
MQSeries®

Application Messaging Interface

SC34-5604-04

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 501.

Fifth edition (November 2000)

This edition applies to IBM MQSeries Application Messaging Interface Version 1.1, and to any subsequent releases
and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xv

Tables xvii

About this book xix
Who this book is for xix
What you need to know to understand this book xix
Structure of this book xix
Appearance of text in this book xx

Summary of changes xxi
Changes for this edition (SC34-5604-04) xxi
Changes for the fourth edition (SC34-5604-03) . . xxi
Changes for the third edition (SC34-5604-02) . . . xxi

Part 1. Introduction 1

Chapter 1. Introduction 3
Main components of the AMI. 3

Sending and receiving messages 3
Interoperability 3
Programming languages 4

Description of the AMI 4
Messages 4
Services 4
Policies 6

Application Messaging Interface model 7
Further information 8

Part 2. The C interface 9

Chapter 2. Using the Application
Messaging Interface in C 13
Structure of the AMI 13

Using the repository 14
System default objects 14

Writing applications in C 16
Opening and closing a session 16
Sending messages 16
Receiving messages. 18
Request/response messaging 19
File transfer 21
Publish/subscribe messaging 22
Using name/value elements 24
Error handling 26
Transaction support 26
Sending group messages 26
Other considerations 27
Using the AMI OAMAS subset 28

Building C applications 29
AMI include file 29
Data types. 29
Initial values for structures 29

C applications on AIX 30
C applications on HP-UX 31
C applications on Solaris 33
C applications on Windows 34
C applications on OS/390 34

Chapter 3. The C high-level interface 37
Overview of the C high-level interface 38

Initialize and terminate 38
Sending messages 38
Receiving messages. 38
File transfer 38
Publish/subscribe 38
Transaction support 38

Reference information for the C high-level interface 39
amBackout 40

Parameters 40
amBegin 41

Parameters 41
amBrowseMsg 42

Parameters 42
Usage notes 43

amCommit 44
Parameters 44

amInitialize 45
Parameters 45

amPublish 46
Parameters 46

amReceiveFile 47
Parameters 47
Usage notes 48

amReceiveMsg 49
Parameters 49
Usage notes 49

amReceivePublication 51
Parameters 51
Usage notes 52

amReceiveRequest 53
Parameters 53
Usage notes 53

amSendFile 55
Parameters 55
Usage notes 55

amSendMsg 56
Parameters 56

amSendRequest 57
Parameters 57

amSendResponse 58
Parameters 58

amSubscribe 59
Parameters 59

amTerminate 60
Parameters 60

amUnsubscribe 61
Parameters 61

© Copyright IBM Corp. 1999, 2000 iii

Usage notes 61

Chapter 4. C object interface overview 63
Session interface functions 64

Session management 64
Create objects. 64
Get object handles 64
Delete objects. 65
Transactional processing 65
Error handling 65

Message interface functions 66
Get values 66
Set values 66
Reset values 66
Read and write data 66
Publish/subscribe topics 67
Publish/subscribe filters 67
Publish/subscribe name/value elements. . . . 67
Error handling 67
Publish/subscribe helper macros 67

Sender interface functions 68
Open and close 68
Send. 68
Get values 68
Error handling 68

Receiver interface functions 69
Open and close 69
Receive and browse 69
Get values 69
Set values 69
Error handling 69

Distribution list interface functions 70
Open and close 70
Send. 70
Get values 70
Error handling 70

Publisher interface functions. 71
Open and close 71
Publish 71
Get values 71
Error handling 71

Subscriber interface functions 72
Open and close 72
Broker messages 72
Get values 72
Set value 72
Error handling 72

Policy interface functions 73
Get values 73
Set value 73
Error handling 73

High-level functions 74

Chapter 5. C object interface reference 77
Session interface functions 78

amSesBegin 78
amSesClearErrorCodes 78
amSesClose 78
amSesCommit 79
amSesCreate 79
amSesCreateDistList 79

amSesCreateMessage 80
amSesCreatePolicy 80
amSesCreatePublisher 80
amSesCreateReceiver 81
amSesCreateSender 81
amSesCreateSubscriber 81
amSesDelete 83
amSesDeleteDistList 83
amSesDeleteMessage 83
amSesDeletePolicy 84
amSesDeletePublisher 84
amSesDeleteReceiver 84
amSesDeleteSender 85
amSesDeleteSubscriber 85
amSesGetDistListHandle 85
amSesGetLastError 86
amSesGetMessageHandle. 86
amSesGetPolicyHandle 87
amSesGetPublisherHandle 87
amSesGetReceiverHandle 87
amSesGetSenderHandle 87
amSesGetSubscriberHandle 88
amSesOpen 88
amSesRollback 88

Message interface functions 90
amMsgAddElement 90
amMsgAddFilter 91
amMsgAddTopic 91
amMsgClearErrorCodes 91
amMsgDeleteElement 92
amMsgDeleteFilter 92
amMsgDeleteNamedElement 92
amMsgDeleteTopic 93
amMsgGetCCSID 93
amMsgGetCorrelId 93
amMsgGetDataLength 94
amMsgGetDataOffset 94
amMsgGetElement 94
amMsgGetElementCCSID. 95
amMsgGetElementCount 95
amMsgGetEncoding 95
amMsgGetFilter 96
amMsgGetFilterCount 96
amMsgGetFormat 96
amMsgGetGroupStatus 97
amMsgGetLastError 97
amMsgGetMsgId 98
amMsgGetName. 98
amMsgGetNamedElement 98
amMsgGetNamedElementCount 99
amMsgGetReportCode. 99
amMsgGetTopic 100
amMsgGetType. 100
amMsgGetTopicCount 100
amMsgReadBytes 101
amMsgReset. 101
amMsgSetCCSID 101
amMsgSetCorrelId. 102
amMsgSetDataOffset 102
amMsgSetElementCCSID 102
amMsgSetEncoding 103

iv MQSeries Application Messaging Interface

amMsgSetFormat 103
amMsgSetGroupStatus 104
amMsgWriteBytes 104

Message interface helper macros 105
AmMsgAddStreamName 105
AmMsgGetPubTimeStamp 105
AmMsgGetStreamName 105

Sender interface functions 107
amSndClearErrorCodes 107
amSndClose 107
amSndGetCCSID 108
amSndGetEncoding 108
amSndGetLastError 109
amSndGetName 109
amSndOpen 109
amSndSend 110
amSndSendFile 111
Usage notes 111

Receiver interface functions. 112
amRcvBrowse 112
amRcvBrowseSelect 114
amRcvClearErrorCodes 115
amRcvClose 116
amRcvGetDefnType 116
amRcvGetLastError 117
amRcvGetName 117
amRcvGetQueueName 118
amRcvOpen 118
amRcvReceive 119
amRcvReceiveFile 121
amRcvSetQueueName 122

Distribution list interface functions 123
amDstClearErrorCodes 123
amDstClose 123
amDstGetLastError 123
amDstGetName 124
amDstGetSenderCount 124
amDstGetSenderHandle 124
amDstOpen 125
amDstSend 126
amDstSendFile 127
Usage notes 127

Publisher interface functions 128
amPubClearErrorCodes 128
amPubClose 128
amPubGetCCSID 128
amPubGetEncoding 128
amPubGetLastError 129
amPubGetName 130
amPubOpen 130
amPubPublish 131

Subscriber interface functions 132
amSubClearErrorCodes 132
amSubClose 132
amSubGetCCSID 132
amSubGetDefnType 132
amSubGetEncoding 133
amSubGetLastError 134
amSubGetName 134
amSubGetQueueName 134
amSubOpen 135

amSubReceive 136
amSubSetQueueName 136
amSubSubscribe 137
amSubUnsubscribe 138

Policy interface functions 139
amPolClearErrorCodes 139
amPolGetLastError 139
amPolGetName. 139
amPolGetWaitTime 140
amPolSetWaitTime. 140

Part 3. The C++ interface 141

Chapter 6. Using the Application
Messaging Interface in C++ 145
Structure of the AMI 145

Base classes 145
Interface and helper classes. 146
Exception classes 146
Using the repository 146
System default objects 146

Writing applications in C++ 147
Creating and opening objects 147
Deleting objects 148
Sending messages 148
Receiving messages 149
Request/response messaging 150
File transfer 151
Publish/subscribe messaging 152
Using AmElement objects 153
Error handling 153
Transaction support 155
Sending group messages 156
Other considerations 156

Building C++ applications 158
AMI include files 158
C++ applications on AIX 158
C++ applications on HP-UX 159
C++ applications on Solaris. 160
C++ applications on Windows. 162

Chapter 7. C++ interface overview . . 163
Base classes 163

Helper classes 163
Exception classes 163

AmSessionFactory 164
Constructor 164
Session factory management 164
Create and delete session 164

AmSession 165
Session management 165
Create objects 165
Delete objects 165
Transactional processing 165
Error handling 166

AmMessage 167
Get values 167
Set values 167
Reset values 167
Read and write data 167

Contents v

||
||

Publish/subscribe topics. 168
Publish/subscribe filters. 168
Publish/subscribe name/value elements . . . 168
Error handling 168

AmSender 169
Open and close. 169
Send 169
Send file 169
Get values 169
Error handling 169

AmReceiver 170
Open and close. 170
Receive and browse 170
Receive file 170
Get values 170
Set value 170
Error handling 170

AmDistributionList 171
Open and close. 171
Send 171
Send file 171
Get values 171
Error handling 171

AmPublisher 172
Open and close. 172
Publish 172
Get values 172
Error handling 172

AmSubscriber 173
Open and close. 173
Broker messages 173
Get values 173
Set value 173
Error handling 173

AmPolicy. 174
Policy management 174
Error handling 174

Helper classes 175
AmBytes 175
AmElement 175
AmObject 175
AmStatus. 175
AmString. 176

Exception classes 177
AmException 177
AmErrorException. 177
AmWarningException 177

Chapter 8. C++ interface reference 179
Base classes 179

Helper classes 179
Exception classes 179

AmSessionFactory 180
AmSessionFactory 180
createSession 180
deleteSession 180
getFactoryName 180
getLocalHost 180
getRepository 180
getTraceLevel 180
getTraceLocation 180

setLocalHost. 180
setRepository 181
setTraceLevel 181
setTraceLocation 181

AmSession 182
begin 182
clearErrorCodes 182
close 182
commit 182
createDistributionList 182
createMessage 183
createPolicy 183
createPublisher 183
createReceiver 183
createSender. 184
createSubscriber 184
deleteDistributionList. 184
deleteMessage 184
deletePolicy 184
deletePublisher 185
deleteReceiver 185
deleteSender. 185
deleteSubscriber 185
enableWarnings 185
getLastErrorStatus 185
getName 185
getTraceLevel 186
getTraceLocation 186
open 186
rollback 186

AmMessage 187
addElement 187
addFilter 188
addTopic 188
clearErrorCodes 188
deleteElement 188
deleteFilter 188
deleteNamedElement 188
deleteTopic 188
enableWarnings 189
getCCSID. 189
getCorrelationId 189
getDataLength 189
getDataOffset 189
getElement 189
getElementCCSID 189
getElementCount 189
getEncoding 189
getFilter 190
getFilterCount 190
getFormat 190
getGroupStatus 190
getLastErrorStatus 190
getMessageId 190
getName 191
getNamedElement. 191
getNamedElementCount. 191
getReportCode 191
getTopic 191
getTopicCount 191
getType 191

vi MQSeries Application Messaging Interface

readBytes. 192
reset 192
setCCSID 192
setCorrelationId 192
setDataOffset 192
setElementCCSID 192
setEncoding 193
setFormat 193
setGroupStatus 193
writeBytes 193

AmSender 195
clearErrorCodes 195
close 195
enableWarnings 195
getCCSID. 195
getEncoding 195
getLastErrorStatus 196
getName 196
open 196
send 196
sendFile 196

AmReceiver 198
browse 198
clearErrorCodes 199
close 199
enableWarnings 199
getDefinitionType 199
getLastErrorStatus 199
getName 199
getQueueName. 200
open 200
receive 200
receiveFile 200
setQueueName 201

AmDistributionList 202
clearErrorCodes 202
close 202
enableWarnings 202
getLastErrorStatus 202
getName 202
getSender 202
getSenderCount 202
open 202
send 203
sendFile 203

AmPublisher 204
clearErrorCodes 204
close 204
enableWarnings 204
getCCSID. 204
getEncoding 204
getLastErrorStatus 204
getName 204
open 204
publish 205

AmSubscriber 206
clearErrorCodes 206
close 206
enableWarnings 206
getCCSID. 206
getDefinitionType 206

getEncoding 206
getLastErrorStatus 206
getName 207
getQueueName. 207
open 207
receive 208
setQueueName 208
subscribe 209
unsubscribe 209

AmPolicy. 210
clearErrorCodes 210
enableWarnings 210
getLastErrorStatus 210
getName 210
getWaitTime 210
setWaitTime 210

AmBytes 211
cmp 211
constructors 211
cpy 212
dataPtr 212
destructor 212
length 212
operators 212
pad. 212

AmElement 213
AmElement 213
getName 213
getValue 213
getVersion 213
setVersion 213
toString 213

AmObject 214
clearErrorCodes 214
getLastErrorStatus 214
getName 214

AmStatus. 215
AmStatus. 215
getCompletionCode 215
getReasonCode 215
getReasonCode2 215
toString 215

AmString. 216
cat 216
cmp 216
constructors 216
contains 216
cpy 216
destructor 216
operators 217
pad. 217
split 217
strip 217
length 217
text 217
truncate 217

AmException 218
getClassName 218
getCompletionCode 218
getMethodName 218
getReasonCode 218

Contents vii

getSource. 218
toString 218

AmErrorException. 219
getClassName 219
getCompletionCode 219
getMethodName 219
getReasonCode 219
getSource. 219
toString 219

AmWarningException 220
getClassName 220
getCompletionCode 220
getMethodName 220
getReasonCode 220
getSource. 220
toString 220

Part 4. The COBOL interface . . . 221

Chapter 9. Using the Application
Messaging Interface in COBOL. . . . 225
Structure of the AMI 225

Using the repository 226
System default objects 226

Writing applications in COBOL 228
Opening and closing a session. 228
Sending messages 228
Receiving messages 230
Request/response messaging 232
File transfer 234
Publish/subscribe messaging 234
Using name/value elements 236
Error handling 238
Transaction support 238
Sending group messages 238
Other considerations 239

Building COBOL applications 240
COBOL applications on OS/390 240

Chapter 10. The COBOL high-level
interface 243
Overview of the COBOL high-level interface . . . 244

Initialize and terminate 244
Sending messages 244
Receiving messages 244
File transfer 244
Publish/subscribe 244
Transaction support 244

Reference information for the COBOL high-level
interface 246
AMHBACK (backout) 247
AMHBEGIN (begin) 248
AMHBRMS (browse message) 249

Usage notes 250
AMHCMIT (commit) 251
AMHINIT (initialize) 252
AMHPB (publish) 253
AMHRCFL (receive file) 254

Usage notes 255
AMHRCMS (receive message) 256

Usage notes 256
AMHRCPB (receive publication) 258

Usage notes 259
AMHRCRQ (receive request) 260

Usage notes 260
AMHSNFL (send file) 262

Usage notes 262
AMHSNMS (send message) 263
AMHSNRQ (send request) 264
AMHSNRS (send response) 265
AMHSB (subscribe) 266
AMHTERM (terminate) 267
AMHUN (unsubscribe) 268

Usage notes 268

Chapter 11. COBOL object interface
overview 269
Session interface functions 270

Session management 270
Create objects 270
Get object handles 270
Delete objects 271
Transactional processing 271
Error handling 271

Message interface functions 272
Get values 272
Set values 272
Reset values 272
Read and write data 272
Publish/subscribe topics. 273
Publish/subscribe filters. 273
Publish/subscribe name/value elements . . . 273
Error handling 273

Sender interface functions 274
Open and close. 274
Send 274
Get values 274
Error handling 274

Receiver interface functions 275
Open and close. 275
Receive and browse 275
Get values 275
Set values 275
Error handling 275

Distribution list interface functions 276
Open and close. 276
Send 276
Get values 276
Error handling 276

Publisher interface functions 277
Open and close. 277
Publish 277
Get values 277
Error handling 277

Subscriber interface functions 278
Open and close. 278
Broker messages 278
Get values 278
Set value 278
Error handling 278

Policy interface functions 279

viii MQSeries Application Messaging Interface

Get values 279
Set value 279
Error handling 279

High-level functions 280

Chapter 12. COBOL object interface
reference 283
Session interface functions 284

AMSEBG (begin) 284
AMSECLEC (clear error codes) 284
AMSECL (close) 285
AMSECM (commit) 285
AMSECR (create) 285
AMSECRDL (create distribution list) 286
AMSECRMS (create message) 286
AMSECRPO (create policy) 286
AMSECRPB (create publisher) 287
AMSECRRC (create receiver) 287
AMSECRSN (create sender) 288
AMSECRSB (create subscriber) 288
AMSEDL (delete) 289
AMSEDLDL (delete distribution list) 289
AMSEDLMS (delete message) 289
AMSEDLPO (delete policy). 290
AMSEDLPB (delete publisher). 290
AMSEDLRC (delete receiver) 290
AMSEDLSN (delete sender) 290
AMSEDLSB (delete subscriber) 291
AMSEGHDL (get distribution list handle) . . . 291
AMSEGTLE (get last error codes). 291
AMSEGHMS (get message handle) 292
AMSEGHPO (get policy handle) 292
AMSEGHPB (get publisher handle) 293
AMSEGHRC (get receiver handle) 293
AMSEGHSN (get sender handle) 293
AMSEGHSB (get subscriber handle) 294
AMSEOP (open) 294
AMSERB (rollback) 294

Message interface functions 296
AMMSADEL (add element) 296
AMMSADFI (add filter) 297
AMMSADTO (add topic) 297
AMMSCLEC (clear error codes) 298
AMMSDEEL (delete element) 298
AMMSDEFI (delete filter) 298
AMMSDENE (delete named element) 299
AMMSDETO (delete topic) 299
AMMSGELC (get element CCSID) 299
AMMSGTCC (get CCSID) 300
AMMSGTCI (get correl ID) 300
AMMSGTDL (get data length). 300
AMMSGTDO (get data offset) 301
AMMSGTEL (get element) 301
AMMSGTEC (get element count) 301
AMMSGTEN (get encoding) 302
AMMSGTFC (get filter count) 302
AMMSGTFI (get filter) 302
AMMSGTFO (get format) 303
AMMSGTGS (get group status) 303
AMMSGTLE (get last error) 304
AMMSGTMI (get message ID). 304

AMMSGTNA (get name) 305
AMMSGTNE (get named element) 305
AMMSGTNC (get named element count) . . . 306
AMMSGTRC (get report code) 306
AMMSGTTO (get topic) 307
AMMSGTTC (get topic count) 307
AMMSGTTY (get type) 307
AMMSREBY (read bytes) 308
AMMSRS (reset) 308
AMMSSTCC (set CCSID) 309
AMMSSTCI (set correl ID) 309
AMMSSTDO (set data offset) 309
AMMSSELC (set element ccsid) 310
AMMSSTEN (set encoding) 310
AMMSSTFO (set format) 310
AMMSSTGS (set group status). 311
AMMSWRBY (write bytes) 311

Sender interface functions 313
AMSNCLEC (clear error codes) 313
AMSNCL (close) 313
AMSNGTCC (get CCSID) 314
AMSNGTEN (get encoding) 314
AMSNGTLE (get last error) 314
AMSNGTNA (get name) 315
AMSNOP (open) 315
AMSNSN (send) 316
AMSNSNFL (send file) 316

Receiver interface functions 318
AMRCBR (browse) 318
AMRCBRSE (browse selection message) . . . 319
AMRCCLEC (clear error codes) 321
AMRCCL (close) 321
AMRCGTDT (get definition type) 321
AMRCGTLE (get last error) 322
AMRCGTNA (get name) 322
AMRCGTQN (get queue name) 323
AMRCOP (open) 323
AMRCRC (receive) 323
AMRCRCFL (receive file) 325
AMRCSTQN (set queue name) 326

Distribution list interface functions 327
AMDLCLEC (clear error codes) 327
AMDLCL (close) 327
AMDLGTLE (get last error) 327
AMDLGTNA (get name) 328
AMDLGTSC (get sender count) 328
AMDLGTSH (get sender handle) 328
AMDLOP (open) 329
AMDLSN (send) 329
AMDLSNFL (send file) 330
Usage notes 331

Publisher interface functions 332
AMPBCLEC (clear error codes) 332
AMPBCL (close) 332
AMPBGTCC (get CCSID) 332
AMPBGTEN (get encoding) 333
AMPBGTLE (get last error) 333
AMPBGTNA (get name). 333
AMPBOP (open) 334
AMPBPB (publish) 334

Subscriber interface functions 336

Contents ix

||
||

AMSBCLEC (clear error codes) 336
AMSBCL (close) 336
AMSBGTCC (get CCSID) 336
AMSBGTDT (get definition type) 337
AMSBGTEN (get encoding) 337
AMSBGTLE (get last error) 337
AMSBGTNA (get name) 338
AMSBGTQN (get queue name) 338
AMSBOP (open) 339
AMSBRC (receive). 339
AMSBSTQN (set queue name). 340
AMSBSB (subscribe) 340
AMSBUN (unsubscribe) 341

Policy interface functions 342
AMPOCLEC (clear error codes) 342
AMPOGTLE (get last error) 342
AMPOGTNA (get name) 342
AMPOGTWT (get wait time) 343
AMPOSTWT (set wait time) 343

Part 5. The Java interface 345

Chapter 13. Using the Application
Messaging Interface in Java 349
Structure of the AMI 349

Base classes 349
Interface and helper classes. 349
Exception classes 350
Using the repository 350
System default objects 350

Writing applications in Java 351
Creating and opening objects 351
Sending messages 351
Receiving messages 353
Request/response messaging 354
File transfer 355
Publish/subscribe messaging 355
Using AmElement objects 356
Error handling 357
Transaction support 358
Sending group messages 359
Other considerations 359

Building Java applications 361
AMI package for Java 361
Running Java programs 361

Chapter 14. Java interface overview 363
Base classes 363

Helper classes 363
Exception classes 363

AmSessionFactory 364
Constructor 364
Session factory management 364
Create session 364

AmSession 365
Session management 365
Create objects 365
Transactional processing 365
Error handling 365

AmMessage 366

Get values 366
Set values 366
Reset values 366
Read and write data 366
Publish/subscribe filters. 366
Publish/subscribe topics. 367
Publish/subscribe name/value elements . . . 367
Error handling 367

AmSender 368
Open and close. 368
Send 368
Send file 368
Get values 368
Error handling 368

AmReceiver 369
Open and close. 369
Receive and browse 369
Receive file 369
Get values 369
Set value 369
Error handling 369

AmDistributionList 370
Open and close. 370
Send 370
Send file 370
Get values 370
Error handling 370

AmPublisher 371
Open and close. 371
Publish 371
Get values 371
Error handling 371

AmSubscriber 372
Open and close. 372
Broker messages 372
Get values 372
Set value 372
Error handling 372

AmPolicy. 373
Policy management 373
Error handling 373

Helper classes 374
AmConstants 374
AmElement 374
AmObject 374
AmStatus. 374

Exception classes 375
AmException 375
AmErrorException. 375
AmWarningException 375

Chapter 15. Java interface reference 377
Base classes 377

Helper classes 377
Exception classes 377

AmSessionFactory 378
AmSessionFactory 378
createSession 378
getFactoryName 378
getLocalHost 378
getRepository 378

x MQSeries Application Messaging Interface

getTraceLevel 378
getTraceLocation 378
setLocalHost. 378
setRepository 379
setTraceLevel 379
setTraceLocation 379

AmSession 380
begin 380
clearErrorCodes 380
close 380
commit 380
createDistributionList 380
createMessage 380
createPolicy 381
createPublisher 381
createReceiver 381
createSender. 382
createSubscriber 382
enableWarnings 382
getLastErrorStatus 382
getName 382
getTraceLevel 382
getTraceLocation 382
open 382
rollback 383

AmMessage 384
addElement 384
addFilter 385
addTopic 385
clearErrorCodes 385
deleteElement 385
deleteFilter 385
deleteNamedElement 385
deleteTopic 385
enableWarnings 386
getCCSID. 386
getCorrelationId 386
getDataLength 386
getDataOffset 386
getElement 386
getElementCount 386
getEncoding 386
getFilter 387
getFilterCount 387
getFormat 388
getGroupStatus 388
getLastErrorStatus 388
getMessageId 388
getName 388
getNamedElement. 389
getNamedElementCount. 389
getReportCode 389
getTopic 389
getTopicCount 389
getType 389
readBytes. 389
reset 390
setCCSID 390
setCorrelationId 390
setDataOffset 390
setEncoding 390

setFormat 391
setGroupStatus 391
writeBytes 391

AmSender 392
clearErrorCodes 392
close 392
enableWarnings 392
getCCSID. 392
getEncoding 392
getLastErrorStatus 393
getName 393
open 393
send 393
sendFile 393

AmReceiver 395
browse 395
clearErrorCodes 396
close 396
enableWarnings 396
getDefinitionType 396
getLastErrorStatus 396
getName 396
getQueueName. 397
open 397
receive 397
receiveFile 397
setQueueName 398

AmDistributionList 399
clearErrorCodes 399
close 399
enableWarnings 399
getLastErrorStatus 399
getName 399
getSender 399
getSenderCount 399
open 399
send 400
sendFile 400

AmPublisher 401
clearErrorCodes 401
close 401
enableWarnings 401
getCCSID. 401
getEncoding 401
getLastErrorStatus 401
getName 401
open 401
publish 402

AmSubscriber 403
clearErrorCodes 403
close 403
enableWarnings 403
getCCSID. 403
getDefinitionType 403
getEncoding 403
getLastErrorStatus 403
getName 404
getQueueName. 404
open 404
receive 405
setQueueName 405

Contents xi

subscribe 406
unsubscribe 406

AmPolicy. 407
clearErrorCodes 407
enableWarnings 407
getLastErrorStatus 407
getName 407
getWaitTime 407
setWaitTime 407

AmConstants 408
AmElement 409

AmElement 409
getName 409
getValue 409
getVersion 409
setVersion 409
toString 409

AmObject 410
clearErrorCodes 410
getLastErrorStatus 410
getName 410

AmStatus 411
AmStatus 411
getCompletionCode 411
getReasonCode 411
getReasonCode2 411
toString 411

AmException 412
getClassName 412
getCompletionCode 412
getMethodName 412
getReasonCode 412
getSource. 412
toString 412

AmErrorException. 413
getClassName 413
getCompletionCode 413
getMethodName 413
getReasonCode 413
getSource. 413
toString 413

AmWarningException 414
getClassName 414
getCompletionCode 414
getMethodName 414
getReasonCode 414
getSource. 414
toString 414

Part 6. OS/390 Subsystems 415

Chapter 16. Writing applications for
OS/390 subsystems 417
Writing IMS applications using AMI. 417
Writing CICS applications using AMI 417
Writing batch applications using AMI 418
Writing RRS-batch applications using AMI . . . 418

RRS availability 418

Part 7. Setting up an AMI
installation 419

Chapter 17. Installation and sample
programs 421
Prerequisites. 421

Disk space 421
Operating environments 421
MQSeries environment 422
Language compilers 422

Installation on AIX 423
Installation 423
Setting the runtime environment 424
Directory structure (AIX) 425

Installation on HP-UX 427
Installation 427
Setting the runtime environment 428
Directory structure (HP-UX) 429

Installation on Sun Solaris 431
Installation 431
Setting the runtime environment 432
Directory structure (Solaris) 433

Installation on Windows. 435
Installation 435
Setting the runtime environment 435
Directory structure (Windows). 436

Installation on OS/390 438
Installation 438
Setting the runtime environment 438
Unicode character conversion 438
Directory structure (OS/390) 439

Local host and repository files (Unix and
Windows) 441

Default location 441
Default names 441
Overriding the default location and names . . 441
Local host file 442
Repository file 442

Local host and repository files (OS/390) 443
Batch, RRS-batch, IMS 443
CICS 443
Local host file 443
Repository file 444
Repository and local host caches 444

The administration tool 446
Installation 446
Operation 446

Connecting to MQSeries 447
Using MQSeries Integrator Version 1 447
Using MQSeries Publish/Subscribe 447
Using MQSeries Integrator Version 2 447
Migrating to MQSeries Integrator V2 from V1
and MQSeries Publish/Subscribe 449
Creating default MQSeries objects 449

The sample programs 450
Sample programs for Unix and Windows . . . 450
Running the Unix and Windows sample
programs 451
Sample programs for OS/390 452
Running the sample programs (OS/390) . . . 452

xii MQSeries Application Messaging Interface

Chapter 18. Defining services and
policies 455
Services and policies 455

System provided definitions 456
System default objects 456

Service definitions 458
Service point (sender/receiver) 458
Distribution list. 460
Subscriber 460
Publisher 460

Policy definitions 461
Initialization attributes 461
General attributes 462
Send attributes 463
Receive attributes 465
Subscribe attributes 466
Publish attributes 466

Chapter 19. Problem determination 467
Using trace (Unix and Windows) 467

Trace filename and directory 467
C++ and Java 469
Example trace 470

Using trace (OS/390) 474
Formatted Trace 474
Control of formatted trace 474
GTF Trace 475
Control of GTF Trace 475

When your AMI program fails 477
Reason Codes 477
First failure symptom report (Unix and
Windows) 477
First failure symptom report (OS/390) 477
Other sources of information 478
Common causes of problems 478

Part 8. Appendixes 479

Appendix A. Reason codes 481
Reason code: OK 481
Reason code: Warning 481
Reason code: Failed 483

Appendix B. Constants 493
The constants 493

AMB (Boolean constants) 493
AMBRW (Browse constants) 493
AMCC (Completion codes) 493
AMDEF (Service and policy definitions) . . . 493
AMDT (Definition type constants) 493
AMENC (Encoding constants) 494
AMFB (Feedback codes) 494
AMFMT (Format constants) 494
AMGF and AMGRP (Group status constants) 494
AMH (Handle constants) 494
AMLEN (String length constants). 494
AMMCD (Message Content Descriptor tag
names) 494
AMMT (Message types) 494
AMPS (Publish/subscribe) 495
AMRC (Reason codes) 496
AMSD (System default names and handle
synonyms) 499
AMWT (Wait time constant) 499

Appendix C. Notices 501
Trademarks 502

Glossary of terms and abbreviations 503

Bibliography. 505
MQSeries cross-platform publications 505
MQSeries platform-specific publications 505
Softcopy books 506

HTML format 506
Portable Document Format (PDF) 506
BookManager® format 507
PostScript format 507
Windows Help format 507

MQSeries information available on the Internet . . 507

Index 509

Sending your comments to IBM . . . 521

Contents xiii

xiv MQSeries Application Messaging Interface

Figures

1. Basic AMI model 7

© Copyright IBM Corp. 1999, 2000 xv

xvi MQSeries Application Messaging Interface

Tables

1. System default objects 14
2. Object interface calls used by the high-level

functions 74
3. Object interface calls used by the high-level

functions 75
4. System default objects 226
5. Object interface calls used by the high-level

functions 280
6. The sample programs for Unix and Windows

platforms 450
7. The sample programs for OS/390 (‘batch’

includes RRS-batch) 452

8. System provided definitions 456
9. System default objects 457

10. Service point (sender/receiver). 458
11. Distribution list 460
12. Subscriber 460
13. Publisher 460
14. Initialization attributes 461
15. General attributes 462
16. Send attributes 463
17. Receive attributes 465
18. Subscribe attributes 466
19. Publish attributes 466

© Copyright IBM Corp. 1999, 2000 xvii

xviii MQSeries Application Messaging Interface

About this book

This book describes how to use the MQSeries Application Messaging Interface. The
Application Messaging Interface provides a simple interface that application
programmers can use without needing to understand all the details of the
MQSeries Message Queue Interface.

Who this book is for
This book is for anyone who wants to use the Application Messaging Interface to
send and receive MQSeries messages, including publish/subscribe and
point-to-point applications.

What you need to know to understand this book
v Knowledge of the C, COBOL, C++, or Java™ programming language is assumed.
v You don’t need previous experience of MQSeries to use the Application

Messaging Interface (AMI). You can use the examples and sample programs
provided to find out how to send and receive messages. However, to understand
all the functions of the AMI you need to have some knowledge of the MQSeries
Message Queue Interface (MQI). This is described in the MQSeries Application
Programming Guide and the MQSeries Application Programming Reference book.

v You will need to read the following:
– MQSeries Publish/Subscribe User’s Guide if you are going to use the AMI with

MQSeries Publish/Subscribe.
– MQSeries Integrator Version 1.1 Application Development Guide if you are going

to use the AMI with MQSeries Integrator Version 1.1.
– MQSeries Integrator Version 2.0 Programming Guide if you are going to use the

AMI with MQSeries Integrator Version 2.0.
v If you are a systems administrator responsible for setting up an installation of

the AMI, you need to be experienced in using the MQI.

Structure of this book
This book contains the following parts:
v “Part 1. Introduction” on page 1 gives an overview of the Application Messaging

Interface.
v “Part 2. The C interface” on page 9 describes how to use the AMI in C programs.

If you are new to MQSeries, gain some experience with the high-level interface
first. It provides most of the functionality you need when writing applications.
Then move on to the object interface if you need extra functionality.

v “Part 3. The C++ interface” on page 141 describes how to use the AMI in C++
programs.

v “Part 4. The COBOL interface” on page 221 describes how to write AMI
programs using the COBOL high-level and object interfaces.

v “Part 5. The Java interface” on page 345 describes how to use the AMI in Java
programs.

v “Part 6. OS/390 Subsystems” on page 415 gives advice on writing AMI
applications for OS/390® subsystems.

© Copyright IBM Corp. 1999, 2000 xix

v “Part 7. Setting up an AMI installation” on page 419 is for systems
administrators who are setting up an Application Messaging Interface
installation.

Appearance of text in this book
This book uses the following type styles:

Format The name of a parameter in an MQSeries call, a field in an MQSeries
structure, or an attribute of an MQSeries object

amInitialize
The name of an AMI function or method

AMB_TRUE
The name of an AMI constant

AmString getName();
The syntax of AMI functions and methods, and example code

About this book

xx MQSeries Application Messaging Interface

Summary of changes

This section describes changes in this edition of MQSeries Application Messaging
Interface. Changes since the previous edition of the book are marked by vertical
lines to the left of the changes.

Changes for this edition (SC34-5604-04)
This is the first edition of the book available in hardcopy form and contains several
editorial changes, mainly for clarification of the following calls:
v browse a message (see “amRcvBrowse” on page 112 for C and “AMRCBR

(browse)” on page 318 for COBOL)
v browse a selection message (see “amRcvBrowseSelect” on page 114 for C and

“AMRCBRSE (browse selection message)” on page 319 for COBOL)

Changes for the fourth edition (SC34-5604-03)
This edition was not published.

Changes for the third edition (SC34-5604-02)
v Application Messaging Interface now provides support for applications written

in the C and COBOL programming languages, running on the OS/390 operating
system. See:
– “Part 4. The COBOL interface” on page 221 for a description of the COBOL

high-level and object interfaces.
– “Part 6. OS/390 Subsystems” on page 415 for information about writing AMI

applications for OS/390 subsystems.
v New calls and methods have been included for:

– file transfer
– content-based publish/subscribe
– returning the message type
– returning the feedback code from a report message

See the parts of the book describing each supported language for details.
v New high-level calls have been added for both C and COBOL to:

– browse a message (see “amBrowseMsg” on page 42 for C and “AMHBRMS
(browse message)” on page 249 for COBOL)

– begin a unit of work (see “amBegin” on page 41 for C and “AMHBEGIN
(begin)” on page 248 for COBOL)

v Support is provided for MQSeries Integrator Version 2.0. For details see “Using
MQSeries Integrator Version 2” on page 447.

v There is now a subset of the AMI C interface that conforms to the Open
Application Group Middleware Application Program Interface Specification
(OAMAS). See “Using the AMI OAMAS subset” on page 28 for details.

© Copyright IBM Corp. 1999, 2000 xxi

Changes

xxii MQSeries Application Messaging Interface

Part 1. Introduction

Chapter 1. Introduction 3
Main components of the AMI. 3

Sending and receiving messages 3
Interoperability 3
Programming languages 4

Description of the AMI 4
Messages 4
Services 4

Point-to-point and publish/subscribe 5
Types of service 5

Policies 6
Application Messaging Interface model 7
Further information 8

© Copyright IBM Corp. 1999, 2000 1

2 MQSeries Application Messaging Interface

Chapter 1. Introduction

The MQSeries products enable programs to communicate with one another across
a network of dissimilar components - processors, operating systems, subsystems,
and communication protocols - using a consistent application programming
interface, the MQSeries Message Queue Interface (MQI). The purpose of the
Application Messaging Interface (AMI) is to provide a simple interface that
application programmers can use without needing to understand all the functions
available in the MQI. The functions that are required in a particular installation are
defined by a system administrator, using services and policies.

Main components of the AMI
There are three main components in the AMI:
v The message, which defines what is sent from one program to another
v The service, which defines where the message is sent
v The policy, which defines how the message is sent

To send a message using the AMI, an application has to specify the message data
together with the service and policy to be used. You can use the default services
and policies provided by the system, or create your own. Optionally, you can store
your definitions of services and policies in a repository.

Sending and receiving messages
You can use the AMI to send and receive messages in a number of different ways:
v Send and forget (datagram), where no reply is needed
v Distribution list, where a message is sent to multiple destinations
v Request/response, where a sending application needs a response to the request

message
v Publish/subscribe, where a broker manages the distribution of messages

Interoperability
The AMI is interoperable with other MQSeries interfaces. Using the AMI you can
exchange messages with one or more of the following:
v Another application that is using the AMI
v Any application that is using the MQI
v A message broker (such as MQSeries Publish/Subscribe or MQSeries Integrator)

© Copyright IBM Corp. 1999, 2000 3

Programming languages
The Application Messaging Interface is available in the C, COBOL, C++ and Java
programming languages. In C and COBOL there are two interfaces: a high-level
interface that is procedural in style, and a lower level object-style interface. The
high-level interface contains the functionality needed by the majority of
applications. The two interfaces can be mixed as required.

In C++ and Java, a single object interface is provided.

Description of the AMI
In the Application Messaging Interface, messages, services and policies define what
is being sent, where it is sent, and how it is sent.

Messages
Information is passed between communicating applications using messages, with
MQSeries providing the transport. Messages consist of:
v The message attributes: information that identifies the message and its

properties. The AMI uses the attributes, together with information in the policy,
to interpret and construct MQSeries headers and message descriptors.

v The message data: the application data carried in the message. The AMI does
not act upon this data.

Some examples of message attributes are:

MessageID
An identifier for the message. It is usually unique, and typically it is
generated by the message transport (MQSeries).

CorrelID
A correlation identifier that can be used as a key, for example to correlate a
response message to a request message. The AMI normally sets this in a
response message by copying the MessageID from the request message.

Format The structure of the message.

Topic Indicates the content of the message for publish/subscribe applications.

These attributes are properties of an AMI message object. Where it is appropriate,
an application can set them before sending a message, or access them after
receiving a message. The message data can be contained in the message object, or
passed as a separate parameter.

In an MQSeries application, the message attributes are set up explicitly using the
Message Queue Interface (MQI), so the application programmer needs to
understand their purpose. With the AMI, they are contained in the message object
or defined in a policy that is set up by the system administrator, so the
programmer is not concerned with these details.

Services
A service represents a destination that applications send messages to or receive
messages from. In MQSeries such a destination is called a message queue, and a
queue resides in a queue manager. Programs can use the MQI to put messages on
queues, and get messages from them. Because there are many parameters
associated with queues and the way they are set up and managed, this interface is

Main components of the AMI

4 MQSeries Application Messaging Interface

complex. When using the AMI, these parameters are defined in a service that is set
up by the systems administrator, so the complexity is hidden from the application
programmer.

For further information about queues and queue managers, please refer to the
MQSeries Application Programming Guide.

Point-to-point and publish/subscribe
In a point-to-point application, the sending application knows the destination of the
message. Point-to-point applications can be send and forget (or datagram), where a
reply to the message is not required, or request/response, where the request
message specifies the destination for the response message. Applications using
distribution lists to send a message to multiple destinations are usually of the send
and forget type.

In the case of publish/subscribe applications, the providers of information are
decoupled from the consumers of that information. The provider of the
information is called a publisher. Publishers supply information about a subject by
sending it to a broker. The subject is identified by a topic, such as ″Stock″ or
″Weather″. A publisher can publish information on more than one topic, and many
publishers can publish information on a particular topic.

The consumer of the information is called a subscriber. A subscriber decides what
information it is interested in, and subscribes to the relevant topics by sending a
message to the broker. When information is published on one of those topics, the
publish/subscribe broker sends it to the subscriber (and any others who have
registered an interest in that topic). Each subscriber is sent information about those
topics it has subscribed to.

There can be many brokers in a publish/subscribe system, and they communicate
with each other to exchange subscription requests and publications. A publication
is propagated to another broker if a subscription to that topic exists on the other
broker. So a subscriber that subscribes to one broker will receive publications (on a
chosen topic) that are published at another broker.

The AMI provides functions to send and receive messages using the
publish/subscribe model. For further details see the MQSeries Publish/Subscribe
User’s Guide.

Types of service
Different types of service are defined to specify the mapping from the AMI to real
resources in the messaging network.
v Senders and receivers establish one-way communication pipes for sending and

receiving messages.
v A distribution list contains a list of senders to which messages can be sent.
v A publisher contains a sender that is used to publish messages to a

publish/subscribe broker.
v A subscriber contains a sender, used to subscribe to a publish/subscribe broker,

and a receiver, for receiving publications from the broker.

The AMI provides default services that are used unless otherwise specified by the
application program. You can define your own service when calling a function, or
use a customized service stored in a repository (these are set up by a systems
administrator). You don’t have to have a repository. Many of the options used by
the services are contained in a policy (see below).

Description of the AMI

Chapter 1. Introduction 5

The AMI has functions to open and close services explicitly, but they can also be
opened and closed implicitly by other functions.

Policies
A policy controls how the AMI functions operate. Policies control such items as:
v The attributes of the message, for example the priority.
v Options used for send and receive operations, for instance whether it is part of a

unit of work.
v Publish/subscribe options, for example whether a publication is retained.
v Added value functions to be invoked as part of the call, such as retry.

The AMI provides default policies. Alternatively, a systems administrator can
define customized policies and store them in a repository. An application program
selects a policy by specifying it as a parameter on calls.

You could choose to use a different policy on each call, and specify in the policy
only those parameters that are relevant to the particular call. You could then have
policies shared between applications, such as a “Transactional_Persistent_Put”
policy. Another approach is to have policies that specify all the parameters for all
the calls made in a particular application, such as a “Payroll_Client” policy. Both
approaches are valid with the AMI, but a single policy for each application will
simplify management of policies.

The AMI will automatically retry when temporary errors are encountered on
sending a message, if requested by the policy. (Examples of temporary errors are
queue full, queue disabled, and queue in use).

Description of the AMI

6 MQSeries Application Messaging Interface

Application Messaging Interface model
Figure 1 shows the components of the Application Messaging Interface.

Application programs communicate directly with AMI objects using the object
interface in C, COBOL, C++ and Java. In addition to the object-style interface, there
is a procedural-style high-level interface available in C and COBOL. This contains
the functionality needed by the majority of applications; it can be supplemented
with object interface functions as needed.

Sender, receiver, distribution list, publisher, and subscriber objects are all services.
Senders and receivers connect directly to the message transport layer (MQSeries).
Distribution list and publisher objects contain senders; subscriber objects contain a
sender and a receiver.

Message, service and policy objects are created and managed by a session object,
which provides the scope for a unit of work. The session object contains a
connection object that is not visible to the application. The combination of

Session Connection

Application
programs

High
level
API
layer

Message
transport

(MQSeries)

Distribution
list

Sender

Sender

Sender
Sender

Sender

Sender

Receiver

Receiver

Policy

Subscriber

Publisher

Message

Repository
Procedural
interface

Object
interface

Figure 1. Basic AMI model

Application Messaging Interface model

Chapter 1. Introduction 7

connection, sender, and receiver objects provides the transport for the message.
Other objects, such as helper classes, are provided in C++ and Java.

Attributes for message, service and policy objects can be taken from the system
defaults, or from administrator-provided definitions that have been stored in the
repository.

Further information
The syntax of the AMI differs according to the programming language, so the
implementation for each language is described in a separate part of this book:
v “Part 2. The C interface” on page 9
v “Part 3. The C++ interface” on page 141
v “Part 4. The COBOL interface” on page 221
v “Part 5. The Java interface” on page 345

In “Part 6. OS/390 Subsystems” on page 415, you will find advice on writing AMI
applications for the IMS, CICS®, batch, and RRS-batch subsystems on OS/390.

In “Part 7. Setting up an AMI installation” on page 419, you can find out how to:
v Install the Application Messaging Interface
v Run the sample programs
v Determine the cause of problems
v Set up services and policies

The Application Messaging Interface for C, C++, and Java runs on the following
operating systems or environments: AIX®, HP-UX, Sun Solaris, Microsoft®

Windows® 98 and Windows NT.

The Application Messaging Interface for C and COBOL runs on the OS/390
operating system.

Application Messaging Interface model

8 MQSeries Application Messaging Interface

Part 2. The C interface

Chapter 2. Using the Application Messaging
Interface in C 13
Structure of the AMI 13

Using the repository 14
System default objects 14

Writing applications in C 16
Opening and closing a session 16
Sending messages 16

Using the message object 17
Sample programs 18

Receiving messages. 18
Using the message object 19
Sample programs 19

Request/response messaging 19
Request. 20
Response 20
Sample programs 21

File transfer 21
Publish/subscribe messaging 22

Publish 22
Subscribe 23
Sample programs 24

Using name/value elements 24
Parameters 24
Example 25

Error handling 26
Transaction support 26
Sending group messages 26
Other considerations 27

Multithreading 27
Using MQSeries with the AMI 28
Field limits 28

Using the AMI OAMAS subset 28
Building C applications 29

AMI include file 29
Data types. 29
Initial values for structures 29
C applications on AIX 30

Preparing C programs on AIX 30
Running C programs on AIX 30

C applications on HP-UX 31
Preparing C programs on HP-UX 31
Running C programs on HP-UX 31

C applications on Solaris 33
Preparing C programs on Solaris 33
Running C programs on Solaris 33

C applications on Windows 34
Preparing C programs on Windows 34
Running C programs on Windows. 34

C applications on OS/390 34
Preparing C programs on OS/390 34
Running C programs on OS/390 35

Chapter 3. The C high-level interface 37
Overview of the C high-level interface 38

Initialize and terminate 38

Sending messages 38
Receiving messages. 38
File transfer 38
Publish/subscribe 38
Transaction support 38

Reference information for the C high-level interface 39
amBackout 40

Parameters 40
amBegin 41

Parameters 41
amBrowseMsg 42

Parameters 42
Usage notes 43

amCommit 44
Parameters 44

amInitialize 45
Parameters 45

amPublish 46
Parameters 46

amReceiveFile 47
Parameters 47
Usage notes 48

amReceiveMsg 49
Parameters 49
Usage notes 49

amReceivePublication 51
Parameters 51
Usage notes 52

amReceiveRequest 53
Parameters 53
Usage notes 53

Data conversion 53
Use of the buffLen parameter 54

amSendFile 55
Parameters 55
Usage notes 55

amSendMsg 56
Parameters 56

amSendRequest 57
Parameters 57

amSendResponse 58
Parameters 58

amSubscribe 59
Parameters 59

amTerminate 60
Parameters 60

amUnsubscribe 61
Parameters 61
Usage notes 61

Chapter 4. C object interface overview 63
Session interface functions 64

Session management 64
Create objects. 64
Get object handles 64
Delete objects. 65

© Copyright IBM Corp. 1999, 2000 9

Transactional processing 65
Error handling 65

Message interface functions 66
Get values 66
Set values 66
Reset values 66
Read and write data 66
Publish/subscribe topics 67
Publish/subscribe filters 67
Publish/subscribe name/value elements. . . . 67
Error handling 67
Publish/subscribe helper macros 67

Sender interface functions 68
Open and close 68
Send. 68
Get values 68
Error handling 68

Receiver interface functions 69
Open and close 69
Receive and browse 69
Get values 69
Set values 69
Error handling 69

Distribution list interface functions 70
Open and close 70
Send. 70
Get values 70
Error handling 70

Publisher interface functions. 71
Open and close 71
Publish 71
Get values 71
Error handling 71

Subscriber interface functions 72
Open and close 72
Broker messages 72
Get values 72
Set value 72
Error handling 72

Policy interface functions 73
Get values 73
Set value 73
Error handling 73

High-level functions 74

Chapter 5. C object interface reference 77
Session interface functions 78

amSesBegin 78
amSesClearErrorCodes 78
amSesClose 78
amSesCommit 79
amSesCreate 79
amSesCreateDistList 79
amSesCreateMessage 80
amSesCreatePolicy 80
amSesCreatePublisher 80
amSesCreateReceiver 81
amSesCreateSender 81
amSesCreateSubscriber 81
amSesDelete 83
amSesDeleteDistList 83

amSesDeleteMessage 83
amSesDeletePolicy 84
amSesDeletePublisher 84
amSesDeleteReceiver 84
amSesDeleteSender 85
amSesDeleteSubscriber 85
amSesGetDistListHandle 85
amSesGetLastError 86
amSesGetMessageHandle. 86
amSesGetPolicyHandle 87
amSesGetPublisherHandle 87
amSesGetReceiverHandle 87
amSesGetSenderHandle 87
amSesGetSubscriberHandle 88
amSesOpen 88
amSesRollback 88

Message interface functions 90
amMsgAddElement 90
amMsgAddFilter 91

Parameters 91
amMsgAddTopic 91
amMsgClearErrorCodes 91
amMsgDeleteElement 92
amMsgDeleteFilter 92

Parameters 92
amMsgDeleteNamedElement 92
amMsgDeleteTopic 93
amMsgGetCCSID 93
amMsgGetCorrelId 93
amMsgGetDataLength 94
amMsgGetDataOffset 94
amMsgGetElement 94
amMsgGetElementCCSID. 95
amMsgGetElementCount 95
amMsgGetEncoding 95
amMsgGetFilter 96

Parameters 96
amMsgGetFilterCount 96

Parameters 96
amMsgGetFormat 96
amMsgGetGroupStatus 97
amMsgGetLastError 97
amMsgGetMsgId 98
amMsgGetName. 98
amMsgGetNamedElement 98
amMsgGetNamedElementCount 99
amMsgGetReportCode. 99
amMsgGetTopic 100
amMsgGetType. 100
amMsgGetTopicCount 100
amMsgReadBytes 101
amMsgReset. 101
amMsgSetCCSID 101
amMsgSetCorrelId. 102
amMsgSetDataOffset 102
amMsgSetElementCCSID 102
amMsgSetEncoding 103
amMsgSetFormat 103
amMsgSetGroupStatus 104
amMsgWriteBytes 104

Message interface helper macros 105

10 MQSeries Application Messaging Interface

AmMsgAddStreamName 105
AmMsgGetPubTimeStamp 105
AmMsgGetStreamName 105

Sender interface functions 107
amSndClearErrorCodes 107
amSndClose 107
amSndGetCCSID 108
amSndGetEncoding 108
amSndGetLastError 109
amSndGetName 109
amSndOpen 109
amSndSend 110
amSndSendFile 111

Parameters 111
Usage notes 111

Receiver interface functions. 112
amRcvBrowse 112

Usage notes 113
amRcvBrowseSelect 114

Usage notes 115
amRcvClearErrorCodes 115
amRcvClose 116
amRcvGetDefnType 116
amRcvGetLastError 117
amRcvGetName 117
amRcvGetQueueName 118
amRcvOpen 118
amRcvReceive 119

Usage notes 119
amRcvReceiveFile 121

Usage notes 122
amRcvSetQueueName 122

Distribution list interface functions 123
amDstClearErrorCodes 123
amDstClose 123
amDstGetLastError 123
amDstGetName 124
amDstGetSenderCount 124
amDstGetSenderHandle 124
amDstOpen 125
amDstSend 126
amDstSendFile 127

Parameters 127
Usage notes 127

Publisher interface functions 128
amPubClearErrorCodes 128
amPubClose 128
amPubGetCCSID 128
amPubGetEncoding 128
amPubGetLastError 129
amPubGetName 130
amPubOpen 130
amPubPublish 131

Subscriber interface functions 132
amSubClearErrorCodes 132
amSubClose 132
amSubGetCCSID 132
amSubGetDefnType 132
amSubGetEncoding 133
amSubGetLastError 134
amSubGetName 134

amSubGetQueueName 134
amSubOpen 135
amSubReceive 136
amSubSetQueueName 136
amSubSubscribe 137
amSubUnsubscribe 138

Policy interface functions 139
amPolClearErrorCodes 139
amPolGetLastError 139
amPolGetName. 139
amPolGetWaitTime 140
amPolSetWaitTime. 140

Part 2. The C interface 11

||
||
||
||

12 MQSeries Application Messaging Interface

Chapter 2. Using the Application Messaging Interface in C

The Application Messaging Interface (AMI) in the C programming language has
two interfaces:
1. A high-level procedural interface that provides the function needed by most

users.
2. A lower-level, object-style interface, that provides additional function for

experienced MQSeries users.

This chapter describes the following:
v “Structure of the AMI”
v “Writing applications in C” on page 16
v “Building C applications” on page 29

Structure of the AMI
Although the high-level interface is procedural in style, the underlying structure of
the AMI is object based. (The term object is used here in the object-oriented
programming sense, not in the sense of MQSeries ‘objects’ such as channels and
queues.) The objects that are made available to the application are:

Session
Contains the AMI session.

Message
Contains the message data, message ID, correlation ID, and options that
are used when sending or receiving a message (most of which come from
the policy definition).

Sender
This is a service that represents a destination (such as an MQSeries queue)
to which messages are sent.

Receiver
This is a service that represents a source from which messages are
received.

Distribution list
Contains a list of sender services to provide a list of destinations.

Publisher
Contains a sender service where the destination is a publish/subscribe
broker.

Subscriber
Contains a sender service (to send subscribe and unsubscribe messages to
a publish/subscribe broker) and a receiver service (to receive publications
from the broker).

Policy Defines how the message should be handled, including items such as
priority, persistence, and whether it is included in a unit of work.

When using the high-level functions the objects are created automatically and
(where applicable) populated with values from the repository. In some cases it
might be necessary to inspect these properties after a message has been sent (for
instance, the MessageID), or to change the value of one or more properties before

© Copyright IBM Corp. 1999, 2000 13

sending the message (for instance, the Format). To satisfy these requirements, the
AMI for C has a lower-level object style interface in addition to the high-level
procedural interface. This provides access to the objects listed above, with methods
to set and get their properties. You can mix high-level and object-level functions in
the same application.

All the objects have both a handle and a name. The names are used to access objects
from the high-level interface. The handles are used to access them from the object
interface. Multiple objects of the same type can be created with the same name, but
are usable only from the object interface.

The high-level interface is described in “Chapter 3. The C high-level interface” on
page 37. An overview of the object interface is given in “Chapter 4. C object
interface overview” on page 63, with reference information in “Chapter 5. C object
interface reference” on page 77.

Using the repository
You can run AMI applications with or without a repository. If you don’t have a
repository, you can use a system default object (see below), or create your own by
specifying its name on a function call. It will be created using the appropriate
system provided definition (see “System provided definitions” on page 456).

If you have a repository, and you specify the name of an object on a function call
that matches a name in the repository, the object will be created using the
repository definition. (If no matching name is found in the repository, the system
provided definition will be used.)

System default objects
Table 1. System default objects

Default object Constant or handle (if applicable)

SYSTEM.DEFAULT.POLICY AMSD_POL
AMSD_POL_HANDLE

SYSTEM.DEFAULT.SYNCPOINT.POLICY AMSD_SYNC_POINT_POL
AMSD_SYNC_POINT_POL_HANDLE

SYSTEM.DEFAULT.SENDER AMSD_SND

SYSTEM.DEFAULT.RESPONSE.SENDER AMSD_RSP_SND
AMSD_RSP_SND_HANDLE

SYSTEM.DEFAULT.RECEIVER AMSD_RCV
AMSD_RCV_HANDLE

SYSTEM.DEFAULT.PUBLISHER AMSD_PUB
AMSD_PUB_SND

SYSTEM.DEFAULT.SUBSCRIBER AMSD_SUB
AMSD_SUB_SND

SYSTEM.DEFAULT.SEND.MESSAGE AMSD_SND_MSG
AMSD_SND_MSG_HANDLE

SYSTEM.DEFAULT.RECEIVE.MESSAGE AMSD_RCV_MSG
AMSD_RCV_MSG_HANDLE

A set of system default objects is created at session creation time. This removes the
overhead of creating the objects from applications using these defaults. The system

Structure of the AMI

14 MQSeries Application Messaging Interface

default objects are available for use from both the high-level and object interfaces
in C. They are created using the system provided definitions (see “System
provided definitions” on page 456).

The default objects can be specified explicitly using AMI constants, or used to
provide defaults if a parameter is omitted (by specifying NULL, for example).

Constants representing synonyms for handles are also provided for these objects,
for use from the object interface (see “Appendix B. Constants” on page 493). Note
that the first parameter on a call must be a real handle; you cannot use a synonym
in this case (that is why handles are not provided for all the default objects).

Structure of the AMI

Chapter 2. Using the Application Messaging Interface in C 15

Writing applications in C
This section gives a number of examples showing how to use the high-level
interface of the AMI, with some extensions using the object interface. Equivalent
operations to all high-level functions can be performed using combinations of
object interface functions (see “High-level functions” on page 74).

Opening and closing a session
Before using the AMI, you must open a session. This can be done with the
following high-level function (page 45):

Opening a session
hSession = amInitialize(name, myPolicy, &compCode, &reason);

The name is optional, and can be specified as NULL. myPolicy is the name of the
policy to be used during initialization of the AMI. You can specify the policy name
as NULL, in which case the SYSTEM.DEFAULT.POLICY object is used.

The function returns a session handle, which must be used by other calls in this
session. Errors are returned using a completion code and reason code.

To close a session, you can use this high-level function (page 60):

Closing a session
success = amTerminate(&hSession, myPolicy, &compCode, &reason);

This closes and deletes all objects that were created in the session. Note that a
pointer to the session handle is passed. If the function is successful, it returns
AMB_TRUE.

Sending messages
You can send a datagram (send and forget) message using the high-level
amSendMsg function (page 56). In the simplest case, all you need to specify is the
session handle returned by amInitialize, the message data, and the message
length. Other parameters are set to NULL, so the default message, sender service,
and policy objects are used.

Sending a message using all the defaults
success = amSendMsg(hSession, NULL, NULL, dataLen,

pData, NULL, &compCode, &reason);

If you want to send the message using a different sender service, specify its name
(such as mySender) as follows:

Sending a message using a specified sender service
success = amSendMsg(hSession, mySender, NULL, dataLen,

pData, NULL, &compCode, &reason);

Writing applications in C

16 MQSeries Application Messaging Interface

If you are not using the default policy, you can specify a policy name:

Sending a message using a specified policy
success = amSendMsg(hSession, NULL, myPolicy, dataLen,

pData, NULL, &compCode, &reason);

The policy controls the behavior of the send function. For example, the policy can
specify:
v The priority, persistence and expiry of the message
v If the send is part of a unit of work
v If the sender service should be implicitly opened and left open

To send a message to a distribution list, specify its name (such as myDistList) as
the sender service:

Sending a message to a distribution list
success = amSendMsg(hSession, myDistList, NULL, dataLen,

pData, NULL, &compCode, &reason);

Using the message object
Using the object interface gives you more functions when sending a message. For
example, you can get or set individual attributes in the message object. To get an
attribute after the message has been sent, you can specify a name for the message
object that is being sent:

Specifying a message object
success = amSendMsg(hSession, NULL, NULL, dataLen,

pData, mySendMsg, &compCode, &reason);

The AMI creates a message object of the name specified (mySendMsg), if one doesn’t
already exist. (The sender name and policy name are specified as NULL, so in this
example their defaults are used.) You can then use object interface functions to get
the required attributes, such as the MessageID, from the message object:

Getting an attribute from a message object
hMsg = amSesGetMessageHandle(hSession, mySendMsg, &compCode, &reason);

success = amMsgGetMsgId(hMsg, BUFLEN, &MsgIdLen, pMsgId,
&compCode, &reason);

The first call is needed to get the handle to the message object. The second call
returns the message ID length, and the message ID itself (in a buffer of length
BUFLEN).

To set an attribute such as the Format before the message is sent, you must first
create a message object and set the format:

Writing applications in C

Chapter 2. Using the Application Messaging Interface in C 17

Setting an attribute in a message object
hMsg = amSesCreateMessage(hSession, mySendMsg, &compCode, &reason);

success = amMsgSetFormat(hMsg, AMLEN_NULL_TERM, pFormat,
&compCode, &reason);

Then you can send the message as before, making sure to specify the same
message object name (mySendMsg) in the amSendMsg call.

Look at “Message interface functions” on page 66 to find out what other attributes
of the message object you can get and set.

After a message object has been used to send a message, it might not be left in the
same state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see
amMsgReset on page 101) and rebuild it each time.

Instead of sending the message data using the data buffer, it can be added to the
message object. However, this is not recommended for large messages because of
the overhead of copying the data into the message object before it is sent (and also
extracting the data from the message object when it is received).

Sample programs
For more details, refer to the amtshsnd.c and amtsosnd.c sample programs (see
“Sample programs for Unix and Windows” on page 450).

Receiving messages
Use the amReceiveMsg high-level function (page 49) to receive a message to which
no response is to be sent (such as a datagram). In the simplest case, all you need to
specify are the session handle and a buffer for the message data. Other parameters
are set to NULL, so the default message, receiver service, and policy objects are
used.

Receiving a message using all the defaults
success = amReceiveMsg(hSession, NULL, NULL, NULL, BUFLEN,

&dataLen, pData, NULL, &compCode, &reason);

If you want to receive the message using a different receiver service, specify its
name (such as myReceiver) as follows:

Receiving a message using a specified receiver service
success = amReceiveMsg(hSession, myReceiver, NULL, NULL, BUFLEN,

&dataLen, pData, NULL, &compCode, &reason);

If you are not using the default policy, you can specify a policy name:

Writing applications in C

18 MQSeries Application Messaging Interface

Receiving a message using a specified policy
success = amReceiveMsg(hSession, NULL, myPolicy, NULL, BUFLEN,

&dataLen, pData, NULL, &compCode, &reason);

The policy can specify, for example:
v The wait interval
v If the message is part of a unit of work
v If the message should be code page converted
v If all the members of a group must be there before any members can be read

Using the message object
To get the attributes of a message after receiving it, you can specify your own
message object name, or use the system default
(SYSTEM.DEFAULT.RECEIVE.MESSAGE). If a message object of that name does
not exist it will be created. You can access the attributes (such as the Encoding)
using the object interface functions:

Getting an attribute from a message object
success = amReceiveMsg(hSession, NULL, NULL, NULL, BUFLEN,

&dataLen, pData, myRcvMsg, &compCode, &reason);

hMsg = amSessGetMessageHandle(hSession, myRcvMsg, &compCode, &reason);

success = amMsgGetEncoding(hMsg, &encoding, &compCode, &reason);

If a specific message is to be selectively received using its correlation identifier, a
message object must first be created and its CorrelId property set to the required
value (using the object interface). This message object is passed as the selection
message on the amReceiveMsg call:

Using a selection message object
hMsg = amSesCreateMessage(hSession, mySelMsg, &compCode, &reason);

success = amMsgSetCorrelId(hMsg, correlIdLen, pCorrelId,
&compCode, &reason);

success = amReceiveMsg(hSession, NULL, NULL, mySelMsg, BUFLEN,
&dataLen, pData, NULL, &compCode, &reason);

Sample programs
For more details, refer to the amtshrcv.c and amtsorcv.c sample programs (see
“Sample programs for Unix and Windows” on page 450).

Request/response messaging
In the request/response style of messaging, a requester (or client) application sends a
request message and expects to receive a message in response. The responder (or
server) application receives the request message and produces the response
message (or messages) which it returns to the requester application. The responder
application uses information in the request message to determine how to send the
response message to the requester.

Writing applications in C

Chapter 2. Using the Application Messaging Interface in C 19

In the following examples ‘your’ refers to the responding application (the server);
‘my’ refers to the requesting application (the client).

Request
Use the amSendRequest high-level function (page 57) to send a request message.
This is similar to amSendMsg, but it includes the name of the service to which the
response message is to be sent. In this example the sender service (mySender) is
specified in addition to the receiver service (myReceiver). (A policy name and a
send message name can be specified as well, as described in “Sending messages”
on page 16).

Sending a request message
success = amSendRequest(hSession, mySender, NULL, myReceiver,

dataLen, pData, NULL, &compCode, &reason);

The amReceiveRequest high-level function (page 53) is used by the responding (or
server) application to receive a request message. It is similar to amReceiveMsg, but
it includes the name of the sender service that will be used for sending the
response message. When the message is received, the sender service is updated
with the information needed for sending the response to the required destination.

Receiving a request message
success = amReceiveRequest(hSession, yourReceiver, NULL, BUFLEN,

&dataLen, pData, yourRcvMsg, yourSender,
&compCode, &reason);

A policy name can be specified as well, as described in “Receiving messages” on
page 18.

A receiver message name (yourRcvMsg) is specified so that the response message
can refer to it. Note that, unlike amReceiveMsg, this function does not have a
selection message.

Response
After the requested actions have been performed, the responding application sends
the response message (or messages) with the amSendResponse function (page 58):

Sending a response message
success = amSendResponse(hSession, yourSender, NULL, yourRcvMsg,

dataLen, pData, NULL, &compCode, &reason);

The sender service for the response message (yourSender) and the receiver message
name (yourRcvMsg) are the same as those used with amReceiveRequest. This
causes the CorrelId and MessageId to be set in the response message, as requested
by the flags in the request message.

Finally, the requester (or client) application uses the amReceiveMsg function to
receive the response message as described in “Receiving messages” on page 18.
You might need to receive a specific response message (for example if three request
messages have been sent, and you want to receive the response to the first request

Writing applications in C

20 MQSeries Application Messaging Interface

message first). In this case the sender message name from the amSendRequest
function should be used as the selection message name in the amReceiveMsg.

Sample programs
For more details, refer to the amtshclt.c, amtshsvr.c, amtsoclt.c, and amtsosvr.c
sample programs (see “Sample programs for Unix and Windows” on page 450).

File transfer
You can perform file transfers using the amSendFile and amReceiveFile high-level
functions, and the amSndSendFile, amDstSendFile and amRcvReceiveFile
object-level functions. There are two broad applications of the file transfer calls:
end-to-end file transfer using both send file and receive file calls, and generation of
messages from a file using just a send file call. If the message supplied to the send
file call has a format of AMFMT_STRING (the default), then the file is treated as
text. If the format is AMFMT_NONE, the file is treated as binary data and is not
converted in any way.

To ensure that the file can be reassembled at the receiving side during end-to-end
file transfer, you should use a policy with the ’physical splitting’ file transfer
option. With this mode of file transfer, the AMI passes extra meta-data with the file
to help ensure that the complete file is recovered and to allow the original filename
to travel with the message.

Sending a file using the high-level amSendFile function
success = amSendFile(hSession, mySender, myPolicy, 0, 0, NULL,

AMLEN_NULL_TERM, "myFilename", mySendMessage,
&compCode, &reason);

When using physical splitting, the AMI may send a group of messages rather than
one large message. This implies that, when sending files to or receiving files on
platforms without native group support, AMI simulated groups must be used. See
“Sending group messages” on page 26 for more information. As errors may occur
part way through sending or receiving a file, applications must ensure that the
transfer completed as expected. In particular, we recommend that file transfers are
done with the syncpoint policy option turned on, and that applications check the
reason and completion codes carefully to be sure that the whole file was sent
before committing the unit of work.

Receiving a file using the high-level amReceiveFile function
success = amReceiveFile(hSession, myReceiver, myPolicy, 0,

mySelectionMessage, 0, NULL, 0, NULL, myReceiveMessage,
&compCode, &reason);

If the message selected for the receive operation does not contain file information,
then it is returned to the application in the message object named on the call and a
warning is returned with reason AMRC_NOT_A_FILE. If the file transfer fails part
way through a message, then that message is returned to the application and the
current data pointer within the message shows how far it had been processed
before the error occurred. Again we recommend the use of the policy syncpoint
option and checking of completion and reason codes to ensure the whole file was
received correctly before committing the unit of work. If the file was sent from a
different type of file system than it is received into, the AMI converts the file and

Writing applications in C

Chapter 2. Using the Application Messaging Interface in C 21

returns a warning with reason AMRC_FILE_FORMAT_CONVERTED. This
conversion allows transfer between OS/390 datasets with different record types or
sizes, and between OS/390 datasets and the flat files used on other systems.

If the intent is not to transfer a file from one location to another, but rather to
generate a group of messages from a file, you should use the ’logical splitting’
policy option. If the message object referenced by the send call has a format of
AMFMT_STRING, then the file is split into lines and each line is sent as a separate
message. Any other format indicates that the file does not contain text. If the
record length of a non-text file is known (as in the case of OS/390 datasets) then
each record is sent as a separate message. If the record length of a non-text file is
not known then the whole file is considered to be a single record, and is sent in
one message. No extra header information is added to the file data. The messages
can then be processed in the same fashion as any other message in your queueing
network.

Note that file transfer calls are not supported under CICS. All of the calls
(amSendFile, amReceiveFile, amSndSendFile, amRcvReceiveFile, and
amDstSendFile) will return an error with reason code
AMRC_FILE_TRANSFER_INVALID (144) if used in a CICS application running on
OS/390.

Publish/subscribe messaging
With publish/subscribe messaging, publisher applications publish messages to
subscriber applications using a broker. The messages published contain application
data and one or more topic strings that describe the data. Subscribing applications
register subscriptions informing the broker which topics they are interested in.
When the broker receives a published message, it forwards the message to all
subscribing applications for which a topic in the message matches a topic in the
subscription.

Subscribing applications can exploit content-based publish/subscribe by passing a
filter on subscribe and unsubscribe calls (see “Using MQSeries Integrator Version
2” on page 447).

For more information, refer to the MQSeries Integrator Version 2 Programming Guide
or the MQSeries Publish/Subscribe User’s Guide.

Publish
Use the amPublish high-level function (page 46) to publish a message. You need to
specify the name of the publisher for the publish/subscribe broker. The topic
relating to this publication and the publication data must also be specified:

Publishing a message
success = amPublish(hSession, myPublisher, NULL, myReceiver,

strlen(topic), pTopic, dataLen, pData, myPubMsg,
&compCode, &reason);

The name myReceiver identifies the receiver service to which the broker will send a
response message. You can also specify a policy name to change the behavior of
the function (as with the amSend functions).

You can specify the publication message name myPubMsg and set or get attributes of
the message object (using the object interface functions). This might include adding

Writing applications in C

22 MQSeries Application Messaging Interface

another topic (using amMsgAddTopic) before invoking amPublish, if there are
multiple topics associated with this publication.

Instead of sending the publication data using the data buffer, it can be added to
the message object. Unlike the amSend functions, this gives no difference in
performance with large messages. This is because, whichever method is used, the
MQRFH header has to be added to the publication data before sending it (similarly
the header has to be removed when the publication is received).

Subscribe
The amSubscribe high-level function (page 59) is used to subscribe to a
publish/subscribe broker specified by the name of a subscriber service. The
receiver to which publications will be sent is included within the definition of the
subscriber. The name of a receiver service to which the broker can send a response
message (myReceiver) is also specified.

Subscribing to a broker
success = amSubscribe(hSession, mySubscriber, NULL, myReceiver,

strlen(topic), pTopic, 0L, NULL, mySubMsg,
&compCode, &reason);

A subscription for a single topic can be passed by the pTopic parameter. You can
subscribe to multiple topics by using the object interface amMsgAddTopic function
to add topics to the subscription message object, before invoking amSubscribe.

If the policy specifies that the CorrelId is to be used as part of the identity for the
subscribing application, it can be added to the subscription message object with the
object interface amMsgSetCorrelId function, before invoking amSubscribe.

To remove a subscription, use the amUnsubscribe high-level function (page 61). To
remove all subscriptions, you can specify a policy that has the ‘Deregister All
Topics’ subscriber attribute.

To receive a publication from a broker, use the amReceivePublication function
(page 51). For example:

Receiving a publication
success = amReceivePublication(hSession, mySubscriber, NULL, NULL,

TOPICBUFLEN, BUFLEN, &topicCount, &topicLen, pFirstTopic,
&dataLen, pData, myRcvMsg, &compCode, &reason);

You need to specify the name of the subscriber service used for the original
subscription. You can also specify a policy name and a selection message name, as
described in “Receiving messages” on page 18, but they are shown as NULL in this
example.

If there are multiple topics associated with the publication, only the first one is
returned by this function. So, if topicCount indicates that there are more topics,
you have to access them from the myRcvMsg message object, using the object-level
amSesGetMessageHandle and amMsgGetTopic functions.

Writing applications in C

Chapter 2. Using the Application Messaging Interface in C 23

Sample programs
For more details, refer to the amtshpub.c, amtshsub.c, amtsopub.c, and amtsosub.c
sample programs (see “Sample programs for Unix and Windows” on page 450).

Using name/value elements
Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
used. The amPublish, amSubscribe, amUnsubscribe, and amReceivePublication
high-level functions provide these name/value pairs implicitly.

For less commonly used commands and options, the name/value pairs can be
added to a message using an AMELEM structure, which is defined as follows:
typedef struct tagAMELEM {

AMCHAR8 strucId; /* Structure identifier */
AMLONG version; /* Structure version number */
AMLONG groupBuffLen; /* Reserved, must be zero */
AMLONG groupLen; /* Reserved, must be zero */
AMSTR pGroup; /* Reserved, must be NULL */
AMLONG nameBuffLen; /* Name buffer length */
AMLONG nameLen; /* Name length in bytes */
AMSTR pName; /* Name */
AMLONG valueBuffLen; /* Value buffer length */
AMLONG valueLen; /* Value length in bytes */
AMSTR pValue; /* Value */
AMLONG typeBuffLen; /* Reserved, must be zero */
AMLONG typeLen; /* Reserved, must be zero */
AMSTR pType; /* Reserved, must be NULL */
} AMELEM;

See “Initial values for structures” on page 29 for advice on initialization of this
structure.

Parameters
strucId

The AMELEM structure identifier (input). Its value must be
AMELEM_STRUC_ID. The constant AMELEM_STRUC_ID_ARRAY is also
defined; this has the same value as AMELEM_STRUC_ID but is an array of
characters instead of a string.

version
The version number of the AMELEM structure (input). Its value must be
AMELEM_VERSION_1.

groupBuffLen
Reserved, must be zero.

groupLen
Reserved, must be zero.

pGroup Reserved, must be NULL.

nameBuffLen
The length of the name buffer (input). If the nameBuffLen parameter value
is set to 0, the AMI returns the nameLen value but not the pName value. This
is not an error.

nameLen
The length of the name in bytes (input or output). A value of
AMLEN_NULL_TERM can be used to denote a null-terminated string of
unspecified length.

Writing applications in C

24 MQSeries Application Messaging Interface

pName The name buffer (input or output).

valueBuffLen
The length of the value buffer (input).If valueBuffLen is set to zero, the
AMI returns the valueLen value but not the pValue value. This is not an
error.

valueLen
The value length in bytes (input or output). A value of
AMLEN_NULL_TERM can be used to denote a null-terminated string of
unspecified length.

pValue The value buffer (input or output).

typeBuffLen
Reserved, must be zero.

typeLen
Reserved, must be zero.

pType Reserved, must be NULL.

Example
As an example, to send a message containing a ‘Request Update’ command,
initialize the AMELEM structure and then set the following values:

pName AMPS_COMMAND

pValue AMPS_REQUEST_UPDATE

Having set the values, create a message object (mySndMsg) and add the element to
it:

Using name/value elements
hMsg = amSessCreateMessage(hSession, mySndMsg, &compCode, &reason);

success = amMsgAddElement(hMsg, pElem, 0L, &compCode, &reason);

You must then send the message, using amSendMsg, to the sender service
specified for the publish/subscribe broker.

If you need to use streams with MQSeries Publish/Subscribe, you must add the
appropriate stream name/value element explicitly to the message object. Helper
macros (such as AmMsgAddStreamName) are provided to simplify this and other
tasks.

The message element functions can, in fact, be used to add any element to a
message before issuing a publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications.
They can be used in other applications as well.

Writing applications in C

Chapter 2. Using the Application Messaging Interface in C 25

Error handling
Each AMI C function returns a completion code reflecting the success or failure
(OK, warning, or error) of the request. Information indicating the reason for a
warning or error is returned in a reason code. Both completion and reason codes
are optional.

In addition, each function returns an AMBOOL value or an AMI object handle. For
those functions that return an AMBOOL value, this is set to AMB_TRUE if the
function completes successfully or with a warning, and AMB_FALSE if an error
occurs.

The ‘get last error’ functions (such as amSesGetLastError) always reflect the last
most severe error detected by an object. These functions can be used to return the
completion and reason codes associated with this error. Once the error has been
handled, call the ‘clear error codes’ functions (for instance,
amMsgClearErrorCodes) to clear the error information.

All C high-level functions record last error information in the session object. This
information can be accessed using the session’s ‘get last error’ call,
amSesGetLastError (you need the session handle returned by amInitialize as the
first parameter of this call).

Transaction support
Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.
v MQSeries messages are the only resource

A transaction is started by the first message sent or received under syncpoint
control, as specified in the policy specified for the send or receive. Multiple
messages can be included in the same unit of work. The transaction is
committed or backed out using an amCommit or amBackout high-level interface
call (or the amSesCommit or amSesRollback object-level calls).

v Using MQSeries as an XA transaction coordinator
The transaction must be started explicitly using the amSesBegin call before the
first recoverable resource (such as a relational database) is changed. The
transaction is committed or backed out using an amCommit or amBackout
high-level interface call (or the amSesCommit or amSesRollback object-level
calls).
MQSeries cannot be used as an XA transaction coordinator on OS/390.

v Using an external transaction coordinator
The transaction is controlled using the API calls of an external transaction
coordinator (such as CICS, Encina or Tuxedo). The AMI calls are not used but
the syncpoint attribute must still be specified in the policy used on the call.

Sending group messages
The AMI allows a sequence of related messages to be included in, and sent as, a
message group. Group context information is sent with each message to allow the
message sequence to be preserved and made available to a receiving application.

Writing applications in C

26 MQSeries Application Messaging Interface

In order to include messages in a group, the group status information of the first
and subsequent messages in the group must be set as follows:

AMGRP_FIRST_MSG_IN_GROUP for the first message
AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
AMGRP_LAST_MSG_IN_GROUP for the last message

The message status is set using amMsgSetGroupStatus.

Although native group message support is not available using MQSeries for
OS/390 Version 5.2, group messages can be sent and received using AMI by
selecting ‘Simulated Group Support’ in the repository service point definitions of
the sender and receiver services used by the applications. Group messages are sent
and received by an application in exactly the same way regardless of whether
‘Simulated Group Support’ is enabled for the repository service definitions.

Certain restrictions apply when ‘Simulated Group Support’ is enabled. These are as
follows:.
v Applications may not set or use the correlation id.
v A message that is not part of a group will be sent as a group of one message

(that is, its group flags will be set to specify it is the only message in a group).
v When receiving a message, the ‘Open shared’ receive policy option must be

enabled (the default).
v Any non-simulated group messages that are on the same underlying queue will

be ignored by the receive request.

Note that if MQSeries for OS/390 Version 5.2 s involved in any way in sending or
receiving group messages or files, then ‘Simulated Group Support’ must be
enabled on both the sending and receiving systems. This applies even if one of the
systems is not an OS/390 platform.

Other considerations
You should consider the following when writing your applications:
v Multithreading
v Using MQSeries with the AMI
v Field limits
v Using the AMI OAMAS subset

Multithreading
If you are using multithreading with the AMI, a session normally remains locked
for the duration of a single AMI call. If you use receive with wait, the session
remains locked for the duration of the wait, which might be unlimited (that is,
until the wait time is exceeded or a message arrives on the queue). If you want
another thread to run while a thread is waiting for a message, it must use a
separate session.

AMI handles and object references can be used on a different thread from that on
which they were first created for operations that do not involve an access to the
underlying (MQSeries) message transport. Functions such as initialize, terminate,
open, close, send, receive, publish, subscribe, unsubscribe, and receive publication
will access the underlying transport restricting these to the thread on which the
session was first opened (for example, using amInitialize or amSesOpen). An
attempt to issue these on a different thread will cause an error to be returned by
MQSeries and a transport error (AMRC_TRANSPORT_ERR) will be reported to the
application.

Writing applications in C

Chapter 2. Using the Application Messaging Interface in C 27

Multithreaded applications are not supported on OS/390.

Using MQSeries with the AMI
You must not mix MQSeries function calls with AMI function calls within the same
process.

Field limits
When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries,
the underlying message transport. See the rules for naming MQSeries objects in the
MQSeries Application Programming Guide.

Using the AMI OAMAS subset
A subset of the AMI conforms to the Open Applications Group Middleware
Application Programming Interface Specification (OAMAS). See
http://www.openapplications.org for further details.

To ensure that your C applications conform to the OAMAS subset, your C
functions should include the oamasami.h header in place of amtc.h.

Writing applications in C

28 MQSeries Application Messaging Interface

Building C applications
This section contains information that will help you write, prepare, and run your C
application programs on the various operating systems supported by the AMI.

AMI include file
The AMI provides an include file, amtc.h, to assist you with the writing of your
applications. It is recommended that you become familiar with the contents of this
file.

The include file is installed under:
/amt/inc (UNIX)

\amt\include (Windows)

hlq.SCSQC370 (OS/390)

See “Directory structure” on page 425 (AIX), page 429 (HP-UX), page 433 (Solaris),
page 436 (Windows), or page 439 (OS/390).

Your AMI C program must contain the statement:
#include <amtc.h>

The AMI include file must be accessible to your program at compilation time.

Data types
All data types are defined by means of the typedef statement. For each data type,
the corresponding pointer data type is also defined. The name of the pointer data
type is the name of the elementary or structure data type prefixed with the letter
″P″ to denote a pointer; for example:

typedef AMHSES AMPOINTER PAMHSES; /* pointer to AMHSES */

Initial values for structures
The include file amtc.h defines a macro variable that provides initial values for the
AMELEM structure. This is the structure used to pass name/value element
information across the AMI. Use it as follows:

AMELEM MyElement = {AMELEM_DEFAULT};

You are recommended to initialize all AMELEM structures in this way so that the
structId and version fields have valid values. If the values passed for these fields
are not valid, AMI will reject the structure.

It should be noted that some of the fields in this structure are string pointers that,
in the default case, are set to NULL. If you wish to use these fields you must
allocate the correct amount of storage prior to setting the pointer.

Building C applications

Chapter 2. Using the Application Messaging Interface in C 29

Next step
Now go to one of the following to continue building a C application:
v “C applications on AIX”
v “C applications on HP-UX” on page 31
v “C applications on Solaris” on page 33
v “C applications on Windows” on page 34
v “C applications on OS/390” on page 34

C applications on AIX
This section explains what you have to do to prepare and run your C programs on
the AIX operating system. See “Language compilers” on page 422 for compilers
supported by the AMI.

Preparing C programs on AIX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the xlc command you need to
specify a number of options:
v Where the AMI include files are.

This can be done using the -I flag. In the case of AIX, they are usually located
at /usr/mqm/amt/inc.

v Where the AMI library is.
This can be done using the -L flag. In the case of AIX, it is usually located at
/usr/mqm/lib.

v Link with the AMI library.
This is done with the -l flag, more specifically -lamt.

For example, compiling the C program mine.c into an executable called mine:
xlc -I/usr/mqm/amt/inc -L/usr/mqm/lib -lamt mine.c -o mine

If, however, you are building a threaded program, you must use the correct
compiler and the threaded library, libamt_r.a. For example:
xlc_r -I/usr/mqm/amt/inc -L/usr/mqm/lib -lamt_r mine.c -o mine

Running C programs on AIX
When running a C executable you must have access to the C libraries libamt.a,
libamtXML310.a, and libamtICUUC140.a in your runtime environment. If the
amtInstall utility has been run, this environment will be set up for you (see
“Installation on AIX” on page 423).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the AIX default library location to the actual location of the C libraries.
To do this:
ln -s /usr/mqm/lib/libamt.a /usr/lib/libamt.a
ln -s /usr/mqm/lib/libamtXML310.a /usr/lib/libamtXML310.a
ln -s /usr/mqm/lib/libamtICUUC140.a /usr/lib/libamtICUUC140.a

You must have sufficient access to perform this operation.

If you are using the threaded libraries, you can perform a similar operation:

Building C applications

30 MQSeries Application Messaging Interface

ln -s /usr/mqm/lib/libamt_r.a /usr/lib/libamt_r.a
ln -s /usr/mqm/lib/libamtXML310_r.a /usr/lib/libamtXML310_r.a
ln -s /usr/mqm/lib/libamtICUUC140_r.a /usr/lib/libamtICUUC140_r.a

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries
dynamically.

For the non-threaded MQSeries Server library, perform:
ln -s /usr/mqm/lib/amtcmqm /usr/lib/amtcmqm

For the non-threaded MQSeries Client library, perform:
ln -s /usr/mqm/lib/amtcmqic /usr/lib/amtcmqic

For the threaded MQSeries Server library, perform:
ln -s /usr/mqm/lib/amtcmqm_r /usr/lib/amtcmqm_r

For the threaded MQSeries Client library, perform:
ln -s /usr/mqm/lib/amtcmqic_r /usr/lib/amtcmqic_r

C applications on HP-UX
This section explains what you have to do to prepare and run your C programs on
the HP-UX operating system. See “Language compilers” on page 422 for compilers
supported by the AMI.

Preparing C programs on HP-UX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the aCC command you need to
specify a number of options:
v Where the AMI include files are.

This can be done using the -I flag. In the case of HP-UX, they are usually
located at /opt/mqm/amt/inc.

v Where the AMI libraries are.
This can be done using the -Wl,+b,:,-L flags. In the case of HP-UX, they are
usually located at /opt/mqm/lib.

v Link with the AMI library.
This is done with the -l flag, more specifically -lamt.

For example, compiling the AMI C program mine.c into an executable called mine:
aCC +DAportable -Wl,+b,:,-L/opt/mqm/lib -o mine mine.c

-I/opt/mqm/amt/inc -lamt

Note that you could equally link to the threaded library using -lamt_r. On HP-UX
there is no difference since the unthreaded versions of the AMI binaries are simply
links to the threaded versions.

Running C programs on HP-UX
When running a C executable you must have access to the C libraries libamt.sl,
libamtXML310.sl, and libamtICUUC140.sl in your runtime environment. If the
amtInstall utility has been run, this environment will be set up for you (see
“Installation on HP-UX” on page 427).

C applications on AIX

Chapter 2. Using the Application Messaging Interface in C 31

If you have not run the utility, the easiest way of achieving this is to construct a
link from the HP-UX default library location to the actual location of the C
libraries. To do this:

ln -s /opt/mqm/lib/libamt_r.sl /usr/lib/libamt.sl
ln -s /opt/mqm/lib/libamtXML310_r.sl /usr/lib/libamtXML310.sl
ln -s /opt/mqm/lib/libamtICUUC140_r.sl /usr/lib/libamtICUUC140.sl

You must have sufficient access to perform this operation.

If you are using the threaded libraries, you can perform a similar operation:
ln -s /opt/mqm/lib/libamt_r.sl /usr/lib/libamt_r.sl
ln -s /opt/mqm/lib/libamtXML310_r.sl /usr/lib/libamtXML310_r.sl
ln -s /opt/mqm/lib/libamtICUUC140_r.sl /usr/lib/libamtICUUC140_r.sl

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries
dynamically.

For the non-threaded MQSeries Server library, perform:
ln -s /opt/mqm/lib/amtcmqm_r /usr/lib/amtcmqm

For the non-threaded MQSeries Client library, perform:
ln -s /opt/mqm/lib/amtcmqic_r /usr/lib/amtcmqic

For the threaded MQSeries Server library, perform:
ln -s /opt/mqm/lib/amtcmqm_r /usr/lib/amtcmqm_r

For the threaded MQSeries Client library, perform:
ln -s /opt/mqm/lib/amtcmqic_r /usr/lib/amtcmqic_r

As before, note that the unthreaded versions are simply links to the threaded
versions.

C applications on HP-UX

32 MQSeries Application Messaging Interface

C applications on Solaris
This section explains what you have to do to prepare and run your C programs in
the Sun Solaris operating environment. See “Language compilers” on page 422 for
compilers supported by the AMI.

Preparing C programs on Solaris
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the CC command you need to
specify a number of options:
v Where the AMI include files are.

This can be done using the -I flag. In the case of Solaris, they are usually
located at /opt/mqm/amt/inc.

v Where the AMI library is.
This can be done using the -L flag. In the case of Solaris, it is usually located at
/opt/mqm/lib.

v Link with the AMI library.
This is done with the -l flag, more specifically -lamt.

For example, compiling the C program mine.c into an executable called mine:
CC -mt -I/opt/mqm/amt/inc -L/opt/mqm/lib -lamt mine.c -o mine

Running C programs on Solaris
When running a C executable you must have access to the C libraries libamt.so,
libamtXML310.so, and libamtICUUC140.so in your runtime environment. If the
amtInstall utility has been run, this environment will be set up for you (see
“Installation on Sun Solaris” on page 431).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the Solaris default library location to the actual location of the C
libraries. To do this:

ln -s /opt/mqm/lib/libamt.so /usr/lib/libamt.so
ln -s /opt/mqm/lib/libamtXML310.so /usr/lib/libamtXML310.so
ln -s /opt/mqm/lib/libamtICUUC140.so /usr/lib/libamtICUUC140.so

You must have sufficient access to perform this operation.

