by the MQCONN call.

The output from MQBACK is a completion code and a reason code.

The output indicates to the queue manager that the application has reached a
syncpoint and that all gets and puts that have been made since the last syncpoint
have been backed out.

There is a description of the MQBACK call in the MQSeries Applicatiod
Programming Referencd manual.

Transaction management and recoverable resource manager
services

Transaction management and recoverable resource manager services (RRS) is an
0S/390 facility to provide two-phase syncpoint support across participating
resource managers. An application can update recoverable resources managed by
various OS/390 resource managers such as MQSeries and DB2, and then commit
or back out these updates as a single unit of work. RRS provides the necessary
unit-of-work status logging during normal execution, coordinates the syncpoint
processing, and provides appropriate unit-of-work status information during
subsystem restart.

MQSeries for OS/390 RRS participant support enables MQSeries applications in
the batch, TSO, and DB2 stored procedure environments to update both MQSeries
and non-MQSeries resources (for example, DB2) within a single logical unit of
work. For information about RRS participant support, see the MVS Programming:
Resource Recovery manual.

Your MQSeries application can use either MQCMIT and MQBACK or the

equivalent RRS calls, SRRCMIT and SRRBACK. See F'RRS hatch adapter” od

for more information.

RRS availability: If RRS is not active on your OS/390 system, any MQSeries call
issued from a program linked with either RRS stub (CSQBRSTB or CSQBRRSI)
returns MQRC_ENVIRONMENT_ERROR.

DB?2 stored procedures: If you use DB2 stored procedures with RRS you must be
aware of the following guidelines:

* DB2 stored procedures that use RRS must be WLM-managed.

» If a DB2-managed stored procedure contains MQSeries calls, and it is linked
with either RRS stub (CSQBRSTB or CSQBRRSI), the MQCONN call returns
MQRC_ENVIRONMENT_ERROR.

* If a WLM-managed stored procedure contains MQSeries calls, and is linked with
a non-RRS stub, the MQCONN call returns MQRC_ENVIRONMENT_ERROR,
unless it is the first MQSeries call executed since the stored procedure address
space started.

Chapter 13. Committing and backing out units of work 175

DB2 stored procedures

» If your DB2 stored procedure contains MQSeries calls and is linked with a
non-RRS stub, MQSeries resources updated in that stored procedure are not
committed until the stored procedure address space ends, or until a subsequent
stored procedure does an MQCMIT (using an MQSeries Batch/TSO stub).

* Multiple copies of the same stored procedure can execute concurrently in the
same address space. You should ensure that your program is coded in a
re-entrant manner if you want DB2 to use a single copy of your stored
procedure. Otherwise you may receive MQRC_HCONN_ERROR on any
MQSeries call in your program.

* You must not code MQCMIT or MQBACK in a WLM-managed DB2 stored
procedure.

+ All programs must be designed to run in Language Environment® (LE).

Syncpoints in CICS for AS/400 applications

MQsSeries for AS/400 participates in CICS for AS/400 units of work. You can use
the MQI within a CICS for AS/400 application to put and get messages inside the
current unit of work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that
includes the MQSeries for AS/400 operations. To back out all changes up to the
previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK
command.

If you use MQPUT, MQPUT1, or MQGET with the MQPMO_SYNCPOINT, or
MQGMO_SYNCPOINT, option set in a CICS for AS/400 application, you cannot
log off CICS for AS/400 until MQSeries for AS/400 has removed its registration as
an APl commitment resource. Therefore, you should commit or back out any
pending put or get operations before you disconnect from the queue manager. This
will allow you to log off CICS for AS/400.

Syncpoints in MQSeries for OS/2 Warp, MQSeries for Windows NT,
MQSeries for AS/400, and MQSeries on UNIX systems

Syncpoint support operates on two types of units of work: local and global.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit procedure.

A global unit of work is one in which resources belonging to other resource
managers, such as databases, are also updated. MQSeries can coordinate such units
of work itself. They can also be coordinated by an external commitment controller
such as another transaction manager or the OS/400 commitment controller.

For full integrity, a two-phase commit procedure must be used. Two-phase commit
can be provided by XA-compliant transaction managers and databases such as
IBM’s TXSeries and UDB and also by the OS/400 V4R4 commitment controller.
MQSeries 5.1 products (except MQSeries 5.1 for AS/400) can coordinate global
units of work using a two-phase commit process. MQSeries 5.1 for AS/400 cannot
coordinate a global unit of work but can participate in one being controlled by the
0S/400 commitment controller.

176 MQseries Application Programming Guide

Syncpointing, other platforms

Local units of work

Global

Units of work that involve only the queue manager are called local units of work.
Syncpoint coordination is provided by the queue manager itself (internal
coordination) using a single-phase commit process.

To start a local unit of work, the application issues MQGET, MQPUT, or MQPUT1
requests specifying the appropriate syncpoint option. The unit of work is
committed using MQCMIT or rolled back using MQBACK. However, the unit of
work also ends when the connection between the application and the queue
manager is broken, whether intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a unit of
work is still active, the unit of work is committed. If, however, the application
terminates without disconnecting, the unit of work is rolled back as the application
is deemed to have terminated abnormally.

units of work

Use global units of work when you also need to include updates to resources
belonging to other resource managers. Here the coordination may be internal or
external to the queue manager:

Internal syncpoint coordination
Queue manager coordination of global units of work is supported only on MQSeries

Version 5 products except for MQSeries for AS/400. It is not supported in an MQSeries
client environment.

Here, the coordination is performed by MQSeries. To start a global unit of work,
the application issues the MQBEGIN call.

As input to the MQBEGIN call, you must supply the connection handle (Hconn),
which is returned by the MQCONN call. This handle represents the connection to
the MQSeries queue manager.

Again, the application issues MQGET, MQPUT, or MQPUT1 requests specifying
the appropriate syncpoint option. This means that MQBEGIN can be used to
initiate a global unit of work that updates local resources, resources belonging to
other resource managers, or both. Updates made to resources belonging to other
resource managers are made using the API of that resource manager. However, it is
not possible to use the MQI to update queues that belong to other queue
managers. MQCMIT or MQBACK must be issued before starting further units of
work (local or global).

The global unit of work is committed using MQCMIT; this initiates a two-phase
commit of all the resource managers involved in the unit of work. A two-phase
commit process is used whereby resource managers (for example, XA-compliant
database managers such as DB2, Oracle, and Sybase) are firstly all asked to prepare
to commit. Only if all are prepared are they asked to commit. If any resource
manager signals that it cannot commit, each is asked to back out instead.
Alternatively, MQBACK can be used to roll back the updates of all the resource
managers.

If an application disconnects (MQDISC) while a global unit of work is still active,
the unit of work is committed. If, however, the application terminates without
disconnecting, the unit of work is rolled back as the application is deemed to have
terminated abnormally.

Chapter 13. Committing and backing out units of work 177

Syncpointing, other platforms

The output from MQBEGIN is a completion code and a reason code.

When MQBEGIN is used to start a global unit of work, all the external resource
managers that have been configured with the queue manager are included.
However, the call starts a unit of work but completes with a warning if:

* There are no participating resource managers (that is, no resource managers
have been configured with the queue manager)

or
* One or more resource managers are not available.

In these cases, the unit of work should include updates to only those resource
managers that were available when the unit of work was started.

If one of the resource managers is unable to commit its updates, all of the resource
managers are instructed to roll back their updates, and MQCMIT completes with a
warning. In unusual circumstances (typically, operator intervention), an MQCMIT
call may fail if some resource managers commit their updates but others roll them
back; the work is deemed to have completed with a ‘mixed’ outcome. Such
occurrences are diagnosed in the error log of the queue manager so remedial action
may be taken.

An MQCMIT of a global unit of work succeeds if all of the resource managers
involved commit their updates.

For a description of the MQBEGIN call, see the MQSeries Application Programming

manual.

External syncpoint coordination

This occurs when a syncpoint coordinator other than MQSeries has been selected;
for example, CICS, Encina, or Tuxedo. In this situation, MQSeries for OS/2 Warp,
MQSeries on UNIX systems (with the exception of MQSeries for DIGITAL UNIX
(Compaq Tru64 UNIX)), and MQSeries for Windows NT register their interest in
the outcome of the unit of work with the syncpoint coordinator so that they can
commit or roll back any uncommitted get or put operations as required. The
external syncpoint coordinator determines whether one- or two-phase commitment
protocols are provided.

When an external coordinator is used MQCMIT, MQBACK, and MQBEGIN may
not be issued. Calls to these functions fail with the reason code
MQRC_ENVIRONMENT_ERROR.

The way in which an externally coordinated unit of work is started is dependent
on the programming interface provided by the syncpoint coordinator. An explicit
call may, or may not, be required. If an explicit call is required, and you issue an
MQPUT call specifying the MQPMO_SYNCPOINT option when a unit of work is
not started, the completion code MQRC_SYNCPOINT_NOT_AVAILABLE is
returned.

The scope of the unit of work is determined by the syncpoint coordinator. The
state of the connection between the application and the queue manager affects the
success or failure of MQI calls that an application issues, not the state of the unit
of work. It is, for example, possible for an application to disconnect and reconnect
to a queue manager during an active unit of work and perform further MQGET
and MQPUT operations inside the same unit of work. This is known as a pending
disconnect.

178 MQseries Application Programming Guide

Syncpointing, other platforms

Interfaces to external syncpoint managers

MQSeries for OS/2 Warp, MQSeries on UNIX systems (with the exception of
MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)), and MQSeries for Windows
NT support coordination of transactions by external syncpoint managers which
utilize the X/Open XA interface. This support is available only on server
configurations. The interface is not available to client applications.

Some XA transaction managers (not CICS on Open Systems or Encina) require that
each XA resource manager supplies its name. This is the string called name in the
XA switch structure. The resource manager for MQSeries on UNIX systems is
named “MQSeries_ XA _RMI”. For further details on XA interfaces refer to XA
documentation CAE Specification Distributed Transaction Processing: The XA
Specification, published by The Open Group.

In an XA configuration, MQSeries on UNIX systems, MQSeries for OS/2 Warp,

and MQSeries for Windows NT fulfil the role of an XA Resource Manager. An XA

syncpoint coordinator can manage a set of XA Resource Managers, and

synchronize the commit or backout of transactions in both Resource Managers.

