<|lI!

MQSeries™

Application Messaging Interface

SC34-5604-04

Note!
Before using this information and the product it supports, be sure to read the general information under w

mﬁ—nn—pw “ .

Fifth edition (November 2000)

This edition applies to IBM MQSeries Application Messaging Interface Version 1.1, and to any subsequent releases
and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

FiguresXv

Tables . Xvii
About thisbookxix
Who this book is for xix
What you need to know to understand thls book xix
Structure of this book.o Lxix
Appearance of text in this book D O

Summary of changes . . . e oe .. XX
Changes for this edition (SC34-5604- 04) .o Lxxd
Changes for the fourth edition (SC34-5604-03) . . xxi
Changes for the third edition (SC34-5604-02) . . . xxi

Part 1.

.
—r

Introduction.

Chapter 1. Introduction
Main components of the AMI.
Sending and receiving messages .
Interoperability
Programming languages
Description of the AMI .
Messages
Services .
Policies .
Application Messaglng Interface model
Further information .

N O R W W w W

Part2. TheCinterface9

Chapter 2. Using the Application
Messaging InterfaceinC. 13

Structure of the AMI13
Using the repository14
System default objects.14

Writing applicationsinC.16
Opening and closing a session16
Sending messages16
Receiving messages.18
Request/response messaging19
File transfer21
Publish/subscribe messaging22
Using name/value elements.24
Error handling26
Transaction support26
Sending group messages26
Other considerations . . L. .27
Using the AMI OAMAS subset L. .. 028

Building C applications29
AMI include file.29
Data types. . . . L)
Initial values for structures A

© Copyright IBM Corp. 1999, 2000

C applications on AIX.

C applications on HP-UX.

C applications on Solaris .

C applications on Windows .
C applications on OS/390

Chapter 3. The C high-level interface
Overview of the C high-level interface

Initialize and terminate

Sending messages .

Receiving messages.

File transfer .

Publish /subscribe .

Transaction support .
Reference information for the C hlgh level 1nterface
amBackout

Parameters
amBegin

Parameters
amBrowseMsg

Parameters

Usage notes
amCommit

Parameters
amlnitialize

Parameters
amPublish .

Parameters
amReceiveFile

Parameters

Usage notes
amReceiveMsg

Parameters

Usage notes
amReceivePublication .

Parameters

Usage notes
amReceiveRequest .

Parameters

Usage notes
amSendFile

Parameters

Usage notes
amSendMsg .

Parameters
amSendRequest .

Parameters
amSendResponse

Parameters
amSubscribe .

Parameters
amTerminate .

Parameters
amUnsubscribe .

Parameters

. 30
.31
. 33
. 34
. 34

37
. 38
. 38
. 38
. 38
. 38
. 38
. 38

39

. 40
. 40
.41
.41
.42
. 42
. 43
. 44
. 44
. 45
. 45
. 46
. 46
. 47
. 47
. 48
. 49
. 49
. 49
. 51
. 51
. 52
. 53
. 53
. 53
. 55
. 55
. 55
. 56
. 56
. 57
. 57
. 58
. 58
. 59
. 59
. 60
. 60
. 61
. 61

iii

Usage notes

. 61

Chapter 4. C object interface overview 63

Session interface functions
Session management
Create objects.

Get object handles .

Delete objects. .
Transactional processing .
Error handling .

Message interface functions .

Get values.

Set values .

Reset values .

Read and write data
Publish/subscribe topics .
Publish/subscribe filters .

Publish /subscribe name/value elements.

Error handling .

Publish/subscribe helper macros .
Sender interface functions

Open and close .

Send.

Get values.

Error handling .
Receiver interface functions .

Open and close .

Receive and browse

Get values.

Set values .

Error handling
Distribution list interface functlons

Open and close .

Send.

Get values.

Error handling .
Publisher interface functions.

Open and close .

Publish .

Get values.

Error handling
Subscriber interface funct1ons

Open and close .

Broker messages.

Get values.

Set value

Error handling
Policy interface functions .

Get values.

Set value

Error handling
High-level functions

. 64
. 64
. 64
. 64
. 65
. 65
. 65
. 66
. 66
. 66
. 66
. 66
. 67
. 67
. 67
. 67
. 67
. 68
. 68
. 68
. 68
. 68
. 69
. 69
. 69
. 69
. 69
. 69
.70
. 70
. 70
. 70
. 70
.71
.71
.71
.71
.71
.72
.72
.72
.72
.72
.72
.73
.73
.73
.73
. 74

Chapter 5. C object interface reference 77

Session interface functions
amSesBegin
amSesClearErrorCodes
amSesClose
amSesCommit
amSesCreate .
amSesCreateDistList

iV MQSeries Application Messaging Interface

. 78
.78
. 78
. 78
.79
.79
.79

amSesCreateMessage .
amSesCreatePolicy .
amSesCreatePublisher .
amSesCreateReceiver .
amSesCreateSender .
amSesCreateSubscriber
amSesDelete .
amSesDeleteDistList
amSesDeleteMessage .
amSesDeletePolicy .
amSesDeletePublisher .
amSesDeleteReceiver
amSesDeleteSender .
amSesDeleteSubscriber
amSesGetDistListHandle .
amSesGetLastError .
amSesGetMessageHandle.
amSesGetPolicyHandle
amSesGetPublisherHandle
amSesGetReceiverHandle.
amSesGetSenderHandle .
amSesGetSubscriberHandle .
amSesOpen
amSesRollback

Message interface functions .

amMsgAddElement
amMsgAddFilter
amMsgAddTopic
amMsgClearErrorCodes
amMsgDeleteElement .
amMsgDeleteFilter .
amMsgDeleteNamedElement
amMsgDeleteTopic .
amMsgGetCCSID
amMsgGetCorrelld .
amMsgGetDataLength.
amMsgGetDataOffset .
amMsgGetElement .
amMsgGetElementCCSID.
amMsgGetElementCount .
amMsgGetEncoding
amMsgGetFilter .
amMsgGetFilterCount .
amMsgGetFormat
amMsgGetGroupStatus
amMsgGetLastError
amMsgGetMsgld
amMsgGetName.
amMngetNamedElement
amMsgGetNamedElementCount
amMsgGetReportCode.
amMsgGetTopic
amMsgGetType.
amMsgGetTopicCount
amMsgReadBytes .
amMsgReset.
amMsgSetCCSID .
amMsgSetCorrelld.
amMsgSetDataOffset .
amMsgSetElementCCSID
amMsgSetEncoding

. 80
. 80
. 80
.81
. 81
. 81
. 83
. 83
. 83
. 84
. 84
. 84
. 85
. 85
. 85
. 86
. 86
. 87
. 87
. 87
. 87
. 88
. 88
. 88
. 90
.90
.91
.91
.91
.92
.92
.92
. 93
.93
. 93
. 94
. 94
. 94
. 95
. 95
.95
. 96
. 96
. 96
.97
. 97
. 98
. 98
. 98
.99
.. 99
. 100
. 100
. 100
. 101
. 101
. 101
. 102
. 102
. 102
. 103

amMsgSetFormat .
amMsgSetGroupStatus
amMsgWriteBytes . .
Message interface helper macros .
AmMsgAddStreamName
AmMsgGetPubTimeStamp .
AmMsgGetStreamName .
Sender interface functions .
amSndClearErrorCodes .
amSndClose .
amSndGetCCSID .
amSndGetEncoding
amSndGetLastError
amSndGetName
amSndOpen .
amSndSend .
amSndSendFile .
Usage notes . .
Receiver interface functlons.
amRcvBrowse
amRcvBrowseSelect
amRcvClearErrorCodes .
amRcvClose .
amRcvGetDefnType
amRcvGetLastError
amRcvGetName
amRcvGetQueueName
amRcvOpen .
amRcvReceive .
amRcvReceiveFile .
amRcvSetQueueName

Distribution list interface functions .

amDstClearErrorCodes .
amDstClose .
amDstGetLastError
amDstGetName .
amDstGetSenderCount .
amDstGetSenderHandle .
amDstOpen .
amDstSend .
amDstSendFile .

Usage notes .

Publisher interface functlons
amPubClearErrorCodes .
amPubClose.
amPubGetCCSID .
amPubGetEncoding
amPubGetLastError
amPubGetName
amPubOpen.
amPubPublish . .

Subscriber interface functions .
amSubClearErrorCodes .
amSubClose .
amSubGetCCSID .
amSubGetDefnType
amSubGetEncoding
amSubGetLastError
amSubGetName
amSubGetQueueName
amSubOpen .