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries
dynamically. For the non-threaded MQSeries Server library, perform:

ln -s /opt/mqm/lib/amtcmqm /usr/lib/amtcmqm

For the MQSeries Client library, perform:
ln -s /opt/mqm/lib/amtcmqic /usr/lib/amtcmqic

C applications on Solaris

Chapter 2. Using the Application Messaging Interface in C 33

C applications on Windows
This section explains what you have to do to prepare and run your C programs on
the Windows 98 and Windows NT® operating systems. See “Language compilers”
on page 422 for compilers supported by the AMI.

Preparing C programs on Windows
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the cl command you need to
specify a number of options:
v Where the AMI include files are.

This can be done using the -I flag. In the case of Windows, they are usually
located at \amt\include relative to where you installed MQSeries. Alternatively,
the include files could exist in one of the directories pointed to by the INCLUDE
environment variable.

v Where the AMI library is.
This can be done by including the library file amt.LIB as a command line
argument. The amt.LIB file should exist in one of the directories pointed to by
the LIB environment variable.

For example, compiling the C program mine.c into an executable called mine.exe:
cl -IC:\MQSeries\amt\include /Fomine mine.c amt.LIB

Running C programs on Windows
When running a C executable you must have access to the C DLLs amt.dll and
amtXML.dll in your runtime environment. Make sure they exist in one of the
directories pointed to by the PATH environment variable. For example:

SET PATH=%PATH%;C:\MQSeries\bin;

If you already have MQSeries installed, and you have installed AMI under the
MQSeries directory structure, it is likely that the PATH has already been set up for
you.

You must also make sure that your AMI runtime environment can access the
MQSeries runtime environment. (This will be the case if you installed MQSeries
using the documented method.)

C applications on OS/390
This section explains what you have to do to prepare and run your C programs on
the OS/390 operating system. See “Language compilers” on page 422 for compilers
supported by the AMI.

Preparing C programs on OS/390
C application programs using the AMI must be compiled, pre-linked, and link
edited. Programs containing CICS commands must be processed by the CICS
translator prior to compilation.

Compile: Make sure that the AMI include file (installed in library hlq.SCSQC370)
is added to the C compiler’s SYSLIB concatenation.

Pre-link:: The pre-link job step is essential for importing the AMI DLL function
references from an appropriate sidedeck. A DD statement for the sidedeck member,

C applications on Windows

34 MQSeries Application Messaging Interface

hlq.SCSQDEFS(member), must be specified in the pre-link step SYSIN concatenation
after the application object code member. The appropriate sidedeck member for
each application type is as follows:

Batch AMTBD10

RRS-batch
AMTRD10

CICS AMTCD10

IMS AMTID10

Link Edit:: There are no special requirements for link editing.

Running C programs on OS/390
The AMI needs access to the MQSeries datasets SCSQLOAD and SCSQAUTH, as
well as one of the language-specific datasets such as SCSQANLE. See the MQSeries
Application Programming Guide for details of the supported languages. The
following list shows which JCL concatenation to add the datasets to for each
AMI-supported environment:

Batch STEPLIB or JOBLIB

CICS DFHRPL

IMS The Message Processing Regions’ STEPLIB

C applications on OS/390

Chapter 2. Using the Application Messaging Interface in C 35

C applications on OS/390

36 MQSeries Application Messaging Interface

Chapter 3. The C high-level interface

The C high-level interface contains functions that cover the requirements of the
majority of applications. If extra functionality is needed, C object interface
functions can be used in the same application as the C high-level functions.

This chapter contains:
v “Overview of the C high-level interface” on page 38
v “Reference information for the C high-level interface” on page 39

© Copyright IBM Corp. 1999, 2000 37

Overview of the C high-level interface
The high-level functions are listed below. Follow the page references to see the
detailed descriptions of each function.

Initialize and terminate
Functions to create and open an AMI session, and to close and delete an AMI
session.

amInitialize page 45

amTerminate page 60

Sending messages
Functions to send a datagram (send and forget) message, and to send request and
response messages.

amSendMsg page 56

amSendRequest page 57

amSendResponse page 58

Receiving messages
Functions to receive a message from amSendMsg or amSendResponse, and to
receive a request message from amSendRequest.

amReceiveMsg page 49

amReceiveRequest page 53

amBrowseMsg page 42

File transfer
Functions to send message data from a file, and to receive message data sent by
amSendFile into a file.

amSendFile page 55

amReceiveFile page 47

Publish/subscribe
Functions to publish a message to a publish/subscribe broker, and to subscribe,
unsubscribe, and receive publications.

amPublish page 46

amSubscribe page 59

amUnsubscribe page 61

amReceivePublication page 51

Transaction support
Functions to begin, commit, and backout a unit of work.

amBegin page 41

amCommit page 44

amBackout page 40

C high-level interface overview

38 MQSeries Application Messaging Interface

Reference information for the C high-level interface
In the following sections the high-level interface functions are listed in alphabetical
order. Note that all functions return a completion code (pCompCode) and a reason
code (pReason). The completion code can take one of the following values:
AMCC_OK Function completed successfully
AMCC_WARNING

Function completed with a warning
AMCC_FAILED

An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the
reason for the error or warning (see “Appendix A. Reason codes” on page 481).

Most functions require the session handle to be specified. If this handle is not
valid, the results are unpredictable.

C high-level interface

Chapter 3. The C high-level interface 39

amBackout
Function to backout a unit of work.
AMBOOL amBackout(

AMHSES hSession,
AMSTR policyName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

40 MQSeries Application Messaging Interface

amBegin
Function to begin a unit of work.
AMBOOL amBegin(

AMHSES hSession,
AMSTR policyName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

Chapter 3. The C high-level interface 41

amBrowseMsg
Function to browse a message. See the MQSeries Application Programming Guide for
a full description of the browse options.
AMBOOL amBrowseMsg(

AMHSES hSession,
AMSTR receiverName,
AMSTR policyName,
AMLONG options,
AMLONG buffLen,
PAMLONG pDataLen,
PAMBYTE pData,
AMSTR rcvMsgName,
AMSTR senderName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

receiverName The name of a receiver service (input). If specified as NULL, the
system default receiver name (constant: AMSD_RCV) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

options Options controlling the browse operation (input). Possible values
are:
AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT
AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message. The locking
feature is not available on OS/390.

buffLen The length in bytes of a buffer in which the data is returned
(input).

pDataLen The length of the message data, in bytes (output). Specify as NULL
if this is not required.

pData The received message data (output).

rcvMsgName The name of the message object for the received message (output).
Properties, and message data if not returned in the pData
parameter, can be extracted from the message object using the
object interface (see “Message interface functions” on page 90). The
message object is implicitly reset before the browse takes place. If
rcvMsgName is specified as NULL, the system default receive
message name (constant: AMSD_RCV_MSG) is used.

senderName The name of a special type of sender service known as a response

C high-level interface

42 MQSeries Application Messaging Interface

sender, to which the response message will be sent (output). This
sender name must not be defined in the repository. It is only
applicable if the message type is AMMT_REQUEST.

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
To return the data in the message object (rcvMsgName), set buffLen to zero and
pDataLen to NULL.

To return the message data in the pData parameter, set buffLen to the required
length and pDataLen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set buffLen to zero.
pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message data will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set buffLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message data is returned with an
AMRC_MSG_TRUNCATED warning.

C high-level interface

Chapter 3. The C high-level interface 43

amCommit
Function to commit a unit of work.
AMBOOL amCommit(

AMHSES hSession,
AMSTR policyName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

44 MQSeries Application Messaging Interface

amInitialize
Function to create and open an AMI session. It returns a session handle of type
AMHSES, which is valid until the session is terminated. One amInitialize is
allowed per thread. A session handle can be used on different threads, subject to
any limitations of the underlying transport layer (MQSeries).
AMHSES amInitialize(

AMSTR name,
AMSTR policyName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
name An optional name that can be used to identify the application

(input).

policyName The name of a policy defined in the repository (input). If specified
as NULL, the system default policy name (constant: AMSD_POL)
is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

Chapter 3. The C high-level interface 45

amPublish
Function to publish a message to a publish/subscribe broker.
AMBOOL amPublish(

AMHSES hSession,
AMSTR publisherName,
AMSTR policyName,
AMSTR responseName,
AMLONG topicLen,
AMSTR pTopic,
AMLONG dataLen,
PAMBYTE pData,
AMSTR pubMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

publisherName The name of a publisher service (input). If specified as NULL, the
system default publisher name (constant: AMSD_PUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

responseName The name of the receiver service to which the response to this
publish request should be sent (input). Specify as NULL if no
response is required. This parameter is mandatory if the policy
specifies implicit publisher registration (the default).

topicLen The length of the topic for this publication, in bytes (input). A
value of AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pTopic The topic for this publication (input).

dataLen The length of the publication data in bytes (input). A value of zero
indicates that any publication data has been added to the message
object (pubMsgName) using the object interface (see “Message
interface functions” on page 90).

pData The publication data, if dataLen is non-zero (input).

pubMsgName The name of a message object that contains the header for the
publication message (input). If dataLen is zero it also holds any
publication data. If specified as NULL, the system default message
name (constant: AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

46 MQSeries Application Messaging Interface

amReceiveFile
Function to receive message data sent by amSendFile into a file.
AMBOOL amReceiveFile(

AMHSES hSession,
AMSTR receiverName,
AMSTR policyName,
AMLONG options,
AMSTR selMsgName,
AMLONG directoryLen,
AMSTR directory,
AMLONG fileNameLen,
AMSTR fileName,
AMSTR rcvMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

receiverName The name of a receiver service (input). If specified as NULL, the
system default receiver name (constant: AMSD_RCV) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

options A reserved field that must be specified as zero (input).

selMsgName Optional selection message object used to specify information (such
as a CorrelId) needed to select the required message (input).

directoryLen A reserved field that must be specified as zero (input).

directory A reserved field that must be specified as NULL (input).

fileNameLen The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

fileName The name of the file into which the transferred data is to be
received (input). This can include a directory prefix to define a
fully-qualified or relative file name. If NULL or a null string is
specified, then the AMI will use the name of the originating file
(including any directory prefix), exactly as it was supplied on the
send file call. Note that the original file name may not be
appropriate for use by the receiver, either because a path name
included in the file name is not applicable to the receiving system,
or because the sending and receiving systems use different file
name conventions.

rcvMsgName The name of the message object to be used to receive the file
(output). This parameter is updated with the message properties
(for example, the Message ID). If the message is not from a file,
rcvMsgName receives the message data. If specified as NULL, the
system default receive message name (constant AMSD_RCV_MSG)
is used. is used.

Property information and message data can be extracted from the
message object using the object interface (see “Message interface
functions” on page 90). The message object is reset implicitly before
the receive takes place.

pCompCode Completion code (output).

C high-level interface

Chapter 3. The C high-level interface 47

pReason Reason code (output).

Usage notes
If fileName is blank (indicating that the originating file name specified in the
message is to be used), then fileNameLen should be set to zero.

C high-level interface

48 MQSeries Application Messaging Interface

amReceiveMsg
Function to receive a message.
AMBOOL amReceiveMsg(

AMHSES hSession,
AMSTR receiverName,
AMSTR policyName,
AMSTR selMsgName,
AMLONG buffLen,
PAMLONG pDataLen,
PAMBYTE pData,
AMSTR rcvMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

receiverName The name of a receiver service (input). If specified as NULL, the
system default receiver name (constant: AMSD_RCV) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

selMsgName Optional selection message object used to specify information (such
as a CorrelId) needed to select the required message (input).

buffLen The length in bytes of a buffer in which the data is returned
(input).

pDataLen The length of the message data, in bytes (output). Specify as NULL
if this is not required.

pData The received message data (output).

rcvMsgName The name of the message object for the received message (output).
If specified as NULL, the system default receive message name
(constant: AMSD_RCV_MSG) is used. Properties, and message data
if not returned in the pData parameter, can be extracted from the
message object using the object interface (see “Message interface
functions” on page 90). The message object is implicitly reset before
the receive takes place.

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
To return the data in the message object (rcvMsgName), set buffLen to zero and
pDataLen to NULL.

To return the message data in the pData parameter, set buffLen to the required
length and pDataLen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set buffLen to zero.
pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

C high-level interface

Chapter 3. The C high-level interface 49

To return the message data in the pData parameter, together with the data length,
set buffLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be selected in the policy receive
attributes. You can then remove the message by specifying zero in the buffLen
parameter, a null in the pDataLen parameter, and a non-null in the pData
parameter.

C high-level interface

50 MQSeries Application Messaging Interface

amReceivePublication
Function to receive a publication from a publish/subscribe broker.
AMBOOL amReceivePublication(

AMHSES hSession,
AMSTR subscriberName,
AMSTR policyName,
AMSTR selMsgName,
AMLONG topicBuffLen,
AMLONG buffLen,
PAMLONG pTopicCount,
PAMLONG pTopicLen,
AMSTR pFirstTopic,
PAMLONG pDataLen,
PAMBYTE pData,
AMSTR rcvMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

subscriberName
The name of a subscriber service (input). If specified as NULL, the
system default subscriber name (constant: AMSD_SUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

selMsgName Optional selection message object used to specify information (such
as a CorrelId) needed to select the required message (input).

topicBuffLen The length in bytes of a buffer in which the topic is returned
(input).

buffLen The length in bytes of a buffer in which the publication data is
returned (input).

pTopicCount The number of topics in the message (output). Specify as NULL if
this is not required.

pTopicLen The length in bytes of the first topic (output). Specify as NULL if
this is not required.

pFirstTopic The first topic (output). Specify as NULL if this is not required.
Topics can be extracted from the message object (rcvMsgName) using
the object interface (see “Message interface functions” on page 90).

pDataLen The length in bytes of the publication data (output). Specify as
NULL if this is not required.

pData The publication data (output). Specify as NULL if this is not
required. Data can be extracted from the message object
(rcvMsgName) using the object interface (see “Message interface
functions” on page 90).

rcvMsgName The name of a message object for the received message (input). If
specified as NULL, the default message name (constant:
AMSD_RCV_MSG) is used. The publication message properties
and data update this message object, in addition to being returned
in the parameters above. The message object is implicitly reset to
the default before the receive takes place.

C high-level interface

Chapter 3. The C high-level interface 51

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
We recommend that, when using amReceivePublication, you always have data
conversion enabled in the specified policy. If data conversion is not enabled,
amReceivePublication will fail if the local CCSID and/or encoding values differ
from those on the platform from which the publication was sent.

If data conversion is enabled by the specified policy, and a selection message is
specified, then the conversion is performed using the target encoding and coded
character set identifier (CCSID) values designated in the selection message. (The
selection message is specified in the selMsgName parameter).

If a selection message is not specified, then the platform encoding and Queue
Manager CCSID values are used as defaults for the conversion.

If a normal message that is not a publication message is received by the specified
subscriber, then amReceivePublication behaves the same as amReceiveMsg.

C high-level interface

52 MQSeries Application Messaging Interface

amReceiveRequest
Function to receive a request message.
AMBOOL amReceiveRequest(

AMHSES hSession,
AMSTR receiverName,
AMSTR policyName,
AMLONG buffLen,
PAMLONG pDataLen,
PAMBYTE pData,
AMSTR rcvMsgName,
AMSTR senderName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

receiverName The name of a receiver service (input). If specified as NULL, the
system default receiver name (constant: AMSD_RCV) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

buffLen The length in bytes of a buffer in which the data is returned
(input).

pDataLen The length of the message data, in bytes (output). Specify as NULL
if this is not required.

pData The received message data (output).

rcvMsgName The name of the message object for the received message (output).
If specified as NULL, the system default receiver service (constant:
AMSD_RCV_MSG) is used. Header information, and message data
if not returned in the Data parameter, can be extracted from the
message object using the object interface (see “Message interface
functions” on page 90). The message object is implicitly reset before
the receive takes place.

senderName The name of a special type of sender service known as a response
sender, to which the response message will be sent (output). This
sender name must not be defined in the repository. If specified as
NULL, the system default response sender service (constant:
AMSD_RSP_SND) is used.

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
The following notes contain details about use of the amReceiveRequest call.

Data conversion
If data conversion is enabled by the specified policy, and a selection message is
specified, then the conversion is performed using the target encoding and coded
character set identifier (CCSID) values designated in the selection message. (These
target values are specified in the selMsgName parameter).

If a selection message is not specified, then the platform encoding and Queue
Manager CCSID values are used as defaults for conversion.

C high-level interface

Chapter 3. The C high-level interface 53

Use of the buffLen parameter
To return the data in the message object (rcvMsgName), set buffLen to zero and
pDataLen to NULL.

To return the message data in the pData parameter, set buffLen to the required
length and pDataLen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set buffLen to zero.
pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must be not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set buffLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be selected in the policy receive
attributes. You can then remove the message by specifying zero in the buffLen
parameter, a null in the pDataLen parameter, and a non-null in the pData
parameter.

C high-level interface

54 MQSeries Application Messaging Interface

amSendFile
Function to send data from a file.
AMBOOL amSendFile(

AMHSES hSession,
AMSTR senderName,
AMSTR policyName,
AMLONG options,
AMLONG directoryLen,
AMSTR directory,
AMLONG fileNameLen,
AMSTR fileName,
AMSTR sndMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

senderName The name of a sender service (input). If specified as NULL, the
system default sender name (constant: AMSD_SND) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

options A reserved field that must be specified as zero (input).

directoryLen A reserved field that must be specified as zero (input).

directory A reserved field that must be specified as NULL (input).

fileNameLen The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel with the message for use with a receive file call (see
“amReceiveFile” on page 47 for more details). Note that the file
name sent will exactly match the supplied file name; it will not be
converted or expanded in any way.

sndMsgName The name of the message object to be used to send the file (input).
This parameter can be used, for example, to specify the Correlation
ID, which can be set from the message object using the object
interface (see “Message interface functions” on page 90).

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
The message object is implicitly reset by the amSendFile call.

The system default object is used when you set sndMsgName to NULL or an empty
string.

C high-level interface

Chapter 3. The C high-level interface 55

amSendMsg
Function to send a datagram (send and forget) message.
AMBOOL amSendMsg(

AMHSES hSession,
AMSTR senderName,
AMSTR policyName,
AMLONG dataLen,
PAMBYTE pData,
AMSTR sndMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

senderName The name of a sender service (input). If specified as NULL, the
system default sender name (constant: AMSD_SND) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

dataLen The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (sndMsgName) using the object interface (see “Message
interface functions” on page 90).

pData The message data, if dataLen is non-zero (input).

sndMsgName The name of a message object for the message being sent (input). If
dataLen is zero it also holds any message data. If specified as
NULL, the system default message name (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

56 MQSeries Application Messaging Interface

amSendRequest
Function to send a request message.
AMBOOL amSendRequest(

AMHSES hSession,
AMSTR senderName,
AMSTR policyName,
AMSTR responseName,
AMLONG dataLen,
PAMBYTE pData,
AMSTR sndMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

senderName The name of a sender service (input). If specified as NULL, the
system default sender name (constant: AMSD_SND) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

responseName The name of the receiver service to which the response to this send
request should be sent (input). See amReceiveRequest. Specify as
NULL if no response is required.

dataLen The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (sndMsgName) using the object interface (see “Message
interface functions” on page 90).

pData The message data, if dataLen is non-zero (input).

sndMsgName The name of a message object for the message being sent (input). If
specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

Chapter 3. The C high-level interface 57

amSendResponse
Function to send a response to a request message.
AMBOOL amSendResponse(

AMHSES hSession,
AMSTR senderName,
AMSTR policyName,
AMSTR rcvMsgName,
AMLONG dataLen,
PAMBYTE pData,
AMSTR sndMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

senderName The name of the sender service (input). It must be set to the
senderName specified for the amReceiveRequest function.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

rcvMsgName The name of the received message that this message is a response
to (input). It must be set to the rcvMsgName specified for the
amReceiveRequest function.

dataLen The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (sndMsgName) using the object interface (see “Message
interface functions” on page 90).

pData The message data, if dataLen is non-zero (input).

sndMsgName The name of a message object for the message being sent (input). If
specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

58 MQSeries Application Messaging Interface

amSubscribe
Function to register a subscription with a publish/subscribe broker.

Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix ‘.RECEIVER’.

Subscribing applications can exploit content based publish/subscribe by passing a
filter on the amSubscribe call.
AMBOOL amSubscribe(

AMHSES hSession,
AMSTR subscriberName,
AMSTR policyName,
AMSTR responseName,
AMLONG topicLen,
AMSTR pTopic,
AMLONG filterLen,
AMSTR pFilter,
AMSTR subMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

subscriberName
The name of a subscriber service (input). If specified as NULL, the
system default subscriber (constant: AMSD_SUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

responseName The name of the receiver service to which the response to this
subscribe request should be sent (input). Specify as NULL if no
response is required.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

topicLen The length of the topic for this subscription, in bytes (input).

pTopic The topic for this subscription (input). Publications which match
this topic, including wildcards, will be sent to the subscriber.
Multiple topics can be specified in the message object (subMsgName)
using the object interface (see “Message interface functions” on
page 90).

filterLen The length in bytes of the filter (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

pFilter The filter to be added (input). The syntax of the filter string is
described in the MQSeries Integrator Version 2.0 Programming Guide.

subMsgName The name of a message object for the subscribe message (input). If
specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

Chapter 3. The C high-level interface 59

amTerminate
Closes the session, closes and deletes any implicitly created objects, and deletes the
session. Any outstanding units of work are committed (if the application
terminates without an amTerminate call being issued, any outstanding units of
work are backed out).
AMBOOL amTerminate(

PAMHSES phSession,
AMSTR policyName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
phSession A pointer to the session handle returned by amInitialize

(input/output).

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C high-level interface

60 MQSeries Application Messaging Interface

amUnsubscribe
Function to remove a subscription from a publish/subscribe broker.
AMBOOL amUnsubscribe(

AMHSES hSession,
AMSTR subscriberName,
AMSTR policyName,
AMSTR responseName,
AMLONG topicLen,
AMSTR pTopic,
AMLONG filterLen,
AMSTR pFilter,
AMSTR unsubMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amInitialize (input).

subscriberName
The name of a subscriber service (input). If specified as NULL, the
system default subscriber (constant: AMSD_SUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

responseName The name of the receiver service to which the response to this
unsubscribe request should be sent (input). Specify as NULL if no
response is required.

topicLen The length of the topic, in bytes (input).

pTopic The topic that identifies the subscription to be removed (input).
Multiple topics can be specified in the message object
(unsubMsgName) using the object interface (see “Message interface
functions” on page 90).

To deregister all topics, a policy providing this option must be
specified (this is not the default policy). Otherwise, to remove a
previous subscription the topic information specified must match
that specified on the relevant amSubscribe request.

filterLen The length in bytes of the filter (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

pFilter The filter that identifies the subscription to be removed (input).
The syntax of the filter string is described in the MQSeries
Integrator Version 2.0 Programming Guide.

unsubMsgName The name of a message object for the unsubscribe message (input).
If specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
To successfully remove a previous subscription, you must ensure that the topic,
filter, and subscriber queue information exactly matches that used on the original
subscribe request.

C high-level interface

Chapter 3. The C high-level interface 61

62 MQSeries Application Messaging Interface

Chapter 4. C object interface overview

This chapter contains an overview of the structure of the C object interface. Use it
to find out what functions are available in this interface.

The object interface provides sets of interface functions for each of the following
objects:

Session page 64

Message page 66

Sender page 68

Receiver page 69

Distribution list page 70

Publisher page 71

Subscriber page 72

Policy page 73

These interface functions are invoked as necessary by the high-level functions.
They are made available to the application programmer through this object-style
interface to provide additional function where needed. An application program can
mix high-level functions and object-interface functions as required.

Details of the interface functions for each object are given in the following pages.
Follow the page references to see the detailed descriptions of each function.

Details of the object interface functions used by each high-level function are given
on page 74.

© Copyright IBM Corp. 1999, 2000 63

Session interface functions
The session object creates and manages all other objects, and provides the scope
for a unit of work.

Session management
Functions to create, open, close, and delete a session object.

amSesCreate page 79

amSesOpen page 88

amSesClose page 78

amSesDelete page 83

Create objects
Functions to create message, sender, receiver, distribution list, publisher, subscriber,
and policy objects. Handles to these objects are returned by these functions.

amSesCreateMessage page 80

amSesCreateSender page 81

amSesCreateReceiver page 81

amSesCreateDistList page 79

amSesCreatePublisher page 80

amSesCreateSubscriber page 81

amSesCreatePolicy page 80

Get object handles
Functions to get the handles for a message, sender, receiver, distribution list,
publisher, subscriber, and policy objects with a specified name (needed if the
objects were created implicitly by the high-level interface).

amSesGetMessageHandle page 86

amSesGetSenderHandle page 87

amSesGetReceiverHandle page 87

amSesGetDistListHandle page 85

amSesGetPublisherHandle page 87

amSesGetSubscriberHandle page 88

amSesGetPolicyHandle page 87

C object interface overview

64 MQSeries Application Messaging Interface

Delete objects
Functions to delete message, sender, receiver, distribution list, publisher, subscriber,
and policy objects.

amSesDeleteMessage page 83

amSesDeleteSender page 85

amSesDeleteReceiver page 84

amSesDeleteDistList page 83

amSesDeletePublisher page 84

amSesDeleteSubscriber page 85

amSesDeletePolicy page 84

Transactional processing
Functions to begin, commit, and rollback a unit of work.

amSesBegin page 78

amSesCommit page 79

amSesRollback page 88

Error handling
Functions to clear the error codes, and return the completion and reason codes for
the last error associated with the session object.

amSesClearErrorCodes page 78

amSesGetLastError page 86

C object interface overview

Chapter 4. C object interface overview 65

Message interface functions
A message object encapsulates an MQSeries message descriptor (MQMD) structure.
It also contains the message data if this is not passed as a separate parameter.

Get values
Functions to get the coded character set ID, correlation ID, encoding, format, group
status, message ID, and name of the message object.

amMsgGetCCSID page 93

amMsgGetCorrelId page 93

amMsgGetElementCCSID page 95

amMsgGetEncoding page 95

amMsgGetFormat page 96

amMsgGetGroupStatus page 97

amMsgGetMsgId page 98

amMsgGetName page 98

amMsgGetReportCode page 99

amMsgGetType page 100

Set values
Functions to set the coded character set ID, correlation ID, encoding, format, and
group status of the message object.

amMsgSetCCSID page 101

amMsgSetCorrelId page 102

amMsgSetElementCCSID page 102

amMsgSetEncoding page 103

amMsgSetFormat page 103

amMsgSetGroupStatus page 104

Reset values
Function to reset the message object to the state it had when first created.

amMsgReset page 101

Read and write data
Functions to get the length of the data, get and set the data offset, and read or
write byte data to or from the message object at the current offset.

amMsgGetDataLength page 94

amMsgGetDataOffset page 94

amMsgSetDataOffset page 102

amMsgReadBytes page 101

amMsgWriteBytes page 104

C object interface overview

66 MQSeries Application Messaging Interface

Publish/subscribe topics
Functions to manipulate the topics in a publish/subscribe message.

amMsgAddTopic page 91

amMsgDeleteTopic page 93

amMsgGetTopic page 100

amMsgGetTopicCount page 100

Publish/subscribe filters
Functions to manipulate the filters in a publish/subscribe message.

amMsgAddFilter page 91

amMsgDeleteFilter page 92

amMsgGetFilter page 96

amMsgGetFilterCount page 96

Publish/subscribe name/value elements
Functions to manipulate the name/value elements in a publish/subscribe message.

amMsgAddElement page 90

amMsgDeleteElement page 92

amMsgGetElement page 94

amMsgGetElementCount page 95

amMsgDeleteNamedElement page 92

amMsgGetNamedElement page 98

amMsgGetNamedElementCount
page 99

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the message.

amMsgClearErrorCodes page 91

amMsgGetLastError page 97

Publish/subscribe helper macros
Helper macros provided for use with the publish/subscribe stream name and
publication timestamp name/value strings.

AmMsgAddStreamName page 105

AmMsgGetPubTimestamp page 105

AmMsgGetStreamName page 105

C object interface overview

Chapter 4. C object interface overview 67

Sender interface functions
A sender object encapsulates an MQSeries object descriptor (MQOD) structure for
sending a message.

Open and close
Functions to open and close the sender service.

amSndOpen page 109

amSndClose page 107

Send
Function to send a message.

amSndSend page 110

amSndSendFile page 111

Get values
Functions to get the coded character set ID, encoding, and name of the sender
service.

amSndGetCCSID page 108

amSndGetEncoding page 108

amSndGetName page 109

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the sender service.

amSndClearErrorCodes page 107

amSndGetLastError page 109

C object interface overview

68 MQSeries Application Messaging Interface

Receiver interface functions
A receiver object encapsulates an MQSeries object descriptor (MQOD) structure for
receiving a message.

Open and close
Functions to open and close the receiver service.

amRcvOpen page 118

amRcvClose page 116

Receive and browse
Functions to receive or browse a message.

amRcvReceive page 119

amRcvReceiveFile page 121

amRcvBrowse page 112

amRcvBrowseSelect page 114

Get values
Functions to get the definition type, name, and queue name of the receiver service.

amRcvGetDefnType page 116

amRcvGetName page 117

amRcvGetQueueName page 118

Set values
Function to set the queue name of the receiver service.

amRcvSetQueueName page 122

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver service.

amRcvClearErrorCodes page 115

amRcvGetLastError page 117

C object interface overview

Chapter 4. C object interface overview 69

Distribution list interface functions
A distribution list object encapsulates a list of sender services.

Open and close
Functions to open and close the distribution list service.

amDstOpen page 125

amDstClose page 123

Send
Function to send a message to the distribution list.

amDstSend page 126

amDstSendFile page 127

Get values
Functions to get the name of the distribution list service, a count of the sender
services in the list, and a sender service handle.

amDstGetName page 124

amDstGetSenderCount page 124

amDstGetSenderHandle page 124

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the distribution list.

amDstClearErrorCodes page 123

amDstGetLastError page 123

C object interface overview

70 MQSeries Application Messaging Interface

Publisher interface functions
A publisher object encapsulates a sender service. It provides support for publishing
messages to a publish/subscribe broker.

Open and close
Functions to open and close the publisher service.

amPubOpen page 130

amPubClose page 128

Publish
Function to publish a message.

amPubPublish page 131

Get values
Functions to get the coded character set ID, encoding, and name of the publisher
service.

amPubGetCCSID page 128

amPubGetEncoding page 128

amPubGetName page 130

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the publisher.

amPubClearErrorCodes page 128

amPubGetLastError page 129

C object interface overview

Chapter 4. C object interface overview 71

Subscriber interface functions
A subscriber object encapsulates both a sender service and a receiver service. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

Open and close
Functions to open and close the subscriber service.

amSubOpen page 135

amSubClose page 132

Broker messages
Functions to subscribe to a broker, remove a subscription, and receive publications
from the broker.

amSubSubscribe page 137

amSubUnsubscribe page 138

amSubReceive page 136

Get values
Functions to get the coded character set ID, definition type, encoding, name, and
queue name of the subscriber service.

amSubGetCCSID page 132

amSubGetDefnType page 132

amSubGetEncoding page 133

amSubGetName page 134

amSubGetQueueName page 134

Set value
Function to set the queue name of the subscriber service.

amSubSetQueueName page 136

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver.

amSubClearErrorCodes page 132

amSubGetLastError page 134

C object interface overview

72 MQSeries Application Messaging Interface

Policy interface functions
A policy object encapsulates details of how the message is handled (such as
priority, persistence, and whether it is included in a unit of work).

Get values
Functions to get the name of the policy, and the wait time set in the policy.

amPolGetName page 139

amPolGetWaitTime page 140

Set value
Function to set the wait time for a receive using the policy.

amPolSetWaitTime page 140

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the policy.

amPolClearErrorCodes page 139

amPolGetLastError page 139

C object interface overview

Chapter 4. C object interface overview 73

High-level functions
Each high-level function described in “Chapter 3. The C high-level interface” on
page 37 calls a number of the object interface functions, as shown below.

Table 2. Object interface calls used by the high-level functions

HTMLTABLEHigh-level
function

Equivalent object interface calls �1�

amBackout amSesCreatePolicy / amSesGetPolicyHandle
amSesRollback

amBegin amSesCreatePolicy / amSesGetPolicyHandle
amSesBegin

amBrowseMsg amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatPolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvBrowseSelect

amCommit amSesCreatePolicy / amSesGetPolicyHandle
amSesCommit

amInitialize amSesCreate
amSesOpen

amTerminate amSesClose
amSesDelete

amSendMsg
amSendRequest
amSendResponse

amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSend

amReceiveMsg
amReceiveRequest

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceive

amSendFile amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSendFile

amReceiveFile amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceiveFile

amPublish amSesCreatePublisher / amSesGetPublisherHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amPubPublish

amSubscribe amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubSubscribe

amUnsubscribe amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubUnsubscribe

amReceivePublication amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubReceive

C object interface overview

74 MQSeries Application Messaging Interface

Table 2. Object interface calls used by the high-level functions (continued)

HTMLTABLEHigh-level
function

Equivalent object interface calls �1�

Note:

�1.�If an object already exists, the appropriate call to get its handle is used instead of
calling the create function again. For example, if the message object exists,
amSesGetMessageHandle is used instead of amSesCreateMessage.

Table 3. Object interface calls used by the high-level functions

High-level function Equivalent object interface calls �1�

amBackout amSesCreatePolicy / amSesGetPolicyHandle
amSesRollback

amBegin amSesCreatePolicy / amSesGetPolicyHandle
amSesBegin

amBrowseMsg amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatPolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvBrowseSelect

amCommit amSesCreatePolicy / amSesGetPolicyHandle
amSesCommit

amInitialize amSesCreate
amSesOpen

amTerminate amSesClose
amSesDelete

amSendMsg
amSendRequest
amSendResponse

amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSend

amReceiveMsg
amReceiveRequest

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceive

amSendFile amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSendFile

amReceiveFile amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceiveFile

amPublish amSesCreatePublisher / amSesGetPublisherHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amPubPublish

amSubscribe amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubSubscribe

amUnsubscribe amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubUnsubscribe

C object interface overview

Chapter 4. C object interface overview 75

Table 3. Object interface calls used by the high-level functions (continued)

High-level function Equivalent object interface calls �1�

amReceivePublication amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubReceive

Note:

�1.�If an object already exists, the appropriate call to get its handle is used instead of
calling the create function again. For example, if the message object exists,
amSesGetMessageHandle is used instead of amSesCreateMessage.

C object interface overview

76 MQSeries Application Messaging Interface

Chapter 5. C object interface reference

In the following sections the C object interface functions are listed by the object
they refer to:

Session page 78

Message page 90

Sender page 107

Receiver page 112

Distribution list page 123

Publisher page 128

Subscriber page 132

Policy page 139

Within each section the functions are listed in alphabetical order.

Note that all functions return a completion code (pCompCode) and a reason code
(pReason). The completion code can take one of the following values:
AMCC_OK Function completed successfully
AMCC_WARNING

Function completed with a warning
AMCC_FAILED

An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the
reason for the error or warning (see “Appendix A. Reason codes” on page 481).

You can specify the completion code and reason code as null pointers when the
function is called, in which case the value is not returned.

Most functions return AMBOOL. They return a value of AMB_TRUE if the
function completed successfully, otherwise AMB_FALSE. Functions that do not
return AMBOOL return a handle as specified in the following sections.

Most functions require a handle to the object they reference. If this handle is not
valid, the results are unpredictable.

© Copyright IBM Corp. 1999, 2000 77

Session interface functions
A session object provides the scope for a unit of work and creates and manages all
other objects, including at least one connection object. Each (MQSeries) connection
object encapsulates a single MQSeries queue manager connection. The session
object definition specifying the required queue manager connection can be
provided by a repository policy definition and the local host file, or the local host
file only which by default will name a single local queue manager with no
repository. The session, when deleted, is responsible for releasing memory by
closing and deleting all other objects that it manages.

Note that you should not mix MQSeries MQCONN or MQDISC requests on the
same thread as AMI calls, otherwise premature disconnection might occur.

amSesBegin
Begins a unit of work, allowing an AMI application to take advantage of the
resource coordination provided in MQSeries. The unit of work can subsequently be
committed by amSesCommit, or backed out by amSesRollback. It should be used
only when MQSeries is the transaction coordinator. If an external transaction
coordinator (for example, CICS or Tuxedo) is being used, the API of the external
coordinator should be used instead.
AMBOOL amSesBegin(

AMHSES hSess,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amSesClearErrorCodes
Clears the error codes in the session object.
AMBOOL amSesClearErrorCodes(

AMHSES hSess,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesClose
Closes the session object and all open objects owned by the session, and
disconnects from the underlying message transport (MQSeries).
AMBOOL amSesClose(

AMHSES hSess,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

C session interface

78 MQSeries Application Messaging Interface

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amSesCommit
Commits a unit of work that was started by amSesBegin, or by sending or
receiving a message under syncpoint control as defined in the policy options for
the send or receive request.
AMBOOL amSesCommit(

AMHSES hSess,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amSesCreate
Creates the session and system default objects. amSesCreate returns the handle of
the session object (of type AMHSES). This must be specified by other session
function calls.
AMHSES amSesCreate(

AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

name An optional session name that can be used to identify the
application from which a message is sent (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesCreateDistList
Creates a distribution list object. A distribution list handle (of type AMHDST) is
returned.
AMHDST amSesCreateDistList(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the distribution list (input). This must match the
name of a distribution list defined in the repository.

pCompCode Completion code (output).

pReason Reason code (output).

C session interface

Chapter 5. C object interface reference 79

amSesCreateMessage
Creates a message object. A message handle (of type AMHMSG) is returned.
AMHMSG amSesCreateMessage(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the message (input). This can be any name that is
meaningful to the application. It is specified so that this message
object can be used with the high-level interface.

pCompCode Completion code (output).

pReason Reason code (output).

amSesCreatePolicy
Creates a policy object. A policy handle (of type AMHPOL) is returned.
AMHPOL amSesCreatePolicy(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the policy (input). If it matches a policy defined in the
repository, the policy will be created using the repository
definition, otherwise it will be created with default values.

If a repository is being used and the named policy is not found in
the repository, a completion code of AMCC_WARNING is returned
with a reason code of AMRC_POLICY_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

amSesCreatePublisher
Creates a publisher object. A publisher handle (of type AMHPUB) is returned.
AMHPUB amSesCreatePublisher(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the publisher (input). If it matches a publisher
defined in the repository, the publisher will be created using the
repository definition, otherwise it will be created with default
values (that is, with a sender service name that matches the
publisher name).

If a repository is being used and the named publisher is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_PUBLISHER_NOT_IN_REPOS.

pCompCode Completion code (output).

C session interface

80 MQSeries Application Messaging Interface

pReason Reason code (output).

amSesCreateReceiver
Creates a receiver service object. A receiver handle (of type AMHRCV) is returned.
AMHRCV amSesCreateReceiver(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the receiver service (input). If it matches a receiver
defined in the repository, the receiver will be created using the
repository definition, otherwise it will be created with default
values (that is, with a queue name that matches the receiver name).

If a repository is being used and the named receiver is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_RECEIVER_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

amSesCreateSender
Creates a sender service object. A sender handle (of type AMHSND) is returned.
AMHSND amSesCreateSender(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the sender service (input). If it matches a sender
defined in the repository, the sender will be created using the
repository definition, otherwise it will be created with default
values (that is, with a queue name that matches the sender name).

If a repository is being used and the named sender is not found in
the repository, a completion code of AMCC_WARNING is returned
with a reason code of AMRC_SENDER_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

amSesCreateSubscriber
Creates a subscriber object. A subscriber handle (of type AMHSUB) is returned.
AMHSUB amSesCreateSubscriber(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the subscriber (input). If it matches a subscriber
defined in the repository, the subscriber will be created using the
repository definition, otherwise it will be created with default

C session interface

Chapter 5. C object interface reference 81

values (that is, with a sender service name that matches the
subscriber name, and a receiver service name that is the same with
the addition of the suffix ‘.RECEIVER’).

If a repository is being used and the named subscriber is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_SUBSCRIBER_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

C session interface

82 MQSeries Application Messaging Interface

amSesDelete
Deletes the session object. Performs an implicit close if the session is open. This
closes and deletes the session and all objects owned by it.
AMBOOL amSesDelete(

PAMHSES phSess,
PAMLONG pCompCode,
PAMLONG pReason);

phSess A pointer to the session handle returned by amSesCreate
(input/output).

pCompCode Completion code (output).

pReason Reason code (output).

amSesDeleteDistList
Deletes a distribution list object, and performs an implicit close if the distribution
list is open.
AMBOOL amSesDeleteDistList(

AMHSES hSess,
PAMHDST phDistList,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phDistList A pointer to the distribution list handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

amSesDeleteMessage
Deletes a message object.
AMBOOL amSesDeleteMessage(

AMHSES hSess,
PAMHMSG phMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phMsg A pointer to the message handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

C session interface

Chapter 5. C object interface reference 83

amSesDeletePolicy
Deletes a policy object.
AMBOOL amSesDeletePolicy(

AMHSES hSess,
PAMHPOL phPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phPolicy A pointer to the policy handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

amSesDeletePublisher
Deletes a publisher object, and performs an implicit close if the publisher is open.
AMBOOL amSesDeletePublisher(

AMHSES hSess,
PAMHPUB phPub,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phPub A pointer to the publisher handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

amSesDeleteReceiver
Deletes a receiver object, and performs an implicit close if the receiver is open.
AMBOOL amSesDeleteReceiver(

AMHSES hSess,
PAMHRCV phReceiver,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phReceiver A pointer to the receiver service handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

C session interface

84 MQSeries Application Messaging Interface

amSesDeleteSender
Deletes a sender object, and performs an implicit close if the sender is open.
AMBOOL amSesDeleteSender(

AMHSES hSess,
PAMHSND phSender,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phSender A pointer to the sender service handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

amSesDeleteSubscriber
Deletes a subscriber object, and performs an implicit close if the subscriber is open.
AMBOOL amSesDeleteSubscriber(

AMHSES hSess,
PAMHSUB phSub,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phSub A pointer to the subscriber handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

amSesGetDistListHandle
Returns the handle of the distribution list object (of type AMHDST) with the
specified name.
AMHDST amSesGetDistListHandle(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by the amSesCreate function (input).

name The name of the distribution list (input).

pCompCode Completion code (output).

pReason Reason code (output).

C session interface

Chapter 5. C object interface reference 85

amSesGetLastError
Gets the information (completion and reason codes) from the last error for the
session.
AMBOOL amSesGetLastError(

AMHSES hSess,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SESSION_HANDLE_ERR indicates that the
amSesGetLastError function call has itself detected an error and
failed.

amSesGetMessageHandle
Returns the handle of the message object (of type AMHMSG) with the specified
name.
AMHMSG amSesGetMessageHandle(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the message (input).

pCompCode Completion code (output).

pReason Reason code (output).

C session interface

86 MQSeries Application Messaging Interface

amSesGetPolicyHandle
Returns the handle of the policy object (of type AMHPOL) with the specified
name.
AMHPOL amSesGetPolicyHandle(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the policy (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesGetPublisherHandle
Returns the handle of the publisher object (of type AMHPUB) with the specified
name.
AMHPUB amSesGetPublisherHandle(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the publisher (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesGetReceiverHandle
Returns the handle of the receiver service object (of type AMHRCV) with the
specified name.
AMHRCV amSesGetReceiverHandle(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the receiver service (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesGetSenderHandle
Returns the handle of the sender service object (of type AMHSND) with the
specified name.
AMHSND amSesGetSenderHandle(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the sender service (input).

C session interface

Chapter 5. C object interface reference 87

pCompCode Completion code (output).

pReason Reason code (output).

amSesGetSubscriberHandle
Returns the handle of the subscriber object (of type AMHSUB) with the specified
name.
AMHSUB amSesGetSubscriberHandle(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the subscriber (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesOpen
Opens the session object using the specified policy options. The policy, together
with the local host file, provides the connection definition that enables the
connection object to be created. The specified library is loaded and initialized. If
the policy connection type is specified as AUTO and the MQSeries local queue
manager library cannot be loaded, the MQSeries client library is loaded. (On
OS/390, client connections are not supported so applications must use a local
queue manager.) The connection to the underlying message transport (MQSeries) is
then opened.
AMBOOL amSesOpen(

AMHSES hSess,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amSesRollback
Rolls back a unit of work.
AMBOOL amSesRollback(

AMHSES hSess,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

C session interface

88 MQSeries Application Messaging Interface

pReason Reason code (output).

C session interface

Chapter 5. C object interface reference 89

Message interface functions
A message object encapsulates an MQSeries message descriptor (MQMD), and
name/value elements such as the topic data for publish/subscribe messages. It can
also contain the message data, or this can be passed as a separate parameter.

A name/value element in a message object is held in an AMELEM structure. See
“Using name/value elements” on page 24 for details.

The initial state of the message object is:
CCSID default queue manager CCSID
correlationId all zeroes
dataLength zero
dataOffset zero
elementCount zero
encoding AMENC_NATIVE
format AMFMT_STRING
groupStatus AMGRP_MSG_NOT_IN_GROUP
topicCount zero

When a message object is used to send a message, it will not normally be left in
the same state as it was prior to the send. Therefore, if you use the message object
for repeated send operations, it is advisable to reset it to its initial state (see
amMsgReset on page 101) and rebuild it each time.

Note that the following calls are valid only after a session has been opened with
an amSesOpen call or after you have explicitly set the element CCSID with an
amMsgSetElementCCSID call:

amMsgAddElement page 90

amMsgDeleteElement page 92

amMsgGetElement page 94

amMsgGetElementCount page 95

amMsgDeleteNamedElement page 92

amMsgGetNamedElement page 98

amMsgGetNamedElementCount
page 99

amMsgAddTopic page 91

amMsgDeleteTopic page 93

amMsgGetTopic page 100

amMsgGetTopicCount page 100

amMsgAddElement
Adds a name/value element to a message (such as a publish/subscribe message).
AMBOOL amMsgAddElement(

AMHMSG hMsg,
PAMELEM pElem,
AMLONG options,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

C message interface

90 MQSeries Application Messaging Interface

pElem A pointer to an AMELEM element structure, which specifies the
element to be added (input). It will not replace an existing element
with the same name.

options A reserved field, which must be set to zero (input).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgAddFilter

Adds a filter to a subscribe or unsubscribe request message.
AMBOOL amMsgAddFilter(

AMHMSG hMsg,
AMLONG filterLen,
AMSTR pFilter,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hMsg The message handle returned by amSesCreateMessage (input).

filterLen The length in bytes of the filter (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

pFilter The filter to be added (input). The syntax of the filter string is
described in the MQSeries Integrator Version 2.0 Programming Guide.

pCompCode Completion code (output).

pReason Reason code (output).

amMsgAddTopic
Adds a topic to a publish/subscribe message.
AMBOOL amMsgAddTopic(

AMHMSG hMsg,
AMLONG topicLen,
AMSTR pTopic,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

topicLen The length in bytes of the topic (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pTopic The topic to be added (input).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgClearErrorCodes
Clears the error codes in the message object.
AMBOOL amMsgClearErrorCodes(

AMHMSG hMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

C message interface

Chapter 5. C object interface reference 91

pCompCode Completion code (output).

pReason Reason code (output).

amMsgDeleteElement
Deletes an element with the specified index from a message (such as a
publish/subscribe message). Indexing is within all elements of the message, and
might include topics or filters (which are specialized elements).
AMBOOL amMsgDeleteElement(

AMHMSG hMsg,
AMLONG elemIndex,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

elemIndex The index of the required element in the message, starting from
zero (input). On completion, elements with higher elemIndex
values than that specified will have their index value reduced by
one.

amMsgGetElementCount gets the number of elements in the
message.

pCompCode Completion code (output).

pReason Reason code (output).

amMsgDeleteFilter

Deletes a filter from a subscribe or unsubscribe request message at the specified
index. Indexing is within all filters.

AMBOOL amMsgDeleteFilter(
AMHMSG hMsg, /* Message handle */
AMLONG filterIndex, /* Filter index */
PAMLONG pCompCode, /* Completion code */
PAMLONG pReason); /* Reason code qualifying CompCode */

Parameters
hMsg The message handle returned by amSesCreateMessage (input).

filterIndex The index of the required filter in the message, starting from zero
(input). amMsgGetFilterCount gets the number of filters in the
message.

pCompCode Completion code (output).

pReason Reason code (output).

amMsgDeleteNamedElement
Deletes a named element from a message, at the specified index. Indexing is within
all elements that share the same name.
AMBOOL amMsgDeleteNamedElement(

AMHMSG hMsg,
AMLONG nameIndex,
AMLONG nameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

C message interface

92 MQSeries Application Messaging Interface

nameIndex The index of the required named element in the message (input).
Specifying an index of zero deletes the first element with the
specified name. On completion, elements with higher nameIndex
values than that specified will have their index value reduced by
one.

amMsgGetNamedElementCount gets the number of elements in
the message with the specified name.

nameLen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pName The name of the element to be deleted (input).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgDeleteTopic
Deletes a topic from a publish/subscribe message, at the specified index. Indexing
is within all topics in the message.
AMBOOL amMsgDeleteTopic(

AMHMSG hMsg,
AMLONG topicIndex,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

topicIndex The index of the required topic in the message, starting from zero
(input). amMsgGetTopicCount gets the number of topics in the
message.

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetCCSID
Gets the coded character set identifier of the message.
AMBOOL amMsgGetCCSID(

AMHMSG hMsg,
PAMLONG pCCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetCorrelId
Gets the correlation identifier of the message.
AMBOOL amMsgGetCorrelId(

AMHMSG hMsg,
AMLONG buffLen,
PAMLONG pCorrelIdLen,
PAMBYTE pCorrelId,
PAMLONG pCompCode,
PAMLONG pReason);

C message interface

Chapter 5. C object interface reference 93

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the correlation identifier is
returned (input).

pCorrelIdLen The length of the correlation identifier, in bytes (output). If
specified as NULL, the length is not returned.

pCorrelId The correlation identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetDataLength
Gets the length of the message data in the message object.
AMBOOL amMsgGetDataLength(

AMHMSG hMsg,
PAMLONG pLength,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pLength The length of the message data, in bytes (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetDataOffset
Gets the current offset in the message data for reading or writing data bytes.
AMBOOL amMsgGetDataOffset(

AMHMSG hMsg,
PAMLONG pOffset,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pOffset The byte offset in the message data (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetElement
Gets an element from a message (such as a publish/subscribe message).
AMBOOL amMsgGetElement(

AMHMSG hMsg,
AMLONG elemIndex,
PAMELEM pElem,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

elemIndex The index of the required element in the message, starting from
zero (input). amMsgGetElementCount gets the number of
elements in the message.

pElem The selected element in the message (output).

pCompCode Completion code (output).

C message interface

94 MQSeries Application Messaging Interface

pReason Reason code (output).

amMsgGetElementCCSID
Gets the message element CCSID. This is the coded character set identifier used for
passing message element data (including topic and filter data) to or from an
application.
AMBOOL amMsgGetElementCCSID(

AMHMSG hMsg,
PAMLONG pElementCCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pElementCCSID The element coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetElementCount
Gets the total number of elements in a message (such as a publish/subscribe
message).
AMBOOL amMsgGetElementCount(

AMHMSG hMsg,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pCount The number of elements in the message (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetEncoding
Gets the value used to encode numeric data types for the message.
AMBOOL amMsgGetEncoding(

AMHMSG hMsg,
PAMLONG pEncoding,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pEncoding The encoding of the message (output). The following values can be
returned:
AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT_390
AMENC_REVERSED
AMENC_REVERSED_FLOAT_390
AMENC_UNDEFINED

pCompCode Completion code (output).

pReason Reason code (output).

C message interface

Chapter 5. C object interface reference 95

amMsgGetFilter
Get a filter from a publish/subscribe message, at the specified index. Indexing is
within all filters.

AMBOOL amMsgGetFilter(
AMHMSG hMsg,
AMLONG filterIndex,
AMLONG buffLen,
PAMLONG pFilterLen,
AMSTR pFilter,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hMsg The message handle returned by amSesCreateMessage (input).

filterIndex The index of the required filter in the message (input). Specifying
an index of zero returns the first filter. amMsgGetFilterCount gets
the number of filters in a message.

buffLen The length in bytes of a buffer in which the filter is returned
(input).

pFilterLen The length of the filter, in bytes (output).

pFilter The filter (output)

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetFilterCount
Gets the total number of filters in a publish/subscribe message.

AMBOOL amMsgGetFilterCount(
AMHMSG hMsg,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hMsg The message handle returned by amSesCreateMessage (input).

pCount The number of filters (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetFormat
Gets the format of the message.
AMBOOL amMsgGetFormat(

AMHMSG hMsg,
AMLONG buffLen,
PAMLONG pFormatLen,
AMSTR pFormat,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the format is returned
(input).

C message interface

96 MQSeries Application Messaging Interface

pFormatLen The length of the format, in bytes (output). If specified as NULL,
the length is not returned.

pFormat The format of the message (output). The values that can be
returned include the following:
AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetGroupStatus
Gets the group status of the message. This indicates whether the message is in a
group, and if it is the first, middle, last or only one in the group.
AMBOOL amMsgGetGroupStatus(

AMHMSG hMsg,
PAMLONG pStatus,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pStatus The group status (output). It can take one of the following values:
AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

Alternatively, bitwise tests can be performed using the constants:
AMGF_IN_GROUP
AMGF_FIRST
AMGF_LAST

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetLastError
Gets the information (completion and reason codes) from the last error for the
message object.
AMBOOL amMsgGetLastError(

AMHMSG hMsg,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as

C message interface

Chapter 5. C object interface reference 97

NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_MSG_HANDLE_ERR indicates that the
amMsgGetLastError function call has itself detected an error and
failed.

amMsgGetMsgId
Gets the message identifier.
AMBOOL amMsgGetMsgId(

AMHMSG hMsg,
AMLONG buffLen,
PAMLONG pMsgIdLen,
PAMBYTE pMsgId,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the message identifier is
returned (input).

pMsgIdLen The length of the message identifier, in bytes (output). If specified
as NULL, the length is not returned.

pMsgId The message identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetName
Gets the name of the message object.
AMBOOL amMsgGetName(

AMHMSG hMsg,
AMLONG buffLen,
PAMLONG pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer into which the name is put (input).
If specified as zero, only the name length is returned.

pNameLen The length of the name, in bytes (output). If specified as NULL,
only the name is returned.

pName The message object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetNamedElement
Gets a named element from a message (such as a publish/subscribe message).

C message interface

98 MQSeries Application Messaging Interface

AMBOOL amMsgGetNamedElement(
AMHMSG hMsg,
AMLONG nameIndex,
AMLONG nameLen,
AMSTR pName,
PAMELEM pElem,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

nameIndex The index of the required named element in the message (input).
Specifying an index of zero returns the first element with the
specified name. amMsgGetNamedElementCount gets the number
of elements in the message with the specified name.

nameLen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

pName The element name (input).

pElem The selected named element in the message (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetNamedElementCount
Gets the number of elements in a message with a specified name.
AMBOOL amMsgGetNamedElementCount(

AMHMSG hMsg,
AMLONG nameLen,
AMSTR pName,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

nameLen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

pName The specified element name (input).

pCount The number of elements in the message with the specified name
(output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetReportCode
Gets the feedback code from a message of type AMMT_REPORT. If the message
type is not AMMT_REPORT, error code AMRC_MSG_TYPE_NOT_REPORT will be
returned.
AMBOOL amMsgGetReportCode(

AMHMSG hMsg,
PAMLONG pCode,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

PCode The feedback code (output). The following values can be returned:

C message interface

Chapter 5. C object interface reference 99

AMFB_EXPIRATION
AMFB_COA
AMFB_COD
AMFB_ERROR

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetTopic
Gets a topic from a publish/subscribe message, at the specified index. Indexing is
within all topics.
AMBOOL amMsgGetTopic(

AMHMSG hMsg,
AMLONG topicIndex,
AMLONG buffLen,
PAMLONG pTopicLen,
AMSTR pTopic,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

topicIndex The index of the required topic in the message (input). Specifying
an index of zero returns the first topic. amMsgGetTopicCount gets
the number of topics in the message.

buffLen The length in bytes of a buffer in which the topic is returned
(input). If buffLen is specified as zero, only the topic length is
returned (in pTopicLen), not the topic itself.

pTopicLen The length of the topic, in bytes (output).

pTopic The topic (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetType
Gets the message type from a message.
AMBOOL amMsgGetType(

AMHMSG hMsg,
PAMLONG pType,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

PType The message type (output). The following values can be returned:
AMMT_DATAGRAM
AMMT_REQUEST
AMMT_REPLY
AMMT_REPORT

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetTopicCount
Gets the total number of topics in a publish/subscribe message.

C message interface

100 MQSeries Application Messaging Interface

AMBOOL amMsgGetTopicCount(
AMHMSG hMsg,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pCount The number of topics (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgReadBytes
Reads up to the specified number of data bytes from the message object, starting at
the current data offset (which must be positioned before the end of the data for the
read operation to be successful). Use amMsgSetDataOffset to set the data offset.
amMsgReadBytes will advance the data offset by the number of bytes read,
leaving the offset immediately after the last byte read.
AMBOOL amMsgReadBytes(

AMHMSG hMsg,
AMLONG readLen,
PAMLONG pBytesRead,
PAMBYTE pData,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

readLen The maximum number of bytes to be read (input). The data buffer
specified by pData must be at least this size. The number of bytes
returned is the minimum of readLen and the number of bytes
between the data offset and the end of the data.

pBytesRead The number of bytes read (output). If specified as NULL, the
number is not returned.

pData The read data (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgReset
Resets the message object its initial state (see page 90).
AMBOOL amMsgReset(

AMHMSG hMsg,
AMLONG options,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

options A reserved field that must be specified as zero (input).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgSetCCSID
Sets the coded character set identifier of the message.

C message interface

Chapter 5. C object interface reference 101

AMBOOL amMsgSetCCSID(
AMHMSG hMsg,
AMLONG CCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

CCSID The coded character set identifier (input).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgSetCorrelId
Sets the correlation identifier of the message.
AMBOOL amMsgSetCorrelId(

AMHMSG hMsg,
AMLONG correlIdLen,
PAMBYTE pCorrelId,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

correlIdLen The length of the correlation identifier, in bytes (input).

pCorrelId The correlation identifier (input). Specify as NULL (with a
correlIdLen of 0L) to set the correlation identifier to NULL.

pCompCode Completion code (output).

pReason Reason code (output).

amMsgSetDataOffset
Sets the data offset for reading or writing byte data. If the data offset is greater
than the current data length, it is valid to write data into the message at that offset,
but an attempt to read data will result in an error. See “amMsgReadBytes” on
page 101 and “amMsgWriteBytes” on page 104.
AMBOOL amMsgSetDataOffset(

AMHMSG hMsg,
AMLONG offset,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

offset The offset in bytes (input). Set an offset of zero to read or write
from the start of the data.

pCompCode Completion code (output).

pReason Reason code (output).

amMsgSetElementCCSID
This specifies the character set to be used for subsequent element message data
(including topic and filter data) passed to or returned from the application.
Existing elements in the message are unmodified (but will be returned in this
character set). The default value of element CCSID is the queue manager CCSID.

C message interface

102 MQSeries Application Messaging Interface

AMBOOL amMsgSetElementCCSID(
AMHMSG hMsg,
AMLONG elementCCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

elementCCSID The element coded character set identifier (input).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgSetEncoding
Sets the encoding of the data in the message.
AMBOOL amMsgSetEncoding(

AMHMSG hMsg,
AMLONG encoding,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

encoding The encoding of the message (input). It can take one of the
following values:
AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT_390
AMENC_REVERSED
AMENC_REVERSED_FLOAT_390
AMENC_UNDEFINED

pCompCode Completion code (output).

pReason Reason code (output).

amMsgSetFormat
Sets the format of the message.
AMBOOL amMsgSetFormat(

AMHMSG hMsg,
AMLONG formatLen,
AMSTR pFormat,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

formatLen The length of the format, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pFormat The format of the message (input). It can take one of the following
values, or an application defined string:
AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

If set to AMFMT_NONE, the default format for the sender will be
used (if available).

pCompCode Completion code (output).

pReason Reason code (output).

C message interface

Chapter 5. C object interface reference 103

amMsgSetGroupStatus
Sets the group status of the message. This indicates whether the message is in a
group, and if it is the first, middle, last or only one in the group. Once you start
sending messages in a group, you must complete the group before sending any
messages that are not in the group.

If you specify AMGRP_MIDDLE_MSG_IN_GROUP or
AMGRP_LAST_MSG_IN_GROUP without specifying
AMGRP_FIRST_MSG_IN_GROUP, the behavior is the same as for
AMGRP_FIRST_MSG_IN_GROUP and AMGRP_ONLY_MSG_IN_GROUP
respectively.

If you specify AMGRP_FIRST_MSG_IN_GROUP out of sequence, then the
behavior is the same as for AMGRP_MIDDLE_MSG_IN_GROUP.
AMBOOL amMsgSetGroupStatus(

AMHMSG hMsg,
AMLONG status,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

status The group status (input). It can take one of the following values:
AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

pCompCode Completion code (output).

pReason Reason code (output).

amMsgWriteBytes
Writes the specified number of data bytes into the message object, starting at the
current data offset. See “amMsgSetDataOffset” on page 102.

If the data offset is not at the end of the data, existing data is overwritten. If the
data offset is set beyond the current data length, the message data between the
data length and the data offset is undefined. This feature enables applications to
construct messages in a non-sequential manner, but care must be taken to ensure
that a message is completely filled with data before it is sent.

amMsgWriteBytes will advance the data offset by the number of bytes written,
leaving it immediately after the last byte written.
AMBOOL amMsgWriteBytes(

AMHMSG hMsg,
AMLONG writeLen,
PAMBYTE pByteData,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

writeLen The number of bytes to be written (input).

pByteData The data bytes (input).

pCompCode Completion code (output).

pReason Reason code (output).

C message interface

104 MQSeries Application Messaging Interface

Message interface helper macros
The following helper macros are provided for manipulation of the name/value
elements in a message object. Additional helper macros can be written as required.

AmMsgAddStreamName
Adds a name/value element for the publish/subscribe stream name.
AmMsgAddStreamName(

AMHMSG hMsg,
AMLONG streamNameLen,
AMSTR pStreamName,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

streamNameLen The length of the stream name, in bytes (input).

pStreamName The stream name (input).

pCompCode Completion code (output).

pReason Reason code (output).

AmMsgGetPubTimeStamp
Gets the publication time stamp name/value element.
AmMsgGetPubTimeStamp(

AMHMSG hMsg,
AMLONG buffLen,
PAMLONG pTimestampLen,
AMSTR pTimestamp,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the publication time stamp
is returned (input). Specify as zero to return only the length.

pTimestampLen The length of the publication time stamp, in bytes (output). If
specified as NULL, the length is not returned.

pTimestamp The publication time stamp (output).

pCompCode Completion code (output).

pReason Reason code (output).

AmMsgGetStreamName
Gets the name/value element for the publish/subscribe stream name.
AmMsgGetStreamName(

AMHMSG hMsg,
AMLONG buffLen,
PAMLONG pStreamNameLen,
AMSTR pStreamName,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the stream name is
returned (input). Specify as zero to return only the length.

C message interface

Chapter 5. C object interface reference 105

pStreamNameLen
The length of the stream name, in bytes (output). If specified as
NULL, the length is not returned.

pStreamName The stream name (output).

pCompCode Completion code (output).

pReason Reason code (output).

C message interface

106 MQSeries Application Messaging Interface

Sender interface functions
A sender object encapsulates an MQSeries object descriptor (MQOD) structure. This
represents an MQSeries queue on a local or remote queue manager. An open
sender service is always associated with an open connection object (such as a
queue manager connection). Support is also included for dynamic sender services
(those that encapsulate model queues). The required sender service object
definitions can be provided from a repository, or created without a repository
definition by defaulting to the existing queue objects on the local queue manager.

The high-level functions amSendMsg, amSendRequest and amSendResponse call
these interface functions as required to open the sender service and send a
message. Additional calls are provided here to give the application program extra
functionality.

A sender service object must be created before it can be opened. This is done
implicitly using the high-level functions, or the amSesCreateSender session
interface functions.

A response sender service is a special type of sender service used for sending a
response to a request message. It must be created using the default definition, and
not a definition stored in a repository (see “Services and policies” on page 455).
Once created, it must not be opened until used in its correct context as a response
sender when receiving a request message with amRcvReceive or
amReceiveRequest. When opened, its queue and queue manager properties are
modified to reflect the ReplyTo destination specified in the message being received.
When first used in this context, the sender service becomes a response sender
service.

amSndClearErrorCodes
Clears the error codes in the sender object.
AMBOOL amSndClearErrorCodes(

AMHSND hSender,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSndClose
Closes the sender service.
AMBOOL amSndClose(

AMHSND hSender,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C sender interface

Chapter 5. C object interface reference 107

amSndGetCCSID
Gets the coded character set identifier of the sender service. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.
AMBOOL amSndGetCCSID(

AMHSND hSender,
PAMLONG pCCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

amSndGetEncoding
Gets the value used to encode numeric data types for the sender service. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.
AMBOOL amSndGetEncoding(

AMHSND hSender,
PAMLONG pEncoding,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

pEncoding The encoding (output).

pCompCode Completion code (output).

pReason Reason code (output).

C sender interface

108 MQSeries Application Messaging Interface

amSndGetLastError
Gets the information (completion and reason codes) from the last error for the
sender object.
AMBOOL amSndGetLastError(

AMHSND hSender,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amSndGetLastError function call has itself detected an error and
failed.

amSndGetName
Gets the name of the sender service.
AMBOOL amSndGetName(

AMHSND hSender,
AMLONG buffLen,
PAMLONG pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

buffLen The length in bytes of a buffer in which the name is returned
(input). If specified as zero, only the name length is returned.

pNameLen The length of the name, in bytes (output). If specified as NULL,
only the name is returned.

pName The name of the sender service (output).

pCompCode Completion code (output).

pReason Reason code (output).

amSndOpen
Opens the sender service.
AMBOOL amSndOpen(

AMHSND hSender,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

C sender interface

Chapter 5. C object interface reference 109

hSender The sender handle returned by amSesCreateSender (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amSndSend
Sends a message to the destination specified by the sender service. If the sender
service is not open, it will be opened (if this action is specified in the policy
options).

The message data can be passed in the message object, or as a separate parameter
(this means that the data does not have to be copied into the message object prior
to sending the message, which might improve performance especially if the
message data is large).
AMBOOL amSndSend(

AMHSND hSender,
AMHPOL hPolicy,
AMHRCV hReceiver,
AMHMSG hRcvMsg,
AMLONG dataLen,
PAMBYTE pData,
AMHMSG hSndMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
message should be sent, if the message being sent is a request
message (input). Specify as AMH_NULL_HANDLE if no response
is required.

hRcvMsg The handle of a received message that is being responded to, if this
is a response message (input). Specify as AMH_NULL_HANDLE if
this is not a response message.

dataLen The length of the message data, in bytes (input). If specified as
zero, any message data will be passed in the message object
(hSndMsg).

pData The message data, if dataLen is non-zero (input).

hSndMsg The handle of a message object that specifies the properties of the
message being sent (input). If dataLen is zero, it can also contain
the message data. If specified as AMH_NULL_HANDLE, the
default message object (constant: AMSD_SND_MSG_HANDLE) is
used.

pCompCode Completion code (output).

pReason Reason code (output).

C sender interface

110 MQSeries Application Messaging Interface

amSndSendFile
Sends data from a file.The file data can be received as normal message data by a
target application using amRcvReceive or used to reconstruct the file with
amRcvReceiveFile.
AMBOOL amSndSendFile(

AMHSND hSender,
AMHPOL hPolicy,
AMLONG options,
AMLONG directoryLen,
AMSTR directory,
AMLONG fileNameLen,
AMSTR fileName,
AMHMSG hSndMsg,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSender The sender handle returned by amSesCreateSender (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

options A reserved field that must be specified as zero.

directoryLen A reserved field that must be specified as zero (input).

directory A reserved field that must be specified as NULL (input).

fileNameLen The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the filename will
travel with the message for use with a receive file call (see
“amRcvReceiveFile” on page 121 for more details). Note that the
filename sent will exactly match the supplied filename; it will not
be converted or expanded in any way.

hSndMsg The handle of the message object to use to send the file (input).
This can be used to specify the Correlation ID for example. If
specified as AMH_NULL_HANDLE, the system default send
message (constant: AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
If, in your application, you have previously used a message object, referenced by
either handle or name, to send or receive data (including AMI elements or topics),
you will need to explicitly call amMsgReset before re-using the object for sending a
file. This applies even if you use the system default object handle (constant:
AMSD_SND_MSG_HANDLE).

C sender interface

Chapter 5. C object interface reference 111

Receiver interface functions
A receiver object encapsulates an MQSeries object descriptor (MQOD) structure.
This represents a local MQSeries queue. An open receiver service is always
associated with an open connection object, such as a queue manager connection.
Support is also included for dynamic receiver services (that encapsulate model
queues). The required receiver service object definitions can be provided from a
repository or can be created automatically from the set of existing queue objects
available on the local queue manager.

There is a definition type associated with each receiver service:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

A receiver service created from a repository definition will be initially of type
AMDT_PREDEFINED or AMDT_DYNAMIC. When opened, its definition type
might change from AMDT_DYNAMIC to AMDT_TEMP_DYNAMIC according to
the properties of its underlying queue object.

A receiver service created with default values (that is, without a repository
definition) will have its definition type set to AMDT_UNDEFINED until it is
opened. When opened, this will become AMDT_DYNAMIC,
AMDT_TEMP_DYNAMIC, or AMDT_PREDEFINED, according to the properties of
its underlying queue object.

amRcvBrowse
Browses a message. See the MQSeries Application Programming Guide for a full
description of the browse options.
AMBOOL amRcvBrowse(

AMHRCV hReceiver,
AMHPOL hPolicy,
AMLONG options,
AMLONG buffLen,
PAMLONG pDataLen,
PAMBYTE pData,
AMHMSG hRcvMsg,
AMHSND hSender,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

C receiver interface

112 MQSeries Application Messaging Interface

|

|
|

|
|
|
|
|
|
|
|
|
|
|

||

||
|
|

options Options controlling the browse operation (input). Possible values
are:
AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT
AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message. The locking
feature is not available on OS/390.

buffLen The length in bytes of a buffer in which the data is returned
(input).

pDataLen The length of the message data in bytes (output). If specified as
NULL, the data length is not returned.

pData The received message data (output).

hRcvMsg The handle of the message object for the received message
(output).

hSender The handle of the response sender service that the response
message must be sent to, if this is a request message (output). This
sender service must be created without a repository definition, and
used exclusively for sending a response. Its definition type must be
AMDT_UNDEFINED (it will be set to AMDT_RESPONSE by this
call).

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
To return the data in the message object (hRcvMsg), set buffLen to zero and
pDataLen to NULL.

To return the message data in the pData parameter, set buffLen to the required
length and pDataLen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set buffLen to zero.
pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set buffLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

C receiver interface

Chapter 5. C object interface reference 113

||
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

||
|

||
|

||

||
|

||
|
|
|
|
|

||

||

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

amRcvBrowseSelect
Browses a message identified by specifying the Correlation ID from the selection
message as a selection criterion. See the MQSeries Application Programming Guide for
a full description of the browse options.
AMBOOL amRcvBrowseSelect(

AMHRCV hReceiver,
AMHPOL hPolicy,
AMLONG options,
AMHMSG hSelMsg,
AMLONG buffLen,
PAMLONG pDataLen,
PAMBYTE pData,
AMHMSG hRcvMsg,
AMHSND hSender,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

options Options controlling the browse operation (input). Possible values
are:
AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT
AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message. The locking
feature is not available on OS/390.

hSelMsg The handle of a selection message object (input). This is used
together with the browse options to identify the message to be
received (for example, using the Correlation ID). Specify as
AMH_NULL_HANDLE to get the next available message. The
CCSID, element CCSID, and encoding values from the selection
message define the target values for any data conversions. If target
conversion values are required without using the Correlation ID
for selection, then this can be reset (see amMsgSetCorrelId on
page 102) before invoking the amRcvBrowseSelect function.

buffLen The length in bytes of a buffer in which the data is returned
(input).

pDataLen The length of the message data in bytes (output). If specified as
NULL, the data length is not returned.

pData The received message data (output).

hRcvMsg The handle of the message object for the received message
(output).

C receiver interface

114 MQSeries Application Messaging Interface

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

||

||
|
|

||
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

||
|
|
|
|
|
|
|
|

||
|

||
|

||

||
|

hSender The handle of the response sender service that the response
message must be sent to, if this is a request message (output). This
sender service must be created without a repository definition, and
used exclusively for sending a response. Its definition type must be
AMDT_UNDEFINED (it will be set to AMDT_RESPONSE by this
call).

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
To return the data in the message object (hRcvMsg), set buffLen to zero and
pDataLen to NULL.

To return the message data in the pData parameter, set buffLen to the required
length and pDataLen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set buffLen to zero.
pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message data will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set buffLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

amRcvClearErrorCodes
Clears the error codes in the receiver service object.
AMBOOL amRcvClearErrorCodes(

AMHRCV hReceiver,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

pCompCode Completion code (output).

pReason Reason code (output).

C receiver interface

Chapter 5. C object interface reference 115

||
|
|
|
|
|

||

||

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

amRcvClose
Closes the receiver service.
AMBOOL amRcvClose(

AMHRCV hReceiver,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amRcvGetDefnType
Gets the definition type of the receiver service.
AMBOOL amRcvGetDefnType(

AMHRCV hReceiver,
PAMLONG pType,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

pType The definition type (output). It can be one of the following:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

Values other than AMDT_UNDEFINED reflect the properties of the
underlying queue object.

pCompCode Completion code (output).

pReason Reason code (output).

C receiver interface

116 MQSeries Application Messaging Interface

amRcvGetLastError
Gets the information (completion and reason codes) from the last error for the
receiver object.
AMBOOL amRcvGetLastError(

AMHRCV hReceiver,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amRcvGetLastError function call has itself detected an error and
failed.

amRcvGetName
Gets the name of the receiver service.
AMBOOL amRcvGetName(

AMHRCV hReceiver,
AMLONG buffLen,
PAMLONG pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The name of the receiver service (output).

pCompCode Completion code (output).

pReason Reason code (output).

C receiver interface

Chapter 5. C object interface reference 117

amRcvGetQueueName
Gets the queue name of the receiver service. This is used to determine the queue
name of a permanent dynamic receiver service, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. (See also
amRcvSetQueueName.)
AMBOOL amRcvGetQueueName(

AMHRCV hReceiver,
AMLONG buffLen,
PAMLONG pNameLen,
AMSTR pQueueName,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

buffLen The length in bytes of a buffer in which the queue name is
returned (input).

pNameLen The length of the queue name, in bytes (output).

pQueueName The queue name of the receiver service (output).

pCompCode Completion code (output).

pReason Reason code (output).

amRcvOpen
Opens the receiver service.
AMBOOL amRcvOpen(

AMHRCV hReceiver,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C receiver interface

118 MQSeries Application Messaging Interface

amRcvReceive
Receives a message.
AMBOOL amRcvReceive(

AMHRCV hReceiver,
AMHPOL hPolicy,
AMHMSG hSelMsg,
AMLONG buffLen,
PAMLONG pDataLen,
PAMBYTE pData,
AMHMSG hRcvMsg,
AMHSND hSender,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hSelMsg The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH_NULL_HANDLE to get the next
available message with no selection. The CCSID, element CCSID,
and encoding values from the selection message define the target
values for any data conversions. If target conversion values are
required without using the Correlation ID for selection, then this
can be reset (see amMsgSetCorrelId on page 78) before invoking
the amRcvReceive function.

buffLen The length in bytes of a buffer in which the data is returned
(input).

pDataLen The length of the message data, in bytes (output). If specified as
NULL, the data length is not returned.

pData The received message data (output).

hRcvMsg The handle of the message object for the received message
(output). If specified as AMH_NULL_HANDLE, the default
message object (constant: AMSD_RCV_MSG_HANDLE) is used.
The message object is reset implicitly before the receive takes place.

hSender The handle of the response sender service that a response message
must be sent to, if this is a request message (output). This sender
service must be created without a repository definition, and used
exclusively for sending a response. Its definition type must be
AMDT_UNDEFINED (it will be set to AMDT_RESPONSE by this
call).

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
To return the data in the message object (hRcvMsg), set buffLen to zero and
pDataLen to NULL.

To return the message data in the pData parameter, set buffLen to the required
length and pDataLen to NULL.

C receiver interface

Chapter 5. C object interface reference 119

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set buffLen to zero.
pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set buffLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be set to selected in the policy
receive attributes. You can then remove the message by specifying zero in the
buffLen parameter, a null in the pDataLen parameter, and a non-null in the pData
parameter.

C receiver interface

120 MQSeries Application Messaging Interface

amRcvReceiveFile

Receives file message data into a file.
AMBOOL amRcvReceiveFile(

AMHRCV hReceiver,
AMHPOL hPolicy,
AMHLONG options,
AMHMSG hSelMsg,
AMLONG directoryLen,
AMSTR directory,
AMLONG fileNameLen,
AMSTR fileName,
AMHMSG hRcvMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

options A reserved field that must be specified as zero (input).

hSelMsg The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH_NULL_HANDLE to get the next
available message with no selection. The CCSID, element CCSID,
and encoding values from the selection message define the target
values for any data conversions. If target conversion values are
required without using the Correlation ID for selection, then this
can be reset (see amMsgSetCorrelId on page 102) before invoking
the amRcvReceiveFile function.

directoryLen A reserved field that must be specified as zero (input).

directory A reserved field that must be specified as NULL (input).

fileNameLen The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated,
in which case the AMI will work out the length itself.

fileName The name of the file into which the transferred data is to be
received (input). This can include a directory prefix to define a
fully-qualified or relative file name. If NULL or a null string is
specified, then the AMI will use the name of the originating file
(including any directory prefix), exactly as it was supplied on the
send file call. Note that the original filename may not be
appropriate for use by the receiver, either because a pathname
included in the filename is not applicable to the receiving system,
or because the sending and receiving systems use different
filename conventions.

hRcvMessage The handle of the message object to use to receive the file. This
parameter is updated with the message properties, for example the
Message ID. If the message is not a file message, hRcvMessage
receives the message data. If hRcvMessage is specified as
AMH_NULL_HANDLE, the default message object (constant
AMSD_RCV_MSG_HANDLE) is used. The message object is reset
implicitly before the receive takes place.

pCompCode Completion code (output).

C receiver interface

Chapter 5. C object interface reference 121

pReason Reason code (output).

Usage notes
If fileName is blank (indicating that the originating file name specified in the
message is to be used), then fileNameLength should be set to zero.

amRcvSetQueueName
Sets the queue name of the receiver service, when this encapsulates a model queue.
This can be used to specify the queue name of a recreated permanent dynamic
receiver service, in order to receive messages in a session subsequent to the one in
which it was created. (See also amRcvGetQueueName.)
AMBOOL amRcvSetQueueName(

AMHRCV hReceiver,
AMLONG nameLen,
AMSTR pQueueName,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

nameLen The length of the queue name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pQueueName The queue name of the receiver service (input).

pCompCode Completion code (output).

pReason Reason code (output).

C receiver interface

122 MQSeries Application Messaging Interface

Distribution list interface functions
A distribution list object encapsulates a list of sender objects.

amDstClearErrorCodes
Clears the error codes in the distribution list object.
AMBOOL amDstClearErrorCodes(

AMHDST hDistList,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

pCompCode Completion code (output).

pReason Reason code (output).

amDstClose
Closes the distribution list.
AMBOOL amDstClose(

AMHDST hDistList,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amDstGetLastError
Gets the information (completion and reason codes) from the last error in the
distribution list object.
AMBOOL amDstGetLastError(

AMHDST hDistList,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

C distribution list interface

Chapter 5. C object interface reference 123

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amDstGetLastError function call has itself detected an error and
failed.

amDstGetName
Gets the name of the distribution list object.
AMBOOL amDstGetName(

AMHDST hDistList,
AMLONG buffLen,
PAMLONG pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The distribution list object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amDstGetSenderCount
Gets a count of the number of sender services in the distribution list.
AMBOOL amDstGetSenderCount(

AMHDST hDistList,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

pCount The number of sender services (output).

pCompCode Completion code (output).

pReason Reason code (output).

amDstGetSenderHandle
Returns the handle (type AMHSND) of a sender service in the distribution list
object with the specified index.
AMHSND amDstGetSenderHandle(

AMHDST hDistList,
AMLONG handleIndex,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

handleIndex The index of the required sender service in the distribution list

C distribution list interface

124 MQSeries Application Messaging Interface

(input). Specify an index of zero to return the first sender service in
the list. amDstGetSenderCount gets the number of sender services
in the distribution list.

pCompCode Completion code (output).

pReason Reason code (output).

amDstOpen
Opens the distribution list object for each of the destinations in the distribution list.
The completion and reason codes returned by this function call indicate if the open
was unsuccessful, partially successful, or completely successful.
AMBOOL amDstOpen(

AMHDST hDistList,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C distribution list interface

Chapter 5. C object interface reference 125

amDstSend
Sends a message to each sender in the distribution list.
AMBOOL amDstSend(

AMHDST hDistList,
AMHPOL hPolicy,
AMHRCV hReceiver
AMLONG dataLen,
PAMBYTE pData,
AMHMSG hMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
message should be sent, if the message being sent is a request
message (input). Specify as AMH_NULL_HANDLE if no response
is required.

dataLen The length of the message data, in bytes (input). If set to zero, the
data should be passed in the message object (hMsg).

pData The message data (input).

hMsg The handle of a message object that specifies the properties for the
message being sent (input). If dataLen is zero, it should also
contain the message data. If specified as AMH_NULL_HANDLE,
the default send message object (constant:
AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C distribution list interface

126 MQSeries Application Messaging Interface

amDstSendFile
Sends data from a file to each sender in the distribution list. The file data can be
received as normal message data by a target application using amRcvReceive or
used to reconstruct the file with amRcvReceiveFile.
AMBOOL amDstSendFile(

AMHDST hDistList,
AMHPOL hPolicy,
AMLONG options,
AMLONG directoryLen,
AMSTR directory,
AMLONG fileNameLen,
AMSTR fileName,
AMHMSG hMsg,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hDistList The distribution list handle returned by amSesCreateDistList

(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

options Reserved, must be specified as 0L (input).

directoryLen A reserved field that must be specified as zero (input).

directory A reserved field that must be specified as NULL (input).

fileNameLen The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the filename will
travel with the message for use with a receive file call (see
“amRcvReceiveFile” on page 121 for more details). Note that the
filename sent will exactly match the supplied filename; it will not
be converted or expanded in any way.

hMsg The handle of the message object to use to send the file (input).
This can be used to specify the Correlation ID for example. If
specified as ANM_NULL_HANDLE, the default send message
object (constant: AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes
If, in your application, you have previously used a message object, referenced by
either handle or name, to send or receive data (including AMI elements or topics),
you will need to explicitly call amMsgReset before re-using the object for sending a
file. This applies even if you use the system default object handle (constant:
AMSD_SND_MSG_HANDLE).

The system default message object handle is used when you specify hMsg as
AMH_NULL_HANDLE.

C distribution list interface

Chapter 5. C object interface reference 127

Publisher interface functions
A publisher object encapsulates a sender object. It provides support for publish
messages to a publish/subscribe broker.

amPubClearErrorCodes
Clears the error codes in the publisher object.
AMBOOL amPubClearErrorCodes(

AMHPUB hPublisher,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

pCompCode Completion code (output).

pReason Reason code (output).

amPubClose
Closes the publisher service.
AMBOOL amPubClose(

AMHPUB hPublisher,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amPubGetCCSID
Gets the coded character set identifier of the publisher service. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.
AMBOOL amPubGetCCSID(

AMHPUB hPublisher,
PAMLONG pCCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

amPubGetEncoding
Gets the value used to encode numeric data types for the publisher service. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

C publisher interface

128 MQSeries Application Messaging Interface

AMBOOL amPubGetEncoding(
AMHPUB hPublisher,
PAMLONG pEncoding,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

pEncoding The encoding (output).

pCompCode Completion code (output).

pReason Reason code (output).

amPubGetLastError
Gets the information (completion and reason codes) from the last error for the
publisher object.
AMBOOL amPubGetLastError(

AMHPUB hPublisher,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amPubGetLastError function call has itself detected an error and
failed.

C publisher interface

Chapter 5. C object interface reference 129

amPubGetName
Gets the name of the publisher service.
AMBOOL amPubGetName(

AMHPUB hPublisher,
AMLONG buffLen,
PAMLONG pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The publisher object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amPubOpen
Opens the publisher service.
AMBOOL amPubOpen(

AMHPUB hPublisher,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C publisher interface

130 MQSeries Application Messaging Interface

amPubPublish
Publishes a message using the publisher service.

The message data is passed in the message object. There is no option to pass it as a
separate parameter as with amSndSend (this would not give any performance
improvement because the MQRFH header has to be added to the message data
prior to publishing it).
AMBOOL amPubPublish(

AMHPUB hPublisher,
AMHPOL hPolicy,
AMHRCV hReceiver,
AMHMSG hPubMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
publish request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

hPubMsg The handle of a message object for the publication message (input).
If specified as AMH_NULL_HANDLE, the default message object
(constant: AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C publisher interface

Chapter 5. C object interface reference 131

Subscriber interface functions
A subscriber object encapsulates both a sender object and a receiver object. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

amSubClearErrorCodes
Clears the error codes in the subscriber object.
AMBOOL amSubClearErrorCodes(

AMHSUB hSubscriber,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSubClose
Closes the subscriber service.
AMBOOL amSubClose(

AMHSUB hSubscriber,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

amSubGetCCSID
Gets the coded character set identifier of the subscriber’s sender service. A
non-default value reflects the CCSID of a remote system unable to perform CCSID
conversion of received messages. In this case the subscriber must perform CCSID
conversion of the message before it is sent.
AMBOOL amSubGetCCSID(

AMHSUB hSubscriber,
PAMLONG pCCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

amSubGetDefnType
Gets the definition type of the subscriber’s receiver service.

C subscriber interface

132 MQSeries Application Messaging Interface

AMBOOL amSubGetDefnType(
AMHSUB hSubscriber,
PAMLONG pType,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

pType The definition type (output). It can be:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

pCompCode Completion code (output).

pReason Reason code (output).

amSubGetEncoding
Gets the value used to encode numeric data types for the subscriber’s sender
service. A non-default value reflects the encoding of a remote system unable to
convert the encoding of received messages. In this case the subscriber must convert
the encoding of the message before it is sent.
AMBOOL amSubGetEncoding(

AMHSUB hSubscriber,
PAMLONG pEncoding,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

pEncoding The encoding (output).

pCompCode Completion code (output).

pReason Reason code (output).

C subscriber interface

Chapter 5. C object interface reference 133

amSubGetLastError
Gets the information (completion and reason codes) from the last error for the
subscriber object.
AMBOOL amSubGetLastError(

AMHSUB hSubscriber,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amSubGetLastError function call has itself detected an error and
failed.

amSubGetName
Gets the name of the subscriber object.
AMBOOL amSubGetName(

AMHSUB hSubscriber,
AMLONG buffLen,
PAMLONG pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The subscriber object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amSubGetQueueName
Gets the queue name of the subscriber’s receiver service object. This can be used to
determine the queue name of a permanent dynamic receiver service, so that it can
be recreated with the same queue name in order to receive messages in a
subsequent session. (See also amSubSetQueueName.)

C subscriber interface

134 MQSeries Application Messaging Interface

AMBOOL amSubGetQueueName(
AMHSUB hSubscriber,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pQueueName,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

buffLen The length in bytes of a buffer in which the queue name is
returned (input). Specify as zero to return only the length.

pStringLen The length of the queue name, in bytes (output). If specified as
NULL, the length is not returned.

pQueueName The queue name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amSubOpen
Opens the subscriber service.
AMBOOL amSubOpen(

AMHSUB hSubscriber,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C subscriber interface

Chapter 5. C object interface reference 135

amSubReceive
Receives a message, normally a publication, using the subscriber service. The
message data, topic and other elements can be accessed using the message
interface functions (see page 90).

The message data is passed in the message object. There is no option to pass it as a
separate parameter as with amRcvReceive (this would not give any performance
improvement because the MQRFH header has to be removed from the message
data after receiving it).
AMBOOL amSubReceive(

AMHSUB hSubscriber,
AMHPOL hPolicy,
AMHMSG hSelMsg,
AMHMSG hRcvMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hSelMsg The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH_NULL_HANDLE to get the next
available message with no selection.

hRcvMsg The handle of the message object for the received message
(output). If specified as AMH_NULL_HANDLE, the default
message object (constant: AMSD_RCV_MSG_HANDLE) is used.
The message object is reset implicitly before the receive takes place.

pCompCode Completion code (output).

pReason Reason code (output).

amSubSetQueueName
Sets the queue name of the subscriber’s receiver object, when this encapsulates a
model queue. This can be used to specify the queue name of a recreated
permanent dynamic receiver service, in order to receive messages in a session
subsequent to the one in which it was created. (See also amSubGetQueueName.)
AMBOOL amSubSetQueueName(

AMHSUB hSubscriber,
AMLONG nameLen,
AMSTR pQueueName,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

nameLen The length of the queue name, in bytes (input).

pQueueName The queue name (input).

pCompCode Completion code (output).

pReason Reason code (output).