This is how it works for a statically-registered resource manager:

1. An application notifies the syncpoint coordinator that it wishes to start a
transaction.

2. The syncpoint coordinator issues a call to any resource managers that it knows
of, to notify them of the current transaction.

3. The application issues calls to update the resources managed by the resource
managers associated with the current transaction.

4. The application requests that the syncpoint coordinator either commit or roll
back the transaction.

5. The syncpoint coordinator issues calls to each resource manager using
two-phase commit protocols to complete the transaction as requested.

The XA specification requires each Resource Manager to provide a structure called
an XA Switch. This structure declares the capabilities of the Resource Manager, and
the functions that are to be called by the syncpoint coordinator.

There are two versions of this structure:

MQRMIXASwitch
Static XA resource management

MQRMIXASwitchDynamic
Dynamic XA resource management
The structure is found in the following libraries:

mgmxa.lib
0S/2 and Windows NT XA library for Static resource management

mqgmenc.lib
AlX, HP-UX, Sun Solaris, and Windows NT Encina XA library for Dynamic
resource management

libmgmxa.a
UNIX systems XA library (non-threaded) for both Static and Dynamic
resource management

Chapter 13. Committing and backing out units of work 179

Syncpointing, other platforms

libmgmxa_r.a
UNIX systems (except Sun Solaris) XA library (threaded) for both Static
and Dynamic resource management

The method that must be used to link them to an XA syncpoint coordinator is
defined by the coordinator, and you will need to consult the documentation
provided by that coordinator to determine how to enable MQSeries to cooperate
with your XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint
coordinator should be the name of the queue manager that is to be administered.
This takes the same form as the queue manager name passed to MQCONN, and
may be blank if the default queue manager is to be used.

— Restrictions

* On 0S/2, all functions declared in the XA switch are declared as _System
functions.

* On Windows NT, all functions declared in the XA switch are declared as
_cdecl functions.

* Only one queue manager may be administered by an external syncpoint
coordinator at a time. This is due to the fact that the coordinator has an
effective connection to each queue manager, and is therefore subject to the
rule that only one connection is allowed at a time.

» All applications that are run using the syncpoint coordinator can connect
only to the queue manager that is administered by the coordinator because
they are already effectively connected to that queue manager. They must
issue MQCONN to obtain a connection handle and must issue MQDISC
before they exit. Alternatively, they can use the CICS user exit 15 for CICS
for OS/2 V2 and V3, and CICS for Windows NT V2, or the exit UE014015
for TXSeries for Windows NT V4 and CICS on Open Systems.

The features not implemented are:
» Association migration
* Asynchronous calls

Because CICS Transaction Server V4 is 32-bit, changes are required to the source of
CICS user exits. The supplied samples have been updated to work with CICS
Transaction Server V4 as shown in

Table 8. Linking MQSeries for OS/2 Warp with CICS Version 3 applications

User exit CICS V2 source |CICS V2 dll TS V4 source TS V4 dll
exit 15 amqzsc52.c faaexp15.dll amqzsc53.c faaex315.dll
exit 17 amqgzsc72.c faaexpl17.dll amQzsc73.c faaex317.dll

For CICS Transaction Server V4, the supplied user exits faaex315.dll and
faaex317.dll should be renamed to the standard names faaexp15.dll and

faaexpl7.dll.

180 MQSeries Application Programming Guide

MQSeries for AS/400 syncpointing

Interfaces to the AS/400 external syncpoint manager

MQSeries for AS/400 uses native OS/400 commitment control as an external
syncpoint coordinator. See the AS/400 Programming: Backup and Recovery Guide for
more information about the commitment control capabilities of OS/400.

To start the OS/400 commitment control facilities, use the STRCMTCTL system
command. To end commitment control, use the ENDCMTCTL system command.

Note: The default value of Commitment definition scope is *ACTGRP. This must be
defined as *JOB for MQSeries for AS/400. For example:

STRCMTCTL LCKLVL(*ALL) CMTSCOPE (*JOB)

If you call MQPUT, MQPUTL, or MQGET, specifying MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT, after starting commitment control, MQSeries for AS/400
adds itself as an APl commitment resource to the commitment definition. This is
typically the first such call in a job. While there are any APl commitment resources
registered under a particular commitment definition, you cannot end commitment
control for that definition.

MQSeries for AS/400 removes its registration as an APl commitment resource
when you disconnect from the queue manager, provided there are no pending MQI
operations in the current unit of work.

If you disconnect from the queue manager while there are pending MQPUT,
MQPUT1, or MQGET operations in the current unit of work, MQSeries for AS/400
remains registered as an APl commitment resource so that it is notified of the next
commit or rollback. When the next syncpoint is reached, MQSeries for AS/400
commits or rolls back the changes as required. It is possible for an application to
disconnect and reconnect to a queue manager during an active unit of work and
perform further MQGET and MQPUT operations inside the same unit of work
(this is a pending disconnect).

If you attempt to issue an ENDCMTCTL system command for that commitment
definition, message CPF8355 is issued, indicating that pending changes were active.
This message also appears in the job log when the job ends. To avoid this, ensure
that you commit or roll back all pending MQSeries for AS/400 operations, and that
you disconnect from the queue manager. Thus, using COMMIT or ROLLBACK
commands before ENDCMTCTL should enable end-commitment control to
complete successfully.

When OS/400 commitment control is used as an external syncpoint coordinator,

MQCMIT, MQBACK, and MQBEGIN calls may not be issued. Calls to these
functions fail with the reason code MQRC_ENVIRONMENT_ERROR.

Chapter 13. Committing and backing out units of work 181

MQSeries for AS/400 syncpointing

To commit or roll back (that is, to back out) your unit of work, use one of the
programming languages that supports the commitment control. For example:

CL commands: COMMIT and ROLLBACK

ILE C Programming Functions: _Rcommit and _Rrollback
RPG/400: COMIT and ROLBK

COBOL/400: COMMIT and ROLLBACK

Syncpoints in MQSeries for Tandem NonStop Kernel applications

When using MQSeries for Tandem NonStop Kernel, transaction management is
performed under the control of the Tandem TM/MP product, rather than by
MQSeries itself.

The effects of this difference are:

The default SYNCPOINT option for the MQPUT and MQGET calls is
SYNCPOINT, rather than NO_SYNCPOINT.

To use the default (SYNCPOINT) option for MQPUT, MQGET, and MQPUT1
operations, the application must have an active TM/MP Transaction that defines
the unit of work to be committed. An application initiates a TM/MP transaction
by calling the BEGINTRANSACTION() function. All MQPUT, MQPUT1, and
MQGET operations performed by the application while this transaction is active
are within the same unit of work (transaction). Any other database operations
performed by the application are also within this UOW. Note that there are
system-imposed limits on the number and size of messages that can be written
and deleted within a single TM/MP transaction. When the application has
completed the UOW, the TM/MP transaction is ended (the UOW is committed)
using the ENDTRANSACTION() function. If any error is encountered, the
application can cancel the TM/MP transaction (backout the UOW) using the
ABORTTRANSACTION() function. Consequently, the standard Version 2
functions MQCMIT() and MQBACK() are not supported on this product. If they
are called, an error is returned.

If an application uses the NO_SYNCPOINT option for MQPUT, MQGET, and
MQPUT1 operations, MQSeries starts a TM/MP transaction itself, performs the
queuing operation, and commits the transaction before returning to the
application. Each operation is therefore performed in its own UOW and, once
complete, cannot be backed out by the application using TM/MP.

A TM/MP transaction does not need to be active for MQI calls other than
MQGET, MQPUT, and MQPUT1.

Because TM/MP can cause previously performed MQGET, MQPUT, and
MQPUT1 operations to be backed out without notification, the current
queue-depth and input-and-output-open counts of queues can become
inaccurate. The MQSeries Status Server (MQSS) corrects such inaccuracies PEN
call corrects the value of these at configurable intervals. However, applications
should be coded to be resilient to inaccuracies in these quantities, especially in
an environment that may involve backed-out transactions.

The back-out count attribute cannot be maintained in the same way as on
standard Version 2 implementations. Also, the harden backout count attribute is
not used.

The MQRC_SYNCPOINT_LIMIT_REACHED reason code is used by MQSeries
for Tandem NonStop Kernel V2.2.0.1 to inform an application that the
system-imposed limit on the number of 1/0 operations within a single TM/MP
transaction has been reached. If the application specified the SYNCPOINT

182 MQseries Application Programming Guide

option, it should cancel the transaction (back out the UOW) and retry with a

MQSeries for Tandem NonStop Kernel syncpointing

smaller number of operations in that UOW.

* The MQRC_UOW_CANCELED reason code informs the application that the

UOW (TMZ/MP transaction) has been canceled, either by the system itself
(TM/MP imposes some system-wide resource-usage thresholds that will cause
this), by user action, or by the initiator of the transaction itself.

General XA support

General XA support is not supported on AS/400, Compaqg (DIGITAL) OpenVMS,
DIGITAL UNIX, or Tandem NonStop Kernel.

Table 9. Essential Code for CICS applications

An XA switch load module is provided to enable you to link CICS with MQSeries

on UNIX systems. Additionally, sample source code files are provided to enable

you to develop the XA switches for other transaction messages. The names of the
switch load modules provided are:

Description C (source) C (exec) - add one of the following to your
XAD.Stanza

XA initialization amqzscix.c amqzsc - CICS for AIX Version 2.1,

routine amqzsc - TXSeries for AlIX, Version 4.2,
amqzsc - TXSeries for HP-UX, Version 4.2,
amqzsc - CICS for Siemens Nixdorf SINIX Version 2.2,
amqzsc - TXSeries for Sun Solaris, Version 4.2

amgqzscin.c mgmc4swi - TXSeries for Windows NT, Version 4.2

Chapter 13. Committing and backing out units of work

183

General XA support

184 MQseries Application Programming Guide

Chapter 14. Starting MQSeries applications using triggers

Triggering is not supported on MQSeries for Windows.

Some MQSeries applications that serve queues run continuously, so they are
always available to retrieve messages that arrive on the queues. However, this may
not be desirable when the number of messages arriving on the queues is
unpredictable. In this case, applications could be consuming system resources even
when there are no messages to retrieve.

MQSeries provides a facility that enables an application to be started automatically
when there are messages available to retrieve. This facility is known as triggering.

For information about triggering channels see the MQSeries Intercommunication
book.

This chapter introduces triggering, under these headings:
. Fhat i ool

What is triggering?