. 103
. 104
. 104
. 105
. 105
. 105
. 105
. 107
. 107
. 107
. 108
. 108
. 109
. 109
. 109
. 110
. 111
. 111
. 112
. 112
. 114
. 115
. 116
. 116
. 117
. 117
. 118
. 118
. 119
. 121
. 122
. 123
. 123
. 123
. 123
. 124
. 124
. 124
. 125
. 126
. 127
. 127
. 128
. 128
. 128
. 128
. 128
. 129
. 130
. 130
. 131
. 132
. 132
. 132
. 132
. 132
. 133
. 134
. 134
. 134
. 135

amSubReceive . . 136
amSubSetQueueName . 136
amSubSubscribe . 137
amSubUnsubscribe . 138
Policy interface functions . 139
amPolClearErrorCodes . . 139
amPolGetLastError . 139
amPolGetName. . 139
amPolGetWaitTime . 140
amPolSetWaitTime. . 140
Part 3. The C++ interface . 141
Chapter 6. Using the Application
Messaging Interface in C++ . 145
Structure of the AMI . . 145
Base classes . . 145
Interface and helper classes . 146
Exception classes . . 146
Using the repository . . 146
System default objects . 146
Writing applications in C++ . 147
Creating and opening objects . . 147
Deleting objects . 148
Sending messages . . 148
Receiving messages . 149
Request/response messaging . . 150
File transfer 151
Publish/subscribe messagmg . 152
Using AmElement objects . 153
Error handling . . 153
Transaction support . . 155
Sending group messages . 156
Other considerations . . 156
Building C++ applications . . 158
AMI include files . . 158
C++ applications on AIX . 158
C++ applications on HP-UX . 159
C++ applications on Solaris. . 160
C++ applications on Windows. . 162
Chapter 7. C++ interface overview . 163
Base classes . . 163
Helper classes . . 163
Exception classes . . 163
AmSessionFactory . . 164
Constructor . . 164
Session factory management . 164
Create and delete session . 164
AmSession .. . 165
Session management . . 165
Create objects . 165
Delete objects . . 165
Transactional processing. . 165
Error handling . . 166
AmMessage . . 167
Get values . 167
Set values . 167
Reset values. . . 167
Read and write data . . 167

Contents V

Publish/subscribe topics. 168

Publish/subscribe filters. 168
Publish/subscribe name/value elements . . . 168
Error handling168
AmSender169
Openandclose.169
Send169
Send file169
Getvalues169
Error handling169
AmReceiver.170
Openandclose.170
Receive and browse170
Receive file170
Getvalues170
Setvalue.170
Error handling170
AmbDistributionlist171
Openandclose.17
Send17
Send file17
Getvalues17
Error handling17
AmPublisher172
Openand close.172
Publish172
Getvalues172
Error handling172
AmSubscriber173
Openandclose.173
Broker messages173
Getvalues173
Setvalue.173
Error handling173
AmPolicy.174
Policy management174
Error handling174
Helper classes175
AmBytes.175
AmElement175
AmObject175
AmStatus.175
AmString.176
Exception classes177
AmException177
AmErrorException. 177
AmWarningException177
Chapter 8. C++ interface reference 179
Baseclasses.179
Helper classes179
Exception classes179
AmSessionFactory.180
AmSessionFactory.180
createSession180
deleteSession180
getFactoryName180
getLocalHost180
getRepository180
getTraceLevel180
getTraceLocation180

Vi MQSeries Application Messaging Interface

setLocalHost.
setRepository
setTraceLevel
setTraceLocation

AmSession

begin
clearErrorCodes
close
commit

createDistributionList.

createMessage .
createPolicy .
createPublisher .
createReceiver .
createSender.
createSubscriber

deleteDistributionList.

deleteMessage .
deletePolicy .
deletePublisher .
deleteReceiver .
deleteSender.
deleteSubscriber
enableWarnings
getLastErrorStatus .
getName .
getTraceLevel
getTraceLocation
open .
rollback

AmMessage .

addElement .
addFilter .
addTopic .
clearErrorCodes
deleteElement .
deleteFilter .

deleteNamedElement.

deleteTopic .
enableWarnings
getCCSID.
getCorrelationld
getDataLength .
getDataOffset
getElement . .
getElementCCSID .
getElementCount .
getEncoding .
getFilter .
getFilterCount .
getFormat
getGroupStatus.
getLastErrorStatus .
getMessageld
getName
getNamedElement.

getNamedElementCount.

getReportCode .
getTopic .
getTopicCount .
getType

. 180
. 181
. 181
. 181
. 182
. 182
. 182
. 182
. 182
. 182
. 183
. 183
. 183
. 183
. 184
. 184
. 184
. 184
. 184
. 185
. 185
. 185
. 185
. 185
. 185
. 185
. 186
. 186
. 186
. 186
. 187
. 187
. 188
. 188
. 188
. 188
. 188
. 188
. 188
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 190
. 190
. 190
. 190
. 190
. 190
. 191
. 191
. 191
. 191
. 191
. 191
. 191

readBytes.

reset

setCCSID.
setCorrelationld
setDataOffset

setElementCCSID .

setEncoding .
setFormat
setGroupStatus .
writeBytes
AmSender

clearErrorCodes
close .
enableWarnings
getCCSID.
getEncoding .

getLastErrorStatus.

getName .

open

send

sendFile .
AmReceiver .

browse .

clearErrorCodes

close .

enableWarnings

getDefinitionType .
getLastErrorStatus .

getName .
getQueueName.
open
receive
receiveFile
setQueueName .
AmDistributionList
clearErrorCodes
close .
enableWarnings

getLastErrorStatus .

getName .
getSender
getSenderCount
open
send
sendFile .
AmPublisher
clearErrorCodes
close .
enableWarnings
getCCSID.
getEncoding .

getLastErrorStatus .

getName .

open

publish
AmSubscriber .

clearErrorCodes

close .

enableWarnings

getCCSID.

getDefinitionType .

. 192
. 192
. 192
. 192
. 192
. 192
. 193
. 193
. 193
. 193
. 195
. 195
. 195
. 195
. 195
. 195
. 196
. 196
. 196
. 196
. 196
. 198
. 198
. 199
. 199
. 199
. 199
. 199
. 199
. 200
. 200
. 200
. 200
. 201
. 202
. 202
. 202
. 202
. 202
. 202
. 202
. 202
. 202
. 203
. 203
. 204
. 204
. 204
. 204
. 204
. 204
. 204
. 204
. 204
. 205
. 206
. 206
. 206
. 206
. 206
. 206

getEncoding .
getLastErrorStatus .
getName .
getQueueName.
open
receive .
setQueueName .
subscribe .
unsubscribe .
AmPolicy.
clearErrorCodes
enableWarnings
getLastErrorStatus .
getName .
getWaitTime.
setWaitTime .
AmBytes .
cmp -
constructors .
cpy. .
dataPtr
destructor
length .
operators .
pad.
AmElement .
AmElement .
getName .
getValue .
getVersion
setVersion
toString
AmObject
clearErrorCodes
getLastErrorStatus .
getName .
AmStatus.
AmStatus. ..
getCompletionCode .
getReasonCode.
getReasonCode2
toString
AmString.
cat . .
cmp -
constructors .
contains .
cpy .- .
destructor
operators .
pad.
split
strip
length .
text.
truncate .
AmEXxception
getClassName .
getCompletionCode .
getMethodName
getReasonCode.

Contents

. 206
. 206
. 207
. 207
. 207
. 208
. 208
. 209
. 209
. 210
. 210
. 210
. 210
. 210
. 210
. 210
.21
.21
.21
. 212
. 212
. 212
. 212
. 212
. 212
. 213
. 213
. 213
. 213
. 213
. 213
. 213
. 214
. 214
. 214
. 214
. 215
. 215
. 215
. 215
. 215
. 215
. 216
. 216
. 216
. 216
. 216
. 216
. 216
. 217
. 217
. 217
. 217
. 217
. 217
. 217
. 218
. 218
. 218
. 218
. 218

vii

getSource. . 218
toString . 218
AmErrorException. . 219
getClassName . . . 219
getCompletionCode . . 219
getMethodName . 219
getReasonCode. . 219
getSource. . 219
toString . 219
AmWarnngxceptlon . 220
getClassName . . . 220
getCompletionCode . . 220
getMethodName . 220
getReasonCode . . 220
getSource. . 220
toString . 220
Part 4. The COBOL interface . . . 221
Chapter 9. Using the Application
Messaging Interface in COBOL. . 225
Structure of the AMI . . 225
Using the repository . . 226
System default objects . 226
Writing applications in COBOL . 228
Opening and closing a session. . 228
Sending messages . . 228
Receiving messages . 230
Request/response messaging . . 232
File transfer . . . 234
Publish/subscribe messagmg . 234
Using name/value elements . 236
Error handling . . 238
Transaction support . . 238
Sending group messages . 238
Other considerations . . . 239
Building COBOL applications . . 240
COBOL applications on OS/390 . . 240
Chapter 10. The COBOL high-level
interface . 243
Overview of the COBOL hlgh level mterface . 244
Initialize and terminate . R . 244
Sending messages . . 244
Receiving messages . 244
File transfer . . 244
Publish/subscribe . . 244
Transaction support . . 244
Reference information for the COBOL hlgh level
interface . .
AMHBACK (backout) . 247
AMHBEGIN (begin) . . 248
AMHBRMS (browse message) . 249
Usage notes 250
AMHCMIT (commit) . . 251
AMHINIT (initialize) . . 252
AMHPB (publish) . . 253
AMHRCEFL (receive file) . . 254
Usage notes . . 255
AMHRCMS (receive message) . 256

viii MQSeries Application Messaging Interface

Usage notes . .
AMHRCPB (receive publ1cat10n) .
Usage notes .
AMHRCRQ (receive request)
Usage notes . .
AMHSNEFL (send file)
Usage notes .
AMHSNMS (send message)
AMHSNRQ (send request) .
AMHSNRS (send response)
AMHSB (subscribe)
AMHTERM (terminate) .
AMHUN (unsubscribe) .
Usage notes .

Chapter 11. COBOL object interface
overview .
Session interface functions .
Session management .
Create objects
Get object handles.
Delete objects .
Transactional processing.
Error handling .
Message interface functlons
Get values
Set values
Reset values. .
Read and write data .
Publish/subscribe topics.
Publish/subscribe filters.
Publish /subscribe name/value elements
Error handling . .
Sender interface functions .
Open and close.
Send
Get values
Error handling . .
Receiver interface functions
Open and close.
Receive and browse .
Get values
Set values
Error handling .
Distribution list interface functlons .
Open and close.
Send
Get values
Error handling .
Publisher interface functlons
Open and close.
Publish
Get values
Error handling . .
Subscriber interface functlons .
Open and close.
Broker messages
Get values
Set value .
Error handling .
Policy interface functions

. 256
. 258
. 259
. 260
. 260
. 262
. 262
. 263
. 264
. 265
. 266
. 267
. 268
. 268

. 269
. 270
. 270
. 270
. 270
. 271
. 271
. 271
. 272
. 272
. 272
. 272
. 272
. 273
. 273
. 273
. 273
. 274
. 274
. 274
. 274
. 274
. 275
. 275
. 275
. 275
. 275
. 275
. 276
. 276
. 276
. 276
. 276
. 277
. 277
. 277
. 277
. 277
. 278
. 278
. 278
. 278
. 278
. 278
. 279

Get values

Set value .