C subscriber interface

136 MQSeries Application Messaging Interface

amSubSubscribe
Sends a subscribe message to a publish/subscribe broker using the subscriber
service, to register a subscription. The topic and other elements can be specified
using the message interface functions (see page 90) before sending the message.

Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix ‘.RECEIVER’.
AMBOOL amSubSubscribe(

AMHSUB hSubscriber,
AMHPOL hPolicy,
AMHRCV hReceiver,
AMHMSG hSubMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
subscribe request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

hSubMsg The handle of a message object for the subscribe message (input).
If specified as AMH_NULL_HANDLE, the default message object
(constant: AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C subscriber interface

Chapter 5. C object interface reference 137

amSubUnsubscribe
Sends an unsubscribe message to a publish/subscribe broker using the subscriber
service, to deregister a subscription. The topic and other elements can be specified
using the message interface functions (see page 90) before sending the message.

To deregister all topics, a policy providing this option must be specified (this is not
the default policy). Otherwise, to remove a previous subscription the topic
information specified must match that specified on the relevant amSubSubscribe
request.
AMBOOL amSubUnsubscribe(

AMHSUB hSubscriber,
AMHPOL hPolicy,
AMHRCV hReceiver,
AMHMSG hUnsubMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
unsubscribe request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required.

hUnsubMsg The handle of a message object for the unsubscribe message
(input). If specified as AMH_NULL_HANDLE, the default message
object (constant: AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

C subscriber interface

138 MQSeries Application Messaging Interface

Policy interface functions
A policy object encapsulates the set of options used for each AMI request (open,
close, send, receive, publish and so on). Examples are the priority and persistence
of the message, and whether the message is included in a unit of work.

amPolClearErrorCodes
Clears the error codes in the policy object.
AMBOOL amPolClearErrorCodes(

AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

pCompCode Completion code (output).

pReason Reason code (output).

amPolGetLastError
Gets the information (completion and reason codes) from the last error for the
policy object.
AMBOOL amPolGetLastError(

AMHPOL hPolicy,
AMLONG buffLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_POLICY_HANDLE_ERR indicates that the
amPolGetLastError function call has itself detected an error and
failed.

amPolGetName
Returns the name of the policy object.
AMBOOL amPolGetName(

AMHPOL hPolicy,
AMLONG buffLen,
PAMLONG pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

C policy interface

Chapter 5. C object interface reference 139

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The policy object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amPolGetWaitTime
Returns the wait time (in ms) set for this policy.
AMBOOL amPolGetWaitTime(

AMHPOL hPolicy,
PAMLONG pWaitTime,
PAMLONG pCompCode,
PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

pWaitTime The wait time, in ms (output).

pCompCode Completion code (output).

pReason Reason code (output).

amPolSetWaitTime
Sets the wait time for any receive function using this policy.
AMBOOL amPolSetWaitTime(

AMHPOL hPolicy,
AMLONG waitTime,
PAMLONG pCompCode,
PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

waitTime The wait time (in ms) to be set in the policy (input).

pCompCode Completion code (output).

pReason Reason code (output).

C policy interface

140 MQSeries Application Messaging Interface

Part 3. The C++ interface

Chapter 6. Using the Application Messaging
Interface in C++ 145
Structure of the AMI 145

Base classes 145
Interface and helper classes. 146
Exception classes 146
Using the repository 146
System default objects 146

Writing applications in C++ 147
Creating and opening objects 147
Deleting objects 148
Sending messages 148

Sample program 149
Receiving messages 149

Sample program 150
Request/response messaging 150

Sample programs 151
File transfer 151
Publish/subscribe messaging 152

Sample programs 153
Using AmElement objects 153
Error handling 153
Transaction support 155
Sending group messages 156
Other considerations 156

Multithreading 156
Using MQSeries with the AMI. 156
Field limits 156

Building C++ applications 158
AMI include files 158
C++ applications on AIX 158

Preparing C++ programs on AIX 158
Running C++ programs on AIX 159

C++ applications on HP-UX 159
Preparing C++ programs on HP-UX 159
Running C++ programs on HP-UX 160

C++ applications on Solaris. 160
Preparing C++ programs on Solaris 161
Running C++ programs on Solaris 161

C++ applications on Windows. 162
Preparing C++ programs on Windows . . . 162
Running C++ programs on Windows . . . 162

Chapter 7. C++ interface overview 163
Base classes 163

Helper classes 163
Exception classes 163

AmSessionFactory 164
Constructor 164
Session factory management 164
Create and delete session 164

AmSession 165
Session management 165
Create objects 165
Delete objects 165
Transactional processing 165

Error handling 166
AmMessage 167

Get values 167
Set values 167
Reset values 167
Read and write data 167
Publish/subscribe topics. 168
Publish/subscribe filters. 168
Publish/subscribe name/value elements . . . 168
Error handling 168

AmSender 169
Open and close. 169
Send 169
Send file 169
Get values 169
Error handling 169

AmReceiver 170
Open and close. 170
Receive and browse 170
Receive file 170
Get values 170
Set value 170
Error handling 170

AmDistributionList 171
Open and close. 171
Send 171
Send file 171
Get values 171
Error handling 171

AmPublisher 172
Open and close. 172
Publish 172
Get values 172
Error handling 172

AmSubscriber 173
Open and close. 173
Broker messages 173
Get values 173
Set value 173
Error handling 173

AmPolicy. 174
Policy management 174
Error handling 174

Helper classes 175
AmBytes 175
AmElement 175
AmObject 175
AmStatus. 175
AmString. 176

Exception classes 177
AmException 177
AmErrorException. 177
AmWarningException 177

Chapter 8. C++ interface reference 179
Base classes 179

© Copyright IBM Corp. 1999, 2000 141

Helper classes 179
Exception classes 179

AmSessionFactory 180
AmSessionFactory 180
createSession 180
deleteSession 180
getFactoryName 180
getLocalHost 180
getRepository 180
getTraceLevel 180
getTraceLocation 180
setLocalHost. 180
setRepository 181
setTraceLevel 181
setTraceLocation 181

AmSession 182
begin 182
clearErrorCodes 182
close 182
commit 182
createDistributionList 182
createMessage 183
createPolicy 183
createPublisher 183
createReceiver 183
createSender. 184
createSubscriber 184
deleteDistributionList. 184
deleteMessage 184
deletePolicy 184
deletePublisher 185
deleteReceiver 185
deleteSender. 185
deleteSubscriber 185
enableWarnings 185
getLastErrorStatus 185
getName 185
getTraceLevel 186
getTraceLocation 186
open 186
rollback 186

AmMessage 187
addElement 187
addFilter 188
addTopic 188
clearErrorCodes 188
deleteElement 188
deleteFilter 188
deleteNamedElement 188
deleteTopic 188
enableWarnings 189
getCCSID. 189
getCorrelationId 189
getDataLength 189
getDataOffset 189
getElement 189
getElementCCSID 189
getElementCount 189
getEncoding 189
getFilter 190
getFilterCount 190

getFormat 190
getGroupStatus 190
getLastErrorStatus 190
getMessageId 190
getName 191
getNamedElement. 191
getNamedElementCount. 191
getReportCode 191
getTopic 191
getTopicCount 191
getType 191
readBytes. 192
reset 192
setCCSID 192
setCorrelationId 192
setDataOffset 192
setElementCCSID 192
setEncoding 193
setFormat 193
setGroupStatus 193
writeBytes 193

AmSender 195
clearErrorCodes 195
close 195
enableWarnings 195
getCCSID. 195
getEncoding 195
getLastErrorStatus 196
getName 196
open 196
send 196
sendFile 196

AmReceiver 198
browse 198
clearErrorCodes 199
close 199
enableWarnings 199
getDefinitionType 199
getLastErrorStatus 199
getName 199
getQueueName. 200
open 200
receive 200
receiveFile 200
setQueueName 201

AmDistributionList 202
clearErrorCodes 202
close 202
enableWarnings 202
getLastErrorStatus 202
getName 202
getSender 202
getSenderCount 202
open 202
send 203
sendFile 203

AmPublisher 204
clearErrorCodes 204
close 204
enableWarnings 204
getCCSID. 204

142 MQSeries Application Messaging Interface

getEncoding 204
getLastErrorStatus 204
getName 204
open 204
publish 205

AmSubscriber 206
clearErrorCodes 206
close 206
enableWarnings 206
getCCSID. 206
getDefinitionType 206
getEncoding 206
getLastErrorStatus 206
getName 207
getQueueName. 207
open 207
receive 208
setQueueName 208
subscribe 209
unsubscribe 209

AmPolicy. 210
clearErrorCodes 210
enableWarnings 210
getLastErrorStatus 210
getName 210
getWaitTime 210
setWaitTime 210

AmBytes 211
cmp 211
constructors 211
cpy 212
dataPtr 212
destructor 212
length 212
operators 212
pad. 212

AmElement 213
AmElement 213
getName 213
getValue 213
getVersion 213
setVersion 213
toString 213

AmObject 214
clearErrorCodes 214
getLastErrorStatus 214
getName 214

AmStatus. 215
AmStatus. 215
getCompletionCode 215
getReasonCode 215
getReasonCode2 215
toString 215

AmString. 216
cat 216
cmp 216
constructors 216
contains 216
cpy 216
destructor 216
operators 217

pad. 217
split 217
strip 217
length 217
text 217
truncate 217

AmException 218
getClassName 218
getCompletionCode 218
getMethodName 218
getReasonCode 218
getSource. 218
toString 218

AmErrorException. 219
getClassName 219
getCompletionCode 219
getMethodName 219
getReasonCode 219
getSource. 219
toString 219

AmWarningException 220
getClassName 220
getCompletionCode 220
getMethodName 220
getReasonCode 220
getSource. 220
toString 220

Part 3. The C++ interface 143

144 MQSeries Application Messaging Interface

Chapter 6. Using the Application Messaging Interface in C++

The Application Messaging Interface for C++ (amCpp) provides a C++ style of
programming, while being consistent with the object-style interface of the
Application Messaging Interface for C.

This chapter describes the following:
v “Structure of the AMI”
v “Writing applications in C++” on page 147
v “Building C++ applications” on page 158

Note that the term object is used in this book in the object-oriented programming
sense, not in the sense of MQSeries ‘objects’ such as channels and queues.

Structure of the AMI
The following classes are provided:

Base classes
AmSessionFactory Creates AmSession objects.

AmSession Creates objects within the AMI session, and
controls transactional support.

AmMessage Contains the message data, message ID and
correlation ID, and options that are used when
sending or receiving a message (most of which
come from the policy definition).

AmSender This is a service that represents a destination (such
as an MQSeries queue) to which messages are sent.

AmReceiver This is a service that represents a source (such as
an MQSeries queue) from which messages are
received.

AmDistributionList Contains a list of sender services to provide a list
of destinations.

AmPublisher Contains a sender service where the destination is
a publish/subscribe broker.

AmSubscriber Contains a sender service (to send subscribe and
unsubscribe messages to a publish/subscribe
broker) and a receiver service (to receive
publications from the broker).

AmPolicy Defines how the message should be handled,
including items such as priority, persistence, and
whether it is included in a unit of work.

© Copyright IBM Corp. 1999, 2000 145

Interface and helper classes
AmObject This is an abstract class, from which the base

classes listed above inherit (with the exception of
AmSessionFactory).

AmElement This encapsulates name/value pairs for use in
publish/subscribe applications.

AmStatus This encapsulates the error status of amCpp
objects.

AmString This encapsulates string data.

AmBytes This encapsulates binary/byte data.

Exception classes
AmException This is the base Exception class for amCpp; all

other amCpp Exceptions inherit from this class.

AmErrorException An Exception of this type is raised when an
amCpp object experiences an error with a severity
level of FAILED (CompletionCode =
AMCC_FAILED).

AmWarningException An Exception of this type is raised when an
amCpp object experiences an error with a severity
level of WARNING (CompletionCode =
AMCC_WARNING), provided that warnings have
been enabled using the enableWarnings method.

Using the repository
You can run AMI applications with or without a repository. If you don’t have a
repository, you can create an object by specifying its name in a method. It will be
created using the appropriate system provided definition (see “System provided
definitions” on page 456).

If you have a repository, and you specify the name of an object in a method that
matches a name in the repository, the object will be created using the repository
definition. (If no matching name is found in the repository, the system provided
definition will be used.)

System default objects
The set of system default objects created in C is not accessible directly in C++, but
the SYSTEM.DEFAULT.POLICY (constant: AMSD_POL) is used to provide default
behavior when a policy is not specified. Objects with identical properties to the
system default objects can be created for use in C++ using the built-in definitions
(see “System provided definitions” on page 456).

Structure of the AMI

146 MQSeries Application Messaging Interface

Writing applications in C++
This section gives a number of examples showing how to access the Application
Messaging Interface using C++.

Many of the method calls are overloaded and in some cases this results in default
objects being used. One example of this is the AmPolicy object which can be
passed on many of the methods. For example:

Method overloading
mySender->send(*mySendMessage, *myPolicy);

mySender->send(*mySendMessage);

If a policy has been created to provide specific send behavior, use the first
example. However, if the default policy is acceptable, use the second example.

The defaulting of behavior using method overloading is used throughout the
examples.

Creating and opening objects
Before using the AMI, you must create and open the required objects. Objects are
created with names, which might correspond to named objects in the repository. In
the case of the creation of a response sender (myResponder) in the example below,
the default name for a response type object is specified, so the object is created
with default responder values.

Creating AMI objects
mySessionFactory = new AmSessionFactory("MY.REPOSITORY.XML");
mySession = mySessionFactory->createSession("MY.SESSION");
myPolicy = mySession->createPolicy("MY.POLICY");

mySender = mySession->createSender("AMT.SENDER.QUEUE");
myReceiver = mySession->createReceiver("AMT.RECEIVER.QUEUE");
myResponder = mySession->createSender(AMDEF_RSP_SND);

mySendMessage = mySession->createMessage("MY.SEND.MESSAGE");
myReceiveMessage = mySession->createMessage("MY.RECEIVE.MESSAGE");

The objects are then opened. In the following examples, the session object is
opened with the default policy, whereas the sender and receiver objects are opened
with a specified policy (myPolicy).

Opening the AMI objects
mySession->open();
mySender->open(*myPolicy);
myReceiver->open(*myPolicy);

Writing applications in C++

Chapter 6. Using the Application Messaging Interface in C++ 147

Deleting objects
In order to avoid memory leaks, it is essential to explicitly delete all C++ objects
that you have created at the end of your program. Delete the session after
everything other than the session factory. Delete the session factory last.

The following is an example from the Receiver.cpp sample program:

Deleting AMI objects
mySession->deleteMessage(myReceiveMsg);
mySession->deleteReceiver(myReceiver);
mySession->deletePolicy(myPolicy);
mySessionFactory->deleteSession(mySession);
delete *mySessionFactory;

Sending messages
The examples in this section show how to send a datagram (send and forget)
message. First, the message data is written to the mySendMessage object. Data is
always sent in byte form using the AmBytes helper class.

Writing data to a message object
AmBytes *dataSent = new AmBytes((const char*)"message to be sent");
mySendMessage->writeBytes(*dataSent);

Next, the message is sent using the sender service mySender.

Sending a message
mySender->send(*mySendMessage);

The policy used is either the default policy for the service, if specified, or the
system default policy. The message attributes are set from the policy or service, or
the default for the messaging transport.

When more control is needed you can pass a policy object:

Sending a message with a specified policy
mySender->send(*mySendMessage, *myPolicy);

The policy controls the behavior of the send command. In particular, the policy
specifies whether the send is part of a unit of work, the priority, persistence and
expiry of the message and whether policy components should be invoked.
Whether the queue should be implicitly opened and left open can also be
controlled.

To send a message to a distribution list, for instance myDistList, use it as the
sender service:

Writing applications in C++

148 MQSeries Application Messaging Interface

Sending a message to a distribution list
myDistList->send(*mySendMessage);

You can set an attribute such as the Format before a message is sent, to override
the default in the policy or service.

Setting an attribute in a message
mySendMessage->setFormat("MyFormat"):

Similarly, after a message has been sent you can retrieve an attribute such as the
MessageID. Binary data, such as MessageId can be extracted using the AmBytes
helper class.

Getting an attribute from a message
AmBytes msgId = mySendMessage.getMessageId();

For details of the message attributes that you can set and get, see “AmMessage” on
page 167.

When a message object is used to send a message, it might not be left in the same
state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see “reset” on
page 192) and rebuild it each time.

Sample program
For more details, refer to the SendAndForget.cpp sample program (see “Sample
programs for Unix and Windows” on page 450).

Receiving messages
The next example shows how to receive a message from the receiver service
myReceiver, and to read the data from the message object myReceiveMessage.

Receiving a message and retrieving the data
myReceiver->receive(*myReceiveMessage);
AmBytes data = myReceiveMessage->readBytes(

myReceiveMessage->getDataLength());

The policy used will be the default for the service if defined, or the system default
policy. Greater control of the behavior of the receive can be achieved by passing a
policy object.

Receiving a message with a specified policy
myReceiver->receive(*myReceiveMessage, *myPolicy);

Writing applications in C++

Chapter 6. Using the Application Messaging Interface in C++ 149

The policy can specify the wait interval, whether the call is part of a unit of work,
whether the message should be code page converted, whether all the members of a
group must be there before any members can be read, and how to deal with
backout failures.

To receive a specific message using its correlation ID, create a selection message
object and set its CorrelId attribute to the required value. The selection message is
then passed as a parameter on the receive.

Receiving a specific message using the correlation ID
AmBytes * myCorrelId = new AmBytes("MYCORRELATION");
mySelectionMessage = mySession->createMessage("MY.SELECTION.MESSAGE");
mySelectionMessage->setCorrelationId(*myCorrelId);
myReceiver->receive(*myReceiveMessage, *mySelectionMessage, *myPolicy);

As before, the policy is optional.

You can view the attributes of the message just received, such as the Encoding.

Getting an attribute from the message
encoding = myReceiveMessage->getEncoding();

Sample program
For more details, refer to the Receiver.cpp sample program (see “Sample programs
for Unix and Windows” on page 450).

Request/response messaging
In the request/response style of messaging, a requester (or client) application sends a
request message and expects to receive a response message back. The responder
(or server) application receives the request message and produces the response
message (or messages) which it sends back to the requester application. The
responder application uses information in the request message to know how to
send the response message back to the requester.

In the following examples ‘my’ refers to the requesting application (the client);
‘your’ refers to the responding application (the server).

The requester sends a message as described in “Sending messages” on page 148,
specifying the service (myReceiver) to which the response message should be sent.

Sending a request message
mySender->send(*mySendMessage, *myReceiver);

A policy object can also be specified if required.

The responder receives the message as described in “Receiving messages” on
page 149, using its receiver service (yourReceiver). It also receives details of the
response service (yourResponder) for sending the response.

Writing applications in C++

150 MQSeries Application Messaging Interface

Receiving the request message
yourReceiver->receive(*yourReceiveMessage, *yourResponder);

A policy object can be specified if required, as can a selection message object (see
“Receiving messages” on page 149).

The responder sends its response message (yourReplyMessage) to the response
service, specifying the received message to which this is a response.

Sending a response to the request message
yourResponder->send(*yourReplyMessage, *yourReceiveMessage);

Finally, the requester application receives the response (myResponseMessage), which
is correlated with the original message it sent (mySendMessage).

Receiving the response message
myReceiver->receive(*myResponseMessage, *mySendMessage);

In a typical application the responder might be a server operating in a loop,
receiving requests and replying to them. In this case, the message objects should be
set to their initial state and the data cleared before servicing the next request. This
is achieved as follows:

Resetting the message object
yourReceiveMessage->reset();
yourResponseMessage->reset();

Sample programs
For more details, refer to the Client.cpp and Server.cpp sample programs (see
“Sample programs for Unix and Windows” on page 450).

File transfer
You can perform file transfers using the AmSender.sendFile and
AmReceiver.receiveFile methods.

Sending a file using the sendFile method
mySender->sendFile(*mySendMessage,myfilename,*myPolicy)

Receiving a file using the receiveFile method
myReceiver->receiveFile(*myReceiveMessage,myfileName,*myPolicy)

For a complete description of file transfer, refer to “File transfer” on page 21

Writing applications in C++

Chapter 6. Using the Application Messaging Interface in C++ 151

Publish/subscribe messaging
With publish/subscribe messaging a publisher application publishes messages to
subscriber applications using a broker. The message published contains application
data and one or more topic strings that describe the data. A subscribing application
subscribes to topics informing the broker which topics it is interested in. When the
broker receives a message from a publisher it compares the topics in the messages
to the topics in the subscription from subscribing applications. If they match, the
broker forwards the message to the subscribing application.

Data on a particular topic is published as shown in the next example.

Publishing a message on a specified topic
AmBytes *publicationData = new AmBytes("The weather is sunny");

myPubMessage->addTopic("Weather");
myPubMessage->writeBytes(publicationData);
myPublisher->publish(*myPubMessage, *myReceiver);

myReceiver identifies a response service to which the broker will send any
response messages (indicating whether the publish was successful or not). You can
also specify a policy object to modify the behavior of the command.

To subscribe to a publish/subscribe broker you need to specify one or more topics.

Subscribing to a broker on specified topics
mySubMessage->addTopic("Weather");
mySubMessage->addTopic("Birds");
mySubscriber->subscribe(*mySubMessage, *myReceiver);

Broker response messages will be sent to myReceiver.

To remove a subscription, add the topic or topics to be deleted to the message
object, and use:

Removing a subscription
mySubscriber->unsubscribe(*myUnsubMessage, *myReceiver);

To receive a publication from a broker, use:

Receiving a publication
mySubscriber->receive(*myReceiveMessage, *myPolicy);
publication = myReceiveMessage->readBytes(

*myReceiveMessage->getDataLength());

You can then use the getTopicCount and getTopic methods to extract the topic or
topics from the message object.

Writing applications in C++

152 MQSeries Application Messaging Interface

Subscribing applications can also exploit content-based publish/subscribe by
passing a filter on subscribe and unsubscribe calls (see “Using MQSeries Integrator
Version 2” on page 447).

Sample programs
For more details, refer to the Publisher.cpp and Subscriber.cpp sample programs
(see “Sample programs for Unix and Windows” on page 450).

Using AmElement objects
Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
carried out. The Application Messaging Interface contains some methods which
produce these name/value pairs directly (such as AmSubscriber->subscribe). For
less commonly used commands, the name/value pairs can be added to a message
using an AmElement object.

For example, to send a message containing a ‘Request Update’ command, use the
following:

Using an AmElement object to construct a command message
AmElement *bespokeElement = new AmElement("MQPSCommand", "ReqUpdate");
mySendMessage->addElement(*bespokeElement);

You must then send the message, using AmSender->send, to the sender service
specified for your publish/subscribe broker.

If you use streams with MQSeries Publish/Subscribe, you must add the
appropriate name/value element explicitly to the message object.

The message element methods can, in fact, be used to add any element to a
message before issuing an publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications.
They can be used in other applications as well.

Error handling
The getLastErrorStatus method always reflects the last most severe error
experienced by an object. It can be used to return an AmStatus object
encapsulating this error state. Once the error state has been handled,
clearErrorCodes can be called to reset this error state.

AmCpp can raise two types of Exception, one to reflect serious errors and the
other to reflect warnings. By default, only AmErrorExceptions are raised.
AmWarningExceptions can be enabled using the enableWarnings method. Since
both are types of AmException, a generic catch block can be used to process all
amCpp Exceptions.

Enabling AmWarningExceptions might have some unexpected side-effects,
especially when an AmObject is returning data such as another AmObject. For
example, if AmWarningExceptions are enabled for an AmSession object and an
AmSender is created that does not exist in the repository, an AmWarningException

Writing applications in C++

Chapter 6. Using the Application Messaging Interface in C++ 153

will be raised to reflect this fact. If this happens, the AmSender object will not be
created since its creation was interrupted by an Exception. However, there might
be times during the life of an AmObject when processing AmWarningExceptions is
useful.

Writing applications in C++

154 MQSeries Application Messaging Interface

For example:
try
{

...
mySession->enableWarnings(AMB_TRUE);
mySession->open();
...

}
catch (AmErrorException &errorEx)
{

AmStatus sessionStatus = mySession->getLastErrorStatus();
switch (sessionStatus.getReasonCode())
{
case AMRC_XXXX:

...
case AMRC_XXXX:

...
}
mySession->clearErrorCodes();

}
catch (AmWarningException &warningEx)
{

...
}

Since most of the objects are types of AmObject, a generic error handling routine
can be written. For example:

try
{

...
mySession->open();
...
mySender->send(*myMessage):
...
mySender->send(*myMessage):
...
mySession->commit();

}
catch(AmException &amex);
{

AmStatus status = amex.getSource()->getLastErrorStatus();
printf("Object in error; name = %s\n", amex.getSource()->getName());
printf("Object in error; RC = %ld\n", status.getReasonCode());
...
amex.getSource()->clearErrorCodes();

}

The catch block works because all objects that throw the AmException in the try
block are AmObjects, and so they all have getName, getLastErrorStatus and
clearErrorCodes methods.

Transaction support
Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.
v MQSeries messages are the only resource

Writing applications in C++

Chapter 6. Using the Application Messaging Interface in C++ 155

A transaction is started by the first message sent or received under syncpoint
control, as specified in the policy specified for the send or receive. Multiple
messages can be included in the same unit of work. The transaction is
committed or backed out using the commit or rollback method.

v Using MQSeries as an XA transaction coordinator
The transaction must be started explicitly using the begin method before the
first recoverable resource (such as a relational database) is changed. The
transaction is committed or backed out using an commit or rollback method.

v Using an external transaction coordinator
The transaction is controlled using the API calls of an external transaction
coordinator (such as CICS, Encina or Tuxedo). The AMI calls are not used but
the syncpoint attributed must still be specified in the policy used on the call.

Sending group messages
The AMI allows a sequence of related messages to be included in, and sent as, a
message group. Group context information is sent with each message to allow the
message sequence to be preserved and made available to a receiving application.
In order to include messages in a group, the group status information of the first
and subsequent messages in the group must be set as follows:

AMGRP_FIRST_MSG_IN_GROUP for the first message
AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
AMGRP_LAST_MSG_IN_GROUP for the last message

The message status is set using the AmMessage.setGroupStatus method.

For a complete description of group messages, refer to “Sending group messages”
on page 26

Other considerations
You should also consider the following.

Multithreading
If you are using multithreading with the AMI, a session normally remains locked
for the duration of a single AMI call. If you use receive with wait, the session
remains locked for the duration of the wait, which might be unlimited (that is,
until the wait time is exceeded or a message arrives on the queue). If you want
another thread to run while a thread is waiting for a message, it must use a
separate session.

AMI handles and object references can be used on a different thread from that on
which they were first created for operations that do not involve an access to the
underlying (MQSeries) message transport. Functions such as initialize, terminate,
open, close, send, receive, publish, subscribe, unsubscribe, and receive publication
will access the underlying transport restricting these to the thread on which the
session was first opened (for example, using AmSession->open). An attempt to
issue these on a different thread will cause an error to be returned by MQSeries
and a transport error (AMRC_TRANSPORT_ERR) will be reported to the
application.

Using MQSeries with the AMI
You must not mix MQSeries function calls with AMI calls within the same process.

Field limits
When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries,

Writing applications in C++

156 MQSeries Application Messaging Interface

the underlying message transport. See the rules for naming MQSeries objects in the
MQSeries Application Programming Guide.

Writing applications in C++

Chapter 6. Using the Application Messaging Interface in C++ 157

Building C++ applications
This section contains information that will help you write, prepare, and run your
C++ application programs on the various operating systems supported by the
AMI.

AMI include files
AMI provides include files, amtc.h and amtcpp.hpp, to assist you with the writing
of your applications. It is recommended that you become familiar with the
contents of these files.

The include files are installed under:
/amt/inc (UNIX)

\amt\include (Windows)

See “Directory structure” on page 425 (AIX), page 429 (HP-UX), page 433 (Solaris),
or page 436 (Windows).

Your AMI C++ program must contain the statement:
#include <amtcpp.hpp>

Even though you need mention only the C++ include file, both amtc.h and
amtcpp.hpp must be accessible to your program at compilation time.

Next step
Now go to one of the following to continue building a C++ application:
v “C++ applications on AIX”
v “C++ applications on HP-UX” on page 159
v “C++ applications on Solaris” on page 160
v “C++ applications on Windows” on page 162

C++ applications on AIX
This section explains what you have to do to prepare and run your C++ programs
on the AIX operating system. See “Language compilers” on page 422 for the
compilers supported by the AMI.

Preparing C++ programs on AIX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the xlC command you need to
specify a number of options:
v Where the AMI include files are.

This can be done using the -I flag. In the case of AIX, they are usually located
at /usr/mqm/amt/inc.

Writing applications in C++

158 MQSeries Application Messaging Interface

v Where the AMI library is.
This can be done using the -L flag. In the case of AIX, it is usually located at
/usr/mqm/lib.

v Link with the AMI library.
This is done with the -l flag, more specifically -lamtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:
xlC -I/usr/mqm/amt/inc -L/usr/mqm/lib -lamtCpp mine.cpp -o mine

If, however, you are building a threaded program, you must use the correct
compiler and the threaded library libamtCpp_r.a. For example:

xlC_r -I/usr/mqm/amt/inc -L/usr/mqm/lib -lamtCpp_r mine.cpp -o mine

Running C++ programs on AIX
When running a C++ executable you must have access to the C++ library
libamtCpp.a in your runtime environment. If the amtInstall utility has been run,
this environment will be set up for you (see “Installation on AIX” on page 423).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the AIX default library location to the actual location of the C++ library.
To do this:
ln -s /usr/mqm/lib/libamtCpp.a /usr/lib/libamtCpp.a

If you are using the threaded libraries, you can perform a similar operation:
ln -s /usr/mqm/lib/libamtCpp_r.a /usr/lib/libamtCpp_r.a

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to
allow AMI to load MQSeries libraries dynamically. For the non-threaded MQSeries
Server library, perform:

ln -s /usr/mqm/lib/amtcmqm /usr/lib/amtcmqm

For the non-threaded MQSeries Client library, perform:
ln -s /usr/mqm/lib/amtcmqic /usr/lib/amtcmqic

For the threaded MQSeries Server library, perform:
ln -s /usr/mqm/lib/amtcmqm_r /usr/lib/amtcmqm_r

For the threaded MQSeries Client library, perform:
ln -s /usr/mqm/lib/amtcmqic_r /usr/lib/amtcmqic_r

C++ applications on HP-UX
This section explains what you have to do to prepare and run your C++ programs
on the HP-UX operating system. See “Language compilers” on page 422 for the
compilers supported by the AMI.

Preparing C++ programs on HP-UX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the aCC command you need to
specify a number of options:
1. Where the AMI include files are.

C++ applications on AIX

Chapter 6. Using the Application Messaging Interface in C++ 159

This can be done using the -I flag. In the case of HP-UX, they are usually
located at /opt/mqm/amt/inc.

2. Where the AMI libraries are.
This can be done using the -Wl,+b,:,-L flags. In the case of HP-UX, they are
usually located at /opt/mqm/lib.

3. Link with the AMI library for C++.
This is done with the -l flag, more specifically -lamtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:
aCC +DAportable -Wl,+b,:,-L/opt/mqm/lib -o mine mine.cpp

-I/opt/mqm/amt/inc -lamtCpp

Note that you could equally link to the threaded library using -lamtCpp_r. On
HP-UX there is no difference since the unthreaded versions of the AMI binaries are
simply links to the threaded versions.

Running C++ programs on HP-UX
When running a C++ executable you must have access to the C++ library
libamtCpp.sl in your runtime environment. If amtInstall utility has been run, this
environment will be set up for you (see “Installation on HP-UX” on page 427).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the HP-UX default library location to the actual location of the C++
library. To do this:

ln -s /opt/mqm/lib/libamtCpp_r.sl /usr/lib/libamtCpp.sl

If you are using the threaded libraries, you can peform a similar operation:
ln -s /opt/mqm/lib/libamtCpp_r.sl /usr/lib/libamtCpp_r.sl

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to
allow AMI to load MQSeries libraries dynamically. For the non-threaded MQSeries
Server library, perform:

ln -s /opt/mqm/lib/amtcmqm_r /usr/lib/amtcmqm

For the non-threaded MQSeries Client library, perform:
ln -s /opt/mqm/lib/amtcmqic_r /usr/lib/amtcmqic

For the threaded MQSeries Server library, perform:
ln -s /opt/mqm/lib/amtcmqm_r /usr/lib/amtcmqm_r

For the threaded MQSeries Client library, perform:
ln -s /opt/mqm/lib/amtcmqic_r /usr/lib/amtcmqic_r

As before, note that the unthreaded versions are simply links to the threaded
versions.

C++ applications on Solaris
This section explains what you have to do to prepare and run your C++ programs
in the Sun Solaris operating environment. See “Language compilers” on page 422
for the compilers supported by the AMI.

C++ applications on HP-UX

160 MQSeries Application Messaging Interface

Preparing C++ programs on Solaris
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the CC command you need to
specify a number of options:
v Where the AMI include files are.

This can be done using the -I flag. In the case of Solaris, they are usually
located at /opt/mqm/amt/inc.

v Where the AMI library is.
This can be done using the -L flag. In the case of Solaris, it is usually located at
/opt/mqm/lib.

v Link with the AMI library.
This is done with the -l flag, more specifically -lamtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:
CC -mt -I/opt/mqm/amt/inc -L/opt/mqm/lib -lamtCpp mine.cpp -o mine

Running C++ programs on Solaris
When running a C++ executable you must have access to the C++ library
libamtCpp.so in your runtime environment. If the amtInstall utility has been run,
this environment will be set up for you (see “Installation on Sun Solaris” on
page 431).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the Solaris default library location to the actual location of the C++
libraries. To do this:
ln -s /opt/mqm/lib/libamtCpp.so /usr/lib/libamtCpp.so

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to
allow AMI to load MQSeries libraries dynamically. For the MQSeries Server library,
perform:

ln -s /opt/mqm/lib/amtcmqm /usr/lib/amtcmqm

For the MQSeries Client library, perform:
ln -s /opt/mqm/lib/amtcmqic /usr/lib/amtcmqic

C++ applications on Solaris

Chapter 6. Using the Application Messaging Interface in C++ 161

C++ applications on Windows
This section explains what you have to do to prepare and run your C++ programs
on the Windows 98 and Windows NT operating systems. See “Language
compilers” on page 422 for the compilers supported by the AMI.

Preparing C++ programs on Windows
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the cl command you need to
specify a number of options:
1. Where the AMI include files are.

This can be done using the /I flag. In the case of Windows, they are usually
located at \amt\include relative to where you installed MQSeries. Alternatively,
the include files could exist in one of the directories pointed to by the
INCLUDE environment variable.

2. Where the AMI library is.
This can be done by including the AMT library file amtCpp.LIB as a command
line argument. The amtCpp.LIB file should exist in one of the directories pointed
to by the LIB environment variable.

For example, compiling the C++ program mine.cpp into an executable called
mine.exe:
cl -IC:\MQSeries\amt\include /Fomine mine.cpp amtCpp.LIB

Running C++ programs on Windows
When running a C++ executable you must have access to the C++ DLL amtCpp.dll
in your runtime environment. Make sure it exists in one of the directories pointed
to by the PATH environment variable. For example:

SET PATH=%PATH%;C:\MQSeries\bin;

If you already have MQSeries installed, and you have installed AMI under the
MQSeries directory structure, it is likely that the PATH has already been set up for
you.

You also need access to the C libraries and MQSeries in your runtime environment.
(This will be the case if you installed MQSeries using the documented method.)

C++ applications on Windows

162 MQSeries Application Messaging Interface

Chapter 7. C++ interface overview

This chapter contains an overview of the structure of the Application Messaging
Interface for C++. Use it to find out what functions are available in this interface.

The C++ interface provides sets of methods for each of the classes listed below.
The methods available for each class are listed in the following pages. Follow the
page references to see the reference information for each method.

Base classes
AmSessionFactory page 164

AmSession page 165

AmMessage page 167

AmSender page 169

AmReceiver page 170

AmDistributionList page 171

AmPublisher page 172

AmSubscriber page 173

AmPolicy page 174

Helper classes
AmBytes page 175

AmElement page 175

AmObject page 175

AmStatus page 175

AmString page 176

Exception classes
AmException page 177

AmErrorException page 177

AmWarningExcpetion page 177

© Copyright IBM Corp. 1999, 2000 163

AmSessionFactory
The AmSessionFactory class is used to create AmSession objects.

Constructor
Constructor for AmSessionFactory.

AmSessionFactory page 180

Session factory management
Methods to return the name of an AmSessionFactory object, to get and set the
names of the AMI data files (local host and repository), and to control traces.

getFactoryName page 180

getLocalHost page 180

getRepository page 180

getTraceLevel page 180

getTraceLocation page 180

setLocalHost page 180

setRepository page 181

setTraceLevel page 181

setTraceLocation page 181

Create and delete session
Methods to create and delete an AmSession object.

createSession page 180

deleteSession page 180

C++ interface overview

164 MQSeries Application Messaging Interface

AmSession
The AmSession object creates and manages all other objects, and provides scope
for a unit of work.

Session management
Methods to open and close an AmSession object, to return its name, and to control
traces.

open page 186

close page 182

getName page 185

getTraceLevel page 186

getTraceLocation page 186

Create objects
Methods to create AmMessage, AmSender, AmReceiver, AmDistributionList,
AmPublisher, AmSubscriber, and AmPolicy objects.

createMessage page 183

createSender page 184

createReceiver page 183

createDistributionList page 182

createPublisher page 183

createSubscriber page 184

createPolicy page 183

Delete objects
Methods to delete AmMessage, AmSender, AmReceiver, AmDistributionList,
AmPublisher, AmSubscriber, and AmPolicy objects.

deleteMessage page 184

deleteSender page 185

deleteReceiver page 185

deleteDistributionList page 184

deletePublisher page 185

deleteSubscriber page 185

deletePolicy page 184

Transactional processing
Methods to begin, commit and rollback a unit of work.

begin page 182

commit page 182

rollback page 186

C++ interface overview

Chapter 7. C++ interface overview 165

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 182

enableWarnings page 185

getLastErrorStatus page 185

C++ interface overview

166 MQSeries Application Messaging Interface

AmMessage
An AmMessage object encapsulates an MQSeries message descriptor (MQMD)
structure, and contains the message data.

Get values
Methods to get the coded character set ID, correlation ID, encoding, format, group
status, message ID and name of the message object.

getCCSID page 189

getCorrelationId page 189

getElementCCSID page 189

getEncoding page 189

getFormat page 190

getGroupStatus page 190

getMessageId page 190

getName page 191

getReportCode page 191

getType page 191

Set values
Methods to set the coded character set ID, correlation ID, format and group status
of the message object.

setCCSID page 192

setCorrelationId page 192

setElementCCSID page 192

setEncoding page 193

setFormat page 193

setGroupStatus page 193

Reset values
Method to reset the message object to the state it had when first created.

reset page 192

Read and write data
Methods to read or write byte data to or from the message object, to get and set
the data offset, and to get the length of the data.

getDataLength page 189

getDataOffset page 189

setDataOffset page 192

readBytes page 192

writeBytes page 193

C++ interface overview

Chapter 7. C++ interface overview 167

Publish/subscribe topics
Methods to manipulate the topics in a publish/subscribe message.

addTopic page 188

deleteTopic page 188

getTopic page 191

getTopicCount page 191

Publish/subscribe filters
Methods to manipulate filters for content-based publish/subscribe.

addFilter page 188

deleteFilter page 188

getFilter page 190

getFilterCount page 190

Publish/subscribe name/value elements
Methods to manipulate the name/value elements in a publish/subscribe message.

addElement page 187

deleteElement page 188

getElement page 189

getElementCount page 189

deleteNamedElement page 188

getNamedElement page 191

getNamedElementCount page 191

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 188

enableWarnings page 189

getLastErrorStatus page 190

C++ interface overview

168 MQSeries Application Messaging Interface

AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the sender service.

open page 196

close page 195

Send
Method to send a message.

send page 196

Send file
Method to send data from a file

sendFile page 196

Get values
Methods to get the coded character set ID, encoding and name of the sender
service.

getCCSID page 195

getEncoding page 195

getName page 196

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 195

enableWarnings page 195

getLastErrorStatus page 196

C++ interface overview

Chapter 7. C++ interface overview 169

AmReceiver
An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the receiver service.

open page 200

close page 199

Receive and browse
Methods to receive or browse a message.

receive page 200

browse page 198

Receive file
Method to receive file message data into a file.

receiveFile page 200

Get values
Methods to get the definition type, name and queue name of the receiver service.

getDefinitionType page 199

getName page 199

getQueueName page 200

Set value
Method to set the queue name of the receiver service.

setQueueName page 201

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 199

enableWarnings page 199

getLastErrorStatus page 199

C++ interface overview

170 MQSeries Application Messaging Interface

AmDistributionList
An AmDistributionList object encapsulates a list of AmSender objects.

Open and close
Methods to open and close the distribution list service.

open page 202

close page 202

Send
Method to send a message to the distribution list.

send page 203

Send file
Method to send date from a file to the each sender defined in the distribution list.

sendFile page 203

Get values
Methods to get the name of the distribution list service, a count of the AmSenders
in the list, and one of the AmSenders that is contained in the list.

getName page 202

getSenderCount page 202

getSender page 202

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 202

enableWarnings page 202

getLastErrorStatus page 202

C++ interface overview

Chapter 7. C++ interface overview 171

AmPublisher
An AmPublisher object encapsulates a sender service and provides support for
publishing messages to a publish/subscribe broker.

Open and close
Methods to open and close the publisher service.

open page 204

close page 204

Publish
Method to publish a message.

publish page 205

Get values
Methods to get the coded character set ID, encoding and name of the publisher
service.

getCCSID page 204

getEncoding page 204

getName page 204

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 204

enableWarnings page 204

getLastErrorStatus page 204

C++ interface overview

172 MQSeries Application Messaging Interface

AmSubscriber
An AmSubscriber object encapsulates both a sender service and a receiver service.
It provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

Open and close
Methods to open and close the subscriber service.

open page 207

close page 206

Broker messages
Methods to subscribe to a broker, remove a subscription, and receive a publication
from the broker.

subscribe page 209

unsubscribe page 209

receive page 208

Get values
Methods to get the coded character set ID, definition type, encoding, name and
queue name of the subscriber service.

getCCSID page 206

getDefinitionType page 206

getEncoding page 206

getName page 207

getQueueName page 207

Set value
Method to set the queue name of the subscriber service.

setQueueName page 208

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 206

enableWarnings page 206

getLastErrorStatus page 206

C++ interface overview

Chapter 7. C++ interface overview 173

AmPolicy
An AmPolicy object encapsulates the options used during AMI operations.

Policy management
Methods to return the name of the policy, and to get and set the wait time when
receiving a message.

getName page 210

getWaitTime page 210

setWaitTime page 210

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 210

enableWarnings page 210

getLastErrorStatus page 210

C++ interface overview

174 MQSeries Application Messaging Interface

Helper classes
The classes that encapsulate name/value elements for publish/subscribe, strings,
binary data and error status.

AmBytes
The AmBytes class is an encapsulation of a byte array. It allows the AMI to pass
byte strings across the interface and enables manipulation of byte strings. It
contains constructors, operators and a destructor, and methods to copy, compare,
and pad. AmBytes also has methods to give the length of the encapsulated bytes
and a method to reference the data contained within an AmBytes object.

constructors page 211

destructor page 212

operators page 212

cmp page 211

cpy page 212

dataPtr page 212

length page 212

pad page 212

AmElement
Constructor for AmElement, and methods to return the name, type, value and
version of an element, to set the version, and to return an AmString representation
of the element.

AmElement page 213

getName page 213

getValue page 213

getVersion page 213

setVersion page 213

toString page 213

AmObject
A virtual class containing methods to return the name of the object, to clear the
error codes and to return the last error condition.

clearErrorCodes page 214

getLastErrorStatus page 214

getName page 214

AmStatus
Constructor for AmStatus, and methods to return the completion code, reason
code, secondary reason code and status text, and to return an AmString
representation of the AmStatus.

AmStatus page 215

getCompletionCode page 215

C++ interface overview

Chapter 7. C++ interface overview 175

getReasonCode page 215

getReasonCode2 page 215

toString page 215

AmString
The AmString class is an encapsulation of a string. It allows the AMI to pass
strings across the interface and enables manipulation of strings. It contains
constructors, operators, a destructor, and methods to copy, concatenate, pad, split,
truncate and strip. AmString also has methods to give the length of the
encapsulated string, compare AmStrings, check whether one AmString is contained
within another and a method to reference the text of an AmString.

constructors page 216

destructor page 216

operators page 217

cat page 216

cmp page 216

contains page 216

cpy page 216

length page 217

pad page 217

split page 217

strip page 217

text page 217

truncate page 217

C++ interface overview

176 MQSeries Application Messaging Interface

Exception classes
Classes that encapsulate error and warning conditions. AmErrorException and
AmWarningException inherit from AmException.

AmException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page 218

getCompletionCode page 218

getMethodName page 218

getReasonCode page 218

getSource page 218

toString page 218

AmErrorException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page 219

getCompletionCode page 219

getMethodName page 219

getReasonCode page 219

getSource page 219

toString page 219

AmWarningException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page 220

getCompletionCode page 220

getMethodName page 220

getReasonCode page 220

getSource page 220

toString page 220

C++ interface overview

Chapter 7. C++ interface overview 177

C++ interface overview

178 MQSeries Application Messaging Interface

Chapter 8. C++ interface reference

In the following sections the C++ interface methods are listed by the class they
refer to. Within each section the methods are listed in alphabetical order.

Base classes
Note that all of the methods in these classes can throw AmWarningException and
AmErrorException (see below). However, by default, AmWarningExceptions are
not raised.

AmSessionFactory page 180

AmSession page 182

AmMessage page 187

AmSender page 195

AmReceiver page 198

AmDistributionList page 202

AmPublisher page 204

AmSubscriber page 206

AmPolicy page 210

Helper classes
AmBytes page 211

AmElement page 213

AmObject page 214

AmStatus page 215

AmString page 216

Exception classes
AmException page 218

AmErrorException page 219

AmWarningException page 220

© Copyright IBM Corp. 1999, 2000 179

AmSessionFactory
The AmSessionFactory class is used to create AmSession objects.

AmSessionFactory
Constructors for an AmSessionFactory.

AmSessionFactory();
AmSessionFactory(char * name);

name The name of the AmSessionFactory. This is the location of the data
files used by the AMI (the repository file and the local host file).
The name should be a fully qualified directory that includes the
path under which the files are located. Otherwise, see “Local host
and repository files (Unix and Windows)” on page 441 for the
location of these files.

createSession
Creates an AmSession object.

AmSession * createSession(char * name);

name The name of the AmSession.

deleteSession
Deletes an AmSession object previously created using the createSession method.

void deleteSession(AmSession ** pSession);

pSession A pointer to the AmSession pointer returned by the createSession
method.

getFactoryName
Returns the name of the AmSessionFactory.

AmString getFactoryName();

getLocalHost
Returns the name of the local host file.

AmString getLocalHost();

getRepository
Returns the name of the repository file.

AmString getRepository();

getTraceLevel
Returns the trace level for the AmSessionFactory.

int getTraceLevel();

getTraceLocation
Returns the location of the trace for the AmSessionFactory.

AmString getTraceLocation();

setLocalHost
Sets the name of the AMI local host file to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default host file amthost.xml is used.)

C++ AmSessionFactory

180 MQSeries Application Messaging Interface

void setLocalHost(char * fileName);

fileName The name of the file used by the AMI as the local host file. This
file must be present on the local file system or an error will be
produced upon the creation of an AmSession.

setRepository
Sets the name of the AMI repository to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default repository file amt.xml is used.)

void setRepository(char * fileName);

fileName The name of the file used by the AMI as the repository. This file
must be present on the local file system or an error will be
produced upon the creation of an AmSession.

setTraceLevel
Sets the trace level for the AmSessionFactory.

void setTraceLevel(int level);

level The trace level to be set in the AmSessionFactory. Trace levels are 0
through 9, where 0 represents minimal tracing and 9 represents a
fully detailed trace.

setTraceLocation
Sets the location of the trace for the AmSessionFactory.

void setTraceLocation(char * location);

location The location on the local system where trace files will be written.
This location must be a directory, and it must exist prior to the
trace being run.

C++ AmSessionFactory

Chapter 8. C++ interface reference 181

AmSession
An AmSession object provides the scope for a unit of work and creates and
manages all other objects, including at least one connection object. Each (MQSeries)
connection object encapsulates a single MQSeries queue manager connection. The
session object definition specifying the required set of queue manager connection(s)
can be provided by a repository policy definition, or by default will name a single
local queue manager with no repository. The session, when deleted, is responsible
for releasing memory by closing and deleting all other objects that it manages.

Note that you should not mix MQSeries MQCONN or MQDISC requests (or their
equivalent in the MQSeries C++ interface) on the same thread as AMI calls,
otherwise premature disconnection might occur.

begin
Begins a unit of work in this AmSession, allowing an AMI application to take
advantage of the resource coordination provided in MQSeries. The unit of work
can subsequently be committed by the commit method, or backed out by the
rollback method. This should be used only when AMI is the transaction
coordinator. If available, native coordination APIs (for example CICS or Tuxedo)
should be used.

begin is overloaded. The policy parameter is optional.
void begin(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

clearErrorCodes
Clears the error codes in the AmSession.

void clearErrorCodes();

close
Closes the AmSession, and all open objects owned by it. close is overloaded: the
policy parameter is optional.

void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

commit
Commits a unit of work that was started by AmSession.begin. commit is
overloaded: the policy parameter is optional.
void commit(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

createDistributionList
Creates an AmDistributionList object.

AmDistributionList * createDistributionList(char * name);

name The name of the AmDistributionList. This must match the name of
a distribution list defined in the repository.

C++ AmSession

182 MQSeries Application Messaging Interface

createMessage
Creates an AmMessage object.

AmMessage * createMessage(char * name);

name The name of the AmMessage. This can be any name that is
meaningful to the application.

createPolicy
Creates an AmPolicy object.

AmPolicy * createPolicy(char * name);

name The name of the AmPolicy. If it matches a policy defined in the
repository, the policy will be created using the repository
definition, otherwise it will be created with default values.

createPublisher
Creates an AmPublisher object.

AmPublisher * createPublisher(char * name);

name The name of the AmPublisher. If it matches a publisher defined in
the repository, the publisher will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the publisher name).

createReceiver
Creates an AmReceiver object.

AmReceiver * createReceiver(char * name);

name The name of the AmReceiver. If it matches a receiver defined in the
repository, the receiver will be created using the repository
definition, otherwise it will be created with default values (that is,
with a queue name that matches the receiver name).

C++ AmSession

Chapter 8. C++ interface reference 183

createSender
Creates an AmSender object.

AmSender * createSender(char * name);

name The name of the AmSender. If it matches a sender defined in the
repository, the sender will be created using the repository
definition, otherwise it will be created with default values (that is,
with a queue name that matches the sender name).

createSubscriber
Creates an AmSubscriber object.

AmSubscriber * createSubscriber(char * name);

name The name of the AmSubscriber. If it matches a subscriber defined
in the repository, the subscriber will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the subscriber name, and an
AmReceiver name that is the same with the addition of the suffix
‘.RECEIVER’).

deleteDistributionList
Deletes an AmDistributionList object.

void deleteDistributionList(AmDistributionList ** dList);

dList A pointer to the AmDistributionList * returned on a
createDistributionList call.

deleteMessage
Deletes an AmMessage object.

void deleteMessage(AmMessage ** message);

message A pointer to the AmMessage * returned on a createMessage call.

deletePolicy
Deletes an AmPolicy object.

void deletePolicy(AmPolicy ** policy);

policy A pointer to the AmPolicy * returned on a createPolicy call.

C++ AmSession

184 MQSeries Application Messaging Interface

deletePublisher
Deletes an AmPublisher object.

void deletePublisher(AmPublisher ** publisher);

publisher A pointer to the AmPublisher returned on a createPublisher call.

deleteReceiver
Deletes an AmReceiver object.

void deleteReceiver(AmReceiver ** receiver);

receiver A pointer to the AmReceiver returned on a createReceiver call.

deleteSender
Deletes an AmSender object.

void deleteSender(AmSender ** sender);

sender A pointer to the AmSender returned on a createSender call.

deleteSubscriber
Deletes an AmSubscriber object.

void deleteSubscriber(AmSubscriber ** subscriber);

subscriber A pointer to the AmSubscriber returned on a createSubscriber call.

enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmSession.

String getName();

C++ AmSession

Chapter 8. C++ interface reference 185

getTraceLevel
Returns the trace level of the AmSession.

int getTraceLevel();

getTraceLocation
Returns the location of the trace for the AmSession.

AmString getTraceLocation();

open
Opens an AmSession using the specified policy. The application profile group of
this policy provides the connection definitions enabling the connection objects to
be created. The specified library is loaded for each connection and its dispatch
table initialized. If the transport type is MQSeries and the MQSeries local queue
manager library cannot be loaded, then the MQSeries client queue manager is
loaded. Each connection object is then opened.

open is overloaded: the policy parameter is optional.
void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

rollback
Rolls back a unit of work that was started by AmSession.begin, or under policy
control. rollback is overloaded: the policy parameter is optional.

void rollback(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

C++ AmSession

186 MQSeries Application Messaging Interface

AmMessage
An AmMessage object encapsulates the MQSeries MQMD message properties, and
name/value elements such as the topics for publish/subscribe messages. In
addition it contains the application data.

The initial state of the message object is:
CCSID default queue manager CCSID
correlationId all zeroes
dataLength zero
dataOffset zero
elementCount zero
encoding AMENC_NATIVE
format AMFMT_STRING
groupStatus AMGRP_MSG_NOT_IN_GROUP
reportCode AMFBP_NONE
topicCount zero
type AMMT_DATAGRAM

When a message object is used to send a message, it might not be left in the same
state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see reset on
page 192) and rebuild it each time.

Note that the following methods are only valid after a session has been opened
with AmSession.open or after you have explicitly set the element CCSID with
AmMessage.setElementCCSID:

addElement page 187

deleteElement page 188

getElement page 189

getElementCount page 189

deleteNamedElement page 188

getNamedElement page 191

getNamedElementCount page 191

addTopic page 188

deleteTopic page 188

getTopic page 191

getTopicCount page 191

addElement
Adds a name/value element to an AmMessage object. addElement is overloaded:
the element parameter is required, but the options parameter is optional.

void addElement(
AmElement &element,
int options);

element The element to be added to the AmMessage.

options The options to be used. This parameter is reserved and must be set
to zero.

C++ AmMessage

Chapter 8. C++ interface reference 187

addFilter
Adds a publish/subscribe filter to an AmMessage object.

void addFilter(char * filter);

filter The filter to be added to the AmMessage.

addTopic
Adds a publish/subscribe topic to an AmMessage object.

void addTopic(char * topicName);

topicName The name of the topic to be added to the AmMessage.

clearErrorCodes
Clears the error in the AmMessage object.

void clearErrorCodes();

deleteElement
Deletes the element in the AmMessage object at the specified index. Indexing is
within all elements of a message, and might include topics (which are specialized
elements).

void deleteElement(int index);

index The index of the element to be deleted, starting from zero. On
completion, elements with higher index values than that specified
will have those values reduced by one.

getElementCount gets the number of elements in the message.

deleteFilter
Deletes a publish/subscribe filter in an AmMessage object at the specified index.
Indexing is within all filters in the message.

void deleteFilter(int filterIndex);

filterIndex The index of the filter to be deleted, starting from zero.
getFilterCount gets the number of filters in a message.

deleteNamedElement
Deletes the element with the specified name in the AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

void deleteNamedElement(
char * name,
int index);

name The name of the element to be deleted.

index The index of the element to be deleted, starting from zero. On
completion, elements with higher index values than that specified
will have those values reduced by one.

getNamedElementCount gets the number of elements in the
message with the specified name.

deleteTopic
Deletes a publish/subscribe topic in an AmMessage object at the specified index.
Indexing is within all topics in the message.

void deleteTopic(int index);

C++ AmMessage

188 MQSeries Application Messaging Interface

index The index of the topic to be deleted, starting from zero.
getTopicCount gets the number of topics in the message.

enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getCCSID
Returns the coded character set identifier used by the AmMessage.

int getCCSID();

getCorrelationId
Returns the correlation identifier for the AmMessage.

AmBytes getCorrelationId();

getDataLength
Returns the length of the message data in the AmMessage.

int getDataLength();

getDataOffset
Returns the current offset in the message data for reading or writing data bytes.

int getDataOffset();

getElement
Returns an element in an AmMessage object at the specified index. Indexing is
within all elements in the message, and might include topics (which are specialized
elements).

AmElement getElement(int index);

index The index of the element to be returned, starting from zero.
getElementCount gets the number of elements in the message.

getElementCCSID
Returns the message element CCSID. This is the coded character set identifier for
passing message element data (including topic and filter data) to or from an
application.

int getElementCCSID();

getElementCount
Returns the total number of elements in an AmMessage object. This might include
topics (which are specialized elements).

int getElementCount();

getEncoding
Returns the value used to encode numeric data types for the AmMessage.

int getEncoding();

C++ AmMessage

Chapter 8. C++ interface reference 189

The following values can be returned:
AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT_390
AMENC_REVERSED
AMENC_REVERSED_FLOAT_390
AMENC_UNDEFINED

getFilter
Returns the publish/subscribe filter in the AmMessage object at the specified
index. Indexing is within all filters.

AmString getFilter(int filterIndex);

filterIndex The index of the filter to be returned, starting from zero.
getElementCount gets the number of filters in a message.

getFilterCount
Returns the total number of publish/subscribe filters in the AmMessage object.

AmElement getFilterCount();

getFormat
Returns the format of the AmMessage.

AmString getFormat();

The following values can be returned:
AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

getGroupStatus
Returns the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.

int getGroupStatus();

The following values can be returned:
AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

Alternatively, bitwise tests can be performed using the constants:
AMGF_IN_GROUP
AMGF_FIRST
AMGF_LAST

getLastErrorStatus
Returns the AmStatus of the last error condition for this object.

AmStatus getLastErrorStatus();

getMessageId
Returns the message identifier from the AmMessage object.

AmBytes getMessageId();

C++ AmMessage

190 MQSeries Application Messaging Interface

getName
Returns the name of the AmMessage object.

AmString getName();

getNamedElement
Returns the element with the specified name in an AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

AmElement getNamedElement(
char * name,
int index);

name The name of the element to be returned.

index The index of the element to be returned, starting from zero.

getNamedElementCount
Returns the total number of elements with the specified name in the AmMessage
object.

int getNamedElementCount(char * name);

name The name of the elements to be counted.

getReportCode
Returns the feedback code from an AmMessage of type AMMT_REPORT.

int getReportCode();

The following values can be returned:
AMFB_NONE
AMFB_EXPIRATION
AMFB_COA
AMFB_COD
AMFB_ERROR

getTopic
Returns the publish/subscribe topic in the AmMessage object, at the specified
index. Indexing is within all topics.

AmString getTopic(int index);

index The index of the topic to be returned, starting from zero.
getTopicCount gets the number of topics in the message.

getTopicCount
Returns the total number of publish/subscribe topics in the AmMessage object.

int getTopicCount();

getType
Returns the message type from the AmMessage.

int getType();

The following values can be returned:
AMMT_REQUEST
AMMT_REPLY
AMMT_REPORT
AMMT_DATAGRAM

C++ AmMessage

Chapter 8. C++ interface reference 191

readBytes
Populates an AmByte object with data from the AmMessage, starting at the current
data offset (which must be positioned before the end of the data for the read to be
successful). Use setDataOffset to specify the data offset. readBytes will advance
the data offset by the number of bytes read, leaving the offset immediately after
the last byte read.
AmBytes readBytes(int dataLength);

dataLength The maximum number of bytes to be read from the message data.
The number of bytes returned is the minimum of dataLength and
the number of bytes between the data offset and the end of the
data.

reset
Resets the AmMessage object to its initial state (see page 187).

reset is overloaded: the options parameter is optional.
void reset(int options);

options A reserved field that must be set to zero.

setCCSID
Sets the coded character set identifier used by the AmMessage object.

void setCCSID(int codedCharSetId);

codedCharSetId
The CCSID to be set in the AmMessage.

setCorrelationId
Sets the correlation identifier in the AmMessage object.

void setCorrelationId(AmBytes &correlId);

correlId An AmBytes object containing the correlation identifier to be set in
the AmMessage. The correlation identifier can be reset by
specifying this as a null string; for example:
myMessage.setCorrelationId(AmBytes(""));

setDataOffset
Sets the data offset for reading or writing byte data.

void setDataOffset(int dataOffset);

dataOffset The data offset to be set in the AmMessage. Set an offset of zero to
read or write from the start of the data.

setElementCCSID
This specifies the character set to be used for subsequent message element data
(including topic and filter data) passed to or returned from the application.
Existing elements in the message are unmodified (but will be returned in the
character set). The default value of element CCSID is the queue manager CCSID.

void setElementCCSID(int elementCCSID);

elementCCSID The element CCSID to be set in the AmMessage.

C++ AmMessage

192 MQSeries Application Messaging Interface

setEncoding
Sets the encoding of the data in the AmMessage object.

void setEncoding(int encoding);

encoding The encoding to be used in the AmMessage. It can take one of the
following values:
AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT_390
AMENC_REVERSED
AMENC_REVERSED_FLOAT_390
AMENC_UNDEFINED

setFormat
Sets the format for the AmMessage object.

void setFormat(char * format);

format The format to be used in the AmMessage. It can take one of the
following values:
AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

If set to AMFMT_NONE, the default format for the sender will be
used (if available).

setGroupStatus
Sets the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.
Once you start sending messages in a group, you must complete the group before
sending any messages that are not in the group.

If you specify AMGRP_MIDDLE_MSG_IN_GROUP or
AMGRP_LAST_MSG_IN_GROUP without specifying
AMGRP_FIRST_MSG_IN_GROUP, the behavior is the same as for
AMGRP_FIRST_MSG_IN_GROUP and AMGRP_ONLY_MSG_IN_GROUP.

If you specify AMGRP_FIRST_MSG_IN_GROUP out of sequence, then the
behavior is the same as for AMGRP_MIDDLE_MSG_IN_GROUP.

void setGroupStatus(int groupStatus);

groupStatus The group status to be set in the AmMessage. It can take one of
the following values:
AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

writeBytes
Writes a byte array into the AmMessage object, starting at the current data offset. If
the data offset is not at the end of the data, existing data is overwritten. Use
setDataOffset to specify the data offset. writeBytes will advance the data offset by
the number of bytes written, leaving it immediately after the last byte written.

void writeBytes(AmBytes &data);

C++ AmMessage

Chapter 8. C++ interface reference 193

data An AmBytes object containing the data to be written to the
AmMessage.

C++ AmMessage

194 MQSeries Application Messaging Interface

AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue manager.
An open sender service is always associated with an open connection object (such
as a queue manager connection). Support is also included for dynamic sender
services (those that encapsulate model queues). The required sender service object
definitions can be provided from a repository, or created without a repository
definition by defaulting to the existing queue objects on the local queue manager.

The AmSender object must be created before it can be opened. This is done using
AmSession.createSender.

A responder is a special type of AmSender used for sending a response to a request
message. It is not created from a repository definition. Once created, it must not be
opened until used in its correct context as a responder receiving a request message
with AmReceiver.receive. When opened, its queue and queue manager properties
are modified to reflect the ReplyTo destination specified in the message being
received. When first used in this context, the sender service becomes a responder
sender service.

clearErrorCodes
Clears the error codes in the AmSender.

void clearErrorCodes();

close
Closes the AmSender. close is overloaded: the policy parameter is optional.

void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getCCSID
Returns the coded character set identifier for the AmSender. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.

int getCCSID();

getEncoding
Returns the value used to encode numeric data types for the AmSender. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.

int getEncoding();

C++ AmSender

Chapter 8. C++ interface reference 195

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmSender.

AmString getName();

open
Opens an AmSender service. open is overloaded: the policy parameter is optional.

void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

send
Sends a message using the AmSender service. If the AmSender is not open, it will
be opened (if this action is specified in the policy options).

send is overloaded: the sendMessage parameter is required, but the others are
optional. receivedMessage and responseService are used in request/response
messaging, and are mutually exclusive.

void send(
AmMessage &sendMessage,
AmReceiver &responseService,
AmMessage &receivedMessage,
AmPolicy &policy);

sendMessage The message object that contains the data to be sent.

responseService
The AmReceiver to which the response to this message should be
sent. Omit it if no response is required.

receivedMessage
The previously received message which is used for correlation with
the sent message. If omitted, the sent message is not correlated
with any received message.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

sendFile
Sends data from a file. To send data from a file, the sendMessage and fileName
parameters are required, but the policy is optional. The file data can be received as
normal message data by a target application using AmReceiver.receive, or used to
reconstruct the file with AmReceiver.receiveFile.
void sendFile(

AmMessage &sendMessage,
char * filename,
AmPolicy &policy);

sendMessage The message object to use to send the file. This can be used to
specify the Correlation ID for example.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send

C++ AmSender

196 MQSeries Application Messaging Interface

operation is a physical-mode file transfer, then the file name will
travel with the message for use with the receive file method (see
“receiveFile” on page 200 for more details). Note that the file name
sent will exactly match the supplied file name; it will not be
converted or expanded in any way.

policy The policy to be used. If omitted, the system default policy (name
constant : AMSD_POL) is used.

C++ AmSender

Chapter 8. C++ interface reference 197

AmReceiver
An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue manager.
An open AmReceiver is always associated with an open connection object, such as
a queue manager connection. Support is also included for a dynamic AmReceiver
(that encapsulates a model queue). The required AmReceiver object definitions can
be provided from a repository or can be created automatically from the set of
existing queue objects available on the local queue manager.

There is a definition type associated with each AmReceiver:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

An AmReceiver created from a repository definition will be initially of type
AMDT_PREDEFINED or AMDT_DYNAMIC. When opened, its definition type
might change from AMDT_DYNAMIC to AMDT_TEMP_DYNAMIC according to
the properties of its underlying queue object.

An AmReceiver created with default values (that is, without a repository
definition) will have its definition type set to AMDT_UNDEFINED until it is
opened. When opened, this will become AMDT_DYNAMIC,
AMDT_TEMP_DYNAMIC, or AMDT_PREDEFINED, according to the properties of
its underlying queue object.

browse
Browses an AmReceiver service. browse is overloaded: the browseMessage and
options parameters are required, but the others are optional.

void browse(
AmMessage &browseMessage,
int options,
AmSender &responseService,
AmMessage &selectionMessage,
AmPolicy &policy);

browseMessage The message object that receives the browse data.

options Options controlling the browse operation. Possible values are:
AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT
AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to AmReceiver.receive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message.

responseService
The AmSender to be used for sending any response to the browsed
message. If omitted, no response can be sent.

C++ AmReceiver

198 MQSeries Application Messaging Interface

selectionMessage
A message object which contains the Correlation ID used to
selectively browse a message from the AmReceiver. If omitted, the
first available message is browsed. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationId on page 192) before
invoking the browse method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

clearErrorCodes
Clears the error codes in the AmReceiver.

void clearErrorCodes();

close
Closes the AmReceiver. close is overloaded: the policy parameter is optional.

void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getDefinitionType
Returns the definition type (service type) for the AmReceiver.

int getDefinitionType();

The following values can be returned:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

Values other than AMDT_UNDEFINED reflect the properties of the underlying
queue object.

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmReceiver.

AmString getName();

C++ AmReceiver

Chapter 8. C++ interface reference 199

getQueueName
Returns the queue name of the AmReceiver. This is used to determine the queue
name of a permanent dynamic AmReceiver, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. (See also
setQueueName.)

AmString getQueueName();

open
Opens an AmReceiver service. open is overloaded: the policy parameter is
optional.

void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

receive
Receives a message from the AmReceiver service. receive is overloaded: the
receiveMessage parameter is required, but the others are optional.

void receive(
AmMessage &receiveMessage,
AmSender &responseService,
AmMessage &selectionMessage,
AmPolicy &policy);

receiveMessage
The message object that receives the data. The message object is
reset implicitly before the receive takes place.

responseService
The AmSender to be used for sending any response to the received
message. If omitted, no response can be sent.

selectionMessage
A message object containing the Correlation ID used to selectively
receive a message from the AmReceiver. If omitted, the first
available message is received. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationId on page 192) before
invoking the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

receiveFile
Receives file message data into a file. To receive data into a file, the receiveMessage
parameter is required, but the others are optional.
void receiveFile(

AmMessage &receiveMessage,
char * &fileName,
AmMessage &selectionMessage,
AmPolicy &policy);

receiveMessage
The message object used to receive the file. This is updated with
the message properties, for example the Message ID. If the

C++ AmReceiver

200 MQSeries Application Messaging Interface

message is not from a file, the message object receives the data.
The message object is reset implicitly before the receive takes place.

fileName The name of the file to be received (input). This can include a
directory prefix to define a fully-qualified or relative file name. If
NULL or a null string is specified, then the AMI will use the name
of the originating file (including any directory prefix), exactly as it
was supplied on the send file call. Note that the original file name
may not be appropriate for use by the receiver, either because a
path name included in the file name is not applicable to the
receiving system, or because the sending and receiving systems use
different file naming conventions.

selectionMessage
A message object containing the Correlation ID used to selectively
receive a message from the AmReceiver. If omitted, the first
available message is received. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be reset
(see AmMessage.setCorrelationId on page 192) before invoking
the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

setQueueName
Sets the queue name of the AmReceiver (when this encapsulates a model queue).
This is used to specify the queue name of a recreated permanent dynamic
AmReceiver, in order to receive messages in a session subsequent to the one in
which it was created. (See also getQueueName.)

void setQueueName(char * queueName);

queueName The queue name to be set in the AmReceiver.

C++ AmReceiver

Chapter 8. C++ interface reference 201

AmDistributionList
An AmDistributionList object encapsulates a list of AmSender objects.

clearErrorCodes
Clears the error codes in the AmDistributionList.

void clearErrorCodes();

close
Closes the AmDistributionList. close is overloaded: the policy parameter is
optional.

void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getLastErrorStatus
Returns the AmStatus of the last error condition of this object.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmDistributionList object.

AmString getName();

getSender
Returns a pointer to the AmSender object contained within the AmDistributionList
object at the index specified. AmDistributionList.getSenderCount gets the number
of AmSender services in the distribution list.

AmSender * getSender(int index);

index The index of the AmSender in the AmDistributionList, starting at
zero.

getSenderCount
Returns the number of AmSender services in the AmDistributionList object.

int getSenderCount();

open
Opens an AmDistributionList object for each of the destinations in the distribution
list. open is overloaded: the policy parameter is optional.

void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

C++ AmDistributionList

202 MQSeries Application Messaging Interface

send
Sends a message to each AmSender defined in the AmDistributionList object. send
is overloaded: the sendMessage parameter is required, but the others are optional.

void send(
AmMessage &sendMessage,
AmReceiver &responseService,
AmPolicy &policy);

sendMessage The message object containing the data to be sent.

responseService
The AmReceiver to be used for receiving any response to the sent
message. If omitted, no response can be received.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

sendFile
Sends data from a file to each AmSender defined in the AmDistributionList object.
The sendMessage and fileName parameters are required to send data from a file,
but the policy is optional. The file data can be received as normal message data by
a target application using AmReceiver.receive, or used to reconstruct the file with
AmReceiver.receiveFile.

void sendFile(
AmMessage &sendMessage,
char* fileName,
AmPolicy &policy);

sendMessage The message object to use to send the file. This can be used to
specify the Correlation ID, for example.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel with the message for use with the receive file method (see
“receiveFile” on page 200 for more details). Note that the file name
sent will exactly match the supplied file name; it will not be
converted or expanded in any way.

policy The policy to be used. If omitted, the system default policy (name
constant: AMSD_POL) is used.

C++ AmDistributionList

Chapter 8. C++ interface reference 203

AmPublisher
An AmPublisher object encapsulates an AmSender and provides support for
publish requests to a publish/subscribe broker.

clearErrorCodes
Clears the error codes in the AmPublisher.

void clearErrorCodes();

close
Closes the AmPublisher. close is overloaded: the policy parameter is optional.

void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getCCSID
Returns the coded character set identifier for the AmPublisher. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.

int getCCSID();

getEncoding
Returns the value used to encode numeric data types for the AmPublisher. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

int getEncoding();

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmPublisher.

AmString getName();

open
Opens an AmPublisher service. open is overloaded: the policy parameter is
optional.

void open(AmPolicy &policy);

C++ AmPublisher

204 MQSeries Application Messaging Interface

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

publish
Publishes a message using the AmPublisher. publish is overloaded: the pubMessage
parameter is required, but the others are optional.

void publish(
AmMessage &pubMessage,
AmReceiver &responseService,
AmPolicy &policy);

pubMessage The message object that contains the data to be published.

responseService
The AmReceiver to which the response to this publish request
should be sent. Omit it if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

C++ AmPublisher

Chapter 8. C++ interface reference 205

AmSubscriber
An AmSubscriber object encapsulates both an AmSender and an AmReceiver. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

clearErrorCodes
Clears the error codes in the AmSubscriber.

void clearErrorCodes();

close
Closes the AmSubscriber. close is overloaded: the policy parameter is optional.

void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getCCSID
Returns the coded character set identifier for the AmSender in the AmSubscriber. A
non-default value reflects the CCSID of a remote system unable to perform CCSID
conversion of received messages. In this case the subscriber must perform CCSID
conversion of the message before it is sent.

int getCCSID();

getDefinitionType
Returns the definition type for the AmReceiver in the AmSubscriber.

int getDefinitionType();

The following values can be returned:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

getEncoding
Returns the value used to encode numeric data types for the AmSender in the
AmSubscriber. A non-default value reflects the encoding of a remote system unable
to convert the encoding of received messages. In this case the subscriber must
convert the encoding of the message before it is sent.

int getEncoding();

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

C++ AmSubscriber

206 MQSeries Application Messaging Interface

getName
Returns the name of the AmSubscriber.

AmString getName();

getQueueName
Returns the queue name used by the AmSubscriber to receive messages. This is
used to determine the queue name of a permanent dynamic AmReceiver in the
AmSubscriber, so that it can be recreated with the same queue name in order to
receive messages in a subsequent session. (See also setQueueName.)

AmString getQueueName();

open
Opens an AmSubscriber. open is overloaded: the policy parameter is optional.

void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

C++ AmSubscriber

Chapter 8. C++ interface reference 207

receive
Receives a message, normally a publication, using the AmSubscriber. The message
data, topic and other elements can be accessed using the message interface
methods (see page 187).

receive is overloaded: the pubMessage parameter is required, but the others are
optional.

void receive(
AmMessage &pubMessage,
AmMessage &selectionMessage,
AmPolicy &policy);

pubMessage The message object containing the data that has been published.
The message object is reset implicitly before the receive takes place.

selectionMessage
A message object containing the correlation ID used to selectively
receive a message from the AmSubscriber. If omitted, the first
available message is received. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationId on page 192) before
invoking the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

setQueueName
Sets the queue name in the AmReceiver of the AmSubscriber, when this
encapsulates a model queue. This is used to specify the queue name of a recreated
permanent dynamic AmReceiver, in order to receive messages in a session
subsequent to the one in which it was created. (See also getQueueName.)

void setQueueName(char * queueName);

queueName The queue name to be set.

C++ AmSubscriber

208 MQSeries Application Messaging Interface

subscribe
Sends a subscribe message to a publish/subscribe broker using the AmSubscriber,
to register a subscription. The topic and other elements can be specified using the
message interface methods (see page 187) before sending the message.

Publications matching the subscription are sent to the AmReceiver associated with
the AmSubscriber. By default, this has the same name as the AmSubscriber, with
the addition of the suffix ‘.RECEIVER’.

subscribe is overloaded: the subMessage parameter is required, but the others are
optional.
void subscribe(

AmMessage &subMessage,
AmReceiver &responseService,
AmPolicy &policy);

subMessage The message object that contains the topic subscription data.

responseService
The AmReceiver to which the response to this subscribe request
should be sent. Omit it if no response is required.

This is not the AmReceiver to which publications will be sent by
the broker; they are sent to the AmReceiver associated with the
AmSubscriber (see above).

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

unsubscribe
Sends an unsubscribe message to a publish/subscribe broker using the
AmSubscriber, to deregister a subscription. The topic and other elements can be
specified using the message interface methods (see page 187) before sending the
message.

unsubscribe is overloaded: the unsubMessage parameter is required, but the others
are optional.

void unsubscribe(
AmMessage &unsubMessage,
AmReceiver &responseService,
AmPolicy &policy);

unsubMessage The message object that contains the topics to which the
unsubscribe request applies.

responseService
The AmReceiver to which the response to this unsubscribe request
should be sent. Omit it if no response is required.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

C++ AmSubscriber

Chapter 8. C++ interface reference 209

AmPolicy
An AmPolicy object encapsulates details of how the AMI processes the message
(for instance, the priority and persistence of the message, how errors are handled,
and whether transactional processing is used).

clearErrorCodes
Clears the error codes in the AmPolicy.

void clearErrorCodes();

enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmPolicy object.

AmString getName();

getWaitTime
Returns the wait time (in ms) set for this AmPolicy.

int getWaitTime();

setWaitTime
Sets the wait time for any receive using this AmPolicy.

void setWaitTime(int waitTime);

waitTime The wait time (in ms) to be set in the AmPolicy.

C++ AmPolicy

210 MQSeries Application Messaging Interface

AmBytes
An AmBytes object encapsulates an array of bytes. It allows the AMI to pass bytes
across the interface and enables manipulation of these bytes.

cmp
Methods used to compare AmBytes objects. These methods return 0 if the data is
the same, and 1 otherwise.

AMLONG cmp(const AmBytes &amBytes);
AMLONG cmp(const char * stringData);
AMLONG cmp(const char * charData, AMLONG length);

amBytes A reference to the AmBytes object being compared.

stringData A char pointer to the NULL terminated string being compared.

charData A char pointer to the bytes being compared.

length The length, in bytes, of the data to be compared. If this length is
not the same as the length of the AmBytes object, the comparison
fails.

constructors
Constructors for an AmBytes object.

AmBytes();
AmBytes(const AmBytes &amBytes);
AmBytes(const AMBYTE byte);
AmBytes(const AMLONG long);
AmBytes(const char * charData);
AmBytes(const AmString &amString);
AmBytes(const AMSTR stringData);
AmBytes(const AMBYTE *character, const AMLONG length);

amBytes A reference to an AmBytes object used to create the new AmBytes
object.

byte A single byte used to create the new AmBytes object.

long An AMLONG used to create the new AmBytes object.

charData A char pointer to a NULL terminated string used to create the new
AmBytes object.

stringData A NULL terminated string used to create the new AmBytes object.

character The character to populate the new AmBytes object with.

length The length, in bytes, of the new AmBytes object.

C++ AmBytes

Chapter 8. C++ interface reference 211

cpy
Methods used to copy from an AmBytes object. Any existing data in the AmBytes
object is discarded.

AmBytes &cpy();
AmBytes &cpy(const AMSTR stringData);
AmBytes &cpy(const AMBYTE *byteData, const AMLONG length);
AmBytes &cpy(const AMBYTE byte);
AmBytes &cpy(const AMLONG long);
AmBytes &cpy(const AmBytes &amBytes);

stringData A NULL terminated string being copied.

byteData A pointer to the bytes being copied.

length The length, in bytes, of the data to be copied.

byte The single byte being copied.

long An AMLONG being copied.

amBytes A reference to the AmBytes object being copied.

dataPtr
Method to reference the byte data contained within an AmBytes object.

const AMBYTE * dataPtr() const;

destructor
Destructor for an AmBytes object.

˜AmBytes();

length
Returns the length of an AmBytes object.

AMLONG length();

operators
Operators for an AmBytes object.

AmBytes &operator = (const AmBytes &);
AMBOOL operator == (const AmBytes &) const;
AMBOOL operator != (const AmBytes &) const;

pad
Method used to pad AmBytes objects with a specified byte value.

AmBytes &pad(const AMLONG length, const AMBYTE byte);

length The required length of the AmBytes after the padding.

byte The byte value used to pad the AmBytes object.

C++ AmBytes

212 MQSeries Application Messaging Interface

AmElement
An AmElement object encapsulates a name/value pair which can be added to an
AmMessage object.

AmElement
Constructor for an AmElement object.

AmElement(char * name, char * value);

name The name of the element.

value The value of the element.

getName
Returns the name of the AmElement.

AmString getName();

getValue
Returns the value of the AmElement.

AmString getValue();

getVersion
Returns the version of the AmElement (the default value is
AMELEM_VERSION_1).

int getVersion();

setVersion
Sets the version of the AmElement.

void setVersion(int version);

version The version of the AmElement that is set. It can take the value
AMELEM_VERSION_1 or AMELEM_CURRENT_VERSION.

toString
Returns a AmString representation of the AmElement.

AmString toString();

C++ AmElement

Chapter 8. C++ interface reference 213

AmObject
AmObject is a virtual class. The following classes inherit from the AmObject class:

AmSession
AmMessage
AmSender
AmDistributionList
AmReceiver
AmPublisher
AmSubscriber
AmPolicy

This allows application programmers to use generic error handling routines.

clearErrorCodes
Clears the error codes in the AmObject.

void clearErrorCodes();

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmObject.

AmString getName();

C++ AmObject

214 MQSeries Application Messaging Interface

AmStatus
An AmStatus object encapsulates the error status of other AmObjects.

AmStatus
Constructor for an AmStatus object.

AmStatus();

getCompletionCode
Returns the completion code from the AmStatus object.

int getCompletionCode();

getReasonCode
Returns the reason code from the AmStatus object.

int getReasonCode();

getReasonCode2
Returns the secondary reason code from the AmStatus object. (This code is specific
to the underlying transport used by the AMI). For MQSeries, the secondary reason
code is an MQSeries reason code of type MQRC_xxx.

int getReasonCode2();

toString
Returns an AmString representation of the internal state of the AmStatus object.

AmString toString();

C++ AmStatus

Chapter 8. C++ interface reference 215

AmString
An AmString object encapsulates a string or array of characters. It allows the AMI
to pass strings across the interface and enables manipulation of these strings.

cat
Methods used to concatenate.

AmString &cat(const AmString &amString);
AmString &cat(const AMSTR stringData);

amString A reference to the AmString object being concatenated.

stringData The NULL terminated string being concatenated into the AmString
object.

cmp
Methods to compare AmStrings with AmStrings and data of type AMSTR. A return
value of 0 indicates that the two strings match exactly.

AMLONG cmp(const AmString &amString) const;
AMLONG cmp(const AMSTR stringData) const;

amString A reference to the AmString object being compared.

stringData The NULL terminated string being compared.

constructors
Constructors for an AmString object.

AmString();
AmString(const AmString &amString);
AmString(const AMSTR stringData);

amString A reference to an AmString object used to create the new
AmString.

stringData A NULL terminated string, from which the AmString is
constructed.

contains
Method to indicate whether a specified character is contained within the AmString.

AMBOOL contains(const AMBYTE character) const;

character The character being used for the search.

cpy
Methods used to copy from an AmString. Any existing data in the AmString is
discarded.

AmString &cpy(const AmString &amString);
AmString &cpy(const AMSTR stringData);

amString A reference to an AmString object being copied.

stringData The NULL terminated string being copied into the AmString.

destructor
Destructor for an AmString object.

˜AmString();

C++ AmString

216 MQSeries Application Messaging Interface

operators
Operators for an AmString object.

AmString &operator = (const AmString &);
AmString &operator = (const AMSTR);
AMBOOL operator == (const AmString &) const;
AMBOOL operator != (const AmString &) const;

pad
Method used to pad AmStrings with a specified character.

AmString &pad(const AMLONG length, const AMBYTE character);

length The required length of the AmString after the padding.

charString The character used to pad the AmString.

split
Method used to split AmStrings at the first occurrence of a specified character.

AmString &split(AmString &newString, const AMBYTE splitCharacter);

newString A reference to an AmString object to contain the latter half of the
split string.

splitCharacter
The first character at which the split will occur.

strip
Method used to strip leading and trailing blanks from AmStrings.

AmString &strip();

length
Returns the length of an AmString.

AMLONG length();

text
Method to reference the string contained within an AmString.

AMSTR text() const;

truncate
Method used to truncate AmStrings.

AmString &truncate(const AMLONG length);

length The length to which the AmString is to be truncated.

C++ AmString

Chapter 8. C++ interface reference 217

AmException
AmException is the base Exception class; all other Exceptions inherit from this
class.

getClassName
Returns the type of object throwing the Exception.

AmString getClassName();

getCompletionCode
Returns the completion code for the Exception.

int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.

AmString getMethodName();

getReasonCode
Returns the reason code for the Exception.

int getReasonCode();

getSource
Returns the AmObject throwing the Exception.

AmObject getSource();

toString
Returns an AmString representation of the Exception.

AmString toString();

C++ AmException

218 MQSeries Application Messaging Interface

AmErrorException
An Exception of type AmErrorException is raised when an object experiences an
error with a severity level of FAILED (CompletionCode = AMCC_FAILED).

getClassName
Returns the type of object throwing the Exception.

AmString getClassName();

getCompletionCode
Returns the completion code for the Exception.

int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.

AmString getMethodName();

getReasonCode
Returns the reason code for the Exception.

int getReasonCode();

getSource
Returns the AmObject throwing the Exception.

AmObject getSource();

toString
Returns an AmString representation of the Exception.

AmString toString();

C++ AmErrorException

Chapter 8. C++ interface reference 219

AmWarningException
An Exception of type AmWarningException is raised when an object experiences
an error with a severity level of WARNING (CompletionCode =
AMCC_WARNING).

getClassName
Returns the type of object throwing the Exception.

AmString getClassName();

getCompletionCode
Returns the completion code for the Exception.

int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.

AmString getMethodName();

getReasonCode
Returns the reason code for the Exception.

int getReasonCode();

getSource
Returns the AmObject throwing the Exception.

AmObject getSource();

toString
Returns an AmString representation of the Exception.