The queue manager defines certain conditions as constituting “trigger events”. If
triggering is enabled for a queue and a trigger event occurs, the queue manager
sends a trigger message to a queue called an initiation queue. The presence of the
trigger message on the initiation queue indicates that a trigger event has occurred.

Trigger messages generated by the queue manager are not persistent. This has the
effect of reducing logging (thereby improving performance), and minimizing
duplicates during restart, so improving restart time.

The program which processes the initiation queue is called a trigger-monitor
application, and its function is to read the trigger message and take appropriate
action, based on the information contained in the trigger message. Normally this
action would be to start some other application to process the queue which caused
the trigger message to be generated. From the point of view of the queue manager,
there is nothing special about the trigger-monitor application—it is simply another
application that reads messages from a queue (the initiation queue).

If triggering is enabled for a queue, you have the option to create a
process-definition object associated with it. This object contains information about the
application that processes the message which caused the trigger event. If the
process definition object is created, the queue manager extracts this information
and places it in the trigger message, for use by the trigger-monitor application. The
name of the process definition associated with a queue is given by the ProcessName
local-queue attribute. Each queue can specify a different process definition, or
several queues can share the same process definition.

© Copyright IBM Corp. 1993, 2000 185

Triggering

On MQSeries Version 5 products, in the case of triggering a channel, you do not
need to create a process definition object; the transmission queue definition is used
instead. When a trigger event occurs, the transmission queue definition contains
information about the application that processes the message that caused the event.
Again, when the queue manager generates the trigger message, it extracts this
information and places it in the trigger message.

On MQSeries for VSE/ESA, a trigger event is defined to activate the MQSeries
trigger API Handler, that is, the MQO02 CICS Transaction. The trigger APl handler
executes a CICS LINK to the application program or a CICS START to the
application transaction depending on whether you defined a program name or a
transaction name in the queue definition. For more information, see the MQSeries
for VSE/ESA V2R1 System Management Guide.

Triggering is supported by MQSeries Clients in the Compag (DIGITAL) OpenVMS,
0S/2, UNIX systems, Windows 3.1, Windows 95, and Windows NT environments.
An application running in a client environment is the same as one running in a full
MQSeries environment, except that you link it with the client libraries. However
the trigger monitor and the application to be started must both be in the same
environment.

Triggering involves:

Application queue
An application queue is a local queue, which, when it has triggering set on
and when the conditions are met, requires that trigger messages are
written.

Process Definition
An application queue can have a process definition object associated with it
that holds details of the appllcatlon that WI|| get messages. from the
application queue. (See the
manual for a list of atributes.)

On MQSeries Version 5 products, the process definition object is optional in the
case of triggering channels.

Transmission queue
The transmission queue holds the name of the channel to be triggered. This
can replace the process definition for triggering channels, but is used only
when a process definition is not created.

Trigger event
A trigger event is an event that causes a trigger message to be generated by
the queue manager. This is usually a message arrlvmq on an appllcatlon
queue, but it can also occur at other times (see E

bvent” on page 191). MQSeries has a range of options to allow you to
control the conditions that cause a trigger event (see ECantralling trigged

Trigger message
The queue manager creates a trigger message when it recognizes a trigger
event (see ‘Conditions for a trigger event” an page 191). It copies into the
trigger message information about the application to be started. This
information comes from the application queue and the process definition
object associated with the application queue. Trigger messages have a fixed
format (see EEarmat of trigger messages” on page 203).

186 MQSeries Application Programming Guide

Triggering

Initiation queue
An initiation queue is a local queue on which the queue manager puts
trigger messages. A queue manager can own more than one initiation
gueue, and each one is associated with one or more application queues.

Trigger monitor

A trigger monitor is a continuously-running program that serves one or
more initiation queues. When a trigger message arrives on an initiation
gueue, the trigger monitor retrieves the message. The trigger monitor uses
the information in the trigger message. It issues a command to start the
application that is to retrieve the messages arriving on the application
gueue, passing it information contained in the trigger message header,
which includes the name of the application queue. (For more information,

see Trigger monitors” on page 199.)

To understand how triggering works, consider m which is an example of
trigger type FIRST, (MQTT_FIRST).

QUEUE MANAGER

trigger

E/trigger message E
application n / event

T | o

Local or Remote
System

\
| | |
i } Process }
APPLICATION | | Application \ Initiation

| | Queue \ Queue
| I J

" |
. a
! application trigger
| message message
1
| APPLICATION APPLICATION
' start
| command = TRIGGER

B . — =

i E MONITOR
1
1

Local System
Figure 14. Flow of application and trigger messages

In Eigure 14, the sequence of events is:

1. Application A, which can be either local or remote to the queue manager, puts
a message on the application queue. Note that no application has this queue
open for input. However, this fact is relevant only to trigger type FIRST and
DEPTH.

Chapter 14. Starting MQSeries applications using triggers 187

Triggering

6.

The queue manager checks to see if the conditions are met under which it has
to generate a trigger event. They are, and a trigger event is generated, passing
on information held within the associated process definition object.

The queue manager creates a trigger message and puts it on the initiation
queue associated with this application queue, but only if an application (trigger
monitor) has the initiation queue open for input.

The trigger monitor retrieves the trigger message from the initiation queue.
The trigger monitor issues a command to start program B (the server
application).

Application B opens the application queue and retrieves the message.

Notes:

1.

3.

If the application queue is open for input, by any program, and has triggering
set for FIRST or DEPTH, no trigger event will occur - it’s not needed.

If the initiation queue is not open for input, the queue manager will not
generate any trigger messages, it will wait until an application opens the
initiation queue for input.

Only use type FIRST or DEPTH when using triggering for channels.

So far, the relationship between the queues within triggering has been only on a
one to one basis. Consider Ei

188 MQSeries Application Programming Guide

Triggering

QUEUE MANAGER

Ji trigger
trigger / trigger message
event / event

\
|
|
N
|
|
|
%Q‘
|
|
|
|

’ APPLICATION ;Vi} \ F
’ | |
APPLICATION |1
‘ Process ‘
APPLICATION | / |
c | Application 1 \ Initiation
B | Queuel / \ Queue
e S A J
application| — W‘
mesw / | trigger
message
APPLICATION \ Process| |
APPLICATION ' | - 5 |
e | | Application \
| | Queue 2 \
Y | B | | application
X ol T message
! application
| message APPLICATION
1
| APPLICATION
1
L
! K
| start
' K command v
! start\ APPLICATION
| command
| N TRIGGER
Local or Remote | Local System MONITOR
System '

Figure 15. Relationship of queues within triggering

An application queue has a process definition object associated with it that holds
details of the application that will process the message. The queue manager places
the information in the trigger message, so only one initiation queue is necessary.
The trigger monitor extracts this information from the trigger message and starts
the relevant application to deal with the message on each application queue.

On MQSeries Version 5 products, in the case of triggering a channel, the process
definition object is optional. The transmission queue definition can determine the
channel to be triggered.

Prerequisites for triggering

Before your application can take advantage of triggering, follow the steps below:
1. Either:
a. Create an initiation queue for your application queue. For example:

Chapter 14. Starting MQSeries applications using triggers 189

Triggering prerequisites

DEFINE QLOCAL (initiation.queue) REPLACE +
LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +
DESCR ('initiation queue description')

or

b. Determine the name of a local queue that already exists and can be used by
your application, and specify its name in the InitiationQName field of the
application queue.

You can think of this task as associating the initiation queue with the
application queue. A queue manager can own more than one initiation
gqueue—you may want some of your application queues to be served by
different programs, in which case you could use one initiation queue for each
serving program, although you do not have to. Here is an example of how to
create an application queue:

DEFINE QLOCAL (application.queue) REPLACE +

LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +
DESCR ('appl queue description') +
INITQ ('initiation.queue') +
PROCESS ('process.name') +
TRIGGER +

TRIGTYPE (FIRST)

2. If you are triggering an application, create a process definition object to contain
information relating to the application that is to serve your application queue.
For example:

DEFINE PROCESS (process.name) +
REPLACE +
DESCR ('process description') +
APPLTYPE ('CICS') +
APPLICID ('CKSG') +
USERDATA ('EXAMPLE.CHANNEL')

Here is an extract from an MQSeries for AS/400 CL program that creates a
process definition object:

/* Queue used by AMQSINQA */

CRTMQMQ QNAME (' SYSTEM. SAMPLE. INQ") +

QTYPE(*LCL) REPLACE(*YES) +

MQMNAME +

TEXT('queue for AMQSINQA') +

SHARE (*YES) /* Shareable */+

DFTMSGPST (*YES) /* Persistent messages OK x/+

+

TRGENBL(*YES) /* Trigger control on */+

TRGTYPE(*FIRST)/* Trigger on first message*/+

PRCNAME (' SYSTEM. SAMPLE . INQPROCESS ") +
INITQNAME ('SYSTEM. SAMPLE.TRIGGER")

/* Process definition x/

CRTMQMPRC PRCNAME ('SYSTEM. SAMPLE. INQPROCESS") +

REPLACE (*YES) +

MQMNAME +

TEXT('trigger process for AMQSINQA') +

ENVDATA('JOBPTY(3)"') /* Submit parameter */+
APPID('AMQSINQA') /* Program name x/

When the queue manager creates a trigger message, it copies information from

the attributes of the process definition object into the trigger message. This step
is optional in the case of triggering channels.

190 MQSeries Application Programming Guide

Triggering prerequisites

Platform To create a process definition object

UNIX systems, Digital | Use DEFINE PROCESS or use SYSTEM.DEFAULT.PROCESS and

OpenVMS, OS/2, modify using ALTER PROCESS

Windows NT

0S/390 Use DEFINE PROCESS (see sample code in step E), or use the
operations and control panels.

0S/400 Use a CL program containing code as in step B.

3. If you are triggering a channel on a product other than an MQSeries Version 5
or MQSeries for VSE/ESA product, you need to create a process definition.
Create a transmission queue definition and specify the ProcessName attribute as
blanks. The TrigData attribute can contain the name of the channel to be
triggered or it can be left blank. When the queue manager creates a trigger
message, it copies information from the TrigData attribute of the transmission
gueue definition into the trigger message.

4. If you have created a process definition object, associate your application queue

with the application that is to serve that queue by naming the process
definition object in the ProcessName attribute of the queue.