Error handling .
High-level functions .

Chapter 12. COBOL object interface

reference .

Session interface funct1ons .

AMSEBG (begin) . .
AMSECLEC (clear error codes)
AMSECL (close) .o
AMSECM (commit)

AMSECR (create) .

AMSECRDL (create d1str1but1on l1st)
AMSECRMS (create message) .
AMSECRPO (create policy).
AMSECRPB (create publisher).
AMSECRRC (create receiver) .
AMSECRSN (create sender)
AMSECRSB (create subscriber)
AMSEDL (delete) .

AMSEDLDL (delete d1str1but10n l1st)
AMSEDLMS (delete message) .
AMSEDLPO (delete policy).
AMSEDLPB (delete publisher).
AMSEDLRC (delete receiver) .
AMSEDLSN (delete sender)
AMSEDLSB (delete subscriber)
AMSEGHDL (get distribution list handle)
AMSEGTLE (get last error codes).
AMSEGHMS (get message handle) .
AMSEGHPO (get policy handle) .
AMSEGHPB (get publisher handle) .
AMSEGHRC (get receiver handle)
AMSEGHSN (get sender handle) .
AMSEGHSB (get subscriber handle) .
AMSEOP (open) e
AMSERB (rollback)

Message interface functions
AMMSADEL (add element)
AMMSADEFI (add filter) .
AMMSADTO (add topic) .
AMMSCLEC (clear error codes) .
AMMSDEEL (delete element) .
AMMSDEFI (delete filter)
AMMSDENE (delete named element)
AMMSDETO (delete topic) . .
AMMSGELC (get element CCSID)
AMMSGTCC (get CCSID) .
AMMSGTCI (get correl ID).
AMMSGTDL (get data length).
AMMSGTDO (get data offset) .
AMMSGTEL (get element) .
AMMSGTEC (get element count)
AMMSGTEN (get encoding)
AMMSGTEC (get filter count) .
AMMSGTFI (get filter)

AMMSGTEFO (get format)
AMMSGTGS (get group status)
AMMSGTLE (get last error)
AMMSGTMI (get message ID).

. 279
. 279
. 279
. 280

. 283
. 284
. 284
. 284
. 285
. 285
. 285
. 286
. 286
. 286
. 287
. 287
. 288
. 288
. 289
. 289
. 289
. 290
. 290
. 290
. 290
. 291
. 291
. 291
. 292
. 292
. 293
. 293
. 293
. 294
. 294
. 294
. 296
. 296
. 297
. 297
. 298
. 298
. 298
. 299
. 299
. 299
. 300
. 300
. 300
. 301
. 301
. 301
. 302
. 302
. 302
. 303
. 303
. 304
. 304

AMMSGTNA (get name)
AMMSGTNE (get named element)

AMMSGTNC (get named element count) .

AMMSGTRC (get report code)
AMMSGTTO (get topic) .
AMMSGTTC (get topic count).
AMMSGTTY (get type) .
AMMSREBY (read bytes)
AMMSRS (reset) .
AMMSSTCC (set CCSID)
AMMSSTCI (set correl ID) .
AMMSSTDO (set data offset) .
AMMSSELC (set element ccsid)
AMMSSTEN (set encoding)
AMMSSTEFO (set format)
AMMSSTGS (set group status).
AMMSWRBY (write bytes) .

Sender interface functions .
AMSNCLEC (clear error codes)
AMSNCL (close) . . .
AMSNGTCC (get CCSID)
AMSNGTEN (get encoding)
AMSNGTLE (get last error)
AMSNGTNA (get name)
AMSNORP (open) .

AMSNSN (send) .
AMSNSNEFL (send file) .

Receiver interface functions
AMRCBR (browse) .
AMRCBRSE (browse select10n message)
AMRCCLEC (clear error codes)
AMRCCL (close) .
AMRCGTDT (get def1n1t1on type)
AMRCGTLE (get last error)
AMRCGTNA (get name)
AMRCGTON (get queue name)
AMRCOP (open) . .
AMRCRC (receive)

AMRCRCFL (receive file)
AMRCSTQN (set queue name)

Distribution list interface functions .
AMDLCLEC (clear error codes)
AMDLCL (close)

AMDLGTLE (get last error)
AMDLGTNA (get name)
AMDLGTSC (get sender count)
AMDLGTSH (get sender handle) .
AMDLOP (open) . .
AMDLSN (send) .
AMDLSNEFL (send file) .

Usage notes .

Publisher interface funct10ns
AMPBCLEC (clear error codes)
AMPBCL (close) .
AMPBGTCC (get CCSID)
AMPBGTEN (get encoding)
AMPBGTLE (get last error).
AMPBGTNA (get name).
AMPBOP (open)

AMPBPB (publish)

Subscriber interface functions .

Contents

. 305
. 305
. 306
. 306
. 307
. 307
. 307
. 308
. 308
. 309
. 309
. 309
. 310
. 310
. 310
. 311
. 311
. 313
. 313
. 313
. 314
. 314
. 314
. 315
. 315
. 316
. 316
. 318
. 318
. 319
. 321
. 321
. 321
. 322
. 322
. 323
. 323
. 323
. 325
. 326
. 327
. 327
. 327
. 327
. 328
. 328
. 328
. 329
. 329
. 330
. 331
. 332
. 332
. 332
. 332
. 333
. 333
. 333
. 334
. 334
. 336

ix

AMSBCLEC (clear error codes) . 336
AMSBCL (close) . . 336
AMSBGTCC (get CCSID) . 336
AMSBGTDT (get definition type). . 337
AMSBGTEN (get encoding) . 337
AMSBGTLE (get last error) . . 337
AMSBGTNA (get name). . . 338
AMSBGTON (get queue name) . 338
AMSBOP (open) . 339
AMSBRC (receive). . . 339
AMSBSTON (set queue name) . 340
AMSBSB (subscribe) . . 340
AMSBUN (unsubscribe) . . 341
Policy interface functions . 342
AMPOCLEC (clear error codes) . 342
AMPOGTLE (get last error) . 342
AMPOGTNA (get name) . 342
AMPOGTWT (get wait time) . . 343
AMPOSTWT (set wait time) . 343
Part 5. The Java interface . . 345
Chapter 13. Using the Application
Messaging Interface in Java . . 349
Structure of the AMI . . 349
Base classes . . 349
Interface and helper classes . 349
Exception classes . . 350
Using the repository . . 350
System default objects . 350
Writing applications in Java . 351
Creating and opening objects . . 351
Sending messages . . 351
Receiving messages . 353
Request/response messaging . . 354
File transfer 355
Publish/subscribe messaglng . 355
Using AmElement objects . 356
Error handling . . 357
Transaction support . . 358
Sending group messages . 359
Other considerations . . 359
Building Java applications . . 361
AMI package for Java . 361
Running Java programs . . 361
Chapter 14. Java interface overview 363
Base classes . . 363
Helper classes . . 363
Exception classes . . 363
AmSessionFactory . . 364
Constructor . . . 364
Session factory management . 364
Create session . . 364
AmSession . . . 365
Session management . 365
Create objects . . 365
Transactional processing. . 365
Error handling . . 365
AmMessage . . 366

X MQSeries Application Messaging Interface

Get values
Set values
Reset values.

Read and write data .

Publish /subscribe filters.
Publish/subscribe topics.
Publish/subscribe name/value elements

Error handling .
AmSender

Open and close.

Send . .

Send file .

Get values

Error handling .
AmReceiver .

Open and close.

Receive and browse .

Receive file .

Get values

Set value .

Error handling .
AmbDistributionList

Open and close.

Send

Send file .

Get values

Error handling .
AmPublisher

Open and close.

Publish

Get values

Error handling .
AmSubscriber .

Open and close.

Broker messages

Get values

Set value .

Error handling .
AmPolicy. .

Policy management

Error handling .
Helper classes .

AmConstants

AmElement .

AmObject

AmStatus.
Exception classes .

AmException

AmErrorException.

AmWarningException

Chapter 15. Java interface reference

Base classes .
Helper classes .
Exception classes .

AmSessionFactory .
AmSessionFactory .
createSession
getFactoryName
getLocalHost
getRepository

. 366
. 366
. 366
. 366
. 366
. 367
. 367
. 367
. 368
. 368
. 368
. 368
. 368
. 368
. 369
. 369
. 369
. 369
. 369
. 369
. 369
. 370
. 370
. 370
. 370
. 370
. 370
. 371
. 371
. 371
. 371
. 371
. 372
. 372
. 372
. 372
. 372
. 372
. 373
. 373
. 373
. 374
. 374
. 374
. 374
. 374
. 375
. 375
. 375
. 375

377
. 377
. 377
. 377
. 378
. 378
. 378
. 378
. 378
. 378

getTraceLevel
getTraceLocation
setLocalHost.
setRepository
setTraceLevel
setTraceLocation
AmSession .
begin
clearErrorCodes
close
commit o
createDistributionList.
createMessage .
createPolicy .
createPublisher .
createReceiver .
createSender.
createSubscriber
enableWarnings
getLastErrorStatus .
getName .
getTraceLevel
getTraceLocation
open
rollback
AmMessage .
addElement .
addFilter .
addTopic .
clearErrorCodes
deleteElement .
deleteFilter . .
deleteNamedElement .
deleteTopic .
enableWarnings
getCCSID.
getCorrelationld
getDataLength .
getDataOffset
getElement . .
getElementCount .
getEncoding .
getFilter .
getFilterCount .
getFormat
getGroupStatus.
getLastErrorStatus.
getMessageld
getName
getNamedElement.
getNamedElementCount.
getReportCode .
getTopic .
getTopicCount .
getType
readBytes.
reset
setCCSID.
setCorrelationld
setDataOffset
setEncoding .