AmString toString();

C++ AmWarningException

220 MQSeries Application Messaging Interface

Part 4. The COBOL interface

Chapter 9. Using the Application Messaging
Interface in COBOL 225
Structure of the AMI 225

Using the repository 226
System default objects 226

Writing applications in COBOL 228
Opening and closing a session. 228
Sending messages 228

Using the message object 229
Sample programs 230

Receiving messages 230
Using the message object 232
Sample programs 232

Request/response messaging 232
Request 232
Response 233
Sample programs 233

File transfer 234
Publish/subscribe messaging 234

Publish 234
Subscribe 235
Sample programs 235

Using name/value elements 236
Example 237

Error handling 238
Transaction support 238
Sending group messages 238
Other considerations 239

Multithreading 239
Using MQSeries with the AMI. 239
Field limits 239

Building COBOL applications 240
COBOL applications on OS/390 240

AMI Copybooks 240
Preparing COBOL programs on OS/390 . . 240
Running COBOL programs on OS/390 . . . 241

Chapter 10. The COBOL high-level interface 243
Overview of the COBOL high-level interface . . . 244

Initialize and terminate 244
Sending messages 244
Receiving messages 244
File transfer 244
Publish/subscribe 244
Transaction support 244

Reference information for the COBOL high-level
interface 246
AMHBACK (backout) 247
AMHBEGIN (begin) 248
AMHBRMS (browse message) 249

Usage notes 250
AMHCMIT (commit) 251
AMHINIT (initialize) 252
AMHPB (publish) 253
AMHRCFL (receive file) 254

Usage notes 255

AMHRCMS (receive message) 256
Usage notes 256

AMHRCPB (receive publication) 258
Usage notes 259

AMHRCRQ (receive request) 260
Usage notes 260

Data conversion 260
Use of the buffLen parameter 261

AMHSNFL (send file) 262
Usage notes 262

AMHSNMS (send message) 263
AMHSNRQ (send request) 264
AMHSNRS (send response) 265
AMHSB (subscribe) 266
AMHTERM (terminate) 267
AMHUN (unsubscribe) 268

Usage notes 268

Chapter 11. COBOL object interface overview 269
Session interface functions 270

Session management 270
Create objects 270
Get object handles 270
Delete objects 271
Transactional processing 271
Error handling 271

Message interface functions 272
Get values 272
Set values 272
Reset values 272
Read and write data 272
Publish/subscribe topics. 273
Publish/subscribe filters. 273
Publish/subscribe name/value elements . . . 273
Error handling 273

Sender interface functions 274
Open and close. 274
Send 274
Get values 274
Error handling 274

Receiver interface functions 275
Open and close. 275
Receive and browse 275
Get values 275
Set values 275
Error handling 275

Distribution list interface functions 276
Open and close. 276
Send 276
Get values 276
Error handling 276

Publisher interface functions 277
Open and close. 277
Publish 277
Get values 277
Error handling 277

© Copyright IBM Corp. 1999, 2000 221

Subscriber interface functions 278
Open and close. 278
Broker messages 278
Get values 278
Set value 278
Error handling 278

Policy interface functions 279
Get values 279
Set value 279
Error handling 279

High-level functions 280

Chapter 12. COBOL object interface reference 283
Session interface functions 284

AMSEBG (begin) 284
AMSECLEC (clear error codes) 284
AMSECL (close) 285
AMSECM (commit) 285
AMSECR (create) 285
AMSECRDL (create distribution list) 286
AMSECRMS (create message) 286
AMSECRPO (create policy) 286
AMSECRPB (create publisher) 287
AMSECRRC (create receiver) 287
AMSECRSN (create sender) 288
AMSECRSB (create subscriber) 288
AMSEDL (delete) 289
AMSEDLDL (delete distribution list) 289
AMSEDLMS (delete message) 289
AMSEDLPO (delete policy). 290
AMSEDLPB (delete publisher). 290
AMSEDLRC (delete receiver) 290
AMSEDLSN (delete sender) 290
AMSEDLSB (delete subscriber) 291
AMSEGHDL (get distribution list handle) . . . 291
AMSEGTLE (get last error codes). 291
AMSEGHMS (get message handle) 292
AMSEGHPO (get policy handle) 292
AMSEGHPB (get publisher handle) 293
AMSEGHRC (get receiver handle) 293
AMSEGHSN (get sender handle) 293
AMSEGHSB (get subscriber handle) 294
AMSEOP (open) 294
AMSERB (rollback) 294

Message interface functions 296
AMMSADEL (add element) 296
AMMSADFI (add filter) 297
AMMSADTO (add topic) 297
AMMSCLEC (clear error codes) 298
AMMSDEEL (delete element) 298
AMMSDEFI (delete filter) 298
AMMSDENE (delete named element) 299
AMMSDETO (delete topic) 299
AMMSGELC (get element CCSID) 299
AMMSGTCC (get CCSID) 300
AMMSGTCI (get correl ID) 300
AMMSGTDL (get data length). 300
AMMSGTDO (get data offset) 301
AMMSGTEL (get element) 301
AMMSGTEC (get element count) 301
AMMSGTEN (get encoding) 302

AMMSGTFC (get filter count) 302
AMMSGTFI (get filter) 302
AMMSGTFO (get format) 303
AMMSGTGS (get group status) 303
AMMSGTLE (get last error) 304
AMMSGTMI (get message ID). 304
AMMSGTNA (get name) 305
AMMSGTNE (get named element) 305
AMMSGTNC (get named element count) . . . 306
AMMSGTRC (get report code) 306
AMMSGTTO (get topic) 307
AMMSGTTC (get topic count) 307
AMMSGTTY (get type) 307
AMMSREBY (read bytes) 308
AMMSRS (reset) 308
AMMSSTCC (set CCSID) 309
AMMSSTCI (set correl ID) 309
AMMSSTDO (set data offset) 309
AMMSSELC (set element ccsid) 310
AMMSSTEN (set encoding) 310
AMMSSTFO (set format) 310
AMMSSTGS (set group status). 311
AMMSWRBY (write bytes) 311

Sender interface functions 313
AMSNCLEC (clear error codes) 313
AMSNCL (close) 313
AMSNGTCC (get CCSID) 314
AMSNGTEN (get encoding) 314
AMSNGTLE (get last error) 314
AMSNGTNA (get name) 315
AMSNOP (open) 315
AMSNSN (send) 316
AMSNSNFL (send file) 316

Usage notes 317
Receiver interface functions 318

AMRCBR (browse) 318
Usage notes 319

AMRCBRSE (browse selection message) . . . 319
Usage notes 320

AMRCCLEC (clear error codes) 321
AMRCCL (close) 321
AMRCGTDT (get definition type) 321
AMRCGTLE (get last error) 322
AMRCGTNA (get name) 322
AMRCGTQN (get queue name) 323
AMRCOP (open) 323
AMRCRC (receive) 323

Usage notes 324
AMRCRCFL (receive file) 325
AMRCSTQN (set queue name) 326

Distribution list interface functions 327
AMDLCLEC (clear error codes) 327
AMDLCL (close) 327
AMDLGTLE (get last error) 327
AMDLGTNA (get name) 328
AMDLGTSC (get sender count) 328
AMDLGTSH (get sender handle) 328
AMDLOP (open) 329
AMDLSN (send) 329
AMDLSNFL (send file) 330
Usage notes 331

222 MQSeries Application Messaging Interface

||
||
||
||

Publisher interface functions 332
AMPBCLEC (clear error codes) 332
AMPBCL (close) 332
AMPBGTCC (get CCSID) 332
AMPBGTEN (get encoding) 333
AMPBGTLE (get last error) 333
AMPBGTNA (get name). 333
AMPBOP (open) 334
AMPBPB (publish) 334

Subscriber interface functions 336
AMSBCLEC (clear error codes) 336
AMSBCL (close) 336
AMSBGTCC (get CCSID) 336
AMSBGTDT (get definition type) 337
AMSBGTEN (get encoding) 337
AMSBGTLE (get last error) 337
AMSBGTNA (get name) 338
AMSBGTQN (get queue name) 338
AMSBOP (open) 339
AMSBRC (receive). 339
AMSBSTQN (set queue name). 340
AMSBSB (subscribe) 340
AMSBUN (unsubscribe) 341

Policy interface functions 342
AMPOCLEC (clear error codes) 342
AMPOGTLE (get last error) 342
AMPOGTNA (get name) 342
AMPOGTWT (get wait time) 343
AMPOSTWT (set wait time) 343

Part 4. The COBOL interface 223

224 MQSeries Application Messaging Interface

Chapter 9. Using the Application Messaging Interface in
COBOL

The Application Messaging Interface (AMI) in the COBOL programming language
has two interfaces:
1. A high-level procedural interface that provides the function needed by the

majority of users.
2. A lower-level, object-style interface, that provides additional function for

experienced MQSeries users.

This chapter describes the following:
v “Structure of the AMI”
v “Writing applications in COBOL” on page 228
v “Building COBOL applications” on page 240

Structure of the AMI
Although the high-level interface is procedural in style, the underlying structure of
the AMI is object based. (The term object is used here in the object-oriented
programming sense, not in the sense of MQSeries ‘objects’ such as channels and
queues.) The objects that are made available to the application are:

Session Contains the AMI session.

Message Contains the message data, message ID, correlation
ID, and options that are used when sending or
receiving a message (most of which come from the
policy definition).

Sender This is a service that represents a destination (such
as an MQSeries queue) to which messages are sent.

Receiver This is a service that represents a source from
which messages are received.

Distribution list Contains a list of sender services to provide a list
of destinations.

Publisher Contains a sender service where the destination is
a publish/subscribe broker.

Subscriber Contains a sender service (to send subscribe and
unsubscribe messages to a publish/subscribe
broker) and a receiver service (to receive
publications from the broker).

Policy Defines how the message should be handled,
including items such as priority, persistence, and
whether it is included in a unit of work.

When using the high-level functions the objects are created automatically and
(where applicable) populated with values from the repository. In some cases it
might be necessary to inspect these properties after a message has been sent (for
instance, the MessageID), or to change the value of one or more properties before
sending the message (for instance, the Format). To satisfy these requirements, the

© Copyright IBM Corp. 1999, 2000 225

AMI for COBOL has a lower-level object style interface in addition to the
high-level procedural interface. This provides access to the objects listed above,
with methods to set and get their properties. You can mix high-level and
object-level functions in the same application.

All the objects have both a handle and a name. The names are used to access objects
from the high-level interface. The handles are used to access them from the object
interface. Multiple objects of the same type can be created with the same name, but
are usable only from the object interface.

The high-level interface is described in “Chapter 10. The COBOL high-level
interface” on page 243. An overview of the object interface is given in “Chapter 11.
COBOL object interface overview” on page 269, with reference information in
“Chapter 12. COBOL object interface reference” on page 283.

Using the repository
You can run AMI applications with or without a repository. If you don’t have a
repository, you can use a system default object (see below), or create your own by
specifying its name on a high-level function call. It will be created using the
appropriate system provided definition (see “System provided definitions” on
page 456).

If you have a repository, and you specify the name of an object on a function call
that matches a name in the repository, the object will be created using the
repository definition. (If no matching name is found in the repository, the system
provided definition will be used.)

System default objects
Table 4. System default objects

Default object Constant or handle (if applicable)

SYSTEM.DEFAULT.POLICY AMSD-POL
AMSD-POL-HANDLE

SYSTEM.DEFAULT.SYNCPOINT.POLICY AMSD-SYNC-POINT-POL
AMSD-SYNC-POINT-POL-HANDLE

SYSTEM.DEFAULT.SENDER AMSD-SND

SYSTEM.DEFAULT.RESPONSE.SENDER AMSD-RSP-SND
AMSD-RSP-SND-HANDLE

SYSTEM.DEFAULT.RECEIVER AMSD-RCV
AMSD-RCV-HANDLE

SYSTEM.DEFAULT.PUBLISHER AMSD-PUB
AMSD-PUB-SND

SYSTEM.DEFAULT.SUBSCRIBER AMSD-SUB
AMSD-SUB-SND

SYSTEM.DEFAULT.SEND.MESSAGE AMSD-SND-MSG
AMSD-SND-MSG-HANDLE

SYSTEM.DEFAULT.RECEIVE.MESSAGE AMSD-RCV-MSG
AMSD-RCV-MSG-HANDLE

A set of system default objects is created at session creation time. This removes the
overhead of creating the objects from applications using these defaults. The system

Structure of the AMI

226 MQSeries Application Messaging Interface

default objects are available for use from both the high-level and object interfaces
in COBOL. They are created using the system provided definitions (see “System
provided definitions” on page 456).

The default objects can be specified explicitly using AMI constants, or used to
provide defaults if a parameter is omitted (by specifying it as a space or low value,
for example).

Constants representing synonyms for handles are also provided for these objects,
for use from the object interface (see “Appendix B. Constants” on page 493). Note
that the first parameter on a call must be a real handle; you cannot use a synonym
in this case (that is why handles are not provided for all the default objects).

Structure of the AMI

Chapter 9. Using the Application Messaging Interface in COBOL 227

Writing applications in COBOL
This section gives a number of examples showing how to use the high-level
interface of the AMI, with some extensions using the object interface. Equivalent
operations to all high-level functions can be performed using combinations of
object interface functions (see “High-level functions” on page 280).

Opening and closing a session
Before using the AMI, you must open a session. This can be done with the
following high-level function (page 252):

Opening a session
CALL 'AMHINIT' USING SESSION-NAME, POLICY-NAME, HSESSION,

COMPCODE, REASON.

The SESSION-NAME is optional. POLICY-NAME is the name of the policy to be used
during initialization of the AMI. If it consists of a space or low value, the
SYSTEM.DEFAULT.POLICY object is used. Or you can specify the constant
AMSD-POL to use the default policy.

The function returns HSESSION, a session handle that must be used by other calls in
this session. Errors are returned using a completion code and reason code.

To close a session, you can use this high-level function (page 267):

Closing a session
CALL 'AMHTERM' USING HSESSION, POLICY-NAME, COMPCODE, REASON.

This closes and deletes all objects that were created in the session.

Sending messages
You can send a datagram (send and forget) message using the high-level
AMHSNMS function (page 263). In the simplest case, all you need to specify is the
session handle returned by AMHINIT, the message data, and the message length.
Other parameters can be specified using the constants that represent the default
message, sender service, and policy objects.

Sending a message using all the defaults
CALL 'AMHSNMS' USING HSESSION, AMSD-SND, AMSD-POL, DATALEN, DATA,

AMSD-SND-MSG, COMPCODE, REASON.

If you want to send the message using a different sender service, specify its name
(such as SENDER-NAME) as follows:

Sending a message using a specified sender service
CALL 'AMHSNMS' USING HSESSION, SENDER-NAME, AMSD-POL, DATALEN, DATA,

AMSD-SND-MSG, COMPCODE, REASON.

Writing applications in COBOL

228 MQSeries Application Messaging Interface

If you are not using the default policy, you can specify a policy name:

Sending a message using a specified policy
CALL 'AMHSNMS' USING HSESSION, AMSD-SND, POLICY-NAME, DATALEN, DATA,

AMSD-SND-MSG, COMPCODE, REASON.

The policy controls the behavior of the send function. For example, the policy can
specify:
v The priority, persistence and expiry of the message
v If the send is part of a unit of work
v If the sender service should be implicitly opened and left open

To send a message to a distribution list, specify its name (such as DISTLIST-NAME)
as the sender service:

Sending a message to a distribution list
CALL 'AMHSNMS' USING HSESSION, DISTLIST-NAME, AMSD-POL, DATALEN, DATA,

AMSD-SND-MSG, COMPCODE, REASON.

Using the message object
Using the object interface gives you more functions when sending a message. For
example, you can get or set individual attributes in the message object. To get an
attribute after the message has been sent, you can specify a name for the message
object that is being sent:

Specifying a message object
CALL 'AMHSNMS' USING HSESSION, AMSD-SND, AMSD-POL, DATALEN, DATA,

SEND-MSG, COMPCODE, REASON.

The AMI creates a message object of the name specified (SEND-MSG), if one doesn’t
already exist. (In this example the defaults for the sender name and policy name
are used.) You can then use object interface functions to get the required attributes,
such as the MessageID, from the message object:

Getting an attribute from a message object
CALL 'AMSEGHMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSGTMI' USING HMSG, BUFFLEN, MSGIDLEN, MSGID, COMPCODE, REASON.

The first call is needed to get the handle to the message object (HMSG). The second
call returns the message ID length, and the message ID itself (in a buffer of length
BUFFLEN).

To set an attribute such as the Format before the message is sent, you must first
create a message object and set the format in that object:

Writing applications in COBOL

Chapter 9. Using the Application Messaging Interface in COBOL 229

Setting an attribute in a message object
CALL 'AMSECRMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSSTFO' USING HMSG, FORMATLEN, FORMAT, COMPCODE, REASON.

Then you can send the message as before, making sure to specify the same
message object name (SEND-MSG) in the AMHSNMS call.

Look at “Message interface functions” on page 272 to find out what other attributes
of the message object you can get and set.

After a message object has been used to send a message, it might not be left in the
same state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see AMMSRS
on page 308) and rebuild it each time.

Instead of sending the message data using the data buffer, it can be added to the
message object. However, this is not recommended for large messages because of
the overhead of copying the data into the message object before it is sent (and also
extracting the data from the message object when it is received).

Sample programs
For more details, refer to the AMTVHSND and AMTVOSND sample programs (see
“Sample programs for OS/390” on page 452).

Receiving messages
Use the AMHRCMS high-level function (page 256) to receive a message to which
no response is to be sent (such as a datagram). In the simplest case, all you need to
specify are the session handle and a buffer for the message data. Other parameters
can be specified using the constants that represent the default message, receiver
service, and policy objects.

Receiving a message using all the defaults
CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, AMSD-SND-MSG,

BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
COMPCODE, REASON.

If you want to receive the message using a different receiver service, specify its
name (such as RECEIVER-NAME) as follows:

Receiving a message using a specified receiver service
CALL 'AMHRCMS' USING HSESSION, RECEIVER-NAME, AMSD-POL, AMSD-SND-MSG,

BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
COMPCODE, REASON.

If you are not using the default policy, you can specify a policy name:

Writing applications in COBOL

230 MQSeries Application Messaging Interface

Receiving a message using a specified policy
CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, POLICY-NAME, AMSD-SND-MSG,

BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
COMPCODE, REASON.

Writing applications in COBOL

Chapter 9. Using the Application Messaging Interface in COBOL 231

The policy can specify, for example:
v The wait interval
v If the message is part of a unit of work
v If the message should be code page converted
v If all the members of a group must be there before any members can be read

Using the message object
To get the attributes of a message after receiving it, you can specify your own
message object name, or use the system default
SYSTEM.DEFAULT.RECEIVE.MESSAGE (constant: AMSD-RCV-MSG). If a message
object of that name does not exist it will be created. You can access the attributes
(such as the Encoding) using the object interface functions:

Getting an attribute from a message object
CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, AMSD-SND-MSG,

BUFFLEN, DATALEN, DATA, RECEIVE-MSG,
COMPCODE, REASON.

CALL 'AMSEGHMS' USING HSESSION, RECEIVE-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSGTEN' USING HMSG, ENCODING, COMPCODE, REASON.

If a specific message is to be selectively received using its correlation identifier, a
message object must first be created and its CorrelId property set to the required
value (using the object interface). This message object is passed as the selection
message on the AMHRCMS call:

Using a selection message object
CALL 'AMSECRMS' USING HSESSION, SELECTION-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSSTCI' USING HMSG, CORRELIDLEN, CORRELID, COMPCODE, REASON.

CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, SELECTION-MSG,
BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
COMPCODE, REASON.

Sample programs
For more details, refer to the AMTVHRCV and AMTVORCV sample programs (see
“Sample programs for OS/390” on page 452).

Request/response messaging
In the request/response style of messaging, a requester (or client) application sends a
request message and expects to receive a message in response. The responder (or
server) application receives the request message and produces the response
message (or messages) which it returns to the requester application. The responder
application uses information in the request message to determine how to send the
response message to the requester.

In the following examples ‘CLIENT’ refers to the requesting application, and
‘SERVER’ refers to the responding application.

Request
Use the AMHSNRQ high-level function (page 264) to send a request message. This
is similar to AMHSNMS, but it includes the name of the service to which the

Writing applications in COBOL

232 MQSeries Application Messaging Interface

response message is to be sent. In this example the sender service (CLIENT-SENDER)
is specified in addition to the receiver service (CLIENT-RECEIVER). A send message
name (CLIENT-SND-MSG) is specified as well.

Sending a request message
CALL 'AMHSNRQ' USING HSESSION, CLIENT-SENDER, AMSD-POL, CLIENT-RECEIVER,

DATALEN, DATA, CLIENT-SND-MSG, COMPCODE, REASON.

The AMHRCRQ high-level function (page 260) is used by the responding (or
server) application to receive a request message. It is similar to AMHRCMS, but it
includes the name of the sender service that will be used for sending the response
message. When the message is received, the sender service is updated with the
information needed for sending the response to the required destination.

Receiving a request message
CALL 'AMHRCRQ' USING HSESSION, SERVER-RECEIVER, AMSD-POL, BUFFLEN,

DATALEN, DATA, SERVER-RCV-MSG, SERVER-SENDER,
COMPCODE, REASON.

A policy name can be specified as well, as described in “Receiving messages” on
page 230.

A receiver message name (SERVER-RCV-MSG) is specified so that the response
message can refer to it. Note that, unlike AMHRCMS, this function does not have a
selection message.

Response
After the requested actions have been performed, the responding application sends
the response message (or messages) with the AMHSNRS function (page 265):

Sending a response message
CALL 'AMHSNRS' USING HSESSION, SERVER-SENDER, AMSD-POL, SERVER-RCV-MSG,

DATALEN, DATA, AMSD-SND-MSG, COMPCODE, REASON.

The sender service for the response message (SERVER-SENDER) and the receiver
message name (SERVER-RCV-MSG) are the same as those used with AMHRCRQ
(receive request). This causes the CorrelId and MessageId to be set in the response
message, as requested by the flags in the request message.

Finally, the requester (or client) application uses the AMHRCMS function to receive
the response message as described in “Receiving messages” on page 230. You
might need to receive a specific response message (for example if three request
messages have been sent, and you want to receive the response to the first request
message first). In this case the sender message name from the AMHSNRQ function
(CLIENT-SND-MSG) should be used as the selection message name in AMHRCMS.

Sample programs
For more details, refer to the AMTVHCLT, AMTVOCLT, AMTVHSVR, and
AMTSOSVR sample programs (see “Sample programs for OS/390” on page 452).

Writing applications in COBOL

Chapter 9. Using the Application Messaging Interface in COBOL 233

File transfer
You can perform file transfers using the AMHSNFL and AMHRCFL high-level
functions, and the AMSNSNFL, AMDLSNFL and AMRCRCFL object-level
functions.

Sending a file using the high-level AMHSNFL function
CALL 'AMHSNFL' USING HSESSION, SENDER-NAME, POLICYNAME, OPTIONS,

FILENAME-LENGTH, FILENAME, SNDMSG-NAME.

Receiving a file using the high-level AMHRCFL function
CALL 'AMHRCFL' USING HSESSION, RECEIVER-NAME, POLICY-NAME, OPTIONS,

SELMSG-NAME, FILENAME-LENGTH, SNDMSG-NAME.

For a complete description of file transfer, refer to “File transfer” on page 21

Publish/subscribe messaging
With publish/subscribe messaging, publisher applications publish messages to
subscriber applications using a broker. The messages published contain application
data and one or more topic strings that describe the data. Subscribing applications
register subscriptions informing the broker which topics they are interested in.
When the broker receives a published message, it forwards the message to all
subscribing applications for which a topic in the message matches a topic in the
subscription.

Subscribing applications can exploit content-based publish/subscribe by passing a
filter on subscribe and unsubscribe calls (see “Using MQSeries Integrator Version
2” on page 447).

For more information, refer to the MQSeries Publish/Subscribe User’s Guide.

Publish
Use the AMHPB high-level function (page 253) to publish a message. You need to
specify the name of the publisher for the publish/subscribe broker (or use the
default by specifying AMSD-PUB). The topic relating to this publication and the
publication data must also be specified:

Publishing a message
CALL 'AMHPB' USING HSESSION, PUBLISHER-NAME, AMSD-POL, RECEIVER-NAME,

TOPICLEN, TOPIC, DATALEN, DATA, PUBLISH-MSG,
COMPCODE, REASON.

The RECEIVER-NAME identifies the receiver service to which the broker will send a
response message. You can also specify a policy name to change the behavior of
the function (as with the AMHSNxx functions).

You can specify the publication message name PUBLISH-MSG and set or get
attributes of the message object (using the object interface functions). This might
include adding another topic (using AMMSADTO) before invoking AMHPB, if
there are multiple topics associated with this publication.

Writing applications in COBOL

234 MQSeries Application Messaging Interface

Instead of sending the publication data using the data buffer, it can be added to
the message object. Unlike the AMHSNxx functions, this gives no difference in
performance with large messages. This is because, whichever method is used, the
MQRFH header has to be added to the publication data before sending it (similarly
the header has to be removed when the publication is received).

Subscribe
The AMHSB high-level function (page 266) is used to subscribe to a
publish/subscribe broker specified by the name of a subscriber service. The
receiver to which publications will be sent is included within the definition of the
subscriber. The name of a receiver service to which the broker can send a response
message (RECEIVER-NAME) is also specified.

Subscribing to a broker
CALL 'AMHSB' USING HSESSION, SUBSCRIBER-NAME, AMSD-POL, RECEIVER-NAME,

TOPICLEN, TOPIC, 0, 0, SUBSCRIBE-MSG,
COMPCODE, REASON.

A subscription for a single topic can be passed by the TOPIC parameter. You can
subscribe to multiple topics by using the object interface AMMSADTO function to
add topics to the SUBSCRIBE-MSG message object, before invoking AMHSB.

If the policy specifies that the CorrelId is to be used as part of the identity for the
subscribing application, it can be added to the subscription message object with the
object interface AMMSSTCI function, before invoking AMHSB.

To remove a subscription, use the AMHUN high-level function (page 268). To
remove all subscriptions, you can specify a policy that has the ‘Deregister All
Topics’ subscriber attribute.

To receive a publication from a broker, use the AMHRCPB function (page 258). For
example:

Receiving a publication
CALL 'AMHRCPB' USING HSESSION, SUBSCRIBER-NAME, AMSD-POL, SELECTION-MSG,

TOPICBUFFLEN, BUFFLEN, TOPICCOUNT, TOPICLEN,
FIRSTTOPIC, DATALEN, DATA, RECEIVE-MSG,
COMPCODE, REASON.

You need to specify the name of the subscriber service used for the original
subscription. You can also specify a policy name and a selection message name, as
described in “Receiving messages” on page 230.

If there are multiple topics associated with the publication, only the first one is
returned by this function. So, if TOPICCOUNT indicates that there are more topics,
you have to access them from the RECEIVE-MSG message object, using the
object-level AMSEGHMS (get message handle) and AMMSGTTO (get topic)
functions.

Sample programs
For more details, refer to the AMTVHPUB, AMTSOPUB, AMTVHSUB, and
AMTSOSUB sample programs (see “Sample programs for OS/390” on page 452).

Writing applications in COBOL

Chapter 9. Using the Application Messaging Interface in COBOL 235

Using name/value elements
Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
used. The AMHPB, AMHSB, AMHUN, and AMHRCPB high-level functions
provide these name/value pairs implicitly.

For less commonly used commands and options, the name/value pairs can be
added to a message using an AMELEM structure. The AMTELEMV and
AMTELEML copybooks define the AMELEM structure, with and without default
values respectively. Here is the AMTELEMV copybook:

** AMELEM structure
10 AMELEM.

** Structure identifier
15 AMELEM-STRUCID PIC X(8) VALUE 'COEL '.

** Structure version number
15 AMELEM-VERSION PIC S9(9) BINARY VALUE 1.

** Reserved, must be zero
15 AMELEM-GROUP-BUFF-LEN PIC S9(9) BINARY VALUE 0.

** Reserved, must be zero
15 AMELEM-GROUP-LEN PIC S9(9) BINARY VALUE 0.

** Reserved, must be zero
15 AMELEM-GROUP-OFFSET PIC S9(9) BINARY VALUE 0.

** Name buffer length
15 AMELEM-NAME-BUFF-LEN PIC S9(9) BINARY VALUE 0.

** Name length in bytes
15 AMELEM-NAME-LEN PIC S9(9) BINARY VALUE 0.

** Name
15 AMELEM-NAME-OFFSET PIC S9(9) BINARY VALUE 0.

** Value buffer length
15 AMELEM-VALUE-BUFF-LEN PIC S9(9) BINARY VALUE 0.

** Value length in bytes
15 AMELEM-VALUE-LEN PIC S9(9) BINARY VALUE 0.

** Value
15 AMELEM-VALUE-OFFSET PIC S9(9) BINARY VALUE 0.

** Reserved, must be zero
15 AMELEM-TYPE-BUFF-LEN PIC S9(9) BINARY VALUE 0.

** Reserved, must be zero
15 AMELEM-TYPE-LEN PIC S9(9) BINARY VALUE 0.

** Reserved, must be zero
15 AMELEM-TYPE-OFFSET PIC S9(9) BINARY VALUE 0.

The offset fields in the AMELEM structure allow you to give the location of the
name and value buffers relative to the start of the AMELEM structure. The offsets
can be positive or negative.

Following are short descriptions of the fields and an example of how to use the
AMELEM structure.

AMELEM-STRUCID
The AMELEM structure identifier (input).

AMELEM-VERSION
The version number of the AMELEM structure (input). Its value must be one.

AMELEM-GROUP-BUFF-LEN
Reserved, must be zero.

AMELEM-GROUP-LEN
Reserved, must be zero.

AMELEM-GROUP-OFFSET
Reserved, must be zero.

Writing applications in COBOL

236 MQSeries Application Messaging Interface

AMELEM-NAME-BUFF-LEN
The length of the name buffer (input). If this field is set to zero, the AMI
returns the name length value (in AMELEM-NAME-LEN) but not the name
value (in AMELEM-NAME-OFFSET). This is not an error.

AMELEM-NAME-LEN
The length of the name in bytes (input or output).

AMELEM-NAME-OFFSET
The name buffer (input or output).

AMELEM-VALUE-BUFF-LEN
The length of the value buffer (input).

AMELEM-VALUE-LEN
The value length in bytes (input or output).

AMELEM-VALUE-OFFSET
The value buffer (input or output).

AMELEM-TYPE-BUFF-LEN
Reserved, must be zero.

AMELEM-TYPE-LEN
Reserved, must be zero.

AMELEM-TYPE-OFFSET
Reserved, must be zero.

Example
As an example, to send a message containing a ‘Request Update’ command, define
the command data and the AMELEM structure as follows::
01 OPTIONS PIC S9(9) BINARY VALUE ZERO.
01 AMELEM-DATA.

10 COMMAND-NAME PIC X(16) VALUE 'MQPSCommand'.
10 COMMAND-VALUE PIC X(16) VALUE 'ReqUpdate'
COPY AMTELEMV.

Set the length and offset values as follows:
MOVE 11 TO AMELEM-NAME-LEN.
MOVE -48 TO AMELEM-NAME-OFFSET.
MOVE 9 TO AMELEM-VALUE-LEN.
MOVE -32 TO AMELEM-VALUE-OFFSET.

Having set the values, create a message object (SEND-MSG) and add the element to
it:

Using name/value elements
CALL 'AMSECRMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSADEL' USING HMSG, AMELEM, OPTIONS, COMPCODE, REASON.

You must then send the message, using AMHSNMS, to the sender service specified
for the publish/subscribe broker.

If you need to use streams with MQSeries Publish/Subscribe, you must add the
appropriate stream name/value element explicitly to the message object.

Writing applications in COBOL

Chapter 9. Using the Application Messaging Interface in COBOL 237

The message element functions can, in fact, be used to add any element to a
message before issuing a publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications.
They can be used in other applications as well.

Error handling
Each AMI COBOL function returns a completion code reflecting the success or
failure (OK, warning, or error) of the request. Information indicating the reason for
a warning or error is returned in a reason code.

The ‘get last error’ functions (such as AMSEGTLE) always reflect the last most
severe error detected by an object. These functions can be used to return the
completion and reason codes associated with this error. Once the error has been
handled, call the ‘clear error codes’ functions (for instance, AMMSCLEC) to clear
the error information.

All COBOL high-level functions record last error information in the session object.
This information can be accessed using the session’s ‘get last error’ call,
AMSEGTLE (you need the session handle returned by AMHINIT as the first
parameter of this call).

Transaction support
Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.
v MQSeries messages are the only resource

This is supported under OS/390 batch. A transaction is started by the first
message sent or received under syncpoint control, as specified in the policy
specified for the send or receive. Multiple messages can be included in the same
unit of work. The transaction is committed or backed out using an AMHCMIT
or AMHBACK high-level interface call (or the AMSECM or AMSERB object-level
calls).

v Using an external transaction coordinator
The transaction is controlled using the API calls of an external transaction
coordinator. Supported coordinators are CICS, IMS, and RRS. The AMI calls are
not used but the syncpoint attribute must still be specified in the policy used on
the call.

Sending group messages
The AMI allows a sequence of related messages to be included in, and sent as, a
message group. Group context information is sent with each message to allow the
message sequence to be preserved and made available to a receiving application.
In order to include messages in a group, the group status information of the first
and subsequent messages in the group must be set as follows:

AMGRP_FIRST_MSG_IN_GROUP for the first message
AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
AMGRP_LAST_MSG_IN_GROUP for the last message

Writing applications in COBOL

238 MQSeries Application Messaging Interface

The message status is set using AMMSSTGS.

For a complete description of group messages, refer to “Sending group messages”
on page 26

Other considerations
You should consider the following when writing your applications:
v Multithreading
v Using MQSeries with the AMI
v Field limits

Multithreading
Multithreading is not supported for COBOL applications running on OS/390.

Using MQSeries with the AMI
You must not mix MQSeries function calls with AMI function calls within the same
process.

Field limits
When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries,
the underlying message transport. See the rules for naming MQSeries objects in the
MQSeries Application Programming Guide.

Writing applications in COBOL

Chapter 9. Using the Application Messaging Interface in COBOL 239

Building COBOL applications
The Application Messaging Interface for COBOL is available only on the OS/390
operating system.

COBOL applications on OS/390
This section explains what you have to do to prepare and run your COBOL
programs on the OS/390 operating system. See “Language compilers” on page 422
for compilers supported by the AMI.

AMI Copybooks
The AMI provides COBOL copybooks to assist you with the writing of your
applications. The copybook AMTV contains constants and return codes. Copybooks
AMTELEML and AMTELEMV contain the definition of the AMELEM data
structure that is used to pass name/value element information across the AMI.
AMTELEML provides a data definition without initial values; AMTELEMV
provides the same definition with initial values.

These copybooks are installed in the MQSeries for OS/390 library hlq.SCSQCOBC.
Use the COPY statement to include them in your program. For example:

WORKING STORAGE SECTION.
01 AMI-CONSTANTS.

COPY AMTV.

You are recommended to use the copybook AMTELEMV to define an AMELEM
structure. This provides default initial values which ensures that the strucId and
version fields have valid values. If the values passed for these fields are not valid,
the AMI will reject them.

Preparing COBOL programs on OS/390
COBOL programs that use the AMI must be compiled and linked edited. Programs
containing CICS commands must be processed by the CICS translator before
compilation. To add AMI support, include the appropriate COBOL stub (interface
module) in the link edit. The AMI provides a COBOL stub for each supported
environment (batch, RRS batch, or CICS), as follows:

Batch AMTBS10

RRS batch AMTRS10

CICS AMTCS10

IMS AMTIS10

Note: If you are using COBOL, you should select the NODYNAM compiler option
to enable the linkage editor to resolve references to the AMI stub.

Thus the link edit JCL should specify a ‘DD’ name for the MQSeries for OS/390
hlq.SCSQLOAD library and an INCLUDE statement for the stub. For example, to
link edit an AMI batch application:

//LKED EXEC PGM=HEWL....
....
//OBJLIB DD DSN=thlqual.SCSQLOAD,DISP=SHR
//SYSIN DD *

ENTRY CEESTART
INCLUDE OBJLIB(AMTBS10)
NAME progname(R)

/*

Building COBOL applications

240 MQSeries Application Messaging Interface

Running COBOL programs on OS/390
The AMI needs access to the MQSeries datasets SCSQLOAD and SCSQAUTH, as
well as one of the language-specific datasets such as SCSQANLE. See the MQSeries
Application Programming Guide for details of the supported languages.

For CICS operation, the library hlq.SCSQLOAD and the Language Environment®

SCEERUN library must be included in the DFHRPL concatenation. COBOL
programs using the AMI must be defined to CICS with a language code of ‘Le370’.

For information about AMI tracing, see “Using trace (OS/390)” on page 474.

COBOL applications on OS/390

Chapter 9. Using the Application Messaging Interface in COBOL 241

COBOL applications on OS/390

242 MQSeries Application Messaging Interface

Chapter 10. The COBOL high-level interface

The COBOL high-level interface contains functions that cover the requirements of
the majority of applications. If extra functionality is needed, COBOL object
interface functions can be used in the same application as the COBOL high-level
functions.

This chapter contains:
v “Overview of the COBOL high-level interface” on page 244
v “Reference information for the COBOL high-level interface” on page 246

© Copyright IBM Corp. 1999, 2000 243

Overview of the COBOL high-level interface
The high-level functions are listed below. Follow the page references to see the
detailed descriptions of each function.

Initialize and terminate
Functions to create and open an AMI session, and to close and delete an AMI
session.

AMHINIT (initialize) page 252

AMHTERM (terminate) page 267

Sending messages
Functions to send a datagram (send and forget) message, and to send request and
response messages.

AMHSNMS (send message) page 263

AMHSNRQ (send request) page 264

AMHSNRS (send response) page 265

Receiving messages
Functions to receive a message from AMHSNMS or AMHSNRS, to receive a
request message from AMHSNRQ, and to browse a message.

AMHRCMS (receive message)
page 256

AMHRCRQ (receive request) page 260

AMHBRMS (browse message)
page 249

File transfer
Functions to send message data from a file, and to receive message data sent by
AMHSNFL into a file.

AMHSNFL (send file) page 262

AMHRCFL (receive file) page 254

Publish/subscribe
Functions to publish a message to a publish/subscribe broker, and to subscribe,
unsubscribe, and receive publications.

AMHPB (publish) page 253

AMHSB (subscribe) page 266

AMHUN (unsubscribe) page 268

AMHRCPB (receive publication)
page 258

Transaction support
Functions to begin, commit and backout a unit of work.

AMHBEGIN (begin) page 248

COBOL high-level interface overview

244 MQSeries Application Messaging Interface

AMHCMIT (commit) page 251

AMHBACK (backout) page 247

COBOL high-level interface overview

Chapter 10. The COBOL high-level interface 245

Reference information for the COBOL high-level interface
In the following sections the high-level interface functions are listed in alphabetical
order. Note that all functions return a completion code (COMPCODE) and a reason
code (REASON). The completion code can take one of the following values:
AMCC-OK Function completed successfully
AMCC-WARNING

Function completed with a warning
AMCC-FAILED

An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the
reason for the error or warning (see “Appendix A. Reason codes” on page 481).

Object names can be up to AMLEN-MAX-NAME-LENGTH characters, and are
terminated by a space or by a low value (a single byte zero). If a space or low
value is not found, the name will be truncated at AMLEN-MAX-NAME-LENGTH.

If an object name is specified as a space or low value, the relevant system default
name will be used.

Most functions require the session handle to be specified. If this handle is not
valid, the results are unpredictable.

COBOL high-level interface

246 MQSeries Application Messaging Interface

AMHBACK (backout)
Function to backout a unit of work.

CALL 'AMHBACK' USING HSESSION, POLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 POLICY PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

Chapter 10. The COBOL high-level interface 247

AMHBEGIN (begin)
Function to begin a unit of work.

CALL 'AMHBEGIN' USING HSESSION, POLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 POLICY PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

248 MQSeries Application Messaging Interface

AMHBRMS (browse message)
Function to browse a message. See the MQSeries Application Programming Guide for
a full description of the browse options.

CALL 'AMHBRMS' USING HSESSION, RECEIVER, POLICY, OPTIONS,
BUFFLEN, DATALEN, DATA, RCVMSGNAME,
SENDER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 RECEIVER PIC X(n).
01 POLICY PIC X(n).
01 OPTIONS PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 RCVMSGNAME PIC X(n).
01 SENDER PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

RECEIVER The name of a receiver service (input). If specified as a space or
low value, the system default receiver name (constant:
AMSD-RCV) is used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

OPTIONS Options controlling the browse operation (input). Possible values
are:
AMBRW-NEXT
AMBRW-FIRST
AMBRW-RECEIVE-CURRENT
AMBRW-DEFAULT (AMBRW-NEXT)

AMBRW-RECEIVE-CURRENT is equivalent to AMRCRC (receive) for the
message under the browse cursor.

BUFFLEN The length in bytes of a buffer in which the data is returned
(input).

DATALEN The length of the message data, in bytes (output). Can be specified
as -1 (input).

DATA The received message data (output).

RCVMSGNAME The name of the message object for the received message (input).
Properties, and message data if not returned in the DATA parameter,
can be extracted from the message object using the object interface
(see “Message interface functions” on page 296). The message
object is implicitly reset before the browse takes place. If specified
as a space or low value, the system default receive message name
(constant: AMSD-RCV-MSG) is used.

SENDER The name of a special type of sender service known as a response
sender, to which the response message will be sent (input). This
sender name must not have been defined in the repository prior to
the start of the AMI session. It is only applicable if the message
type is AMMT-REQUEST.

COMPCODE Completion code (output).

COBOL high-level interface

Chapter 10. The COBOL high-level interface 249

REASON Reason code (output).

Usage notes
To return the data in the message object (RCVMSGNAME) rather than the DATA
object, set BUFFLEN to zero and DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length and DATALEN to -1.

To return only the data length (so that the required amount of memory can be
allocated before issuing a second function call to return the data), set BUFFLEN to
zero. DATALEN must not be set to -1. Accept Truncated Message in the policy
options must not be selected (the default), otherwise the message data will be
discarded with an AMRC-MSG-TRUNCATED warning.

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length. DATALEN must not be set to -1. If the buffer is too
small, and Accept Truncated Message is not selected in the policy receive attributes
(the default), an AMRC-RECEIVE-BUFF-LEN-ERR error will be generated. If the
buffer is too small, and Accept Truncated Message is selected in the policy receive
attributes, the truncated message data is returned with an AMRC-MSG-
TRUNCATED warning.

If Accept Truncated Messages is set to ‘Yes’ in the policy options, and either
BUFFLEN is non-zero or DATALEN is not set to -1, the message data might be
truncated. If BUFFLEN is zero and DATALEN is not set to -1, the message data is
discarded.

COBOL high-level interface

250 MQSeries Application Messaging Interface

AMHCMIT (commit)
Function to commit a unit of work.

CALL 'AMHCMIT' USING HSESSION, POLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 POLICY PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

Chapter 10. The COBOL high-level interface 251

AMHINIT (initialize)
Function to create and open an AMI session. It returns a session handle, which is
valid until the session is terminated.

CALL 'AMHINIT' USING SESSNAME, POLICY, HSESSION, COMPCODE, REASON.

Declare the parameters as follows:
01 SESSNAME PIC X(n).
01 POLICY PIC X(n).
01 HSESSION PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

SESSNAME An optional name that can be used to identify the application
(input).

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

HSESSION The session handle (output).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

252 MQSeries Application Messaging Interface

AMHPB (publish)
Function to publish a message to a publish/subscribe broker.

CALL 'AMHPB' USING HSESSION, PUBLISHER, POLICY, RESPNAME,
TOPICLEN, TOPIC, DATALEN, DATA, MSGNAME,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 PUBLISHER PIC X(n).
01 POLICY PIC X(n).
01 RESPNAME PIC X(n).
01 TOPICLEN PIC S9(9) BINARY.
01 TOPIC PIC X(n).
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 MSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

PUBLISHER The name of a publisher service (input). If specified as a space or
low value, the system default publisher name (constant:
AMSD-PUB) is used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

RESPNAME The name of the receiver service to which the response to this
publish request will be sent (input). If specified as a space or low
value, no response will be sent. This parameter is mandatory if the
policy specifies implicit publisher registration (the default).

TOPICLEN The length of the topic for this publication, in bytes (input).

TOPIC The topic for this publication (input).

DATALEN The length of the publication data in bytes (input). A value of zero
indicates that any publication data has been added to the message
object (MSGNAME) using the object interface (see “Message interface
functions” on page 296).

DATA The publication data, if DATALEN is non-zero (input).

MSGNAME The name of a message object that contains the header for the
publication message (input). If DATALEN is zero, the message object
also holds any publication data. If specified as a space or low
value, the system default message name (constant:
AMSD-SND-MSG) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

Chapter 10. The COBOL high-level interface 253

AMHRCFL (receive file)
Function to receive message data sent by AMHSNFL into a file.

CALL 'AMHRCFL' USING HSESSION, RECEIVERNAME, POLICYNAME,
OPTIONS, SELMSGNAME, DIRNAMELEN,
DIRNAME, FILENAMELEN, FILENAME,
RCVMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 RECEIVERNAME PIC X(n).
01 POLICYNAME PIC X(n).
01 OPTIONS PIC S9(9) BINARY.
01 SELMSGNAME PIC X(n).
01 DIRNAMELEN PIC S9(9) BINARY.
01 DIRNAME PIC X(n).
01 FILENAMELEN PIC S9(9) BINARY.
01 FILENAME PIC X(n).
01 RCVMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

RECEIVERNAME The name of a receiver service (input). If specified as a space or
low value, the system default receiver name (constant:
AMSD-RCV) is used.

POLICYNAME The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

OPTIONS Reserved, must be specified as zero.

SELMSGNAME Optional selection message object used to specify information (such
as a CorrelId) needed to select the required message (input).

DIRNAMELEN Reserved, must be specified as zero (input).

DIRNAME Reserved.

FILENAMELEN The length of the file name in bytes (input). .

FILENAME The name of the file into which the transferred data is to be
received (input). This can include a directory prefix to define a
fully-qualified or relative file name. If blank then the AMI will use
the name of the originating file (including any directory prefix)
exactly as it was supplied on the send file call. Note that the
original file name may not be appropriate for use by the receiver,
either because a path name included in the file name is not
applicable to the receiving system, or because the sending and
receiving systems use different file naming conventions.

RCVMSGNAME The name of the message object to be used to receive the file
(output). This parameter is updated with the message properties
(for example, the Message ID). If the message is not from a file,
rcvMsgName receives the message data. If specified as a blank or
low value, the system default receive message name (constant
AMSD-RCV-MSG) is used.

Property information and message data can be extracted from the
message object using the object interface (see “Message interface
functions” on page 296). The message object is reset implicitly
before the receive takes place.

COBOL high-level interface

254 MQSeries Application Messaging Interface

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
If FILENAME is blank (indicating that the originating file name specified in the
message is to be used), then FILENAMELEN should be set to zero.

COBOL high-level interface

Chapter 10. The COBOL high-level interface 255

AMHRCMS (receive message)
Function to receive a message.

CALL 'AMHRCMS' USING HSESSION, RECEIVER, POLICY, SELMSGNAME,
BUFFLEN, DATALEN, DATA, RCVMSGNAME,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 RECEIVER PIC X(n).
01 POLICY PIC X(n).
01 SELMSGNAME PIC X(n).
01 BUFFLEN PIC S9(9) BINARY.
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 RCVMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

RECEIVER The name of a receiver service (input). If specified as a space or
low value, the system default receiver name (constant:
AMSD-RCV) is used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

SELMSGNAME Optional selection message object used to specify information (such
as a CorrelId) needed to select the required message (input).

BUFFLEN The length in bytes of a buffer in which the data is returned
(input).Can be specified as -1.

DATALEN The length of the message data, in bytes (output). Can be specified
as -1 (input).

DATA The received message data (output).

RCVMSGNAME The name of the message object for the received message (output).
If specified as a space or low value, the system default receive
message name (constant: AMSD-RCV-MSG) is used. Properties,
and message data if not returned in the DATA parameter, can be
extracted from the message object using the object interface (see
“Message interface functions” on page 296). The message object is
implicitly reset before the receive takes place.

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
To return the data in the message object (RCVMSGNAME), set BUFFLEN to zero and
DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length (an integer greater than zero) and DATALEN to -1.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set BUFFLEN to zero.
DATALEN must not be set to -1. Accept Truncated Message in the policy receive

COBOL high-level interface

256 MQSeries Application Messaging Interface

attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC-MSG-TRUNCATED warning.

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length (an integer greater than zero) and ensure that
DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
not selected in the policy receive attributes (the default), an AMRC-RECEIVE-
BUFF-LEN-ERR error will be generated. If the buffer is too small, and Accept
Truncated Message is selected in the policy receive attributes, the truncated
message is returned with an AMRC_MSG_TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Messages must be set to ‘Yes’ in the policy receive
attributes. You can then remove the message by specifying -1 in both the BUFFLEN
and DATALEN parameters.

COBOL high-level interface

Chapter 10. The COBOL high-level interface 257

AMHRCPB (receive publication)
Function to receive a publication from a publish/subscribe broker.

CALL 'AMHRCPB' USING HSESSION, SUBSCRIBER, POLICY, SELMSGNAME,
TOPICBUFFLEN, BUFFLEN, TOPICCOUNT, TOPICLEN,
FIRSTTOPIC, DATALEN, DATA, RCVMSGNAME,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 SUBSCRIBER PIC X(n).
01 POLICY PIC X(n).
01 SELMSGNAME PIC X(n).
01 TOPICBUFFLEN PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 TOPICCOUNT PIC S9(9) BINARY.
01 TOPICLEN PIC S9(9) BINARY.
01 FIRSTTOPIC PIC X(n).
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 RCVMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

SUBSCRIBER The name of a subscriber service (input). If specified as a space or
low value, the system default subscriber name (constant:
AMSD-SUB) is used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

SELMSGNAME Optional selection message object used to specify information (such
as a CorrelId) needed to select the required message (input).

TOPICBUFFLEN The length in bytes of a buffer in which the topic is returned
(input).

BUFFLEN The length in bytes of a buffer in which the publication data is
returned (input).

TOPICCOUNT The number of topics in the message (output).

TOPICLEN The length in bytes of the first topic (output).

FIRSTTOPIC The first topic (output). Topics can be extracted from the message
object (RCVMSGNAME) using the object interface (see “Message
interface functions” on page 296).

DATALEN The length in bytes of the publication data (output).

DATA The publication data (output). Data can be extracted from the
message object (RCVMSGNAME) using the object interface (see
“Message interface functions” on page 296).

RCVMSGNAME The name of a message object for the received message (input). If
specified as a space or low value, the system default message name
(constant: AMSD-RCV-MSG) is used. The publication message
properties and data update this message object, in addition to
being returned in the parameters above. The message object is
implicitly reset before the receive takes place.

COMPCODE Completion code (output).

COBOL high-level interface

258 MQSeries Application Messaging Interface

REASON Reason code (output).

Usage notes
We recommend that, when using AMHRCPB, you always have data conversion
enabled in the specified policy. If data conversion is not enabled, AMHRCPB will fail
if the local CCSID and/or encoding values differ from those on the platform from
which the publication was sent.

If data conversion is enabled by the specified policy, and a selection message is
specified, then the conversion is performed using the target encoding and coded
character set identifier (CCSID) values designated in the selection message. (The
selection message is specified in the SELMSGNAME parameter).

If a selection message is not specified, then the platform encoding and Queue
Manager CCSID values are used as defaults for the conversion.

If a normal message that is not a publication message is received by the specified
subscriber, then AMHRCPB behaves the same as AMHRCMS.

COBOL high-level interface

Chapter 10. The COBOL high-level interface 259

AMHRCRQ (receive request)
Function to receive a request message.

CALL 'AMHRCRQ' USING HSESSION, RECEIVER, POLICY, BUFFLEN, DATALEN,
DATA, RCVMSGNAME, SENDER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 RECEIVER PIC X(n).
01 POLICY PIC X(n).
01 BUFFLEN PIC S9(9) BINARY.
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 RCVMSGNAME PIC X(n).
01 SENDER PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

RECEIVER The name of a receiver service (input). If specified as a space or
low value, the system default receiver name (constant:
AMSD-RCV) is used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

BUFFLEN The length in bytes of a buffer in which the data is returned
(input).

DATALEN The length of the message data, in bytes (output). Can be specified
as -1 (input).

DATA The received message data (output).

RCVMSGNAME The name of the message object for the received message (output).
If specified as NULL, the system default receiver service (constant:
AMSD-RCV-MSG) is used. Header information, and message data
if not returned in the DATA parameter, can be extracted from the
message object using the object interface (see “Message interface
functions” on page 296). The message object is implicitly reset
before the receive takes place.

SENDER The name of a special type of sender service known as a response
sender, to which the response message will be sent (output). This
sender name must not be defined in the repository. If specified as a
space or low value, the system default response sender service
(constant: AMSD-RSP-SND) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
The following notes contain details about use of the AMHRCRQ function.

Data conversion
If data conversion is enabled by the specified policy, and a selection message is
specified, then the conversion is performed using the target encoding and coded
character set identifier (CCSID) values designated in the selection message. (These
target values are specified in the SELMSGNAME parameter).

COBOL high-level interface

260 MQSeries Application Messaging Interface

If a selection message is not specified, then the platform encoding and Queue
Manager CCSID values are used as defaults for the conversion.

Use of the buffLen parameter
To return the data in the message object (RCVMSGNAME), set BUFFLEN to zero and
DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length (an integer greater than zero) and DATALEN to -1.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set BUFFLEN to zero.
DATALEN must not be set to -1. Accept Truncated Message in the policy receive
attributes must be set to ‘No’ (the default), otherwise the message will be
discarded with an AMRC-MSG-TRUNCATED warning.

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length (an integer greater than zero) and ensure that
DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
set to ‘No’ in the policy receive attributes (the default), an AMRC-RECEIVE-BUFF-
LEN-ERR error will be generated. If the buffer is too small, and Accept Truncated
Message is set to ‘Yes’ in the policy receive attributes, the truncated message is
returned with an AMRC-MSG-TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be set to ‘Yes’ in the policy receive
attributes. You can then remove the message by specifying -1 in both the BUFFLEN
and DATALEN parameters.

COBOL high-level interface

Chapter 10. The COBOL high-level interface 261

AMHSNFL (send file)
Function to send data from a file.

CALL 'AMHSNFL' USING HSESSION, SENDERNAME, POLICYNAME,
OPTIONS, DIRNAMELEN, DIRNAME,
FILENAMELEN, FILENAME,
SNDMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 SENDERNAME PIC X(n).
01 POLICYNAME PIC X(n).
01 OPTIONS PIC S9(9) BINARY.
01 DIRNAMELEN PIC S9(9) BINARY.
01 DIRNAME PIC X(n).
01 FILENAMELEN PIC S9(9) BINARY.
01 FILENAME PIC X(n).
01 SNDMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

SENDERNAME The name of a sender service (input). If specified as a space or low
value, the system default sender name (constant: AMSD-SND) is
used.

POLICYNAME The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

OPTIONS Reserved, must be specified as zero.

DIRNAMELEN Reserved, must be specified as zero (input).

DIRNAME Reserved.

FILENAMELEN The length of the file name in bytes (input).

FILENAME The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel with the message for use with a receive file call (see
“AMHRCFL (receive file)” on page 254 for more details). Note that
the file name sent will exactly match the supplied file name; it will
not be converted or expanded in any way.

SNDMSGNAME The name of the message object to be used to send the file (input).
This can be used to specify the Correlation ID for example. The
Correlation ID can be set from the message object using the object
interface (see “Message interface functions” on page 296). If
SNDMSGNAME is specified as a space or low value, the system default
send message name (constant: AMSD-SND-MSG) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
The message object is implicitly reset by this call.

The system default object is used when you set SNDMSGNAME as a space or low
value.

COBOL high-level interface

262 MQSeries Application Messaging Interface

AMHSNMS (send message)
Function to send a datagram (send and forget) message.

CALL 'AMHSNMS' USING HSESSION, SENDER, POLICY, DATALEN, DATA,
SNDMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 SENDER PIC X(n).
01 POLICY PIC X(n).
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 SNDMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

SENDER The name of a sender service (input). If specified as a space or low
value, the system default sender name (constant: AMSD-SND) is
used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

DATALEN The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (SNDMSGNAME) using the object interface (see “Message
interface functions” on page 296).

DATA The message data, if DATALEN is non-zero (input).

SNDMSGNAME The name of a message object for the message being sent (input). If
DATALEN is zero, the message object also holds any message data. If
specified as a space or low value, the system default message name
(constant: AMSD-SND-MSG) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

Chapter 10. The COBOL high-level interface 263

AMHSNRQ (send request)
Function to send a request message.

CALL 'AMHSNRQ' USING HSESSION, SENDER, POLICY, RESPNAME, DATALEN,
DATA, SNDMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 SENDER PIC X(n).
01 POLICY PIC X(n).
01 RESPNAME PIC X(n).
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 SNDMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

SENDER The name of a sender service (input). If specified as a space or low
value, the system default sender name (constant: AMSD-SND) is
used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

RESPNAME The name of the receiver service to which the response to this send
request will be sent (input). See AMHRCRQ (receive request).

DATALEN The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (SNDMSGNAME) using the object interface (see “Message
interface functions” on page 296).

DATA The message data, if DATALEN is non-zero (input).

SNDMSGNAME The name of a message object for the message being sent (input). If
specified as a space or low value, the system default message name
(constant: AMSD-SND-MSG) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

264 MQSeries Application Messaging Interface

AMHSNRS (send response)
Function to send a response to a request message.

CALL 'AMHSNRS' USING HSESSION, SENDER, POLICY, RCVMSGNAME, DATALEN,
DATA, SNDMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 SENDER PIC X(n).
01 POLICY PIC X(n).
01 RCVMSGNAME PIC X(n).
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 SNDMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

SENDER The name of the sender service (input). It must be set to the SENDER
specified for the AMHRCRQ receive request.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

RCVMSGNAME The name of the received message that this message is a response
to (input). It must be set to the RCVMSGNAME specified for the
AMHRCRQ receive request.

DATALEN The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (SNDMSGNAME) using the object interface (see “Message
interface functions” on page 296).

DATA The message data, if DATALEN is non-zero (input).

SNDMSGNAME The name of a message object for the message being sent (input). If
specified as a space or low value, the system default message name
(constant: AMSD-SND-MSG) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

Chapter 10. The COBOL high-level interface 265

AMHSB (subscribe)
Function to register a subscription with a publish/subscribe broker.

Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix ‘.RECEIVER’.

Subscribing applications can exploit content based publish/subscribe by passing a
filter on the AMHSUB call.

CALL 'AMHSB' USING HSESSION, SUBSCRIBER, POLICY, RESPNAME,
TOPICLEN, TOPIC, FILTERLEN, FILTER,
SUBMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 SUBSCRIBER PIC X(n).
01 POLICY PIC X(n).
01 RESPNAME PIC X(n).
01 TOPICLEN PIC S9(9) BINARY.
01 TOPIC PIC X(n).
01 FILTERLEN PIC S9(9) BINARY.
01 FILTER PIC X(n).
01 SUBMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

SUBSCRIBER The name of a subscriber service (input). If specified as a space or
low value, the system default subscriber name (constant:
AMSD-SUB) is used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

RESPNAME The name of the receiver service to which the response to this
subscribe request will be sent (input). If specified as a space or low
value, no response is sent.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

TOPICLEN The length of the topic for this subscription, in bytes (input).

TOPIC The topic for this subscription (input). Publications that match this
topic, including wildcards, will be sent to the subscriber. Multiple
topics can be specified in the message object (SUBMSGNAME) using the
object interface (see “Message interface functions” on page 296).

FILTERLEN The length in bytes of the filter (input).

FILTER The filter to be added (input). The syntax of the filter string is
described in the MQSeries Integrator Version 2.0 Programming Guide

SUBMSGNAME The name of a message object for the subscribe message (input). If
specified as a space or low value, the system default message name
(constant: AMSD-SND-MSG) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

266 MQSeries Application Messaging Interface

AMHTERM (terminate)
Closes the session, closes and deletes any implicitly created objects, and deletes the
session. If MQSeries is the transaction coordinator, any outstanding units of work
are committed (if the application terminates without an AMHTERM call being
issued, any outstanding units of work are backed out).

CALL 'AMHTERM' USING HSESSION, POLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 POLICY PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL high-level interface

Chapter 10. The COBOL high-level interface 267

AMHUN (unsubscribe)
Function to remove a subscription from a publish/subscribe broker.

CALL 'AMHUN' USING HSESSION, SUBSCRIBER, POLICY, RESPNAME,
TOPICLEN, TOPIC, FILTERLEN, FILTER,
UNSUBMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESSION PIC S9(9) BINARY.
01 SUBSCRIBER PIC X(n).
01 POLICY PIC X(n).
01 RESPNAME PIC X(n).
01 TOPICLEN PIC S9(9) BINARY.
01 TOPIC PIC X(n).
01 FILTERLEN PIC S9(9) BINARY.
01 FILTER PIC X(n).
01 UNSUBMSGNAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

SUBSCRIBER The name of a subscriber service (input). If specified as a space or
low value, the system default subscriber name (constant:
AMSD-SUB) is used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

RESPNAME The name of the receiver service to which the response to this
unsubscribe request will be sent (input).

TOPICLEN The length of the topic, in bytes (input).

TOPIC The topic that identifies the subscription which is to be removed
(input). Multiple topics can be specified in the message object
(UNSUBMSGNAME) using the object interface (see “Message interface
functions” on page 296).

To deregister all topics, a policy providing this option must be
specified (this is not the default policy). Otherwise, to remove a
previous subscription the topic information specified must match
that specified on the relevant AMHSB subscribe request.

FILTERLEN The length in bytes of the filter (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

FILTER The filter that identifies the subscription to be removed (input).
The syntax of the filter string is described in the MQSeries
Integrator Version 2.0 Programming Guide

UNSUBMSGNAME The name of a message object for the unsubscribe message (input).
If specified as a space or low value, the system default message
name (constant: AMSD-SND-MSG) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
To successfully remove a previous subscription, you must ensure that the topic,
filter, and subscriber queue information exactly matches that used on the original
subscribe request.

COBOL high-level interface

268 MQSeries Application Messaging Interface

Chapter 11. COBOL object interface overview

This chapter contains an overview of the structure of the COBOL object interface.
Use it to find out what functions are available in this interface.

The object interface provides sets of interface functions for each of the following
objects:

Session page 270

Message page 272

Sender page 274

Receiver page 275

Distribution list page 276

Publisher page 277

Subscriber page 278

Policy page 279

These interface functions are invoked as necessary by the high-level functions.
They are made available to the application programmer through this object-style
interface to provide additional function where needed. An application program can
mix high-level functions and object-interface functions as required.

Details of the interface functions for each object are given in the following pages.
Follow the page references to see the detailed descriptions of each function.

Details of the object interface functions used by each high-level function are given
on page 280.

© Copyright IBM Corp. 1999, 2000 269

Session interface functions
The session object creates and manages all other objects, and provides the scope
for a unit of work.

Session management
Functions to create, open, close, and delete a session object.

AMSECR (create) page 285

AMSEOP (open) page 294

AMSECL (close) page 285

AMSEDL (delete) page 289

Create objects
Functions to create message, sender, receiver, distribution list, publisher, subscriber,
and policy objects. Handles to these objects are returned by these functions.

AMSECRMS (create message)
page 286

AMSECRSN (create sender) page 288

AMSECRRC (create receiver) page 287

AMSECRDL (create distribution list)
page 286

AMSECRPB (create publisher)
page 287

AMSECRSB (create subscriber)
page 288

AMSECRPO (create policy) page 286

Get object handles
Functions to get the handles for a message, sender, receiver, distribution list,
publisher, subscriber, and policy objects with a specified name (needed if the
objects were created implicitly by the high-level interface).

AMSEGHMS (get message handle)
page 292

AMSEGHSN (get sender handle)
page 293

AMSEGHRC (get receiver handle)
page 293

AMSEGHDL (get distribution list handle)
page 291

AMSEGHPB (get publisher handle)
page 293

AMSEGHSB (get subscriber handle)
page 294

AMSEGHPO (get policy handle)
page 292

COBOL object interface overview

270 MQSeries Application Messaging Interface

Delete objects
Functions to delete message, sender, receiver, distribution list, publisher, subscriber,
and policy objects.

AMSEDLMS (delete message)
page 289

AMSEDLSN (delete sender) page 290

AMSEDLRC (delete receiver) page 290

AMSEDLDL (delete distribution list)
page 289

AMSEDLPB (delete publisher)
page 290

AMSEDLSB (delete subscriber)
page 291

AMSEDLPO (delete policy) page 290

Transactional processing
Functions to begin, commit, and rollback a unit of work.

AMSEBG (begin) page 284

AMSECM (commit) page 285

AMSERB (rollback) page 294

Error handling
Functions to clear the error codes, and return the completion and reason codes for
the last error associated with the session object.

AMSECLEC (clear error codes)
page 284

AMSEGTLE (get last error codes)
page 291

COBOL object interface overview

Chapter 11. COBOL object interface overview 271

Message interface functions
A message object encapsulates an MQSeries message descriptor (MQMD) structure.
It also contains the message data if this is not passed as a separate parameter.

Get values
Functions to get the coded character set ID, correlation ID, encoding, format, group
status, message ID, name, report code, and type of the message object.

AMMSGTCC (get CCSID) page 300

AMMSGTCI (get correl ID) page 300

AMMSGELC (get element CCSID)
page 299

AMMSGTEN (get encoding) page 302

AMMSGTFO (get format) page 303

AMMSGTGS (get group status)
page 303

AMMSGTMI (get message ID)
page 304

AMMSGTNA (get name) page 305

AMMSGTRC (get report code)
page 306

AMMSGTTY (get type) page 307

Set values
Functions to set the coded character set ID, correlation ID, encoding, format, and
group status of the message object.

AMMSSTCC (set CCSID) page 309

AMMSSTCI (set correl ID) page 309

AMMSSELC (set element CCSID)
page 310

AMMSSTEN (set encoding) page 310

AMMSSTFO (set format) page 310

AMMSSTGS (set group status)
page 311

Reset values
Function to reset the message object to the state it had when first created.

AMMSRS (reset) page 308

Read and write data
Functions to get the length of the data, get and set the data offset, and read or
write byte data to or from the message object at the current offset.

AMMSGTDL (get data length)
page 300

COBOL object interface overview

272 MQSeries Application Messaging Interface

AMMSGTDO (get data offset)
page 301

AMMSSTDO (set data offset) page 309

AMMSREBY (read bytes) page 308

AMMSWRBY (write bytes) page 311

Publish/subscribe topics
Functions to manipulate the topics in a publish/subscribe message.

AMMSADTO (add topic) page 297

AMMSDETO (delete topic) page 299

AMMSGTTO (get topic) page 307

AMMSGTTC (get topic count)
page 307

Publish/subscribe filters
Functions to manipulate the filters in a publish/subscribe message.

AMMSADFI (add filter) page 297

AMMSDEFI (delete filter) page 298

AMMSGTFI (get filter) page 302

AMMSGTFC(get filter count) page 302

Publish/subscribe name/value elements
Functions to manipulate the name/value elements in a publish/subscribe message.

AMMSADEL (add element) page 296

AMMSDEEL (delete element) page 298

AMMSGTEL (get element) page 301

AMMSGTEC (get element count)
page 301

AMMSDENE (delete named element)
page 299

AMMSGTNE (get named element)
page 305

AMMSGTNC (get named element count)
page 306

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the message.

AMMSCLEC (clear error codes)
page 298

AMMSGTLE (get last error) page 304

COBOL object interface overview

Chapter 11. COBOL object interface overview 273

Sender interface functions
A sender object encapsulates an MQSeries object descriptor (MQOD) structure for
sending a message.

Open and close
Functions to open and close the sender service.

AMSNOP (open) page 315

AMSNCL (close) page 313

Send
Function to send a message.

AMSNSN (send) page 316

AMSNSNFL(send file) page 316

Get values
Functions to get the coded character set ID, encoding, and name of the sender
service.

AMSNGTCC (get CCSID) page 314

AMSNGTEN (get encoding) page 314

AMSNGTNA (get name) page 315

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the sender service.

AMSNCLEC (clear error codes)
page 313

AMSNGTLE (get last error) page 314

COBOL object interface overview

274 MQSeries Application Messaging Interface

Receiver interface functions
A receiver object encapsulates an MQSeries object descriptor (MQOD) structure for
receiving a message.

Open and close
Functions to open and close the receiver service.

AMRCOP (open) page 323

AMRCCL (close) page 321

Receive and browse
Functions to receive or browse a message.

AMRCRC (receive) page 323

AMRCRCFL (receive file) page 325

AMRCBR (browse) page 318

AMRCBRSE (browse selection message)
page 319

Get values
Functions to get the definition type, name, and queue name of the receiver service.

AMRCGTDT (get definition type)
page 321

AMRCGTNA (get name) page 322

AMRCGTQN (get queue name)
page 323

Set values
Function to set the queue name of the receiver service.

AMRCSTQN (set queue name)
page 326

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver service.

AMRCCLEC (clear error codes)
page 321

AMRCGTLE (get last error) page 322

COBOL object interface overview

Chapter 11. COBOL object interface overview 275

Distribution list interface functions
A distribution list object encapsulates a list of sender services.

Open and close
Functions to open and close the distribution list service.

AMDLOP (open) page 329

AMDLCL (close) page 327

Send
Function to send a message to the distribution list.

AMDLSN (send) page 329

AMDLSNFL (send file) page 330

Get values
Functions to get the name of the distribution list service, a count of the sender
services in the list, and a sender service handle.

AMDLGTNA (get name) page 328

AMDLGTSC (get sender count)
page 328

AMDLGTSH (get sender handle)
page 328

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the distribution list.

AMDLCLEC (clear error codes)
page 327

AMDLGTLE (get last error) page 327

COBOL object interface overview

276 MQSeries Application Messaging Interface

Publisher interface functions
A publisher object encapsulates a sender service. It provides support for publishing
messages to a publish/subscribe broker.

Open and close
Functions to open and close the publisher service.

AMPBOP (open) page 334

AMPBCL (close) page 332

Publish
Function to publish a message.

AMPBPB (publish) page 334

Get values
Functions to get the coded character set ID, encoding, and name of the publisher
service.

AMPBGTCC (get CCSID) page 332

AMPBGTEN (get encoding) page 333

AMPBGTNA (get name) page 333

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the publisher.

AMPBCLEC (clear error codes)
page 332

AMPBGTLE (get last error) page 333

COBOL object interface overview

Chapter 11. COBOL object interface overview 277

Subscriber interface functions
A subscriber object encapsulates both a sender service and a receiver service. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

Open and close
Functions to open and close the subscriber service.

AMSBOP (open) page 339

AMSBCL (close) page 336

Broker messages
Functions to subscribe to a broker, remove a subscription, and receive publications
from the broker.

AMSBSB (subscribe) page 340

AMSBUN (unsubscribe) page 341

AMSBRC (receive) page 339

Get values
Functions to get the coded character set ID, definition type, encoding, name, and
queue name of the subscriber service.

AMSBGTCC (get CCSID) page 336

AMSBGTDT (get definition type)
page 337

AMSBGTEN (get encoding) page 337

AMSBGTNA (get name) page 338

AMSBGTQN (get queue name)
page 338

Set value
Function to set the queue name of the subscriber service.

AMSBSTQN (set queue name)
page 340

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver.

AMSBCLEC (clear error codes)
page 336

AMSBGTLE (get last error) page 337

COBOL object interface overview

278 MQSeries Application Messaging Interface

Policy interface functions
A policy object encapsulates details of how the message is handled (such as
priority, persistence, and whether it is included in a unit of work).

Get values
Functions to get the name of the policy, and the wait time set in the policy.

AMPOGTNA (get name) page 342

AMPOGTWT (get wait time) page 343

Set value
Function to set the wait time for a receive using the policy.

AMPOSTWT (set wait time) page 343

Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the policy.

AMPOCLEC (clear error codes)
page 342

AMPOGTLE (get last error) page 342

COBOL object interface overview

Chapter 11. COBOL object interface overview 279

High-level functions
Each high-level function described in “Chapter 10. The COBOL high-level
interface” on page 243 calls a number of the object interface functions, as shown
below.

Table 5. Object interface calls used by the high-level functions

High-level function Equivalent object interface calls

AMHBACK (backout) AMSECRPO / AMSEGHPO
AMSERB

AMHBEGIN (begin) AMSECRPO / AMSEGHPO
AMSEBG

AMHBRMS (browse message) AMSECRRC / AMSEGHRC
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMRCBRSE

AMHCMIT (commit) AMSECRPO / AMSEGHPO
AMSECM

AMHINIT (initialize) AMSECR
AMSEOP

AMHTERM (terminate) AMSECL
AMSEDL

AMHSNMS (send message)
AMHSNRQ (send request)
AMHSNRS (send response)

AMSECRSN / AMSEGHSN
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSNSN

AMHRCMS (receive message)
AMHRCRQ (receive request)

AMSECRRC / AMSEGHRC
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMRCRC

AMHSNFL (send file) AMSECRSN / AMSEGHSN
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSNSNFL

AMHRCFL (receive file) AMSECRRC / AMSEGHRC
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMRCRCFL

AMHPB (publish) AMSECRPB / AMSEGHPB
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMPBPB

AMHSB (subscribe) AMSECRSB / AMSEGHSB
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSBSB

AMHUN (unsubscribe) AMSECRSB / AMSEGHSB
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSBUN

AMHRCPB (receive publication) AMSECRSB / AMSEGHSB
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSBRC

COBOL object interface overview

280 MQSeries Application Messaging Interface

If an object already exists, the appropriate call to get its handle is used instead of
calling the create function again. For example, if the policy object exists,
AMSEGHPO (get policy handle) is used instead of AMSECRPO (create policy).

COBOL object interface overview

Chapter 11. COBOL object interface overview 281

282 MQSeries Application Messaging Interface

Chapter 12. COBOL object interface reference

In the following sections the COBOL object interface functions are listed by the
object they refer to:

Session page 284

Message page 296

Sender page 313

Receiver page 318

Distribution list page 327

Publisher page 332

Subscriber page 336

Policy page 342

Within each section the functions are listed in alphabetical order.

Note that all functions return a completion code (COMPCODE) and a reason code
(REASON). The completion code can take one of the following values:
AMCC-OK

Function completed successfully
AMCC-WARNING

Function completed with a warning
AMCC-FAILED

An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the
reason for the error or warning (see “Appendix A. Reason codes” on page 481).

Most functions require a handle to the object they reference. If this handle is not
valid, the results are unpredictable.

© Copyright IBM Corp. 1999, 2000 283

Session interface functions
A session object provides the scope for a unit of work and creates and manages all
other objects, including at least one connection object. Each (MQSeries) connection
object encapsulates a single MQSeries queue manager connection. The session
object definition specifying the required queue manager connection can be
provided by a repository policy definition and the local host file, or the local host
file only which by default will name a single local queue manager with no
repository. (Under CICS, there can be only one queue manager connected to a
given CICS system, so in this case the local host file is irrelevant.) The session,
when deleted, is responsible for releasing memory by closing and deleting all other
objects that it manages.

Note that you should not mix MQSeries MQCONN or MQDISC requests on the
same thread as AMI calls, otherwise premature disconnection might occur.

AMSEBG (begin)
Begins a unit of work, allowing an AMI application to take advantage of the
resource coordination provided in MQSeries. The unit of work can subsequently be
committed by AMSECM, or backed out by AMSERB. It should be used only when
MQSeries is the transaction coordinator. If an external transaction coordinator (for
example, CICS or Tuxedo) is being used, the API of the external coordinator
should be used instead.

CALL 'AMSEBG' USING HSESS, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECLEC (clear error codes)
Clears the error codes in the session object.

CALL 'AMSECLEC' USING HSESS, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL session interface

284 MQSeries Application Messaging Interface

AMSECL (close)
Closes the session object and all open objects owned by the session, and
disconnects from the underlying message transport (MQSeries).

CALL 'AMSECL' USING HSESS, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECM (commit)
Commits a unit of work that was started by AMSEBG, or by sending or receiving a
message under syncpoint control as defined in the policy options for the send or
receive request.

CALL 'AMSECM' USING HSESS, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECR (create)
Creates the session and system default objects. AMSECR returns the handle of the
session object. This must be specified by other session function calls.

CALL 'AMSECR' USING NAME, HSESS, COMPCODE, REASON.

Declare the parameters as follows:
01 NAME PIC X(n).
01 HSESS PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

NAME An optional session name that can be used to identify the
application from which a message is sent (input).

HSESS The handle of the session object (output).

COMPCODE Completion code (output).

COBOL session interface

Chapter 12. COBOL object interface reference 285

REASON Reason code (output).

AMSECRDL (create distribution list)
Creates a distribution list object. A distribution list handle is returned.

CALL 'AMSECRDL' USING HSESS, NAME, HDISTLIST, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HDISTLIST PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the distribution list (input). This must match the
name of a distribution list defined in the repository.

HDISTLIST The handle of the distribution list object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECRMS (create message)
Creates a message object. A message handle is returned.

CALL 'AMSECRMS' USING HSESS, NAME, HMSG, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the message (input). This can be any name that is
meaningful to the application. It is specified so that this message
object can be used with the high-level interface.

HMSG The handle of the message object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECRPO (create policy)
Creates a policy object. A policy handle is returned.

CALL 'AMSECRPO' USING HSESS, NAME, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the policy (input). If it matches a policy defined in the

COBOL session interface

286 MQSeries Application Messaging Interface

repository, the policy will be created using the repository
definition, otherwise it will be created with default values.

If a repository is being used and the named policy is not found in
the repository, a completion code of AMCC-WARNING is returned
with a reason code of AMRC-POLICY-NOT-IN-REPOS.

HPOLICY The handle of the policy object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECRPB (create publisher)
Creates a publisher object. A publisher handle is returned.

CALL 'AMSECRPB' USING HSESS, NAME, HPUBLISHER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HPUBLISHER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the publisher (input). If it matches a publisher
defined in the repository, the publisher will be created using the
repository definition, otherwise it will be created with default
values (that is, with a sender service name that matches the
publisher name).

If a repository is being used and the named publisher is not found
in the repository, a completion code of AMCC-WARNING is
returned with a reason code of AMRC-PUBLISHER-NOT-IN-
REPOS.

HPUBLISHER The handle of the publisher object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECRRC (create receiver)
Creates a receiver service object. A receiver handle is returned.

CALL 'AMSECRRC' USING HSESS, NAME, HRECEIVER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HRECEIVER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the receiver service (input). If it matches a receiver
defined in the repository, the receiver will be created using the
repository definition, otherwise it will be created with default
values (that is, with a queue name that matches the receiver name).

COBOL session interface

Chapter 12. COBOL object interface reference 287

If a repository is being used and the named receiver is not found
in the repository, a completion code of AMCC-WARNING is
returned with a reason code of AMRC-RECEIVER-NOT-IN-REPOS.

HRECEIVER The handle of the receiver object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECRSN (create sender)
Creates a sender service object. A sender handle is returned.

CALL 'AMSECRSN' USING HSESS, NAME, HSENDER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HSENDER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the sender service (input). If it matches a sender
defined in the repository, the sender will be created using the
repository definition, otherwise it will be created with default
values (that is, with a queue name that matches the sender name).

If a repository is being used and the named sender is not found in
the repository, a completion code of AMCC-WARNING is returned
with a reason code of AMRC-SENDER-NOT-IN-REPOS.

HSENDER The handle of the sender object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSECRSB (create subscriber)
Creates a subscriber object. A subscriber handle is returned.

CALL 'AMSECRSB' USING HSESS, NAME, HSUBSCRIBER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HSUBSCRIBER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the subscriber (input). If it matches a subscriber
defined in the repository, the subscriber will be created using the
repository definition, otherwise it will be created with default
values (that is, with a sender service name that matches the
subscriber name, and a receiver service name that is the same with
the addition of the suffix ‘.RECEIVER’).

If a repository is being used and the named subscriber is not found
in the repository, a completion code of AMCC-WARNING is
returned with a reason code of AMRC-SUBSCRIBER-NOT-IN-
REPOS.

COBOL session interface

288 MQSeries Application Messaging Interface

HSUBSCRIBER The handle of the subscriber object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEDL (delete)
Deletes the session object. Performs an implicit close if the session is open. This
closes and deletes the session and all objects owned by it.

CALL 'AMSEDL' USING HSESS, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEDLDL (delete distribution list)
Deletes a distribution list object, and performs an implicit close if the distribution
list is open.

CALL 'AMSEDLDL' USING HSESS, HDISTLIST, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HDISTLIST PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HDISTLIST The distribution list handle returned by AMSECRDL (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEDLMS (delete message)
Deletes a message object.

CALL 'AMSEDLMS' USING HSESS, HMSG, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HMSG The message handle returned by AMSECRMS (input).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL session interface

Chapter 12. COBOL object interface reference 289

AMSEDLPO (delete policy)
Deletes a policy object.

CALL 'AMSEDLPO' USING HSESS, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HPOLICY The policy handle returned by AMSECRPO (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEDLPB (delete publisher)
Deletes a publisher object, and performs an implicit close if the publisher is open.

CALL 'AMSEDLPB' USING HSESS, HPUBLISHER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HPUBLISHER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HPUBLISHER The publisher handle returned by AMSECRPB (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEDLRC (delete receiver)
Deletes a receiver object, and performs an implicit close if the receiver is open.

CALL 'AMSEDLRC' USING HSESS, HRECEIVER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HRECEIVER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HRECEIVER The receiver handle returned by AMSECRRC (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEDLSN (delete sender)
Deletes a sender object, and performs an implicit close if the sender is open.

CALL 'AMSEDLSN' USING HSESS, HSENDER, COMPCODE, REASON.

Declare the parameters as follows:

COBOL session interface

290 MQSeries Application Messaging Interface

01 HSESS PIC S9(9) BINARY.
01 HSENDER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HSENDER The sender handle returned by AMSECRSN (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEDLSB (delete subscriber)
Deletes a subscriber object, and performs an implicit close if the subscriber is open.

CALL 'AMSEDLSB' USING HSESS, HSUBSCRIBER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HSUBSCRIBER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEGHDL (get distribution list handle)
Returns the handle of the distribution list object with the specified name.

CALL 'AMSEGHDL' USING HSESS, NAME, HDISTLIST, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HDISTLIST PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the distribution list (input).

HDISTLIST The handle of the distribution list object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEGTLE (get last error codes)
Gets the information (completion and reason codes) from the last error for the
session.

CALL 'AMSEGTLE' USING HSESS, BUFFLEN, STRINGLEN, ERRORTEXT,
REASON2, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.

COBOL session interface

Chapter 12. COBOL object interface reference 291

01 ERRORTEXT PIC X(n).
01 REASON2 PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

BUFFLEN Reserved, must be zero (input).

STRINGLEN Reserved (output).

ERRORTEXT Reserved (output).

REASON2 A secondary reason code (output). If REASON indicates
AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
REASON2 gives an MQSeries reason code.

COMPCODE Completion code (output).

REASON Reason code (output). A value of AMRC-SESSION-HANDLE-ERR
indicates that the AMSEGTLE function call has itself detected an
error and failed.

AMSEGHMS (get message handle)
Returns the handle of the message object with the specified name.

CALL 'AMSEGHMS' USING HSESS, NAME, HMSG, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the message (input).

HMSG The handle of the message object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEGHPO (get policy handle)
Returns the handle of the policy object with the specified name.

CALL 'AMSEGHPO' USING HSESS, NAME, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the policy (input).

HPOLICY The handle of the policy object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL session interface

292 MQSeries Application Messaging Interface

AMSEGHPB (get publisher handle)
Returns the handle of the publisher object with the specified name.

CALL 'AMSEGHPB' USING HSESS, NAME, HPUBLISHER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HPUBLISHER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the publisher (input).

HPUBLISHER The handle of the publisher object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEGHRC (get receiver handle)
Returns the handle of the receiver service object with the specified name.

CALL 'AMSEGHRC' USING HSESS, NAME, HRECEIVER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HRECEIVER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the receiver (input).

HRECEIVER The handle of the receiver object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEGHSN (get sender handle)
Returns the handle of the sender service object with the specified name.

CALL 'AMSEGHSN' USING HSESS, NAME, HSENDER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HSENDER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the sender (input).

HSENDER The handle of the sender object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL session interface

Chapter 12. COBOL object interface reference 293

AMSEGHSB (get subscriber handle)
Returns the handle of the subscriber object with the specified name.

CALL 'AMSEGHSB' USING HSESS, NAME, HSUBSCRIBER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 NAME PIC X(n).
01 HSUBSCRIBER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

NAME The name of the subscriber (input).

HSUBSCRIBER The handle of the subscriber object (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSEOP (open)
Opens the session object using the specified policy options. The policy, together
with the local host file, provides the connection definition that enables the
connection object to be created. The specified library is loaded and initialized.
(Because client connections are not supported on OS/390, programs running on
OS/390 must use a local queue manager). The connection to the underlying
message transport (MQSeries) is then opened.

CALL 'AMSEOP' USING HSESS, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSERB (rollback)
Rolls back a unit of work.

CALL 'AMSERB' USING HSESS, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECR (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COBOL session interface

294 MQSeries Application Messaging Interface

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL session interface

Chapter 12. COBOL object interface reference 295

Message interface functions
A message object encapsulates an MQSeries message descriptor (MQMD), and
name/value elements such as the topic data for publish/subscribe messages. It can
also contain the message data, or this can be passed as a separate parameter.

A name/value element in a message object is held in an AMELEM structure. See
“Using name/value elements” on page 236 for details.

The initial state of the message object is:
CCSID default queue manager CCSID
CORRELATIONID all zeroes
DATALENGTH zero
DATAOFFSET zero
ELEMENTCOUNT zero
ENCODING AMENC-NATIVE
FORMAT AMFMT-STRING
GROUPSTATUS AMGRP-MSG-NOT-IN-GROUP
TOPICCOUNT zero

When a message object is used to send a message, it will not normally be left in
the same state as it was prior to the send. Therefore, if you use the message object
for repeated send operations, it is advisable to reset it to its initial state (see
AMMSRS on page 308) and rebuild it each time.

Note that the following calls are only valid after a session has been opened with
an AMSEOP call or after you have explicitly set the element CCSID with an
AMMSSELC call:

AMMSADEL (add element) page 296

AMMSDEEL (delete element) page 298

AMMSGTEL (get element) page 301

AMMSGTEC (get element count)
page 301

AMMSDENE (delete named element)
page 299

AMMSGTNE (get named element)
page 305

AMMSGTNC (get named element count)
page 306

AMMSADTO (add topic) page 297

AMMSDETO (delete topic) page 299

AMMSGTTO (get topic) page 307

AMMSGTTC (get topic count)
page 307

AMMSADEL (add element)
Adds a name/value element to a message (such as a publish/subscribe message).

CALL 'AMMSADEL' USING HMSG, AMELEM, OPTIONS, COMPCODE, REASON.

Declare the parameters as follows:

COBOL message interface

296 MQSeries Application Messaging Interface

01 HMSG PIC S9(9) BINARY.
01 AMELEM.

COPY AMTELEMV.
01 OPTIONS PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

AMELEM An AMELEM element structure, which specifies the element to be
added (input). It will not replace an existing element with the same
name.

OPTIONS Reserved, must be set to zero (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSADFI (add filter)
Adds a filter to a subscribe or unsubscribe request message.

CALL 'AMMSADFI' USING HMSG, FILTERLEN, TOPIC, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 FILTERLEN PIC S9(9) BINARY,
01 FILTER PIC X(n),
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

FILTERLEN The length in bytes of the filter (input). A value of
AMLEN-NULL-TERM specifies that the string is null terminated.

FILTER The filter to be added (input). The syntax of the filter string is
described in the MQSeries Integrator Version 2.0 Programming Guide.

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSADTO (add topic)
Adds a topic to a publish/subscribe message.

CALL 'AMMSADTO' USING HMSG, TOPICLEN, TOPIC, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 TOPICLEN PIC S9(9) BINARY.
01 TOPIC PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

TOPICLEN The length in bytes of the topic (input).

TOPIC The topic to be added (input).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL message interface

Chapter 12. COBOL object interface reference 297

AMMSCLEC (clear error codes)
Clears the error codes in the message object.

CALL 'AMMSCLEC' USING HMSG, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSDEEL (delete element)
Deletes an element with the specified index from a message (such as a
publish/subscribe message). Indexing is within all elements of the message, and
might include topics or filters (which are specialized elements).

CALL 'AMMSDEEL' USING HMSG, ELEMINDEX, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 ELEMINDEX PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

ELEMINDEX The index of the required element in the message, starting from
zero (input). On completion, elements with higher ELEMINDEX
values than that specified will have their index value reduced by
one.

Use AMMSGTEC to get the number of elements in the message.

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSDEFI (delete filter)
Deletes a filter from a subscribe or unsubscribe message at the specified index.
Indexing is within all filters.

CALL 'AMMSDEFI' USING HMSG, FILTERINDEX, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 FILTERINDEX PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

FILTERINDEX The index of the required filter in the message, starting from zero
(input). AMMSGTFI gets the number of filters in the message.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL message interface

298 MQSeries Application Messaging Interface

AMMSDENE (delete named element)
Deletes a named element from a message (such as a publish/subscribe message), at
the specified index. Indexing is within all elements that share the same name.

CALL 'AMMSDENE' USING HMSG, NAMEINDEX, NAMELEN, NAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 NAMEINDEX PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

NAMEINDEX The index of the required named element in the message (input).
Specifying an index of zero deletes the first element with the
specified name. On completion, elements with higher NAMEINDEX
values than that specified will have their index value reduced by
one.

Use AMMSGTNC to get the number of elements in the message
with the specified name.

NAMELEN The length of the element name, in bytes (input).

NAME The name of the element to be deleted (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSDETO (delete topic)
Deletes a topic from a publish/subscribe message, at the specified index. Indexing
is within all topics in the message.

CALL 'AMMSDETO' USING HMSG, TOPICINDEX, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 TOPICINDEX PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

TOPICINDEX The index of the required topic in the message, starting from zero
(input). On completion, topics with higher TOPICINDEX values than
that specified will have their index value reduced by one.

Use AMMSGTTC to get the number of topics in the message.

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGELC (get element CCSID)
Gets the message element CCSID. This is the coded character set identifier used for
passing message element data (including topic and filter data) to or from an
application.

CALL 'AMMSGELCC' USING HMSG, ELEMENTCCSID, COMPCODE, REASON.

COBOL message interface

Chapter 12. COBOL object interface reference 299

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 ELEMENTCCSID PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

ELEMENTCCSID The element coded character set identifier (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTCC (get CCSID)
Gets the coded character set identifier of the message.

CALL 'AMMSGTCC' USING HMSG, CCSID, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 CCSID PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

CCSID The coded character set identifier (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTCI (get correl ID)
Gets the correlation identifier of the message.

CALL 'AMMSGTCI' USING HMSG, BUFFLEN, CORRELIDLEN, CORRELID,
COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 CORRELIDLEN PIC S9(9) BINARY.
01 CORRELID PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

BUFFLEN The length in bytes of a buffer in which the correlation identifier is
returned (input).

CORRELIDLEN The length of the correlation identifier, in bytes (output).

CORRELID The correlation identifier (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTDL (get data length)
Gets the length of the message data in the message object.

CALL 'AMMSGTDL' USING HMSG, LENGTH, COMPCODE, REASON.

COBOL message interface

300 MQSeries Application Messaging Interface

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 LENGTH PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

LENGTH The length of the message data, in bytes (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTDO (get data offset)
Gets the current offset in the message data for reading or writing data bytes.

CALL 'AMMSGTDO' USING HMSG, OFFSET, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 OFFSET PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

OFFSET The byte offset in the message data (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTEL (get element)
Gets an element from a message.

CALL 'AMMSGTEL' USING HMSG, ELEMINDEX, ELEM, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 ELEMINDEX PIC S9(9) BINARY.
01 ELEM.

COPY AMTELEMV.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

ELEMINDEX The index of the required element in the message, starting from
zero (input). Use AMMSGTEC to get the number of elements in
the message.

ELEM The selected element in the message (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTEC (get element count)
Gets the total number of elements in a message.

CALL 'AMMSGTEC' USING HMSG, COUNT, COMPCODE, REASON.

Declare the parameters as follows:

COBOL message interface

Chapter 12. COBOL object interface reference 301

01 HMSG PIC S9(9) BINARY.
01 COUNT PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

COUNT The number of elements in the message (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTEN (get encoding)
Gets the value used to encode numeric data types for the message.

CALL 'AMMSGTEN' USING HMSG, ENCODING, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 ENCODING PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

ENCODING The encoding of the message (output). The following values can be
returned:
AMENC-NATIVE
AMENC-NORMAL
AMENC-NORMAL-FLOAT-390
AMENC-REVERSED
AMENC-REVERSED-FLOAT-390
AMENC-UNDEFINED

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTFC (get filter count)
Gets the total number of filters in a publish/subscribe message.