Platform Use commands

UNIX systems, Digital | ALTER QLOCAL
OpenVMS, OS/2,

Windows NT
0S/390 ALTER QLOCAL
AS/400 CHGMQMQ

5. Start instances of the trigger monitors (or trigger servers in MQSeries for
AS/400) that are to serve the initiation queues you have defined. See m

monitors” on page 199 for more information.

If you wish to be aware of any undelivered trigger messages, make sure your
gueue manager has a dead-letter (undelivered-message) queue defined. Specify the
name of the queue in the DeadLetterQName queue manager field.

You can then set the trigger conditions you require, using the attributes of the
queue object that defines your application queue. For more information on this, see

Conditions for a trigger event

The queue manager creates a trigger message when the following conditions are
satisfied:

1. A message is put on a queue.

2. The message has a priority greater than or equal to the threshold trigger
priority of the queue. This priority is set in the TriggerMsgPriority local
queue attribute—if it is set to zero, any message qualifies.

3. The number of messages on the queue with priority greater than or equal to
TriggerMsgPriority was previously, depending on TriggerType:
» Zero (for trigger type MQTT_FIRST)
* Any number (for trigger type MQTT_EVERY)
* TriggerDepth minus 1 (for trigger type MQTT_DEPTH)

Chapter 14. Starting MQSeries applications using triggers 191

Trigger event conditions

10.

Note: The queue manager counts both committed and uncommitted messages
when it assesses whether the conditions for a trigger event exist.
Consequently an application may be started when there are no
messages for it to retrieve because the messages on the queue have not
been committed. In this situation, you are strongly recommended to
consider using the wait option, and relating the WaitInterval to the
number of messages in the unit of work.

For triggering of type FIRST or DEPTH, no program has the application queue
open for removing messages (that is, the OpenInputCount local queue attribute
is zero).

On MQSeries for OS/390, if the application queue is one with a Usage
attribute of MQUS_NORMAL, get requests for it are not inhibited (that is, the
InhibitGet queue attribute is MQQA_GET_ALLOWED). Also, on MQSeries
for non-OS/390 platforms, if the application queue is one with a Usage
attribute of MQUS_XMITQ, get requests for it are not inhibited.

Either:

* The ProcessName local queue attribute for the queue is not blank, and the
process definition object identified by that attribute has been created.

or

* The ProcessName local queue attribute for the queue is all blank, but the
queue is a transmission queue. In this case, the trigger message contains
attributes with the following values:

ProcessName: blanks
TriggerData: trigger data
ApplType: MQAT_UNKNOWN
ApplId: blanks

EnvData: blanks

UserData: blanks

Note: As the process definition is optional, the TriggerData attribute may also
contain the name of the channel to be started. This option is available
only on MQSeries for AS/400, OS/2, HP-UX, AlX, Sun Solaris, and
Windows NT.

An initiation queue has been created, and has been specified in the

InitiationQName local queue attribute. Also:

* Get requests are not inhibited for the initiation queue (that is, the
InhibitGet queue attribute is MQQA_GET_ALLOWED).

* Put requests must not be inhibited for the initiation queue (that is, the
InhibitPut queue attribute must be MQQA_PUT_ALLOWED).

* The Usage attribute of the initiation queue must be MQUS_NORMAL.

* In environments where dynamic queues are supported, the initiation queue
must not be a dynamic queue that has been marked as logically deleted.

A trigger monitor currently has the initiation queue open for removing
messages (that is, the OpenInputCount local queue attribute is greater than
Zero).

The trigger control (TriggerControl local queue attribute) for the application
gueue is set to MQTC_ON. To do this, set the trigger attribute when you
define your queue, or use the ALTER QLOCAL command.

The trigger type (TriggerType local queue attribute) is not MQTT_NONE.

If all of the above required conditions are met, and the message that caused
the trigger condition is put as part of a unit of work, the trigger message does

192 MQseries Application Programming Guide

11.

12.

13.

Trigger event conditions

not become available for retrieval by the trigger monitor application until the
unit of work completes, whether the unit of work is committed or backed out.

A suitable message is placed on the queue, for a TriggerType of MQTT_FIRST
or MQTT_DEPTH, and the queue;
* Was not previously empty (MQTT_FIRST)

or
* Had TriggerDepth or more messages (MQTT_DEPTH)

and conditions @ through W (excluding E) are satisfied, if in the
case of MQTT_FIRST a sufficient interval (TriggerInterval queue-manager
attribute) has elapsed since the last trigger message was written for this
queue.

This is to allow for a queue server that ends before processing all of the
messages on the queue. The purpose of the trigger interval is to reduce the
number of duplicate trigger messages that are generated.

Note: If you stop and restart the queue manager, the TriggeriInterval “timer”
is reset. There is a small window during which it is possible to produce
two trigger messages. The window exists when the queue’s trigger
attribute is set to enabled at the same time as a message arrives and the
gueue was not previously empty (MQTT_FIRST) or had TriggerDepth
or more messages (MQTT_DEPTH).

The only application serving a queue issues an MQCLOSE call, for a

TriggerType of MQTT_FIRST or MQTT_DEPTH, and there is at least:

- One (MQTT_FIRST)

or
* TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition W), and
conditions B through [l0.on page 193 are also satisfied.

This is to allow for a queue server that issues an MQGET call, finds the queue
empty, and so ends; however, in the interval between the MQGET and the
MQCLOSE calls, one or more messages arrive.

Notes:

a. If the program serving the application queue does not want to retrieve all
the messages, this can cause a closed loop. Each time the program closes
the queue, the queue manager creates another trigger message which
causes the trigger monitor to start the server program again.

b. If the program serving the application queue backs out its get request (or
if the program abends) before it closes the queue, the same happens.

c. To prevent such a loop occurring, you could use the BackoutCount field of
MQMD to detect messages that are repeatedly backed out. For more

information, see EMessages that are hacked out” on page 31

The following conditions are satisfied using MQSET or a command:
a.

* TriggerControl is changed to MQTC_ON

or

Chapter 14. Starting MQSeries applications using triggers 193

Trigger event conditions

* TriggerControl is already MQTC_ON and the value of either
TriggerType, TriggerMsgPriority, or TriggerDepth (if relevant) is
changed,

and there is at least:

« One (MQTT_FIRST or MQTT_EVERY)

or
* TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition m) and
conditions 4 through m (excluding E) are also satisfied.

This is to allow for an application or operator changing the triggering
criteria, when the conditions for a trigger to occur are already satisfied.

. The InhibitPut queue attribute of an initiation queue changes from

MQQA _PUT_INHIBITED to MQQA_PUT_ALLOWED, and there is at
least:

« One (MQTT_FIRST or MQTT_EVERY)

or
* TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition WJ) on any of the

ueues for which this is the initiation queue, and conditions i through bLd
m are also satisfied. (One trigger message is generated for each
such queue satisfying the conditions.)

This is to allow for trigger messages not being generated because of the
MQQA _PUT_INHIBITED condition on the initiation queue, but this
condition now having been changed.

. The InhibitGet queue attribute of an application queue changes from

MQQA_GET_INHIBITED to MQQA_GET_ALLOWED, and there is at
least:

« One (MQTT_FIRST or MQTT_EVERY)

or
* TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition P-an page 191) on the queue, and
conditions 4 through , excluding B, are also satisfied.

This allows applications to be triggered only when they are able to retrieve
messages from the application queue.

. A trigger-monitor application issues an MQOPEN call for input from an

initiation queue, and there is at least:
* One (MQTT_FIRST or MQTT_EVERY)

or
* TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition m) on any of the

application queues for which this is the initiation queue, and conditions 4
through m (excluding E) are also satisfied, and no other

application has the initiation queue open for input (one trigger message is
generated for each such queue satisfying the conditions).

194 MQseries Application Programming Guide

Trigger event conditions

This is to allow for messages arriving on queues while the trigger monitor
is not running, and for the queue manager restarting and trigger messages
(which are nonpersistent) being lost.

Note: From step k3 (where trigger messages are generated as a result of
some event other than a message arriving on the application queue),
the trigger message is not put as part of a unit of work. Also, if the
TriggerType is MQTT_EVERY, and if there are one or more
messages on the application queue, only one trigger message is
generated.

14. MSGDLVSQ is set correctly. If you set MSGDLVSQ=FIFO, messages are
delivered to the queue in a First In First Out basis. The priority of the
message is ignored and the default priority of the queue is assigned to the
message. If TriggerMsgPriority is set to a higher value than the default
priority of the queue, no messages are triggered. If TriggerMsgPriority is set
equal to or lower than the default priority of the queue, triggering occurs for
type FIRST, EVERY, and DEPTH. For information about these types, see the
description of the TriggerType field under EContralling trigger events’. If you
set MSGDLVSQ=PRIORITY and the message priority is equal to or greater
than the TriggerMsgPriority field, messages only count towards a trigger
event. In this case, again triggering occurs for type FIRST, EVERY, and
DEPTH. As an example, if you put 100 messages of lower priority than the
TriggerMsgPriority, the effective queue depth for triggering purposes is still
zero. If you then put another message on the queue, but this time the priority
is greater than or equal to the TriggerMsgPriority, the effective queue depth
increases from zero to one and the condition for TriggerType FIRST is
satisfied.

Controlling trigger events

You control trigger events using some of the attributes that define your application
queue. You can enable and disable triggering, and you can select the number or
priority of the messages that count toward a trigger event. There is a full

description of these attributes in the MQSeries Application Programming Referencd

manual.

The relevant attributes are:

TriggerControl
Use this attribute to enable and disable triggering for an application queue.

TriggerMsgPriority
The minimum priority that a message must have for it to count toward a
trigger event. If a message of priority less than TriggerMsgPriority arrives
on the application queue, the queue manager ignores the message when it
determines whether to create a trigger message. If TriggerMsgPriority is
set to zero, all messages count toward a trigger event.

TriggerType
In addition to the trigger type NONE (which disables triggering just like
setting the TriggerControl to OFF), you can use the following trigger types
to set the sensitivity of a queue to trigger events:

EVERY
A trigger event occurs every time a message arrives on the
application queue. Use this type of trigger if you want a serving
program to process only one message, then end.

Chapter 14. Starting MQSeries applications using triggers 195

Controlling trigger events

FIRST A trigger event occurs only when the number of messages on the
application queue changes from zero to one. Use this type of
trigger if you want a serving program to start when the first
message arrives on a queue, continue until there are no more

messages to process, then end. Also see ESpecial case of trigged

DEPTH
A trigger event occurs only when the number of messages on the
application queue reaches the value of the TriggerDepth attribute.
A typical use of this type of triggering is for starting a program
when all the replies to a set of requests are received.