. 378
. 378
. 378
. 379
. 379
. 379
. 380
. 380
. 380
. 380
. 380
. 380
. 380
. 381
. 381
. 381
. 382
. 382
. 382
. 382
. 382
. 382
. 382
. 382
. 383
. 384
. 384
. 385
. 385
. 385
. 385
. 385
. 385
. 385
. 386
. 386
. 386
. 386
. 386
. 386
. 386
. 386
. 387
. 387
. 388
. 388
. 388
. 388
. 388
. 389
. 389
. 389
. 389
. 389
. 389
. 389
. 390
. 390
. 390
. 390
. 390

setFormat
setGroupStatus .
writeBytes

AmSender

clearErrorCodes
close .
enableWarnings
getCCSID.
getEncoding .
getLastErrorStatus .
getName .

open

send

sendFile .

AmReceiver .

browse .
clearErrorCodes
close .
enableWarnings
getDefinitionType .
getLastErrorStatus .
getName .
getQueueName.
open

receive

receiveFile
setQueueName .

AmbDistributionList

clearErrorCodes
close .
enableWarnings
getLastErrorStatus.
getName .
getSender
getSenderCount
open

send

sendFile .

AmPublisher

clearErrorCodes
close .
enableWarnings
getCCSID.
getEncoding .
getLastErrorStatus .
getName .

open

publish

AmSubscriber .

clearErrorCodes
close .
enableWarnings
getCCSID.
getDefinitionType .
getEncoding .
getLastErrorStatus .
getName .
getQueueName.
open

receive .
setQueueName .

Contents

. 391
. 391
. 391
. 392
. 392
. 392
. 392
. 392
. 392
. 393
. 393
. 393
. 393
. 393
. 395
. 395
. 396
. 396
. 396
. 396
. 396
. 396
. 397
. 397
. 397
. 397
. 398
. 399
. 399
. 399
. 399
. 399
. 399
. 399
. 399
. 399
. 400
. 400
. 401
. 401
. 401
. 401
. 401
. 401
. 401
. 401
. 401
. 402
. 403
. 403
. 403
. 403
. 403
. 403
. 403
. 403
. 404
. 404
. 404
. 405
. 405

xi

subscribe .
unsubscribe .
AmPolicy. .
clearErrorCodes
enableWarnings
getLastErrorStatus .
getName .
getWaitTime.
setWaitTime .
AmConstants
AmElement .
AmElement .
getName .
getValue .
getVersion
setVersion
toString
AmObject
clearErrorCodes
getLastErrorStatus .
getName .
AmStatus.
AmStatus.
getCompletlonCode
getReasonCode .
getReasonCode2
toString
AmEXxception
getClassName . .
getCompletionCode .
getMethodName
getReasonCode.
getSource.
toString
AmErrorException.
getClassName . .
getCompletionCode .
getMethodName
getReasonCode.
getSource.
toString .
AmWarmngExceptlon
getClassName . .
getCompletionCode .
getMethodName
getReasonCode.
getSource.
toString

. 406
. 406
. 407
. 407
. 407
. 407
. 407
. 407
. 407
. 408
. 409
. 409
. 409
. 409
. 409
. 409
. 409
. 410
. 410
. 410
. 410
. 411
. 411
. 411
. 411
. 411
. 411
. 412
. 412
. 412
. 412
. 412
. 412
. 412
. 413
. 413
. 413
. 413
. 413
. 413
. 413
. 414
. 414
. 414
. 414
. 414
. 414
. 414

Part 6. 0OS/390 Subsystems 415

Chapter 16. Writing appllcatlons for
0S/390 subsystems

Writing IMS applications using AMI.
Writing CICS applications using AMI
Writing batch applications using AMI .
Writing RRS-batch applications using AMI
RRS availability .o

Xii MQSeries Application Messaging Interface

. 47
. 417
. 417
. 418
. 418
. 418

Part 7. Setting up an AMI
installation.

Chapter 17. Installation and sample

programs .
Prerequisites.
Disk space .
Operating env1ronments
MQSeries environment .
Language compilers .
Installation on AIX
Installation . .o
Setting the runtime env1ronment .
Directory structure (AIX)
Installation on HP-UX
Installation . .
Setting the runtime env1ronment .
Directory structure (HP-UX)
Installation on Sun Solaris .
Installation . .
Setting the runtime env1ronment .
Directory structure (Solaris)
Installation on Windows.
Installation . .
Setting the runtime env1ronment .
Directory structure (Windows).
Installation on OS/390
Installation . .
Setting the runtime env1ronment
Unicode character conversion .
Directory structure (OS/390)
Local host and repository files (Unix and
Windows)
Default locatlon
Default names .
Overriding the default locatlon and names
Local host file .
Repository file . .
Local host and repository files (OS / 390)
Batch, RRS-batch, IMS
CICS . .
Local host file .
Repository file .
Repository and local host Caches
The administration tool .
Installation .
Operation
Connecting to MQSerles
Using MQSeries Integrator Versmn 1
Using MQSeries Publish/Subscribe .
Using MQSeries Integrator Version 2

Migrating to MQSeries Integrator V2 from V1

and MQSeries Publish/Subscribe .
Creating default MQSeries objects

The sample programs . .
Sample programs for Unix and Wmdows .
Running the Unix and Windows sample
programs. .
Sample programs for OS / 390
Running the sample programs (OS/390)

. 419

. 421

. 421
. 421
. 421
. 422
. 422
. 423
. 423
. 424
. 425
. 427
. 427
. 428
. 429
. 431
. 431
. 432
. 433
. 435
. 435
. 435
. 436
. 438
. 438
. 438
. 438
. 439

. 441
. 441
. 441
. 441
. 442
. 442
. 443
. 443
. 443
. 443
. 444
. 444
. 446
. 446
. 446
. 447
. 447
. 447
. 447

. 449
. 449
. 450
. 450

. 451
. 452
. 452

Chapter 18. Defining services and
policies. 455

Services and policies45
System provided def1n1t10ns45
System default objects456

Service definitions.458
Service point (sender/ recerver)458
Distribution list.460
Subscriber460
Publisher.460

Policy definitions46l
Initialization attributes 461
General attributes462
Send attributes463
Receive attributes465
Subscribe attributes 466
Publish attributes466

Chapter 19. Problem determination 467

Using trace (Unix and Windows). 467
Trace filename and directory 467
C++andJava469
Example trace470

Using trace (OS/390).474
Formatted Trace474
Control of formatted trace 474
GTF Trace47
Control of GTF Trace N 4}

When your AMI program fails477
Reason Codes 477
First failure symptom report (Unlx and
Windows) 477
First failure symptom report (OS/ 390) .o 477
Other sources of information478
Common causes of problems478

Part 8. Appendixes 479

Appendix A. Reason codes 481

Reason code: OK481
Reason code: Warning481
Reason code: Failed483

Appendix B. Constants .

The constants
AMB (Boolean constants)
AMBRW (Browse constants)
AMCC (Completion codes) .
AMDEF (Service and policy defrnrtrons)
AMDT (Definition type constants)
AMENC (Encoding constants) .
AMFB (Feedback codes) .
AMEFMT (Format constants)
AMGF and AMGRP (Group status constants)
AMH (Handle constants) e
AMLEN (String length constants) .
AMMCD (Message Content Descrrptor tag
names) . . o
AMMT (Message types)
AMPS (Publish/subscribe) .
AMRC (Reason codes) .
AMSD (System default names and handle
synonyms) o
AMWT (Wait time constant)

Appendix C. Notices

Trademarks .
Glossary of terms and abbreviations

Bibliography. .
MQSeries cross-platform publications
MQSeries platform-specific publications
Softcopy books . o
HTML format .
Portable Document Format (PDF)
BookManager® format
PostScript format .
Windows Help format . .
MQSeries information available on the Internet .

Index .

Sending your comments to IBM

Contents

. 493
. 493
. 493
. 493
. 493
. 493
. 493
. 494
. 494
. 494

494

. 494
. 494

. 494
. 494
. 495
. 496

. 499
. 499

. 501
. 502

503

. 505
. 505
. 505
. 506
. 506
. 506
. 507
. 507
. 507
. 507

. 509

. 521

xiii

Xiv MQSeries Application Messaging Interface

Figures

1. Basic AMI model .

© Copyright IBM Corp. 1999, 2000

XV

XVi MQSeries Application Messaging Interface

Tables

System default objects .

—_

2. Object interface calls used by the hlgh level

functions

3. Object interface calls used by the h1gh level

functions .
4. System default ob]ects

5. Object interface calls used by the hrgh level

functions .

6. The sample programs for Unlx and Wmdows

platforms .

7. The sample programs for OS / 390 (batch’

includes RRS-batch)

© Copyright IBM Corp. 1999, 2000

. 14
. 74

. .75
. 226

. 280

. 450

. 452

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

System provided definitions
System default objects

Service point (sender/receiver).

Distribution list .
Subscriber

Publisher . .
Initialization attrlbutes
General attributes .
Send attributes .
Receive attributes .
Subscribe attributes
Publish attributes .

. 456
. 457
. 458
. 460
. 460
. 460
. 461
. 462
. 463
. 465
. 466
. 466

xvii

XViil MQSeries Application Messaging Interface

About this book

This book describes how to use the MQSeries Application Messaging Interface. The
Application Messaging Interface provides a simple interface that application
programmers can use without needing to understand all the details of the
MQSeries Message Queue Interface.

Who this book is for

This book is for anyone who wants to use the Application Messaging Interface to
send and receive MQSeries messages, including publish/subscribe and
point-to-point applications.

What you need to know to understand this book

+ Knowledge of the C, COBOL, C++, or Java'" programming language is assumed.

* You don’t need previous experience of MQSeries to use the Application
Messaging Interface (AMI). You can use the examples and sample programs
provided to find out how to send and receive messages. However, to understand
all the functions of the AMI you need to have some knowledge of the MQSeries
Message Queue Interface (MQI). This is described in the MQSeries Application

(Programming Guidd and the hiQSﬂtm.Apphmﬁnﬂ.Emgm.mmmg.R@fﬂmﬂd book.