CALL 'AMMSGTFC' USING HMSG, COUNT, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 COUNT PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

COUNT The number of filters (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTFI (get filter)
Get a filter from a publish/subscribe message at the specified index. Indexing is
within all filters.

CALL 'AMMSGTFI' USING HMSG, INDEX, BUFFLEN, FILTERLEN,
FILTER, COMPCODE, REASON.

COBOL message interface

302 MQSeries Application Messaging Interface

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 INDEX PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 FILTERLEN PIC S9(9) BINARY.
01 FILTER PIC X(N),
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

INDEX The index of the required filter in the message (input). Specifying
an index of zero returns the first filter. AMMSGTFC gets the number of
filters in the message.

BUFFLEN The length in bytes of a buffer in which the filter is returned
(input).

FILTERLEN The length of the filter, in bytes (output).

FILTER The filter (output)

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTFO (get format)
Gets the format of the message.

CALL 'AMMSGTFO' USING HMSG, BUFFLEN, FORMATLEN, FORMAT, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 FORMATLEN PIC S9(9) BINARY.
01 FORMAT PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

BUFFLEN The length in bytes of a buffer in which the format is returned
(input).

FORMATLEN The length of the format, in bytes (output).

FORMAT The format of the message (output). The values that can be
returned include the following:
AMFMT-NONE
AMFMT-STRING
AMFMT-RF-HEADER

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTGS (get group status)
Gets the group status of the message. This indicates whether the message is in a
group, and if it is the first, middle, last or only one in the group.

CALL 'AMMSGTGS' USING HMSG, STATUS, COMPCODE, REASON.

Declare the parameters as follows:

COBOL message interface

Chapter 12. COBOL object interface reference 303

01 HMSG PIC S9(9) BINARY.
01 STATUS PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

STATUS The group status (output). It can take one of the following values:
AMGRP-MSG-NOT-IN-GROUP
AMGRP-FIRST-MSG-IN-GROUP
AMGRP-MIDDLE-MSG-IN-GROUP
AMGRP-LAST-MSG-IN-GROUP
AMGRP-ONLY-MSG-IN-GROUP

Alternatively, bitwise tests can be performed using the constants:
AMGF-IN-GROUP
AMGF-FIRST
AMGF-LAST

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTLE (get last error)
Gets the information (completion and reason codes) from the last error for the
message object.

CALL 'AMMSGTLE' USING HSESS, BUFFLEN, STRINGLEN, ERRORTEXT,
REASON2, COMPCODE, REASON.

Declare the parameters as follows:
01 HSESS PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.
01 ERRORTEXT PIC X(n).
01 REASON2 PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSESS The session handle returned by AMSECRMS (input).

BUFFLEN Reserved, must be zero (input).

STRINGLEN Reserved (output).

ERRORTEXT Reserved (output).

REASON2 A secondary reason code (output). If REASON indicates
AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
REASON2 gives an MQSeries reason code.

COMPCODE Completion code (output).

REASON Reason code (output). A value of AMRC-MSG-HANDLE-ERR
indicates that the AMMSGTLE function call has itself detected an
error and failed.

AMMSGTMI (get message ID)
Gets the message identifier.

CALL 'AMMSGTMI' USING HMSG, BUFFLEN, MSGIDLEN, MSGID, COMPCODE, REASON.

Declare the parameters as follows:

COBOL message interface

304 MQSeries Application Messaging Interface

01 HMSG PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 MSGIDLEN PIC S9(9) BINARY.
01 MSGID PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

BUFFLEN The length in bytes of a buffer in which the message identifier is
returned (input).

MSGIDLEN The length of the message identifier, in bytes (output).

MSGID The message identifier (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTNA (get name)
Gets the name of the message object.

CALL 'AMMSGTNA' USING HMSG, BUFFLEN, NAMELEN, NAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

BUFFLEN The length in bytes of a buffer in which the name is returned
(input).

NAMELEN The length of the name, in bytes (output).

NAME The message object name (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTNE (get named element)
Gets a named element from a message (such as a publish/subscribe message).

CALL 'AMMSGTNE' USING HMSG, NAMEINDEX, NAMELEN, NAME, ELEM
COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 NAMEINDEX PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 ELEM.

COPY AMTELEMV.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

COBOL message interface

Chapter 12. COBOL object interface reference 305

NAMEINDEX The index of the required named element in the message (input).
Specifying an index of zero returns the first element with the
specified name.

Use AMMSGTNC to get the number of elements in the message
with the specified name.

NAMELEN The length of the element name, in bytes (input).

NAME The element name (input).

ELEM The selected named element in the message (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTNC (get named element count)
Gets the number of elements in a message with a specified name.

CALL 'AMMSGTNC' USING HMSG, NAMELEN, NAME, COUNT, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COUNT PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

NAMELEN The length of the element name, in bytes (input).

NAME The specified element name (input).

COUNT The number of elements in the message with the specified name
(output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTRC (get report code)
Gets the feedback code from a message of type AMMT-REPORT. If the message
type is not AMMT-REPORT, error code AMRC-MSG-TYPE-NOT-REPORT will be
returned.

CALL 'AMMSGTRC' USING HMSG, REPORTCODE, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 REPORTCODE PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

REPORTCODE The feedback code (output). The following values can be returned:
AMFB-EXPIRATION
AMFB-COA
AMFB-COD
AMFB-ERROR

Error code AMRC_MSG_TYPE_NOT_REPORT may be issued.

COBOL message interface

306 MQSeries Application Messaging Interface

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTTO (get topic)
Gets a topic from a publish/subscribe message, at the specified index. Indexing is
within all topics.

CALL 'AMMSGTTO' USING HMSG, TOPICINDEX, BUFFLEN, TOPICLEN, TOPIC,
COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 TOPICINDEX PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 TOPICLEN PIC S9(9) BINARY.
01 TOPIC PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

TOPICINDEX The index of the required topic in the message (input). Specifying
an index of zero returns the first topic.

Use AMMSGTTC to get the number of topics in the message.

BUFFLEN The length in bytes of a buffer in which the topic is returned
(input). If BUFFLEN is specified as zero, only the topic length is
returned (in TOPICLEN), not the topic itself.

TOPICLEN The length of the topic, in bytes (output).

TOPIC The topic (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTTC (get topic count)
Gets the total number of topics in a publish/subscribe message.

CALL 'AMMSGTTC' USING HMSG, COUNT, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 COUNT PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

COUNT The number of topics (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSGTTY (get type)
Gets the type from a message.

CALL 'AMMSGTTY' USING HMSG, TYPE, COMPCODE, REASON.

Declare the parameters as follows:

COBOL message interface

Chapter 12. COBOL object interface reference 307

01 HMSG PIC S9(9) BINARY.
01 TYPE PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

TYPE The message type (output). The following values can be returned:
AMMT-DATAGRAM
AMMT-REQUEST
AMMT-REPLY
AMMT-REPORT

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSREBY (read bytes)
Reads up to the specified number of data bytes from the message object, starting at
the current data offset. The data offset must be positioned before the end of the
data for the read to be successful (see “AMMSSTDO (set data offset)” on page 309).
AMMSREBY will advance the data offset by the number of bytes read, leaving the
offset immediately after the last byte read.

CALL 'AMMSREBY' USING HMSG, READLEN, DATALEN, DATA, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 READLEN PIC S9(9) BINARY.
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

READLEN The maximum number of bytes to be read (input). The data buffer
specified by DATA must be at least this size. The number of bytes
returned is the minimum of READLEN and the number of bytes
between the data offset and the end of the data.

DATALEN The number of bytes read (output).

DATA The read data (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSRS (reset)
Resets the message object to its initial state (see page 296).

CALL 'AMMSRS' USING HMSG, OPTIONS, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

OPTIONS Reserved, must be specified as zero (input).

COMPCODE Completion code (output).

COBOL message interface

308 MQSeries Application Messaging Interface

REASON Reason code (output).

AMMSSTCC (set CCSID)
Sets the coded character set identifier of the message.

CALL 'AMMSSTCC' USING HMSG, CCSID, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 CCSID PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

CCSID The coded character set identifier (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSSTCI (set correl ID)
Sets the correlation identifier of the message.

CALL 'AMMSSTCI' USING HMSG, CORRELIDLEN, CORRELID, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 CORRELIDLEN PIC S9(9) BINARY.
01 CORRELID PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

CORRELIDLEN The length of the correlation identifier, in bytes (input).

CORRELID The correlation identifier (input). If CORRELIDLEN is set to zero,
the message correlation identifier is reset and the CORRELID
parameter will be ignored.

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSSTDO (set data offset)
Sets the data offset for reading or writing byte data. If the data offset is greater
than the current data length, it is valid to write data into the message at that offset,
but an attempt to read data will result in an error. See “AMMSREBY (read bytes)”
on page 308 and “AMMSWRBY (write bytes)” on page 311.
CALL 'AMMSSTDO' USING HMSG, OFFSET, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 OFFSET PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

OFFSET The offset in bytes (input). Set an offset of zero to read or write
from the start of the data.

COBOL message interface

Chapter 12. COBOL object interface reference 309

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSSELC (set element ccsid)
This specifies the character set to be used for subsequent element message data
(including topic and filter data) passed to or returned from the application.
Existing elements in the message are unmodified (but will be returned in this
character set). The default value of element CCSID is the queue manager CCSID.

CALL 'AMMSSELC' USING HMSG, ELEMENTCCSID, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 ELEMENTCCSID PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

ELEMENTCCSID The element coded character set identifier (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSSTEN (set encoding)
Sets the encoding of the data in the message.

CALL 'AMMSSTEN' USING HMSG, ENCODING, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 ENCODING PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

ENCODING The encoding of the message (input). It can take one of the
following values:
AMENC-NATIVE
AMENC-NORMAL
AMENC-NORMAL-FLOAT-390
AMENC-REVERSED
AMENC-REVERSED-FLOAT-390
AMENC-UNDEFINED

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSSTFO (set format)
Sets the format of the message.

CALL 'AMMSSTFO' USING HMSG, FORMATLEN, FORMAT, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 FORMATLEN PIC S9(9) BINARY.
01 FORMAT PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

COBOL message interface

310 MQSeries Application Messaging Interface

HMSG The message handle returned by AMSECRMS (input).

FORMATLEN The length of the format, in bytes (input).

FORMAT The format of the message (input). It can take one of the following
values, or an application defined string:
AMFMT-NONE
AMFMT-STRING
AMFMT-RF-HEADER

If set to AMFMT-NONE, the default format for the sender will be
used (if available).

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSSTGS (set group status)
Sets the group status of the message. This indicates whether the message is in a
group, and if it is the first, middle, last or only one in the group. Once you start
sending messages in a group, you must complete the group before sending any
messages that are not in the group.

If you specify AMGRP-MIDDLE-MSG-IN-GROUP or AMGRP-LAST-MSG-IN-
GROUP without specifying AMGRP-FIRST-MSG-IN-GROUP, the behavior is the
same as for AMGRP-FIRST-MSG-IN-GROUP and AMGRP-ONLY-MSG-IN-GROUP
respectively.

If you specify AMGRP-FIRST-MSG-IN-GROUP out of sequence, then the behavior
is the same as for AMGRP-MIDDLE-MSG-IN-GROUP.

CALL 'AMMSSTGS' USING HMSG, STATUS, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 STATUS PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

STATUS The group status (input). It can take one of the following values:
AMGRP-MSG-NOT-IN-GROUP
AMGRP-FIRST-MSG-IN-GROUP
AMGRP-MIDDLE-MSG-IN-GROUP
AMGRP-LAST-MSG-IN-GROUP
AMGRP-ONLY-MSG-IN-GROUP

COMPCODE Completion code (output).

REASON Reason code (output).

AMMSWRBY (write bytes)
Writes the specified number of data bytes into the message object, starting at the
current data offset. See “AMMSSTDO (set data offset)” on page 309.

If the data offset is not at the end of the data, existing data is overwritten. If the
data offset is set beyond the current data length, the message data between the
data length and the data offset is undefined. This feature enables applications to
construct messages in a non-sequential manner, but care must be taken to ensure
that a message is completely filled with data before it is sent.

COBOL message interface

Chapter 12. COBOL object interface reference 311

AMMSWRBY will advance the data offset by the number of bytes written, leaving
it immediately after the last byte written.

CALL 'AMMSWRBY' USING HMSG, WRITELEN, BYTEDATA, COMPCODE, REASON.

Declare the parameters as follows:
01 HMSG PIC S9(9) BINARY.
01 WRITELEN PIC S9(9) BINARY.
01 BYTEDATA PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HMSG The message handle returned by AMSECRMS (input).

WRITELEN The number of bytes to be written (input).

BYTEDATA The data bytes (input).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL message interface

312 MQSeries Application Messaging Interface

Sender interface functions
A sender object encapsulates an MQSeries object descriptor (MQOD) structure. This
represents an MQSeries queue on a local or remote queue manager. An open
sender service is always associated with an open connection object (such as a
queue manager connection). Support is also included for dynamic sender services
(those that encapsulate model queues). The required sender service object
definitions can be provided from a repository, or created without a repository
definition by defaulting to the existing queue objects on the local queue manager.

The high-level functions AMHSNMS (send message), AMHSNRQ (send request),
and AMHSNRS (send response) call these interface functions as required to open
the sender service and send a message. Additional calls are provided here to give
the application program extra functionality.

A sender service object must be created before it can be opened. This is done
implicitly using the high-level functions, or the AMSECRSN (create sender) session
interface functions.

A response sender service is a special type of sender service used for sending a
response to a request message. It must be created using the default definition, and
not a definition stored in a repository (see “Services and policies” on page 455).
Once created, it must not be opened until used in its correct context as a response
sender when receiving a request message with AMRCRC (receive) or AMHRCRQ
(receive request). When opened, its queue and queue manager properties are
modified to reflect the ReplyTo destination specified in the message being received.
When first used in this context, the sender service becomes a response sender
service.

AMSNCLEC (clear error codes)
Clears the error codes in the sender object.

CALL 'AMSNCLEC' USING HSENDER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSNCL (close)
Closes the sender service.

CALL 'AMSNCL' USING HSENDER, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

COBOL sender interface

Chapter 12. COBOL object interface reference 313

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSNGTCC (get CCSID)
Gets the coded character set identifier of the sender service. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.

CALL 'AMSNGTCC' USING HSENDER, CCSID, COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 CCSID PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

CCSID The coded character set identifier (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSNGTEN (get encoding)
Gets the value used to encode numeric data types for the sender service. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.

CALL 'AMSNGTEN' USING HSENDER, ENCODING, COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 ENCODING PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

ENCODING The encoding (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSNGTLE (get last error)
Gets the information (completion and reason codes) from the last error for the
sender object.

CALL 'AMSNGTLE' USING HSENDER, BUFFLEN, STRINGLEN, ERRORTEXT,
REASON2, COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.

COBOL sender interface

314 MQSeries Application Messaging Interface

01 ERRORTEXT PIC X(n).
01 REASON2 PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

BUFFLEN Reserved, must be zero (input).

STRINGLEN Reserved (output).

ERRORTEXT Reserved (output).

REASON2 A secondary reason code (output). If REASON indicates
AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
REASON2 gives an MQSeries reason code.

COMPCODE Completion code (output).

REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
indicates that the AMSNGTLE function call has itself detected an
error and failed.

AMSNGTNA (get name)
Gets the name of the sender service.

CALL 'AMSNGTNA' USING HSENDER, BUFFLEN, NAMELEN, NAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

BUFFLEN The length in bytes of a buffer in which the name is returned
(input).

NAMELEN The length of the name, in bytes (output).

NAME The name of the sender service (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSNOP (open)
Opens the sender service.

CALL 'AMSNOP' USING HSENDER, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COBOL sender interface

Chapter 12. COBOL object interface reference 315

COMPCODE Completion code (output).

REASON Reason code (output).

AMSNSN (send)
Sends a message to the destination specified by the sender service. If the sender
service is not open, it will be opened (if this action is specified in the policy
options).

The message data can be passed in the message object, or as a separate parameter
(this means that the data does not have to be copied into the message object prior
to sending the message, which might improve performance especially if the
message data is large).

CALL 'AMSNSN' USING HSENDER, HPOLICY, HRECEIVER, HRCVMSG, DATALEN, DATA,
HSNDMSG, COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 HRECEIVER PIC S9(9) BINARY.
01 HRCVMSG PIC S9(9) BINARY.
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 HSNDMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

HRECEIVER The handle of the receiver service to which the response to this
message should be sent, if the message being sent is a request
message (input). Specify as AMH-NULL-HANDLE if no response
is required.

HRCVMSG The handle of a received message that is being responded to, if this
is a response message (input). Specify as AMH-NULL-HANDLE if
this is not a response message.

DATALEN The length of the message data, in bytes (input). If specified as
zero, any message data will be passed in the message object
(HSNDMSG).

DATA The message data, if DATALEN is non-zero (input).

HSNDMSG The handle of a message object that specifies the properties of the
message being sent (input). If DATALEN is zero, it can also contain
the message data. If specified as AMH-NULL-HANDLE, the
default message object (constant: AMSD-SND-MSG-HANDLE) is
used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSNSNFL (send file)
Sends data from a file.

COBOL sender interface

316 MQSeries Application Messaging Interface

CALL 'AMSNSNFL' USING HSENDER, HPOLICY, OPTIONS, DIRNAMELEN,
DIRNAME, FILENAMELEN, FILENAME, HSNDMSG,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSENDER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 DIRNAMELEN PIC S9(9) BINARY.
01 DIRNAME PIC X(n).
01 FILENAMELEN PIC S9(9) BINARY.
01 FILENAME PIC X(n).
01 HSNDMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSENDER The sender handle returned by AMSECRSN (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

OPTIONS A reserved field that must be specified as zero.

DIRNAMELEN A reserved field that must be specified as zero (input).

DIRNAME A reserved field.

FILENAMELEN The length of the file name in bytes (input).

FILENAME The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel with the message for use with a receive file call (see
“AMRCRCFL (receive file)” on page 325 for more details). Note
that the file name sent will exactly match the supplied file name; it
will not be converted or expanded in any way.

HSNDMSG The handle of a message object that specifies the properties of the
message being sent (input). If specified as AMN-NULL-HANDLE,
the system default send message (constant: AMN-SND-MSG-
HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
If, in your application, you have previously used a message object, referenced by
either handle or name, to send or receive data (including AMI elements or topics),
you will need to explicitly call AMMSRS (reset message) before re-using the object
for sending a file. This applies even if you use the system default message object
handle (constant: AMSD-SND-MSG-HANDLE).

COBOL sender interface

Chapter 12. COBOL object interface reference 317

Receiver interface functions
A receiver object encapsulates an MQSeries object descriptor (MQOD) structure.
This represents a local MQSeries queue. An open receiver service is always
associated with an open connection object, such as a queue manager connection.
Support is also included for dynamic receiver services (that encapsulate model
queues). The required receiver service object definitions can be provided from a
repository or can be created automatically from the set of existing queue objects
available on the local queue manager.

There is a definition type associated with each receiver service:
AMDT-UNDEFINED
AMDT-TEMP-DYNAMIC
AMDT-DYNAMIC
AMDT-PREDEFINED

A receiver service created from a repository definition will be initially of type
AMDT-PREDEFINED or AMDT-DYNAMIC. When opened, its definition type
might change from AMDT-DYNAMIC to AMDT-TEMP-DYNAMIC according to
the properties of its underlying queue object.

A receiver service created with default values (that is, without a repository
definition) will have its definition type set to AMDT-UNDEFINED until it is
opened. When opened, this will become AMDT-DYNAMIC, AMDT-TEMP-
DYNAMIC, or AMDT-PREDEFINED, according to the properties of its underlying
queue object.

AMRCBR (browse)
Browses a message. See the MQSeries Application Programming Guide for a full
description of the browse options.

CALL 'AMRCBR' USING HRECEIVER, HPOLICY, OPTIONS, BUFFLEN, DATALEN, DATA
HRCVMSG, HSENDER, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 HRCVMSG PIC S9(9) BINARY.
01 HSENDER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

OPTIONS Options controlling the browse operation (input). Possible values
are:
AMBRW-NEXT
AMBRW-FIRST
AMBRW-RECEIVE-CURRENT
AMBRW-DEFAULT (AMBRW-NEXT)

COBOL receiver interface

318 MQSeries Application Messaging Interface

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

||

||
|
|

||
|

|
|
|
|

AMBRW-RECEIVE-CURRENT is equivalent to AMRCRC for the message
under the browse cursor.

BUFFLEN The length in bytes of a buffer in which the data is returned
(input).

DATALEN The length of the message data, in bytes (input/output).

DATA The received message data (output).

HRCVMSG The handle of the message object for the received message
(output).

HSENDER The handle of the response sender service that the response
message must be sent to, if this is a request message (output). This
sender service must be created without a repository definition (that
is, it must not exist before the AMI session is started), and must be
used exclusively for sending a response. Its definition type must be
AMDT-UNDEFINED (it will be set to AMDT-RESPONSE by this
call).

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
To return the data in the message object (HRCVMSG), set BUFFLEN to zero and
DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length (an integer greater than zero) and DATALEN to -1.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set BUFFLEN to zero.
DATALEN must not be set to -1. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC-MSG-TRUNCATED warning.

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length (an integer greater than zero) and ensure that
DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
not selected in the policy receive attributes (the default), an AMRC-RECEIVE-
BUFF-LEN-ERR error will be generated. If the buffer is too small, and Accept
Truncated Message is selected in the policy receive attributes, the truncated
message is returned with an AMRC-MSG-TRUNCATED warning.

AMRCBRSE (browse selection message)
Browses a message identified by specifying the Correlation ID from the selection
message as a selection criterion. See the MQSeries Application Programming Guide for
a full description of the browse options.

CALL 'AMRCBRSE' USING HRECEIVER, HPOLICY, OPTIONS, HSELMSG,
BUFFLEN, DATALEN, DATA, HRCVMSG,
HRESPONSE, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 HSELMSG PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.

COBOL receiver interface

Chapter 12. COBOL object interface reference 319

|
|

||
|

||

||

||
|

||
|
|
|
|
|
|

||

||

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|

|

|
|
|
|
|

01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 HRCVMSG PIC S9(9) BINARY.
01 HRESPONSE PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

OPTIONS Options controlling the browse operation (input). Possible values
are:
AMBRW-NEXT
AMBRW-FIRST
AMBRW-RECEIVE-CURRENT
AMBRW-DEFAULT (AMBRW-NEXT)

AMBRW-RECEIVE-CURRENT is equivalent to AMRCRC for the message
under the browse cursor.

HSELMSG The handle of a selection message object (input). This is used
together with the browse options to identify the message to be
received (for example, using the Correlation ID). Specify as
AMH_NULL_HANDLE to get the next available message. The
CCSID, element CCSID, and encoding values from the selection
message define the target values for any data conversions. If target
conversion values are required without using the Correlation ID
for selection, then this can be reset (see AMMSGELC on page 299)
before invoking the AMRCBRSE function.

BUFFLEN The length in bytes of a buffer in which the data is returned
(input).

DATALEN The length of the message data, in bytes (input/output).

DATA The received message data (output).

HRCVMSG The handle of the message object for the received message
(output).

HSENDER The handle of the response sender service that the response
message must be sent to, if this is a request message (output). This
sender service must be created without a repository definition (that
is, it must not exist before the AMI session is started), and must be
used exclusively for sending a response. Its definition type must be
AMDT-UNDEFINED (it will be set to AMDT-RESPONSE by this
call).

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
To return the data in the message object (HRCVMSG), set BUFFLEN to zero and
DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length (an integer greater than zero) and DATALEN to -1.

COBOL receiver interface

320 MQSeries Application Messaging Interface

|
|
|
|
|
|

||

||
|
|

||
|

|
|
|
|

|
|

||
|
|
|
|
|
|
|
|

||
|

||

||

||
|

||
|
|
|
|
|
|

||

||

|
|
|

|
|

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set BUFFLEN to zero.
DATALEN must not be set to -1. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC-MSG-TRUNCATED warning.

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length (an integer greater than zero) and ensure that
DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
not selected in the policy receive attributes (the default), an AMRC-RECEIVE-
BUFF-LEN-ERR error will be generated. If the buffer is too small, and Accept
Truncated Message is selected in the policy receive attributes, the truncated
message is returned with an AMRC-MSG-TRUNCATED warning.

AMRCCLEC (clear error codes)
Clears the error codes in the receiver service object.

CALL 'AMRCCLEC' USING HRECEIVER, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMRCCL (close)
Closes the receiver service.

CALL 'AMRCCL' USING HRECEIVER, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMRCGTDT (get definition type)
Gets the definition type of the receiver service.

CALL 'AMRCGTDT' USING HRECEIVER, TYPE, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 TYPE PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

COBOL receiver interface

Chapter 12. COBOL object interface reference 321

|
|
|
|
|

|
|
|
|
|
|
|

HRECEIVER The receiver handle returned by AMSECRRC (input).

TYPE The definition type (output). It can be one of the following:
AMDT-UNDEFINED
AMDT-TEMP-DYNAMIC
AMDT-DYNAMIC
AMDT-PREDEFINED

Values other than AMDT-UNDEFINED reflect the properties of the
underlying queue object.

COMPCODE Completion code (output).

REASON Reason code (output).

AMRCGTLE (get last error)
Gets the information (completion and reason codes) from the last error for the
receiver object.

CALL 'AMRCGTLE' USING HRECEIVER, BUFFLEN, STRINGLEN, ERRORTEXT,
REASON2, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.
01 ERRORTEXT PIC X(n).
01 REASON2 PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

BUFFLEN Reserved, must be zero (input).

STRINGLEN Reserved (output).

ERRORTEXT Reserved (output).

REASON2 A secondary reason code (output). If REASON indicates
AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
REASON2 gives an MQSeries reason code.

COMPCODE Completion code (output).

REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
indicates that the AMRCGTLE function call has itself detected an
error and failed.

AMRCGTNA (get name)
Gets the name of the receiver service.

CALL 'AMRCGTNA' USING HRECEIVER, BUFFLEN, NAMELEN, NAME,
COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

COBOL receiver interface

322 MQSeries Application Messaging Interface

BUFFLEN The length in bytes of a buffer in which the name is returned
(input).

NAMELEN The length of the name, in bytes (output).

NAME The name of the receiver service (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMRCGTQN (get queue name)
Gets the queue name of the receiver service. This is used to determine the queue
name of a permanent dynamic receiver service, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. See also
AMRCSTQN (set queue name).

CALL 'AMRCGTQN' USING HRECEIVER, BUFFLEN, NAMELEN, QUEUENAME,
COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 QUEUENAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

BUFFLEN The length in bytes of a buffer in which the queue name is
returned (input).

NAMELEN The length of the queue name, in bytes (output).

QUEUENAME The queue name of the receiver service (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMRCOP (open)
Opens the receiver service.

CALL 'AMRCOP' USING HRECEIVER, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMRCRC (receive)
Receives a message.

COBOL receiver interface

Chapter 12. COBOL object interface reference 323

CALL 'AMRCRC' USING HRECEIVER, HPOLICY, HSELMSG, BUFFLEN, DATALEN, DATA,
HRCVMSG, HSENDER, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 HSELMSG PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 HRCVMSG PIC S9(9) BINARY.
01 HSENDER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

HSELMSG The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH-NULL-HANDLE to get the next
available message with no selection.

BUFFLEN The length in bytes of a buffer in which the data is returned
(input).

DATALEN The length of the message data, in bytes (output). Can be specified
as -1 (input).

DATA The received message data (output).

HRCVMSG The handle of the message object for the received message (input).
If specified as AMH-NULL-HANDLE, the default message object
(constant: AMSD-RCV-MSG-HANDLE) is used. The message object
is reset implicitly before the receive takes place.

HSENDER The handle of the response sender service that a response message
must be sent to, if this is a request message (input). This sender
service must have been created without a repository definition, and
used exclusively for sending a response. Its definition type must be
AMDT-UNDEFINED (it will be set to AMDT-RESPONSE by this
call).

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
To return the data in the message object (HRCVMSG), set BUFFLEN to zero and
DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length (an integer greater than zero) and DATALEN to -1.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set BUFFLEN to zero.
DATALEN must not be set to -1. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC-MSG-TRUNCATED warning.

COBOL receiver interface

324 MQSeries Application Messaging Interface

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length (an integer greater than zero) and ensure that
DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
not selected in the policy receive attributes (the default), an AMRC-RECEIVE-
BUFF-LEN-ERR error will be generated. If the buffer is too small, and Accept
Truncated Message is selected in the policy receive attributes, the truncated
message is returned with an AMRC-MSG-TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be selected in the policy receive
attributes. You can then remove the message by specifying -1 in both the BUFFLEN
and DATALEN parameters.

AMRCRCFL (receive file)
Receives file message data into a file.

CALL 'AMRCRCFL' USING HRECEIVER, HPOLICY, OPTIONS, HSELMSG,
DIRNAMELEN, DIRNAME, FILENAMELEN,
FILENAME, HRCVMSG, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 HSELMSG PIC S9(9) BINARY.
01 DIRNAMELEN PIC S9(9) BINARY.
01 DIRNAME PIC X(n).
01 FILENAMELEN PIC S9(9) BINARY.
01 FILENAME PIC X(n).
01 HRCVMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

HSELMSG The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH-NULL-HANDLE to get the next
available message with no selection. The CCSID, element CCSID,
and encoding values from the selection message define the target
values for any data conversions. If target conversion values are
required without using the Correlation ID for selection, then this
can be reset (see AMMSSTCI on page 309) before invoking the
AMRCRCFL function.

DIRNAMELEN Reserved, must be specified as zero (input). .

DIRNAME Reserved. .

FILENAMELEN The length of the file name in bytes (input). .

FILENAME The name of the file into which the transferred data is to be
received (input). This can include a directory prefix to define a
fully-qualified or relative file name. If blank then the AMI will use
the name of the originating file (including any directory prefix)
exactly as it was supplied on the send file call. Note that the
original file name may not be appropriate for use by the receiver,
either because a path name included in the file name is not

COBOL receiver interface

Chapter 12. COBOL object interface reference 325

applicable to the receiving system, or because the sending and
receiving systems use different file naming conventions.

HRCVMSG The handle of the message object to use to receive the file. This
parameter is updated with the message properties, for example the
Message ID. If the message is a file message, HRCVMSG receives the
message data. If HRCVMSG is specified as AMH-NULL-HANDLE, the
default message object (constant AMSD-RCV-MSG-HANDLE) is
used. The message object is reset implicitly before the receive takes
place.

COMPCODE Completion code (output).

REASON Reason code (output).

AMRCSTQN (set queue name)
Sets the queue name of the receiver service, when this encapsulates a model queue.
This can be used to specify the queue name of a recreated permanent dynamic
receiver service, in order to receive messages in a session subsequent to the one in
which it was created. See also AMRCGTQN (get queue name).

CALL 'AMRCSTQN' USING HRECEIVER, NAMELEN, QUEUENAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HRECEIVER PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 QUEUENAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HRECEIVER The receiver handle returned by AMSECRRC (input).

NAMELEN The length of the queue name, in bytes (input).

QUEUENAME The queue name of the receiver service (input).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL receiver interface

326 MQSeries Application Messaging Interface

Distribution list interface functions
A distribution list object encapsulates a list of sender objects.

AMDLCLEC (clear error codes)
Clears the error codes in the distribution list object.

CALL 'AMDLCLEC' USING HDISTLIST, COMPCODE, REASON.

Declare the parameters as follows:
01 HDISTLIST PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMDLCL (close)
Closes the distribution list.

CALL 'AMDLCL' USING HDISTLIST, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HDISTLIST PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMDLGTLE (get last error)
Gets the information (completion and reason codes) from the last error in the
distribution list object.

CALL 'AMDLGTLE' USING HDISTLIST, BUFFLEN, STRINGLEN, ERRORTEXT,
REASON2, COMPCODE, REASON.

Declare the parameters as follows:
01 HDISTLIST PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.
01 ERRORTEXT PIC X(n).
01 REASON2 PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

BUFFLEN Reserved, must be zero (input).

STRINGLEN Reserved (output).

ERRORTEXT Reserved (output).

COBOL distribution list interface

Chapter 12. COBOL object interface reference 327

REASON2 A secondary reason code (output). If REASON indicates
AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
REASON2 gives an MQSeries reason code.

COMPCODE Completion code (output).

REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
indicates that the AMDLGTLE function call has itself detected an
error and failed.

AMDLGTNA (get name)
Gets the name of the distribution list object.

CALL 'AMDLGTNA' USING HDISTLIST, BUFFLEN, NAMELEN, NAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HDISTLIST PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

BUFFLEN The length in bytes of a buffer in which the name is returned
(input).

NAMELEN The length of the name, in bytes (output).

NAME The distribution list object name (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMDLGTSC (get sender count)
Gets a count of the number of sender services in the distribution list.

CALL 'AMDLGTSC' USING HDISTLIST, COUNT, COMPCODE, REASON.

Declare the parameters as follows:
01 HDISTLIST PIC S9(9) BINARY.
01 COUNT PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

COUNT The number of sender services (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMDLGTSH (get sender handle)
Returns the handle of a sender service in the distribution list object with the
specified index.

CALL 'AMDLGTSH' USING HDISTLIST, HANDLEINDEX, HSENDER, COMPCODE, REASON.

Declare the parameters as follows:

COBOL distribution list interface

328 MQSeries Application Messaging Interface

01 HDISTLIST PIC S9(9) BINARY.
01 HANDLEINDEX PIC S9(9) BINARY.
01 HSENDER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

HANDLEINDEX The index of the required sender service in the distribution list
(input). Specify an index of zero to return the first sender service in
the list.

Use AMDLGTSC to get the number of sender services in the
distribution list.

HSENDER The handle of the sender service (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMDLOP (open)
Opens the distribution list object for each of the destinations in the distribution list.
The completion and reason codes returned by this function call indicate if the open
was unsuccessful, partially successful, or completely successful.

CALL 'AMDLOP' USING HDISTLIST, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HDISTLIST PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMDLSN (send)
Sends a message to each sender in the distribution list.

CALL 'AMDLSN' USING HDISTLIST, HPOLICY, HRECEIVER, DATALEN, DATA,
HMSG, COMPCODE, REASON.

Declare the parameters as follows:
01 HDISTLIST PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 HRECEIVER PIC S9(9) BINARY.
01 DATALEN PIC S9(9) BINARY.
01 DATA PIC X(n).
01 HMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COBOL distribution list interface

Chapter 12. COBOL object interface reference 329

HRECEIVER The handle of the receiver service to which the response to this
message should be sent, if the message being sent is a request
message (input). Specify as AMH-NULL-HANDLE if no response
is required.

DATALEN The length of the message data in bytes (input).If specified as zero,
any message data will be passed in the message object (HMSG).

DATA The message data, if DATALEN is non-zero (input).

HMSG The handle of a message object that specifies the properties of the
message being sent (input). If DATALEN is zero, the message object
can also contain the message data. If HMSG is specified as
AMH-NULL-HANDLE, the default send message object (constant:
AMSD-SND-MSG-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMDLSNFL (send file)
Sends data from a file to each sender in the distribution list.

CALL 'AMDLSNFL' USING HDISTLIST, HPOLICY, OPTIONS, DIRNAMELEN,
DIRNAME, FILENAMELEN, FILENAME, HMSG,
COMPCODE, REASON.

Declare the parameters as follows:
01 HDISTLIST PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 DIRNAMELEN PIC S9(9) BINARY.
01 DIRNAME PIC X(n).
01 FILENAMELEN PIC S9(9) BINARY.
01 FILENAME PIC X(n).
01 HMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HDISTLIST The distribution list handle returned by AMSECRDL (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

OPTIONS Reserved, must be specified as zero (input).

DIRNAMELEN Reserved, must be specified as zero (input).

DIRNAME Reserved.

FILENAMELEN The length of the file name in bytes (input).

FILENAME The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel with the message for use with a receive file call (see
“AMRCRCFL (receive file)” on page 325 for more details). Note
that the file name sent will exactly match the supplied file name; it
will not be converted or expanded in any way.

HMSG The handle of the message object to use to send the file (input).
This can be used to specify the Correlation ID for example. If

COBOL distribution list interface

330 MQSeries Application Messaging Interface

specified as ANM_NULL_HANDLE, the default send message
object (constant: AMSD_SND_MSG_HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

Usage notes
If, in your application, you have previously used a message object, referenced by
either handle or name, to send or receive data (including AMI elements or topics),
you will need to explicitly call AMMSRS (reset message) before re-using the object
for sending a file. This applies even if you use the system default message object
handle (constant: AMSD-SND-MSG-HANDLE).

The system default message object handle is used when you set HMSG to
AMH-NULL-HANDLE.

COBOL distribution list interface

Chapter 12. COBOL object interface reference 331

Publisher interface functions
A publisher object encapsulates a sender object. It provides support for publish
messages to a publish/subscribe broker.

AMPBCLEC (clear error codes)
Clears the error codes in the publisher object.

CALL 'AMPBCLEC' USING HPUBLISHER, COMPCODE, REASON.

Declare the parameters as follows:
01 HPUBLISHER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPUBLISHER The publisher handle returned by AMSECRPB (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMPBCL (close)
Closes the publisher service.

CALL 'AMPBCL' USING HPUBLISHER, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HPUBLISHER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPUBLISHER The publisher handle returned by AMSECRPB (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMPBGTCC (get CCSID)
Gets the coded character set identifier of the publisher service. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.

CALL 'AMPBGTCC' USING HPUBLISHER, CCSID, COMPCODE, REASON.

Declare the parameters as follows:
01 HPUBLISHER PIC S9(9) BINARY.
01 CCSID PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPUBLISHER The publisher handle returned by AMSECRPB (input).

CCSID The coded character set identifier (output).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL publisher interface

332 MQSeries Application Messaging Interface

AMPBGTEN (get encoding)
Gets the value used to encode numeric data types for the publisher service. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

CALL 'AMPBGTEN' USING HPUBLISHER, ENCODING, COMPCODE, REASON.

Declare the parameters as follows:
01 HPUBLISHER PIC S9(9) BINARY.
01 ENCODING PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPUBLISHER The publisher handle returned by AMSECRPB (input).

ENCODING The encoding (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMPBGTLE (get last error)
Gets the information (completion and reason codes) from the last error for the
publisher object.

CALL 'AMPBGTLE' USING HPUBLISHER, BUFFLEN, STRINGLEN, ERRORTEXT,
REASON2, COMPCODE, REASON.

Declare the parameters as follows:
01 HPUBLISHER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.
01 ERRORTEXT PIC X(n).
01 REASON2 PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPUBLISHER The publisher handle returned by AMSECRPB (input).

BUFFLEN Reserved, must be zero (input).

STRINGLEN Reserved (output).

ERRORTEXT Reserved (output).

REASON2 A secondary reason code (output). If REASON indicates
AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
REASON2 gives an MQSeries reason code.

COMPCODE Completion code (output).

REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
indicates that the AMPBGTLE function call has itself detected an
error and failed.

AMPBGTNA (get name)
Gets the name of the publisher service.

CALL 'AMPBGTNA' USING HPUBLISHER, BUFFLEN, NAMELEN, NAME,
COMPCODE, REASON.

Declare the parameters as follows:

COBOL publisher interface

Chapter 12. COBOL object interface reference 333

01 HPUBLISHER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPUBLISHER The publisher handle returned by AMSECRPB (input).

BUFFLEN The length in bytes of a buffer in which the name is returned
(input).

NAMELEN The length of the name, in bytes (output).

NAME The publisher object name (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMPBOP (open)
Opens the publisher service.

CALL 'AMPBOP' USING HPUBLISHER, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HPUBLISHER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPUBLISHER The publisher handle returned by AMSECRPB (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMPBPB (publish)
Publishes a message using the publisher service.

The message data is passed in the message object. There is no option to pass it as a
separate parameter as with AMSNSN (this would not give any performance
improvement because the MQRFH header has to be added to the message data
prior to publishing it).

CALL 'AMPBPB' USING HPUBLISHER, HPOLICY, HRECEIVER, HPUBMSG,
COMPCODE, REASON.

Declare the parameters as follows:
01 HPUBLISHER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 HRECEIVER PIC S9(9) BINARY.
01 HPUBMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPUBLISHER The publisher handle returned by AMSECRPB (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COBOL publisher interface

334 MQSeries Application Messaging Interface

HRECEIVER The handle of the receiver service to which the response to this
publish request should be sent (input). Specify as
AMH-NULL-HANDLE if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

HPUBMSG The handle of a message object for the publication message (input).
If specified as AMH-NULL-HANDLE, the default message object
(constant: AMSD-SND-MSG-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL publisher interface

Chapter 12. COBOL object interface reference 335

Subscriber interface functions
A subscriber object encapsulates both a sender object and a receiver object. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

AMSBCLEC (clear error codes)
Clears the error codes in the subscriber object.

CALL 'AMSBCLEC' USING HSUBSCRIBER, COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBCL (close)
Closes the subscriber service.

CALL 'AMSBCL' USING HSUBSCRIBER, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBGTCC (get CCSID)
Gets the coded character set identifier of the subscriber’s sender service. A
non-default value reflects the CCSID of a remote system unable to perform CCSID
conversion of received messages. In this case the subscriber must perform CCSID
conversion of the message before it is sent.

CALL 'AMSBGTCC' USING HSUBSCRIBER, CCSID, COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 CCSID PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

CCSID The coded character set identifier (output).

COMPCODE Completion code (output).

COBOL subscriber interface

336 MQSeries Application Messaging Interface

REASON Reason code (output).

AMSBGTDT (get definition type)
Gets the definition type of the subscriber’s receiver service.

CALL 'AMSBGTDT' USING HSUBSCRIBER, TYPE, COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 TYPE PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

TYPE The definition type (output). It can be:
AMDT-UNDEFINED
AMDT-TEMP-DYNAMIC
AMDT-DYNAMIC
AMDT-PREDEFINED

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBGTEN (get encoding)
Gets the value used to encode numeric data types for the subscriber’s sender
service. A non-default value reflects the encoding of a remote system unable to
convert the encoding of received messages. In this case the subscriber must convert
the encoding of the message before it is sent.

CALL 'AMSBGTEN' USING HSUBSCRIBER, ENCODING, COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 ENCODING PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

ENCODING The encoding (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBGTLE (get last error)
Gets the information (completion and reason codes) from the last error for the
subscriber object.

CALL 'AMSBGTLE' USING HSUBSCRIBER, BUFFLEN, STRINGLEN, ERRORTEXT,
REASON2, COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.
01 ERRORTEXT PIC X(n).
01 REASON2 PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

COBOL subscriber interface

Chapter 12. COBOL object interface reference 337

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

BUFFLEN Reserved, must be zero (input).

STRINGLEN Reserved (output).

ERRORTEXT Reserved (output).

REASON2 A secondary reason code (output). If REASON indicates
AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
REASON2 gives an MQSeries reason code.

COMPCODE Completion code (output).

REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
indicates that the AMSBGTLE function call has itself detected an
error and failed.

AMSBGTNA (get name)
Gets the name of the subscriber object.

CALL 'AMSBGTNA' USING HSUBSCRIBER, BUFFLEN, NAMELEN, NAME,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

BUFFLEN The length in bytes of a buffer in which the name is returned
(input).

NAMELEN The length of the name, in bytes (output).

NAME The subscriber object name (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBGTQN (get queue name)
Gets the queue name of the subscriber’s receiver service object. This can be used to
determine the queue name of a permanent dynamic receiver service, so that it can
be recreated with the same queue name in order to receive messages in a
subsequent session. See also AMSBSTQN (set queue name).

CALL 'AMSBGTQN' USING HSUBSCRIBER, BUFFLEN, STRINGLEN, QUEUENAME,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.
01 QUEUENAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

COBOL subscriber interface

338 MQSeries Application Messaging Interface

BUFFLEN The length in bytes of a buffer in which the queue name is
returned (input).

STRINGLEN The length of the queue name, in bytes (output).

QUEUENAME The queue name (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBOP (open)
Opens the subscriber service.

CALL 'AMSBOP' USING HSUBSCRIBER, HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBRC (receive)
Receives a message, normally a publication, using the subscriber service. The
message data, topic and other elements can be accessed using the message
interface functions (see page 296).

The message data is passed in the message object. There is no option to pass it as a
separate parameter as with AMRCRC (this would not give any performance
improvement because the MQRFH header has to be removed from the message
data after receiving it).

CALL 'AMSBRC' USING HSUBSCRIBER, HPOLICY, HSELMSG, HRCVMSG,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 HSELMSG PIC S9(9) BINARY.
01 HRCVMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

HSELMSG The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH-NULL-HANDLE to get the next
available message with no selection.

COBOL subscriber interface

Chapter 12. COBOL object interface reference 339

HRCVMSG The handle of the message object for the received message (input).
If specified as AMH-NULL-HANDLE, the default message object
(constant: AMSD-RCV-MSG-HANDLE) is used. The message object
is reset implicitly before the receive takes place.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBSTQN (set queue name)
Sets the queue name of the subscriber’s receiver object, when this encapsulates a
model queue. This can be used to specify the queue name of a recreated
permanent dynamic receiver service, in order to receive messages in a session
subsequent to the one in which it was created. See also AMSBGTQN (get queue
name).

CALL 'AMSBSTQN' USING HSUBSCRIBER, NAMELEN, QUEUENAME, COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 QUEUENAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

NAMELEN The length of the queue name, in bytes (input).

QUEUENAME The queue name (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBSB (subscribe)
Sends a subscribe message to a publish/subscribe broker using the subscriber
service, to register a subscription. The topic and other elements can be specified
using the message interface functions (see page 296) before sending the message.

Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix ‘.RECEIVER’.

CALL 'AMSBSB' USING HSUBSCRIBER, HPOLICY, HRECEIVER, HSUBMSG,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 HRECEIVER PIC S9(9) BINARY.
01 HSUBMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

HRECEIVER The handle of the receiver service to which the response to this

COBOL subscriber interface

340 MQSeries Application Messaging Interface

subscribe request should be sent (input). Specify as
AMH-NULL-HANDLE if no response is required.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

HSUBMSG The handle of a message object for the subscribe message (input).
If specified as AMH-NULL-HANDLE, the default message object
(constant: AMSD-SND-MSG-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

AMSBUN (unsubscribe)
Sends an unsubscribe message to a publish/subscribe broker using the subscriber
service, to deregister a subscription. The topic and other elements can be specified
using the message interface functions (see page 296) before sending the message.

To deregister all topics, a policy providing this option must be specified (this is not
the default policy). Otherwise, to remove a previous subscription the topic
information specified must match that specified on the relevant AMSBSB request.

CALL 'AMSBUN' USING HSUBSCRIBER, HPOLICY, HRECEIVER, HUNSUBMSG,
COMPCODE, REASON.

Declare the parameters as follows:
01 HSUBSCRIBER PIC S9(9) BINARY.
01 HPOLICY PIC S9(9) BINARY.
01 HRECEIVER PIC S9(9) BINARY.
01 HUNSUBMSG PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

HPOLICY The handle of a policy (input). If specified as AMH-NULL-
HANDLE, the system default policy (constant:
AMSD-POL-HANDLE) is used.

HRECEIVER The handle of the receiver service to which the response to this
subscribe request should be sent (input). Specify as
AMH-NULL-HANDLE if no response is required.

HUNSUBMSG The handle of a message object for the unsubscribe message
(input). If specified as AMH-NULL-HANDLE, the default message
object (constant: AMSD-SND-MSG-HANDLE) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL subscriber interface

Chapter 12. COBOL object interface reference 341

Policy interface functions
A policy object encapsulates the set of options used for each AMI request (open,
close, send, receive, publish and so on). Examples are the priority and persistence
of the message, and whether the message is included in a unit of work.

AMPOCLEC (clear error codes)
Clears the error codes in the policy object.

CALL 'AMPOCLEC' USING HPOLICY, COMPCODE, REASON.

Declare the parameters as follows:
01 HPOLICY PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPOLICY The policy handle returned by AMSECRPO (input).

COMPCODE Completion code (output).

REASON Reason code (output).

AMPOGTLE (get last error)
Gets the information (completion and reason codes) from the last error for the
policy object.

CALL 'AMPOGTLE' USING HPOLICY, BUFFLEN, STRINGLEN, ERRORTEXT,
REASON2, COMPCODE, REASON.

Declare the parameters as follows:
01 HPOLICY PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 STRINGLEN PIC S9(9) BINARY.
01 ERRORTEXT PIC X(n).
01 REASON2 PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPOLICY The policy handle returned by AMSECRPO (input).

BUFFLEN Reserved, must be zero (input).

STRINGLEN Reserved (output).

ERRORTEXT Reserved (output).

REASON2 A secondary reason code (output). If REASON indicates
AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
REASON2 gives an MQSeries reason code.

COMPCODE Completion code (output).

REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
indicates that the AMPOGTLE function call has itself detected an
error and failed.

AMPOGTNA (get name)
Returns the name of the policy object.

CALL 'AMPOGTNA' USING HPOLICY, BUFFLEN, NAMELEN, NAME,
COMPCODE, REASON.

Declare the parameters as follows:

COBOL policy interface

342 MQSeries Application Messaging Interface

01 HPOLICY PIC S9(9) BINARY.
01 BUFFLEN PIC S9(9) BINARY.
01 NAMELEN PIC S9(9) BINARY.
01 NAME PIC X(n).
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPOLICY The policy handle returned by AMSECRPO (input).

BUFFLEN The length in bytes of a buffer in which the name is returned
(input).

NAMELEN The length of the name, in bytes (output).

NAME The policy object name (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMPOGTWT (get wait time)
Returns the wait time (in ms) set for this policy.

CALL 'AMPOGTWT' USING HPOLICY, WAITTIME, COMPCODE, REASON.

Declare the parameters as follows:
01 HPOLICY PIC S9(9) BINARY.
01 WAITTIME PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPOLICY The policy handle returned by AMSECRPO (input).

WAITTIME The wait time, in ms (output).

COMPCODE Completion code (output).

REASON Reason code (output).

AMPOSTWT (set wait time)
Sets the wait time for any receive function using this policy.

CALL 'AMPOSTWT' USING HPOLICY, WAITTIME, COMPCODE, REASON.

Declare the parameters as follows:
01 HPOLICY PIC S9(9) BINARY.
01 WAITTIME PIC S9(9) BINARY.
01 COMPCODE PIC S9(9) BINARY.
01 REASON PIC S9(9) BINARY.

HPOLICY The policy handle returned by AMSECRPO (input).

WAITTIME The wait time (in ms) to be set in the policy (input).

COMPCODE Completion code (output).

REASON Reason code (output).

COBOL policy interface

Chapter 12. COBOL object interface reference 343

COBOL policy interface

344 MQSeries Application Messaging Interface

Part 5. The Java interface

Chapter 13. Using the Application Messaging
Interface in Java 349
Structure of the AMI 349

Base classes 349
Interface and helper classes. 349
Exception classes 350
Using the repository 350
System default objects 350

Writing applications in Java 351
Creating and opening objects 351
Sending messages 351

Sample program 353
Receiving messages 353

Sample program 354
Request/response messaging 354

Sample programs 355
File transfer 355
Publish/subscribe messaging 355

Sample programs 356
Using AmElement objects 356
Error handling 357
Transaction support 358
Sending group messages 359
Other considerations 359

Multithreading 359
Using MQSeries with the AMI. 359
Field limits 359

Building Java applications 361
AMI package for Java 361
Running Java programs 361

Chapter 14. Java interface overview 363
Base classes 363

Helper classes 363
Exception classes 363

AmSessionFactory 364
Constructor 364
Session factory management 364
Create session 364

AmSession 365
Session management 365
Create objects 365
Transactional processing 365
Error handling 365

AmMessage 366
Get values 366
Set values 366
Reset values 366
Read and write data 366
Publish/subscribe filters. 366
Publish/subscribe topics. 367
Publish/subscribe name/value elements . . . 367
Error handling 367

AmSender 368
Open and close. 368
Send 368

Send file 368
Get values 368
Error handling 368

AmReceiver 369
Open and close. 369
Receive and browse 369
Receive file 369
Get values 369
Set value 369
Error handling 369

AmDistributionList 370
Open and close. 370
Send 370
Send file 370
Get values 370
Error handling 370

AmPublisher 371
Open and close. 371
Publish 371
Get values 371
Error handling 371

AmSubscriber 372
Open and close. 372
Broker messages 372
Get values 372
Set value 372
Error handling 372

AmPolicy. 373
Policy management 373
Error handling 373

Helper classes 374
AmConstants 374
AmElement 374
AmObject 374
AmStatus. 374

Exception classes 375
AmException 375
AmErrorException. 375
AmWarningException 375

Chapter 15. Java interface reference 377
Base classes 377

Helper classes 377
Exception classes 377

AmSessionFactory 378
AmSessionFactory 378
createSession 378
getFactoryName 378
getLocalHost 378
getRepository 378
getTraceLevel 378
getTraceLocation 378
setLocalHost. 378
setRepository 379
setTraceLevel 379
setTraceLocation 379

© Copyright IBM Corp. 1999, 2000 345

AmSession 380
begin 380
clearErrorCodes 380
close 380
commit 380
createDistributionList 380
createMessage 380
createPolicy 381
createPublisher 381
createReceiver 381
createSender. 382
createSubscriber 382
enableWarnings 382
getLastErrorStatus 382
getName 382
getTraceLevel 382
getTraceLocation 382
open 382
rollback 383

AmMessage 384
addElement 384
addFilter 385
addTopic 385
clearErrorCodes 385
deleteElement 385
deleteFilter 385
deleteNamedElement 385
deleteTopic 385
enableWarnings 386
getCCSID. 386
getCorrelationId 386
getDataLength 386
getDataOffset 386
getElement 386
getElementCount 386
getEncoding 386
getFilter 387
getFilterCount 387
getFormat 388
getGroupStatus 388
getLastErrorStatus 388
getMessageId 388
getName 388
getNamedElement. 389
getNamedElementCount. 389
getReportCode 389
getTopic 389
getTopicCount 389
getType 389
readBytes. 389
reset 390
setCCSID 390
setCorrelationId 390
setDataOffset 390
setEncoding 390
setFormat 391
setGroupStatus 391
writeBytes 391

AmSender 392
clearErrorCodes 392
close 392

enableWarnings 392
getCCSID. 392
getEncoding 392
getLastErrorStatus 393
getName 393
open 393
send 393
sendFile 393

AmReceiver 395
browse 395
clearErrorCodes 396
close 396
enableWarnings 396
getDefinitionType 396
getLastErrorStatus 396
getName 396
getQueueName. 397
open 397
receive 397
receiveFile 397
setQueueName 398

AmDistributionList 399
clearErrorCodes 399
close 399
enableWarnings 399
getLastErrorStatus 399
getName 399
getSender 399
getSenderCount 399
open 399
send 400
sendFile 400

AmPublisher 401
clearErrorCodes 401
close 401
enableWarnings 401
getCCSID. 401
getEncoding 401
getLastErrorStatus 401
getName 401
open 401
publish 402

AmSubscriber 403
clearErrorCodes 403
close 403
enableWarnings 403
getCCSID. 403
getDefinitionType 403
getEncoding 403
getLastErrorStatus 403
getName 404
getQueueName. 404
open 404
receive 405
setQueueName 405
subscribe 406
unsubscribe 406

AmPolicy. 407
clearErrorCodes 407
enableWarnings 407
getLastErrorStatus 407

346 MQSeries Application Messaging Interface

getName 407
getWaitTime 407
setWaitTime 407

AmConstants 408
AmElement 409

AmElement 409
getName 409
getValue 409
getVersion 409
setVersion 409
toString 409

AmObject 410
clearErrorCodes 410
getLastErrorStatus 410
getName 410

AmStatus 411
AmStatus 411
getCompletionCode 411
getReasonCode 411
getReasonCode2 411
toString 411

AmException 412
getClassName 412
getCompletionCode 412
getMethodName 412
getReasonCode 412
getSource. 412
toString 412

AmErrorException. 413
getClassName 413
getCompletionCode 413
getMethodName 413
getReasonCode 413
getSource. 413
toString 413

AmWarningException 414
getClassName 414
getCompletionCode 414
getMethodName 414
getReasonCode 414
getSource. 414
toString 414

Part 5. The Java interface 347

348 MQSeries Application Messaging Interface

Chapter 13. Using the Application Messaging Interface in Java

The Application Messaging Interface for Java (amJava) provides a Java style of
programming, while being consistent with the object-style interface of the
Application Messaging Interface for C. It uses a Java Native Interface (JNI) library,
so it cannot be used to write Applets to run in a browser environment.

This chapter describes the following:
v “Structure of the AMI”
v “Writing applications in Java” on page 351
v “Building Java applications” on page 361

Note that the term object is used in this book in the object-oriented programming
sense, not in the sense of MQSeries ‘objects’ such as channels and queues.

Structure of the AMI
The following classes are provided:

Base classes
AmSessionFactory Creates AmSession objects.

AmSession Creates objects within the AMI session, and
controls transactional support.

AmMessage Contains the message data, message ID and
correlation ID, and options that are used when
sending or receiving a message (most of which
come from the policy definition).

AmSender This is a service that represents a destination (such
as an MQSeries queue) to which messages are sent.

AmReceiver This is a service that represents a source (such as
an MQSeries queue) from which messages are
received.

AmDistributionList Contains a list of sender services to provide a list
of destinations.

AmPublisher Contains a sender service where the destination is
a publish/subscribe broker.

AmSubscriber Contains a sender service (to send subscribe and
unsubscribe messages to a publish/subscribe
broker) and a receiver service (to receive
publications from the broker).

AmPolicy Defines how the message should be handled,
including items such as priority, persistence, and
whether it is included in a unit of work.

Interface and helper classes
AmObject This is a Java interface, which is implemented by the base classes

listed above (with the exception of AmSessionFactory).

© Copyright IBM Corp. 1999, 2000 349

AmConstants This encapsulates all of the constants needed by amJava.

AmElement This encapsulates name/value pairs that can be added to
AmMessage objects.

AmStatus This encapsulates the error status of amJava objects.

Exception classes
AmException This is the base Exception class for amJava; all

other amJava Exceptions inherit from this class.

AmErrorException An Exception of this type is raised when an
amJava object experiences an error with a severity
level of FAILED (CompletionCode =
AMCC_FAILED).

AmWarningException An Exception of this type is raised when an
amJava object experiences an error with a severity
level of WARNING (CompletionCode =
AMCC_WARNING), provided that warnings have
been enabled using the enableWarnings method.

Using the repository
You can run AMI applications with or without a repository. If you don’t have a
repository, you can create an object by specifying its name in a method. It will be
created using the appropriate system provided definition (see “System provided
definitions” on page 456).

If you have a repository, and you specify the name of an object in a method that
matches a name in the repository, the object will be created using the repository
definition. (If no matching name is found in the repository, the system provided
definition will be used.)

System default objects
The set of system default objects created in C is not accessible directly in Java, but
the SYSTEM.DEFAULT.POLICY (constant: AMSD_POL) is used to provide default
behavior when a policy is not specified. Objects with identical properties to the
system default objects can be created for use in Java using the built-in definitions
(see “System provided definitions” on page 456).

Structure of the AMI

350 MQSeries Application Messaging Interface

Writing applications in Java
This section gives a number of examples showing how to access the Application
Messaging Interface using Java.

Many of the method calls are overloaded and in some cases this results in default
objects being used. One example of this is the AmPolicy object which can be
passed on many of the methods. For example:

Method overloading
mySender.send(mySendMessage, myPolicy);

mySender.send(mySendMessage);

If a policy has been created to provide specific send behavior, use the first
example. However, if the default policy is acceptable, use the second example.

The defaulting of behavior using method overloading is used throughout the
examples.

Creating and opening objects
Before using the AMI, you must create and open the required objects. Objects are
created with names, which might correspond to named objects in the repository. In
the case of the creation of a response sender (myResponder) in the example below,
the default name for a response type object is specified using the AmConstants
helper class, so the object is created with default responder values.

Creating AMI objects
mySessionFactory = new AmSessionFactory("MY.SESSION.FACTORY");
mySession = mySessionFactory.createSession("MY.SESSION");
myPolicy = mySession.createPolicy("MY.POLICY");

mySender = mySession.createSender("AMT.SENDER.QUEUE");
myReceiver = mySession.createReceiver("AMT.RECEIVER.QUEUE");
myResponder = mySession.createSender(AmConstants.AMDEF_RSP_SND);

mySendMessage = mySession.createMessage("MY.SEND.MESSAGE");
myReceiveMessage = mySession.createMessage("MY.RECEIVE.MESSAGE");

The objects are then opened. In the following examples, the session object is
opened with the default policy, whereas the sender and receiver objects are opened
with a specified policy (myPolicy).

Opening the AMI objects
mySession.open();
mySender.open(myPolicy);
myReceiver.open(myPolicy);

Sending messages
The examples in this section show how to send a datagram (send and forget)
message. First, the message data is written to the mySendMessage object. Data is

Writing applications in Java

Chapter 13. Using the Application Messaging Interface in Java 351

always sent in byte form, so the Java getBytes method is used to extract the String
data as bytes prior to adding to the message.

Writing data to a message object
String dataSent = new String("message to be sent");
mySendMessage.writeBytes(dataSent.getBytes());

Next, the message is sent using the sender service mySender.

Sending a message
mySender.send(mySendMessage);

The policy used is either the default policy for the service, if specified, or the
system default policy. The message attributes are set from the policy or service, or
the default for the messaging transport.

When more control is needed you can pass a policy object:

Sending a message with a specified policy
mySender.send(mySendMessage, myPolicy);

The policy controls the behavior of the send command. In particular, the policy
specifies whether the send is part of a unit of work, the priority, persistence and
expiry of the message and whether policy components should be invoked.
Whether the queue should be implicitly opened and left open can also be
controlled.

To send a message to a distribution list, for instance myDistList, use it as the
sender service:

Sending a message to a distribution list
myDistList.send(mySendMessage);

You can set an attribute such as the Format before the message is sent, to override
the default in the policy or service.

Setting an attribute in a message
mySendMessage.setFormat(myFormat):

Similarly, after a message has been sent you can retrieve an attribute such as the
MessageID.

Getting an attribute from a message
msgId = mySendMessage.getMessageId();

Writing applications in Java

352 MQSeries Application Messaging Interface

For details of the message attributes that you can set and get, see “AmMessage” on
page 366 .

When a message object is used to send a message, it might not be left in the same
state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see reset on
page 390) and rebuild it each time.

Sample program
For more details, refer to the SendAndForget.java sample program (see “Sample
programs for Unix and Windows” on page 450).

Receiving messages
The next example shows how to receive a message from the receiver service
myReceiver, and to read the data from the message object myReceiveMessage.

Receiving a message and retrieving the data
myReceiver.receive(myReceiveMessage);
data = myReceiveMessage.readBytes(myReceiveMessage.getDataLength());

The policy used will be the default for the service if defined, or the system default
policy. Greater control of the behavior of the receive can be achieved by passing a
policy object.

Receiving a message with a specified policy
myReceiver.receive(myReceiveMessage, myPolicy);

The policy can specify the wait interval, whether the call is part of a unit of work,
whether the message should be code page converted, whether all the members of a
group must be there before any members can be read, and how to deal with
backout failures.

To receive a specific message using its correlation ID, create a selection message
object and set its CorrelId attribute to the required value. The selection message is
then passed as a parameter on the receive.

Receiving a specific message using the correlation ID
mySelectionMessage = mySession.createMessage("MY.SELECTION.MESSAGE");
mySelectionMessage.setCorrelationId(myCorrelId);
myReceiver.receive(myReceiveMessage, mySelectionMessage, myPolicy);

As before, the policy is optional.

You can view the attributes of the message just received, such as the Encoding.

Getting an attribute from the message
encoding = myReceiveMessage.getEncoding();

Writing applications in Java

Chapter 13. Using the Application Messaging Interface in Java 353

Sample program
For more details, refer to the Receiver.java sample program (see “Sample
programs for Unix and Windows” on page 450).

Request/response messaging
In the request/response style of messaging, a requester (or client) application sends a
request message and expects to receive a response message back. The responder
(or server) application receives the request message and produces the response
message (or messages) which it sends back to the requester application. The
responder application uses information in the request message to know how to
send the response message back to the requester.

In the following examples ‘my’ refers to the requesting application (the client);
‘your’ refers to the responding application (the server).

The requester sends a message as described in “Sending messages” on page 351,
specifying the service (myReceiver) to which the response message should be sent.

Sending a request message
mySender.send(mySendMessage, myReceiver);

A policy object can also be specified if required.

The responder receives the message as described in “Receiving messages” on
page 353, using its receiver service (yourReceiver). It also receives details of the
response service (yourResponder) for sending the response.

Receiving the request message
yourReceiver.receive(yourReceiveMessage, yourResponder);

A policy object can be specified if required, as can a selection message object (see
“Receiving messages” on page 353).

The responder sends its response message (yourReplyMessage) to the response
service, specifying the received message to which this is a response.

Sending a response to the request message
yourResponder.send(yourReplyMessage, yourReceiveMessage);

Finally, the requester application receives the response (myResponseMessage), which
is correlated with the original message it sent (mySendMessage).

Receiving the response message
myReceiver.receive(myResponseMessage, mySendMessage);

Writing applications in Java

354 MQSeries Application Messaging Interface

In a typical application the responder might be a server operating in a loop,
receiving requests and replying to them. In this case, the message objects should be
set to their initial state and the data cleared before servicing the next request. This
is achieved as follows:

Resetting the message object
yourReceiveMessage.reset();
yourResponseMessage.reset();

Sample programs
For more details, refer to the Client.java and Server.java sample programs (see
“Sample programs for Unix and Windows” on page 450).

File transfer
You can perform file transfers using the AmSender.sendFile and
AmReceiver.receiveFile methods.

Sending a file using the sendFile method
mySender.sendFile(mySendMessage, myfilename, myPolicy)

Receiving a file using the receiveFile method
myReceiver.receiveFile(myReceiveMessage, myfileName, myPolicy)

For a complete description of file transfer, refer to “File transfer” on page 21.

Publish/subscribe messaging
With publish/subscribe messaging a publisher application publishes messages to
subscriber applications using a broker. The message published contains application
data and one or more topic strings that describe the data. A subscribing application
subscribes to topics informing the broker which topics it is interested in. When the
broker receives a message from a publisher it compares the topics in the messages
to the topics in the subscription from subscribing applications. If they match, the
broker forwards the message to the subscribing application.

Data on a particular topic is published as shown in the next example.

Publishing a message on a specified topic
String publicationTopic = new String("Weather");
String publicationData = new String("The weather is sunny");

myPubMessage.addTopic(publicationTopic);
myPubMessage.writeBytes(publicationData.getBytes());
myPublisher.publish(myPubMessage, myReceiver);

myReceiver identifies a response service to which the broker will send any
response messages. You can also specify a policy object to modify the behavior of
the command.

Writing applications in Java

Chapter 13. Using the Application Messaging Interface in Java 355

To subscribe to a publish/subscribe broker you need to specify one or more topics.

Subscribing to a broker on specified topics
String weather = new String("Weather");
String birds = new String("Birds");

mySubMessage.addTopic(weather);
mySubMessage.addTopic(birds);
mySubscriber.subscribe(mySubMessage, myReceiver);

Broker response messages will be sent to myReceiver.

To remove a subscription, add the topic or topics to be deleted to the message
object, and use:

Removing a subscription
mySubscriber.unsubscribe(myUnsubMessage, myReceiver);

To receive a publication from a broker, use:

Receiving a publication
mySubscriber.receive(myReceiveMessage, myPolicy);
publication = myReceiveMessage.readBytes(

myReceiveMessage.getDataLength());

You can then use the getTopicCount and getTopic methods to extract the topic or
topics from the message object.

Subscribing applications can also exploit content-based publish/subscribe by
passing a filter on subscribe and unsubscribe calls (see “Using MQSeries Integrator
Version 2” on page 447).

Sample programs
For more details, refer to the Publisher.java and Subscriber.java sample
programs (see “Sample programs for Unix and Windows” on page 450).

Using AmElement objects
Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
carried out. The Application Messaging Interface contains some methods which
produce these name/value pairs directly (such as AmSubscriber.subscribe). For
less commonly used commands, the name/value pairs can be added to a message
using an AmElement object.

For example, to send a message containing a ‘Request Update’ command, use the
following:

Writing applications in Java

356 MQSeries Application Messaging Interface

Using an AmElement object to construct a command message
AmElement bespokeElement = new AmElement("MQPSCommand", "ReqUpdate");
mySendMessage.addElement(bespokeElement);

You must then send the message, using AmSender.send, to the sender service
specified for your publish/subscribe broker.

If you use streams with MQSeries Publish/Subscribe, you must add the
appropriate name/value element explicitly to the message object.

The message element methods can, in fact, be used to add any element to a
message before issuing an publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications,
they can be used in other applications as well.

Error handling
The getLastErrorStatus method always reflects the last most severe error
experienced by an object. It can be used to return an AmStatus object
encapsulating this error state. Once the error state has been handled,
clearErrorCodes can be called to reset this error state.

AmJava can raise two types of Exception, one to reflect serious errors and the
other to reflect warnings. By default, only AmErrorExceptions are raised.
AmWarningExceptions can be enabled using the enableWarnings method. Since
both are types of AmException, a generic catch block can be used to process all
amJava Exceptions.

Enabling AmWarningExceptions might have some unexpected side-effects,
especially when an AmObject is returning data such as another AmObject. For
example, if AmWarningExceptions are enabled for an AmSession object and an
AmSender is created that does not exist in the repository, an AmWarningException
will be raised to reflect this fact. If this happens, the AmSender object will not be
created since its creation was interrupted by an Exception. However, there might
be times during the life of an AmObject when processing AmWarningExceptions is
useful.

Writing applications in Java

Chapter 13. Using the Application Messaging Interface in Java 357

For example:
try
{

...
mySession.enableWarnings(true);
mySession.open();
...

}
catch (AmErrorException errorEx)
{

AmStatus sessionStatus = mySession.getLastErrorStatus();
switch (sessionStatus.getReasonCode())
{
case AmConstants.AMRC_XXXX:

...
case AmConstants.AMRC_XXXX:

...
}
mySession.clearErrorCodes();

}
catch (AmWarningException warningEx)
{

...
}

Since most of the objects implement the AmObject interface, a generic error
handling routine can be written. For example:

try
{

...
mySession.open();
...
mySender.send(myMessage):
...
mySender.send(myMessage):
...
mySession.commit();

}
catch(AmException amex);
{

AmStatus status;
status = amex.getSource().getLastErrorStatus();
System.out.println("Object in error; name="+ amex.getSource().getName());
System.out.println("Object in error; RC="+ status.getReasonCode());
...
amex.getSource().clearErrorCodes();

}

The catch block works because all objects that throw the AmException in the try
block are AmObjects, and so they all have getName, getLastErrorStatus and
clearErrorCodes methods.

Transaction support
Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.
v MQSeries messages are the only resource

Writing applications in Java

358 MQSeries Application Messaging Interface

A transaction is started by the first message sent or received under syncpoint
control, as specified in the policy specified for the send or receive. Multiple
messages can be included in the same unit of work. The transaction is
committed or backed out using the commit or rollback method.

v Using MQSeries as an XA transaction coordinator
The transaction must be started explicitly using the begin method before the
first recoverable resource (such as a relational database) is changed. The
transaction is committed or backed out using an commit or rollback method.

v Using an external transaction coordinator
The transaction is controlled using the API calls of an external transaction
coordinator (such as CICS, Encina or Tuxedo). The AMI calls are not used but
the syncpoint attributed must still be specified in the policy used on the call.

Sending group messages
The AMI allows a sequence of related messages to be included in, and sent as, a
message group. Group context information is sent with each message to allow the
message sequence to be preserved and made available to a receiving application.
In order to include messages in a group, the group status information of the first
and subsequent messages in the group must be set as follows:

AMGRP_FIRST_MSG_IN_GROUP for the first message
AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
AMGRP_LAST_MSG_IN_GROUP for the last message

The message status is set using the AmMessage.setGroupStatus method.

For a complete description of group messages, refer to “Sending group messages”
on page 26

Other considerations

Multithreading
If you are using multithreading with the AMI, a session normally remains locked
for the duration of a single AMI call. If you use receive with wait, the session
remains locked for the duration of the wait, which might be unlimited (that is,
until the wait time is exceeded or a message arrives on the queue). If you want
another thread to run while a thread is waiting for a message, it must use a
separate session.

AMI handles and object references can be used on a different thread from that on
which they were first created for operations that do not involve an access to the
underlying (MQSeries) message transport. Functions such as initialize, terminate,
open, close, send, receive, publish, subscribe, unsubscribe, and receive publication
will access the underlying transport restricting these to the thread on which the
session was first opened (for example, using AmSession.open). An attempt to
issue these on a different thread will cause an error to be returned by MQSeries
and a transport error (AMRC_TRANSPORT_ERR) will be reported to the
application.

Using MQSeries with the AMI
You must not mix MQSeries function calls with AMI calls within the same process.

Field limits
When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries,
the underlying message transport. See the rules for naming MQSeries objects in the

Writing applications in Java

Chapter 13. Using the Application Messaging Interface in Java 359

MQSeries Application Programming Guide.

Writing applications in Java

360 MQSeries Application Messaging Interface

Building Java applications
This section contains information that will help you write, prepare, and run your
Java application programs on the various operating systems supported by the AMI.

AMI package for Java
AMI provides a jar file that contains all the classes comprising the AMI package
for Java.

com.ibm.mq.amt
Java package

com.ibm.mq.amt.jar
Java jar file

This jar file is installed under:
/java/lib (UNIX)

\java\lib (Windows)

See “Directory structure” on page 425 (AIX), page 429 (HP-UX), page 433 (Solaris),
or page 436 (Windows).

In order to make use of this package you must:
v Import the package into your Java application by using the following statement

in that application:
import com.ibm.mq.amt.*;

v Make sure the AMI jar file is in your CLASSPATH environment variable. See
“Setting the runtime environment” on page 424 (AIX), page 428 (HP-UX), page
432 (Solaris), or page 435 (Windows).
This should be done both in the environment in which your Java program is
compiled, and the environment in which it is run.

Running Java programs
This section explains what you have to do to prepare and run your Java programs
on the AIX, HP-UX, Sun Solaris, Windows 98 and Windows NT operating systems.

The AMI interface for Java makes use of JNI (Java Native Interface) and so requires
a platform native library to run successfully. This library must be accessible to your
runtime environment. See “Language compilers” on page 422 for versions of the
Java Developer’s Kit (JDK) supported by the AMI.

AIX Make sure that the JNI library libamtJava.so is accessible to your
runtime environment. To do this, you should perform:
export LIBPATH=$LIBPATH:/usr/mqm/lib:

HP-UX Make sure that the JNI library libamtJava.sl is accessible to your
runtime environment. To do this, you should perform:
export SHLIB_PATH=$SHLIB_PATH:/opt/mqm/lib:

Solaris Make sure that the JNI library libamtJava.so is accessible to your
runtime environment. To do this, you should perform:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mqm/lib:

Windows Make sure that the JNI library amtJava.dll is in one of the
directories specified in the PATH environment variable for your
runtime environment. For example:

Building Java applications

Chapter 13. Using the Application Messaging Interface in Java 361

SET PATH=%PATH%;C:\MQSeries\bin;

If you already have MQSeries installed, it is likely that this
environment has already been set up for you.

Once the AMI jar file and the JNI library are referenced in your runtime
environment you can run your Java application. For example, to run an application
called mine that exists in a package com.xxx.com, perform:

java com.xxx.com.mine

Building Java applications

362 MQSeries Application Messaging Interface

Chapter 14. Java interface overview

This chapter contains an overview of the structure of the Application Messaging
Interface for Java. Use it to find out what functions are available in this interface.

The Java interface provides sets of methods for each of the classes listed below.
The methods available for each class are listed in the following pages. Follow the
page references to see the reference information for each method.

Base classes
AmSessionFactory page 364

AmSession page 365

AmMessage page 366

AmSender page 368

AmReceiver page 369

AmDistributionList page 370

AmPublisher page 371

AmSubscriber page 372

AmPolicy page 373

Helper classes
AmConstants page 374

AmElement page 374

AmObject page 374

AmStatus page 374

Exception classes
AmException page 375

AmErrorException page 375

AmWarningExcpetion page 375

© Copyright IBM Corp. 1999, 2000 363

AmSessionFactory
The AmSessionFactory class is used to create AmSession objects.

Constructor
Constructor for AmSessionFactory.

AmSessionFactory page 378

Session factory management
Methods to return the name of an AmSessionFactory object, and to control traces.

getFactoryName page 378

getLocalHost page 378

getRepository page 378

getTraceLevel page 378

getTraceLocation page 378

setLocalHost page 378

setRepository page 379

setTraceLevel page 379

setTraceLocation page 379

Create session
Method to create an AmSession object.

createSession page 378

Java interface overview

364 MQSeries Application Messaging Interface

AmSession
The AmSession object creates and manages all other objects, and provides scope
for a unit of work.

Session management
Methods to open and close an AmSession object, to return its name, and to control
traces.

open page 382

close page 380

getName page 382

getTraceLevel page 382

getTraceLocation page 382

Create objects
Methods to create AmMessage, AmSender, AmReceiver, AmDistributionList
AmPublisher, AmSubscriber, and AmPolicy objects.

createMessage page 380

createSender page 382

createReceiver page 381

createDistributionList page 380

createPublisher page 381

createSubscriber page 382

createPolicy page 381

Transactional processing
Methods to begin, commit and rollback a unit of work.

begin page 380

commit page 380

rollback page 383

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 380

enableWarnings page 382

getLastErrorStatus page 382

Java interface overview

Chapter 14. Java interface overview 365

AmMessage
An AmMessage object encapsulates an MQSeries message descriptor (MQMD)
structure, and it contains the message data if this is not passed as a separate
parameter.

Get values
Methods to get the coded character set ID, correlation ID, encoding, format, group
status, message ID and name of the message object.

getCCSID page 386

getCorrelationId page 386

getEncoding page 386

getFormat page 388

getGroupStatus page 388

getMessageId page 388

getName page 388

getReportCode page 389

getType page 389

Set values
Methods to set the coded character set ID, correlation ID, format and group status
of the message object.

setCCSID page 390

setCorrelationId page 390

setEncoding page 390

setFormat page 391

setGroupStatus page 391

Reset values
Method to reset the message object to the state it had when first created.

reset page 390

Read and write data
Methods to read or write byte data to or from the message object, to get and set
the data offset, and to get the length of the data.

getDataLength page 386

getDataOffset page 386

setDataOffset page 390

readBytes page 389

writeBytes page 391

Publish/subscribe filters
Methods to manipulate filters for content-based publish/subscribe.

Java interface overview

366 MQSeries Application Messaging Interface

addFilter page 385

deleteFilter page 385

getFilter page 387

getFilterCount page 387

Publish/subscribe topics
Methods to manipulate the topics in a publish/subscribe message.

addTopic page 385

deleteTopic page 385

getTopic page 389

getTopicCount page 389

Publish/subscribe name/value elements
Methods to manipulate the name/value elements in a publish/subscribe message.

addElement page 384

deleteElement page 385

getElement page 386

getElementCount page 386

deleteNamedElement page 385

getNamedElement page 389

getNamedElementCount page 389

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 385

enableWarnings page 386

getLastErrorStatus page 388

Java interface overview

Chapter 14. Java interface overview 367

AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the sender service.

open page 393

close page 392

Send
Method to send a message.

send page 393

Send file
Method to send data from a file

sendFile page 393

Get values
Methods to get the coded character set ID, encoding and name of the sender
service.

getCCSID page 392

getEncoding page 392

getName page 393

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 392

enableWarnings page 392

getLastErrorStatus page 393

Java interface overview

368 MQSeries Application Messaging Interface

AmReceiver
An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the receiver service.

open page 397

close page 396

Receive and browse
Methods to receive or browse a message.

receive page 397

browse page 395

Receive file
Method to receive file message data into a file.

receiveFile page 397

Get values
Methods to get the definition type, name and queue name of the receiver service.

getDefinitionType page 396

getName page 396

getQueueName page 397

Set value
Method to set the queue name of the receiver service.

setQueueName page 398

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 396

enableWarnings page 396

getLastErrorStatus page 396

Java interface overview

Chapter 14. Java interface overview 369

AmDistributionList
An AmDistributionList object encapsulates a list of AmSender objects.

Open and close
Methods to open and close the distribution list service.

open page 399

close page 399

Send
Method to send a message to the distribution list.

send page 400

Send file
Method to send date from a file to each sender defined in the distribution list.

sendFile page 400

Get values
Methods to get the name of the distribution list service, a count of the AmSenders
in the list, and one of the AmSenders that is contained in the list.

getName page 399

getSenderCount page 399

getSender page 399

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 399

enableWarnings page 399

getLastErrorStatus page 399

Java interface overview

370 MQSeries Application Messaging Interface

AmPublisher
An AmPublisher object encapsulates a sender service and provides support for
publishing messages to a publish/subscribe broker.

Open and close
Methods to open and close the publisher service.

open page 401

close page 401

Publish
Method to publish a message.

publish page 402

Get values
Methods to get the coded character set ID, encoding and name of the publisher
service.

getCCSID page 401

getEncoding page 401

getName page 401

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 401

enableWarnings page 401

getLastErrorStatus page 401

Java interface overview

Chapter 14. Java interface overview 371

AmSubscriber
An AmSubscriber object encapsulates both a sender service and a receiver service.
It provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

Open and close
Methods to open and close the subscriber service.

open page 404

close page 403

Broker messages
Methods to subscribe to a broker, remove a subscription, and receive a publication
from the broker.

subscribe page 406

unsubscribe page 406

receive page 405

Get values
Methods to get the coded character set ID, definition type, encoding, name and
queue name of the subscriber service.

getCCSID page 403

getDefinitionType page 403

getEncoding page 403

getName page 404

getQueueName page 404

Set value
Method to set the queue name of the subscriber service.

setQueueName page 405

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 403

enableWarnings page 403

getLastErrorStatus page 403

Java interface overview

372 MQSeries Application Messaging Interface

AmPolicy
An AmPolicy object encapsulates the options used during AMI operations.

Policy management
Methods to return the name of the policy, and to get and set the wait time when
receiving a message.

getName page 407

getWaitTime page 407

setWaitTime page 407

Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 407

enableWarnings page 407

getLastErrorStatus page 407

Java interface overview

Chapter 14. Java interface overview 373

Helper classes
A Java Interface, and classes that encapsulate constants, name/value elements, and
error status.

AmConstants
Provides access to all the AMI constants.

AmConstants page 408

AmElement
Constructor for AmElement, and methods to return the name, type, value and
version of an element, to set the version, and to return a String representation of
the element.

AmElement page 409

getName page 409

getValue page 409

getVersion page 409

setVersion page 409

toString page 409

AmObject
A Java Interface containing methods to return the name of the object, to clear the
error codes and to return the last error condition.

clearErrorCodes page 410

getLastErrorStatus page 410

getName page 410

AmStatus
Constructor for AmStatus, and methods to return the completion code, reason
code, secondary reason code and status text, and to return a String representation
of the AmStatus.

AmStatus page 411

getCompletionCode page 411

getReasonCode page 411

getReasonCode2 page 411

toString page 411

Java interface overview

374 MQSeries Application Messaging Interface

Exception classes
Classes that encapsulate error and warning conditions. AmErrorException and
AmWarningException inherit from AmException.

AmException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a String
representation of the Exception.

getClassName page 412

getCompletionCode page 412

getMethodName page 412

getReasonCode page 412

getSource page 412

toString page 412

AmErrorException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a String
representation of the Exception.

getClassName page 413

getCompletionCode page 413

getMethodName page 413

getReasonCode page 413

getSource page 413

toString page 413

AmWarningException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a String
representation of the Exception.

getClassName page 414

getCompletionCode page 414

getMethodName page 414

getReasonCode page 414

getSource page 414

toString page 414

Java interface overview

Chapter 14. Java interface overview 375

Java interface overview

376 MQSeries Application Messaging Interface

Chapter 15. Java interface reference

In the following sections the Java interface methods are listed by the class they
refer to. Within each section the methods are listed in alphabetical order.

Note that where constants are shown (for example, AMRC_NONE), they can be
accessed using the AmConstants class (for example, AmConstants.AMRC_NONE).
See page 408.

Base classes
Note that all of the methods in these classes can throw AmWarningException and
AmErrorException (see below). However, by default, AmWarningExceptions are
not raised.

AmSessionFactory page 378

AmSession page 380

AmMessage page 384

AmSender page 392

AmReceiver page 395

AmDistributionList page 399

AmPublisher page 401

AmSubscriber page 403

AmPolicy page 407

Helper classes
AmConstants page 408

AmElement page 409

AmObject page 410

AmStatus page 411

Exception classes
AmException page 412

AmErrorException page 413

AmWarningException page 414

© Copyright IBM Corp. 1999, 2000 377

AmSessionFactory
The AmSessionFactory class is used to create AmSession objects.

AmSessionFactory
Constructor for an AmSessionFactory.

AmSessionFactory(String name);

name The name of the AmSessionFactory. This is the location of the data
files used by the AMI (the repository file and the local host file).
The name can be a fully qualified directory that includes the path
under which the files are located. Otherwise, see “Local host and
repository files (Unix and Windows)” on page 441 for the location
of these files.

createSession
Creates an AmSession object.

AmSession createSession(String name);

name The name of the AmSession.

getFactoryName
Returns the name of the AmSessionFactory.

String getFactoryName();

getLocalHost
Returns the name of the local host file.

String getLocalHost();

getRepository
Returns the name of the repository file.

String getRepository();

getTraceLevel
Returns the trace level for the AmSessionFactory.

int getTraceLevel();

getTraceLocation
Returns the location of the trace for the AmSessionFactory.

String getTraceLocation();

setLocalHost
Sets the name of the AMI local host file to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default host file amthost.xml is used.)

void setLocalHost(String fileName);

fileName The name of the file used by the AMI as the local host file. This
file must be present on the local file system or an error will be
produced upon the creation of an AmSession.

Java AmSessionFactory

378 MQSeries Application Messaging Interface

setRepository
Sets the name of the AMI repository to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default repository file amt.xml is used.)

void setRepository(String fileName);

fileName
The name of the file used by the AMI as the repository. This file must be
present on the local file system or an error will be produced upon the
creation of an AmSession.

setTraceLevel
Sets the trace level for the AmSessionFactory.

void setTraceLevel(int level);

level The trace level to be set in the AmSessionFactory. Trace levels are 0
through 9, where 0 represents minimal tracing and 9 represents a
fully detailed trace.

setTraceLocation
Sets the location of the trace for the AmSessionFactory.

void setTraceLocation(String location);

location The location on the local system where trace files will be written.
This location must be a directory, and it must exist prior to the
trace being run.

Java AmSessionFactory

Chapter 15. Java interface reference 379

AmSession
An AmSession object provides the scope for a unit of work and creates and
manages all other objects, including at least one connection object. Each (MQSeries)
connection object encapsulates a single MQSeries queue manager connection. The
session object definition specifying the required queue manager connection can be
provided by a repository policy definition, or by default will name a single local
queue manager with no repository. The session, when deleted, is responsible for
releasing memory by closing and deleting all other objects that it manages.

begin
Begins a unit of work in this AmSession, allowing an AMI application to take
advantage of the resource coordination provided in MQSeries. The unit of work
can subsequently be committed by the commit method, or backed out by the
rollback method. This should be used only when AMI is the transaction
coordinator. If available, native coordination APIs (for example CICS or Tuxedo)
should be used.

begin is overloaded. The policy parameter is optional.
void begin(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

clearErrorCodes
Clears the error codes in the AmSession.

void clearErrorCodes();

close
Closes the AmSession, and all open objects owned by it. close is overloaded: the
policy parameter is optional.

void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

commit
Commits a unit of work that was started by AmSession.begin. commit is
overloaded: the policy parameter is optional.
void commit(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

createDistributionList
Creates an AmDistributionList object.

AmDistributionList createDistributionList(String name);

name The name of the AmDistributionList. This must match the name of
a distribution list defined in the repository.

createMessage
Creates an AmMessage object.

AmMessage createMessage(String name);

Java AmSession

380 MQSeries Application Messaging Interface

name The name of the AmMessage. This can be any name that is
meaningful to the application.

createPolicy
Creates an AmPolicy object.

AmPolicy createPolicy(String name);

name The name of the AmPolicy. If it matches a policy defined in the
repository, the policy will be created using the repository
definition, otherwise it will be created with default values.

createPublisher
Creates an AmPublisher object.

AmPublisher createPublisher(String name);

name The name of the AmPublisher. If it matches a publisher defined in
the repository, the publisher will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the publisher name).

createReceiver
Creates an AmReceiver object.

AmReceiver createReceiver(String name);

name The name of the AmReceiver. If it matches a receiver defined in the
repository, the receiver will be created using the repository
definition, otherwise it will be created with default values (that is,
with a queue name that matches the receiver name).

Java AmSession

Chapter 15. Java interface reference 381

createSender
Creates an AmSender object.

AmSender createSender(String name);

name The name of the AmSender. If it matches a sender defined in the
repository, the sender will be created using the repository
definition, otherwise it will be created with default values (that is,
with a queue name that matches the sender name).

createSubscriber
Creates an AmSubscriber object.

AmSubscriber createSubscriber(String name);

name The name of the AmSubscriber. If it matches a subscriber defined
in the repository, the subscriber will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the subscriber name, and an
AmReceiver name that is the same with the addition of the suffix
‘.RECEIVER’).

enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmSession.

String getName();

getTraceLevel
Returns the trace level of the AmSession.

int getTraceLevel();

getTraceLocation
Returns the location of the trace for the AmSession.

String getTraceLocation();

open
Opens an AmSession using the specified policy. The application profile group of
this policy provides the connection definitions enabling the connection objects to
be created. The specified library is loaded for each connection and its dispatch
table initialized. If the transport type is MQSeries and the MQSeries local queue
manager library cannot be loaded, then the MQSeries client queue manager is
loaded. Each connection object is then opened.