Triggering by depth
With triggering by depth, the queue manager disables
triggering (using the TriggerControl attribute) after it creates
a trigger message. Your application must reenable triggering
itself (by using the MQSET call) after this has happened.

The action of disabling triggering is not under syncpoint control,
so triggering cannot be reenabled simply by backing out a unit of
work. If a program backs out a put request that caused a trigger
event, or if the program abends, you must reenable triggering by
using the MQSET call or the ALTER QLOCAL command.

TriggerDepth
The number of messages on a queue that causes a trigger event when
using triggering by depth.

The conditions that must be satlsfled for a queue manager to create a trigger
message are described in i ”

Example of the use of trigger type EVERY

Consider an application that generates requests for motor insurance. The
application might send request messages to a number of insurance companies,
specifying the same reply-to queue each time. It could set a trigger of type EVERY
on this reply-to queue so that each time a reply arrives, the reply could trigger an
instance of the server to process the reply.

Example of the use of trigger type FIRST

Consider an organization with a number of branch offices that each transmit
details of the day’s business to the head office. They all do this at the same time, at
the end of the working day, and at the head office there is an application that
processes the details from all the branch offices. The first message to arrive at the
head office could cause a trigger event which starts this application. This
application would continue processing until there are no more messages on its
queue.

Example of the use of trigger type DEPTH

Consider a travel agency application that creates a single request to confirm a
flight reservation, to confirm a reservation for a hotel room, to rent a car, and to
order some travelers’ checks. The application could separate these items into four
request messages, sending each to a separate destination. It could set a trigger of

196 MQSeries Application Programming Guide

Controlling trigger events

type DEPTH on its reply-to queue (with the depth set to the value 4), so that it is
restarted only when all four replies have arrived.

If another message (possibly from a different request) arrives on the reply-to queue
before the last of the four replies, the requesting application is triggered early. To
avoid this, when DEPTH triggering is being used to collect multiple replies to a
request, you should always use a new reply-to queue for each request.

Special case of trigger type FIRST

With trigger type FIRST, if there is already a message on the application queue
when another message arrives, the queue manager does not usually create another
trigger message. However, the application serving the queue might not actually
open the queue (for example, the application might end, possibly because of a
system problem). If an incorrect application hame has been put into the process
definition object, the application serving the queue will not pick up any of the
messages. In these situations, if another message arrives on the application queue,
there is no server running to process this message (and any other messages on the
queue).

To deal with this, the queue manager creates another trigger message if another
message arrives on the application queue, but only if a predefined time interval
has elapsed since the queue manager created the last trigger message for that
queue. This time interval is defined in the queue manager attribute
Triggerinterval. Its default value is 999 999 999 milliseconds.

You should consider the following points when deciding on a value for the trigger
interval to be used in your application:

» If Triggerinterval is set to a low value, trigger type FIRST might behave like
trigger type EVERY (this depends on the rate that messages are being put onto
the application queue, which in turn may depend on other system activity). This
is because, if the trigger interval is very small, another trigger message is
generated each time a message is put onto the application queue, even though
the trigger type is FIRST, not EVERY. (Trigger type FIRST with a trigger interval
of zero is equivalent to trigger type EVERY.)

« If a unit of work is backed out (see F‘Trigger messages and units of work’l) and

the trigger interval has been set to a high value (or the default value), one
trigger message is generated when the unit of work is backed out. However, if
you have set the trigger interval to a low value or to zero (causing trigger type
FIRST to behave like trigger type EVERY) many trigger messages can be
generated. If the unit of work is backed out, all the trigger messages are still
made available. The number of trigger messages generated depends on the
trigger interval, the maximum number being reached when trigger interval has
been set to zero.

Designing an application that uses triggered queues

You have seen how to set up, and control, triggering for your applications. Here
are some tips you should consider when you design your application.

Trigger messages and units of work

Trigger messages created because of trigger events that are not part of a unit of
work are put on the initiation queue, outside any unit of work, with no
dependence on any other messages, and are available for retrieval by the trigger
monitor immediately.

Chapter 14. Starting MQSeries applications using triggers 197

Using triggered queues

Trigger messages created because of trigger events that are part of a unit of work
are put on the initiation queue as part of the same unit of work. Trigger monitors
cannot retrieve these trigger messages until the unit of work completes. This
applies whether the unit of work is committed or backed out.

If the queue manager fails to put a trigger message on an initiation queue, it will
be put on the dead-letter (undelivered-message) queue.

Note: The queue manager counts both committed and uncommitted messages
when it assesses whether the conditions for a trigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available even
if the unit of work is backed out so that a trigger message is always available
when the required conditions are met. For example, consider a put request within
a unit of work for a queue that is triggered with trigger type FIRST. This causes
the queue manager to create a trigger message. If another put request occurs, from
another unit of work, this does not cause another trigger event because the number
of messages on the application queue has now changed from one to two, which
does not satisfy the conditions for a trigger event. Now if the first unit of work is
backed out, but the second is committed, a trigger message is still created.

However, this does mean that trigger messages are sometimes created when the
conditions for a trigger event are not satisfied. Applications that use triggering
must always be prepared to handle this situation. It is recommended that you use
the wait option with the MQGET call, setting the WaitInterval to a suitable value.

Getting messages from a triggered queue

When you design applications that use triggering, you must be aware that there
may be a delay between a program being started by a trigger monitor, and other
messages becoming available on the application queue. This can happen when the
message that causes the trigger event is committed before the others.

To allow time for messages to arrive, always use the wait option when you use the
MQGET call to remove messages from a queue for which trigger conditions are set.
The WaitiInterval should be sufficient to allow for the longest reasonable time
between a message being put and that put call being committed. If the message is
arriving from a remote queue manager, this time is affected by:

* The number of messages that are put before being committed

* The speed and availability of the communication link

* The sizes of the messages

For an example of a situation where you should use the MQGET call with the wait
option, consider the same example we used when describing units of work. This
was a put request within a unit of work for a queue that is triggered with trigger
type FIRST. This event causes the queue manager to create a trigger message. If
another put request occurs, from another unit of work, this does not cause another
trigger event because the number of messages on the application queue has not
changed from zero to one. Now if the first unit of work is backed out, but the
second is committed, a trigger message is still created. So the trigger message is
created at the time the first unit of work is backed out. If there is a significant
delay before the second message is committed, the triggered application may need
to wait for it.

With triggering of type DEPTH, a delay can occur even if all relevant messages are
eventually committed. Suppose that the TriggerDepth queue attribute has the value

198 MQSeries Application Programming Guide

Using triggered queues

2. When two messages arrive on the queue, the second causes a trigger message to
be created. However, if the second message is the first to be committed, it is at that
time the trigger message becomes available. The trigger monitor starts the server
program, but the program can retrieve only the second message until the first one
is committed. So the program may need to wait for the first message to be made
available.

You should design your application so that it terminates if no messages are
available for retrieval when your wait interval expires. If one or more messages
arrive subsequently, you should rely on your application being retriggered to
process them. This method prevents applications being idle, and unnecessarily
using resources.

Trigger monitors

To a queue manager, a trigger monitor is like any other application that serves a
queue. However, a trigger monitor serves initiation queues.

A trigger monitor is usually a continuously-running program. When a trigger
message arrives on an initiation queue, the trigger monitor retrieves that message.
It uses information in the message to issue a command to start the application that
is to process the messages on the application queue.

The trigger monitor must pass sufficient information to the program it is starting
so that the program can perform the right actions on the right application queue.

A channel initiator is an example of a special type of trigger monitor for message
channel agents. In this situation however, you must use either trigger type FIRST
or DEPTH.

MQSeries for OS/390 trigger monitors

The following trigger monitor is provided for CICS Transaction Server for OS/390
and CICS for MVS/ESA:

CKTI You need to start one instance of CKTI for each initiation queue (see the
MQSeries for OS/390 System Management Guide for information on how to
do this). CKTI passes the MQTM structure of the trigger message to the
program it starts by EXEC CICS START TRANSID. The started program
gets this information by using the EXEC CICS RETRIEVE command. A
program can use the EXEC CICS RETRIEVE command with the
RTRANSID option to determine how the program was started; if the value
returned is CKTI, the program was started by MQSeries for OS/390. For
an example of how to use CKTI, see the source code supplied for module
CSQ4CVB?2 in the Credit Check sample application supplied with

MQSeries for 0S/390. See EThe Credit Check sample” an page 403 for a

full description.

The following trigger monitor is provided for IMS/ESA:

CSQQTRMN
You need to start one instance of CSQQTRMN for each initiation queue
(see the MQSeries for OS/390 System Management Guide for information on
how to do this). CSQQTRMN passes the MQTMC2 structure of the trigger
message to the programs it starts.

Chapter 14. Starting MQSeries applications using triggers 199

Trigger monitors

MQSeries for OS/2 Warp, Digital OpenVMS, Tandem NSK,
UNIX systems, AS/400, and Windows NT trigger monitors
The following trigger monitors are provided for the server environment:
amqstrg0
This is a sample trigger monitor that provides a subset of the function

provided by runmqtrm. See EChapter 32_Sample programs (all platformd
Except OS/390)” on page 311

for more information on amqgstrgo0.

runmagtrm
runmgtrm [-m QMgrName] [-q InitQ] is the command. The default is
SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue manager. It
calls programs for the appropriate trigger messages. This trigger monitor
supports the default application type.

The command string passed by the trigger monitor to the operating system
is built as follows:

1. The ApplId from the relevant PROCESS definition (if created)
2. The MQTMC?2 structure, enclosed in quotation marks
3. The EnvData from the relevant PROCESS definition (if created)

where ApplId is the name of the program to run - as it would be entered
on the command line.

The parameter passed is the MQTMC2 character structure. A command
string is invoked which has this string, exactly as provided, in ‘quotation
marks’, in order that the system command will accept it as one parameter.

The trigger monitor will not look to see if there is another message on the
initiation queue until the completion of the application it has just started. If
the application has a lot of processing to do, this may mean that the trigger
monitor cannot keep up with the number of trigger messages arriving. You
have two options:

* Have more trigger monitors running
* Run the started applications in the background

If you choose to have more trigger monitors running you have control over
the maximum number of applications that can run at any one time. If you
choose to run applications in the background, there is no restriction
imposed by MQSeries on the number of applications that can run.