* You will need to read the following:

— MQSeries Publish/Subscribe User’s Guide if you are going to use the AMI with
MQSeries Publish /Subscribe.

— MQSeries Integrator Version 1.1 Application Development Guide if you are going
to use the AMI with MQSeries Integrator Version 1.1.

— MQSeries Integrator Version 2.0 Programming Guide if you are going to use the
AMI with MQSeries Integrator Version 2.0.

 If you are a systems administrator responsible for setting up an installation of
the AMI, you need to be experienced in using the MQI.

Structure of this book

This book contains the following parts:

i . 7

. gives an overview of the Application Messaging
Interface.

» FPart2 The C interface” on page d describes how to use the AMI in C programs.
If you are new to MQSeries, gain some experience with the high-level interface
first. It provides most of the functionality you need when writing applications.
Then move on to the object interface if you need extra functionality.

» FPart3_The Cas interface” on page 141 describes how to use the AMI in C++
programs.

o FPartd The COBQL interface” on page 221l describes how to write AMI
programs using the COBOL high- level and object interfaces.

* UPart5 The Java interface” on page 343 describes how to use the AMI in Java

programs.

4 ”

» FPart 6 QS/390 Subsystems” on page 419 gives advice on writing AMI
applications for OS/390® subsystems.

© Copyright IBM Corp. 1999, 2000 xix

About this book

7 . . . ”

. is for systems
administrators who are setting up an Application Messaging Interface
installation.

Appearance of text in this book
This book uses the following type styles:

Format The name of a parameter in an MQSeries call, a field in an MQSeries
structure, or an attribute of an MQSeries object

amlnitialize
The name of an AMI function or method

AMB_TRUE
The name of an AMI constant

AmString getName();
The syntax of AMI functions and methods, and example code

XX MQSeries Application Messaging Interface

Summary of changes

This section describes changes in this edition of MQSeries Application Messaging
Interface. Changes since the previous edition of the book are marked by vertical
lines to the left of the changes.

Changes for this edition (SC34-5604-04)

This is the first edition of the book available in hardcopy form and contains several
editorial changes, mainly for clarification of the following calls:

* browse a message (see LamRaLBmerﬁ_nn_pa.ge_]J.Zl for C and
(lbrowse)” on page 318 for COBOL)

. browse a selection message (see LachsLBnnMsrﬁeleat_an_pa.ga_M for C and

for COBOL)

Changes for the fourth edition (SC34-5604-03)

This edition was not published.

Changes for the third edition (SC34-5604-02)

* Application Messaging Interface now provides support for applications written
in the C and COBOL programming languages, running on the OS/390 operating
system. See:

— UPart4 The COBOI interface” an page 221 for a description of the COBOL

high-level and object interfaces.

— PPart6 OS/390 Subsystems” on page 41 q for information about writing AMI
applications for OS/390 subsystems.

* New calls and methods have been included for:
— file transfer
— content-based publish/subscribe
— returning the message type
— returning the feedback code from a report message

See the parts of the book describing each supported language for details.
* New high-level calls have been added for both C and COBOL to:
- browse a message (see lamBrowseMsg” on page 42 for C and
(browse message)” on page 249 for COBOL)
— begin a unit of work (see “amBegin” on page 41 for C and
(begin)” on page 248 for COBOL)

. Support is provided for MQSerles Integrator Version 2.0. For details see @

”

* There is now a subset of the AMI C interface that conforms to the Open
Application Group Middleware Application Program Interface Specification

(OAMAS). See ‘Using the AMI QAMAS subset” on page 2§ for details.

© Copyright IBM Corp. 1999, 2000 xxi

Changes

XXii MQSeries Application Messaging Interface

Part 1. Introduction

Chapter 1. Introduction
Main components of the AMI.
Sending and receiving messages .
Interoperability
Programming languages
Description of the AMI .
Messages
Services .

Point-to-point and publish/subscribe .

Types of service
Policies . Lo
Application Messaging Interface model

Further information .

© Copyright IBM Corp. 1999, 2000

O NI ONU1 Ul b W W Www

2 MQSeries Application Messaging Interface

Chapter 1. Introduction

The MQSeries products enable programs to communicate with one another across
a network of dissimilar components - processors, operating systems, subsystems,
and communication protocols - using a consistent application programming
interface, the MQSeries Message Queue Interface (MQI). The purpose of the
Application Messaging Interface (AMI) is to provide a simple interface that
application programmers can use without needing to understand all the functions
available in the MQI. The functions that are required in a particular installation are
defined by a system administrator, using services and policies.

Main components of the AMI

There are three main components in the AMI:

* The message, which defines what is sent from one program to another
* The service, which defines where the message is sent

* The policy, which defines how the message is sent

To send a message using the AMI, an application has to specify the message data
together with the service and policy to be used. You can use the default services
and policies provided by the system, or create your own. Optionally, you can store
your definitions of services and policies in a repository.

Sending and receiving messages
You can use the AMI to send and receive messages in a number of different ways:
* Send and forget (datagram), where no reply is needed
¢ Distribution list, where a message is sent to multiple destinations

* Request/response, where a sending application needs a response to the request
message

* Publish/subscribe, where a broker manages the distribution of messages

Interoperability

The AMI is interoperable with other MQSeries interfaces. Using the AMI you can
exchange messages with one or more of the following;:

* Another application that is using the AMI
* Any application that is using the MQI
* A message broker (such as MQSeries Publish/Subscribe or MQSeries Integrator)

© Copyright IBM Corp. 1999, 2000 3

Main components of the AMI

Programming languages

The Application Messaging Interface is available in the C, COBOL, C++ and Java
programming languages. In C and COBOL there are two interfaces: a high-level
interface that is procedural in style, and a lower level object-style interface. The
high-level interface contains the functionality needed by the majority of
applications. The two interfaces can be mixed as required.

In C++ and Java, a single object interface is provided.

Description of the AMI

In the Application Messaging Interface, messages, services and policies define what
is being sent, where it is sent, and how it is sent.

Messages

Information is passed between communicating applications using messages, with
MQSeries providing the transport. Messages consist of:

* The message attributes: information that identifies the message and its
properties. The AMI uses the attributes, together with information in the policy,
to interpret and construct MQSeries headers and message descriptors.

e The message data: the application data carried in the message. The AMI does
not act upon this data.

Some examples of message attributes are:

MessagelD
An identifier for the message. It is usually unique, and typically it is
generated by the message transport (MQSeries).

CorrellD
A correlation identifier that can be used as a key, for example to correlate a
response message to a request message. The AMI normally sets this in a
response message by copying the MessageID from the request message.

Format The structure of the message.

Topic Indicates the content of the message for publish/subscribe applications.

These attributes are properties of an AMI message object. Where it is appropriate,
an application can set them before sending a message, or access them after
receiving a message. The message data can be contained in the message object, or
passed as a separate parameter.

In an MQSeries application, the message attributes are set up explicitly using the
Message Queue Interface (MQI), so the application programmer needs to
understand their purpose. With the AMI, they are contained in the message object
or defined in a policy that is set up by the system administrator, so the
programmer is not concerned with these details.

Services

A service represents a destination that applications send messages to or receive
messages from. In MQSeries such a destination is called a message queue, and a
queue resides in a queue manager. Programs can use the MQI to put messages on
queues, and get messages from them. Because there are many parameters
associated with queues and the way they are set up and managed, this interface is

4 MQSeries Application Messaging Interface

Description of the AMI

complex. When using the AMI, these parameters are defined in a service that is set
up by the systems administrator, so the complexity is hidden from the application
programmer.

For further information about queues and queue managers, please refer to the

MQSeries Application Programuming Guidd,

Point-to-point and publish/subscribe

In a point-to-point application, the sending application knows the destination of the
message. Point-to-point applications can be send and forget (or datagram), where a
reply to the message is not required, or request/response, where the request
message specifies the destination for the response message. Applications using
distribution lists to send a message to multiple destinations are usually of the send
and forget type.

In the case of publish/subscribe applications, the providers of information are
decoupled from the consumers of that information. The provider of the
information is called a publisher. Publishers supply information about a subject by
sending it to a broker. The subject is identified by a topic, such as "Stock” or
"Weather”. A publisher can publish information on more than one topic, and many
publishers can publish information on a particular topic.

The consumer of the information is called a subscriber. A subscriber decides what
information it is interested in, and subscribes to the relevant topics by sending a
message to the broker. When information is published on one of those topics, the
publish/subscribe broker sends it to the subscriber (and any others who have
registered an interest in that topic). Each subscriber is sent information about those
topics it has subscribed to.

There can be many brokers in a publish/subscribe system, and they communicate
with each other to exchange subscription requests and publications. A publication
is propagated to another broker if a subscription to that topic exists on the other
broker. So a subscriber that subscribes to one broker will receive publications (on a
chosen topic) that are published at another broker.

The AMI provides functions to send and receive messages using the
publish/subscribe model. For further details see the MQSeries Publish/Subscribe
User’s Guide.

Types of service
Different types of service are defined to specify the mapping from the AMI to real
resources in the messaging network.

* Senders and receivers establish one-way communication pipes for sending and
receiving messages.

* A distribution list contains a list of senders to which messages can be sent.

* A publisher contains a sender that is used to publish messages to a
publish/subscribe broker.

* A subscriber contains a sender, used to subscribe to a publish/subscribe broker,
and a receiver, for receiving publications from the broker.

The AMI provides default services that are used unless otherwise specified by the
application program. You can define your own service when calling a function, or
use a customized service stored in a repository (these are set up by a systems
administrator). You don’t have to have a repository. Many of the options used by
the services are contained in a policy (see below).

Chapter 1. Introduction 5

Description of the AMI

The AMI has functions to open and close services explicitly, but they can also be
opened and closed implicitly by other functions.

Policies
A policy controls how the AMI functions operate. Policies control such items as:
* The attributes of the message, for example the priority.

* Options used for send and receive operations, for instance whether it is part of a
unit of work.