Java AmSession

382 MQSeries Application Messaging Interface

open is overloaded: the policy parameter is optional.
void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

rollback
Rolls back a unit of work that was started by AmSession.begin, or under policy
control. rollback is overloaded: the policy parameter is optional.

void rollback(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

Java AmSession

Chapter 15. Java interface reference 383

AmMessage
An AmMessage object encapsulates the MQSeries MQMD message properties, and
name/value elements such as the topics for publish/subscribe messages. In
addition it contains the application data.

The initial state of the message object is:
CCSID default queue manager CCSID
correlationId all zeroes
dataLength zero
dataOffset zero
elementCount zero
encoding AMENC_NATIVE
format AMFMT_STRING
groupStatus AMGRP_MSG_NOT_IN_GROUP
reportCode AMFB_NONE
topicCount zero
type AMMT_DATAGRAM

When a message object is used to send a message, it might not be left in the same
state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see reset on
page 390) and rebuild it each time.

Note that the following methods are only valid after a session has been opened
with AmSession.open:

addElement page 384

deleteElement page 385

getElement page 386

getElementCount page 386

deleteNamedElement page 385

getNamedElement page 389

getNamedElementCount page 389

addTopic page 385

deleteTopic page 385

getTopic page 389

getTopicCount page 389

addElement
Adds a name/value element to an AmMessage object. addElement is overloaded:
the element parameter is required, but the options parameter is optional.

void addElement(
AmElement element,
int options);

element The element to be added to the AmMessage.

options The options to be used. This parameter is reserved and must be set
to zero.

Java AmMessage

384 MQSeries Application Messaging Interface

addFilter
Adds a publish/subscribe filter to an AmMessage object.

void addFilter(String filter);

filter The filter to be added to the AmMessage.

addTopic
Adds a publish/subscribe topic to an AmMessage object.

void addTopic(String topicName);

topicName The name of the topic to be added to the AmMessage.

clearErrorCodes
Clears the error in the AmMessage object.

void clearErrorCodes();

deleteElement
Deletes the element in the AmMessage object at the specified index. Indexing is
within all elements of a message, and might include topics (which are specialized
elements).

void deleteElement(int index);

index The index of the element to be deleted, starting from zero. On completion,
elements with higher index values than that specified will have those
values reduced by one.

getElementCount gets the number of elements in the message.

deleteFilter
Deletes a publish/subscribe filter in an AmMessage object at the specified index.
Indexing is within all filters in the message.

void deleteFilter(int filterIndex);

filterIndex The index of the filter to be deleted, starting from zero.
getFilterCount gets the number of filters in a message.

deleteNamedElement
Deletes the element with the specified name in the AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

void deleteNamedElement(
String name,
int index);

name The name of the element to be deleted.

index The index of the element to be deleted, starting from zero. On
completion, elements with higher index values than that specified
will have those values reduced by one.

getNamedElementCount gets the number of elements in the
message with the specified name.

deleteTopic
Deletes a publish/subscribe topic in an AmMessage object at the specified index.
Indexing is within all topics in the message.

void deleteTopic(int index);

Java AmMessage

Chapter 15. Java interface reference 385

index The index of the topic to be deleted, starting from zero.
getTopicCount gets the number of topics in the message.

enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

getCCSID
Returns the coded character set identifier used by AmMessage.

int getCCSID();

getCorrelationId
Returns the correlation identifier for the AmMessage.

byte[] getCorrelationId();

getDataLength
Returns the length of the message data in the AmMessage.

int getDataLength();

getDataOffset
Returns the current offset in the message data for reading or writing data bytes.

int getDataOffset();

getElement
Returns an element in an AmMessage object at the specified index. Indexing is
within all elements in the message, and might include topics (which are specialized
elements).

AmElement getElement(int index);

index The index of the element to be returned, starting from zero.
getElementCount gets the number of elements in the message.

getElementCount
Returns the total number of elements in an AmMessage object. This might include
topics (which are specialized elements).

int getElementCount();

getEncoding
Returns the value used to encode numeric data types for the AmMessage.

int getEncoding();

The following values can be returned:
AMENC_NORMAL
AMENC_NORMAL_FLOAT_390
AMENC_REVERSED
AMENC_REVERSED_FLOAT_390
AMENC_UNDEFINED

Java AmMessage

386 MQSeries Application Messaging Interface

getFilter
Returns the publish/subscribe filter in the AmMessage object at the specified
index. Indexing is within all filters.

AmString getFilter(int filterIndex);

filterIndex The index of the filter to be returned, starting from zero.
getElementCount gets the number of filters in a message.

getFilterCount
Returns the total number of publish/subscribe filters in the AmMessage object.

int getFilterCount();

Java AmMessage

Chapter 15. Java interface reference 387

getFormat
Returns the format of the AmMessage.

String getFormat();

The following values can be returned:
AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

getGroupStatus
Returns the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.

int getGroupStatus();

The following values can be returned:
AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

Alternatively, bitwise tests can be performed using the constants:
AMGF_IN_GROUP
AMGF_FIRST
AMGF_LAST

getLastErrorStatus
Returns the AmStatus of the last error condition for this object.

AmStatus getLastErrorStatus();

getMessageId
Returns the message identifier from the AmMessage object.

byte[] getMessageId();

getName
Returns the name of the AmMessage object.

String getName();

Java AmMessage

388 MQSeries Application Messaging Interface

getNamedElement
Returns the element with the specified name in an AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

AmElement getNamedElement(
String name,
int index);

name The name of the element to be returned.

index The index of the element to be returned, starting from zero.

getNamedElementCount
Returns the total number of elements with the specified name in the AmMessage
object.

int getNamedElementCount(String name);

name The name of the elements to be counted.

getReportCode
Returns the feedback code from an AmMessage of type MQMT_REPORT.

int getReportCode();

The following values can be returned:
AMFB_NONE
AMFB_EXPIRATION
AMFB_COA
AMFB_COD
AMFB_ERROR

getTopic
Returns the publish/subscribe topic in the AmMessage object, at the specified
index. Indexing is within all topics.

String getTopic(int index);

index The index of the topic to be returned, starting from zero.
getTopicCount gets the number of topics in the message.

getTopicCount
Returns the total number of publish/subscribe topics in the AmMessage object.

int getTopicCount();

getType
Returns the message type from the AmMessage.

int getType();

The following values can be returned:
AMMT_REQUEST
AMMT_REPLY
AMMT_REPORT
AMMT_DATAGRAM

readBytes
Populates a byte array with data from the AmMessage, starting at the current data
offset (which must be positioned before the end of the data for the read to be

Java AmMessage

Chapter 15. Java interface reference 389

successful). Use setDataOffset to specify the data offset. readBytes will advance
the data offset by the number of bytes read, leaving the offset immediately after
the last byte read.
byte[] readBytes(int dataLength);

dataLength The maximum number of bytes to be read from the message data.
The number of bytes returned is the minimum of dataLength and
the number of bytes between the data offset and the end of the
data.

reset
Resets the AmMessage object to its initial state (see page 384).

reset is overloaded: the options parameter is optional.
void reset(int options);

options A reserved field that must be set to zero.

setCCSID
Sets the coded character set identifier used by the AmMessage object.

void setCCSID(int codedCharSetId);

codedCharSetId
The CCSID to be set in the AmMessage.

setCorrelationId
Sets the correlation identifier in the AmMessage object.

void setCorrelationId(byte[] correlId);

correlId The correlation identifier to be set in the AmMessage. The
correlation identifier can be reset by specifying this as a zero length
byte array. For example:
byteÂ┘ myByteArray = new byteÂ0┘;
myMessage.setCorrelationId(myByteArray);

setDataOffset
Sets the data offset for reading or writing byte data.

void setDataOffset(int dataOffset);

dataOffset The data offset to be set in the AmMessage. Set an offset of zero to
read or write from the start of the data.

setEncoding
Sets the encoding of the data in the AmMessage object.

void setEncoding(int encoding);

encoding The encoding to be used in the AmMessage. It can take one of the
following values:
AMENC_NORMAL
AMENC_NORMAL_FLOAT_390
AMENC_REVERSED
AMENC_REVERSED_FLOAT_390
AMENC_UNDEFINED

Java AmMessage

390 MQSeries Application Messaging Interface

setFormat
Sets the format for the AmMessage object.

void setFormat(String format);

format The format to be used in the AmMessage. It can take one of the
following values:
AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

If set to AMFMT_NONE, the default format for the sender will be
used (if available).

setGroupStatus
Sets the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.
Once you start sending messages in a group, you must complete the group before
sending any messages that are not in the group.

If you specify AMGRP_MIDDLE_MSG_IN_GROUP or
AMGRP_LAST_MSG_IN_GROUP without specifying
AMGRP_FIRST_MSG_IN_GROUP, the behavior is the same as for
AMGRP_FIRST_MSG_IN_GROUP and AMGRP_ONLY_MSG_IN_GROUP.

If you specify AMGRP_FIRST_MSG_IN_GROUP out of sequence, then the
behavior is the same as for AMGRP_MIDDLE_MSG_IN_GROUP.

void setGroupStatus(int groupStatus);

groupStatus The group status to be set in the AmMessage. It can take one of
the following values:
AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

writeBytes
Writes a byte array into the AmMessage object, starting at the current data offset. If
the data offset is not at the end of the data, existing data is overwritten. Use
setDataOffset to specify the data offset. writeBytes will advance the data offset by
the number of bytes written, leaving it immediately after the last byte written.

void writeBytes(byte[] data);

data The data to be written to the AmMessage.

Java AmMessage

Chapter 15. Java interface reference 391

AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue manager.
An open sender service is always associated with an open connection object (such
as a queue manager connection). Support is also included for dynamic sender
services (those that encapsulate model queues). The required sender service object
definitions can be provided from a repository, or created without a repository
definition by defaulting to the existing queue objects on the local queue manager.

The AmSender object must be created before it can be opened. This is done using
AmSession.createSender.

A responder is a special type of AmSender used for sending a response to a request
message. It is not created from a repository definition. Once created, it must not be
opened until used in its correct context as a responder receiving a request message
with AmReceiver.receive. When opened, its queue and queue manager properties
are modified to reflect the ReplyTo destination specified in the message being
received. When first used in this context, the sender service becomes a responder
sender service.

clearErrorCodes
Clears the error codes in the AmSender.

void clearErrorCodes();

close
Closes the AmSender. close is overloaded: the policy parameter is optional.

void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

getCCSID
Returns the coded character set identifier for the AmSender. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.

int getCCSID();

getEncoding
Returns the value used to encode numeric data types for the AmSender. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.

int getEncoding();

Java AmSender

392 MQSeries Application Messaging Interface

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmSender.

String getName();

open
Opens an AmSender service. open is overloaded: the policy parameter is optional.

void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy (constant:
AMSD_POL) is used.

send
Sends a message to the destination specified by the AmSender. If the AmSender is
not open, it will be opened (if this action is specified in the policy options).

send is overloaded: the sendMessage parameter is required, but the others are
optional. receivedMessage and responseService are used in request/response
messaging, and are mutually exclusive.

void send(
AmMessage sendMessage,
AmReceiver responseService,
AmMessage receivedMessage,
AmPolicy policy);

sendMessage The message object that contains the data to be sent.

responseService
The AmReceiver to be used for receiving any response to the sent
message. If omitted, no response can be received.

receivedMessage
The previously received message which is used for correlation with
the sent message. If omitted, the sent message is not correlated
with any received message.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

sendFile
Sends data from a file. To send data from a file, the sendMessage and fileName
parameters are required, but the policy is optional. The file data can be received as
normal message data by a target application using AmReceiver.receive, or used to
reconstruct the file with AmReceiver.receiveFile.
void sendFile(

AmMessage sendMessage,
String filename,
AmPolicy policy);

sendMessage The message object to use to send the file. This can be used to
specify the Correlation ID for example.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send

Java AmSender

Chapter 15. Java interface reference 393

operation is a physical-mode file transfer, then the file name will
travel with the message for use with the receive file method (see
“receiveFile” on page 397 for more details). Note that the file name
sent will exactly match the supplied file name; it will not be
converted or expanded in any way.

policy The policy to be used. If omitted, the system default policy (name
constant: AMSD_POL) is used.

Java AmSender

394 MQSeries Application Messaging Interface

AmReceiver
An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue manager.
An open AmReceiver is always associated with an open connection object, such as
a queue manager connection. Support is also included for a dynamic AmReceiver
(that encapsulates a model queue). The required AmReceiver object definitions can
be provided from a repository or can be created automatically from the set of
existing queue objects available on the local queue manager.

There is a definition type associated with each AmReceiver:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

An AmReceiver created from a repository definition will be initially of type
AMDT_PREDEFINED or AMDT_DYNAMIC. When opened, its definition type
might change from AMDT_DYNAMIC to AMDT_TEMP_DYNAMIC according to
the properties of its underlying queue object.

An AmReceiver created with default values (that is, without a repository
definition) will have its definition type set to AMDT_UNDEFINED until it is
opened. When opened, this will become AMDT_DYNAMIC,
AMDT_TEMP_DYNAMIC, or AMDT_PREDEFINED, according to the properties of
its underlying queue object.

browse
Browses an AmReceiver service. browse is overloaded: the browseMessage and
options parameters are required, but the others are optional.

void browse(
AmMessage browseMessage,
int options,
AmSender responseService,
AmMessage selectionMessage,
AmPolicy policy);

browseMessage The message object that receives the browse data.

options Options controlling the browse operation. Possible values are:
AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT
AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to AmReceiver.receive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message.

responseService
The AmSender to be used for sending any response to the browsed
message. If omitted, no response can be sent.

Java AmReceiver

Chapter 15. Java interface reference 395

selectionMessage
A message object which contains the Correlation ID used to
selectively browse a message from the AmReceiver. If omitted, the
first available message is browsed. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be reset
(see AmMessage.setCorrelationId on page 390) before invoking
the browse method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

clearErrorCodes
Clears the error codes in the AmReceiver.

void clearErrorCodes();

close
Closes the AmReceiver. close is overloaded: the policy parameter is optional.

void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy (constant:
AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

getDefinitionType
Returns the definition type (service type) for the AmReceiver.

int getDefinitionType();

The following values can be returned:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

Values other than AMDT_UNDEFINED reflect the properties of the underlying
queue object.

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmReceiver.

String getName();

Java AmReceiver

396 MQSeries Application Messaging Interface

getQueueName
Returns the queue name of the AmReceiver. This is used to determine the queue
name of a permanent dynamic AmReceiver, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. (See also
setQueueName.)

String getQueueName();

open
Opens an AmReceiver service. open is overloaded: the policy parameter is
optional.

void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy (constant:
AMSD_POL) is used.

receive
Receives a message from the AmReceiver service. receive is overloaded: the
receiveMessage parameter is required, but the others are optional.

void receive(
AmMessage receiveMessage,
AmSender responseService,
AmMessage selectionMessage,
AmPolicy policy);

receiveMessage
The message object that receives the data. The message object is
reset implicitly before the receive takes place.

responseService
The AmSender to be used for sending any response to the received
message. If omitted, no response can be sent.

selectionMessage
A message object containing the Correlation ID used to selectively
receive a message from the AmReceiver. If omitted, the first
available message is received. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationId on page 390) before
invoking the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

receiveFile
Receives file message data into a file. To receive data into a file, the receiveMessage
and fileName parameters are required, but the others are optional.
void receiveFile(

AmMessage receiveMessage,
String fileName,
AmMessage selectionMessage,
AmPolicy policy);

receiveMessage
The message object used to receive the file. This is updated with
the message properties, for example the Message ID. If the

Java AmReceiver

Chapter 15. Java interface reference 397

message is not from a file, the message object receives the data.
The message object is reset implicitly before the receive takes place.

fileName The name of the file to be received (input). This can include a
directory prefix to define a fully-qualified or relative file name. If
NULL or a null string is specified, then the AMI will use the name
of the originating file (including any directory prefix), exactly as it
was supplied on the send file call. Note that the original file name
may not be appropriate for use by the receiver, either because a
path name included in the file name is not applicable to the
receiving system, or because the sending and receiving systems use
different file naming conventions.

selectionMessage
A message object containing the Correlation ID used to selectively
receive a message from the AmReceiver. If omitted, the first
available message is received. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationId on page 390) before
invoking the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

setQueueName
Sets the queue name of the AmReceiver (when this encapsulates a model queue).
This is used to specify the queue name of a recreated permanent dynamic
AmReceiver, in order to receive messages in a session subsequent to the one in
which it was created. (See also getQueueName.)

void setQueueName(String queueName);

queueName The queue name to be set in the AmReceiver.

Java AmReceiver

398 MQSeries Application Messaging Interface

AmDistributionList
An AmDistributionList object encapsulates a list of AmSender objects.

clearErrorCodes
Clears the error codes in the AmDistributionList.

void clearErrorCodes();

close
Closes the AmDistributionList. close is overloaded: the policy parameter is
optional.

void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

getLastErrorStatus
Returns the AmStatus of the last error condition of this object.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmDistributionList object.

String getName();

getSender
Returns the AmSender in the AmDistributionList object at the index specified.
AmDistributionList.getSenderCount gets the number of AmSender services in the
distribution list.

AmSender getSender(int index);

index The index of the AmSender in the AmDistributionList, starting at
zero.

getSenderCount
Returns the number of AmSender services in the AmDistributionList object.

int getSenderCount();

open
Opens an AmDistributionList object for each of the destinations in the distribution
list. open is overloaded: the policy parameter is optional.

void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

Java AmDistributionList

Chapter 15. Java interface reference 399

send
Sends a message to each AmSender defined in the AmDistributionList object. send
is overloaded: the sendMessage parameter is required, but the others are optional.

void send(
AmMessage sendMessage,
AmReceiver responseService,
AmPolicy policy);

sendMessage The message object containing the data to be sent.

responseService
The AmReceiver to be used for receiving any response to the sent
message. If omitted, no response can be received.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

sendFile
Sends data from a file to each AmSender defined in the AmDistributionList object.
The sendMessage and fileName parameters are required to send data from a file,
but the policy is optional. The file data can be received as normal message data by
a target application using AmReceiver.receive, or used to reconstruct the file with
AmReceiver.receiveFile.

void sendFile(
AmMessage sendMessage,
String fileName,
AmPolicy policy);

sendMessage The message object to use to send the file. This can be used to
specify the Correlation ID, for example.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel with the message for use with the receive file method (see
“receiveFile” on page 397 for more details). Note that the file name
sent will exactly match the supplied file name; it will not be
converted or expanded in any way.

policy The policy to be used. If omitted, the system default policy (name
constant: AMSD_POL) is used.

Java AmDistributionList

400 MQSeries Application Messaging Interface

AmPublisher
An AmPublisher object encapsulates an AmSender and provides support for
publish requests to a publish/subscribe broker.

clearErrorCodes
Clears the error codes in the AmPublisher.

void clearErrorCodes();

close
Closes the AmPublisher. close is overloaded: the policy parameter is optional.

void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy (constant:
AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

getCCSID
Returns the coded character set identifier for the AmPublisher. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.

int getCCSID();

getEncoding
Returns the value used to encode numeric data types for the AmPublisher. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

int getEncoding();

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmPublisher.

String getName();

open
Opens an AmPublisher service. open is overloaded: the policy parameter is
optional.

void open(AmPolicy policy);

Java AmPublisher

Chapter 15. Java interface reference 401

policy The policy to be used. If omitted, the system default policy (AMSD_POL)
is used.

publish
Publishes a message using the AmPublisher. publish is overloaded: the pubMessage
parameter is required, but the others are optional.

void publish(
AmMessage pubMessage,
AmReceiver responseService,
AmPolicy policy);

pubMessage The message object that contains the data to be published.

responseService
The AmReceiver to which the response to the publish request
should be sent. Omit it if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

Java AmPublisher

402 MQSeries Application Messaging Interface

AmSubscriber
An AmSubscriber object encapsulates both an AmSender and an AmReceiver. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

clearErrorCodes
Clears the error codes in the AmSubscriber.

void clearErrorCodes();

close
Closes the AmSubscriber. close is overloaded: the policy parameter is optional.

void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy (constant:
AMSD_POL) is used.

enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

getCCSID
Returns the coded character set identifier for the AmSender in the AmSubscriber. A
non-default value reflects the CCSID of a remote system unable to perform CCSID
conversion of received messages. In this case the subscriber must perform CCSID
conversion of the message before it is sent.

int getCCSID();

getDefinitionType
Returns the definition type for the AmReceiver in the AmSubscriber.

int getDefinitionType();

The following values can be returned:
AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

getEncoding
Returns the value used to encode numeric data types for the AmSender in the
AmSubscriber. A non-default value reflects the encoding of a remote system unable
to convert the encoding of received messages. In this case the subscriber must
convert the encoding of the message before it is sent.

int getEncoding();

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

Java AmSubscriber

Chapter 15. Java interface reference 403

getName
Returns the name of the AmSubscriber.

String getName();

getQueueName
Returns the queue name used by the AmSubscriber to receive messages. This is
used to determine the queue name of a permanent dynamic AmReceiver in the
AmSubscriber, so that it can be recreated with the same queue name in order to
receive messages in a subsequent session. (See also setQueueName.)

String getQueueName();

open
Opens an AmSubscriber. open is overloaded: the policy parameter is optional.

void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy (constant:
AMSD_POL) is used.

Java AmSubscriber

404 MQSeries Application Messaging Interface

receive
Receives a message, normally a publication, using the AmSubscriber. The message
data, topic and other elements can be accessed using the message interface
methods (see page 384).

receive is overloaded: the pubMessage parameter is required, but the others are
optional.

void receive(
AmMessage pubMessage,
AmMessage selectionMessage,
AmPolicy policy);

pubMessage The message object containing the data that has been published.
The message object is reset implicitly before the receive takes place.

selectionMessage
A message object containing the correlation ID used to selectively
receive a message from the AmSubscriber. If omitted, the first
available message is received.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

setQueueName
Sets the queue name in the AmReceiver of the AmSubscriber, when this
encapsulates a model queue. This is used to specify the queue name of a recreated
permanent dynamic AmReceiver, in order to receive messages in a session
subsequent to the one in which it was created. (See also getQueueName.)

void setQueueName(String queueName);

queueName
The queue name to be set.

Java AmSubscriber

Chapter 15. Java interface reference 405

subscribe
Sends a subscribe message to a publish/subscribe broker using the AmSubscriber,
to register a subscription. The topic and other elements can be specified using the
message interface methods (see page 384) before sending the message.

Publications matching the subscription are sent to the AmReceiver associated with
the AmSubscriber. By default, this has the same name as the AmSubscriber, with
the addition of the suffix ‘.RECEIVER’.

subscribe is overloaded: the subMessage parameter is required, but the others are
optional.
void subscribe(

AmMessage subMessage,
AmReceiver responseService,
AmPolicy policy);

subMessage The message object that contains the topic subscription data.

responseService
The AmReceiver to which the response to this subscribe request
should be sent. Omit it if no response is required.

This is not the AmReceiver to which publications will be sent by
the broker; they are sent to the AmReceiver associated with the
AmSubscriber (see above).

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

unsubscribe
Sends an unsubscribe message to a publish/subscribe broker using the
AmSubscriber, to deregister a subscription. The topic and other elements can be
specified using the message interface methods (see page 384) before sending the
message.

unsubscribe is overloaded: the unsubMessage parameter is required, but the others
are optional.

void unsubscribe(
AmMessage unsubMessage,
AmReceiver responseService,
AmPolicy policy);

unsubMessage The message object that contains the topics to which the
unsubscribe request applies.

responseService
The AmReceiver to which the response to this unsubscribe request
should be sent. Omit it if no response is required.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

Java AmSubscriber

406 MQSeries Application Messaging Interface

AmPolicy
An AmPolicy object encapsulates details of how the AMI processes the message
(for instance, the priority and persistence of the message, how errors are handled,
and whether transactional processing is used).

clearErrorCodes
Clears the error codes in the AmPolicy.

void clearErrorCodes();

enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmPolicy object.

String getName();

getWaitTime
Returns the wait time (in ms) set for this AmPolicy.

int getWaitTime();

setWaitTime
Sets the wait time for any receive using this AmPolicy.

void setWaitTime(int waitTime);

waitTime The wait time (in ms) to be set in the AmPolicy.

Java AmPolicy

Chapter 15. Java interface reference 407

AmConstants
This class provides access to the AMI constants listed in “Appendix B. Constants”
on page 493.

For example, to use the constant AMRC_NONE (an AMI reason code), specify
AmConstants.AMRC_NONE.

Note: Not all of the constants available in the C and C++ programming interfaces
are available in Java, because they are not all appropriate in this language.
For instance, AmConstants does not contain AMB_TRUE or AMB_FALSE,
since the Java language has its own true and false constants and these are
used by the AMI for Java.

Java AmConstants

408 MQSeries Application Messaging Interface

AmElement
An AmElement object encapsulates a name/value pair which can be added to an
AmMessage object.

AmElement
Constructor for an AmElement object.

AmElement(String name, String value);

name The name of the element.

value The value of the element.

getName
Returns the name of the AmElement.

String getName();

getValue
Returns the value of the AmElement.

String getValue();

getVersion
Returns the version of the AmElement (the default value is
AmConstants.AMELEM_VERSION_1).

int getVersion();

setVersion
Sets the version of the AmElement.

void setVersion(int version);

version The version of the AmElement that is set. It can take the value
AmConstants.AMELEM_VERSION_1 or
AmConstants.AMELEM_CURRENT_VERSION.

toString
Returns a String representation of the AmElement.

String toString();

Java AmElement

Chapter 15. Java interface reference 409

AmObject
AmObject is a Java Interface. The following classes implement the AmObject
interface:

AmSession
AmMessage
AmSender
AmReceiver
AmDistributionList
AmPublisher
AmSubscriber
AmPolicy

This allows application programmers to use generic error handling routines.

clearErrorCodes
Clears the error codes in the AmObject.

void clearErrorCodes();

getLastErrorStatus
Returns the AmStatus of the last error condition.

AmStatus getLastErrorStatus();

getName
Returns the name of the AmObject.

String getName();

Java AmObject

410 MQSeries Application Messaging Interface

AmStatus
An AmStatus object encapsulates the error status of other AmObjects.

AmStatus
Constructor for an AmStatus object.

AmStatus();

getCompletionCode
Returns the completion code from the AmStatus object.

int getCompletionCode();

getReasonCode
Returns the reason code from the AmStatus object.

int getReasonCode();

getReasonCode2
Returns the secondary reason code from the AmStatus object. (This code is specific
to the underlying transport used by the AMI). For MQSeries, the secondary reason
code is an MQSeries reason code of type MQRC_xxx.

int getReasonCode2();

toString
Returns a String representation of the internal state of the AmStatus object.

String toString();

Java AmStatus

Chapter 15. Java interface reference 411

AmException
AmException is the base Exception class; all other Exceptions inherit from this
class.

getClassName
Returns the type of object throwing the Exception.

String getClassName();

getCompletionCode
Returns the completion code for the Exception.

int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.

String getMethodName();

getReasonCode
Returns the reason code for the Exception.

int getReasonCode();

getSource
Returns the AmObject throwing the Exception.

AmObject getSource();

toString
Returns a String representation of the Exception.

String toString();

Java AmException

412 MQSeries Application Messaging Interface

AmErrorException
An Exception of type AmErrorException is raised when an object experiences an
error with a severity level of FAILED (CompletionCode = AMCC_FAILED).

getClassName
Returns the type of object throwing the Exception.

String getClassName();

getCompletionCode
Returns the completion code for the Exception.

int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.

String getMethodName();

getReasonCode
Returns the reason code for the Exception.

int getReasonCode();

getSource
Returns the AmObject throwing the Exception.

AmObject getSource();

toString
Returns a String representation of the Exception.

String toString();

Java AmErrorException

Chapter 15. Java interface reference 413

AmWarningException
An Exception of type AmWarningException is raised when an object experiences
an error with a severity level of WARNING (CompletionCode =
AMCC_WARNING).

getClassName
Returns the type of object throwing the Exception.

String getClassName();

getCompletionCode
Returns the completion code for the Exception.

int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.

String getMethodName();

getReasonCode
Returns the reason code for the Exception.

int getReasonCode();

getSource
Returns the AmObject throwing the Exception.

AmObject getSource();

toString
Returns a String representation of the Exception.

String toString();

Java AmWarningException

414 MQSeries Application Messaging Interface

Part 6. OS/390 Subsystems

Chapter 16. Writing applications for OS/390
subsystems 417
Writing IMS applications using AMI. 417
Writing CICS applications using AMI 417
Writing batch applications using AMI 418
Writing RRS-batch applications using AMI . . . 418

RRS availability 418

© Copyright IBM Corp. 1999, 2000 415

416 MQSeries Application Messaging Interface

Chapter 16. Writing applications for OS/390 subsystems

Here is some advice for those of you who want to write AMI applications for the
IMS, CICS, batch, and RRS-batch subsystems on OS/390.

Writing IMS applications using AMI
In an IMS application, you establish a syncpoint by using IMS calls such as GU
(get unique) to the IOPCB and CHKP (checkpoint). To back out changes since the
previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see the following manuals:
v IMS/ESA Application Programming: Transaction Manager
v IMS/ESA Application Programming: Design Guide

If other recoverable resources are also involved in the unit of work, the queue
manager (in conjunction with the IMS syncpoint manager) participates in a
two-phase commit protocol; otherwise, the queue manager performs a single-phase
commit process.

All AMI sessions are marked as expired at a syncpoint or rollback (except in a
batch-orientated BMP). This is because a different user could initiate the next unit
of work and MQSeries security checking is performed when an AMI session or
service is opened, not when an AMI object is accessed.

Any subsequent use of a session that has been marked expired (or any object
created using that session), will return AMRC_SESSION_EXPIRED. It is the
application’s responsibility to ensure that all AMI sessions marked as expired are
actually deleted.

We recommend that applications explicitly end all AMI sessions (using
amSesDelete or amTerminate) before syncpoint, to ensure that any AMI reason
codes are correctly reported to the application, and to help ensure that all AMI
sessions are deleted.

If an IMS application closes or deletes an AMI session, no implicit syncpoint is
taken. If the application closes down normally, any open services are closed and an
implicit commit occurs. If the application closes down abnormally, any open
services are closed and an implicit backout occurs.

Writing CICS applications using AMI
In a CICS application, you establish a syncpoint by using CICS calls such as EXEC
CICS SYNCPOINT. To back out changes to the previous syncpoint you can use the
EXEC CICS SYNCPOINT ROLLBACK call. For more information, see the CICS
Application Programming Reference manual.

If other recoverable resources are also involved in the unit of work, the queue
manager (in conjunction with the CICS syncpoint manager) participates in a
two-phase commit protocol; otherwise, the queue manager performs a single-phase
commit process.

If a CICS application closes or deletes an AMI session, no implicit syncpoint is
taken. If the application closes down normally, any open services are closed and an

© Copyright IBM Corp. 1999, 2000 417

implicit commit occurs. If the application closes down abnormally, any open
services are closed and an implicit backout occurs. Note that file transfer calls are
not supported under CICS. If used in a CICS application on OS/390, they return
the reason code: AMRC_FILE_TRANSFER_INVALID (144).

If the AMI detects an internal processing error from which no recovery is possible,
CICS applications will create a CICS transaction dump, with identifier ‘MAMT’.
See “First failure symptom report (OS/390)” on page 477 for more details.

Writing batch applications using AMI
In a batch application, you establish a syncpoint by using AMI calls such as
amCommit or amSesCommit. To back out changes to the previous syncpoint you
can use the amBackout or amSesRollback calls.

Note: If you need to commit or back out updates to resources managed by
different resource managers, such as MQSeries and DB2®, within a single
unit of work, you should use RRS. For further information, see “Writing
RRS-batch applications using AMI”.

If a batch application closes or deletes an AMI session, an implicit syncpoint is
taken. If the application closes down normally, without first closing or deleting an
AMI session, an implicit syncpoint occurs. If the application closes down
abnormally, an implicit backout occurs.

Writing RRS-batch applications using AMI
Transaction management and recoverable resource services (RRS) is an OS/390
facility that provides two-phase syncpoint support across participating resource
managers. An application can update recoverable resources managed by various
OS/390 resource managers such as MQSeries and DB2 and then commit or back
out these changes as a single unit of work.

In a RRS-batch application, you establish a syncpoint by using RRS calls such as
SRRCMIT. To back out changes to the previous syncpoint you can use the
SRRBACK call. For more information, see the MVS Callable Services for High Level
Languages manual.

RRS availability
If RRS is not active on your OS/390 system, any AMI call which resolves to an
MQSeries call will return one of the following AMI reason codes:

AMI reason code Reason code 2

AMRC_TRANSPORT_ERROR MQRC_ENVIRONMENT_ERROR

AMRC_BACKOUT_INVALID NONE

AMRC_COMMIT_INVALID NONE

If an RRS application closes or deletes an AMI session, no implicit syncpoint is
taken. If the application closes down normally, any open services are closed and an
implicit commit occurs. If the application closes down abnormally, any open
services are closed and an implicit backout occurs.

418 MQSeries Application Messaging Interface

Part 7. Setting up an AMI installation

Chapter 17. Installation and sample programs 421
Prerequisites. 421

Disk space 421
Operating environments 421
MQSeries environment 422
Language compilers 422

Installation on AIX 423
Installation 423

Manual installation 423
Using amtInstall 423
Removing the AMI 423

Setting the runtime environment 424
Java programs 424

Directory structure (AIX) 425
Installation on HP-UX 427

Installation 427
Manual installation 427
Using amtInstall 427
Removing the AMI 427

Setting the runtime environment 428
Java programs 428

Directory structure (HP-UX) 429
Installation on Sun Solaris 431

Installation 431
Manual installation 431
Using amtInstall 431
Removing the AMI 431

Setting the runtime environment 432
Java programs 432

Directory structure (Solaris) 433
Installation on Windows. 435

Installation 435
Removing the AMI 435

Setting the runtime environment 435
Directory structure (Windows). 436

Installation on OS/390 438
Installation 438
Setting the runtime environment 438

Batch and RRS-batch 438
IMS 438
CICS 438

Unicode character conversion 438
Batch, RRS-batch, IMS 438
CICS 438

Directory structure (OS/390) 439
Local host and repository files (Unix and
Windows) 441

Default location 441
Default names 441
Overriding the default location and names . . 441
Local host file 442
Repository file 442

Local host and repository files (OS/390) 443
Batch, RRS-batch, IMS 443
CICS 443
Local host file 443

Repository file 444
Repository and local host caches 444

Generating caches 444
Using a cache 445
Cache generator messages 445

The administration tool 446
Installation 446
Operation 446

Connecting to MQSeries 447
Using MQSeries Integrator Version 1 447
Using MQSeries Publish/Subscribe 447
Using MQSeries Integrator Version 2 447
Migrating to MQSeries Integrator V2 from V1
and MQSeries Publish/Subscribe 449
Creating default MQSeries objects 449

The sample programs 450
Sample programs for Unix and Windows . . . 450
Running the Unix and Windows sample
programs 451

MQSeries objects 451
Repository and host files 451
MQSeries Publish/Subscribe broker 451
Setting the runtime environment 451
Running the C and C++ samples 451
Running the Java samples 451

Sample programs for OS/390 452
Running the sample programs (OS/390) . . . 452

Building the sample programs. 453
MQSeries objects 453
Repository and host files 453
MQSeries Publish/Subscribe broker 453
Setting the runtime environment 453
File name input for the file transfer samples 454
Running the batch samples 454
Running the CICS samples 454
Running the IMS samples 454

Chapter 18. Defining services and policies . . 455
Services and policies 455

System provided definitions 456
System default objects 456

Service definitions 458
Service point (sender/receiver) 458
Distribution list. 460
Subscriber 460
Publisher 460

Policy definitions 461
Initialization attributes 461
General attributes 462
Send attributes 463
Receive attributes 465
Subscribe attributes 466
Publish attributes 466

Chapter 19. Problem determination 467
Using trace (Unix and Windows) 467

© Copyright IBM Corp. 1999, 2000 419

Trace filename and directory 467
Commands on UNIX 467
Commands on Windows 468

C++ and Java 469
Example trace 470

Using trace (OS/390) 474
Formatted Trace 474
Control of formatted trace 474
GTF Trace 475
Control of GTF Trace 475

When your AMI program fails 477
Reason Codes 477
First failure symptom report (Unix and
Windows) 477
First failure symptom report (OS/390) 477
Other sources of information 478
Common causes of problems 478

420 MQSeries Application Messaging Interface

Chapter 17. Installation and sample programs

The Application Messaging Interface is available for the AIX, HP-UX, Sun Solaris,
Windows NT, Windows 98, and OS/390 platforms.

This chapter contains:
v “Prerequisites”
v “Installation on AIX” on page 423
v “Installation on HP-UX” on page 427
v “Installation on Sun Solaris” on page 431
v “Installation on Windows” on page 435
v “Installation on OS/390” on page 438
v “Local host and repository files (Unix and Windows)” on page 441
v “The administration tool” on page 446
v “Connecting to MQSeries” on page 447
v “The sample programs” on page 450

Prerequisites
Prior to installing the AMI you should make sure that your system has sufficient
disk space, and the software listed below.

Disk space
Disk space requirements:

AIX 15.0 MB

HP-UX 12.7 MB

Sun Solaris 11.2 MB

Windows 10.9 MB (without AMI Administration Tool)

22.4 MB (with AMI Administration Tool)

OS/390 Not applicable (AMI installed as part of MQSeries
for OS/390)

Operating environments
The AMI runs under the following operating systems:

AIX V4.3

HP-UX V11.0

Sun Solaris V2.6 and V7

Windows Windows NT V4 and Windows 98

OS/390 V2R6 or later, with Language Environment

CICS 4.1 or later, with Language Environment

IMS V5.1 or later, with Language Environment

© Copyright IBM Corp. 1999, 2000 421

MQSeries environment
You can run the AMI in an MQSeries server or client environment.

To run the AMI in an MQSeries server environment you need at least one of the
following installed on your system:
v MQSeries for AIX Version 5.1 or later
v MQSeries for HP-UX Version 5.1 or later
v MQSeries for Sun Solaris Version 5.1 or later
v MQSeries for Windows NT Version 5.1 or later
v MQSeries for OS/390 Version 5.2

To run the AMI in an MQSeries client environment you need at least one of the
following installed on your system:
v MQSeries client for AIX Version 5.1 or later
v MQSeries client for HP-UX Version 5.1 or later
v MQSeries client for Sun Solaris Version 5.1 or later
v MQSeries client for Windows NT Version 5.1 or later
v MQSeries client for Windows 98 Version 5.1 or later

The MQSeries client requires access to at least one supporting MQSeries server.

Language compilers
The following language compilers for C, COBOL, C++ and Java are supported:
AIX VisualAge® C++ 5.0

JDK™ 1.1.7 and above

HP-UX HP aC++ B3910B A.03.10
HP aC++ B3910B A.03.04 (970930) Support library
JDK 1.1.7 and above

Sun Solaris Workshop Compiler 4.2 (with Solaris 2.6)
Workshop Compiler 5.0 (with Solaris 7)
JDK 1.1.7 and above

Windows Microsoft Visual C++ 6
JDK 1.1.7 and above

OS/390 OS/390 C/C++ Version 2 Release 6 and above
IBM® COBOL for OS/390 & VM Version 2 Release
1 and above

IBM COBOL for MVS & VM Version 1 Release 2
and above

Next step
Now go to one of the following to start the installation procedure:
v “Installation on AIX” on page 423
v “Installation on HP-UX” on page 427
v “Installation on Sun Solaris” on page 431
v “Installation on Windows” on page 435
v “Installation on OS/390” on page 438

Prerequisites

422 MQSeries Application Messaging Interface

Installation on AIX
The AMI package for AIX comes as a compressed archive file, ma0f_ax.tar.Z.
Uncompress and restore it as follows:
1. Login as root

2. Store ma0f_ax.tar.Z in /tmp

3. Execute uncompress -fv /tmp/ma0f_ax.tar.Z

4. Execute tar -xvf /tmp/ma0f_ax.tar

5. Execute rm /tmp/ma0f_ax.tar

This creates the following files:

amt100.tar A standard tar file containing the AMI files

amtInstall A script file to aid AMI installation

amtRemove A script file to aid AMI removal

readme A file containing any product and information updates that have
become available since this documentation was produced

Installation
Installation can be carried out manually, or using the amtInstall utility.

Manual installation
Restore the tar file amt100.tar. This should be done under the base MQSeries
directory /usr/mqm, so that the AMI tar file restores to a directory structure
consistent with MQSeries. This operation usually requires root access. Existing files
will be overwritten. (Note that the location /usr/mqm/ is consistent with MQSeries
Version 5.1, which is the prerequisite for the AMI).

Using amtInstall
1. Login as root
2. Execute amtInstall <directory>

where <directory> is the directory containing the amt100.tar file.

The amtInstall utility will unpack the tar file into the correct location and provide
the necessary links for your environment. Existing files will be overwritten.

Note: All files and directories created must be accessible to all AMI users. These
files are listed in “Directory structure (AIX)” on page 425.

Removing the AMI
Run the amtRemove utility to remove all the files that were created by amtInstall.

Installation on AIX

Chapter 17. Installation and sample programs 423

Setting the runtime environment
Make sure the location of the AMI runtime binary files is added to your PATH
environment variable. For example:

export PATH=$PATH:/usr/mqm/lib:

Note: The above step is not needed if you used the amtInstall utility.

In addition, for the samples:
export PATH=$PATH:/usr/mqm/amt/samp/C/bin:/usr/mqm/amt/samp/Cpp/bin:

Java programs
When running Java, there are some additional steps.

The AMI classes must be contained in the CLASSPATH, for example:
export CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/com.ibm.mq.amt.jar:

In addition, for the samples:
export CLASSPATH=$CLASSPATH:/usr/mqm/amt/samp/java/bin

/com.ibm.mq.amt.samples.jar:

Also, in order to load the AMI library for Java:
export LIBPATH=$LIBPATH:/usr/mqm/lib:

Next step
Now go to “Local host and repository files (Unix and Windows)” on page 441
to continue the installation procedure.

Installation on AIX

424 MQSeries Application Messaging Interface

Directory structure (AIX)
The AMI tar file contains:

/amt/amtsdfts.tst : MQSeries mqsc command file to create default MQSeries
objects required by the AMI

/amt/amthost.xml : Sample AMI XML file used as the default host file

/amt/amt.dtd : AMI Document Type Definition file on which the AMI
repository is based

/amt/inc
amtc.h : The C header file for the AMI
amtcpp.hpp : The C++ header file for the AMI
oamasami.h: The C header file for the OAMAS AMI subset

/amt/ipla : The International Program License Agreement file
/amt/li : The License Information file

/java/lib
com.ibm.mq.amt.jar : The jar file containing the AMI classes for Java

/lib
libamt.a : The main AMI library
libamt_r.a : The main AMI threaded library
libamtXML310.a : The AMI XML parsing library
libamtXML310_r.a : The AMI threaded XML parsing library
libamtCpp.a : The AMI C++ library
libamtCpp_r.a : The AMI C++ threaded library
libamtJava.so: The AMI JNI library
libamtICUUC140.a : The AMI codepage translation library
libamtICUUC140_r.a : The AMI codepage translation threaded library
libamtICUDATA.a : The AMI codepage translation data library.
amtcmqm : Dynamic binding stub for Server library
amtcmqm_r : Dynamic binding stub for MQSeries Server threaded library
amtcmqic : Dynamic binding stub for MQSeries Client library
amtcmqic_r : Dynamic binding stub for MQSeries Client threaded library

/amt/samp
amtsamp.tst : MQSeries mqsc command file to create MQSeries objects

required by AMI samples
amt.xml : Sample AMI XML repository for use with the AMI samples

/amt/samp/C
amtsosnd.c : C source for object-level send and forget sample
amtsorcv.c : C source for object-level receiver sample
amtsoclt.c : C source for object-level client sample
amtsosvr.c : C source for object-level server sample
amtsopub.c : C source for object-level publisher sample
amtsosub.c : C source for object-level subscriber sample
amtsofsn.c : C source for object-level send file sample
amtsofrc.c : C source for object-level receive file sample
amtsosgs.c : C source for object-level send group sample
amtsosgr.c : C source for object-level receive group sample
amtshsnd.c : C source for high-level send and forget sample
amtshrcv.c : C source for high-level receiver sample
amtshclt.c : C source for high-level client sample
amtshsvr.c : C source for high-level server sample
amtshpub.c : C source for high-level publisher sample
amtshsub.c : C source for high-level subscriber sample
amtshfsn.c : C source for high-level send file sample
amtshfrc.c : C source for high-level receive file sample

/amt/samp/C/bin
amtsosnd : C object-level send and forget sample program

Installation on AIX

Chapter 17. Installation and sample programs 425

amtsorcv : C object-level receiver sample program
amtsoclt : C object-level client sample program
amtsosvr : C object-level server sample program
amtsopub : C object-level publisher sample program
amtsosub : C object-level subscriber sample program
amtsofsn : C object-level send file sample program
amtsofrc : C object-level receive file sample program
amtsosgs : C object-level send group sample program
amtsosgr : C object-level receive group sample program
amtshsnd : C high-level send and forget sample program
amtshrcv : C high-level receiver sample program
amtshclt : C high-level client sample program
amtshsvr : C high-level server sample program
amtshpub : C high-level publisher sample program
amtshsub : C high-level subscriber sample program
amtshfsn : C high-level send file sample program
amtshfrc : C high-level receive file sample program

/amt/samp/Cpp
SendAndForget.cpp : C++ source for send and forget sample
Receiver.cpp : C++ source for receiver sample
Client.cpp : C++ source for client sample
Server.cpp : C++ source for server sample
Publisher.cpp : C++ source for publisher sample
Subscriber.cpp : C++ source for subscriber sample
ReceiveFile.cpp : C++ source for receive file sample
SendFile.cpp : C++ source for send file sample

/amt/samp/Cpp/bin
SendAndForget : C++ send and forget sample program
Receiver : C++ receiver sample program
Client : C++ client sample program
Server : C++ server sample program
Publisher : C++ publisher sample program
Subscriber : C++ subscriber sample program
ReceiveFile : C++ source for receive file sample
SendFile : C++ source for send file sample

/amt/samp/java
SendAndForget.java : Java source for send and forget sample
Receiver.java : Java source for receiver sample
Client.java : Java source for client sample
Server.java : Java source for server sample
Publisher.java : Java source for publisher sample
Subscriber.java : Java source for subscriber sample
ReceiveFile.java : Java source for receive file sample
SendFile.java : Java source for send file sample

/amt/samp/java/bin
com.ibm.mq.amt.samples.jar : The jar file containing the AMI

samples class files for Java

Installation on AIX

426 MQSeries Application Messaging Interface

Installation on HP-UX
The AMI package for HP-UX comes as a compressed archive file, ma0f_hp.tar.Z.
Uncompress and restore it as follows:
1. Login as root

2. Store ma0f_hp.tar.Z in /tmp

3. Execute uncompress -fv /tmp/ma0f_hp.tar.Z

4. Execute tar -xvf /tmp/ma0f_hp.tar

5. Execute rm /tmp/ma0f_hp.tar

This creates the following files:

amt100.tar A standard tar file containing the AMI files

amtInstall A script file to aid AMI installation

amtRemove A script file to aid AMI removal

readme A file containing any product and information updates that have
become available since this documentation was produced

Installation
Installation can be carried out manually, or using the amtInstall utility.

Manual installation
Restore the tar file amt100.tar. This should be done under the base MQSeries
directory /opt/mqm, so that the AMI tar file restores to a directory structure
consistent with MQSeries. This operation usually requires root access. Existing files
will be overwritten.

Using amtInstall
1. Login as root
2. Execute amtInstall <directory>

where <directory> is the directory containing the amt100.tar file.

The amtInstall utility will unpack the tar file into the correct location and provide
all the necessary links for your environment. Existing files will be overwritten.

Note: All files and directories created must be accessible to all AMI users. These
files are listed in “Directory structure (HP-UX)” on page 429.

Removing the AMI
Run the amtRemove utility to remove all the files that were created by amtInstall.

Installation on HP-UX

Chapter 17. Installation and sample programs 427

Setting the runtime environment
Make sure the location of the AMI runtime binary files is added to your PATH
environment variable. For example:

export PATH=$PATH:/opt/mqm/lib:

Note: The above step is not needed if you used the amtInstall utility.

In addition, for the samples:
export PATH=$PATH:/opt/mqm/amt/samp/C/bin:/opt/mqm/amt/samp/Cpp/bin:

Java programs
When running Java, there are some additional steps.

The AMI classes must be contained in the CLASSPATH, for example:
export CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mq.amt.jar:

In addition, for the samples:
export CLASSPATH=$CLASSPATH:/opt/mqm/amt/samp/java/bin

/com.ibm.mq.amt.samples.jar:

Also, in order to load the AMI library for Java:
export SHLIB_PATH=$SHLIB_PATH:/opt/mqm/lib:

Next step
Now go to “Local host and repository files (Unix and Windows)” on page 441
to continue the installation procedure.

Installation on HP-UX

428 MQSeries Application Messaging Interface

Directory structure (HP-UX)
The AMI tar file contains:

/amt/amtsdfts.tst : MQSeries mqsc command file to create default MQSeries
objects required by the AMI

/amt/amthost.xml : Sample AMI XML file used as the default host file

/amt/amt.dtd : AMI Document Type Definition file on which the AMI
repository is based

/amt/inc
amtc.h : The C header file for the AMI
amtcpp.hpp : The C++ header file for the AMI
oamasami.h : The C header file for the OAMAS AMI subset

/amt/ipla : The International Program License Agreement file
/amt/li : The License Information file

/java/lib
com.ibm.mq.amt.jar : The jar file containing the AMI classes for Java

/lib
libamt_r.sl : The main AMI threaded library
libamtXML310_r.sl : The AMI threaded XML parsing library
libamtCpp_r.sl : The AMI C++ threaded library
libamtJava.sl: The AMI JNI library
libamtICUUC140_r.sl : The AMI codepage translation threaded library
libamtICUDATA.sl: The AMI codepage translation data library.
amtcmqm_r : Dynamic binding stub for MQSeries Server threaded library
amtcmqic_r : Dynamic binding stub for MQSeries Client threaded library

/amt/samp
amtsamp.tst : MQSeries mqsc command file to create MQSeries objects

required by AMI samples
amt.xml : Sample AMI XML repository for use with the AMI samples

/amt/samp/C
amtsosnd.c : C source for object-level send and forget sample
amtsorcv.c : C source for object-level receiver sample
amtsoclt.c : C source for object-level client sample
amtsosvr.c : C source for object-level server sample
amtsopub.c : C source for object-level publisher sample
amtsosub.c : C source for object-level subscriber sample
amtsofsn.c : C source for object-level send file sample
amtsofrc.c : C source for object-level receive file sample
amtsosgs.c : C source for object-level send group sample
amtsosgr.c : C source for object-level receive group sample
amtshsnd.c : C source for high-level send and forget sample
amtshrcv.c : C source for high-level receiver sample
amtshclt.c : C source for high-level client sample
amtshsvr.c : C source for high-level server sample
amtshpub.c : C source for high-level publisher sample
amtshsub.c : C source for high-level subscriber sample
amtshfsn.c : C source for high-level send file sample
amtshfrc.c : C source for high-level receive file sample

/amt/samp/C/bin
amtsosnd : C object-level send and forget sample program
amtsorcv : C object-level receiver sample program
amtsoclt : C object-level client sample program
amtsosvr : C object-level server sample program
amtsopub : C object-level publisher sample program
amtsosub : C object-level subscriber sample program
amtsofsn : C object-level send file sample program

Installation on HP-UX

Chapter 17. Installation and sample programs 429

amtsofrc : C object-level receive file sample program
amtsosgs : C object-level send group sample program
amtsosgr : C object-level receive group sample program
amtshsnd : C high-level send and forget sample program
amtshrcv : C high-level receiver sample program
amtshclt : C high-level client sample program
amtshsvr : C high-level server sample program
amtshpub : C high-level publisher sample program
amtshsub : C high-level subscriber sample program
amtshfsn : C high-level send file sample program
amtshfrc : C high-level receive file sample program

/amt/samp/Cpp
SendAndForget.cpp : C++ source for send and forget sample
Receiver.cpp : C++ source for receiver sample
Client.cpp : C++ source for client sample
Server.cpp : C++ source for server sample
Publisher.cpp : C++ source for publisher sample
Subscriber.cpp : C++ source for subscriber sample
ReceiveFile.cpp : C++ source for receive file sample
SendFile.cpp : C++ source for send file sample

/amt/samp/Cpp/bin
SendAndForget : C++ send and forget sample program
Receiver : C++ receiver sample program
Client : C++ client sample program
Server : C++ server sample program
Publisher : C++ publisher sample program
Subscriber : C++ subscriber sample program
ReceiveFile : C++ source for receive file sample
SendFile : C++ source for send file sample

/amt/samp/java
SendAndForget.java : Java source for send and forget sample
Receiver.java : Java source for receiver sample
Client.java : Java source for client sample
Server.java : Java source for server sample
Publisher.java : Java source for publisher sample
Subscriber.java : Java source for subscriber sample
ReceiveFile.java : Java source for receive file sample
SendFile.java : Java source for send file sample

/amt/samp/java/bin
com.ibm.mq.amt.samples.jar : The jar file containing the AMI

samples class files for Java

Installation on HP-UX

430 MQSeries Application Messaging Interface

Installation on Sun Solaris
The AMI package for Sun Solaris comes as a compressed archive file,
ma0f_sol.tar.Z. Uncompress and restore it as follows:
1. Login as root

2. Store ma0f_sol.tar.Z in /tmp

3. Execute uncompress -fv /tmp/ma0f_sol.tar.Z

4. Execute tar -xvf /tmp/ma0f_sol.tar

5. Execute rm /tmp/ma0f_sol.tar

This creates the following files:

amt100.tar A standard tar file containing the AMI files

amtInstall A script file to aid AMI installation

amtRemove A script file to aid AMI removal

readme A file containing any product and information updates that have
become available since this documentation was produced

Installation
Installation can be carried out manually, or using the amtInstall utility.

Manual installation
Restore the tar file amt100.tar. This should be done under the base MQSeries
directory /opt/mqm, so that the AMI tar file restores to a directory structure
consistent with MQSeries. This operation usually requires root access. Existing files
will be overwritten.

Using amtInstall
1. Login as root
2. Execute amtInstall <directory>

where <directory> is the directory containing the amt100.tar file.

The amtInstall utility will unpack the tar file into the correct location and provide
the necessary links for your environment. Existing files will be overwritten.

Note: All files and directories created must be accessible to all AMI users. These
files are listed in “Directory structure (Solaris)” on page 433.

Removing the AMI
Run the amtRemove utility to remove all the files that were created by amtInstall.

Installation on Sun Solaris

Chapter 17. Installation and sample programs 431

Setting the runtime environment
Make sure the location of the AMI runtime binary files is added to your PATH
environment variable. For example:

export PATH=$PATH:/opt/mqm/lib:

Note: The above step is not needed if you used the amtInstall utility.

In addition, for the samples:
export PATH=$PATH:/opt/mqm/amt/samp/C/bin:/opt/mqm/amt/samp/Cpp/bin:

Java programs
When running Java, there are some additional steps.

The AMI classes must be contained in the CLASSPATH, for example:
export CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mq.amt.jar:

In addition, for the samples:
export CLASSPATH=$CLASSPATH:/opt/mqm/amt/samp/java/bin

/com.ibm.mq.amt.samples.jar:

Also, in order to load the AMI library for Java:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mqm/lib:

Next step
Now go to “Local host and repository files (Unix and Windows)” on page 441
to continue the installation procedure.

Installation on Sun Solaris

432 MQSeries Application Messaging Interface

Directory structure (Solaris)
The AMI tar file contains:

/amt/amtsdfts.tst : MQSeries mqsc command file to create default MQSeries
objects required by the AMI

/amt/amthost.xml : Sample AMI XML file used as the default host file

/amt/amt.dtd : AMI Document Type Definition file on which the AMI
repository is based

/amt/inc
amtc.h : The C header file for the AMI
amtcpp.hpp : The C++ header file for the AMI
oamasami.h : The C header file for the OAMAS AMI subset

/amt/ipla : The International Program License Agreement file
/amt/li : The License Information file

/java/lib
com.ibm.mq.amt.jar : The jar file containing the AMI classes for Java

/lib
libamt.so : The main AMI library
libamtXML310.so : The AMI XML parsing library
libamtCpp.so : The AMI C++ library
libamtJava.so: The AMI JNI library
libamtICUUC140.so : The AMI codepage translation library
libamtICUDATA.so : The AMI codepage translation data library
amtcmqm : Dynamic binding stub for MQSeries Server library
amtcmqic : Dynamic binding stub for MQSeries Client library

/amt/samp
amtsamp.tst : MQSeries mqsc command file to create MQSeries objects

required by AMI samples
amt.xml : Sample AMI XML repository for use with the AMI samples

/amt/samp/C
amtsosnd.c : C source for object-level send and forget sample
amtsorcv.c : C source for object-level receiver sample
amtsoclt.c : C source for object-level client sample
amtsosvr.c : C source for object-level server sample
amtsopub.c : C source for object-level publisher sample
amtsosub.c : C source for object-level subscriber sample
amtsofsn.c : C source for object-level send file sample
amtsofrc.c : C source for object-level receive file sample
amtsosgs.c : C source for object-level send group sample
amtsosgr.c : C source for object-level receive group sample
amtshsnd.c : C source for high-level send and forget sample
amtshrcv.c : C source for high-level receiver sample
amtshclt.c : C source for high-level client sample
amtshsvr.c : C source for high-level server sample
amtshpub.c : C source for high-level publisher sample
amtshsub.c : C source for high-level subscriber sample
amtshfsn.c : C source for high-level send file sample
amtshfrc.c : C source for high-level receive file sample

/amt/samp/C/bin
amtsosnd : C object-level send and forget sample program
amtsorcv : C object-level receiver sample program
amtsoclt : C object-level client sample program
amtsosvr : C object-level server sample program
amtsopub : C object-level publisher sample program
amtsosub : C object-level subscriber sample program
amtsofsn : C object-level send file sample program

Installation on Sun Solaris

Chapter 17. Installation and sample programs 433

amtsofrc : C object-level receive file sample program
amtsosgs : C object-level send group sample program
amtsosgr : C object-level receive group sample program
amtshsnd : C high-level send and forget sample program
amtshrcv : C high-level receiver sample program
amtshclt : C high-level client sample program
amtshsvr : C high-level server sample program
amtshpub : C high-level publisher sample program
amtshsub : C high-level subscriber sample program
amtshfsn : C high-level send file sample program
amtshfrc : C high-level receive file sample program

/amt/samp/Cpp
SendAndForget.cpp : C++ source for send and forget sample
Receiver.cpp : C++ source for receiver sample
Client.cpp : C++ source for client sample
Server.cpp : C++ source for server sample
Publisher.cpp : C++ source for publisher sample
Subscriber.cpp : C++ source for subscriber sample
ReceiveFile.cpp : C++ source for receive file sample
SendFile.cpp : C++ source for send file sample

/amt/samp/Cpp/bin
SendAndForget : C++ send and forget sample program
Receiver : C++ receiver sample program
Client : C++ client sample program
Server : C++ server sample program
Publisher : C++ publisher sample program
Subscriber : C++ subscriber sample program
ReceiveFile : C++ source for receive file sample
SendFile : C++ source for send file sample

/amt/samp/java
SendAndForget.java : Java source for send and forget sample
Receiver.java : Java source for receiver sample
Client.java : Java source for client sample
Server.java : Java source for server sample
Publisher.java : Java source for publisher sample
Subscriber.java : Java source for subscriber sample
ReceiveFile.java : Java source for receive file sample
SendFile.java : Java source for send file sample

/amt/samp/java/bin
com.ibm.mq.amt.samples.jar : The jar file containing the AMI

samples class files for Java

Installation on Sun Solaris

434 MQSeries Application Messaging Interface

Installation on Windows
The AMI package for Windows 98 and Windows NT comes as a zip file,
ma0f_nt.zip. Once unzipped it comprises:

readme
A file containing any product and information updates that have become
available since this documentation was produced

setup InstallShield installation program for MQSeries AMI

In addition, it contains files used by the setup program.

Installation
1. Create an empty directory called tmp and make it current.
2. Store the ma0f_nt.zip file in this directory.
3. Uncompress it into tmp using Info-ZIP’s UnZip program (or other unzip

program).
4. Run setup.
5. Delete the tmp directory.

The files and directories created are listed in “Directory structure (Windows)” on
page 436.

Removing the AMI
To uninstall the Application Messaging Interface, use the Add/Remove Programs
control panel.

Note: You must remove the AMI entries from the CLASSPATH (for instance,
C:\MQSeries\java\lib\com.ibm.mq.amt.jar; and
C:\MQSeries\amt\samples\java\bin\com.ibm.mq.amt.samples.jar;). These
will not be removed by Add/Remove Programs.

In addition, if you specified a directory other than the default during installation,
you must remove this directory from the PATH environment variable.

Setting the runtime environment
By default, the location of the AMI runtime binary files matches that of MQSeries
(for example C:\MQSeries\bin). If you specified a different directory for the
runtime files, you must add it to the PATH environment variable. (See also
“Removing the AMI”.)

To use the samples, add the sample C and C++ binary directories to your PATH
environment variable. For example (assuming that the root directory for MQSeries
is C:\MQSeries):

set PATH=%PATH%;C:\MQSeries\amt\samples\C\bin;
C:\MQSeries\amt\samples\Cpp\bin;

When running Java, the AMI classes (C:\MQSeries\java\lib\com.ibm.mq.amt.jar)
and samples (C:\MQSeries\amt\samples\java\bin\com.ibm.mq.amt.samples.jar)
must be contained in the CLASSPATH environment variable. This is done by the
setup program.

Installation on Windows

Chapter 17. Installation and sample programs 435

Next step
Now go to “Local host and repository files (Unix and Windows)” on page 441
to continue the installation procedure.

Directory structure (Windows)
On Windows platforms the directory structure contains:

\amt\amtsdfts.tst : MQSeries mqsc command file to create default MQSeries
objects required by the AMI

\amt\amthost.xml : Sample AMI XML file used as the default host file

\amt\amt.dtd : AMI Document Type Definition file on which the AMI
repository is based

\amt\include
amtc.h : The C header file for the AMI
amtcpp.hpp : The C++ header file for the AMI
oamasami.h: The C header file for the OAMAS AMI subset

\amt\ipla : The International Program License Agreement file
\amt\li : The License Information file

\java\lib
com.ibm.mq.amt.jar : The jar file containing the AMI classes for Java

\bin
amt.dll : The main AMI library
amt.lib : The AMI LIB file used for building C programs
amtXML310.dll : The AMI XML parsing library
amtCpp.dll : The AMI C++ library
amtCpp.lib : The AMI LIB file used for building C++ programs
amtJava.dll: The AMI JNI library
amtICUUC140.dll : The AMI codepage translation library
amtICUDATA.dll: The AMI codepage translation data library

MSVCRT.DLL : Main MVSC runtime library
MSVCIRT.DLL : Iostream MSVC runtime library

\amt\samples
amtsamp.tst : MQSeries mqsc command file to create MQSeries objects

required by AMI samples
amt.xml : Sample AMI XML repository for use with the AMI samples

\amt\samples\C
amtsosnd.c : C source for object-level send and forget sample
amtsorcv.c : C source for object-level receiver sample
amtsoclt.c : C source for object-level client sample
amtsosvr.c : C source for object-level server sample
amtsopub.c : C source for object-level publisher sample
amtsosub.c : C source for object-level subscriber sample
amtsofsn.c : C source for object-level send file sample
amtsofrc.c : C source for object-level receive file sample
amtsosgs.c : C source for object-level send group sample
amtsosgr.c : C source for object-level receive group sample
amtshsnd.c : C source for high-level send and forget sample
amtshrcv.c : C source for high-level receiver sample
amtshclt.c : C source for high-level client sample
amtshsvr.c : C source for high-level server sample
amtshpub.c : C source for high-level publisher sample
amtshsub.c : C source for high-level subscriber sample

Installation on Windows

436 MQSeries Application Messaging Interface

amtshfsn.c : C source for high-level send file sample
amtshfrc.c : C source for high-level receive file sample

\amt\samples\C\bin
amtsosnd.exe : C object-level send and forget sample program
amtsorcv.exe : C object-level receiver sample program
amtsoclt.exe : C object-level client sample program
amtsosvr.exe : C object-level server sample program
amtsopub.exe : C object-level publisher sample program
amtsosub.exe : C object-level subscriber sample program
amtsofsn.exe : C object-level send file sample program
amtsofrc.exe : C object-level receive file sample program
amtsosgs.exe : C object-level send group sample program
amtsosgr.exe : C object-level receive group sample program
amtshsnd.exe : C high-level send and forget sample program
amtshrcv.exe : C high-level receiver sample program
amtshclt.exe : C high-level client sample program
amtshsvr.exe : C high-level server sample program
amtshpub.exe : C high-level publisher sample program
amtshsub.exe : C high-level subscriber sample program
amtshfsn.exe : C high-level send file sample program
amtshfrc.exe : C high-level receive file sample program

\amt\samples\Cpp
SendAndForget.cpp : C++ source for send and forget sample
Receiver.cpp : C++ source for receiver sample
Client.cpp : C++ source for client sample
Server.cpp : C++ source for server sample
Publisher.cpp : C++ source for publisher sample
Subscriber.cpp : C++ source for subscriber sample
ReceiveFile.cpp : C++ source for receive file sample
SendFile.cpp : C++ source for send file sample

\amt\samples\Cpp\bin
SendAndForget.exe : C++ send and forget sample program
Receiver.exe : C++ receiver sample program
Client.exe : C++ client sample program
Server.exe : C++ server sample program
Publisher.exe : C++ publisher sample program
Subscriber.exe : C++ subscriber sample program
ReceiveFile.exe : C++ receive file sample program
SendFile.exe : C++ send file sample program

\amt\samples\java
SendAndForget.java : Java source for send and forget sample
Receiver.java : Java source for receiver sample
Client.java : Java source for client sample
Server.java : Java source for server sample
Publisher.java : Java source for publisher sample
Subscriber.java : Java source for subscriber sample
ReceiveFile.java : Java source for receive file sample
SendFile.java : Java source for send file sample

\amt\samples\java\bin
com.ibm.mq.amt.samples.jar : The jar file containing the AMI

samples class files for Java

Installation on Windows

Chapter 17. Installation and sample programs 437

Installation on OS/390
The AMI is installed automatically with MQSeries for OS/390 Version 5.2.

Installation
The files and directories created are listed in “Directory structure (OS/390)” on
page 439.

Setting the runtime environment

Batch and RRS-batch
Make sure that the location of the AMI runtime library is added to your JCL
STEPLIB concatenation.

IMS
Make sure that the location of the AMI runtime library is added to your IMS
message processing region JCL STEPLIB concatenation.

CICS
Make sure that the location of the AMI runtime library is added to your region’s
DFHRPL concatenation, and the AMI library is defined in your CICS CSD. A
sample CSD script to help define the AMI library to CICS is supplied
inhlq.SCSQPROC(AMTCSD10).

Unicode character conversion
If your OS/390 installation predates OS/390 V2 R9, applications that use the AMI
publish subscribe calls, message element calls, and file transfer calls may need to
perform some extra configuration. This configuration enables the Language
Environment support for Unicode character conversion. With OS/390 V2 R9, the
Unicode conversion tables were replaced with direct Unicode converters, enabling
higher performance and removing the need for this extra configuration. Refer to
the OS/390 V2R9.0 C/C++ Compiler and Run-Time Migration Guide for more details.

Batch, RRS-batch, IMS
If your Language Environment is installed in a non-default location, you will need
to set the environment variable _ICONV_UCS2_PREFIX to specify the value of your
installation prefix before running your AMI application. This ensures that the AMI
has access to Unicode character conversion tables. See the OS/390 C/C++
Programming Guide for examples of setting this environment variable.

CICS
OS/390 releases before OS/390 V2 R9 do not support Unicode character
conversions under CICS. This makes it impossible to use AMI publish subscribe
and message element support with prior versions of OS/390.

OS/390 V2 R9 is required to enable AMI publish subscribe or message element
support under CICS.

Next step
Now go to “Local host and repository files (OS/390)” on page 443 to continue
the installation procedure.

Installation on OS/390

438 MQSeries Application Messaging Interface

Directory structure (OS/390)
On OS/390 platforms the directory structure contains the following (where ‘hlq’ is
the high-level qualifier of the AMI installation):

hlq.SCSQLOAD
AMTBL10 : The main AMI library (batch)
AMTCL10 : The main AMI library (CICS)
AMTIL10 : The main AMI library (IMS)
AMTRL10 : The main AMI library (RRS-batch)
AMTBS10 : Stub to build COBOL applications (batch)
AMTCS10 : Stub to build COBOL applications (CICS)
AMTIS10 : Stub to build COBOL applications (IMS)
AMTRS10 : Stub to build COBOL applications (RRS-batch)
AMTASM10 : Repository cache generator

hlq.SCSQANLE
AMTMSE10 : US English messages
AMTMSG10 : US English messages

hlq.SCSQANLU
AMTMSG10 : Uppercase US English messages
AMTMSU10 : Uppercase US English messages

hlq.SCSQANLK
AMTMSG10 : Kanji messages
AMTMSK10 : Kanji messages

hlq.SCSQANLC
AMTMSG10 : Chinese messages
AMTMSC10 : Chinese messages

hlq.SCSQC370
AMTC : The C header file for the AMI

hlq.SCSQCOBC
AMTELEML : COBOL copybook for the AMELEM structure
AMTELEMV : COBOL copybook for the AMELEM structure, with default values
AMTV : The main COBOL copybook for the AMI

hlq.SCSQPROC
AMT : Sample AMI XML repository for use with the AMI samples.
AMTCSD10 : CICS definitions for the AMI library.
AMTHOST : Sample AMI XML file for use as the default host file (UTF-8).
AMTHOST2 : Sample AMI XML file for use as the default host file

(EBCDIC 1047).
AMTSDFTS : MQSeries mqsc command file to create default MQSeries objects

required by the AMI.
AMTSAMP : MQSeries mqsc command file to create MQSeries objects required

by AMI samples.

hlq.SCSQDEFS
AMTBD10 : DLL side-deck to build C applications (batch)
AMTCD10 : DLL side-deck to build C applications (CICS)
AMTRD10 : DLL side-deck to build C applications (RRS-batch)
AMTID10 : DLL side-deck to build C applications (IMS)

hlq.SCSQCOBS (COBOL samples for Batch, RRS, CICS, and IMS)
AMTVHSND : COBOL source for high-level send and forget sample
AMTVHRCV : COBOL source for high-level receiver sample
AMTVHCLT : COBOL source for high-level client sample
AMTVHSVR : COBOL source for high-level server sample
AMTVHPUB : COBOL source for high-level publisher sample
AMTVHSUB : COBOL source for high-level subscriber sample
AMTVHFSN : COBOL source for high-level group send file transfer sample
AMTVHFRC : COBOL source for high-level group receive file transfer sample

Installation on OS/390

Chapter 17. Installation and sample programs 439

AMTVOSND : COBOL source for object-level send and forget sample
AMTVORCV : COBOL source for object-level receiver sample
AMTVOCLT : COBOL source for object-level client sample
AMTVOSVR : COBOL source for object-level server sample
AMTVOPUB : COBOL source for object-level publisher sample
AMTVOSUB : COBOL source for object-level subscriber sample
AMTVOSGS : COBOL source for object-level group send sample
AMTVOSGR : COBOL source for object-level group receive sample
AMTVOFSN : COBOL source for object-level send file transfer sample
AMTVOFRC : COBOL source for object-level receive file transfer sample

hlq.SCSQC37S (C samples for Batch, RRS, CICS, and IMS)
AMTSHSND : C source for high-level send and forget sample
AMTSHRCV : C source for high-level receiver sample
AMTSHCLT : C source for high-level client sample
AMTSHSVR : C source for high-level server sample
AMTSHPUB : C source for high-level publisher sample
AMTSHSUB : C source for high-level subscriber sample
AMTSHFSN : C source for high-level group send file transfer sample
AMTSHFRC : C source for high-level group receive file transfer sample
AMTSOSND : C source for object-level send and forget sample
AMTSORCV : C source for object-level receiver sample
AMTSOCLT : C source for object-level client sample
AMTSOSVR : C source for object-level server sample
AMTSOPUB : C source for object-level publisher sample
AMTSOSUB : C source for object-level subscriber sample
AMTSOSGS : C source for object-level group send sample
AMTSOSGR : C source for object-level group receive sample
AMTSOFSN : C source for object-level send file transfer sample
AMTSOFRC : C source for object-level receive file transfer sample

Installation on OS/390

440 MQSeries Application Messaging Interface

Local host and repository files (Unix and Windows)
The AMI uses a repository file and a local host file. Their location and names must be
specified to the AMI.

Default location
The default directory for the files on UNIX® is:

/usr/mqm/amt (AIX)

/opt/mqm/amt (HP-UX, Solaris)

On Windows, the default location is a directory called \amt under the user
specified MQSeries file directory. For example, if MQSeries is installed in the
C:\MQSeries directory, the default directory for the AMI data files on Windows NT
is:

C:\MQSeries\amt

Default names
The default name for the repository file is amt.xml, and the default name for the
host file is amthost.xml.

A sample host file (which can be used as a default) is provided in the correct
location. A sample repository file is located in the following directory:

/amt/samp (UNIX)

\amt\samples (Windows)

Overriding the default location and names
You can override where the AMI looks for the repository and local host files by
using an environment variable:

export AMT_DATA_PATH = /directory (UNIX)

set AMT_DATA_PATH = X:\directory (Windows)

You can override the default names of the repository and local host files by using
environment variables:

export AMT_REPOSITORY = myData.xml (UNIX)
export AMT_HOST = myHostFile.xml

set AMT_REPOSITORY = myData.xml (Windows)
set AMT_HOST = myHostFile.xml

The directories intlFiles and locales, and the .txt and .cnv files in the locales
directory, must be located relative to the directory containing the local host file.
This applies whether you are using the default directory or have overridden it as
described above.

In C++ and Java there is an extra level of flexibility in setting the location and
names of the repository and local host files. You can specify the directory in which
they are located by means of a name in the constructor of the AmSessionFactory
class:
AmSessionFactory(name);

Local host and repository files (Unix and Windows)

Chapter 17. Installation and sample programs 441

This name is equivalent to the AMT_DATA_PATH environment variable. If set, the
name of the AmSessionFactory takes precedence over the AMT_DATA_PATH
environment variable.

The repository and local host file names can be set using methods of the
AmSessionFactory class:

setRepository(name);
setLocalHost(name);

These AmSessionFactory methods take precedence over the AMT_REPOSITORY
and AMT_HOST environment variables.

Once an AmSession has been created using an AmSessionFactory, the repository
and local host file names and location are set for the complete life of that
AmSession.

Local host file
An AMI installation must have a local host file. It defines the mapping from a
connection name (default or repository defined) to the name of the MQSeries
queue manager that you want to connect to on your local machine.

If you are not using a repository, or are opening (or initializing) a session using a
policy that does not define a connection, the connection name is assumed to be
defaultConnection. Using the sample amthost.xml file, as shown below, this maps
to an empty string that defines a connection with the default queue manager.
<?xml version="1.0" encoding="UTF-8"?>
<queueManagerNames

defaultConnection = ""
connectionName1 = "queueManagerName1"
connectionName2 = "queueManagerName2"

/>

To change the default connection to a named queue manager of your choice, such
as ‘QMNAME’, edit the local host file to contain the following string:

defaultConnection = "QMNAME"

If you want a repository defined connection name, such as connectionName1, to
provide a connection to queue manager ‘QMNAME1’, edit the local host file to
contain the following string:
connectionName1 = "QMNAME1"

The repository connection names are not limited to the values shown
(connectionName1 and connectionName2). Any name can be used provided it is
unique in both the repository and local host files, and consistent between the two.

Repository file
You can operate an AMI installation with or without a repository file. If you are
using a repository file, such as the sample amt.xml file, you must have a
corresponding amt.dtd file in the same directory (the local host file must be in this
directory as well).

The repository file provides definitions for policies and services. If you do not use
a repository file, AMI uses its built-in definitions. For more information, see
“Chapter 18. Defining services and policies” on page 455.

Local host and repository files (Unix and Windows)

442 MQSeries Application Messaging Interface

Local host and repository files (OS/390)
The AMI uses a repository file and a local host file. Their location and names must be
specified to the AMI.

Batch, RRS-batch, IMS
The repository file is optional, and the host file is mandatory. Sample repository
and host files are installed to hlq.SCSQPROC.

By default, the AMI uses the DD name AMT (within your job or IMS message
processing region JCL) to locate the repository file, and the DD name AMTHOST to
locate the host file.

Because the repository and host files are located using DD statements in your job
or IMS message processing region JCL, you can choose which files to use without
using environment variables. If you do want to use environment variables, you can
override the locations of these files using the Language Environment ENVAR
Run-Time Option.

Example PARM statement for a C application, which changes the DD names used
for the repository and local host files:
PARM=('ENVAR(AMT_REPOSITORY=DD:MYREPOS,AMT_HOST=DD:MYHOST) / ARGS')

Example PARM statement for a COBOL application, which changes the DD name
used for the repository and local host files:
PARM=('ARGS / ENVAR(AMT_REPOSITORY=DD:MYREPOS,AMT_HOST=DD:MYHOST)')

where ARGS are the program’s arguments. See the OS/390 Language Environment
for OS/390 and VM Programming Guide for more information about Language
Environment Run-Time Options

CICS
Under CICS, the AMI does not need a local host file, and the repository file is
optional. In order to use the sample repository file under CICS, copy the repository
into a VSAM entry-sequenced dataset using the IDCAMS utilities.

By default, the AMI uses a CICS FILE definition called AMT to locate the repository
file.

As the repository is located using a CICS FILE definition, you can change which
file to use by changing that definition. You can also change the CICS file name
using environment variables and the OS/390 C/C++ function setenv():

setenv("AMT_REPOSITORY", "NAME", 1);

Local host file
An AMI installation using OS/390 batch, IMS, or RRS-batch must have a local host
file. It defines the mapping from a connection name (default or repository defined)
to the name of the MQSeries queue manager that you want to connect to on your
OS/390 installation. (The local host file is not needed for CICS, because there is
only one MQSeries queue manager that a given CICS region can connect to).

If you are not using a repository, or are opening (or initializing) a session using a
policy that does not define a connection, the connection name is assumed to be

Local host and repository files (OS/390)

Chapter 17. Installation and sample programs 443

defaultConnection. Using the sample AMTHOST file, as shown below, this maps to
an empty string that defines a connection with the default queue manager.

Note: The AMTHOST file shown below is an UTF-8 text file best suited to editing
on a workstation. If you prefer to maintain your host file on the host, then
you should use the AMTHOST2 sample, which is in an EBCDIC codepage.

<?xml version="1.0" encoding="UTF-8"?>
<queueManagerNames

defaultConnection = ""
connectionName1 = "queueManagerName1"
connectionName2 = "queueManagerName2"

/>

To change the default connection to a named queue manager of your choice, such
as ‘QMNAME’, edit the local host file to contain the following string:

defaultConnection = "QMNAME"

If you want a repository defined connection name, such as connectionName1, to
provide a connection to queue manager ‘QMNAME1’, edit the local host file to
contain the following string:
connectionName1 = "QMNAME1"

The repository connection names are not limited to the values shown
(connectionName1 and connectionName2). Any name can be used provided it is
unique in both the repository and local host files, and consistent between the two.

“Repository and local host caches” explains how to use a local host cache instead
of a local host file.

Repository file
You can operate an AMI installation with or without a repository file. The
repository file provides definitions for policies and services. If you do not use a
repository file, AMI uses its built-in definitions. For more information, see
“Chapter 18. Defining services and policies” on page 455.

“Repository and local host caches” explains how to use a repository cache instead
of a repository file.

Repository and local host caches
On OS/390, you can generate caches for use instead of repository and local host
files. This gives a higher performance alternative to the files, but requires some
additional configuration.

Generating caches
The AMI on OS/390 includes a program (AMTASM10) that generates assembler
source code defining repository and local host caches. This program runs in a
similar manner to any AMI batch program, and outputs a repository cache
definition to the DD name ASMREPOS, and a local host cache to the DD name
ASMHOST. The cache generator issues messages to the SYSPRINT data set, and
returns zero if it is successful.

Here is a sample JCL fragment to run the cache generator (with US English
messages):
//GO EXEC PGM=AMTASM10
//STEPLIB DD DSN=hlq.SCSQLOAD,DISP=SHR
// DD DSN=hlq.SCSQANLE,DISP=SHR

Local host and repository files (OS/390)

444 MQSeries Application Messaging Interface

//AMTHOST DD DSN=hlq.SCSQPROC(AMTHOST),DISP=SHR
//AMT DD DSN=hlq.SCSQPROC(AMT),DISP=SHR
//SYSPRINT DD SYSOUT=*
//ASMHOST DD DSN=target(AMTHOST),DISP=SHR
//ASMREPOS DD DSN=target(AMT),DISP=SHR

When you have generated assembler source code successfully for your repository
and host file cache, you must assemble and link edit them. Messages returned by
the cache generator are described below.

Using a cache
When your application creates an AMI session, the AMI first tries to load caches,
before it tries to open files. The module that the AMI loads has the same name as
the corresponding filename, that is AMT for the repository file and AMTHOST for the
local host file. You can modify the name that will be loaded using environment
variables as discussed in “Batch, RRS-batch, IMS” on page 443 and “CICS” on
page 443.

Batch, RRS-batch, and IMS applications must include the dataset that contains your
cache in the JCL STEPLIB. There is no need to use DD AMT or DD AMTHOST
statements to locate the cached files.

CICS applications must add the dataset that contains the cache to the region
DFHRPL, and define the cache to CICS using the CICS supplied CEDA transaction.
There is no need to define the AMT file to CICS.

Cache generator messages
The following messages are issued by the cache generator. Terms like ″%li″ will be
printed as decimal numbers; they hold the AMI completion and reason codes.
"AMT0001W AMI MESSAGE MODULE NOT FOUND"

/**/
/* Explanation: */
/* The AMI failed to load its message module. */
/* User Response: */
/* Batch, IMS: Ensure that one of the language-specific datasets is */
/* in your STEPLIB concatenation. */
/* CICS: Ensure that one of the language-specific datasets is */
/* in your DFHRPL concatenation, and the message module */
/* AMTMSG10 is defined to CICS. */
/**/

"AMT0002W AMI failure, AMCC=%li, AMRC=%li"

/***/
/* Explanation: */
/* An AMI operation failed. */
/* User Response: */
/* See the MQSeries Application Messaging Interface Manual for an */
/* explanation of CompCode, AMCC, and Reason, AMRC. */
/***/

"AMT0003I AMI repository cache warning, AMCC=%li, AMRC=%li"

/***/
/* Explanation: */
/* An AMI operation generated a warning. */
/* User Response: */
/* See the MQSeries Application Messaging Interface Manual for an */
/* explanation of CompCode, AMCC, and Reason, AMRC. */
/***/

Local host and repository files (OS/390)

Chapter 17. Installation and sample programs 445

"AMT0004I AMI repository cache created"

/***/
/* Explanation: */
/* A repository cache was successfully created. */
/* User Response: */
/* None. */
/***/

"AMT0005I AMI host file cache created"

/***/
/* Explanation: */
/* A host file cache was successfully created. */
/* User Response: */
/* None. */
/***/

The administration tool
The AMI administration tool is for use on Windows NT Version 4 only.

Installation
The administration tool is packaged with the AMI in ma0f_nt.zip and optionally
installed with the AMI using the setup InstallShield program (see “Installation on
Windows” on page 435). It is installed in sub-directory amt\AMITool.

To start the AMI administration program, select IBM MQSeries AMI \ IBM
MQSeries AMI Administration Tool using the Start Programs menu, or
double-click on the file \amt\AMITool\amitool.bat.

To verify that the tool has been installed correctly, click on Open in the File menu,
navigate to the \amt\AMItool directory, and open the file amiSample.xml. You
should see a number of services and policies in the navigation pane on the left.
Select one of them by clicking on it, and you should see its attributes displayed in
the pane on the right.

Operation
The administration tool enables you to create definitions for:
Service points used to create sender or receiver services
Distribution lists

must include at least one sender service
Publishers must include a sender service as the broker service
Subscribers must include sender and receiver services as the broker and

receiver services
Policies contain sets of attributes: initialization, general, send, receive,

publish, subscribe

The default attributes provided by the tool are as specified in “Service definitions”
on page 458 and “Policy definitions” on page 461.

When you have entered the definitions you require, select Save in the File menu to
save them as an XML-format repository file. It is recommended that you define all
your services and policies in the same repository file.

The repository file must be copied to a location where it can be accessed by the
AMI (see “Local host and repository files (Unix and Windows)” on page 441). If the
Application Messaging Interface is on the same system as the tool, the repository

Local host and repository files (OS/390)

446 MQSeries Application Messaging Interface

file can be copied to the AMI directory. Otherwise, the repository file must be
transferred to that system using a method such as file sharing or FTP.

Note: In order to open an existing repository file (including the amt.xml file
provided in the samples directory), the repository file and the amt.dtd file
must both be in the same directory.

Further information can be found in the AMI administration tool online help.

Connecting to MQSeries
You can connect to MQSeries, the transport layer, using an MQSeries server or an
MQSeries client. Using the default policy, the AMI automatically detects whether it
should connect directly or as a client. If you have an installation that has both an
MQSeries client and an MQSeries queue manager, and you want the AMI to use
the client for its connection, you must specify the Connection Type as Client in the
policy initialization attributes (see “Policy definitions” on page 461).

Using MQSeries Integrator Version 1
If you are using the AMI with MQSeries Integrator Version 1, the Service Type for
the sender service point must be defined in the repository as MQSeries Integrator
V1 (see “Service definitions” on page 458). This causes an MQRFH header
containing application group and message type name/value elements to be added
to a message when it is sent.

The Application Group definition is included in the policy send attributes (see
“Policy definitions” on page 461). The message type is defined as the message
format value set in the message object (using amMsgSetFormat, for example). If
this is set to AMFMT_NONE, the message type is defined as the Default Format
for the sender service point (a maximum of eight characters in MQSeries). If you
wish to specify the message type directly, you must do this explicitly using the
amMsgAddElement function in C, or the equivalent addElement method in C++
and Java. This allows you to add a message type that differs from the message
format, and is more than eight characters long.

Using MQSeries Publish/Subscribe
If you want to use the publish/subscribe functions of the AMI, you must have
MQSeries Publish/Subscribe installed (see the MQSeries Publish/Subscribe User’s
Guide). The Service Type for the sender and receiver service points used by the
publisher and subscriber must be defined in the repository as MQRFH (see
“Service definitions” on page 458). This causes an MQRFH header containing
publish/subscribe name/value elements to be added to a message when it is sent.

Using MQSeries Integrator Version 2
You can use your existing AMI repository file, MQSeries Publish/Subscribe
applications, and MQSeries Integrator Version 1 (MQSI V1) applications unchanged
with MQSeries Integrator Version 2 (MQSI V2).

Alternatively, if you are writing a new application or wish to exploit some of the
additional function provided by MQSI V2, you should specify ‘MQSeries Integrator
V2’ or ‘RF Header V2’ for the Service Type of ‘Service Points’ in your repository
file. This is accomplished using the AMI Administration Tool.

The administration tool

Chapter 17. Installation and sample programs 447

The AMI makes it easy for applications to send messages to and receive messages
from MQSI V2 and to exploit its publish and subscribe functions.

Applications send messages to MQSI V2 using the standard AMI send verbs. If the
service point has been defined as a Service Type of ‘MQSeries Integrator V2’, the
AMI will automatically build an MQRFH2 header at the beginning of the message
and add the default MCD parameters from the Service point definition if they have
been defined. An application can therefore be unaware that it is communicating
with MQSI V2. Applications requiring more control can explicitly add the MCD
information using the amMsgAddElement C, AMSADEL COBOL, or
AmMessage::addElement C++ and Java calls. The default MCD values will be
ignored if the application has added the elements to the message explicitly. The
MQRFH2 and MCD fields are described in the MQSeries Integrator Version 2
Programming Guide.

Publish/subscribe applications use the standard publish, subscribe and
unsubscribe calls. However, subscribing applications can exploit content-based
publish/subscribe by passing a filter on subscribe and unsubscribe calls. The
syntax of the filter string is described in the MQSeries Integrator Version 2
Programming Guide.

If you specify the Service Type as ‘RF Header V2’, then the AMI will select and use
the Publish and Subscribe policy options applicable to MQSI V2 when sending
publish, subscribe, and unsubscribe requests to the broker. Default MCD field
values are ignored and not included in the message.

If you specify the Service Type as ‘MQSeries Integrator V2’, then the AMI will
select and use the Publish and Subscribe policy options that are applicable to
MQSI V2 when sending publish, subscribe and unsubscribe requests. In addition,
the AMI will insert each of the following values into any message being sent using
this service point where a non-blank default value has been specified for the item
concerned (in the Service Point Default MCD value) and the item has not been
explicitly added by the application:

message service domain (Default MCD Domain)
message set (Default MCD Set)
message type (Default MCD Type)
message format (Default MCD Format)

If you wish to perform content-based publish/subscribe operations using MQSI
V2, then one or more filters must be specified and added to the messages used
with subscribe requests. A filter can be added to a subscribe (and unsubscribe)
message by specifying the filter as a parameter with the high-level subscribe (and
unsubscribe) functions in C and COBOL or by using add filter calls prior to calling
subscribe (or unsubscribe).