To run the started application in the background under OS/2, or Windows
NT, within the ApplId field you must prefix the name of your application
with a START command. For example:

START AMQSECHA /B

To run the started application in the background on UNIX systems, you
must put an ‘&’ at the end of the EnvData of the PROCESS definition.
The following trigger monitors are provided for the MQSeries client:

runmagtmc
This is the same as runmqgtrm except that it links with the MQSeries client
libraries.

200 MQSeries Application Programming Guide

Trigger monitors

For CICS:
The following trigger monitor is provided for CICS:

amqltmcO

The CICS Trigger monitor works in the same fashion as the standard
trigger monitor, runmgqgtrm, but you run it in a different way and it triggers
CICS transactions.

It is supplied as a CICS program and you must define it with a 4-character
transaction name. Enter the 4-character name to start the trigger monitor. It
uses the default queue manager (as named in the gm.ini file or, on
MQSeries for Windows NT, the registry), and the
SYSTEM.CICS.INITIATION.QUEUE.

If you want to use a different queue manager or queue, you must build the
trigger monitor the MQTMC?2 structure: this requires you to write a
program using the EXEC CICS START call, because the structure is too
long to add as a parameter. Then, pass the MQTMC2 structure as data to
the START request for the trigger monitor.

When you use the MQTMC2 structure, you only need to supply the
Strucld, Version, QName, and QMgrName parameters to the trigger monitor as
it does not reference any other fields.

Messages are read from the initiation queue and used to start CICS
transactions, using EXEC CICS START, assuming the APPL_TYPE in the
trigger message is MQAT_CICS. The reading of messages from the
initiation queue is performed under CICS syncpoint control.

Messages are generated when the monitor has started and stopped as well
as when an error occurs. These messages are sent to the CSMT transient
data queue.

Here are the available versions and appropriate use of the trigger monitor:

\Version
Use

amqltmc0
CICS for OS/2 \ersion 2

CICS for Windows NT Version 2
TXSeries for AlX, Version 4

amqltmc3
CICS Transaction Server for OS/2, Version 4

amqltmc4
TXSeries for Windows NT, Version 4

If you need a trigger monitor for other environments, you need to write a program
that can process the trigger messages that the queue manager puts on the initiation
queues. Such a program should:

1.
2.

Use the MQGET call to wait for a message to arrive on the initiation queue.

Examine the fields of the MQTM structure of the trigger message to find the
name of the application to start and the environment in which it runs.

Issue an environment-specific start command. For example, in OS/390 batch,
submit a job to the internal reader.

Convert the MQTM structure to the MQTMC?2 structure if required.

Chapter 14. Starting MQSeries applications using triggers 201

Trigger monitors

5. Pass either the MQTMC2 or MQTM structure to the started application. This
may contain user data.

6. Associate with your application queue the application that is to serve that
queue. You do this by naming the process definition object (if created) in the
ProcessName attribute of the queue.

Use DEFINE QLOCAL or ALTER QLOCAL. On AS/400 you can also use
CRTMQMQ or CHGMQMQ.

For more information on the trigger monitor interface, see the MQSeries Application
Brogramming Referencd manual.

MQSeries for AS/400 trigger monitors

The following are provided:

AMQSTRG4
This is a trigger monitor that submits an OS/400 job for the process that is
to be started, but this means there is a processing overhead associated with
each trigger message.

AMQSERV4

This is a trigger server. For each trigger message, this server runs the
command for the process in its own job, and can call CICS transactions.

Both the trigger monitor and the trigger server pass an MQTMC structure to the
programs they start. For a description of this structure, see the MQSeries Applicatior]
Programming Referencd manual. Both of these samples are delivered in both source

and executable forms.

Properties of trigger messages

The following sections describe some other properties of trigger messages.

Persistence and priority of trigger messages

Trigger messages are not persistent as there is no requirement for them to be so.
The conditions for generating triggering events are persistent, hence trigger
messages will be generated whenever these conditions are met. In the event that a
trigger message is lost, the continued existence of the application message on the
application queue will guarantee that the queue manager will generate a trigger
message as soon as all the conditions are met.

If a unit of work is rolled-back, any trigger messages it generated will always be
delivered.

Trigger messages take the default priority of the initiation queue.

Queue manager restart and trigger messages

Following the restart of a queue manager, when an initiation queue is next opened
for input, a trigger message may be put to this initiation queue if an application
gueue associated with it has messages on it, and is defined for triggering.

Trigger messages and changes to object attributes

Trigger messages are created according to the values of the trigger attributes in
force at the time of the trigger event. If the trigger message is not made available
to a trigger monitor until later (because the message that caused it to be generated

202 MQsSeries Application Programming Guide

Trigger message properties

was put within a unit of work), any changes to the trigger attributes in the
meantime have no effect on the trigger message. In particular, disabling triggering
does not prevent a trigger message being made available once it has been created.
Also, the application queue may no longer exist at the time the trigger message is
made available.

Format of trigger messages

The format of a trigger message is defined by the MQTM structure. This has the
following fields, which the queue manager fills when it creates the trigger
message, using information in the object definitions of the application queue and
of the process associated with that queue:

Strucld
The structure identifier.

Version
The version of the structure.

QName The name of the application queue on which the trigger event occurred.
When the queue manager creates a trigger message, it fills this field using
the QName attribute of the application queue.

ProcessName
The name of the process definition object that is associated with the
application queue. When the queue manager creates a trigger message, it
fills this field using the ProcessName attribute of the application queue.

TriggerData
A free-format field for use by the trigger monitor. When the queue
manager creates a trigger message, it fills this field using the TriggerData
attribute of the application queue.

ApplType
The type of the application that the trigger monitor is to start. When the
gueue manager creates a trigger message, it fills this field using the
ApplType attribute of the process definition object identified in ProcessName.

ApplId A character string that identifies the application that the trigger monitor is
to start. When the queue manager creates a trigger message, it fills this
field using the ApplId attribute of the process definition object identified in
ProcessName. When you use an MQSeries for OS/390-supplied trigger
monitor (CKTI or CSQQTRMN) the ApplId attribute of the process
definition object is a CICS or IMS transaction identifier.

EnvData
A character field containing environment-related data for use by the trigger
monitor. When the queue manager creates a trigger message, it fills this
field using the EnvData attribute of the process definition object identified
in ProcessName. The MQSeries for OS/390-supplied trigger monitors (CKTI
or CSQQTRMN) do not use this field, but other trigger monitors may
choose to use it.

UserData
A character field containing user data for use by the trigger monitor. When
the queue manager creates a trigger message, it fills this field using the
UserData attribute of the process definition object identified in ProcessName.

There is a full description of the trigger monitor structures in the m
icati i manual.

Chapter 14. Starting MQSeries applications using triggers 203

Triggering failure

When triggering does not work

A program is not triggered if the trigger monitor cannot start the program or the
gueue manager cannot deliver the trigger message.

If a trigger message is created but cannot be put on the initiation queue (for
example, because the queue is full or the length of the trigger message is greater
than the maximum message length specified for the initiation queue), the trigger
message is put instead on the dead-letter (undelivered-message) queue.

If the put operation to the dead-letter queue cannot complete successfully, the
trigger message is discarded and a warning message is sent to the console
(0S/390) or to the system operator (AS/400), or put on the error log.

Putting the trigger message on the dead-letter queue may generate a trigger
message for that queue. This second trigger message is discarded if it adds a
message to the dead-letter queue.

If the program is triggered successfully but abends before it gets the message from
the queue, use a trace utility (for example, CICS AUXTRACE if the program is
running under CICS) to find out the cause of the failure.

How CKTI detects errors

If the CKTI trigger monitor in MQSeries for OS/390 detects an error in the
structure of a trigger message, or if it cannot start a program, it puts the trigger
message on the dead-letter (undelivered-message) queue. CKTI adds a dead-letter
header structure (MQDLH) to the trigger message. It uses a feedback code in the
Reason field of this structure to explain why it put the message on the dead-letter
(undelivered-message) queue.

An instance of CKTI stops serving an initiation queue if it attempts to get a trigger
message from the queue and finds that the attributes of the queue have changed
since it last accessed that queue. The attributes could have been changed by
another program, or by an operator using the commands or operations and control
panels of MQSeries. CKTI produces an error message, which includes a reason
code, explaining the action it has taken.

How CSQQTRMN detects errors

If the CSQQTRMN trigger monitor in MQSeries for OS/390 detects an error in the
structure of a trigger message, or if it cannot start a program, it puts the trigger
message on the dead-letter (undelivered-message) queue and sends a diagnostic
message to a user specified LTERM (the default is MASTER). CSQQTRMN adds a
dead-letter header structure (MQDLH) to the trigger message. It uses a feedback
code in the Reason field of this structure to explain why it put the message on the
dead-letter (undelivered-message) queue. If any other errors are detected,
CSQQTRMN sends a diagnostic message to the specified LTERM, and then
terminates.

How RUNMQTRM detects errors

If the RUNMQTRM trigger monitor in MQSeries for OS/2 Warp and MQSeries on
UNIX systems detects an error in either the:

» Structure of a trigger message

* Application type is unsupported

or it either:

204 MQsSeries Application Programming Guide

Triggering failure

» Cannot start a program
* Detects a data-conversion error

it puts the trigger message on the dead-letter (undelivered-message) queue, having
added a dead-letter header structure (MQDLH) to the message. It uses a feedback

code in the Reason field of this structure to explain why it put the message on the

dead-letter (undelivered-message) queue.

Chapter 14. Starting MQSeries applications using triggers 205

Changes

206 MQSeries Application Programming Guide

Chapter 15. Using and writing applications on MQSeries for
0S/390

MQSeries for OS/390 applications can be made up from programs that run in
many different environments. This means they can take advantage of the facilities
available in more than one environment. This chapter explains the MQSeries
facilities available to programs running in each of the supported environments.

This chapter introduces MQSeries for OS/390 applications, under these headings:

Environment-dependent MQSeries for OS/390 functions

The main differences to be considered between MQSeries functions in the
environments in which MQSeries for OS/390 runs are:

* MQSeries for OS/390 supplies the following trigger monitors:
— CKTI for use in the CICS environment
— CSQQTRMN for use in the IMS environment

You must write your own module to start applications in other environments.