* Publish/subscribe options, for example whether a publication is retained.
* Added value functions to be invoked as part of the call, such as retry.

The AMI provides default policies. Alternatively, a systems administrator can
define customized policies and store them in a repository. An application program
selects a policy by specifying it as a parameter on calls.

You could choose to use a different policy on each call, and specify in the policy
only those parameters that are relevant to the particular call. You could then have
policies shared between applications, such as a “Transactional Persistent_Put”
policy. Another approach is to have policies that specify all the parameters for all
the calls made in a particular application, such as a “Payroll_Client” policy. Both
approaches are valid with the AMI, but a single policy for each application will
simplify management of policies.

The AMI will automatically retry when temporary errors are encountered on

sending a message, if requested by the policy. (Examples of temporary errors are
queue full, queue disabled, and queue in use).

6 MQSeries Application Messaging Interface

Application Messaging Interface model

Application Messaging Interface model
shows the components of the Application Messaging Interface.
p PP gmng

Procedural Object

interface interface Repository
== Session === Connection =
High
| level |_|
API -
layer Message
Sender
Application
programs Message
] . transport
Receiver (MQSeries)
L Sender
Distribution |-Sender
list Sender

Publisher | Sender

1 Sender
Subscriber

Receiver

Policy

Figure 1. Basic AMI model

Application programs communicate directly with AMI objects using the object
interface in C, COBOL, C++ and Java. In addition to the object-style interface, there
is a procedural-style high-level interface available in C and COBOL. This contains
the functionality needed by the majority of applications; it can be supplemented
with object interface functions as needed.

Sender, receiver, distribution list, publisher, and subscriber objects are all services.

Senders and receivers connect directly to the message transport layer (MQSeries).

Distribution list and publisher objects contain senders; subscriber objects contain a
sender and a receiver.

Message, service and policy objects are created and managed by a session object,

which provides the scope for a unit of work. The session object contains a
connection object that is not visible to the application. The combination of

Chapter 1. Introduction 7

Application Messaging Interface model

connection, sender, and receiver objects provides the transport for the message.
Other objects, such as helper classes, are provided in C++ and Java.

Attributes for message, service and policy objects can be taken from the system
defaults, or from administrator-provided definitions that have been stored in the
repository.

Further information

The syntax of the AMI differs according to the programming language, so the
implementation for each language is described in a separate part of this book:

o FPart?2. The C interface” on page d

o 'Part3 The C++ interface” on page 141

o VPart4 The COBQL interface” on page 221

o 'Part5 The Java interface” on page 344

In FPart 6 QS /390 Subsvstems” on page 414 you will find advice on writing AMI
applications for the IMS, CICS®, batch, and RRS-batch subsystems on OS/390.

In E'Part 7 Setting up an AMI installation” on page 419, you can find out how to:

¢ Install the Application Messaging Interface

* Run the sample programs

* Determine the cause of problems

* Set up services and policies

The Application Messaging Interface for C, C++, and Java runs on the following
operating systems or environments: AIX®, HP-UX, Sun Solaris, Microsoft®

Windows® 98 and Windows NT.

The Application Messaging Interface for C and COBOL runs on the OS/390
operating system.

8 MQSeries Application Messaging Interface

Part 2. The C interface

Chapter 2. Using the Appllcatlon Messaglng
Interface in C -
Structure of the AMI
Using the repository
System default objects .
Writing applications in C .

Opening and closing a session .

Sending messages .

Using the message object .
Sample programs

Receiving messages. .

Using the message object .
Sample programs

Request/response messaging
Request.

Response .
Sample programs

File transfer

Publish/subscribe messagmg
Publish .

Subscribe .
Sample programs .

Using name/value elements .
Parameters
Example

Error handling

Transaction support

Sending group messages .

Other considerations
Multithreading
Using MQSeries with the AMI
Field limits

Using the AMI OAMAS subset

Building C applications

AMI include file.

Data types. . .

Initial values for structures .

C applications on AIX. .
Preparing C programs on AIX .
Running C programs on AIX

C applications on HP-UX.

Preparing C programs on HP- UX
Running C programs on HP-UX

C applications on Solaris . .
Preparing C programs on Solarrs .
Running C programs on Solaris

C applications on Windows .
Preparing C programs on Wrndows
Running C programs on Windows.

C applications on OS/390
Preparing C programs on OS/ 390
Running C programs on OS/390

Chapter 3. The C high-level interface .
Overview of the C high-level interface
Initialize and terminate

© Copyright IBM Corp. 1999, 2000

. 13
.13
. 14
. 14
. 16
. 16
. 16
.17
.18
. 18
.19
.19
. 19
. 20
. 20
.21
.21
.22
.22
.23
. 24
. 24
.24
. 25
. 26
. 26
. 26
. 27
.27
. 28
. 28
. 28
. 29
. 29
.29
. 29
. 30
. 30
. 30
.31
. 31
.31
. 33
. 33
. 33
. 34
. 34
. 34
. 34
. 34
. 35

. 37
. 38
. 38

Sending messages .
Receiving messages.
File transfer

Publish /subscribe .
Transaction support

Reference information for the C hrgh level 1nterface

amBackout
Parameters
amBegin
Parameters
amBrowseMsg
Parameters
Usage notes
amCommit
Parameters
amlInitialize
Parameters
amPublish .
Parameters
amReceiveFile
Parameters
Usage notes
amReceiveMsg
Parameters
Usage notes
amReceivePublication .
Parameters
Usage notes
amReceiveRequest .
Parameters
Usage notes
Data conversion .
Use of the buffLen parameter
amSendFile
Parameters
Usage notes
amSendMsg .
Parameters
amSendRequest .
Parameters
amSendResponse
Parameters
amSubscribe .
Parameters
amTerminate .
Parameters
amUnsubscribe .
Parameters
Usage notes

Chapter 4. C object interface overview
Session interface functions

Session management

Create objects.

Get object handles .

Delete objects.

. 38
. 38
. 38
. 38
. 38

39

. 40
. 40
.41
.41
.42
. 42
. 43
. 44
. 44
. 45
. 45
. 46
. 46
. 47
. 47
. 48
. 49
. 49
. 49
. 51
.51
. 52
. 53
. 53
. 53
. 53
. 54
. 55
. 55
. 55
. 56
. 56
. 57
. 57
. 58
. 58
. 59
. 59
. 60
. 60
. 61
. 61
. 61

. 63
. 64
. 64
. 64
. 64
. 65

Transactional processing .
Error handling

Message interface functions .
Get values.
Set values .
Reset values .
Read and write data .
Publish/subscribe topics .
Publish/subscribe filters .

Publish /subscribe name/value elements.

Error handling .
Publish/subscribe helper macros .
Sender interface functions
Open and close .
Send.
Get values.
Error handling .
Receiver interface functions .
Open and close .
Receive and browse
Get values.
Set values .
Error handling
Distribution list interface functlons
Open and close .
Send.
Get values.
Error handling
Publisher interface functlons
Open and close .
Publish .
Get values.
Error handling
Subscriber interface functlons
Open and close .
Broker messages.
Get values.
Set value
Error handling
Policy interface functions .
Get values.
Set value
Error handling
High-level functions

Chapter 5. C object interface reference

Session interface functions
amSesBegin
amSesClearErrorCodes
amSesClose
amSesCommit
amSesCreate .
amSesCreateDistList
amSesCreateMessage .
amSesCreatePolicy .
amSesCreatePublisher .
amSesCreateReceiver .
amSesCreateSender .
amSesCreateSubscriber
amSesDelete .
amSesDeleteDistList

10 MQSeries Application Messaging Interface

. 65
. 65
. 66
. 66
. 66
. 66
. 66
. 67
. 67
. 67
. 67
. 67
. 68
. 68
. 68
. 68
. 68
. 69
. 69
. 69
. 69
. 69
. 69
. 70
. 70
.70
. 70
. 70
.71
.71
.71
.71
.71
.72
.72
.72
.72
.72
.72
.73
.73
.73
.73
. 74

.77
. 78
. 78
.78
. 78
.79
.79
.79
. 80
. 80
. 80
. 81
. 81
. 81
. 83
. 83

amSesDeleteMessage .
amSesDeletePolicy .
amSesDeletePublisher .
amSesDeleteReceiver
amSesDeleteSender .
amSesDeleteSubscriber
amSesGetDistListHandle .
amSesGetLastError .
amSesGetMessageHandle.
amSesGetPolicyHandle
amSesGetPublisherHandle
amSesGetReceiverHandle.
amSesGetSenderHandle .
amSesGetSubscriberHandle .
amSesOpen

amSesRollback

Message interface functions .

amMsgAddElement
amMsgAddFilter
Parameters
amMsgAddTopic
amMsgClearErrorCodes
amMsgDeleteElement .
amMsgDeleteFilter .
Parameters
amMsgDeleteNamedElement
amMsgDeleteTopic .
amMsgGetCCSID
amMsgGetCorrelld .
amMsgGetDataLength.
amMsgGetDataOffset .
amMsgGetElement . .
amMsgGetElementCCSID.
amMsgGetElementCount .
amMsgGetEncoding
amMsgGetFilter .
Parameters
amMngetFllterCount
Parameters
amMsgGetFormat
amMsgGetGroupStatus
amMsgGetLastError
amMsgGetMsgld
amMsgGetName.
amMngetNamedElement
amMsgGetNamedElementCount
amMsgGetReportCode.
amMsgGetTopic
amMsgGetType.
amMsgGetTopicCount
amMsgReadBytes .
amMsgReset.
amMsgSetCCSID .
amMsgSetCorrelld.
amMsgSetDataOffset .
amMsgSetElementCCSID
amMsgSetEncoding
amMsgSetFormat .
amMsgSetGroupStatus
amMsgWriteBytes .

Message interface helper macros .