Note that in addition to add filter, there are delete filter, get filter and get filter
count functions available for filter manipulation.

When a broker response message is received for a Publish or Subscribe request, an
AMMSGTNE get named element call specifying the name as AMPS_COMP_CODE
will always return a value corresponding to one of the following constants:
v AMPS_CC_OK
v AMPS_CC_WARNING
v AMPS_CC_ERROR

Connecting to MQSeries

448 MQSeries Application Messaging Interface

The value is returned whether the response originated from MQSeries
Publish/Subscribe or MQSeries Integrator Version 2. This allows the broker to
recognise the broker being used. The AMI performs the required mapping of
MQSeries Integrator Version 2 response values as necessary.

Migrating to MQSeries Integrator V2 from V1 and MQSeries
Publish/Subscribe

MQSeries Integrator V2 will support applications written to use MQSI V1 and
MQSeries Publish/Subscribe. Existing AMI applications and the Service Type in
the repository Service Point definitions do not therefore need to be changed.

Applications that want to exploit new functions in MQSI V2 should have their
Service Point definitions changed to a Service Type of ‘MQSeries Integrator V2’
and, if necessary, use the new AMI calls and parameters.

Existing publish/subscribe applications that have used the element calls to
explicitly add name value pairs to the MQRFH can continue to use the same
names for the elements when migrating to MQSI V2.

Creating default MQSeries objects
The Application Messaging Interface makes use of default MQSeries objects, which
must be created prior to using the AMI. This can be done by running the MQSC
script amtsdfts.tst. (You might want to edit this file first, to suit the requirements
of your installation.)

For UNIX and Windows, first start the local queue manager by typing the
following at a command line:

strmqm {QMName}

where {QMName} is the name of your MQSeries queue manager.

Then run the default MQSC script by typing one of the following:
runmqsc {QMName} < {Location}/amtsdfts.tst (UNIX)

runmqsc {QMName} < {Location}\amtsdfts.tst (Windows)

where {QMName} is the name of your MQSeries queue manager and {Location} is
the location of the amtsdfts.tst file.

For OS/390, start the local queue manager and then use the CSQUTIL program to
run the default MQSC script:
//COMMAND EXEC PGM=CSQUTIL,PARM='QMGR'
//STEPLIB DD DSN=hlq.SCSQAUTH,DISP=SHR
// DD DSN=hlq.SQSCANLE,DISP=SHR
//AMTSDFTS DD DSN=hlq.SCSQPROC(AMTSDFTS),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(AMTSDFTS)
/*

where hlq is the high level qualifier of your MQSeries installation, and QMGR is
your queue manager name.

Connecting to MQSeries

Chapter 17. Installation and sample programs 449

The sample programs
Sample programs are provided to illustrate the use of the Application Messaging
Interface.

It is recommended that you run one or more of the sample programs to verify that
you have installed the Application Messaging Interface correctly.

If you are using the OS/390 platform, go to “Sample programs for OS/390” on
page 452.

Sample programs for Unix and Windows
There are ten basic sample programs for Unix and Windows platforms, performing
approximately the same function in C, C++, and Java. Consult the source code to
find out how the programs achieve this functionality. The C samples are provided
for both the high-level interface and the object interface.

Table 6. The sample programs for Unix and Windows platforms

Description C high-level C object-level C++ Java

A sample that sends a datagram
message, expecting no reply.

amtshsnd amtsosnd SendAndForget SendAndForget

A sample that receives a message,
with no selection.

amtshrcv amtsorcv Receiver Receiver

A sample that sends a request and
receives a reply to this request (a
simple client program).

amtshclt amtsoclt Client Client

A sample that receives requests and
sends replies to these requests (a
simple server program).

amtshsvr amtsosvr Server Server

A sample that periodically publishes
information on the weather.

amtshpub amtsopub Publisher Publisher

A sample that subscribes to
information on the weather, and
receives publications based on this
subscription.

amtshsub amtsosub Subscriber Subscriber

A sample that sends messages using
simulated group support.

- amtsosgs - -

A sample that receives messages
using simulated group support.

- amtsosgs - -

A sample that performs a file
transfer send on a user supplied text
file,

amtshfsn amtsofsn SendFile Sendfile

A sample that performs a file
transfer receive on a user supplied
text file,

amtshfrc amtsofrc ReceiveFile ReceiveFile

To find the source code and the executables for the samples, see “Directory
structure” on page 425 (AIX), page 429 (HP-UX), page 433 (Solaris), and page 436
(Windows).

The sample programs

450 MQSeries Application Messaging Interface

Running the Unix and Windows sample programs
Before you can run the sample programs on Unix or Windows platforms, there are
a number of actions to be taken.

MQSeries objects
The sample programs require some MQSeries objects to be defined. This can be
done with an MQSeries MQSC file, amtsamp.tst, which is shipped with the
samples.

First start the local queue manager by typing the following at a command line:
strmqm {QMName}

where {QMName} is the name of your MQSeries queue manager.

Then run the sample MQSC script by typing one of the following:
runmqsc {QMName} < {Location}/amtsamp.tst (UNIX)

runmqsc {QMName} < {Location}\amtsamp.tst (Windows)

where {QMName} is the name of your MQSeries queue manager and {Location} is
the location of the amtsamp.tst file.

Repository and host files
Copy the sample repository file, amt.xml, into the default location for your
platform (see “Local host and repository files (Unix and Windows)” on page 441).

Modify the host file so that your MQSeries queue manager name, {QMName}, is
known as defaultConnection.

MQSeries Publish/Subscribe broker
If you are running any of the publish/subscribe samples, you must also start the
MQSeries Publish/Subscribe broker. Type the following at a command line:

strmqbrk -m {QMName}

where {QMName} is the name of your MQSeries queue manager.

Setting the runtime environment
Before you run the AMI samples, make sure that you have set up the runtime
environment. See “Setting the runtime environment” on page 424 (AIX), page 428
(HP-UX), page 432 (Solaris), and page 435 (Windows).

Running the C and C++ samples
You can run a C or C++ sample program by typing the name of its executable at a
command line. For example:

amtsosnd

will run the “Send and forget” sample written using the C object interface.

Running the Java samples
The AMI samples for Java are in a package called:

com.ibm.mq.amt.samples

In order to invoke them you need to specify the name of the sample plus its
package name. For example, to run the “Send and forget” sample use:

java com.ibm.mq.amt.samples.SendAndForget

The sample programs

Chapter 17. Installation and sample programs 451

Sample programs for OS/390
There are ten basic sample programs in C for the OS/390 platform, and a matching
set in COBOL that perform approximately the same function. Consult the source
code to find out how the programs achieve this functionality. The samples are
provided for both the high-level interface and the object-level interface in most
cases.

There is also a C header file amts39sp that implements environment-specific I/O
functions for CICS and IMS. This header file is not required to build the samples
for Batch.

Table 7. The sample programs for OS/390 (‘batch’ includes RRS-batch)

Description C High level C Object level COBOL
High level

COBOL Object
level

A sample that sends a datagram
message, expecting no reply.

AMTSHSND AMTSOSND AMTVHSND AMTVOSND

A sample that receives a message,
with no selection.

AMTSHRCV AMTSORCV AMTVHRCV AMTVORCV

A sample that sends a request and
receives a reply to this request (a
simple client program).

AMTSHCLT AMTSOCLT AMTVHCLT AMTVOCLT

A sample that receives requests and
sends replies to these requests (a
simple server program).

AMTSHSVR AMTSOSVR AMTVHSVR AMTVOSVR

A sample that periodically publishes
information on the weather.

AMTSHPUB AMTSOPUB AMTVHPUB AMTVOPUB

A sample that subscribes to
information on the weather, and
receives publications based on this
subscription.

AMTSHSUB AMTSOSUB AMTVHSUB AMTVOSUB

A sample that sends simulated
group messages. This uses
object-level calls only.

Not applicable AMTSOSGS Not applicable AMTVOSGS

A sample that receives simulated
group messages. This uses
object-level calls only.

Not applicable AMTSOSGR Not applicable AMTVOSGR

A sample that performs a file
transfer send on a user-supplied text
file. Not for use under CICS.

AMTSHFSN AMTSOFSN AMTVHFSN AMTVOFSN

A sample that performs a file
transfer receive on a user-supplied
text file. Not for use under CICS.

AMTSHFRC AMTSOFRC AMTVHFRC AMTVOFRC

To find the source code for the samples, see “Directory structure (OS/390)” on
page 439.

Running the sample programs (OS/390)
Before you can run the sample programs on the OS/390 platform, there are a
number of actions to be taken.

The sample programs

452 MQSeries Application Messaging Interface

Building the sample programs
The samples for OS/390 are provided as source code only, so you must build them
before you can run them. See “Building C applications” on page 29 and “COBOL
applications on OS/390” on page 240.

MQSeries objects
The sample programs require some MQSeries objects to be defined. This can be
done with an MQSeries MQSC file, AMTSAMP, which is shipped with the samples.

First start the local queue manager, as described in the MQSeries for OS/390 System
Administration Guide. If you are using the CICS environment, ensure that the
MQSeries CICS adapter is set up and the CICS region is connected to the queue
manager.

Then run the sample MQSC script AMTSAMP (located in the hlq.SCSQPROC
dataset) using the MQSeries utility program CSQUTIL. Following is a JCL
fragment to help you run the utility:
//COMMAND EXEC PGM=CSQUTIL,PARM='QMGR'
//STEPLIB DD DSN=hlq.SCSQAUTH,DISP=SHR
// DD DSN=hlq.SQSCANLE,DISP=SHR
//AMTSAMP DD DSN=hlq.SCSQPROC(AMTSAMP),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(AMTSAMP)
/*

where hlq is the high level qualifier of your MQSeries installation, and OMGR is
your queue manager name.

Repository and host files
The sample repository AMT (located in hlq.SCSQPROC) is appropriate for use with all
the sample programs (though many of the samples will work correctly without a
repository). If you wish to use the repository file, ensure that the sample program
has access to it, as described in “Local host and repository files (OS/390)” on
page 443.

For batch, RRS-batch, and IMS programs (not CICS), copy the sample host file
AMTHOST (UTF-8) or AMTHOST (EBCDIC) from hlq.SCSQPROC to another location, and
modify it so that your MQSeries queue manager name is defaultConnection.
Ensure that the sample program has access to the host file, using DD statements as
described in “Local host and repository files (OS/390)” on page 443.

MQSeries Publish/Subscribe broker
In order to use the publish/subscribe samples, you need access to an MQSeries
Publish/Subscribe broker. Because this is not available on OS/390, you must have
an MQSeries queue manager and publish/subscribe broker running on another
platform. You must then set up appropriate channels between the queue managers
to enable messages sent by the queue managers to reach each other. Finally, alter
or add queue definitions to ensure that the messages from the sample programs
flow to the broker, and the messages from the broker flow to the sample program.

Ensure that the remote queue manager and broker are running, and that the
channels are running.

Setting the runtime environment
Make sure your environment has been set to pick up the AMI runtime binary files,
as described in “Setting the runtime environment” on page 438.

The sample programs

Chapter 17. Installation and sample programs 453

File name input for the file transfer samples
There are 3 ways in MVS to specify the file name for the file transfer samples:
1. Use single quotes.

// PARM='MYTEST.FILE'

It will then obey MVS rules and be prefixed with the user’s RACF ID as the
high level qualifier.

2. Supply a fully qualified filename using double quotes, with an extra outer pair
to contain the parm data.
// PARM= '"userId.MYTEST.FILE"'

3. Supply the keywords DD:FILE in the parms where FILE is the DD NAME.
// PARM='DD:MYFILE
.
.
// MYFILE DD DSNAME=userId.MYTEST.FILE,DISP=SHR

Each method resolves to userId.MYTEST.FILE.

Running the batch samples
You can run batch sample programs by constructing a piece of JCL to run the
program, and submitting that JCL from ISPF. The batch samples can also be used
as RRS-batch sample programs.

Running the CICS samples
Ensure that the CICS DFHRPL includes the load library containing the sample, as
well as the AMI library. Define the sample program to CICS, as well as a
transaction to run the program. Finally ensure that the AMI library, sample
program and sample transaction are installed in your CICS region. Type the
transaction name into a CICS console to run the sample.

Running the IMS samples
Ensure that the IMS message processing region JCL includes the load library that
contains the sample, as well as the AMI library. Define the sample program and
transaction name to IMS. Type the transaction name into an IMS console to run the
sample.

The sample programs

454 MQSeries Application Messaging Interface

Chapter 18. Defining services and policies

Definitions of services and policies created by a system administrator are held in a
repository. The Application Messaging Interface provides a tool to enable the
administrator to set up new services and policies, and to specify their attributes
(see “The administration tool” on page 446).

This chapter contains:
v “Services and policies”
v “Service definitions” on page 458
v “Policy definitions” on page 461

Services and policies
A repository file contains definitions for policies and services. A service is the
generic name for any object to which a send or receive request can be issued, that
is:
v Sender
v Receiver
v Distribution list
v Subscriber
v Publisher

Sender and receiver definitions are represented in the repository by a single
definition called a service point.

Policies, and services other than distribution lists, can be created with or without a
corresponding repository definition; distribution lists can be created only with a
corresponding repository definition.

To create a service or policy using the repository, the repository must contain a
definition of the appropriate type with a name that matches the name specified by
the application. To create a sender object named ‘DEBITS’ (using
amSesCreateSender in C, for example) the repository must have a service point
definition named ‘DEBITS’.

Policies and services created with a repository have their contents initialized from
the named repository definition.

If the repository does not contain a matching name, a warning is issued (such as
AMRC_POLICY_NOT_IN_REPOS). The service or policy is then created without
using the repository (unless it is a distribution list).

© Copyright IBM Corp. 1999, 2000 455

Policies and services created without a repository (either for the above reason, or
because the repository is not used), have their contents initialized from one of the
system provided definitions (see “System provided definitions”).

Definition names in the repository must not start with the characters ‘AMT’ or
‘SYSTEM’.

System provided definitions
The AMI provides a set of definitions for creating services and policies without
reference to a repository.

Table 8. System provided definitions

Definition Description

AMT.SYSTEM.POLICY This provides a policy definition with the defaults specified in “Policy
definitions” on page 461, except that Wait Interval Read Only is not
selected in the Receive attributes.

AMT.SYSTEM.SYNCPOINT.POLICY This provides a policy definition the same as AMT.SYSTEM.POLICY,
except that Syncpoint is selected in the General attributes.

AMT.SYSTEM.SENDER This provides a sender definition with the defaults specified in “Service
definitions” on page 458, with the Queue Name the same as the Sender
object.

AMT.SYSTEM.RESPONSE.SENDER This provides a sender definition the same as AMT.SYSTEM.SENDER,
except that Definition Type, Queue Name and Queue Manager Name
are set to ‘Undefined’ (that is, set when used).

AMT.SYSTEM.RECEIVER This provides a receiver definition the same as AMT.SYSTEM.SENDER.

AMT.SYSTEM.SUBSCRIBER This provides a subscriber definition in which the Sender Service has
the same name as the Subscriber object, and the Receiver Service has
the same name with the suffix ‘.RECEIVER’.

AMT.SYSTEM.PUBLISHER This provides a publisher definition in which the Broker Service has the
same name as the Publisher object.

System default objects
A set of system default objects is created at session creation time. This removes the
overhead of creating the objects from applications using these defaults. The system
default objects are available for use from the high-level and object-level interfaces
in C. They cannot be accessed using C++ or Java (these languages can use the
built-in definitions to create an equivalent set of objects if required).

The default objects are created using the system provided definitions, as shown in
the following table.

Services and policies

456 MQSeries Application Messaging Interface

Table 9. System default objects

Default object Definition

SYSTEM.DEFAULT.POLICY AMT.SYSTEM.POLICY

SYSTEM.DEFAULT.SYNCPOINT.POLICY AMT.SYSTEM.SYNCPOINT.POLICY

SYSTEM.DEFAULT.SENDER AMT.SYSTEM.SENDER

SYSTEM.DEFAULT.RESPONSE.SENDER AMT.SYSTEM.RESPONSE.SENDER

SYSTEM.DEFAULT.RECEIVER AMT.SYSTEM.RECEIVER

SYSTEM.DEFAULT.SUBSCRIBER AMT.SYSTEM.SUBSCRIBER

SYSTEM.DEFAULT.PUBLISHER AMT.SYSTEM.PUBLISHER

SYSTEM.DEFAULT.SEND.MESSAGE N/A

SYSTEM.DEFAULT.RECEIVE.MESSAGE N/A

The default objects can be used explicitly using the AMI constants (see
“Appendix B. Constants” on page 493), or used to provide defaults if a particular
parameter is omitted (by specifying NULL, for instance).

Handle synonyms are also provided for these objects, for use from the object
interface (see “Appendix B. Constants” on page 493). Note that the first parameter
on a call must be a real handle; you cannot use a synonym handle in this case.

Services and policies

Chapter 18. Defining services and policies 457

Service definitions

This section gives the service definitions for:
v service point (sender/receiver)
v distribution list
v subscriber
v publisher

Service point (sender/receiver)
Table 10. Service point (sender/receiver)

Attribute Comments

Name Mandatory name, specified on AMI calls. �1�

Queue Name Name of the queue representing the service that messages are sent to or received from.
Required if the Definition Type is ‘Predefined’. �2�

Queue Manager Name Name of the queue manager that owns Queue Name. If blank, the local queue manager
name is used. �2�

Model Queue Name Name of a model queue definition used to create a dynamic queue (normally a Reply
Service to receive response messages). Required if the Definition Type is ‘Dynamic’. �2�

Dynamic Queue Prefix Name of a prefix used when creating a dynamic queue from Model Queue Name. Required
if the Definition Type is ‘Dynamic’. If the last non-blank character in positions 1 to 33 of the
prefix is '*', the '*' is replaced by a string that guarantees that the name generated is
unique. �2�

Definition Type Defines how the AMI obtains the queue name for the service point. If set to ‘Predefined’
(the default), the Queue Name and Queue Manager Name as specified above are used. If
set to ‘Dynamic’, the Model Queue Name and Dynamic Queue Prefix are used to create a
dynamic queue.

Service Type Defines the RF header (if any) that is sent with the message data, and the parameters
within the header.

Set to ‘Native’ for a native MQ service (default).

Set to ‘MQSeries Integrator V1’ for MQSeries Integrator Version 1 (adds the
OPT_APP_GROUP and OPT_MSG_TYPE fields to the MQRFH header).

Set to ‘RF Header V1’ for MQSeries Publish/Subscribe applications.

Set to ‘MQSeries Integrator V2’ to use the appropriate publish and subscribe policy options
when sending publish, subscribe and unsubscribe requests to the MQSeries Integrator
Version 2 broker. The AMI will insert each of the (non-blank) default MCD values defined
for the service point into any message being sent using this service point.

If Service Type is set to RF_HEADER_V2, a Version 2 RF Header will be used when
applicable but the MQSeries Integrator V2 specific policy properties (Default MCD Domain,
Default MCD Set, Default MCD Type, Default MCD Format, Delivery Persistence and
Subscription Point) are not added to the message.

Default Format Optional format name to insert in the MQMD, if a format value of FMT_NONE is set in the
message object. Also used as the MsgType when the service is an MQSeries Integrator
Version 1 broker, if AMFMT_NONE is set in the message object and the MsgType has not
been added explicitly (using amMsgAddElement or equivalent). �3�

Default MCD Domain Defines the default message service domain value. This is added to any message being sent
using this service point if the Service Type is ‘MQSeries Integrator V2’, the value of this
field is non-blank and a message service domain element has not been explicitly added to
the message by the application.�4�

Service definitions

458 MQSeries Application Messaging Interface

Table 10. Service point (sender/receiver) (continued)

Attribute Comments

Default MCD Set Defines the default message set value. This is added to any message being sent using this
service point if the Service Type is ‘MQSeries Integrator V2’, the value of this field is
non-blank, and a message set element has not been explicitly added to the message by the
application.�4�

Default MCD Type Defines the default message type value. This is added to any message being sent using this
service point if the Service Type is ‘MQSeries Integrator V2’, the value of this field is
non-blank, and a message type element has not been explicitly added to the message by the
application.�4�

Default MCD Format Defines the default message format value. This is added to any message being sent using
this service point if the Service Type is ‘MQSeries Integrator V2’, the value of this field is
non-blank, and a message format element has not been explicitly added to the message by
the application. �4�

CCSID Coded character set identifier of the destination application. Can be used by sending
applications to prepare a message in the correct CCSID for the destination. Leave blank if
the CCSID is unknown (the default), or set to the CCSID number.

Encoding Integer encoding of the destination application. Can be used by sending applications to
prepare a message in the correct encoding for the destination. Set to ‘Unspecified’ (the
default), ‘Reversed’, ‘Normal’, ‘Reversed With 390 Floating Point’, or ‘Normal With 390
Floating Point’.

Simulated Group
Support

Select to enable the sending and receiving of messages that form part of a message group
to or from a target MQSeries queue manager that does not provide native support for
groups. (Currently, this only applies to MQSeries for OS/390 Version 2.x.)

Notes:

�1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 0-9, '.', '/',
'_' and '%'.

�2�The name is a maximum of 48 characters, and can contain the following characters: A-Z, a-z, 0-9, '.', '/',
'_' and '%'.

�3�The name is a maximum of 8 characters, and can contain any character from a single byte character set (it is
recommended that the characters are restricted to A-Z, 0-9).

�4�This attribute is applicable only for Service Type ‘MQSeries Integrator V2’ and is ignored for other Service Type
settings.

Service definitions

Chapter 18. Defining services and policies 459

Distribution list
Table 11. Distribution list

Attribute Comments

Name Mandatory name, specified on AMI calls. �1�

Available Service
Points

List of service points that make up the distribution list. They must be valid service point
names.

Note:

�1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 0-9, '.', '/',
'_' and '%'.

Subscriber
Table 12. Subscriber

Attribute Comments

Name Mandatory name, specified on AMI calls. �1�

Sender Service The name of the sender service that defines the publish/subscribe broker. It must be a valid
service point name.

Receiver Service The name of the receiver service that defines where publication messages are to be sent. It
must be a valid service point name.

Note:

�1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 0-9, '.', '/',
'_' and '%'.

Publisher
Table 13. Publisher

Attribute Comments

Name Mandatory name, specified on AMI calls. �1�

Sender Service The name of a sender service that defines the publish/subscribe broker. It must be a valid
service point name.

Note:

�1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 0-9, '.', '/',
'_' and '%'.

Service definitions

460 MQSeries Application Messaging Interface

Policy definitions
This section describes the policy definitions for the following attributes:
v initialization
v general
v send
v receive
v subscribe
v publish

Initialization attributes
Table 14. Initialization attributes

Attribute Comments

Name Mandatory policy name, specified on AMI calls. �1�

Connection Name If Connection Mode is set to ‘Real’, Connection Name is the name of the queue manager
the application will connect to. If blank, the default local queue manager is used. If
Connection Mode is ‘Logical’, then the Connection Name attribute is required and is the
name of the logical connection used with the local host file to generate the queue manager
to which connection is made. �2�

Connection Mode If Connection Mode is set to ‘Real’ (the default), Connection Name is used as the queue
manager name for connection. If Connection Mode is set to ‘Logical’, Connection Name is
used as a key to the host file on the system where the application is running that maps
Connection Name to a queue manager name. This allows applications running on different
systems in the network to use the same repository (connection name) to connect to different
local queue managers.

Connection Type If Connection Type is set to ‘Auto’ (the default), the application automatically detects if it
should connect directly, or as a client. If Connection Type is ‘Client’, the application
connects as a client. If Connection Type is ‘Server’, the application connects directly to the
queue manager.

Trusted Option If set to ‘Normal’ (the default), no fastpath is used. If set to ‘Trusted’, the application can
use fastpath facilities that might compromise integrity. This option is only supported on
Windows.

Notes:

�1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 0-9, '.', '/',
'_' and '%'.

�2�The name is a maximum of 48 characters, and can contain the following characters: A-Z, a-z, 0-9, '.', '/',
'_' and '%'.

Policy definitions

Chapter 18. Defining services and policies 461

General attributes
Table 15. General attributes

Attribute Comments

Message Context Defines how the message context is set in messages sent by the application. The default is
‘Set By Queue Manager’ (the queue manager sets the context).

If set to ‘Pass Identity’, the identity of the request message is passed to any output
messages. If set to ‘Pass All’, all the context of the request message is passed to any output
messages. If set to ‘No Context’, no context is passed.

Syncpoint If selected, the send or receive is part of a unit of work (default is ‘not selected’).

Policy definitions

462 MQSeries Application Messaging Interface

Send attributes
Table 16. Send attributes

Attribute Values Default Comments

Implicit Open Selected
Not selected

Implicit Open The queue is opened implicitly (must be selected for
the C and COBOL high-level interfaces). �1�

Leave Queue Open Selected
Not selected

Leave Queue
Open

If selected, a queue that was implicitly opened will be
left open. �1�

Priority 0-9
As Transport

As Transport The priority set in the message (the default uses the
value from the queue definition). Note that you need to
deselect ‘As Transport:’ before you can set a priority
value.

Persistence Yes
No
As Transport

As Transport The persistence set in the message (the default uses the
value from the underlying queue definition).

Expiry Interval 0-999999999
Unlimited

Unlimited A period of time (in tenths of a second) after which the
message will not be delivered.

Retry Count 0-999999999 0 The number of times a send will be retried if the return
code gives a temporary error. Retry will be attempted
under the following conditions: Queue full, Queue
disabled for put, Queue in use.

Retry Interval 0-999999999 1000 The interval (in milliseconds) between each retry.

Response Correl Id Message Id
Correl Id

Message Id Response or report messages have their Correl Id set to
the Message Id or Correl Id of the request message.

Exception Action Discard
DLQ

DLQ If a message cannot be delivered it will be discarded or
put to the dead-letter queue.

Report Data Report
With Data
With Full Data

Report Specifies if data (first 100 bytes) or full data is included
in a report messages. Default is ‘Report’ (no data).

Report Type
Exception

Selected
Not selected

No exception
reports

Specifies if Exception reports are required.

Report Type COA Selected
Not selected

No COA reports Specifies if Confirm on Arrival reports are required.

Report Type COD Selected
Not selected

No COD reports Specifies if Confirm on Delivery reports are required.

Report Type Expiry Selected
Not selected

No expiry
reports

Specifies if Expiry reports are required.

Segmentation Selected
Not selected

No
segmentation

Segmentation of the message is allowed.

Split File Logical
Physical

Physical ‘Logical’ specifies that the file will be split into separate
messages on record boundaries. On Windows, HP-UX,
AIX, and Sun Solaris, this is the end of a line. On
OS/390, this is a record boundary. ‘Physical’ specifies
that the file will be split into separate messages on
boundaries that are determined by AMI.

Policy definitions

Chapter 18. Defining services and policies 463

Table 16. Send attributes (continued)

Attribute Values Default Comments

Bind On Open Yes
No
As Transport

As Transport Bind On Open controls the binding of a service point to
a particular instance of an MQSeries cluster queue. If
set to Yes, the service point is bound to the destination
queue when the service is opened. If set to No, the
service point is not bound to a specific destination and
successive sends using this service point may result in
messages being sent to different instances of the
destination queue. If set to ‘As Transport’, the behavior
is determined by the value specified in the underlying
queue definition.

Application Group Name Optional application group name used when the
service represents an MQSeries Integrator Version 1
broker. �2�

Notes:

�1�If Implicit Open is selected and Leave Open is not selected, MQPUT1 is used for send operations.

�2�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 0-9, '.', '/',
'_' and '%'.

Policy definitions

464 MQSeries Application Messaging Interface

Receive attributes
Table 17. Receive attributes

Attribute Values Default Comments

Implicit Open Selected
Not selected

Implicit Open The queue is opened implicitly (must be selected for
the C and COBOL high-level interfaces). �1�

Leave Queue Open Selected
Not selected

Leave Queue
Open

If selected, a queue that was implicitly opened will
be left open. �1�

Delete On Close Yes
No
Purge

No Dynamic queues are deleted when closed (a
permanent dynamic queue is only deleted if it
contains no messages). ‘Purge’ causes deletion even
if there are messages on the queue.

Wait Interval 0-999999999
Unlimited

Unlimited A period of time (in milliseconds) that the receive
waits for a message to be available.

Wait Interval Read Only Selected
Not selected

Wait interval is
read only

If not selected, an application can override the Wait
Interval value in the policy object.

Convert Selected
Not selected

Message
conversion is
enabled

The message is code page converted by the message
transport when received.

Wait For Whole Group Selected
Not selected

Wait for whole
group

If selected, all messages in a group must be available
before any message is returned by the receive. If not
selected, AMRC_NO_MSG_AVAILABLE may be
returned to the application before the complete
group is received. In this case, any simulated group
state information is destroyed and any remaining
messages in a simulated group are orphaned.

Handle Poison Message Selected
Not selected

Handle poison
message

Enables poison message handling. �1�

Accept Truncated Message Selected
Not selected

Accept
truncated
message

Truncated messages are accepted.

Open Shared Selected
Not selected

Open a shared
queue

The queue is opened as a shared queue.

File Disposition New
Overwrite
Append

New The incoming file is created as a new file, overwrites
an existing file, or is appended to an existing file.

Note:

�1�A poison message is one for which the count of the number of times it has been backed-out during a unit of
work exceeds the maximum backout limit specified by the underlying MQSeries transport queue object. If poison
message handling is enabled during a receive request the AMI will handle it as follows:

If a poison message is successfully requeued to the backout-requeue queue (specified by the underlying MQSeries
transport queue), the message is returned to the application with completion code MQCC_WARNING and reason
code MQRC_BACKOUT_LIMIT_ERR.

If a poison message requeue attempt (as described above) is unsuccessful, the message is returned to the application
with completion code MQCC_WARNING and reason code MQRC_BACKOUT_REQUEUE_ERR.

If a poison message is part of a message group (and not the only message in the group), no attempt is made to
requeue the message. The message is returned to the application with completion code MQCC_WARNING and
reason code MQRC_GROUP_BACKOUT_LIMIT_ERR.

Policy definitions

Chapter 18. Defining services and policies 465

Subscribe attributes
Table 18. Subscribe attributes

Option Values Default Comments

Subscribe Locally Selected
Not selected

Not selected The subscriber is sent publications that
were published with the Publish Locally
option, at the local broker only.

New Publications Only Selected
Not selected

Not selected The subscriber is not sent existing retained
publications when it registers.

Publish On Request Only Selected
Not selected

Not selected The subscriber is not sent retained
publications unless it requests them by
using Request Update.

Inform If Retained Selected
Not selected

Selected The broker informs the subscriber if a
publication is retained.

Unsubscribe All Selected
Not selected

Not selected All topics for this subscriber are to be
deregistered.

Anonymous Registration Selected
Not selected

Not selected The subscriber registers anonymously.

Use Correl Id As Id Selected
Not selected

Not selected The Correl Id is used by the broker as
part of the subscriber’s identity.

Delivery Persistence Persistent
Non Persistent
As Published
As Transport

As Published This controls the persistence of messages
sent from the broker and applies only to
MQSeries Integrator Version 2.

Subscription Point The subscription point to which the
subscription is to be attached. If not
specified, the default subscription point is
assumed. This applies only to MQSeries
Integrator Version 2.

Publish attributes
Table 19. Publish attributes

Option Values Default Comments

Retain Selected
Not selected

Not selected The publication is retained by the broker.

Publish To Others Only Selected
Not selected

Not selected The publication is not sent to the
publisher if it has subscribed to the same
topic (used for conference-type
applications).

Suppress Registration Selected
Not selected

Selected Implicit registration of the publisher is
suppressed. (This attribute is ignored for
MQSeries Integrator Version 2.)

Publish Locally Selected
Not selected

Not selected The publication is only sent to subscribers
that are local to the broker.

Accept Direct Requests Selected
Not selected

Not selected The publisher should accept direct
requests from subscribers.

Anonymous Registration Selected
Not selected

Not selected The publisher registers anonymously.

Use Correl Id As Id Selected
Not selected

Not selected The Correl Id is used by the broker as
part of the publisher’s identity.

Policy definitions

466 MQSeries Application Messaging Interface

Chapter 19. Problem determination

This chapter shows you how to use the trace facility in the Application Messaging
Interface, and gives some information about finding the causes of problems. See:
v “Using trace (Unix and Windows)”
v “Using trace (OS/390)” on page 474
v “When your AMI program fails” on page 477

Using trace (Unix and Windows)
The Application Messaging Interface includes a trace facility to help identify what
is happening when you have a problem. It shows the paths taken when you run
your AMI program. Unless you have a problem, you are recommended to run with
tracing set off to avoid any unnecessary overheads on your system resources.

There are three environment variables that you set to control trace:

AMT_TRACE
AMT_TRACE_PATH
AMT_TRACE_LEVEL

You set these variables in one of two ways.
1. From a command prompt. It is effective locally, so you must then start your

AMI program from this prompt.
2. By putting the information into your system startup file; this is effective

globally. To do this:
v Select Main -> Control Panel on Windows NT and Windows 98
v Edit your .profile file on UNIX systems

When deciding where you want the trace files written, ensure that the user has
sufficient authority to write to, not just read from, the disk.

If you have tracing switched on, it will slow down the running of your AMI
program, but it will not affect the performance of your MQSeries environment.
When you no longer need a trace file, it is your responsibility to delete it. You
must stop your AMI program running to change the status of the AMT_TRACE
variable. The AMI trace environment variable is different to the trace environment
variable used within the MQSeries range of products. Within the AMI, the trace
environment variable turns tracing on. If you set the variable to a string of
characters (any string of characters) tracing will remain switched on. It is not until
you set the variable to NULL that tracing is turned off.

Trace filename and directory
The trace file name takes the form AMTnnnnn.trc, where nnnnn is the ID of the
AMI process running at the time.

Commands on UNIX
export AMT_TRACE_PATH=/directory

Sets the trace directory where the trace file will be written.

© Copyright IBM Corp. 1999, 2000 467

unset AMT_TRACE_PATH
Removes the AMT_TRACE_PATH environment variable; the trace
file is written to the current working directory (when the AMI
program was started).

echo $AMT_TRACE_PATH
Displays the current setting of the trace directory path.

export AMT_TRACE_LEVEL=n
Sets the trace level, where n is an integer from 0 through 9. 0
represents minimal tracing, and 9 represents a fully detailed trace.

In addition, you can suffix the value with a + (plus) or - (minus)
sign. Using the plus sign, the trace includes all control block dump
information and all informational messages. Using the minus sign
includes only the entry and exit points in the trace with no control
block information or text output to the trace file.

unset AMT_TRACE_LEVEL
Removes the AMT_TRACE_LEVEL environment variable. The trace
level is set to its default value of 2.

echo $AMT_TRACE_LEVEL
Displays the current setting of the trace level.

export AMT_TRACE=xxxxxxxx
This sets tracing ON. You switch tracing on by putting one or more
characters after the ‘=’ sign. For example:

export AMT_TRACE=yes
export AMT_TRACE=no

In both of these examples, tracing will be set ON.

unset AMT_TRACE
Sets tracing off

echo $AMT_TRACE
Displays the contents of the environment variable.

Commands on Windows
SET AMT_TRACE_PATH=drive:\directory

Sets the trace directory where the trace file will be written.

SET AMT_TRACE_PATH=
Removes the AMT_TRACE_PATH environment variable; the trace
file is written to the current working directory (when the AMI
program was started).

SET AMT_TRACE_PATH
Displays the current setting of the trace directory.

SET AMT_TRACE_LEVEL=n
Sets the trace level, where n is an integer from 0 through 9. 0
represents minimal tracing, and 9 represents a fully detailed trace.

In addition, you can suffix the value with a + (plus) or - (minus)
sign. Using the plus sign, the trace includes all control block dump
information and all informational messages. Using the minus sign
includes only the entry and exit points in the trace with no control
block information or text output to the trace file.

Using trace (Unix and Windows)

468 MQSeries Application Messaging Interface

SET AMT_TRACE_LEVEL=
Removes the AMT_TRACE_LEVEL environment variable. The trace
level is set to its default value of 2.

SET AMT_TRACE_LEVEL
Displays the current setting of the trace level.

SET AMT_TRACE=xxxxxxxx
This sets tracing ON. You switch tracing on by putting one or more
characters after the ‘=’ sign. For example:

SET AMT_TRACE=yes
SET AMT_TRACE=no

In both of these examples, tracing will be set ON.

SET AMT_TRACE=
Sets tracing OFF

SET AMT_TRACE
Displays the contents of the environment variable.

C++ and Java
For these language bindings there is more control over the production of trace. In
each case, the AmSessionFactory has two methods which control trace:
1. setTraceLocation(location);
2. setTraceLevel(level);

The behavior of these methods matches exactly the behavior of the environment
variables:
1. AMT_TRACE_PATH
2. AMT_TRACE_LEVEL

Once an AmSession has been created using an AmSessionFactory, the trace level
and location are set for the complete life of that AmSession.

If set, the values of the properties in the AmSessionFactory take precedence over
any AMT trace environment variables.

Using trace (Unix and Windows)

Chapter 19. Problem determination 469

Example trace
The example trace below shows ‘typical’ trace output.
Trace for program d:\output\bin\amITSR.exe <<< AMT trace >>>
started at Sat Jun 12 08:28:33 1999

@(!) <<< *** Code Level is 1.0.0 *** >>>
!(03787) BuildDate Jun 11 1999
!(03787) Trace Level is 2

(03787)@08:28:33.728
-->xmq_xxxInitialize

---->ObtainSystemCP
!(03787) Code page is 437

<----ObtainSystemCP (rc = 0)

<--xmq_xxxInitialize (rc = 0)

-->amSessCreateX

---->amCheckAllBlanks()

<----amCheckAllBlanks() (rc = 0)

---->amCheckValidName()

<----amCheckValidName() (rc = 1)
!(03787) Session name is: plenty

---->amHashTableCreate()

<----amHashTableCreate() (rc = AM_ERR_OK)

---->amSessClearErrorCodes

<----amSessClearErrorCodes (rc = 0)

...

---->amMaSrvCreate
!(03787) Service object created [9282320]

<----amMaSrvCreate (rc = AM_ERR_OK)

---->amMaSrvSetSessionHandle
!(03787) Object handle[9282320]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

---->amMaSrvCreate
!(03787) Service object created [9285144]

<----amMaSrvCreate (rc = AM_ERR_OK)

---->amMaSrvSetSessionHandle
!(03787) Object handle[9285144]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

---->amHashTableAddHandle()

Using trace (Unix and Windows)

470 MQSeries Application Messaging Interface

<----amHashTableAddHandle() (rc = AM_ERR_OK)

(03787)@08:28:33.738
---->amMaSrvCreate
!(03787) Service object created [9287968]

<----amMaSrvCreate (rc = AM_ERR_OK)

---->amMaSrvSetSessionHandle
!(03787) Object handle[9287968]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

---->amMaSrvCreate
!(03787) Service object created [9290792]

<----amMaSrvCreate (rc = AM_ERR_OK)

---->amMaSrvSetSessionHandle
!(03787) Object handle[9290792]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

---->amMaSrvCreate

!(03787) Service object created [9293616]

<----amMaSrvCreate (rc = AM_ERR_OK)

---->amMaSrvSetSessionHandle
!(03787) Object handle[9293616]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

---->amMaSrvCreate
!(03787) Service object created [9296440]

<----amMaSrvCreate (rc = AM_ERR_OK)

---->amMaSrvSetSessionHandle
!(03787) Object handle[9296440]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

---->amMaSrvSetSubReceiverHandle
!(03787) Object handle[9293616]

<----amMaSrvSetSubReceiverHandle (rc = AM_ERR_OK)

---->amMaMsgCreate
!(03787) message object created -[10420288]

<----amMaMsgCreate (rc = AM_ERR_OK)

---->amHashTableAddHandle()

Using trace (Unix and Windows)

Chapter 19. Problem determination 471

<----amHashTableAddHandle() (rc = AM_ERR_OK)

---->amMaMsgCreate
!(03787) message object created -[10432440]

<----amMaMsgCreate (rc = AM_ERR_OK)

---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

---->amMaPolCreate
!(03787) policy object created.
!(03787) policy object initialized.

<----amMaPolCreate (rc = AM_ERR_OK)

---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

---->amMaPolCreate
!(03787) policy object created.
!(03787) policy object initialized.

<----amMaPolCreate (rc = AM_ERR_OK)

---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

---->amMaPolSetIntProps
!(03787) Object handle[10446656]
!(03787) [AMPOL_IPR_APR_CON_CNT] set to [0x1]

(03787)@08:28:33.748
<----amMaPolSetIntProps (rc = AM_ERR_OK)

---->amMaPolSetStringProp
!(03787) Object handle[10446656]
!(03787) [AMPOL_SPR_APR_MGR_NAME] set to [plenty]

<----amMaPolSetStringProp (rc = AM_ERR_OK)

---->amMaPolSetStringProp
!(03787) Object handle[10446656]
!(03787) [AMPOL_SPR_APR_CON_NAME] set to [plenty]

<----amMaPolSetStringProp (rc = AM_ERR_OK)

---->amMaSrvSetStringProp
!(03787) Object handle[9282320]
!(03787) [AMSRV_SPR_QUEUE_NAME] set to [SYSTEM.DEFAULT.SENDER]

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

---->amMaSrvSetStringProp
!(03787) Object handle[9285144]
!(03787) [AMSRV_SPR_QUEUE_NAME] set to []

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

---->amMaSrvSetStringProp
!(03787) Object handle[9287968]
!(03787) [AMSRV_SPR_QUEUE_NAME] set to [SYSTEM.DEFAULT.RECEIVER]

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

Using trace (Unix and Windows)

472 MQSeries Application Messaging Interface

---->amMaSrvSetStringProp
!(03787) Object handle[9290792]
!(03787) [AMSRV_SPR_QUEUE_NAME] set to [SYSTEM.DEFAULT.PUBLISHER]

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

---->amMaSrvSetStringProp
!(03787) Object handle[9293616]
!(03787) [AMSRV_SPR_QUEUE_NAME] set to [SYSTEM.DEFAULT.SUBSCRIBER]

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

---->amMaPolSetIntProps
!(03787) Object handle[10451304]
!(03787) [AMPOL_IPR_SMO_SYNCPOINT] set to [0xc030003]

<----amMaPolSetIntProps (rc = AM_ERR_OK)

---->amMaPolSetIntProps
!(03787) Object handle[10451304]
!(03787) [AMPOL_IPR_RMO_SYNCPOINT] set to [0xd060002]

<----amMaPolSetIntProps (rc = AM_ERR_OK)

---->amActivateFiles
!(03787) No DATAPATH specified from API
!(03787) No repository FILE specified from API
!(03787) Repository[H:\MQSeries\amt\\amt.xml]
!(03787) Repository ACTIVE
!(03787) No local host FILE specified from API
!(03787) Local Host[H:\MQSeries\amt\\amthost.xml]
!(03787) Local Host File ACTIVE

<----amActivateFiles (rc = 1)

---->amErrTranslate

<----amErrTranslate (rc = 0)

<--amSessCreateX (rc = 0)

...

Using trace (Unix and Windows)

Chapter 19. Problem determination 473

Using trace (OS/390)
The AMI provides two types of trace on OS/390:

Formatted trace
Records spooled to a printer or directed to a file, which can be
directly interpreted using TSO/ISPF browse, edit or print utilities.

GTF trace Data captured on entry to and exit from high level and object level
AMI function calls, which must be formatted by IPCS before
viewing.

Formatted Trace
Formatted trace records are written on function entry and exit and at other points
of execution where useful information can be gathered.

The format of the records is as follows:
Entry:

hh:mm:ss.tttt ---->function name()

Exit:
hh:mm:ss.tttt <----function name() (rc = n)

Data:
! information

Timestamps of entry and exit records are in local time, and are accurate to 1/10000
second. The function call depth is indicated for entry and exit records by the
dashes in the ‘---->’ or ‘<----’ prefixes; two dashes per call level. For exit records,
‘n’ indicates the reason code on completion of the function. The default is to trace
up to a depth of two function call levels, but this can be varied for batch
applications. See “Control of formatted trace”.

This a sample fragment from a formatted trace:
13:26:58.3263 -->amSendMsg
13:26:58.3264 ---->amSesGetSenderHandle

! amHashTableGetHandle failed.
13:26:58.3266 <----amSesGetSenderHandle (rc = [18][0x12])
13:26:58.3268 ---->amSesGetDistListHandle

! amHashTableGetHandle failed.
13:26:58.3269 <----amSesGetDistListHandle (rc = [18][0x12])
13:26:58.3270 ---->amSesCreateSender

For IMS, batch, or RRS-batch applications, formatted trace is directed to a dataset
specified by the user. In the CICS environment, formatted trace entries are written
to the current CICS trace destination as determined by the CICS administrator.

Control of formatted trace
For IMS, batch, or RRS-batch applications, formatted trace can be turned on by
specifying a JCL ‘DD’ statement for DD name ‘AMTTRACE’. This can be assigned
to SYSOUT or to a DASD dataset. If assigned to SYSOUT, the trace records are
written to a single spool file.

AMI formatted trace will not be started unless ‘//AMTTRACE DD’ is specified.

If the trace dataset becomes full during an AMI session, the file will automatically
be reopened and the trace will wrap.

Using trace (OS/390)

474 MQSeries Application Messaging Interface

For CICS applications, the AMI formatted trace is started if, at AMI session start,
CICS internal and/or auxiliary trace is switched on. If the CICS trace destinations
are stopped, AMI will perform no tracing for the session. The CICS administrator
can use the CICS-supplied ‘CEMT’ transaction to control CICS trace.

For batch AMI applications, the trace level can be varied by specifying the
Language Environment program parameter ‘ENVAR(AMT_TRACE_LEVEL=n)’.
For example, to specify the formatted trace level for a C application program:
//JOBSTEP EXEC PGM=AMIapp,PARM='ENVAR(AMT_TRACE_LEVEL=5)/'

For COBOL programs, Language Environment parameters are specified following
the ‘/’ delimiter. For example:
//JOBSTEP EXEC PGM=AMICob,PARM='/ENVAR(AMT_TRACE_LEVEL=9)'

Because CICS and IMS applications cannot easily set environment variables to
control the trace level, the trace level defaults under CICS to a high setting. This
ensures that all AMI trace points will be captured.

GTF Trace
AMI captures trace data for GTF at entry to and exit from each user-callable object
level and high level AMI function. Entry trace data include function name and
parameters. Exit trace data include function name and returned values.

IMS, batch, and RRS-batch AMI applications direct the trace data to GTF as user
entries, using GTF event identifiers ‘5E9’ for entry, and ‘5EA’ for exit. These
identifiers are the same as those used by MQSeries for OS/390 Application GTF
trace, allowing for AMI and MQSeries trace entries to be selected together in IPCS
and formatted in a single, chronological, stream. Unlike MQSeries, however, the
GTF format identifier for AMI GTF trace records is ‘00’, causing IPCS to display
these records in dump (hexadecimal/character) form, without using a bespoke
formatting routine.

The following extract from IPCS formatted output shows an entry/exit pair of AMI
GTF trace records:
HEXFORMAT AID FF FID 00 EID E5E9
+0000 00F63080 C1F8E2D5 C5D3D3E2 8194E285 ║ .6..A8SNELLSamSe ║
+0010 A2C39385 8199C599 999699C3 968485A2 ║ sClearErrorCodes ║
+0020 00000000 00000000 00000000 0FA05B10 ║ú. ║

GMT-11/05/1999 14:49:51.564812 LOC-11/05/1999 14:49:51.564812

HEXFORMAT AID FF FID 00 EID E5EA
+0000 00F63080 C1F8E2D5 C5D3D3E2 8194E285 ║ .6..A8SNELLSamSe ║
+0010 A2C39385 8199C599 999699C3 968485A2 ║ sClearErrorCodes ║
+0020 00000000 00000000 00000000 00000000 ║ ║
+0030 00000000 ║ ║

GMT-11/05/1999 14:49:51.564906 LOC-11/05/1999 14:49:51.564906

AMI applications on CICS do not directly trace to GTF. AMI writes the same data
to the current CICS trace destination(s) along with AMI formatted trace records.
CICS tracing is controlled by the CICS administrator using the CICS-supplied
transaction ‘CEMT’.

Control of GTF Trace
AMI writes GTF trace records if, at AMI session start, GTF is started for the
application’s job name with option ‘TRACE=USR’. GTF is usually started from the
OS/390 operator’s console using an installation defined procedure. The chapter

Using trace (OS/390)

Chapter 19. Problem determination 475

“Using trace for problem determination” in the MQSeries for OS/390 Problem
Determination Guide describes a typical GTF start-up prompt/reply sequence. If
AMI and MQSeries GTF trace entries are to be captured to the same dataset, the
job names for both the AMI application and the MQSeries queue manager must be
specified.

If GTF is not started at the start of the AMI session, no GTF tracing will be
performed for the remainder of the session.

Using trace (OS/390)

476 MQSeries Application Messaging Interface

When your AMI program fails

Reason Codes
When an AMI function call fails, it reports the level of the failure in the completion
code of the call. AMI has three completion codes:

AMCC_OK The call completed successfully

AMCC_WARNING
The call completed with unexpected results

AMCC_FAILED
An error occurred during processing

In the last two cases, AMI supplies a reason code that provides an explanation of
the failure. A list of AMI reason codes is given in “Appendix A. Reason codes” on
page 481.

In addition, if MQSeries is the reason for the failure, AMI supplies a secondary
reason code. The secondary reason codes can be found in the MQSeries Application
Programming Reference book.

First failure symptom report (Unix and Windows)
A first failure symptom report is produced for unexpected and internal errors. This
report is found in a file named AMTnnnnn.FDC, where nnnnn is the ID of the AMI
process that is running at the time. You find this file in the working directory from
which you started your AMI program, or the name of the path specified in the
AMT_TRACE_PATH environment variable. If you receive a first failure symptom
report you should contact IBM support personnel.

First failure symptom report (OS/390)
In the unlikely event that AMI detects an internal processing error from which no
recovery is possible, the following actions are taken:
1. A dump is taken of the application’s data.
2. A first failure symptom report is produced.

Batch AMI applications write a Language Environment dump to SYSOUT. CICS
AMI applications create a CICS transaction dump, with identifier ‘MAMT’.

Batch AMI applications write the first failure symptom report to the formatted
trace data set (AMTTRACE), if allocated, otherwise to SYSOUT. CICS AMI
applications write the symptom report to SYSOUT.

The formatted diagnostic information starts with a summary that includes:
Date/Time
Code Level
Function Name
Probe Id (code point within function)
Build Date
Major Error Code
Minor Error Code
Comment Lines

Following the summary is a list of the stored function stack, indicating the current
function call sequence. Following this is a list of the latest 40 function calls. Each
item contains:

When your AMI program fails

Chapter 19. Problem determination 477

Entry/Exit indicator Function name Return Code

Other sources of information
AMI makes use of MQSeries as a transport mechanism and so MQSeries error logs
and trace information can provide useful information. See the MQSeries System
Administration manual for details of how to activate these problem determination
aids.

Common causes of problems
v With the C object interface, most functions require a handle to the object they

refer to. If this handle is not valid, the results are unpredictable.
v Completion code 2 (AMRC_ERROR) together with reason code 110

(AMRC_TRANSPORT_NOT_AVAILABLE) returned by amInitialize or
amSesOpen (or the equivalent in COBOL, C++ and Java) normally indicates that
the underlying MQSeries queue manager the AMI is attempting to use is not
started (or does not exist). This might be because of a missing or incorrect xml
repository file or because the data in the local host file is incorrect.

v Completion code 2 (AMRC_ERROR) together with reason code 47
(AMRC_TRANSPORT_ERR) indicates that an error was detected by the
underlying MQSeries transport. The secondary reason code returned by the
appropriate ‘get last error’ function for the object concerned will provide the
related the MQSeries reason code. This error occurs most frequently during an
attempt to open an underlying MQSeries queue object that does not exist (or has
an incorrect type). This can be because it has never been created or because a
missing or incorrect xml repository file is providing an incorrect queue name.

When your AMI program fails

478 MQSeries Application Messaging Interface

Part 8. Appendixes

© Copyright IBM Corp. 1999, 2000 479

480 MQSeries Application Messaging Interface

Appendix A. Reason codes

This appendix contains a description of the AMRC_* reason codes, divided into
three sections according to the value of the corresponding completion code. Within
each section they are in alphabetic order. For a list of reason codes in numeric
order, see “Appendix B. Constants” on page 493.

In some circumstances the AMI returns a secondary reason code that comes from
MQSeries, the underlying transport layer. Please refer to the MQSeries Application
Programming Reference manual for details of these reason codes.

Reason code: OK
The following reason code is returned with completion code: AMCC_OK

AMRC_NONE
The request was successful with no error or warning returned.

Reason code: Warning
The following reason codes are returned with completion code: AMCC_WARNING

AMRC_BACKED_OUT
The unit of work has been backed out.

AMRC_BACKOUT_LIMIT_ERR
The backout count of a received message was found to have exceeded its
backout limit. The message was returned to the application and was requeued
to the backout requeue queue.

AMRC_BACKOUT_REQUEUE_ERR
The backout count of a received message was found to have exceeded its
backout limit. The message was returned to the application. It could not be
requeued to the backout requeue queue.

AMRC_CCSID_NOT_SUPPORTED
OS/390 V2 R9 (or later) is required to enable AMI publish subscribe or
message element support under CICS. Ensure that your Language
Environment installation is set up to use Unicode character conversion. See
“Unicode character conversion” on page 438 for more details, and see the
OS/390 C/C++ Programming Guide for a list of the coded character sets
supported under OS/390.

AMRC_CLOSE_SESSION_ERR
An error occurred while closing the session. The session is closed.

AMRC_ENCODING_INCOMPLETE
The message contains mixed values for integer, decimal, and floating point
encodings, one or more of which are undefined. The encoding value returned
to the application reflects only the encoding values that were defined.

AMRC_ENCODING_MIXED
The message contains mixed values for integer, decimal and floating point
encodings, one or more of which conflict. An encoding value of undefined was
returned to the application.

© Copyright IBM Corp. 1999, 2000 481

AMRC_FILE_ALREADY_EXISTS
The AMI was unable to receive the file as the current file disposition is ‘new’,
and a file with the same name already exists on your system. The first message
of the file transfer is returned to the application. If this occours we recommend
that the current unit of work is backed out. This will ensure that the messages
received from the service are in a consistent state.

AMRC_FILE_FORMAT_CONVERTED
The AMI received a file successfully, but needed to convert between different
file types. An example is from an OS/390 fixed-length dataset to a UNIX file or
between OS/390 datasets with different geometries.

AMRC_FILE_NOT_WRITTEN
The file used for a receive could not be opened. The first message of the file is
returned to the application. If this occurs we recommend that the current unit
of work is backed out. This will ensure that the messages held on the service
are in a consistent state.

AMRC_FILE_SYSTEM_ERROR
A filesystem error occurred during a file transfer call. If this occurs, we
recommend that the current unit of work is backed out. This will ensure the
messages put to or received from the service are in a consistent state.

AMRC_FILE_TRUNCATED
On a file send or receive operation, the entire file was not processed. We
recommend that the current unit of work is backed out. This will ensure that
the messages put to or received from the service are in a consistent state.

AMRC_GROUP_BACKOUT_LIMIT_ERR
The backout count of a received message was found to have exceeded its
backout limit. The message was returned to the application. It was not
requeued to the backout requeue queue because it represented a single
message within a group of more than one.

AMRC_MULTIPLE_REASONS
A distribution list open or send was only partially successful and returned
multiple different reason codes in its underlying sender services.

AMRC_MSG_TRUNCATED
The received message that was returned to the application has been truncated.

AMRC_NO_REPLY_TO_INFO
A response sender service specified when attempting to receive a request
message was not updated with reply-to information because the request
message contained no reply-to information. An attempt to send a reply
message using the response sender will fail.

AMRC_NOT_A_FILE
A message was received from the service, but it does not appear to have been
sent as part of a (physical mode) file transfer operation. The message is
returned to the application.

AMRC_NOT_CONVERTED
Data conversion of the received message was unsuccessful. The message was
removed from the underlying message transport layer with the message data
unconverted.

AMRC_POLICY_NOT_IN_REPOS
The definition name that was specified when creating a policy was not found
in the repository. The policy was created using default values.

Reason code (warning)

482 MQSeries Application Messaging Interface

AMRC_PUBLISHER_NOT_IN_REPOS
The definition name that was specified when creating a publisher was not
found in the specified repository. The publisher was created using default
values.

AMRC_RECEIVER_NOT_IN_REPOS
The definition name that was specified when creating a receiver was not found
in the repository. The receiver was created using default values.

AMRC_REPOS_WARNING
A warning associated with the underlying repository data was reported.

AMRC_RFH2_FORMAT_ERR
The format of an MQRFH2 rules and formatting header of a received message
was not valid.

AMRC_SENDER_NOT_IN_REPOS
The definition name that was specified when creating a sender was not found
in the repository. The sender was created using default values.

AMRC_SUBSCRIBER_NOT_IN_REPOS
The definition name that was specified when creating a subscriber was not
found in the repository. The subscriber was created using default values.

AMRC_TRANSPORT_WARNING
A warning was reported by the underlying (MQSeries) message transport
layer. The message transport reason code can be obtained by the secondary
reason code value returned from a ‘GetLastError’ request for the AMI object
concerned.

AMRC_UNEXPECTED_RECEIVE_ERR
An unexpected error occurred after a received message was removed from the
underlying transport layer. The message was returned to the application.

AMRC_UNEXPECTED_SEND_ERR
An unexpected error occurred after a message was successfully sent. Output
information updated as a result of the send request should never occur.

Reason code: Failed
The following reason codes are returned with completion code: AMCC_FAILED

AMRC_BACKOUT_INVALID
The backout request was not valid. On OS/390 under CICS, IMS, or RRS this
can be due to calling the AMI backout functions rather than the transaction
managers’ own functions.

AMRC_BEGIN_INVALID
The begin request was not valid because there were no participating resource
managers registered.

AMRC_BROWSE_OPTIONS_ERR
The specified browse options value was not valid or contained an invalid
combination of options.

AMRC_CCSID_ERR
The specified coded character value was not valid.

AMRC_CCSID_NOT_SUPPORTED
The coded character set of name/value elements in the rules and formatting
header of a received message, or that specified for passing elements between
the application and the AMI, is not supported.

Reason code (warning)

Appendix A. Reason codes 483

AMRC_CCSID_PTR_ERR
The specified coded character set id pointer was not valid.

AMRC_COMMAND_ALREADY_EXISTS
A publish, subscribe, or unsubscribe command could not be added to the
message because the message already contained a command element. If this
message is generated from the high-level interface, it may mean that you have
tried to use the same message name for sending and receiving
publish/subscribe messages. It can also occur if the same message object is
reused to send a message without being reset.

AMRC_COMMIT_INVALID
The commit request was not valid. On OS/390 under CICS, IMS, or RRS this
can be due to calling the AMI commit functions rather than the transaction
managers’ own functions.

AMRC_CONN_NAME_NOT_FOUND
The connection name obtained from the repository was not found in the local
host file.

AMRC_CORREL_ID_BUFF_LEN_ERR
The specified correlation id buffer length value was not valid.

AMRC_CORREL_ID_BUFF_PTR_ERR
The specified correlation id buffer pointer was not valid.

AMRC_CORREL_ID_LEN_ERR
The specified correlation id length value was too long.

AMRC_CORREL_ID_LEN_PTR_ERR
The specified correlation id length pointer was not valid.

AMRC_CORREL_ID_PTR_ERR
The specified correlation id pointer was not valid.

AMRC_DATA_BUFF_LEN_ERR
The specified data buffer length value was not valid.

AMRC_DATA_BUFF_PTR_ERR
The specified data buffer pointer was not valid.

AMRC_DATA_LEN_ERR
The specified data length was not valid.

AMRC_DATA_LEN_PTR_ERR
The specified data length pointer was not valid.

AMRC_DATA_OFFSET_ERR
The specified data offset value was not valid.

AMRC_DATA_OFFSET_PTR_ERR
The specified data offset pointer was not valid.

AMRC_DATA_PTR_ERR
The specified data pointer was not valid.

AMRC_DATA_SOURCE_NOT_UNIQUE
Message data for a send operation was passed in an application data buffer
and was also found in the specified message object. Data can to be sent can be
included in either an application buffer or a message object but not both. The
message requires a reset first, to remove existing data.

Reason code (failed)

484 MQSeries Application Messaging Interface

AMRC_DEFN_TYPE_ERR
The definition type defined for the service point in the repository was
inconsistent with the definition type of the underlying message transport
queue object when it was opened.

AMRC_DEFN_TYPE_PTR_ERR
The specified definition type pointer was not valid.

AMRC_DIST_LIST_INDEX_ERR
The specified distribution list index value was not valid.

AMRC_DIST_LIST_NOT_IN_REPOS
The definition name specified for creating a distribution list was not found in
the repository. The object was not created.

AMRC_DIST_LIST_NOT_UNIQUE
The specified name could not be resolved to a unique distribution list because
more than one distribution list with that name exists.

AMRC_ELEM_COUNT_PTR_ERR
The specified element count pointer was not valid.

AMRC_ELEM_INDEX_ERR
The specified element index value was not valid.

AMRC_ELEM_NAME_LEN_ERR
The specified element name length value was not valid.

AMRC_ELEM_NAME_PTR_ERR
The specified element name pointer was not valid.

AMRC_ELEM_NOT_FOUND
The specified element was not found.

AMRC_ELEM_PTR_ERR
The specified element pointer was not valid.

AMRC_ELEM_STRUC_ERR
The specified element structure was not valid. The structure id, version, or a
reserved field contained an invalid value.

AMRC_ELEM_STRUC_NAME_BUFF_ERR
At least one of the name buffer (length and pointer) fields in the specified
element structure was not valid.

AMRC_ELEM_STRUC_NAME_ERR
At least one of the name (length and pointer) fields in the specified element
structure was not valid. Ensure that the name length, pointer, and name string
are valid.

AMRC_ELEM_STRUC_TYPE_BUFF_ERR
At least one of the type buffer (length and pointer) fields in the specified
element structure was not valid. Ensure that the type length, pointer and type
string are valid.

AMRC_ELEM_STRUC_TYPE_ERR
At least one of the type (length and pointer) fields in the specified element
structure was not valid.

AMRC_ELEM_STRUC_VALUE_BUFF_ERR
At least one of the value buffer (length and pointer) fields in the specified
structure was not valid.

Reason code (failed)

Appendix A. Reason codes 485

AMRC_ELEM_STRUC_VALUE_ERR
At least one of the value (length and pointer) fields in the specified element
structure was not valid. Ensure that the value length, pointer, and value string
are valid.

AMRC_ENCODING_ERR
The specified encoding value was not valid.

AMRC_ENCODING_PTR_ERR
The specified encoding pointer was not valid.

AMRC_FILE_FORMAT_NOT_SUPPORTED
An attempt was made to send a file type that is not supported. Unsupported
file types include OS/390 VSAM datasets, and OS/390 partitioned datasets
(though an individual member of a PDS may be sent).

AMRC_FILE_MSG_FORMAT_ERR
When using physical mode file transfer, only two message formats are allowed:
AMFMT_STRING (for text mode transfer), and AMFMT_NONE (for binary
mode transfer). When using logical mode file transfer, any message format
may be used for messages generated from OS/390 datasets. On other platforms
and for HFS files on OS/390, only AMFMT_STRING and AMFMT_NONE can
be used.

AMRC_FILE_NAME_LEN_ERR
The file name length passed in to a file transfer call was not valid.

AMRC_FILE_NAME_PTR_ERR
The file name pointer passed in to a file transfer call was not valid.

AMRC_FILE_NOT_FOUND
The file supplied on a file send call could not be opened. Check that the file
exists and that the application has read access to it.

AMRC_FILE_TRANSFER_INVALID
An application running under CICS on OS/390 tried to perform a file transfer
operation, which is invalid in this environment.

AMRC_FORMAT_BUFF_LEN_ERR
The specified format buffer length value was not valid.

AMRC_FORMAT_BUFF_PTR_ERR
The specified format buffer pointer was not valid.

AMRC_FORMAT_LEN_ERR
The specified message format string was too long.

AMRC_FORMAT_LEN_PTR_ERR
The specified format length pointer was not valid.

AMRC_FORMAT_PTR_ERR
The specified format pointer was not valid.

AMRC_GROUP_STATUS_ERR
The specified group status value was not valid.

AMRC_GROUP_STATUS_PTR_ERR
The specified group status pointer was not valid.

AMRC_HEADER_INVALID
The RFH header structure of the message was not valid.

AMRC_HEADER_TRUNCATED
The RFH header of the message was truncated.

Reason code (failed)

486 MQSeries Application Messaging Interface

AMRC_HOST_CACHE_ERR
A module was loaded for use as a repository file cache, but the module does
not appear to be a valid repository cache.

AMRC_HOST_FILE_ERR
The contents of the local host file are not valid.

AMRC_HOST_FILENAME_ERR
The local host file name was not valid. The value of the appropriate
environment variable should be corrected.

AMRC_HOST_FILE_NOT_FOUND
A local host file with the specified name was not found.

AMRC_INCOMPLETE_GROUP
The specified request failed because an attempt was made to send a message
that was not in a group when the existing message group was incomplete.

AMRC_INSUFFICIENT_MEMORY
There was not enough memory available to complete the requested operation.

AMRC_INVALID_DIST_LIST_NAME
The specified distribution list name was too long, contained invalid characters,
or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_IF SERVICE_OPEN
The receiver queue name could not be set because the receiver or subscriber
service was open.

AMRC_INVALID_MSG_NAME
The specified message name was too long, contained invalid characters, or
used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_POLICY_NAME
The specified policy name was too long, contained invalid characters, or used
the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_PUBLISHER_NAME
The specified publisher service name was too long, contained invalid
characters, or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_Q_NAME
The specified queue name was too long, or contained invalid characters.

AMRC_INVALID_RECEIVER_NAME
The specified receiver service name was too long, contained invalid characters,
or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_SENDER_NAME
The specified sender service name was too long, contained invalid characters,
or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_SESSION_NAME
The specified session name was too long, contained invalid characters, or used
the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_SUBSCRIBER_NAME
The specified subscriber service name was too long, contained invalid
characters, or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_TRACE_LEVEL
A specified trace level was not valid.

Reason code (failed)

Appendix A. Reason codes 487

AMRC_JAVA_CLASS_ERR
A class referenced in AMI Java code cannot be found in the AMI Java native
library. This is probably due to an incompatibility between the AMI class files
and the AMI Java library. (Not applicable to the C and C++ programming
languages).

AMRC_JAVA_CREATE_ERR
An unexpected error occurred when creating an AMI Java object. This is
probably due to an incompatibility between the AMI class files and the AMI
Java library. (Not applicable to the C and C++ programming languages).

AMRC_JAVA_FIELD_ERR
A field referenced in AMI Java code cannot be found in the AMI Java native
library. This is probably due to an incompatibility between the AMI class files
and the AMI Java library. (Not applicable to the C and C++ programming
languages).

AMRC_JAVA_JNI_ERR
An unexpected error occurred when calling the AMI Java native library. This is
probably due to an incompatibility between the AMI class files and the AMI
Java library. (Not applicable to the C and C++ programming languages).

AMRC_JAVA_METHOD_ERR
A method referenced in AMI Java code cannot be found in the AMI Java native
library. This is probably due to an incompatibility between the AMI class files
and the AMI Java library. (Not applicable to the C and C++ programming
languages).

AMRC_JAVA_NULL_PARM_ERR
The AMI Java code detected a null parameter that is not valid. (Not applicable
to the C and C++ programming languages).

AMRC_MSG_HANDLE_ERR
The specified message handle was not valid.

AMRC_MSG_ID_BUFF_LEN_ERR
The specified message id buffer length value was not valid.

AMRC_MSG_ID_BUFF_PTR_ERR
The specified message id buffer pointer was not valid.

AMRC_MSG_ID_LEN_ERR
The specified message id length value was not valid.

AMRC_MSG_ID_LEN_PTR_ERR
The specified message id length pointer was not valid.

AMRC_MSG_ID_PTR_ERR
The specified message id pointer was not valid.

AMRC_MSG_NOT_FOUND
The specified message was not found, so the request was not carried out.

AMRC_MSG_NOT_UNIQUE
The specified name could not be resolved to a unique message because more
than one message object with that name exists.

AMRC_MSG_TYPE_NOT_REPORT
The message is not a report message.

AMRC_MSG_TYPE_PTR_ERR
The specified message type pointer was not valid.

Reason code (failed)

488 MQSeries Application Messaging Interface

AMRC_NAME_BUFF_LEN_ERR
The specified name buffer length value was not valid.

AMRC_NAME_BUFF_PTR_ERR
The specified name buffer pointer was not valid.

AMRC_NAME_LEN_PTR_ERR
The specified name length pointer was not valid.

AMRC_NO_MSG_AVAILABLE
No message was available for a receive request after the specified wait time.

AMRC_NO_RESP_SERVICE
The publish request was not successful because a response receiver service is
required for registration and was not specified.

AMRC_NOT_AUTHORIZED
The user is not authorized by the underlying transport layer to perform the
specified request.

AMRC_POLICY_HANDLE_ERR
The specified policy handle was not valid.

AMRC_POLICY_NOT_FOUND
The specified policy was not found, so the request was not carried out.

AMRC_POLICY_NOT_UNIQUE
The specified name could not be resolved to a unique policy because more
than one policy with that name exists.

AMRC_PRIMARY_HANDLE_ERR
The primary handle (that is, the first parameter) passed on the API call was
not valid. The most probable reason for failure is that the handle passed is a
synonym handle, which is not valid as the primary handle on any call to the
AMI.

AMRC_PUBLISHER_NOT_UNIQUE
The specified name could not be resolved to a unique publisher because more
than one publisher object with that name exists.

AMRC_Q_NAME_BUFF_LEN_ERR
The specified queue name buffer length value was not valid.

AMRC_Q_NAME_BUFF_PTR_ERR
The specified queue name buffer pointer was not valid.

AMRC_Q_NAME_LEN_ERR
The specified queue name length value was not valid.

AMRC_Q_NAME_LEN_PTR_ERR
The specified queue name length pointer was not valid.

AMRC_Q_NAME_PTR_ERR
The specified queue name pointer was not valid.

AMRC_READ_OFFSET_ERR
The current data offset used for reading bytes from a message is not valid.

AMRC_RECEIVE_BUFF_LEN_ERR
The buffer length specified for receiving data was not valid.

AMRC_RECEIVE_BUFF_PTR_ERR
The buffer pointer specified for receiving data was not valid.

Reason code (failed)

Appendix A. Reason codes 489

AMRC_RECEIVE_DISABLED
The specified request could not be performed because the service in the
underlying transport layer is not enabled for receive requests.

AMRC_RECEIVER_NOT_UNIQUE
The specified name could not be resolved to a unique receiver because more
than one receiver object with that name exists.

AMRC_REPORT_CODE_PTR_ERR
The specified report code pointer was not valid.

AMRC_REPOS_CACHE_ERR
A module was loaded for use as a host file cache, but the module does not
appear to be a valid host cache.

AMRC_REPOS_ERR
An error was returned when initializing or accessing the repository. This can
occur for any of the following reasons:
v The repository XML file (for instance, amt.xml) contains data that is not

valid.
v The DTD file (amt.dtd) was not found or contains data that is not valid.
v The files needed to initialize the repository (located in directories intlFiles

and locales) could not be located.

Check that the DTD and XML files are valid and correctly located, and that the
path settings for the local host and repository files are correct.

AMRC_REPOS_FILENAME_ERR
The repository file name was not valid. The value of the appropriate
environment variable should be corrected.

AMRC_REPOS_NOT_FOUND
The repository file was not found. The value of the appropriate environment
variable should be corrected.

AMRC_RESERVED_NAME_IN_REPOS
The name specified for creating an object was found in the repository and is a
reserved name that is not valid in a repository. The specified object was not
created.

AMRC_RESP_RECEIVER_HANDLE_ERR
The response receiver service handle specified when sending a request message
was not valid.

AMRC_RESP_SENDER_HANDLE_ERR
The response sender service handle specified when receiving a request message
was not valid.

AMRC_RFH_ALREADY_EXISTS
A publish, subscribe, or unsubscribe command could not be added to the
message because the message already contained an RFH header. The message
requires a reset first, to remove existing data.

AMRC_SEND_DATA_PTR_ERR
The buffer pointer specified for sending data was not valid.

AMRC_SEND_DATA_LEN_ERR
The data length specified for sending data was not valid.

AMRC_SEND_DISABLED
The specified request could not be performed because the service in the
underlying transport layer is not enabled for send requests.

Reason code (failed)

490 MQSeries Application Messaging Interface

AMRC_SENDER_COUNT_PTR_ERR
The specified distribution list sender count pointer was not valid.

AMRC_SENDER_NOT_UNIQUE
The specified name could not be resolved to a unique sender because more
than one sender object with that name exists.

AMRC_SENDER_USAGE_ERR
The specified sender service definition type was not valid for sending
responses. To be valid for sending a response, a sender service must not have a
repository definition, must have been specified as a response service when
receiving a previous request message and must not have been used for any
purpose other than sending responses.

AMRC_SERVICE_ALREADY_CLOSED
The specified (sender, receiver, distribution list, publisher or subscriber) service
was already closed.

AMRC_SERVICE_ALREADY_OPEN
The specified (sender, receiver, distribution list, publisher or subscriber) service
was already open.

AMRC_SERVICE_FULL
The specified request could not be performed because the service in the
underlying transport has reached its maximum message limit.

AMRC_SERVICE_HANDLE_ERR
The service handle specified for a sender, receiver, distribution list, publisher,
or subscriber was not valid.

AMRC_SERVICE_NOT_FOUND
The specified (sender, receiver, distribution list, publisher, or subscriber) service
was not found, so the request was not carried out.

AMRC_SERVICE_NOT_OPEN
The request failed because the specified (sender, receiver, distribution list,
publisher or subscriber) service was not open.

AMRC_SESSION_ALREADY_CLOSED
The session was already closed (or terminated).

AMRC_SESSION_ALREADY_OPEN
The session was already open (or initialized).

AMRC_SESSION_EXPIRED
Under the IMS environment, the current session has been marked as expired.
See “Writing IMS applications using AMI” on page 417 for an explanation of
why a session may be expired. Delete the current session and create new one
for the duration of this transaction.

AMRC_SESSION_HANDLE_ERR
The specified session handle was not valid.

AMRC_SESSION_NOT_OPEN
The request failed because the session was not open.

AMRC_SUBSCRIBER_NOT_UNIQUE
The specified name could not be resolved to a unique subscriber because more
than one subscriber object with that name exists.

AMRC_TRANSPORT_ERR
An error was reported by the underlying (MQSeries) message transport layer.
The message transport reason code can be obtained by the secondary reason

Reason code (failed)

Appendix A. Reason codes 491

code value returned from a ‘GetLastError’ request for the AMI object
concerned. For more information, see “Common causes of problems” on
page 478.

AMRC_TRANSPORT_LIBRARY_ERR
An error occurred loading the transport library.

AMRC_TRANSPORT_NOT_AVAILABLE
The underlying transport layer is not available.

AMRC_UNEXPECTED_ERR
An unexpected error occurred.

AMRC_WAIT_TIME_ERR
The specified wait-time value was not valid.

AMRC_WAIT_TIME_PTR_ERR
The specified wait time pointer was not valid.

AMRC_WAIT_TIME_READ_ONLY
An attempt was made to set the wait time in a policy object for which the
wait-time was read-only.

Reason code (failed)

492 MQSeries Application Messaging Interface

Appendix B. Constants

This appendix lists the values of the named constants used by the functions
described in this manual. For information about MQSeries constants not in this list,
see the MQSeries Application Programming Reference manual and the MQSeries
Programmable System Management manual.

The constants
The constants are grouped according to the parameter or field to which they relate.
Names of the constants in a group begin with a common prefix of the form
AMxxxx_, where xxxx represents a string of 0 through 4 characters that indicates
the nature of the values defined in that group. Within each group, constants are
listed in numeric (or alphabetic) order.

Character strings are shown delimited by double quotation marks; the quotation
marks are not part of the value.

AMB (Boolean constants)
AMB_FALSE 0L
AMB_TRUE 1L

AMBRW (Browse constants)
AMBRW_UNLOCK 1L
AMBRW_LOCK 2L
AMBRW_FIRST 4L
AMBRW_NEXT 8L
AMBRW_CURRENT 16L
AMBRW_RECEIVE_CURRENT 32L
AMBRW_DEFAULT AMBRW_NEXT
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)

AMCC (Completion codes)
AMCC_OK 0L
AMCC_WARNING 1L
AMCC_FAILED 2L

AMDEF (Service and policy definitions)
AMDEF_POL "AMT.SYSTEM.POLICY"
AMDEF_PUB "AMT.SYSTEM.PUBLISHER"
AMDEF_RCV "AMT.SYSTEM.RECEIVER"
AMDEF_RSP_SND "AMT.SYSTEM.RESPONSE.SENDER"
AMDEF_SND "AMT.SYSTEM.SENDER"
AMDEF_SUB "AMT.SYSTEM.SUBSCRIBER"
AMDEF_SYNC_POINT_POL "AMT.SYSTEM.SYNCPOINT.POLICY"

AMDT (Definition type constants)
AMDT_UNDEFINED 0L
AMDT_TEMP_DYNAMIC 2L
AMDT_DYNAMIC 3L
AMDT_PREDEFINED 4L

© Copyright IBM Corp. 1999, 2000 493

AMENC (Encoding constants)
AMENC_NORMAL 0L
AMENC_REVERSED 1L
AMENC_NORMAL_FLOAT_390 2L
AMENC_REVERSED_FLOAT_390 3L
AMENC_UNDEFINED 4L
AMENC_NATIVE AMENC_NORMAL (UNIX)
AMENC_NATIVE AMENC_REVERSED (WIN32)
AMENC_NATIVE AMENC_NORMAL_FLOAT_390 (OS/390

AMFB (Feedback codes)
AMFB_NONE 0L
AMFB_EXPIRATION 1L
AMFB_COA 2L
AMFB_COD 3L
AMFB_ERROR -1L

AMFMT (Format constants)
AMFMT_NONE " "
AMFMT_RF_HEADER "MQHRF "
AMFMT_STRING "MQSTR "
AMFMT_RF2_HEADER "MQHRF2 "

AMGF and AMGRP (Group status constants)
AMGF_IN_GROUP 1L
AMGF_FIRST 2L
AMGF_LAST 4L

AMGRP_MSG_NOT_IN_GROUP 0L
AMGRP_FIRST_MSG_IN_GROUP (AMGF_IN_GROUP | AMGF_FIRST)
AMGRP_MIDDLE_MSG_IN_GROUP AMGF_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP (AMGF_IN_GROUP | AMGF_LAST)
AMGRP_ONLY_MSG_IN_GROUP (AMGF_IN_GROUP | AMGF_FIRST | AMGF_LAST)

AMH (Handle constants)
AMH_NULL_HANDLE (AMHANDLE) 0L
AMH_INVALID_HANDLE (AMHANDLE)-1L

AMLEN (String length constants)
AMLEN_NULL_TERM -1L
AMLEN_MAX_NAME_LENGTH 256L

AMMCD (Message Content Descriptor tag names)
AMMCD_MSG_SERVICE_DOMAIN "mcd.Msd"
AMMCD_MSG_SET "mcd.Set"
AMMCD_MSG_TYPE "mcd.Type"
AMMCD_MSG_FORMAT "mcd.Fmt"

AMMT (Message types)
AMMT_REQUEST 1L
AMMT_REPLY 2L
AMMT_REPORT 4L
AMMT_DATAGRAM 8L

Constants

494 MQSeries Application Messaging Interface

AMPS (Publish/subscribe)
Publish/Subscribe constants

Publish/subscribe tag names
AMPS_COMMAND "MQPSCommand"
AMPS_COMP_CODE "MQPSCompCode"
AMPS_DELETE_OPTIONS "MQPSDelOpts"
AMPS_ERROR_ID "MQPSErrorId"
AMPS_ERROR_POS "MQPSErrorPos"
AMPS_PARAMETER_ID "MQPSParmId"
AMPS_PUBLICATION_OPTIONS "MQPSPubOpts"
AMPS_TIMESTAMP "MQPSPubTime"
AMPS_Q_MGR_NAME "MQPSQMgrName"
AMPS_Q_NAME "MQPSQName"
AMPS_REASON "MQPSReason"
AMPS_REASON_TEXT "MQPSReasonText"
AMPS_REGISTRATION_OPTIONS "MQPSRegOpts"
AMPS_SEQUENCE_NUMBER "MQPSSeqNum"
AMPS_STREAM_NAME "MQPSStreamName"
AMPS_STRING_DATA "MQPSStringData"
AMPS_TOPIC "MQPSTopic"
AMPS_USER_ID "MQPSUserId"
AMPS_FILTER "MQPSFilter"
AMPS_SUBSCRIPTION_POINT "MQPSSubPoint"
AMPS_SEQUENCE "MQPSSequence"
AMPS_CONTROL "MQPSControl"

Publish/subscribe tag values
AMPS_ANONYMOUS "Anon"
AMPS_CORREL_ID_AS_ID "CorrelAsId"
AMPS_DEREGISTER_ALL "DeregAll"
AMPS_DIRECT_REQUESTS "DirectReq"
AMPS_INCLUDE_STREAM_NAME "InclStreamName"
AMPS_INFORM_IF_RETAINED "InformIfRet"
AMPS_LOCAL "Local"
AMPS_NEW_PUBS_ONLY "NewPubsOnly"
AMPS_PUB_ON_REQUEST_ONLY "PubOnReqOnly"
AMPS_DELETE_PUBLICATION "DeletePub"
AMPS_DEREGISTER_PUBLISHER "DeregPub"
AMPS_DEREGISTER_SUBSCRIBER "DeregSub"
AMPS_PUBLISH "Publish"
AMPS_REGISTER_PUBLISHER "RegPub"
AMPS_REGISTER_SUBSCRIBER "RegSub"
AMPS_REQUEST_UPDATE "ReqUpdate"
AMPS_IS_RETAINED_PUBLICATION "IsRetainedPub"
AMPS_NO_REGISTRATION "NoReg"
AMPS_NONE "None"
AMPS_OTHER_SUBSCRIBERS_ONLY "OtherSubsOnly"
AMPS_RETAIN_PUBLICATION "RetainPub"
AMPS_PERSISTENT "Pers"
AMPS_NON_PERSISTENT "NonPers"
AMPS_PERSISTENT_AS_PUBLISHER "PersAsPub"
AMPS_PERSISTENT_AS_QUEUE "PersAsQueue"
AMPS_CC_OK "0"
AMPS_CC_WARNING "1"
AMPS_CC_ERROR "2"

Other publish/subscribe constants
AMPS_APPL_TYPE "OPT_APP_GRP "
AMPS_MSG_TYPE "OPT_MSG_TYPE "

Constants

Appendix B. Constants 495

AMRC (Reason codes)
AMRC_NONE 0
AMRC_UNEXPECTED_ERR 1
AMRC_INVALID_Q_NAME 2
AMRC_INVALID_SENDER_NAME 3
AMRC_INVALID_RECEIVER_NAME 4
AMRC_INVALID_PUBLISHER_NAME 5
AMRC_INVALID_SUBSCRIBER_NAME 6
AMRC_INVALID_POLICY_NAME 7
AMRC_INVALID_MSG_NAME 8
AMRC_INVALID_SESSION_NAME 9

AMRC_INVALID_DIST_LIST_NAME 10
AMRC_POLICY_HANDLE_ERR 11
AMRC_SERVICE_HANDLE_ERR 12
AMRC_MSG_HANDLE_ERR 13
AMRC_SESSION_HANDLE_ERR 14
AMRC_BROWSE_OPTIONS_ERR 15
AMRC_INSUFFICIENT_MEMORY 16
AMRC_WAIT_TIME_READ_ONLY 17
AMRC_SERVICE_NOT_FOUND 18
AMRC_MSG_NOT_FOUND 19

AMRC_POLICY_NOT_FOUND 20
AMRC_SENDER_NOT_UNIQUE 21
AMRC_RECEIVER_NOT_UNIQUE 22
AMRC_PUBLISHER_NOT_UNIQUE 23
AMRC_SUBSCRIBER_NOT_UNIQUE 24
AMRC_MSG_NOT_UNIQUE 25
AMRC_POLICY_NOT_UNIQUE 26
AMRC_DIST_LIST_NOT_UNIQUE 27
AMRC_RECEIVE_BUFF_PTR_ERR 28
AMRC_RECEIVE_BUFF_LEN_ERR 29

AMRC_SEND_DATA_PTR_ERR 30
AMRC_SEND_DATA_LEN_ERR 31
AMRC_INVALID_IF_SERVICE_OPEN 32
AMRC_SERVICE_ALREADY_OPEN 33
AMRC_DATA_SOURCE_NOT_UNIQUE 34
AMRC_NO_MSG_AVAILABLE 35
AMRC_SESSION_ALREADY_OPEN 36
AMRC_SESSION_ALREADY_CLOSED 37
AMRC_ELEM_NOT_FOUND 38
AMRC_ELEM_COUNT_PTR_ERR 39

AMRC_ELEM_NAME_PTR_ERR 40
AMRC_ELEM_NAME_LEN_ERR 41
AMRC_ELEM_INDEX_ERR 42
AMRC_ELEM_PTR_ERR 43
AMRC_ELEM_STRUC_ERR 44
AMRC_ELEM_STRUC_NAME_ERR 45
AMRC_ELEM_STRUC_VALUE_ERR 46
AMRC_ELEM_STRUC_NAME_BUFF_ERR 47
AMRC_ELEM_STRUC_VALUE_BUFF_ERR 48
AMRC_TRANSPORT_ERR 49

AMRC_TRANSPORT_WARNING 50
AMRC_ENCODING_INCOMPLETE 51
AMRC_ENCODING_MIXED 52
AMRC_ENCODING_ERR 53
AMRC_BEGIN_INVALID 54
AMRC_NO_REPLY_TO_INFO 55
AMRC_SERVICE_ALREADY_CLOSED 56

Constants

496 MQSeries Application Messaging Interface

AMRC_SESSION_NOT_OPEN 57
AMRC_DIST_LIST_INDEX_ERR 58
AMRC_WAIT_TIME_ERR 59

AMRC_SERVICE_NOT_OPEN 60
AMRC_HEADER_TRUNCATED 61
AMRC_HEADER_INVALID 62
AMRC_DATA_LEN_ERR 63
AMRC_BACKOUT_REQUEUE_ERR 64
AMRC_BACKOUT_LIMIT_ERR 65
AMRC_COMMAND_ALREADY_EXISTS 66
AMRC_UNEXPECTED_RECEIVE_ERR 67
AMRC_UNEXPECTED_SEND_ERR 68

AMRC_SENDER_USAGE_ERR 70
AMRC_MSG_TRUNCATED 71
AMRC_CLOSE_SESSION_ERR 72
AMRC_READ_OFFSET_ERR 73
AMRC_RFH_ALREADY_EXISTS 74
AMRC_GROUP_STATUS_ERR 75
AMRC_MSG_ID_LEN_ERR 76
AMRC_MSG_ID_PTR_ERR 77
AMRC_MSG_ID_BUFF_LEN_ERR 78
AMRC_MSG_ID_BUFF_PTR_ERR 79

AMRC_MSG_ID_LEN_PTR_ERR 80
AMRC_CORREL_ID_LEN_ERR 81
AMRC_CORREL_ID_PTR_ERR 82
AMRC_CORREL_ID_BUFF_LEN_ERR 83
AMRC_CORREL_ID_BUFF_PTR_ERR 84
AMRC_CORREL_ID_LEN_PTR_ERR 85
AMRC_FORMAT_LEN_ERR 86
AMRC_FORMAT_PTR_ERR 87
AMRC_FORMAT_BUFF_PTR_ERR 88
AMRC_FORMAT_LEN_PTR_ERR 89

AMRC_FORMAT_BUFF_LEN_ERR 90
AMRC_NAME_BUFF_PTR_ERR 91
AMRC_NAME_LEN_PTR_ERR 92
AMRC_NAME_BUFF_LEN_ERR 93
AMRC_Q_NAME_LEN_ERR 94
AMRC_Q_NAME_PTR_ERR 95
AMRC_Q_NAME_BUFF_PTR_ERR 96
AMRC_Q_NAME_LEN_PTR_ERR 97
AMRC_Q_NAME_BUFF_LEN_ERR 98
AMRC_WAIT_TIME_PTR_ERR 99

AMRC_CCSID_PTR_ERR 100
AMRC_ENCODING_PTR_ERR 101
AMRC_DEFN_TYPE_PTR_ERR 102
AMRC_CCSID_ERR 103
AMRC_DATA_LEN_PTR_ERR 104
AMRC_GROUP_STATUS_PTR_ERR 105
AMRC_DATA_OFFSET_PTR_ERR 106
AMRC_RESP_SENDER_HANDLE_ERR 107
AMRC_RESP_RECEIVER_HANDLE_ERR 108
AMRC_NOT_AUTHORIZED 109

AMRC_TRANSPORT_NOT_AVAILABLE 110
AMRC_BACKED_OUT 111
AMRC_INCOMPLETE_GROUP 112
AMRC_SEND_DISABLED 113
AMRC_SERVICE_FULL 114
AMRC_NOT_CONVERTED 115
AMRC_RECEIVE_DISABLED 116

Constants

Appendix B. Constants 497

AMRC_GROUP_BACKOUT_LIMIT_ERR 117
AMRC_SENDER_COUNT_PTR_ERR 118
AMRC_MULTIPLE_REASONS 119

AMRC_NO_RESP_SERVICE 120
AMRC_DATA_PTR_ERR 121
AMRC_DATA_BUFF_LEN_ERR 122
AMRC_DATA_BUFF_PTR_ERR 123
AMRC_DEFN_TYPE_ERR 124

AMRC_BACKOUT_INVALID 125
AMRC_COMMIT_INVALID 126
AMRC_DATA_OFFSET_ERR 127
AMRC_FILE_SYSTEM_ERR 128
AMRC_FILE_ALREADY_EXISTS 129
AMRC_REPORT_CODE_PTR_ERR 130
AMRC_MSG_TYPE_PTR_ERR 131
AMRC_FILE_FORMAT_CONVERTED 132
AMRC_FILE_TRUNCATED 133
AMRC_FILE_NOT_FOUND 134
AMRC_NOT_A_FILE 135
AMRC_FILE_NAME_LEN_ERR 136
AMRC_FILE_NAME_PTR_ERR 137
AMRC_RFH2_FORMAT_ERR 138
AMRC_CCSID_NOT_SUPPORTED 139
AMRC_FILE_MSG_FORMAT_ERR 140
AMRC_MSG_TYPE_NOT_REPORT 141
AMRC_ELEM_STRUC_TYPE_ERR 142
AMRC_ELEM_STRUC_TYPE_BUFF_ERR 143
AMRC_FILE_TRANSFER_INVALID 144
AMRC_FILE_NOT_WRITTEN 145
AMRC_FILE_FORMAT_NOT_SUPPORTED 146

AMRC_INVALID_TRACE_LEVEL 400
AMRC_CONN_NAME_NOT_FOUND 401
AMRC_HOST_FILE_NOT_FOUND 402
AMRC_HOST_FILENAME_ERR 403
AMRC_HOST_FILE_ERR 404
AMRC_POLICY_NOT_IN_REPOS 405
AMRC_SENDER_NOT_IN_REPOS 406
AMRC_RECEIVER_NOT_IN_REPOS 407
AMRC_DIST_LIST_NOT_IN_REPOS 408
AMRC_PUBLISHER_NOT_IN_REPOS 409
AMRC_SUBSCRIBER_NOT_IN_REPOS 410

AMRC_RESERVED_NAME_IN_REPOS 411
AMRC_REPOS_FILENAME_ERR 414
AMRC_REPOS_WARNING 415
AMRC_REPOS_ERR 416
AMRC_REPOS_NOT_FOUND 418
AMRC_TRANSPORT_LIBRARY_ERR 419
AMRC_HOST_CACHE_ERR 420
AMRC_REPOS_CACHE_ERR 421
AMRC_PRIMARY_HANDLE_ERR 422
AMRC_SESSION_EXPIRED 423

The following AMRC values are applicable only to the Java programming
language.