* Syncpointing using two-phase commit is supported in the CICS and IMS
environments. It is also supported in the OS/390 batch environment using
transaction management and recoverable resource manager services (RRS).
Single-phase commit is supported in the OS/390 environment by MQSeries
itself.

» For the batch and IMS environments, the MQI provides calls to connect
programs to, and to disconnect them from, a queue manager. Programs can
connect to more than one queue manager.

* A CICS system can connect to only one queue manager. This can be made to
happen when CICS is initiated if the subsystem name is defined in the CICS
system startup job. The MQI connect and disconnect calls are tolerated, but have
no effect, in the CICS environment.

* The API-crossing exit allows a program to intervene in the processing of all MQI
calls. This exit is available in the CICS environment only.

* In CICS on multiprocessor systems, some performance advantage is gained
because MQI calls can be executed under multiple OS/390 TCBs. For more
information, see the MQSeries for OS/390 System Management Guide.

© Copyright IBM Corp. 1993, 2000 207

Environment-dependent functions
These features are summarized in [able 10,

Table 10. ©S/390 environmental features

CICS IMS Batch/TSO
Trigger monitor supplied Yes Yes No
Two-phase commit Yes Yes Yes
Single-phase commit Yes No Yes
Connect/disconnect MQI calls Tolerated Yes Yes
API-crossing exit Yes No No
Note: Two-phase commit is supported in the Batch/TSO environment using RRS.

Program debugging facilities

MQSeries for OS/390 provides a trace facility that you can use to debug your
programs in all environments. Additionally, in the CICS environment you can use:
* The CICS Execution Diagnostic Facility (CEDF)

» The CICS Trace Control Transaction (CETR)

* The MQSeries for OS/390 API-crossing exit

On the OS/390 platform, you can use any available interactive debugging tool that
is supported by the programming language you are using.

All these tools are discussed further in the MQSeries for OS/390 System Management
Guide.

Syncpoint support

The synchronization of the start and end of units of work is necessary in a
transaction processing environment so that transaction processing can be used
safely. This is fully supported by MQSeries for OS/390 in the CICS and IMS
environments. Full support means cooperation between resource managers so that
units of work can be committed or backed out in unison, under control of CICS or
IMS. Examples of resource managers are DB2, CICS File Control, IMS, and
MQSeries for OS/390.

0S/390 batch applications can use MQSeries for OS/390 calls to give a
single-phase commit facility. This means that an application-defined set of queue
operations can be committed, or backed out, without reference to other resource
managers.

Two-phase commit is also supported in the OS/390 batch environment using
transaction management and recoverable resource manager services (RRS). For

further information see FTransaction management and recoverable resourcd
manager services” on page 175,

Recovery support

If the connection between a queue manager and a CICS or IMS system is broken
during a transaction, some units of work may not be backed out successfully.
However, these units of work are resolved by the queue manager (under the
control of the syncpoint manager) when its connection with the CICS or IMS
system is reestablished.

208 MQSeries Application Programming Guide

The MQSeries for OS/390 interface

The MQSeries for OS/390 interface with the application environment

To allow applications running in different environments to send and receive
messages through a message queuing network, MQSeries for OS/390 provides an
adapter for each of the environments it supports. These adapters are the interface
between the application programs and an MQSeries for OS/390 subsystem. They
allow the programs to use the MQI.

The batch adapter

The batch adapter provides access to MQSeries for OS/390 resources for programs
running in:

* Task (TCB) mode

* Problem or Supervisor state

* Primary address space control mode

The programs must not be in cross-memory mode.

Connections between application programs and MQSeries for OS/390 are at the
task level. The adapter provides a single connection thread from an application
task control block (TCB) to MQSeries for OS/390.

The adapter supports a single-phase commit protocol for changes made to
resources owned by MQSeries for OS/390; it does not support multiphase-commit
protocols.

RRS batch adapter

The transaction management and recoverable resource manager services (RRS)

adapter:

» Uses OS/390 RRS for commit control.

» Supports simultaneous connections to multiple MQSeries subsystems running on
a single OS/390 instance from a single task.

* Provides OS/390-wide coordinated commitment control (via OS/390 RRS) for

recoverable resources accessed via OS/390 RRS compliant recoverable managers
for:

— Applications that connect to MQSeries using the RRS batch adapter.
— DB2 stored procedures executing in a DB2 stored procedures address space
that is managed by an OS/390 workload manager (WLM).
» Supports the ability to switch an MQSeries batch thread between TCBs.

MQSeries for OS/390, V2.1 provides two RRS batch adapters:

CSQBRSTB
This adapter requires you to change any MQCMIT and MQBACK
statements in your MQSeries application to SRRCMIT and SRRBACK
respectively. (If you code MQCMIT or MQBACK in an application linked
with CSQBRSTB, you will receive MQRC_ENVIRONMENT_ERROR.)

CSQBRRSI
This adapter allows your MQSeries application to use either MQCMIT and
MQBACK or SRRCMIT and SRRBACK.

Note: CSQBRSTB and CSQBRRSI are shipped with linkage attributes AMODE(31)

RMODE(ANY). If your application loads either stub below the 16 MB line,
you must first relink the stub with RMODE(24).

Chapter 15. Using and writing applications on MQSeries for 0S/390 209

Migration

Migration

It is possible to migrate existing Batch/TSO MQSeries applications to exploit RRS
coordination with few or no changes. If you link-edit your MQSeries application
with the CSQBRRSI adapter, MQCMIT and MQBACK syncpoint your unit of work
across MQSeries and all other RRS-enabled resource managers. If you link-edit
your MQSeries application with the CSQBRSTB adapter you must change
MQCMIT and MQBACK to SRRCMIT and SRRBACK respectively. The latter
approach may be preferable as it clearly indicates that the syncpoint is not
restricted to MQSeries resources only.

The CICS adapter

A CICS system can have only one connection to an MQSeries for OS/390 queue
manager, and this connection is managed by the MQSeries for OS/390 CICS
adapter. The CICS adapter provides access to MQSeries for OS/390 resources for
CICS programs. In addition to providing access to the MQI calls, the adapter
provides:

» A trigger monitor (or task initiator) program that can start programs
automatically when certain trigger conditions on a queue are met. For more

information, see EChapter 14_Starting MQSeries applications using triggers” an

* An API-crossing exit that can be invoked before and after each MQI call. For
more information, see EThe API-crassing exit for OS/390” on page 213

» A trace facility to help you when debugging programs.

» Facilities that allow the MQI calls to be executed under multiple OS/390 TCBs.
For more information, see the MQSeries for OS/390 System Management Guide.

The adapter supports a two-phase commit protocol for changes made to resources
owned by MQSeries for OS/390, with CICS acting as the syncpoint coordinator.

The CICS adapter also supplies facilities (for use by system programmers and
administrators) for managing the CICS-MQSeries for OS/390 connection, and for
collecting task and connection statistics. These facilities are described in the
MQSeries for OS/390 System Management Guide.

Adapter trace points

Application programmers can use trace points related to the MQI calls—for
example, CSQCGMGD (GET Message Data)—for debugging CICS application
programs. System programmers can use trace points related to system events, such
as recovery and task switching, for diagnosing system-related problems. For full
details of trace points in the CICS adapter, see the MQSeries for OS/390 Problem
Determination Guide.

Some trace data addresses are passed by applications. If the address of the trace
data is in the private storage area of the CICS region, the contents of the area are
traced when necessary. For example, this would be done for the trace entries
CSQCGMGD (GET Message Data) or CSQCPMGD (PUT Message Data). If the
address is not in the private storage area, message CSQC4161 is written to the CICS
trace—this contains the address in error.

Abends
This section describes some of the things you must consider with regard to CICS

AEY9 and QLOP abends. For information about all other abends, see the MQSeries
for OS/390 Messages and Codes manual.

210 MQsSeries Application Programming Guide

Migration

CICS AEY9 abends: A transaction does not abend with a CICS AEY9 code if it
issues an MQI call before the adapter is enabled. Instead, it receives return code
MQCC_FAILED and reason code MQRC_ADAPTER_NOT_AVAILABLE.

For more information about CICS AEY9 abends, see the CICS Messages and Codes
manual.

QLOP abends: Tasks abend with the abend code QLOP if a second MQI call is
made after a call has been returned with completion code MQCC_FAILED and one
of these reason codes:

MQRC_CONNECTION_BROKEN

MQRC_Q MGR_NAME_ERROR

MQRC_Q MGR_NOT_AVAILABLE

MQRC_Q MGR_STOPPING

MQRC_CONNECTION_STOPPING

MQRC_CONNECTION_NOT_AUTHORIZED

This runaway mechanism can be activated only after the adapter has been enabled
once. Before the adapter has been enabled, such a task will loop with reason code
set to MQRC_ADAPTER_NOT_AVAILABLE. To avoid this, ensure that your
applications respond to the above reason codes either by terminating abnormally
or by issuing an EXEC CICS SYNCPOINT ROLLBACK and terminating normally.

If the application does not terminate at this point, it might not issue any further
MQSeries calls even if the connection between MQSeries and CICS is
re-established. Once MQSeries is reconnected to CICS, new transactions can use
MQI calls as before.

Using the CICS Execution Diagnostic Facility

You can use the CICS execution diagnostic facility (CEDF) to monitor applications
that use the CICS adapter. For details of how to use CEDF, see the CICS Application
Programming Guide.

CEDF uses standard formatting to display MQI calls.

» Before the MQI call is executed:
— CEDF displays the addresses of the call parameters
— You can use the Working Storage key to verify or modify their contents
— You can skip the call by overtyping the command with NOOP

» After the call has completed:
— The results are returned in the program’s storage
— The return code and reason code are displayed in the call parameter list
— You can modify them before returning to the application program

See the MQSeries for OS/390 Problem Determination Guide for examples of the output
produced by this facility.

The IMS adapter

The IMS adapter provides access to MQSeries for OS/390 resources for
* On-line message processing programs (MPPs)

* Interactive Fast Path programs (IFPs)

» Batch message processing programs (BMPs)

To use these resources, the programs must be running in task (TCB) mode and
problem state; they must not be in cross-memory mode or access-register mode.

Chapter 15. Using and writing applications on MQSeries for OS/390 211

Migration

The adapter provides a connection thread from an application task control block
(TCB) to MQSeries. The adapter supports a two-phase commit protocol for changes
made to resources owned by MQSeries for OS/390, with IMS acting as the
syncpoint coordinator.