. 83
. 84
. 84
. 84
. 85
. 85
. 85
. 86
. 86
. 87
. 87
. 87
. 87
. 88
. 88
. 88
. 90
. 90
.91
.91
.91
.91
.92
.92
.92
.92
. 93
. 93
. 93
. 94
. 94
. 94
. 95
.95
. 95
. 96
. 96
. 96
. 96
. 96
.97
. 97
. 98
. 98
. 98
. 99
.. 99
. 100
. 100
. 100
. 101
. 101
. 101
. 102
. 102
. 102
. 103
. 103
. 104
. 104
. 105

AmMsgAddStreamName

AmMsgGetPubTimeStamp .

AmMsgGetStreamName .
Sender interface functions .

amSndClearErrorCodes .
amSndClose .
amSndGetCCSID .
amSndGetEncoding
amSndGetLastError
amSndGetName
amSndOpen .
amSndSend .
amSndSendFile .

Parameters
Usage notes

Receiver interface functions.

amRcvBrowse

Usage notes .
amRcvBrowseSelect

Usage notes . .
amRcvClearErrorCodes .
amRcvClose .
amRcvGetDefnType
amRcvGetLastError
amRcvGetName
amRcvGetQueueName
amRcvOpen .
amRcvReceive .

Usage notes .
amRcvReceiveFile .

Usage notes .
amRcvSetQueueName

Distribution list interface functions .

amDstClearErrorCodes .
amDstClose .
amDstGetLastError
amDstGetName .
amDstGetSenderCount .
amDstGetSenderHandle .
amDstOpen .
amDstSend .
amDstSendFile .
Parameters .
Usage notes
Publisher interface functions
amPubClearErrorCodes .
amPubClose.
amPubGetCCSID .
amPubGetEncoding
amPubGetLastError
amPubGetName
amPubOpen.
amPubPublish .

Subscriber interface functions .

amSubClearErrorCodes .
amSubClose .
amSubGetCCSID .
amSubGetDefnType
amSubGetEncoding
amSubGetLastError
amSubGetName

. 105
. 105
. 105
. 107
. 107
. 107
. 108
. 108
. 109
. 109
. 109
. 110
. 111
. 111
. 111
. 112
. 112
. 113
. 114
. 115
. 115
. 116
. 116
. 117
. 117
. 118
. 118
. 119
. 119
. 121
. 122
. 122
. 123
. 123
. 123
. 123
. 124
. 124
. 124
. 125
. 126
. 127
. 127
. 127
. 128
. 128
. 128
. 128
. 128
. 129
. 130
. 130
. 131
. 132
. 132
. 132
. 132
. 132
. 133
. 134
. 134

amSubGetQueueName
amSubOpen .
amSubReceive .
amSubSetQueueName
amSubSubscribe
amSubUnsubscribe
Policy interface functions

amPolClearErrorCodes .

amPolGetLastError
amPolGetName.

amPolGetWaitTime
amPolSetWaitTime.

Part 2. The C interface

. 134
. 135
. 136
. 136
. 137
. 138
. 139
. 139
. 139
. 139
. 140
. 140

11

12 MQSeries Application Messaging Interface

Chapter 2. Using the Application Messaging Interface in C

The Application Messaging Interface (AMI) in the C programming language has
two interfaces:

1. A high-level procedural interface that provides the function needed by most
users.

2. A lower-level, object-style interface, that provides additional function for
experienced MQSeries users.

This chapter describes the following;:
e [Structure of the AMIA

” ey . . . 17

° G . ”

Structure of the AMI

Although the high-level interface is procedural in style, the underlying structure of
the AMI is object based. (The term object is used here in the object-oriented
programming sense, not in the sense of MQSeries ‘objects” such as channels and
queues.) The objects that are made available to the application are:

Session
Contains the AMI session.

Message
Contains the message data, message 1D, correlation ID, and options that
are used when sending or receiving a message (most of which come from
the policy definition).

Sender
This is a service that represents a destination (such as an MQSeries queue)
to which messages are sent.

Receiver
This is a service that represents a source from which messages are
received.

Distribution list
Contains a list of sender services to provide a list of destinations.

Publisher
Contains a sender service where the destination is a publish/subscribe
broker.

Subscriber
Contains a sender service (to send subscribe and unsubscribe messages to
a publish/subscribe broker) and a receiver service (to receive publications
from the broker).

Policy Defines how the message should be handled, including items such as
priority, persistence, and whether it is included in a unit of work.

When using the high-level functions the objects are created automatically and
(where applicable) populated with values from the repository. In some cases it
might be necessary to inspect these properties after a message has been sent (for
instance, the MessageID), or to change the value of one or more properties before

© Copyright IBM Corp. 1999, 2000 13

Structure of the AMI

sending the message (for instance, the Format). To satisfy these requirements, the
AMI for C has a lower-level object style interface in addition to the high-level
procedural interface. This provides access to the objects listed above, with methods
to set and get their properties. You can mix high-level and object-level functions in
the same application.

All the objects have both a handle and a name. The names are used to access objects
from the high-level interface. The handles are used to access them from the object
interface. Multiple objects of the same type can be created with the same name, but
are usable only from the object interface.

The high-level interface is described in L igh-

. . An overview of the object interface is given in l!Chapter4 C obijeci
.n.tenfa.ce_mcerme:Lon_pa.ge.ﬁﬂ with reference information in EChapter 5 C object

Using the repository

You can run AMI applications with or without a repository. If you don’t have a
repository, you can use a system default object (see below), or create your own by
specifying its name on a function call. It will be created using the appropriate

system provided definition (see ['System pravided definitions” on page 456).

If you have a repository, and you specify the name of an object on a function call
that matches a name in the repository, the object will be created using the
repository definition. (If no matching name is found in the repository, the system
provided definition will be used.)

System default objects

Table 1. System default objects

Default object

Constant or handle (if applicable)

SYSTEM.DEFAULT.POLICY AMSD_POL
AMSD_POL_HANDLE
SYSTEM.DEFAULT.SYNCPOINT.POLICY AMSD_SYNC_POINT_POL
AMSD_SYNC_POINT_POL_HANDLE
SYSTEM.DEFAULT.SENDER AMSD_SND
SYSTEM.DEFAULT.RESPONSE.SENDER AMSD_RSP_SND

AMSD_RSP_SND_HANDLE

SYSTEM.DEFAULT.RECEIVER AMSD_RCV

AMSD_RCV_HANDLE

SYSTEM.DEFAULT.PUBLISHER AMSD_PUB

AMSD_PUB_SND

SYSTEM.DEFAULT.SUBSCRIBER AMSD_SUB

AMSD_SUB_SND

SYSTEM.DEFAULT.SEND.MESSAGE AMSD_SND_MSG

AMSD_SND_MSG_HANDLE

SYSTEM.DEFAULT.RECEIVE.MESSAGE AMSD_RCV_MSG

AMSD_RCV_MSG_HANDLE

A set of system default objects is created at session creation time. This removes the
overhead of creating the objects from applications using these defaults. The system

14 MQSeries Application Messaging Interface

Structure of the AMI

default objects are available for use from both the high-level and object interfaces
in C. They are created using the system provided definitions (see E';Lsi_mn'

pravided definitions” on page 456).

The default objects can be specified explicitly using AMI constants, or used to
provide defaults if a parameter is omitted (by specifying NULL, for example).

Constants representing synonyms for handles are also provided for these objects,

for use from the object interface (see ‘Appendix B-Constants” on page 493). Note

that the first parameter on a call must be a real handle; you cannot use a synonym
in this case (that is why handles are not provided for all the default objects).

Chapter 2. Using the Application Messaging Interface in C 15

Writing applications in C

Writing applications in C

This section gives a number of examples showing how to use the high-level
interface of the AMI, with some extensions using the object interface. Equivalent
operations to all high-level functions can be performed using combinations of

”

object interface functions (see I‘High-level functions” on page 74).

Opening and closing a session

Before using the AMI, you must open a session. This can be done with the
following high-level function (page IE)Y

” Opening a session

hSession = amInitialize(name, myPolicy, &compCode, &reason);

The name is optional, and can be specified as NULL. myPoTlicy is the name of the
policy to be used during initialization of the AMI. You can specify the policy name
as NULL, in which case the SYSTEM.DEFAULT.POLICY object is used.

The function returns a session handle, which must be used by other calls in this
session. Errors are returned using a completion code and reason code.

To close a session, you can use this high-level function (page kd):

Closing a session
success = amTerminate(&hSession, myPolicy, &compCode, &reason);

This closes and deletes all objects that were created in the session. Note that a
pointer to the session handle is passed. If the function is successful, it returns
AMB_TRUE.

Sending messages

You can send a datagram (send and forget) message using the high-level
amSendMsg function (page Bd). In the simplest case, all you need to specify is the
session handle returned by amlnitialize, the message data, and the message
length. Other parameters are set to NULL, so the default message, sender service,
and policy objects are used.

Sending a message using all the defaults

success = amSendMsg(hSession, NULL, NULL, datalen,
pData, NULL, &compCode, &reason);

If you want to send the message using a different sender service, specify its name
(such as mySender) as follows:

Sending a message using a specified sender service

success = amSendMsg(hSession, mySender, NULL, datalen,
pData, NULL, &compCode, &reason);

16 MQSeries Application Messaging Interface

Writing applications in C

If you are not using the default policy, you can specify a policy name:

Sending a message using a specified policy

success = amSendMsg(hSession, NULL, myPolicy, datalen,
pData, NULL, &compCode, &reason);

The policy controls the behavior of the send function. For example, the policy can
specify:

* The priority, persistence and expiry of the message

e If the send is part of a unit of work

* If the sender service should be implicitly opened and left open

To send a message to a distribution list, specify its name (such as myDistList) as
the sender service:

Sending a message to a distribution list

success = amSendMsg(hSession, myDistList, NULL, datalLen,
pData, NULL, &compCode, &reason);

Using the message object

Using the object interface gives you more functions when sending a message. For
example, you can get or set individual attributes in the message object. To get an
attribute after the message has been sent, you can specify a name for the message
object that is being sent:

Specifying a message object

success = amSendMsg(hSession, NULL, NULL, datalen,
pData, mySendMsg, &compCode, &reason);

The AMI creates a message object of the name specified (mySendMsg), if one doesn’t
already exist. (The sender name and policy name are specified as NULL, so in this
example their defaults are used.) You can then use object interface functions to get
the required attributes, such as the MessagelID, from the message object:

Getting an attribute from a message object
hMsg = amSesGetMessageHandle(hSession, mySendMsg, &compCode, &reason);

success = amMsgGetMsgId(hMsg, BUFLEN, &MsgldLen, pMsgld,
&compCode, &reason);

The first call is needed to get the handle to the message object. The second call
returns the message ID length, and the message ID itself (in a buffer of length
BUFLEN).