AMRC_JAVA_FIELD_ERR 500
AMRC_JAVA_METHOD_ERR 501
AMRC_JAVA_CLASS_ERR 502
AMRC_JAVA_JNI_ERR 503
AMRC_JAVA_CREATE_ERR 504
AMRC_JAVA_NULL_PARM_ERR 505

Constants

498 MQSeries Application Messaging Interface

AMSD (System default names and handle synonyms)
System default names and handles

Default names
AMSD_POL "SYSTEM.DEFAULT.POLICY"
AMSD_PUB "SYSTEM.DEFAULT.PUBLISHER"
AMSD_PUB_SND "SYSTEM.DEFAULT.PUBLISHER"
AMSD_RCV "SYSTEM.DEFAULT.RECEIVER"
AMSD_RCV_MSG "SYSTEM.DEFAULT.RECEIVE.MESSAGE"
AMSD_RSP_SND "SYSTEM.DEFAULT.RESPONSE.SENDER"
AMSD_SND "SYSTEM.DEFAULT.SENDER"
AMSD_SND_MSG "SYSTEM.DEFAULT.SEND.MESSAGE"
AMSD_SESSION_NAME "SYSTEM.DEFAULT.SESSION"
AMSD_SUB "SYSTEM.DEFAULT.SUBSCRIBER"
AMSD_SUB_SND "SYSTEM.DEFAULT.SUBSCRIBER"
AMSD_SUB_RCV "SYSTEM.DEFAULT.SUBSCRIBER.RECEIVER"
AMSD_SYNC_POINT_POL "SYSTEM.DEFAULT.SYNCPOINT.POLICY"

Default handle synonyms
AMSD_RSP_SND_HANDLE (AMHSND)-5L
AMSD_RCV_HANDLE (AMHRCV)-6L
AMSD_POL_HANDLE (AMHPOL)-7L
AMSD_SYNC_POINT_POL_HANDLE (AMHPOL)-8L
AMSD_SND_MSG_HANDLE (AMHMSG)-9L
AMSD_RCV_MSG_HANDLE (AMHMSG)-10L

AMWT (Wait time constant)
AMWT_UNLIMITED -1L

Constants

Appendix B. Constants 499

Constants

500 MQSeries Application Messaging Interface

Appendix C. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2000 501

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks
The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX AS/400 BookManager
CICS DB2 IBM
IBMLink MQSeries OS/390
VisualAge

Java, JDK and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, Visual C++ and the Windows logo are
trademarks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service marks
of others.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

502 MQSeries Application Messaging Interface

Glossary of terms and abbreviations

This glossary defines terms and abbreviations
used in this book. If you do not find the term you
are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill,
1994.

B
broker. See message broker.

C
connection. An AMI connection maps a logical queue
manager name in a policy to a real queue manager
name. This allows applications running on different
nodes to use the same policy to connect to different
queue managers.

correlation identifier. This is used as a key to a
message, for example to correlate a response message
with a request message. The AMI normally sets this in
a response message by copying the message identifier
from the request message. See also request/response and
selection message.

D
datagram. The simplest message that MQSeries
supports. Also known as send-and-forget. This type of
message does not require a reply. Compare with
request/response.

distribution list. An AMI service. It contains a list of
sender services, enabling a message to be sent to
multiple destinations in one operation.

E
Extensible Markup Language (XML). A W3C
standard for the representation of data.

F
filter. An expression that is applied to the content of a
message to determine how the message is to be
processed. See also subscription filter.

L
local host file. Defines the mapping from a logical
connection name to a real MQSeries queue manager on
the local machine.

M
message. A message defines what is sent from one
program to another in an AMI application. See also
service and policy.

message broker. A set of execution processes hosting
one or more message flows.

message descriptor (MQMD). Control information
describing the message format and properties that is
carried as part of an MQSeries message.

message identifier. An identifier for the message. It is
usually unique, and typically it is generated by the
message transport (MQSeries).

message object. An AMI object. It contains attributes
of the message, such as the message identifier and
correlation identifier, and options that are used when
sending or receiving the message (most of which come
from the policy definition). It can also contain the
message data.

message queue. See queue.

message queue interface (MQI). The programming
interface provided by MQSeries queue managers. It
allows application programs to access message queuing
services. The AMI provides a simpler interface to these
services.

MQRFH header. Header added to an MQSeries
message to carry control information, typically for use
by a broker (for example, in a publish/subscribe
system).

P
point-to-point. Style of messaging application in
which the sending application knows the destination of
the message. Compare with publish/subscribe.

policy. A policy defines how a message is sent in an
AMI application. It encapsulates many of the options
available in the MQI. Its definition can be stored in a
repository. See also service.

publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

publisher. (1) An AMI service. It contains a sender
service where the destination is a publish/subscribe

© Copyright IBM Corp. 1999, 2000 503

broker. (2) An application that makes information about
a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that
programs can access messages on the queues that the
queue manager owns.

R
receiver. An AMI service. It represents a source (such
as an MQSeries queue) from which messages are
received. Its definition is stored in a repository as a
service point.

repository. A repository provides definitions for
services and policies. If the name of a service or policy
is not found in the repository, or an AMI application
does not have a repository, the definitions built into the
AMI are used. See also repository file.

repository file. File that stores repository definitions
in XML (Extensible Markup Language) format.

request/response. Type of messaging application in
which a request message is used to request a response
from another application. Compare with datagram. See
also response sender and selection message.

response sender. A special type of sender service that
is used to send a response to a request message. It
must use the definition built into the AMI, so it must
not be defined in the repository.

S
selection message. A message object that is used to
selectively receive a message by specifying its
correlation identifier. Used in request/response
messaging to correlate a response message with its
request message.

send-and-forget. See datagram.

sender. An AMI service. It represents a destination
(such as an MQSeries queue) to which messages are
sent. Its definition is stored in a repository as a service
point.

service. A service defines where a message is sent in
an AMI application. Senders, receivers, distribution
lists, publishers, and subscribers are all types of service.
Their definitions can be stored in a repository. See also
policy.

service point. The definition in a repository of a
sender or receiver service.

session. An AMI object. It creates and manages all
other AMI objects (message, service, policy and
connection objects), and it provides the scope for a unit
of work when transactional processing is used.

subscriber. (1) An AMI service. It contains a sender
service to send subscribe and unsubscribe messages to
a publish/subscribe broker, and a receiver service to
receive publications from the broker. (2) An application
that requests information about a specified topic from a
publish/subscribe broker.

subscription filter. A predicate that specifies a subset
of messages to be delivered to a particular subscriber.

T
topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

W
W3C. World Wide Web Consortium. An international
industry consortium set up to develop commmon
protocols to promote evolution and interoperability of
the World Wide Web.

X
XML. Extensible Markup Language.

Glossary

504 MQSeries Application Messaging Interface

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for AT&T GIS UNIX, V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS,

V2.2.1.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA, V2.1
v MQSeries for Windows, V2.0
v MQSeries for Windows, V2.1
v MQSeries for Windows NT, V5.1

The MQSeries cross-platform publications are:
v MQSeries Brochure, G511-1908
v An Introduction to Messaging and Queuing,

GC33-0805
v MQSeries Intercommunication, SC33-1872
v MQSeries Queue Manager Clusters, SC34-5349
v MQSeries Clients, GC33-1632
v MQSeries System Administration, SC33-1873
v MQSeries MQSC Command Reference, SC33-1369
v MQSeries Event Monitoring, SC34-5760
v MQSeries Programmable System Management,

SC33-1482
v MQSeries Administration Interface Programming

Guide and Reference, SC34-5390
v MQSeries Messages, GC33-1876
v MQSeries Application Programming Guide,

SC33-0807

v MQSeries Application Programming Reference,
SC33-1673

v MQSeries Programming Interfaces Reference
Summary, SX33-6095

v MQSeries Using C++, SC33-1877
v MQSeries Using Java, SC34-5456
v MQSeries Application Messaging Interface,

SC34-5604

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX, V5.1

MQSeries for AIX Quick Beginnings,
GC33-1867

MQSeries for AS/400, V5.1

MQSeries for AS/400® Quick Beginnings,
GC34-5557
MQSeries for AS/400 System
Administration, SC34-5558
MQSeries for AS/400 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX, V2.2

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS,
V2.2.1.1

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Compaq Tru64 UNIX, V5.1

MQSeries for Compaq Tru64 UNIX Quick
Beginnings, GC34-5684

MQSeries for HP-UX, V5.1

MQSeries for HP-UX Quick Beginnings,
GC33-1869

MQSeries for OS/2 Warp, V5.1

MQSeries for OS/2 Warp Quick
Beginnings, GC33-1868

© Copyright IBM Corp. 1999, 2000 505

|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|

|
|

|

|

|
|

|

MQSeries for OS/390, V5.2

MQSeries for OS/390 Concepts and
Planning Guide, GC34-5650
MQSeries for OS/390 System Setup
Guide, SC34-5651
MQSeries for OS/390 System
Administration Guide, SC34-5652
MQSeries for OS/390 Problem
Determination Guide, GC34-5892
MQSeries for OS/390 Messages and
Codes, GC34-5891
MQSeries for OS/390 Licensed Program
Specifications, GC34-5893
MQSeries for OS/390 Program Directory

MQSeries link for R/3, Version 1.2

MQSeries link for R/3 User’s Guide,
GC33-1934

MQSeries for SINIX and DC/OSx, V2.2

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris, V5.1

MQSeries for Sun Solaris Quick
Beginnings, GC33-1870

MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

MQSeries for Sun Solaris, Intel Platform
Edition Quick Beginnings, GC34-5851

MQSeries for Tandem NonStop Kernel, V2.2.0.1

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA, V2.1

MQSeries for VSE/ESA, Version 2
Release 1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA™ System
Management Guide, GC34-5364

MQSeries for Windows, V2.0

MQSeries for Windows User’s Guide,
GC33-1822

MQSeries for Windows, V2.1

MQSeries for Windows User’s Guide,
GC33-1965

MQSeries for Windows NT, V5.1

MQSeries for Windows NT Quick
Beginnings, GC34-5389

MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387
MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1 (compiled

HTML)
v MQSeries link for R/3, V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:

http://www.ibm.com/software/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1
v MQSeries link for R/3, V1.2

Bibliography

506 MQSeries Application Messaging Interface

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:

http://www.ibm.com/software/mqseries/

BookManager® format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows, Version 2.0 and MQSeries for
Windows, Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

Bibliography

Bibliography 507

MQSeries on the Internet

508 MQSeries Application Messaging Interface

Index

A
Accept Direct Requests attribute 466
Accept Truncated Message attribute 465
addElement

AmMessage (C++) 187
AmMessage (Java) 384

addFilter
AmMessage (C++) 188
AmMessage (Java) 385

addTopic
AmMessage (C++) 188
AmMessage (Java) 385

administration tool 446
AIX

C++ applications 158
C applications 30
installation 423
Java applications 361
prerequisites 421

AMB constants 493
amBackout 40
amBegin 41
amBrowseMsg 42
AMBRW constants 493
AmBytes (C++)

cmp 211
constructors 211
cpy 212
dataPtr 212
destructor 212
length 212
operators 212
overview 175
pad 212

AMCC constants 493
amCommit 44
AmConstants (Java) 408
AMDEF constants 493
AmDistributionList (C++)

clearErrorCodes 202
close 202
enableWarnings 202
getLastErrorStatus 202
getName 202
getSender 202
getSenderCount 202
open 202
overview 171
send 203
sendFile 203

AmDistributionList (Java)
clearErrorCodes 399
close 399
enableWarnings 399
getLastErrorStatus 399
getName 399
getSender 399
getSenderCount 399
open 399
overview 370
send 400

AmDistributionList (Java) (continued)
sendFile 400

AMDLCL 327
AMDLCLEC 327
AMDLGTLE 327
AMDLGTNA 328
AMDLGTSC 328
AMDLGTSH 328
AMDLOP 329
AMDLSN 329
AMDLSNFL 330
amDstClearErrorCodes 123
amDstClose 123
amDstGetLastError 123
amDstGetName 124
amDstGetSenderCount 124
amDstGetSenderHandle 124
amDstOpen 125
amDstSend 126
amDstSendFile 127
AMDT constants 493
AMELEM structure 24, 236
AmElement (C++)

constructor 213
getName 213
getValue 213
getVersion 213
overview 175
setVersion 213
toString 213
using 153

AmElement (Java)
constructor 409
getName 409
getValue 409
getVersion 409
overview 374
setVersion 409
toString 409
using 356

AMENC constants 494
AmErrorException (C++)

getClassName 219
getCompletionCode 219
getMethodName 219
getReasonCode 219
getSource 219
overview 177
toString 219

AmErrorException (Java)
getClassName 413
getCompletionCode 413
getMethodName 413
getReasonCode 413
getSource 413
overview 375
toString 413

AmException (C++)
getClassName 218
getCompletionCode 218
getMethodName 218

AmException (C++) (continued)
getReasonCode 218
getSource 218
overview 177
toString 218
using 153

AmException (Java)
getClassName 412
getCompletionCode 412
getMethodName 412
getReasonCode 412
getSource 412
overview 375
toString 412
using 357

AMFB constants 494
AMFMT constants 494
AMGF constants 494
AMGRP constants 494
AMH constants 494
AMHBACK 247
AMHBEGIN 248
AMHBRMS 249
AMHCMIT 251
AMHINIT 252
AMHPB 253
AMHRCFL 254
AMHRCMS 256
AMHRCPB 258
AMHRCRQ 260
AMHSB 266
AMHSNFL 262
AMHSNMS 263
AMHSNRQ 264
AMHSNRS 265
AMHTERM 267
AMHUN 268
amInitialize 45
AMLEN constants 494
AMMCD constants 494
AmMessage (C++)

addElement 187
addFilter 188
addTopic 188
clearErrorCodes 188
deleteElement 188
deleteFilter 188
deleteNamedElement 188
deleteTopic 188
enableWarnings 189
getCCSID 189
getCorrelationId 189
getDataLength 189
getDataOffset 189
getElement 189
getElementCCSID 189
getElementCount 189
getEncoding 189
getFilter 190
getFilterCount 190
getFormat 190

© Copyright IBM Corp. 1999, 2000 509

AmMessage (C++) (continued)
getGroupStatus 190
getLastErrorStatus 190
getMessageId 190
getName 191
getNamedElement 191
getNamedElementCount 191
getReportCode 191
getTopic 191
getTopicCount 191
getType 191
overview 167
readBytes 192
reset 192
setCCSID 192
setCorrelationId 192
setDataOffset 192
setElementCCSID 192
setEncoding 193
setFormat 193
setGroupStatus 193
writeBytes 193

AmMessage (Java)
addElement 384
addFilter 385
addTopic 385
clearErrorCodes 385
deleteElement 385
deleteFilter 385
deleteNamedElement 385
deleteTopic 385
enableWarnings 386
getCCSID 386
getCorrelationId 386
getDataLength 386
getDataOffset 386
getElement 386
getElementCount 386
getEncoding 386
getFilter 387
getFilterCount 387
getFormat 388
getGroupStatus 388
getLastErrorStatus 388
getMessageId 388
getName 388
getNamedElement 389
getNamedElementCount 389
getReportCode 389
getTopic 389
getTopicCount 389
getType 389
overview 366
readBytes 389
reset 390
setCCSID 390
setCorrelationId 390
setDataOffset 390
setEncoding 390
setFormat 391
setGroupStatus 391
writeBytes 391

AMMSADEL 296
AMMSADFI 297
AMMSADTO 297
AMMSCLEC 298
AMMSDEEL 298

AMMSDEFI 298
AMMSDENE 299
AMMSDETO 299
amMsgAddElement 90
amMsgAddFilter 91
AmMsgAddStreamName 105
amMsgAddTopic 91
amMsgClearErrorCodes 91
amMsgDeleteElement 92
amMsgDeleteFilter 92
amMsgDeleteNamedElement 92
amMsgDeleteTopic 93
AMMSGELC 299
amMsgGetCCSID 93
amMsgGetCorrelId 93
amMsgGetDataLength 94
amMsgGetDataOffset 94
amMsgGetElement 94
amMsgGetElementCCSID 95
amMsgGetElementCount 95
amMsgGetEncoding 95
amMsgGetFilter 96
amMsgGetFilterCount 96
amMsgGetFormat 96
amMsgGetGroupStatus 97
amMsgGetLastError 97
amMsgGetMsgId 98
amMsgGetName 98
amMsgGetNamedElement 98
amMsgGetNamedElementCount 99
AmMsgGetPubTimeStamp 105
amMsgGetReportCode 99
AmMsgGetStreamName 105
amMsgGetTopic 100
amMsgGetTopicCount 100
amMsgGetType 100
amMsgReadBytes 101
amMsgReset 101
amMsgSetCCSID 101
amMsgSetCorrelId 102
amMsgSetDataOffset 102
amMsgSetElementCCSID 102
amMsgSetEncoding 103
amMsgSetFormat 103
amMsgSetGroupStatus 104
AMMSGTCC 300
AMMSGTCI 300
AMMSGTDL 300
AMMSGTDO 301
AMMSGTEC 301
AMMSGTEL 301
AMMSGTEN 302
AMMSGTFC 302
AMMSGTFI 302
AMMSGTFO 303
AMMSGTGS 303
AMMSGTLE 304
AMMSGTMI 304
AMMSGTNA 305
AMMSGTNC 306
AMMSGTNE 305
AMMSGTRC 306
AMMSGTTC 307
AMMSGTTO 307
AMMSGTTY 307
amMsgWriteBytes 104
AMMSREBY 308

AMMSRS 308
AMMSSELC 310
AMMSSTCC 309
AMMSSTCI 309
AMMSSTDO 309
AMMSSTEN 310
AMMSSTFO 310
AMMSSTGS 311
AMMSWRBY 311
AMMT constants 494
AmObject (C++)

clearErrorCodes 214
getLastErrorStatus 214
getName 214
overview 175

AmObject (Java)
clearErrorCodes 410
getLastErrorStatus 410
getName 410
overview 374

AMPBCL 332
AMPBCLEC 332
AMPBGTCC 332
AMPBGTEN 333
AMPBGTLE 333
AMPBGTNA 333
AMPBOP 334
AMPBPB 334
AMPOCLEC 342
AMPOGTLE 342
AMPOGTNA 342
AMPOGTWT 343
amPolClearErrorCodes 139
amPolGetLastError 139
amPolGetName 139
amPolGetWaitTime 140
AmPolicy (C++)

clearErrorCodes 210
enableWarnings 210
getLastErrorStatus 210
getName 210
getWaitTime 210
overview 174
setWaitTime 210

AmPolicy (Java)
clearErrorCodes 407
enableWarnings 407
getLastErrorStatus 407
getName 407
getWaitTime 407
overview 373
setWaitTime 407

amPolSetWaitTime 140
AMPOSTWT 343
AMPS constants 495
amPubClearErrorCodes 128
amPubClose 128
amPubGetCCSID 128
amPubGetEncoding 128
amPubGetLastError 129
amPubGetName 130
amPublish 46
AmPublisher (C++)

clearErrorCodes 204
close 204
enableWarnings 204
getCCSID 204

510 MQSeries Application Messaging Interface

AmPublisher (C++) (continued)
getEncoding 204
getLastErrorStatus 204
getName 204
open 204
overview 172
publish 205

AmPublisher (Java)
clearErrorCodes 401
close 401
enableWarnings 401
getCCSID 401
getEncoding 401
getLastErrorStatus 401
getName 401
open 401
overview 371
publish 402

amPubOpen 130
amPubPublish 131
AMRC constants 496
AMRCBR 318
AMRCBRSE 319
AMRCCL 321
AMRCCLEC 321
AMRCGTDT 321
AMRCGTLE 322
AMRCGTNA 322
AMRCGTQN 323
AMRCOP 323
AMRCRC 323
AMRCRCFL 325
AMRCSTQN 326
amRcvBrowse 112
amRcvBrowseSelect 114
amRcvClearErrorCodes 115
amRcvClose 116
amRcvGetDefnType 116
amRcvGetLastError 117
amRcvGetName 117
amRcvGetQueueName 118
amRcvOpen 118
amRcvReceive 119
amRcvReceiveFile 121
amRcvSetQueueName 122
amReceiveFile 47
amReceiveMsg 49
amReceivePublication 51
AmReceiver (C++)

browse 198
clearErrorCodes 199
close 199
enableWarnings 199
getDefinitionType 199
getLastErrorStatus 199
getName 199
getQueueName 200
open 200
overview 170
receive 200
receiveFile 200, 397
setQueueName 201

AmReceiver (Java)
browse 395
clearErrorCodes 396
close 396
enableWarnings 396

AmReceiver (Java) (continued)
getDefinitionType 396
getLastErrorStatus 396
getName 396
getQueueName 397
open 397
overview 369
receive 397
setQueueName 398

amReceiveRequest 53
AMSBCL 336
AMSBCLEC 336
AMSBGTCC 336
AMSBGTDT 337
AMSBGTEN 337
AMSBGTLE 337
AMSBGTNA 338
AMSBGTQN 338
AMSBOP 339
AMSBRC 339
AMSBSB 340
AMSBSTQN 340
AMSBUN 341
AMSD constants 499
AMSEBG 284
AMSECL 285
AMSECLEC 284
AMSECM 285
AMSECR 285
AMSECRDL 286
AMSECRMS 286
AMSECRPB 287
AMSECRPO 286
AMSECRRC 287
AMSECRSB 288
AMSECRSN 288
AMSEDL 289
AMSEDLDL 289
AMSEDLMS 289
AMSEDLPB 290
AMSEDLPO 290
AMSEDLRC 290
AMSEDLSB 291
AMSEDLSN 290
AMSEGHDL 291
AMSEGHMS 292
AMSEGHPB 293
AMSEGHPO 292
AMSEGHRC 293
AMSEGHSB 294
AMSEGHSN 293
AMSEGTLE 291
AmSender (C++)

clearErrorCodes 195
close 195
enableWarnings 195
getCCSID 195
getEncoding 195
getLastErrorStatus 196
getName 196
open 196
overview 169
send 196
sendFile 196

AmSender (Java)
clearErrorCodes 392
close 392

AmSender (Java) (continued)
enableWarnings 392
getCCSID 392
getEncoding 392
getLastErrorStatus 393
getName 393
open 393
overview 368
send 393
sendFile 393

amSendFile 55
amSendMsg 56
amSendRequest 57
amSendResponse 58
AMSEOP 294
AMSERB 294
amSesBegin 78
amSesClearErrorCodes 78
amSesClose 78
amSesCommit 79
amSesCreate 79
amSesCreateDistList 79
amSesCreateMessage 80
amSesCreatePolicy 80
amSesCreatePublisher 80
amSesCreateReceiver 81
amSesCreateSender 81
amSesCreateSubscriber 81
amSesDelete 83
amSesDeleteDistList 83
amSesDeleteMessage 83
amSesDeletePolicy 84
amSesDeletePublisher 84
amSesDeleteReceiver 84
amSesDeleteSender 85
amSesDeleteSubscriber 85
amSesGetDistListHandle 85
amSesGetLastError 86
amSesGetMessageHandle 86
amSesGetPolicyHandle 87
amSesGetPublisherHandle 87
amSesGetReceiverHandle 87
amSesGetSenderHandle 87
amSesGetSubscriberHandle 88
amSesOpen 88
amSesRollback 88
AmSession (C++)

begin 182
clearErrorCodes 182
close 182
commit 182
createDistributionList 182
createMessage 183
createPolicy 183
createPublisher 183
createReceiver 183
createSender 184
createSubscriber 184
deleteDistributionList 184
deleteMessage 184
deletePolicy 184
deletePublisher 185
deleteReceiver 185
deleteSender 185
deleteSubscriber 185
enableWarnings 185
getLastErrorStatus 185

Index 511

AmSession (C++) (continued)
getName 185
getTraceLevel 186
getTraceLocation 186
open 186
overview 165
rollback 186
transaction coordination 182
unit of work 182

AmSession (Java)
begin 380
clearErrorCodes 380
close 380
commit 380
createDistributionList 380
createMessage 380
createPolicy 381
createPublisher 381
createReceiver 381
createSender 382
createSubscriber 382
enableWarnings 382
getLastErrorStatus 382
getName 382
getTraceLevel 382
getTraceLocation 382
open 382
overview 365
rollback 383
transaction coordination 380
unit of work 380

AmSessionFactory (C++)
constructors 180
createSession 180
deleteSession 180
getFactoryName 180
getLocalHost 180
getRepository 180
getTraceLevel 180
getTraceLocation 180
overview 164
setLocalHost 180
setRepository 181
setTraceLevel 181
setTraceLocation 181

AmSessionFactory (Java)
constructor 378
createSession 378
getFactoryName 378
getLocalHost 378
getRepository 378
getTraceLevel 378
getTraceLocation 378
overview 364
setLocalHost 378
setRepository 379
setTraceLevel 379
setTraceLocation 379

AMSNCL 313
AMSNCLEC 313
amSndClearErrorCodes 107
amSndClose 107
amSndGetCCSID 108
amSndGetEncoding 108
amSndGetLastError 109
amSndGetName 109
amSndOpen 109

amSndSend 110
amSndSendFile 111
AMSNGTCC 314
AMSNGTEN 314
AMSNGTLE 314
AMSNGTNA 315
AMSNOP 315
AMSNSN 316
AMSNSNFL 316
AmStatus (C++)

constructor 215
getCompletionCode 215
getReasonCode 215
getReasonCode2 215
overview 175
toString 215
using 153

AmStatus (Java)
constructor 411
getCompletionCode 411
getReasonCode 411
getReasonCode2 411
overview 374
toString 411
using 357

AmString (C++)
cat 216
cmp 216
constructors 216
contains 216
cpy 216
destructor 216
length 217
operators 217
overview 176
pad 217
split 217
strip 217
text 217
truncate 217

amSubClearErrorCodes 132
amSubClose 132
amSubGetCCSID 132
amSubGetDefnType 132
amSubGetEncoding 133
amSubGetLastError 134
amSubGetName 134
amSubGetQueueName 134
amSubOpen 135
amSubReceive 136
amSubscribe 59
AmSubscriber (C++)

clearErrorCodes 206
close 206
enableWarnings 206
getCCSID 206
getDefinitionType 206
getEncoding 206
getLastErrorStatus 206
getName 207
getQueueName 207
open 207
overview 173
receive 208
setQueueName 208
subscribe 209
unsubscribe 209

AmSubscriber (Java)
clearErrorCodes 403
close 403
enableWarnings 403
getCCSID 403
getDefinitionType 403
getEncoding 403
getLastErrorStatus 403
getName 404
getQueueName 404
open 404
overview 372
receive 405
setQueueName 405
subscribe 406
unsubscribe 406

amSubSetQueueName 136
amSubSubscribe 137
amSubUnsubscribe 138
amtc.h header 29
AMTELEMV and AMTELEML

copybooks 236
amTerminate 60
amUnsubscribe 61
AmWarningException (C++)

getClassName 220
getCompletionCode 220
getMethodName 220
getReasonCode 220
getSource 220
overview 177
toString 220

AmWarningException (Java)
getClassName 414
getCompletionCode 414
getMethodName 414
getReasonCode 414
getSource 414
overview 375
toString 414

AMWT constants 499
Anonymous Registration attribute 466
appearance of text in this book xx
Application Group attribute 463
application messaging interface

basic model 7
description 4
interoperability 3
introduction 3
main components 3
programming languages 4
receiving messages 3
sending messages 3

applications, building
C 29
C++ 158
COBOL 240
Java 361

applications, writing
C 16
C++ 147
COBOL 228
Java 351

attributes, policy
general 462
initialization 461
publish 466

512 MQSeries Application Messaging Interface

attributes, policy (continued)
receive 465
send 463
subscribe 466

Available Service Points attribute 460

B
base classes

C++ 145, 179
Java 349, 377

begin
AmSession (C++) 182
AmSession (Java) 380

bibliography 505
Bind On Open attribute 463
BookManager 507
Boolean constants 493
Broker Service attribute 460
browse

AmReceiver (C++) 198
AmReceiver (Java) 395
constants 493

building applications
C 29
C++ 158
COBOL 240
Java 361

C
C++ applications

AIX 158
HP-UX 159
Solaris 160
Windows 162

C++ interface
overview 163
reference information 179
using 145

C applications
AIX 30
HP-UX 31
OS/390 34
Solaris 33
Windows 34

C high-level interface
equivalent object interface

functions 74
overview 38
reference information 39
using 13

C object interface
overview 63
reference information 77
using 13

cache, repository and local host
(OS/390) 444

CCSID attribute 458
class (C++)

base 145, 179
exception 146, 179
helper 146, 179

class (Java)
base 349, 377
exception 350, 377
helper 349, 377

clearErrorCodes
AmDistributionList (C++) 202
AmDistributionList (Java) 399
AmMessage (C++) 188
AmMessage (Java) 385
AmObject (C++) 214
AmObject (Java) 410
AmPolicy (C++) 210
AmPolicy (Java) 407
AmPublisher (C++) 204
AmPublisher (Java) 401
AmReceiver (C++) 199
AmReceiver (Java) 396
AmSender (C++) 195
AmSender (Java) 392
AmSession (C++) 182
AmSession (Java) 380
AmSubscriber (C++) 206
AmSubscriber (Java) 403

close
AmDistributionList (C++) 202
AmDistributionList (Java) 399
AmPublisher (C++) 204
AmPublisher (Java) 401
AmReceiver (C++) 199
AmReceiver (Java) 396
AmSender (C++) 195
AmSender (Java) 392
AmSession (C++) 182
AmSession (Java) 380
AmSubscriber (C++) 206
AmSubscriber (Java) 403

closing a session
C 16
C++ 147
COBOL 228
Java 351

COBOL applications
OS/390 240

COBOL high-level interface
equivalent object interface

functions 280
overview 244
reference information 246
using 225

COBOL object interface
overview 269
reference information 283
using 225

commit
AmSession (C++) 182
AmSession (Java) 380

compilers 422
completion code constants 493
connecting to MQSeries 447
Connection Mode attribute 461
Connection Name attribute 461
Connection Type attribute 461
constants

Boolean 493
browse 493
completion codes 493
definition type 493
encoding 494
feedback codes 494
format 494
group status 494

constants (continued)
handle 494
Message Content Descriptor tag

names 494
message types 494
publish/subscribe 495
reason codes 496
service and policy definitions 493
string length 494
system default names and

handles 499
wait time 499

content-based publish/subscribe 448
Convert attribute 465
createDistributionList

AmSession (C++) 182
AmSession (Java) 380

createMessage
AmSession (C++) 183
AmSession (Java) 380

createPolicy
AmSession (C++) 183
AmSession (Java) 381

createPublisher
AmSession (C++) 183
AmSession (Java) 381

createReceiver
AmSession (C++) 183
AmSession (Java) 381

createSender
AmSession (C++) 184
AmSession (Java) 382

createSession
AmSessionFactory (C++) 180
AmSessionFactory (Java) 378

createSubscriber
AmSession (C++) 184
AmSession (Java) 382

creating MQSeries objects 449
creating objects

C++ 147
Java 351

D
data types, C 29
datagram

C 16
C++ 148
COBOL 228
Java 351

Default Format attribute 458
Default MCD Domain attribute 458
Default MCD Format attribute 458
Default MCD Set attribute 458
Default MCD Type attribute 458
default objects

C 14
C++ 146
COBOL 226
Java 350
system 456

definition
distribution list 460
policy 455, 461
publisher 460
service 455

Index 513

definition (continued)
service point (sender/receiver) 458
subscriber 460
system provided 456

Definition Type attribute 458
definition type constants 493
Delete On Close attribute 465
deleteDistributionList

AmSession (C++) 184
deleteElement

AmMessage (C++) 188
AmMessage (Java) 385

deleteFilter
AmMessage (C++) 188
AmMessage (Java) 385

deleteMessage
AmSession (C++) 184

deleteNamedElement
AmMessage (C++) 188
AmMessage (Java) 385

deletePolicy
AmSession (C++) 184

deletePublisher
AmSession (C++) 185

deleteReceiver
AmSession (C++) 185

deleteSender
AmSession (C++) 185

deleteSession
AmSessionFactory (C++) 180

deleteSubscriber
AmSession (C++) 185

deleteTopic
AmMessage (C++) 188
AmMessage (Java) 385

deleting C++ objects 148
directory structure

AIX 425
HP-UX 429
OS/390 439
Solaris 433
Windows 436

disk space 421
distribution list definition 460
distribution list interface

overview (C) 70
overview (C++) 171
overview (COBOL) 276
overview (Java) 370

distribution list interface (C)
amDstClearErrorCodes 123
amDstClose 123
amDstGetLastError 123
amDstGetName 124
amDstGetSenderCount 124
amDstGetSenderHandle 124
amDstOpen 125
amDstSend 126
amDstSendFile 127

distribution list interface (COBOL)
AMDLCL 327
AMDLCLEC 327
AMDLGTLE 327
AMDLGTNA 328
AMDLGTSC 328
AMDLGTSH 328
AMDLOP 329

distribution list interface (COBOL)
(continued)

AMDLSN 329
AMDLSNFL 330

Dynamic Queue Prefix attribute 458

E
elements, name/value

C 24
C++ 153
COBOL 236
Java 356

enableWarnings
AmDistributionList (C++) 202
AmDistributionList (Java) 399
AmMessage (C++) 189
AmMessage (Java) 386
AmPolicy (C++) 210
AmPolicy (Java) 407
AmPublisher (C++) 204
AmPublisher (Java) 401
AmReceiver (C++) 199
AmReceiver (Java) 396
AmSender (C++) 195
AmSender (Java) 392
AmSession (C++) 185
AmSession (Java) 382
AmSubscriber (C++) 206
AmSubscriber (Java) 403

Encoding attribute 458
encoding constants 494
error handling

C 26
C++ 153
COBOL 238
Java 357

examples
C 16
C++ 147
COBOL 228
Java 351

Exception Action attribute 463
exception classes

C++ 146, 179
Java 350, 377

Expiry Interval attribute 463

F
failure (of AMI program)

common causes 478
reason codes 477
symptom report (OS/390) 477
symptom report (Unix and

Windows) 477
feedback codes 494
Field Disposition attribute 465
field limits

C 28
C++ 156
COBOL 239
Java 359

file transfer
C 21
C++ 151
COBOL 234

file transfer (continued)
Java 355

filters 448
filters for publish/subscribe 448
format constants 494

G
getCCSID

AmMessage (C++) 189
AmMessage (Java) 386
AmPublisher (C++) 204
AmPublisher (Java) 401
AmSender (C++) 195
AmSender (Java) 392
AmSubscriber (C++) 206
AmSubscriber (Java) 403

getClassName
AmErrorException (C++) 219
AmErrorException (Java) 413
AmException (C++) 218
AmException (Java) 412
AmWarningException (C++) 220
AmWarningException (Java) 414

getCompletionCode
AmErrorException (C++) 219
AmErrorException (Java) 413
AmException (C++) 218
AmException (Java) 412
AmStatus (C++) 215
AmStatus (Java) 411
AmWarningException (C++) 220
AmWarningException (Java) 414

getCorrelationId
AmMessage (C++) 189
AmMessage (Java) 386

getDataLength
AmMessage (C++) 189
AmMessage (Java) 386

getDataOffset
AmMessage (C++) 189
AmMessage (Java) 386

getDefinitionType
AmReceiver (C++) 199
AmReceiver (Java) 396
AmSubscriber (C++) 206
AmSubscriber (Java) 403

getElement
AmMessage (C++) 189
AmMessage (Java) 386

getElementCCSID
AmMessage (C++) 189

getElementCount
AmMessage (C++) 189
AmMessage (Java) 386

getEncoding
AmMessage (C++) 189
AmMessage (Java) 386
AmPublisher (C++) 204
AmPublisher (Java) 401
AmSender (C++) 195
AmSender (Java) 392
AmSubscriber (C++) 206
AmSubscriber (Java) 403

getFactoryName
AmSessionFactory (C++) 180
AmSessionFactory (Java) 378

getFilter
AmMessage (C++) 190

514 MQSeries Application Messaging Interface

getFilter (continued)
AmMessage (Java) 387

getFilterCount
AmMessage (C++) 190
AmMessage (Java) 387

getFormat
AmMessage (C++) 190
AmMessage (Java) 388

getGroupStatus
AmMessage (C++) 190
AmMessage (Java) 388

getLastErrorStatus
AmDistributionList (C++) 202
AmDistributionList (Java) 399
AmMessage (C++) 190
AmMessage (Java) 388
AmObject (C++) 214
AmObject (Java) 410
AmPolicy (C++) 210
AmPolicy (Java) 407
AmPublisher (C++) 204
AmPublisher (Java) 401
AmReceiver (C++) 199
AmReceiver (Java) 396
AmSender (C++) 196
AmSender (Java) 393
AmSession (C++) 185
AmSession (Java) 382
AmSubscriber (C++) 206
AmSubscriber (Java) 403

getLocalHost
AmSessionFactory (C++) 180
AmSessionFactory (Java) 378

getMessageId
AmMessage (C++) 190
AmMessage (Java) 388

getMethodName
AmErrorException (C++) 219
AmErrorException (Java) 413
AmException (C++) 218
AmException (Java) 412
AmWarningException (C++) 220
AmWarningException (Java) 414

getName
AmDistributionList (C++) 202
AmDistributionList (Java) 399
AmElement (C++) 213
AmElement (Java) 409
AmMessage (C++) 191
AmMessage (Java) 388
AmObject (C++) 214
AmObject (Java) 410
AmPolicy (C++) 210
AmPolicy (Java) 407
AmPublisher (C++) 204
AmPublisher (Java) 401
AmReceiver (C++) 199
AmReceiver (Java) 396
AmSender (C++) 196
AmSender (Java) 393
AmSession (C++) 185
AmSession (Java) 382
AmSubscriber (C++) 207
AmSubscriber (Java) 404

getNamedElement
AmMessage (C++) 191
AmMessage (Java) 389

getNamedElementCount
AmMessage (C++) 191
AmMessage (Java) 389

getQueueName
AmReceiver (C++) 200
AmReceiver (Java) 397
AmSubscriber (C++) 207
AmSubscriber (Java) 404

getReasonCode
AmErrorException (C++) 219
AmErrorException (Java) 413
AmException (C++) 218
AmException (Java) 412
AmStatus (C++) 215
AmStatus (Java) 411
AmWarningException (C++) 220
AmWarningException (Java) 414

getReasonCode2
AmStatus (C++) 215
AmStatus (Java) 411

getReportCode
AmMessage (C++) 191
AmMessage (Java) 389

getRepository
AmSessionFactory (C++) 180
AmSessionFactory (Java) 378

getSender
AmDistributionList (C++) 202
AmDistributionList (Java) 399

getSenderCount
AmDistributionList (C++) 202
AmDistributionList (Java) 399

getSource
AmErrorException (C++) 219
AmErrorException (Java) 413
AmException (C++) 218
AmException (Java) 412
AmWarningException (C++) 220
AmWarningException (Java) 414

getTopic
AmMessage (C++) 191
AmMessage (Java) 389

getTopicCount
AmMessage (C++) 191
AmMessage (Java) 389

getTraceLevel
AmSession (C++) 186
AmSession (Java) 382
AmSessionFactory (C++) 180
AmSessionFactory (Java) 378

getTraceLocation
AmSession (C++) 186
AmSession (Java) 382
AmSessionFactory (C++) 180
AmSessionFactory (Java) 378

getType
AmMessage (C++) 191
AmMessage (Java) 389

getValue
AmElement (C++) 213
AmElement (Java) 409

getVersion
AmElement (C++) 213
AmElement (Java) 409

getWaitTime
AmPolicy (C++) 210
AmPolicy (Java) 407

glossary 503
group status constants 494

H
handle constants 494
Handle Poison Message attribute 465
header file

C 29
C++ 158

helper classes
C++ 146, 179
Java 349, 377

helper macros 105
high-level interface

equivalent object interface
functions 74

using 13
high-level interface (C)

amBackout 40
amBegin 41
amBrowseMsg 42
amCommit 44
amInitialize 45
amPublish 46
amReceiveFile 47
amReceiveMsg 49
amReceivePublication 51
amReceiveRequest 53
amSendFile 55
amSendMsg 56
amSendRequest 57
amSendResponse 58
amSubscribe 59
amTerminate 60
amUnsubscribe 61
overview 38
reference information 39

high-level interface (COBOL)
AMHBACK 247
AMHBEGIN 248
AMHBRMS 249
AMHCMIT 251
AMHINIT 252
AMHPB 253
AMHRCFL 254
AMHRCMS 256
AMHRCPB 258
AMHRCRQ 260
AMHSB 266
AMHSNFL 262
AMHSNMS 263
AMHSNRQ 264
AMHSNRS 265
AMHTERM 267
AMHUN 268
equivalent object interface

functions 280
overview 244
reference information 246
using 225

HP-UX
C++ applications 159
C applications 31
installation 427
Java applications 361
prerequisites 421

Index 515

HTML (Hypertext Markup
Language) 506

Hypertext Markup Language
(HTML) 506

I
Implicit Open attribute 463, 465
include file

C 29
C++ 158

Inform If Retained attribute 466
initial values for structures 29
installation

administration tool 446
AIX 423
HP-UX 427
OS/390 438
prerequisites 421
Solaris 431
Windows 435

interface
C++ 163, 179
C high-level 37, 38
C object 63, 77
COBOL high-level 243, 244
COBOL object 269, 283
Java 363, 377

interoperability 3

J
jar file (Java) 361
Java applications

AIX 361
HP-UX 361
Solaris 361
Windows 361

Java interface
overview 363
reference information 377
using 349

L
Leave Queue Open attribute 463, 465
local host cache (OS/390) 444
local host file 441
local host file (OS/390) 443

M
macros, helper 105
Message Content Descriptor tag

names 494
Message Context attribute 462
message interface

overview (C) 66
overview (C++) 167
overview (COBOL) 272
overview (Java) 366

message interface (C)
amMsgAddElement 90
amMsgAddFilter 91
AmMsgAddStreamName 105
amMsgAddTopic 91

message interface (C) (continued)
amMsgClearErrorCodes 91
amMsgDeleteElement 92
amMsgDeleteFilter 92
amMsgDeleteNamedElement 92
amMsgDeleteTopic 93
amMsgGetCCSID 93
amMsgGetCorrelId 93
amMsgGetDataLength 94
amMsgGetDataOffset 94
amMsgGetElement 94
amMsgGetElementCCSID 95
amMsgGetElementCount 95
amMsgGetEncoding 95
amMsgGetFilter 96
amMsgGetFilterCount 96
amMsgGetFormat 96
amMsgGetGroupStatus 97
amMsgGetLastError 97
amMsgGetMsgId 98
amMsgGetName 98
amMsgGetNamedElement 98
amMsgGetNamedElementCount 99
AmMsgGetPubTimeStamp 105
amMsgGetReportCode 99
AmMsgGetStreamName 105
amMsgGetTopic 100
amMsgGetTopicCount 100
amMsgGetType 100
amMsgReadBytes 101
amMsgReset 101
amMsgSetCCSID 101
amMsgSetCorrelId 102
amMsgSetDataOffset 102
amMsgSetElementCCSID 102
amMsgSetEncoding 103
amMsgSetFormat 103
amMsgSetGroupStatus 104
amMsgWriteBytes 104
helper macros 105

message interface (COBOL)

AMMSADEL 296
AMMSADFI 297
AMMSADTO 297
AMMSCLEC 298
AMMSDEEL 298
AMMSDEFI 298
AMMSDENE 299
AMMSDETO 299
AMMSGELC 299
AMMSGTCC 300
AMMSGTCI 300
AMMSGTDL 300
AMMSGTDO 301
AMMSGTEC 301
AMMSGTEL 301
AMMSGTEN 302
AMMSGTFC 302
AMMSGTFI 302
AMMSGTFO 303
AMMSGTGS 303
AMMSGTLE 304
AMMSGTMI 304
AMMSGTNA 305
AMMSGTNC 306
AMMSGTNE 305
AMMSGTRC 306

message interface (COBOL) (continued)
AMMSGTTC 307
AMMSGTTO 307
AMMSGTTY 307
AMMSREBY 308
AMMSRS 308
AMMSSELC 310
AMMSSTCC 309
AMMSSTCI 309
AMMSSTDO 309
AMMSSTEN 310
AMMSSTFO 310
AMMSSTGS 311
AMMSWRBY 311

message types 494
messages 4
messages, poison 465
messages, publish/subscribe

C 22
C++ 152
COBOL 234
Java 355

messages, receiving
C 18
C++ 149
COBOL 230
Java 353

messages, request/response
C 19
C++ 150
COBOL 232
Java 354

messages, sending
C 16
C++ 148
COBOL 228
Java 351

model of the AMI 7
Model Queue Name attribute 458
MQSeries client

connecting to 447
prerequisites 422

MQSeries environment 422
MQSeries function calls

C 28
C++ 156
COBOL 239
Java 359

MQSeries Integrator V2 458
Migrating API applications to 449
Using the AMI with 447

MQSeries Integrator Version 1,
using 447

MQSeries objects, creating 449
MQSeries publications 505
MQSeries Publish/Subscribe 447
MQSeries server

connecting to 447
prerequisites 422

multithreading
C 27
C++ 156
COBOL 239
Java 359

516 MQSeries Application Messaging Interface

N
Name attribute

distribution list 460
policy 461
publisher 460
service point 458

name/value elements
C 24
C++ 153
COBOL 236
Java 356

New Publications Only attribute 466

O
OAMAS subset 28
oamasami.h header 28
object interface

overview 63
reference information 77

object interface (COBOL)
overview 269
reference information 283

object-style interface 13
object-style interface (COBOL) 225
objects

C 13
C++ 145
COBOL 225
Java 349

open
AmDistributionList (C++) 202
AmDistributionList (Java) 399
AmPublisher (C++) 204
AmPublisher (Java) 401
AmReceiver (C++) 200
AmReceiver (Java) 397
AmSender (C++) 196
AmSender (Java) 393
AmSession (C++) 186
AmSession (Java) 382
AmSubscriber (C++) 207
AmSubscriber (Java) 404

Open Shared attribute 465
opening a session

C 16
C++ 147
COBOL 228
Java 351

opening objects
C++ 147
Java 351

operating systems 421
OS/390

C applications 34
COBOL applications 240
installation 438
prerequisites 421

OS/390 subsystems, application
advice 417

overloading
C++ 147
Java 351

overview
C++ interface 163
C high-level interface 38
C object interface 63

overview (continued)
COBOL high-level interface 244
COBOL object interface 269
Java interface 363

P
PDF (Portable Document Format) 506
Persistence attribute 463
point-to-point 5
poison messages 465
policy

constants 493
defining 455
general attributes 462
initialization attributes 461
publish attributes 466
receive attributes 465
send attributes 463
subscribe attributes 466
summary 6

policy interface
overview (C) 73
overview (C++) 174
overview (COBOL) 279
overview (Java) 373

policy interface (C)
amPolClearErrorCodes 139
amPolGetLastError 139
amPolGetName 139
amPolGetWaitTime 140
amPolSetWaitTime 140

policy interface (COBOL)
AMPOCLEC 342
AMPOGTLE 342
AMPOGTNA 342
AMPOGTWT 343
AMPOSTWT 343

Portable Document Format (PDF) 506
PostScript format 507
prerequisites

compilers 422
disk space 421
MQSeries environment 422
OAMAS subset 28
operating systems 421

Priority attribute 463
problem determination 467
problems, causes of 478
procedural interface 13
procedural interface (COBOL) 225
programming languages 4
publications

MQSeries 505
publish

AmPublisher (C++) 205
AmPublisher (Java) 402

Publish Locally attribute 466
Publish On Request Only attribute 466
publish/subscribe

constants 495
content-based 448
filters 448
introduction 5
using 447

publish/subscribe messaging
C 22

publish/subscribe messaging (continued)
C++ 152
COBOL 234
Java 355

Publish To Others Only attribute 466
publisher definition 460
publisher interface

overview (C) 71
overview (C++) 172
overview (COBOL) 277
overview (Java) 371

publisher interface (C)
amPubClearErrorCodes 128
amPubClose 128
amPubGetCCSID 128
amPubGetEncoding 128
amPubGetLastError 129
amPubGetName 130
amPubOpen 130
amPubPublish 131

publisher interface (COBOL)
AMPBCL 332
AMPBCLEC 332
AMPBGTCC 332
AMPBGTEN 333
AMPBGTLE 333
AMPBGTNA 333
AMPBOP 334
AMPBPB 334

Q
Queue Manager Name attribute 458
Queue Name attribute 458

R
readBytes

AmMessage (C++) 192
AmMessage (Java) 389

reason codes
constants 496
description 481

receive
AmReceiver (C++) 200, 397
AmReceiver (Java) 397
AmSubscriber (C++) 208
AmSubscriber (Java) 405

receiver definition 458
receiver interface

overview (C) 69
overview (C++) 170
overview (COBOL) 275
overview (Java) 369

receiver interface (C)
amRcvBrowse 112
amRcvBrowseSelect 114
amRcvClearErrorCodes 115
amRcvClose 116
amRcvGetDefnType 116
amRcvGetLastError 117
amRcvGetName 117
amRcvGetQueueName 118
amRcvOpen 118
amRcvReceive 119
amRcvReceiveFile 121
amRcvSetQueueName 122

Index 517

receiver interface (COBOL)
AMRCBR 318
AMRCBRSE 319
AMRCCL 321
AMRCCLEC 321
AMRCGTDT 321
AMRCGTLE 322
AMRCGTNA 322
AMRCGTQN 323
AMRCOP 323
AMRCRC 323
AMRCRCFL 325
AMRCSTQN 326

Receiver Service attribute 460
receiving files

C 21
C++ 151
COBOL 234
Java 355

receiving messages
C 18
C++ 149
COBOL 230
Java 353

reference information
C++ interface 179
C high-level interface 39
C object interface 77
COBOL high-level interface 246
COBOL object interface 283
Java interface 377

Report Data attribute 463
Report Type COA attribute 463
Report Type COD attribute 463
Report Type Exception attribute 463
Report Type Expiry attribute 463
repository, using

C 14
C++ 146
COBOL 226
Java 350

repository cache (OS/390) 444
repository file 441
repository file (OS/390) 443
request/response messaging

C 19
C++ 150
COBOL 232
Java 354

reset
AmMessage (C++) 192
AmMessage (Java) 390

Response Correl Id attribute 463
Retain attribute 466
Retry Count attribute 463
Retry Interval attribute 463
RF Header 458
rollback

AmSession (C++) 186
AmSession (Java) 383

runtime environment
AIX 424
HP-UX 428
OS/390 438
Solaris 432
Windows 435

S
sample programs

OS/390 452
Unix 450
Windows 450

Segmentation attribute 463
send

AmDistributionList (C++) 203
AmDistributionList (Java) 400
AmSender (C++) 196
AmSender (Java) 393

sender definition 458
sender interface

overview (C) 68
overview (C++) 169
overview (COBOL) 274
overview (Java) 368

sender interface (C)
amSndClearErrorCodes 107
amSndClose 107
amSndGetCCSID 108
amSndGetEncoding 108
amSndGetLastError 109
amSndGetName 109
amSndOpen 109
amSndSend 110
amSndSendFile 111

sender interface (COBOL)
AMSNCL 313
AMSNCLEC 313
AMSNGTCC 314
AMSNGTEN 314
AMSNGTLE 314
AMSNGTNA 315
AMSNOP 315
AMSNSN 316
AMSNSNFL 316

sendFile
AmDistributionList (C++) 203
AmDistributionList (Java) 400
AmSender (C++) 196
AmSender (Java) 393

sending files
C 21
C++ 151
COBOL 234
Java 355

sending group messages
C 26
C++ 156
COBOL 238
Java 359

sending messages
C 16
C++ 148
COBOL 228
Java 351

service
constants 493
defining 455
summary 4

service point 458
Service Type attribute 458
session factory

overview (C++) 164
overview (Java) 364

session interface
overview (C) 64
overview (C++) 165
overview (COBOL) 270
overview (Java) 365

session interface (C)
amSesBegin 78
amSesClearErrorCodes 78
amSesClose 78
amSesCommit 79
amSesCreate 79
amSesCreateDistList 79
amSesCreateMessage 80
amSesCreatePolicy 80
amSesCreatePublisher 80
amSesCreateReceiver 81
amSesCreateSender 81
amSesCreateSubscriber 81
amSesDelete 83
amSesDeleteDistList 83
amSesDeleteMessage 83
amSesDeletePolicy 84
amSesDeletePublisher 84
amSesDeleteReceiver 84
amSesDeleteSender 85
amSesDeleteSubscriber 85
amSesGetDistListHandle 85
amSesGetLastError 86
amSesGetMessageHandle 86
amSesGetPolicyHandle 87
amSesGetPublisherHandle 87
amSesGetReceiverHandle 87
amSesGetSenderHandle 87
amSesGetSubscriberHandle 88
amSesOpen 88
amSesRollback 88
transaction coordination 78
unit of work 78

session interface (COBOL)
AMSEBG 284
AMSECL 285
AMSECLEC 284
AMSECM 285
AMSECR 285
AMSECRDL 286
AMSECRMS 286
AMSECRPB 287
AMSECRPO 286
AMSECRRC 287
AMSECRSB 288
AMSECRSN 288
AMSEDL 289
AMSEDLDL 289
AMSEDLMS 289
AMSEDLPB 290
AMSEDLPO 290
AMSEDLRC 290
AMSEDLSB 291
AMSEDLSN 290
AMSEGHDL 291
AMSEGHMS 292
AMSEGHPB 293
AMSEGHPO 292
AMSEGHRC 293
AMSEGHSB 294
AMSEGHSN 293
AMSEGTLE 291

518 MQSeries Application Messaging Interface

session interface (COBOL) (continued)
AMSEOP 294
AMSERB 294
transaction coordination 284
unit of work 284

setCCSID
AmMessage (C++) 192
AmMessage (Java) 390

setCorrelationId
AmMessage (C++) 192
AmMessage (Java) 390

setDataOffset
AmMessage (C++) 192
AmMessage (Java) 390

setElementCCSID
AmMessage (C++) 192

setEncoding
AmMessage (C++) 193
AmMessage (Java) 390

setFormat
AmMessage (C++) 193
AmMessage (Java) 391

setGroupStatus
AmMessage (C++) 193
AmMessage (Java) 391

setLocalHost
AmSessionFactory (C++) 180
AmSessionFactory (Java) 378

setQueueName
AmReceiver (C++) 201
AmReceiver (Java) 398
AmSubscriber (C++) 208
AmSubscriber (Java) 405

setRepository
AmSessionFactory (C++) 181
AmSessionFactory (Java) 379

setTraceLevel
AmSessionFactory (C++) 181
AmSessionFactory (Java) 379

setTraceLocation
AmSessionFactory (C++) 181
AmSessionFactory (Java) 379

setVersion
AmElement (C++) 213
AmElement (Java) 409

setWaitTime
AmPolicy (C++) 210
AmPolicy (Java) 407

simulated group messages 26, 238
Simulated Group Support attribute 458
softcopy books 506
Solaris

C++ applications 160
C applications 33
installation 431
Java applications 361
prerequisites 421

Split File attribute 463
string length constants 494
structure of the AMI

C 13
C++ 145
COBOL 225
Java 349

structure of this book xix
structures, initial values 29

subscribe
AmSubscriber (C++) 209
AmSubscriber (Java) 406
content-based 448
filters 448

Subscribe Locally attribute 466
subscriber definition 460
subscriber interface

overview (C) 72
overview (C++) 173
overview (COBOL) 278
overview (Java) 372

subscriber interface (C)
amSubClearErrorCodes 132
amSubClose 132
amSubGetCCSID 132
amSubGetDefnType 132
amSubGetEncoding 133
amSubGetLastError 134
amSubGetName 134
amSubGetQueueName 134
amSubOpen 135
amSubReceive 136
amSubSetQueueName 136
amSubSubscribe 137
amSubUnsubscribe 138

subscriber interface (COBOL)
AMSBCL 336
AMSBCLEC 336
AMSBGTCC 336
AMSBGTDT 337
AMSBGTEN 337
AMSBGTLE 337
AMSBGTNA 338
AMSBGTQN 338
AMSBOP 339
AMSBRC 339
AMSBSB 340
AMSBSTQN 340
AMSBUN 341

SupportPac 507
Suppress Registration attribute 466
Syncpoint attribute 462
system default handle synonyms 499
system default names 499
system default objects

C 14
C++ 146
COBOL 226
Java 350

T
terminology used in this book 503
tool, administration 446
topics, publish/subscribe

C 22
C++ 152
COBOL 234
Java 355

toString
AmElement (C++) 213
AmElement (Java) 409
AmErrorException (C++) 219
AmErrorException (Java) 413
AmException (C++) 218
AmException (Java) 412

toString (continued)
AmStatus (C++) 215
AmStatus (Java) 411
AmWarningException (C++) 220
AmWarningException (Java) 414

trace
C++ and Java 469
example 470
UNIX 467
using, OS/390 474
using, Unix and Windows 467
Windows 468

transaction coordination
C 78
C++ 182
COBOL 284
Java 380

transaction support
C 26
C++ 155
COBOL 238
Java 358

Trusted Option attribute 461

U
Unicode character conversion 438
unit of work

C 26, 78
C++ 155, 182
COBOL 238, 284
Java 358, 380

unsubscribe
AmSubscriber (C++) 209
AmSubscriber (Java) 406

Unsubscribe All attribute 466
Use Correl Id As Id attribute 466
using the AMI

C 13
C++ 145
COBOL 225
Java 349

W
Wait For Whole Group attribute 465
Wait Interval attribute 465
Wait Interval Read Only attribute 465
wait time constants 499
what you need to know xix
who this book is for xix
Windows

C++ applications 162
C applications 34
installation 435
Java applications 361
prerequisites 421

Windows Help 507
writeBytes

AmMessage (C++) 193
AmMessage (Java) 391

writing applications
C 16
C++ 147
COBOL 228
Java 351

Index 519

writing applications for OS/390
subsystems 417

writing IMS applications 417

520 MQSeries Application Messaging Interface

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1999, 2000 521

522 MQSeries Application Messaging Interface

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5604-04

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Structure of this book
	Appearance of text in this book

	Summary of changes
	Changes for this edition (SC34-5604-04)
	Changes for the fourth edition (SC34-5604-03)
	Changes for the third edition (SC34-5604-02)

	Part 1. Introduction
	Chapter 1. Introduction
	Main components of the AMI
	Sending and receiving messages
	Interoperability
	Programming languages

	Description of the AMI
	Messages
	Services
	Point-to-point and publish/subscribe
	Types of service

	Policies

	Application Messaging Interface model
	Further information

	Part 2. The C interface
	Chapter 2. Using the Application Messaging Interface in C
	Structure of the AMI
	Using the repository
	System default objects

	Writing applications in C
	Opening and closing a session
	Sending messages
	Using the message object
	Sample programs

	Receiving messages
	Using the message object
	Sample programs

	Request/response messaging
	Request
	Response
	Sample programs

	File transfer
	Publish/subscribe messaging
	Publish
	Subscribe
	Sample programs

	Using name/value elements
	Parameters
	Example

	Error handling
	Transaction support
	Sending group messages
	Other considerations
	Multithreading
	Using MQSeries with the AMI
	Field limits

	Using the AMI OAMAS subset

	Building C applications
	AMI include file
	Data types
	Initial values for structures
	C applications on AIX
	Preparing C programs on AIX
	Running C programs on AIX

	C applications on HP-UX
	Preparing C programs on HP-UX
	Running C programs on HP-UX

	C applications on Solaris
	Preparing C programs on Solaris
	Running C programs on Solaris

	C applications on Windows
	Preparing C programs on Windows
	Running C programs on Windows

	C applications on OS/390
	Preparing C programs on OS/390
	Running C programs on OS/390

	Chapter 3. The C high-level interface
	Overview of the C high-level interface
	Initialize and terminate
	Sending messages
	Receiving messages
	File transfer
	Publish/subscribe
	Transaction support

	Reference information for the C high-level interface
	amBackout
	Parameters

	amBegin
	Parameters

	amBrowseMsg
	Parameters
	Usage notes

	amCommit
	Parameters

	amInitialize
	Parameters

	amPublish
	Parameters

	amReceiveFile
	Parameters
	Usage notes

	amReceiveMsg
	Parameters
	Usage notes

	amReceivePublication
	Parameters
	Usage notes

	amReceiveRequest
	Parameters
	Usage notes
	Data conversion
	Use of the buffLen parameter

	amSendFile
	Parameters
	Usage notes

	amSendMsg
	Parameters

	amSendRequest
	Parameters

	amSendResponse
	Parameters

	amSubscribe
	Parameters

	amTerminate
	Parameters

	amUnsubscribe
	Parameters
	Usage notes

	Chapter 4. C object interface overview
	Session interface functions
	Session management
	Create objects
	Get object handles
	Delete objects
	Transactional processing
	Error handling

	Message interface functions
	Get values
	Set values
	Reset values
	Read and write data
	Publish/subscribe topics
	Publish/subscribe filters
	Publish/subscribe name/value elements
	Error handling
	Publish/subscribe helper macros

	Sender interface functions
	Open and close
	Send
	Get values
	Error handling

	Receiver interface functions
	Open and close
	Receive and browse
	Get values
	Set values
	Error handling

	Distribution list interface functions
	Open and close
	Send
	Get values
	Error handling

	Publisher interface functions
	Open and close
	Publish
	Get values
	Error handling

	Subscriber interface functions
	Open and close
	Broker messages
	Get values
	Set value
	Error handling

	Policy interface functions
	Get values
	Set value
	Error handling

	High-level functions

	Chapter 5. C object interface reference
	Session interface functions
	amSesBegin
	amSesClearErrorCodes
	amSesClose
	amSesCommit
	amSesCreate
	amSesCreateDistList
	amSesCreateMessage
	amSesCreatePolicy
	amSesCreatePublisher
	amSesCreateReceiver
	amSesCreateSender
	amSesCreateSubscriber
	amSesDelete
	amSesDeleteDistList
	amSesDeleteMessage
	amSesDeletePolicy
	amSesDeletePublisher
	amSesDeleteReceiver
	amSesDeleteSender
	amSesDeleteSubscriber
	amSesGetDistListHandle
	amSesGetLastError
	amSesGetMessageHandle
	amSesGetPolicyHandle
	amSesGetPublisherHandle
	amSesGetReceiverHandle
	amSesGetSenderHandle
	amSesGetSubscriberHandle
	amSesOpen
	amSesRollback

	Message interface functions
	amMsgAddElement
	amMsgAddFilter
	Parameters

	amMsgAddTopic
	amMsgClearErrorCodes
	amMsgDeleteElement
	amMsgDeleteFilter
	Parameters

	amMsgDeleteNamedElement
	amMsgDeleteTopic
	amMsgGetCCSID
	amMsgGetCorrelId
	amMsgGetDataLength
	amMsgGetDataOffset
	amMsgGetElement
	amMsgGetElementCCSID
	amMsgGetElementCount
	amMsgGetEncoding
	amMsgGetFilter
	Parameters

	amMsgGetFilterCount
	Parameters

	amMsgGetFormat
	amMsgGetGroupStatus
	amMsgGetLastError
	amMsgGetMsgId
	amMsgGetName
	amMsgGetNamedElement
	amMsgGetNamedElementCount
	amMsgGetReportCode
	amMsgGetTopic
	amMsgGetType
	amMsgGetTopicCount
	amMsgReadBytes
	amMsgReset
	amMsgSetCCSID
	amMsgSetCorrelId
	amMsgSetDataOffset
	amMsgSetElementCCSID
	amMsgSetEncoding
	amMsgSetFormat
	amMsgSetGroupStatus
	amMsgWriteBytes

	Message interface helper macros
	AmMsgAddStreamName
	AmMsgGetPubTimeStamp
	AmMsgGetStreamName

	Sender interface functions
	amSndClearErrorCodes
	amSndClose
	amSndGetCCSID
	amSndGetEncoding
	amSndGetLastError
	amSndGetName
	amSndOpen
	amSndSend
	amSndSendFile
	Parameters

	Usage notes

	Receiver interface functions
	amRcvBrowse
	Usage notes

	amRcvBrowseSelect
	Usage notes

	amRcvClearErrorCodes
	amRcvClose
	amRcvGetDefnType
	amRcvGetLastError
	amRcvGetName
	amRcvGetQueueName
	amRcvOpen
	amRcvReceive
	Usage notes

	amRcvReceiveFile
	Usage notes

	amRcvSetQueueName

	Distribution list interface functions
	amDstClearErrorCodes
	amDstClose
	amDstGetLastError
	amDstGetName
	amDstGetSenderCount
	amDstGetSenderHandle
	amDstOpen
	amDstSend
	amDstSendFile
	Parameters

	Usage notes

	Publisher interface functions
	amPubClearErrorCodes
	amPubClose
	amPubGetCCSID
	amPubGetEncoding
	amPubGetLastError
	amPubGetName
	amPubOpen
	amPubPublish

	Subscriber interface functions
	amSubClearErrorCodes
	amSubClose
	amSubGetCCSID
	amSubGetDefnType
	amSubGetEncoding
	amSubGetLastError
	amSubGetName
	amSubGetQueueName
	amSubOpen
	amSubReceive
	amSubSetQueueName
	amSubSubscribe
	amSubUnsubscribe

	Policy interface functions
	amPolClearErrorCodes
	amPolGetLastError
	amPolGetName
	amPolGetWaitTime
	amPolSetWaitTime

	Part 3. The C++ interface
	Chapter 6. Using the Application Messaging Interface in C++
	Structure of the AMI
	Base classes
	Interface and helper classes
	Exception classes
	Using the repository
	System default objects

	Writing applications in C++
	Creating and opening objects
	Deleting objects
	Sending messages
	Sample program

	Receiving messages
	Sample program

	Request/response messaging
	Sample programs

	File transfer
	Publish/subscribe messaging
	Sample programs

	Using AmElement objects
	Error handling
	Transaction support
	Sending group messages
	Other considerations
	Multithreading
	Using MQSeries with the AMI
	Field limits

	Building C++ applications
	AMI include files
	C++ applications on AIX
	Preparing C++ programs on AIX
	Running C++ programs on AIX

	C++ applications on HP-UX
	Preparing C++ programs on HP-UX
	Running C++ programs on HP-UX

	C++ applications on Solaris
	Preparing C++ programs on Solaris
	Running C++ programs on Solaris

	C++ applications on Windows
	Preparing C++ programs on Windows
	Running C++ programs on Windows

	Chapter 7. C++ interface overview
	Base classes
	Helper classes
	Exception classes

	AmSessionFactory
	Constructor
	Session factory management
	Create and delete session

	AmSession
	Session management
	Create objects
	Delete objects
	Transactional processing
	Error handling

	AmMessage
	Get values
	Set values
	Reset values
	Read and write data
	Publish/subscribe topics
	Publish/subscribe filters
	Publish/subscribe name/value elements
	Error handling

	AmSender
	Open and close
	Send
	Send file
	Get values
	Error handling

	AmReceiver
	Open and close
	Receive and browse
	Receive file
	Get values
	Set value
	Error handling

	AmDistributionList
	Open and close
	Send
	Send file
	Get values
	Error handling

	AmPublisher
	Open and close
	Publish
	Get values
	Error handling

	AmSubscriber
	Open and close
	Broker messages
	Get values
	Set value
	Error handling

	AmPolicy
	Policy management
	Error handling

	Helper classes
	AmBytes
	AmElement
	AmObject
	AmStatus
	AmString

	Exception classes
	AmException
	AmErrorException
	AmWarningException

	Chapter 8. C++ interface reference
	Base classes
	Helper classes
	Exception classes

	AmSessionFactory
	AmSessionFactory
	createSession
	deleteSession
	getFactoryName
	getLocalHost
	getRepository
	getTraceLevel
	getTraceLocation
	setLocalHost
	setRepository
	setTraceLevel
	setTraceLocation

	AmSession
	begin
	clearErrorCodes
	close
	commit
	createDistributionList
	createMessage
	createPolicy
	createPublisher
	createReceiver
	createSender
	createSubscriber
	deleteDistributionList
	deleteMessage
	deletePolicy
	deletePublisher
	deleteReceiver
	deleteSender
	deleteSubscriber
	enableWarnings
	getLastErrorStatus
	getName
	getTraceLevel
	getTraceLocation
	open
	rollback

	AmMessage
	addElement
	addFilter
	addTopic
	clearErrorCodes
	deleteElement
	deleteFilter
	deleteNamedElement
	deleteTopic
	enableWarnings
	getCCSID
	getCorrelationId
	getDataLength
	getDataOffset
	getElement
	getElementCCSID
	getElementCount
	getEncoding
	getFilter
	getFilterCount
	getFormat
	getGroupStatus
	getLastErrorStatus
	getMessageId
	getName
	getNamedElement
	getNamedElementCount
	getReportCode
	getTopic
	getTopicCount
	getType
	readBytes
	reset
	setCCSID
	setCorrelationId
	setDataOffset
	setElementCCSID
	setEncoding
	setFormat
	setGroupStatus
	writeBytes

	AmSender
	clearErrorCodes
	close
	enableWarnings
	getCCSID
	getEncoding
	getLastErrorStatus
	getName
	open
	send
	sendFile

	AmReceiver
	browse
	clearErrorCodes
	close
	enableWarnings
	getDefinitionType
	getLastErrorStatus
	getName
	getQueueName
	open
	receive
	receiveFile
	setQueueName

	AmDistributionList
	clearErrorCodes
	close
	enableWarnings
	getLastErrorStatus
	getName
	getSender
	getSenderCount
	open
	send
	sendFile

	AmPublisher
	clearErrorCodes
	close
	enableWarnings
	getCCSID
	getEncoding
	getLastErrorStatus
	getName
	open
	publish

	AmSubscriber
	clearErrorCodes
	close
	enableWarnings
	getCCSID
	getDefinitionType
	getEncoding
	getLastErrorStatus
	getName
	getQueueName
	open
	receive
	setQueueName
	subscribe
	unsubscribe

	AmPolicy
	clearErrorCodes
	enableWarnings
	getLastErrorStatus
	getName
	getWaitTime
	setWaitTime

	AmBytes
	cmp
	constructors
	cpy
	dataPtr
	destructor
	length
	operators
	pad

	AmElement
	AmElement
	getName
	getValue
	getVersion
	setVersion
	toString

	AmObject
	clearErrorCodes
	getLastErrorStatus
	getName

	AmStatus
	AmStatus
	getCompletionCode
	getReasonCode
	getReasonCode2
	toString

	AmString
	cat
	cmp
	constructors
	contains
	cpy
	destructor
	operators
	pad
	split
	strip
	length
	text
	truncate

	AmException
	getClassName
	getCompletionCode
	getMethodName
	getReasonCode
	getSource
	toString

	AmErrorException
	getClassName
	getCompletionCode
	getMethodName
	getReasonCode
	getSource
	toString

	AmWarningException
	getClassName
	getCompletionCode
	getMethodName
	getReasonCode
	getSource
	toString

	Part 4. The COBOL interface
	Chapter 9. Using the Application Messaging Interface inCOBOL
	Structure of the AMI
	Using the repository
	System default objects

	Writing applications in COBOL
	Opening and closing a session
	Sending messages
	Using the message object
	Sample programs

	Receiving messages
	Using the message object
	Sample programs

	Request/response messaging
	Request
	Response
	Sample programs

	File transfer
	Publish/subscribe messaging
	Publish
	Subscribe
	Sample programs

	Using name/value elements
	Example

	Error handling
	Transaction support
	Sending group messages
	Other considerations
	Multithreading
	Using MQSeries with the AMI
	Field limits

	Building COBOL applications
	COBOL applications on OS/390
	AMI Copybooks
	Preparing COBOL programs on OS/390
	Running COBOL programs on OS/390

	Chapter 10. The COBOL high-level interface
	Overview of the COBOL high-level interface
	Initialize and terminate
	Sending messages
	Receiving messages
	File transfer
	Publish/subscribe
	Transaction support

	Reference information for the COBOL high-level interface
	AMHBACK (backout)
	AMHBEGIN (begin)
	AMHBRMS (browse message)
	Usage notes

	AMHCMIT (commit)
	AMHINIT (initialize)
	AMHPB (publish)
	AMHRCFL (receive file)
	Usage notes

	AMHRCMS (receive message)
	Usage notes

	AMHRCPB (receive publication)
	Usage notes

	AMHRCRQ (receive request)
	Usage notes
	Data conversion
	Use of the buffLen parameter

	AMHSNFL (send file)
	Usage notes

	AMHSNMS (send message)
	AMHSNRQ (send request)
	AMHSNRS (send response)
	AMHSB (subscribe)
	AMHTERM (terminate)
	AMHUN (unsubscribe)
	Usage notes

	Chapter 11. COBOL object interface overview
	Session interface functions
	Session management
	Create objects
	Get object handles
	Delete objects
	Transactional processing
	Error handling

	Message interface functions
	Get values
	Set values
	Reset values
	Read and write data
	Publish/subscribe topics
	Publish/subscribe filters
	Publish/subscribe name/value elements
	Error handling

	Sender interface functions
	Open and close
	Send
	Get values
	Error handling

	Receiver interface functions
	Open and close
	Receive and browse
	Get values
	Set values
	Error handling

	Distribution list interface functions
	Open and close
	Send
	Get values
	Error handling

	Publisher interface functions
	Open and close
	Publish
	Get values
	Error handling

	Subscriber interface functions
	Open and close
	Broker messages
	Get values
	Set value
	Error handling

	Policy interface functions
	Get values
	Set value
	Error handling

	High-level functions

	Chapter 12. COBOL object interface reference
	Session interface functions
	AMSEBG (begin)
	AMSECLEC (clear error codes)
	AMSECL (close)
	AMSECM (commit)
	AMSECR (create)
	AMSECRDL (create distribution list)
	AMSECRMS (create message)
	AMSECRPO (create policy)
	AMSECRPB (create publisher)
	AMSECRRC (create receiver)
	AMSECRSN (create sender)
	AMSECRSB (create subscriber)
	AMSEDL (delete)
	AMSEDLDL (delete distribution list)
	AMSEDLMS (delete message)
	AMSEDLPO (delete policy)
	AMSEDLPB (delete publisher)
	AMSEDLRC (delete receiver)
	AMSEDLSN (delete sender)
	AMSEDLSB (delete subscriber)
	AMSEGHDL (get distribution list handle)
	AMSEGTLE (get last error codes)
	AMSEGHMS (get message handle)
	AMSEGHPO (get policy handle)
	AMSEGHPB (get publisher handle)
	AMSEGHRC (get receiver handle)
	AMSEGHSN (get sender handle)
	AMSEGHSB (get subscriber handle)
	AMSEOP (open)
	AMSERB (rollback)

	Message interface functions
	AMMSADEL (add element)
	AMMSADFI (add filter)
	AMMSADTO (add topic)
	AMMSCLEC (clear error codes)
	AMMSDEEL (delete element)
	AMMSDEFI (delete filter)
	AMMSDENE (delete named element)
	AMMSDETO (delete topic)
	AMMSGELC (get element CCSID)
	AMMSGTCC (get CCSID)
	AMMSGTCI (get correl ID)
	AMMSGTDL (get data length)
	AMMSGTDO (get data offset)
	AMMSGTEL (get element)
	AMMSGTEC (get element count)
	AMMSGTEN (get encoding)
	AMMSGTFC (get filter count)
	AMMSGTFI (get filter)
	AMMSGTFO (get format)
	AMMSGTGS (get group status)
	AMMSGTLE (get last error)
	AMMSGTMI (get message ID)
	AMMSGTNA (get name)
	AMMSGTNE (get named element)
	AMMSGTNC (get named element count)
	AMMSGTRC (get report code)
	AMMSGTTO (get topic)
	AMMSGTTC (get topic count)
	AMMSGTTY (get type)
	AMMSREBY (read bytes)
	AMMSRS (reset)
	AMMSSTCC (set CCSID)
	AMMSSTCI (set correl ID)
	AMMSSTDO (set data offset)
	AMMSSELC (set element ccsid)
	AMMSSTEN (set encoding)
	AMMSSTFO (set format)
	AMMSSTGS (set group status)
	AMMSWRBY (write bytes)

	Sender interface functions
	AMSNCLEC (clear error codes)
	AMSNCL (close)
	AMSNGTCC (get CCSID)
	AMSNGTEN (get encoding)
	AMSNGTLE (get last error)
	AMSNGTNA (get name)
	AMSNOP (open)
	AMSNSN (send)
	AMSNSNFL (send file)
	Usage notes

	Receiver interface functions
	AMRCBR (browse)
	Usage notes

	AMRCBRSE (browse selection message)
	Usage notes

	AMRCCLEC (clear error codes)
	AMRCCL (close)
	AMRCGTDT (get definition type)
	AMRCGTLE (get last error)
	AMRCGTNA (get name)
	AMRCGTQN (get queue name)
	AMRCOP (open)
	AMRCRC (receive)
	Usage notes

	AMRCRCFL (receive file)
	AMRCSTQN (set queue name)

	Distribution list interface functions
	AMDLCLEC (clear error codes)
	AMDLCL (close)
	AMDLGTLE (get last error)
	AMDLGTNA (get name)
	AMDLGTSC (get sender count)
	AMDLGTSH (get sender handle)
	AMDLOP (open)
	AMDLSN (send)
	AMDLSNFL (send file)
	Usage notes

	Publisher interface functions
	AMPBCLEC (clear error codes)
	AMPBCL (close)
	AMPBGTCC (get CCSID)
	AMPBGTEN (get encoding)
	AMPBGTLE (get last error)
	AMPBGTNA (get name)
	AMPBOP (open)
	AMPBPB (publish)

	Subscriber interface functions
	AMSBCLEC (clear error codes)
	AMSBCL (close)
	AMSBGTCC (get CCSID)
	AMSBGTDT (get definition type)
	AMSBGTEN (get encoding)
	AMSBGTLE (get last error)
	AMSBGTNA (get name)
	AMSBGTQN (get queue name)
	AMSBOP (open)
	AMSBRC (receive)
	AMSBSTQN (set queue name)
	AMSBSB (subscribe)
	AMSBUN (unsubscribe)

	Policy interface functions
	AMPOCLEC (clear error codes)
	AMPOGTLE (get last error)
	AMPOGTNA (get name)
	AMPOGTWT (get wait time)
	AMPOSTWT (set wait time)

	Part 5. The Java interface
	Chapter 13. Using the Application Messaging Interface in Java
	Structure of the AMI
	Base classes
	Interface and helper classes
	Exception classes
	Using the repository
	System default objects

	Writing applications in Java
	Creating and opening objects
	Sending messages
	Sample program

	Receiving messages
	Sample program

	Request/response messaging
	Sample programs

	File transfer
	Publish/subscribe messaging
	Sample programs

	Using AmElement objects
	Error handling
	Transaction support
	Sending group messages
	Other considerations
	Multithreading
	Using MQSeries with the AMI
	Field limits

	Building Java applications
	AMI package for Java
	Running Java programs

	Chapter 14. Java interface overview
	Base classes
	Helper classes
	Exception classes

	AmSessionFactory
	Constructor
	Session factory management
	Create session

	AmSession
	Session management
	Create objects
	Transactional processing
	Error handling

	AmMessage
	Get values
	Set values
	Reset values
	Read and write data
	Publish/subscribe filters
	Publish/subscribe topics
	Publish/subscribe name/value elements
	Error handling

	AmSender
	Open and close
	Send
	Send file
	Get values
	Error handling

	AmReceiver
	Open and close
	Receive and browse
	Receive file
	Get values
	Set value
	Error handling

	AmDistributionList
	Open and close
	Send
	Send file
	Get values
	Error handling

	AmPublisher
	Open and close
	Publish
	Get values
	Error handling

	AmSubscriber
	Open and close
	Broker messages
	Get values
	Set value
	Error handling

	AmPolicy
	Policy management
	Error handling

	Helper classes
	AmConstants
	AmElement
	AmObject
	AmStatus

	Exception classes
	AmException
	AmErrorException
	AmWarningException

	Chapter 15. Java interface reference
	Base classes
	Helper classes
	Exception classes

	AmSessionFactory
	AmSessionFactory
	createSession
	getFactoryName
	getLocalHost
	getRepository
	getTraceLevel
	getTraceLocation
	setLocalHost
	setRepository
	setTraceLevel
	setTraceLocation

	AmSession
	begin
	clearErrorCodes
	close
	commit
	createDistributionList
	createMessage
	createPolicy
	createPublisher
	createReceiver
	createSender
	createSubscriber
	enableWarnings
	getLastErrorStatus
	getName
	getTraceLevel
	getTraceLocation
	open
	rollback

	AmMessage
	addElement
	addFilter
	addTopic
	clearErrorCodes
	deleteElement
	deleteFilter
	deleteNamedElement
	deleteTopic
	enableWarnings
	getCCSID
	getCorrelationId
	getDataLength
	getDataOffset
	getElement
	getElementCount
	getEncoding
	getFilter
	getFilterCount
	getFormat
	getGroupStatus
	getLastErrorStatus
	getMessageId
	getName
	getNamedElement
	getNamedElementCount
	getReportCode
	getTopic
	getTopicCount
	getType
	readBytes
	reset
	setCCSID
	setCorrelationId
	setDataOffset
	setEncoding
	setFormat
	setGroupStatus
	writeBytes

	AmSender
	clearErrorCodes
	close
	enableWarnings
	getCCSID
	getEncoding
	getLastErrorStatus
	getName
	open
	send
	sendFile

	AmReceiver
	browse
	clearErrorCodes
	close
	enableWarnings
	getDefinitionType
	getLastErrorStatus
	getName
	getQueueName
	open
	receive
	receiveFile
	setQueueName

	AmDistributionList
	clearErrorCodes
	close
	enableWarnings
	getLastErrorStatus
	getName
	getSender
	getSenderCount
	open
	send
	sendFile

	AmPublisher
	clearErrorCodes
	close
	enableWarnings
	getCCSID
	getEncoding
	getLastErrorStatus
	getName
	open
	publish

	AmSubscriber
	clearErrorCodes
	close
	enableWarnings
	getCCSID
	getDefinitionType
	getEncoding
	getLastErrorStatus
	getName
	getQueueName
	open
	receive
	setQueueName
	subscribe
	unsubscribe

	AmPolicy
	clearErrorCodes
	enableWarnings
	getLastErrorStatus
	getName
	getWaitTime
	setWaitTime

	AmConstants
	AmElement
	AmElement
	getName
	getValue
	getVersion
	setVersion
	toString

	AmObject
	clearErrorCodes
	getLastErrorStatus
	getName

	AmStatus
	AmStatus
	getCompletionCode
	getReasonCode
	getReasonCode2
	toString

	AmException
	getClassName
	getCompletionCode
	getMethodName
	getReasonCode
	getSource
	toString

	AmErrorException
	getClassName
	getCompletionCode
	getMethodName
	getReasonCode
	getSource
	toString

	AmWarningException
	getClassName
	getCompletionCode
	getMethodName
	getReasonCode
	getSource
	toString

	Part 6. OS/390 Subsystems
	Chapter 16. Writing applications for OS/390 subsystems
	Writing IMS applications using AMI
	Writing CICS applications using AMI
	Writing batch applications using AMI
	Writing RRS-batch applications using AMI
	RRS availability

	Part 7. Setting up an AMI installation
	Chapter 17. Installation and sample programs
	Prerequisites
	Disk space
	Operating environments
	MQSeries environment
	Language compilers

	Installation on AIX
	Installation
	Manual installation
	Using amtInstall
	Removing the AMI

	Setting the runtime environment
	Java programs

	Directory structure (AIX)

	Installation on HP-UX
	Installation
	Manual installation
	Using amtInstall
	Removing the AMI

	Setting the runtime environment
	Java programs

	Directory structure (HP-UX)

	Installation on Sun Solaris
	Installation
	Manual installation
	Using amtInstall
	Removing the AMI

	Setting the runtime environment
	Java programs

	Directory structure (Solaris)

	Installation on Windows
	Installation
	Removing the AMI

	Setting the runtime environment
	Directory structure (Windows)

	Installation on OS/390
	Installation
	Setting the runtime environment
	Batch and RRS-batch
	IMS
	CICS

	Unicode character conversion
	Batch, RRS-batch, IMS
	CICS

	Directory structure (OS/390)

	Local host and repository files (Unix and Windows)
	Default location
	Default names
	Overriding the default location and names
	Local host file
	Repository file

	Local host and repository files (OS/390)
	Batch, RRS-batch, IMS
	CICS
	Local host file
	Repository file
	Repository and local host caches
	Generating caches
	Using a cache
	Cache generator messages

	The administration tool
	Installation
	Operation

	Connecting to MQSeries
	Using MQSeries Integrator Version 1
	Using MQSeries Publish/Subscribe
	Using MQSeries Integrator Version 2
	Migrating to MQSeries Integrator V2 from V1 and MQSeriesPublish/Subscribe
	Creating default MQSeries objects

	The sample programs
	Sample programs for Unix and Windows
	Running the Unix and Windows sample programs
	MQSeries objects
	Repository and host files
	MQSeries Publish/Subscribe broker
	Setting the runtime environment
	Running the C and C++ samples
	Running the Java samples

	Sample programs for OS/390
	Running the sample programs (OS/390)
	Building the sample programs
	MQSeries objects
	Repository and host files
	MQSeries Publish/Subscribe broker
	Setting the runtime environment
	File name input for the file transfer samples
	Running the batch samples
	Running the CICS samples
	Running the IMS samples

	Chapter 18. Defining services and policies
	Services and policies
	System provided definitions
	System default objects

	Service definitions
	Service point (sender/receiver)
	Distribution list
	Subscriber
	Publisher

	Policy definitions
	Initialization attributes
	General attributes
	Send attributes
	Receive attributes
	Subscribe attributes
	Publish attributes

	Chapter 19. Problem determination
	Using trace (Unix and Windows)
	Trace filename and directory
	Commands on UNIX
	Commands on Windows

	C++ and Java
	Example trace

	Using trace (OS/390)
	Formatted Trace
	Control of formatted trace
	GTF Trace
	Control of GTF Trace

	When your AMI program fails
	Reason Codes
	First failure symptom report (Unix and Windows)
	First failure symptom report (OS/390)
	Other sources of information
	Common causes of problems

	Part 8. Appendixes
	Appendix A. Reason codes
	Reason code: OK
	Reason code: Warning
	Reason code: Failed

	Appendix B. Constants
	The constants
	AMB (Boolean constants)
	AMBRW (Browse constants)
	AMCC (Completion codes)
	AMDEF (Service and policy definitions)
	AMDT (Definition type constants)
	AMENC (Encoding constants)
	AMFB (Feedback codes)
	AMFMT (Format constants)
	AMGF and AMGRP (Group status constants)
	AMH (Handle constants)
	AMLEN (String length constants)
	AMMCD (Message Content Descriptor tag names)
	AMMT (Message types)
	AMPS (Publish/subscribe)
	Publish/subscribe tag names
	Publish/subscribe tag values
	Other publish/subscribe constants

	AMRC (Reason codes)
	AMSD (System default names and handle synonyms)
	Default names
	Default handle synonyms

	AMWT (Wait time constant)

	Appendix C. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	HTML format
	Portable Document Format (PDF)
	BookManager® format
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet

	Index
	Sending your comments to IBM