The adapter also provides a trigger monitor program that can start programs
automatically when certain trigger conditions on a queue are met. For more

information, see EChapter 14. Starting MQSeries applications using triggers” od

If you are writing batch DL/I programs, follow the guidance given in this book for
0S/390 batch programs.

Writing OS/390 OpenEdition © applications

The batch adapter supports queue manager connections from Batch and TSO
address spaces:

If we consider a Batch address space, the adapter supports connections from
multiple TCBs within that address space as follows:

» Each TCB can connect to multiple queue managers via the MQCONN call (but a
TCB can only have one instance of a connection to a particular queue manager
at any one time).

* Multiple TCBs can connect to the same queue manager (but the queue manager
handle returned on any MQCONN call is bound to the issuing TCB and cannot
be used by any other TCB).

0S/390 OpenEdition supports two types of pthread_create call:

1. Heavyweight threads, run one per TCB, that are ATTACHed and DETACHed at
thread start and end by OS/390.

2. Mediumweight threads, run one per TCB, but the TCB can be one of a pool of
long-running TCBs. The onus is on the application to perform all necessary
application clean up, since, if it is connected to a server, the default thread
termination that may be provided by the server at Task (TCB) termination, will
not always be driven.

Lightweight threads are not supported. (If an application creates permanent
threads which do their own dispatching of work requests, then the application is
responsible for cleaning up any resources before starting the next work request.)

MQSeries for OS/390 supports OS/390 OpenEdition threads via the Batch Adapter
as follows:

1. Heavyweight threads are fully supported as Batch connections. Each thread
runs in its own TCB which is ATTACHed and DETACHed at thread start and
end. Should the thread end before issuing an MQDISC call, then MQSeries for
0S/390 performs its standard task clean up which includes committing any
outstanding unit of work if the thread terminated normally, or backing it out if
the thread terminated abnormally.

2. Mediumweight threads are fully supported but if the TCB is going to be reused
by another thread, then the application must ensure that an MQDISC call,
preceded by either MQCMIT or MQBACK, is issued prior to the next thread
start. This implies that if the application has established a Program Interrupt
Handler, and the application then abends, then the Interrupt Handler should
issue MQCMIT and MQDISC calls before reusing the TCB for another thread.

212 MQsSeries Application Programming Guide

0S/390 OpenkEdition applications
Again, lightweight threads are not supported.

Note: Threading models do not support access to common MQSeries resources
from multiple threads.

The API-crossing exit for OS/390

This section contains product-sensitive programming interface information.

An exit is a point in IBM-supplied code where you can run your own code.
MQSeries for OS/390 provides an API-crossing exit that you can use to intercept
calls to the MQI, and to monitor or modify the function of the MQI calls. This
section describes how to use the API-crossing exit, and describes the sample exit
program that is supplied with MQSeries for OS/390.

Note
The API-crossing exit is invoked only by the CICS adapter of MQSeries for
0S/390. The exit program runs in the CICS address space.

Using the API-crossing exit

You could use the API-crossing exit to:

» Operate additional security checks by examining the contents of each message
before and after each MQI call

* Replace the queue name supplied in the message with another queue name

* Cancel the call and either issue a return code of 0 to simulate a successful call,
or another value to indicate that the call was not performed

* Monitor the use of MQI calls in an application

» Gather statistics

* Modify input parameters on specific calls

* Modify the results of specific calls

Defining the exit program

Before the exit can be used, an exit program load module must be available when
the CICS adapter connects to MQSeries for OS/390. The exit program is a CICS
program that must be named CSQCAPX and reside in a library in the DFHRPL
concatenation. CSQCAPX must be defined in the CICS system definition file (CSD),
and the program must be enabled.

When CSQCAPX is loaded, a confirmation message is written to the CKQC
adapter control panel or to the console. If the program cannot be loaded, a
diagnostic message is displayed.

How the exit is invoked
When enabled, the API-crossing exit is invoked:

» By all applications that use the CICS adapter of MQSeries for OS/390

* For the following MQI calls:
- MQCLOSE
- MQGET
- MQINQ
- MQOPEN
- MQPUT
- MQPUT1

Chapter 15. Using and writing applications on MQSeries for 0S/390 213

API-crossing exit

- MQSET
* Every time one of these MQI calls is made
» Both before and after a call

This means that using the API-crossing exit degrades the performance of MQSeries
for OS/390, so plan your use of it carefully.

The exit program can be invoked once before a call is executed, and once after the
call is executed. On the before type of exit call, the exit program can modify any of
the parameters on the MQI call, suppress the call completely, or allow the call to
be processed. If the call is processed, the exit is invoked again after the call has
completed.

Note: The exit program is not recursive. Any MQI calls made inside the exit do
not invoke the exit program for a second time.

Communicating with the exit program

After it has been invoked, the exit program is passed a parameter list in the CICS
communication area pointed to by a field called DFHEICAP. The CICS Exec
Interface Block field EIBCALEN shows the length of this area. The structure of this
communication area is defined in the CMQXPA assembler-language macro that is
supplied with MQSeries for OS/390 :

*

MQXP_COPYPLIST DSECT

DS 0D Force doubleword alignment
MQXP_PXPB DS AL4 Pointer to exit parameter block
MQXP_PCOPYPARM DS 11AL4 Copy of original plist
*

ORG MQXP_PCOPYPARM

MQXP_PCOPYPARM1 DS AL4 Copy of 1st parameter
MQXP_PCOPYPARM2 DS AL4 Copy of 2nd parameter
MQXP_PCOPYPARM3 DS AL4 Copy of 3rd parameter
MQXP_PCOPYPARM4 DS AL4 Copy of 4th parameter
MQXP_PCOPYPARMS5 DS AL4 Copy of 5th parameter
MQXP_PCOPYPARM6 DS AL4 Copy of 6th parameter
MQXP_PCOPYPARM? DS AL4 Copy of 7th parameter
MQXP_PCOPYPARMS8 DS AL4 Copy of 8th parameter
MQXP_PCOPYPARM9 DS AL4 Copy of 9th parameter
MQXP_PCOPYPARM10 DS AL4 Copy of 10th parameter
MQXP_PCOPYPARM11 DS AL4 Copy of 11th parameter

*

MQXP_COPYPLIST_LENGTH EQU *-MQXP_PXPB
ORG MQXP_PXPB
MQXP_COPYPLIST_AREA DS CL(MQXP_COPYPLIST_ LENGTH)

*

Field MQXP_PXPB points to the exit parameter block, MQXP.

Field MQXP_PCOPYPARM is an array of addresses of the call parameters. For example,
if the application issues an MQI call with parameters P1,P2,0r P3, the
communication area contains:

PXPB,PP1,PP2,PP3

where P denotes a pointer (address) and XPB is the exit parameter block.

Writing your own exit program

You can use the sample API-crossing exit program (CSQCAPX) that is supplied
with MQSeries for OS/390 as a framework for your own program. This is
described on page b1d.

214 MQsSeries Application Programming Guide

API-crossing exit

When writing an exit program, to find the name of an MQI call issued by an
application, examine the ExitCommand field of the MQXP structure. To find the
number of parameters on the call, examine the ExitParmCount field. You can use
the 16-byte ExitUserArea field to store the address of any dynamic storage that the
application obtains. This field is retained across invocations of the exit and has the
same life time as a CICS task.

Your exit program can suppress execution of an MQI call by returning
MQXCC_SUPPRESS_FUNCTION or MQXCC_SKIP_FUNCTION in the
ExitResponse field. To allow the call to be executed (and the exit program to be
reinvoked after the call has completed), your exit program must return
MQXCC_OK.

When invoked after an MQI call, an exit program can inspect and modify the
completion and reason codes set by the call.

Usage notes
Here are some general points you should bear in mind when writing your exit
program:

» For performance reasons, you should write your program in assembler language.
If you write it in any of the other languages supported by MQSeries for OS/390,
you must provide your own data definition file.

* Link-edit your program as AMODE(31) and RMODE(ANY).

» To define the exit parameter block to your program, use the assembler-language
macro, CMQXPA.

» If you are using the CICS Transaction Server for OS/390 storage protection
feature, your program must run in CICS execution key. That is, you must specify
EXECKEY(CICS) when defining both your exit program and any programs to
which it passes control. For information about CICS exit programs and the CICS
storage protection facility, see the CICS Customization Guide.

* Your program can use all the APIs (for example, IMS, DB2, and CICS) that a
CICS task-related user exit program can use. It can also use any of the MQI calls
except MQCONN and MQDISC. However, any MQI calls within the exit
program do not invoke the exit program a second time.

* Your program can issue EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT
ROLLBACK commands. However, these commands commit or roll back all the
updates done by the task up to the point that the exit was used, and so their use
is not recommended.

* Your program must end by issuing an EXEC CICS RETURN command. It must
not transfer control with an XCTL command.

» EXits are written as extensions to the MQSeries for OS/390 code. You must take
great care that your exit does not disrupt any MQSeries for OS/390 programs or
transactions that use the MQI. These are usually indicated with a prefix of
“CSQ” or “CK”.

* If CSQCAPX is defined to CICS, the CICS system will attempt to load the exit
program when CICS connects to MQSeries for OS/390. If this attempt is
successful, message CSQC301I is sent to the CKQC panel or to the system
console. If the load is unsuccessful (for example, if the load module does not
exist in any of the libraries in the DFHRPL concatenation), message CSQC315 is
sent to the CKQC panel or to the system console.

» Because the parameters in the communication area are addresses, the exit
program must be defined as local to the CICS system (that is, not as a remote
program).

Chapter 15. Using and writing applications on MQSeries for 0S/390 215

API-crossing exit

The sample API-crossing exit program, CSQCAPX

The sample exit program is supplied as an assembler-language program. The
source file (CSQCAPX) is supplied in the library thlqual. SCSQASMS (where
thlqual is the high-level qualifier used by your installation). This source file

includes pseudocode that describes the program logic.

The sample program contains initialization code and a layout that you can use
when writing your own exit programs.

The sample shows how to:

* Set up the exit parameter block

* Address the call and exit parameter blocks

* Determine for which MQI call the exit is being invoked

» Determine whether the exit is being invoked before or after processing of the
MQI call

* Put a message on a CICS temporary storage queue

* Use the macro DFHEIENT for dynamic storage acquisition to maintain