To set an attribute such as the Format before the message is sent, you must first
create a message object and set the format:

Chapter 2. Using the Application Messaging Interface in C 17

Writing applications in C

Setting an attribute in a message object

hMsg = amSesCreateMessage(hSession, mySendMsg, &compCode, &reason);

success = amMsgSetFormat(hMsg, AMLEN_NULL_TERM, pFormat,
&compCode, &reason);

Then you can send the message as before, making sure to specify the same
message object name (mySendMsg) in the amSendMsg call.

Look at Message interface functions” on page 64 to find out what other attributes

of the message object you can get and set.

After a message object has been used to send a message, it might not be left in the
same state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see
amMsgReset on page [l01) and rebuild it each time.

Instead of sending the message data using the data buffer, it can be added to the
message object. However, this is not recommended for large messages because of
the overhead of copying the data into the message object before it is sent (and also
extracting the data from the message object when it is received).

Sample programs
For more details, refer to the amtshsnd.c and amtsosnd.c sample programs (see

LSam.ple_p;og.na.ms_ﬁaLUnmandJAbndmus_gn_pa.geASd)

Receiving messages

Use the amReceiveMsg high-level function (page Ld) to receive a message to which
no response is to be sent (such as a datagram). In the simplest case, all you need to
specify are the session handle and a buffer for the message data. Other parameters
are set to NULL, so the default message, receiver service, and policy objects are
used.

Receiving a message using all the defaults

success = amReceiveMsg(hSession, NULL, NULL, NULL, BUFLEN,
&datalen, pData, NULL, &compCode, &reason);

If you want to receive the message using a different receiver service, specify its
name (such as myReceiver) as follows:

Receiving a message using a specified receiver service

success = amReceiveMsg(hSession, myReceiver, NULL, NULL, BUFLEN,
&datalen, pData, NULL, &compCode, &reason);

If you are not using the default policy, you can specify a policy name:

18 MQSeries Application Messaging Interface

Writing applications in C

Receiving a message using a specified policy

success = amReceiveMsg(hSession, NULL, myPolicy, NULL, BUFLEN,
&datalen, pData, NULL, &compCode, &reason);

The policy can specify, for example:

¢ The wait interval

e If the message is part of a unit of work

e If the message should be code page converted

* If all the members of a group must be there before any members can be read

Using the message object

To get the attributes of a message after receiving it, you can specify your own
message object name, or use the system default
(SYSTEM.DEFAULT.RECEIVE.MESSAGE). If a message object of that name does
not exist it will be created. You can access the attributes (such as the Encoding)
using the object interface functions:

— Getting an attribute from a message object

success = amReceiveMsg(hSession, NULL, NULL, NULL, BUFLEN,
&datalen, pData, myRcvMsg, &compCode, &reason);

hMsg = amSessGetMessageHandle(hSession, myRcvMsg, &compCode, &reason);

success = amMsgGetEncoding(hMsg, &encoding, &compCode, &reason);

If a specific message is to be selectively received using its correlation identifier, a
message object must first be created and its Correlld property set to the required
value (using the object interface). This message object is passed as the selection
message on the amReceiveMsg call:

— Using a selection message object

hMsg = amSesCreateMessage(hSession, mySelMsg, &compCode, &reason);

success = amMsgSetCorrelld(hMsg, correlldLen, pCorrelld,
&compCode, &reason);

success = amReceiveMsg(hSession, NULL, NULL, mySelMsg, BUFLEN,
&datalen, pData, NULL, &compCode, &reason);

Sample programs
For more details, refer to the amtshrcv.c and amtsorcv.c sample programs (see

['Sample programs for 1Inix and Windows” an page 45().
Request/response messaging

In the request/response style of messaging, a requester (or client) application sends a
request message and expects to receive a message in response. The responder (or
server) application receives the request message and produces the response
message (or messages) which it returns to the requester application. The responder
application uses information in the request message to determine how to send the
response message to the requester.

Chapter 2. Using the Application Messaging Interface in C 19

Writing applications in C

In the following examples ‘your’ refers to the responding application (the server);
‘my’ refers to the requesting application (the client).

Request
Use the amSendRequest high-level function (page B7) to send a request message.
This is similar to amSendMsg, but it includes the name of the service to which the
response message is to be sent. In this example the sender service (mySender) is
specified in addition to the receiver service (myReceiver). (A pohcy name and a
send message name can be specified as well, as described in

)-

2

Sending a request message

success = amSendRequest (hSession, mySender, NULL, myReceiver,
datalen, pData, NULL, &compCode, &reason);

The amReceiveRequest high-level function (page Ed) is used by the responding (or
server) application to receive a request message. It is similar to amReceiveMsg, but
it includes the name of the sender service that will be used for sending the
response message. When the message is received, the sender service is updated
with the information needed for sending the response to the required destination.

Receiving a request message

success = amReceiveRequest(hSession, yourReceiver, NULL, BUFLEN,
&datalen, pData, yourRcvMsg, yourSender,
&compCode, &reason);

A golicr name can be specified as well, as described in I'Receiving messages” od

A receiver message name (yourRcvMsg) is specified so that the response message
can refer to it. Note that, unlike amReceiveMsg, this function does not have a
selection message.

Response
After the requested actions have been performed, the responding application sends
the response message (or messages) with the amSendResponse function (page Bd):

Sending a response message

success = amSendResponse(hSession, yourSender, NULL, yourRcvMsg,
datalen, pData, NULL, &compCode, &reason);

The sender service for the response message (yourSender) and the receiver message
name (yourRcvMsg) are the same as those used with amReceiveRequest. This
causes the Correlld and Messageld to be set in the response message, as requested
by the flags in the request message.

Finally, the requester (or client) application uses the amReceiveMsg function to

receive the response message as described in Receiving messages” on page 1.

You might need to receive a specific response message (for example if three request
messages have been sent, and you want to receive the response to the first request

20 MQSeries Application Messaging Interface

Writing applications in C

message first). In this case the sender message name from the amSendRequest
function should be used as the selection message name in the amReceiveMsg.

Sample programs
For more details, refer to the amtshclt.c, amtshsvr C, amtsoc]t ¢, and amtsosvr.c

sample programs (see

File transfer

You can perform file transfers using the amSendFile and amReceiveFile high-level
functions, and the amSndSendFile, amDstSendFile and amRcvReceiveFile
object-level functions. There are two broad applications of the file transfer calls:
end-to-end file transfer using both send file and receive file calls, and generation of
messages from a file using just a send file call. If the message supplied to the send
file call has a format of AMFMT_STRING (the default), then the file is treated as
text. If the format is AMFMT_NONE, the file is treated as binary data and is not
converted in any way.

To ensure that the file can be reassembled at the receiving side during end-to-end
file transfer, you should use a policy with the ‘physical splitting” file transfer
option. With this mode of file transfer, the AMI passes extra meta-data with the file
to help ensure that the complete file is recovered and to allow the original filename
to travel with the message.

Sending a file using the high-level amSendFile function

success = amSendFile(hSession, mySender, myPolicy, 0, 0, NULL,
AMLEN_NULL_TERM, "myFilename", mySendMessage,
&compCode, &reason);

When using physical splitting, the AMI may send a group of messages rather than
one large message. This implies that, when sending files to or receiving files on
platforms without native group support, AMI simulated groups must be used. See
: Z for more information. As errors may occur
part way through sending or receiving a file, applications must ensure that the
transfer completed as expected. In particular, we recommend that file transfers are
done with the syncpoint policy option turned on, and that applications check the
reason and completion codes carefully to be sure that the whole file was sent
before committing the unit of work.

Receiving a file using the high-level amReceiveFile function

success = amReceiveFile(hSession, myReceiver, myPolicy, 0,
mySelectionMessage, 0, NULL, O, NULL, myReceiveMessage,
&compCode, &reason);

If the message selected for the receive operation does not contain file information,
then it is returned to the application in the message object named on the call and a
warning is returned with reason AMRC_NOT_A_FILE. If the file transfer fails part
way through a message, then that message is returned to the application and the
current data pointer within the message shows how far it had been processed
before the error occurred. Again we recommend the use of the policy syncpoint
option and checking of completion and reason codes to ensure the whole file was
received correctly before committing the unit of work. If the file was sent from a
different type of file system than it is received into, the AMI converts the file and

Chapter 2. Using the Application Messaging Interface in C 21

Writing applications in C

returns a warning with reason AMRC_FILE_FORMAT_CONVERTED. This
conversion allows transfer between OS/390 datasets with different record types or
sizes, and between OS/390 datasets and the flat files used on other systems.

If the intent is not to transfer a file from one location to another, but rather to
generate a group of messages from a file, you should use the ‘logical splitting’
policy option. If the message object referenced by the send call has a format of
AMFMT_STRING, then the file is split into lines and each line is sent as a separate
message. Any other format indicates that the file does not contain text. If the
record length of a non-text file is known (as in the case of OS/390 datasets) then
each record is sent as a separate message. If the record length of a non-text file is
not known then the whole file is considered to be a single record, and is sent in
one message. No extra header information is added to the file data. The messages
can then be processed in the same fashion as any other message in your queueing
network.

Note that file transfer calls are not supported under CICS. All of the calls
(amSendFile, amReceiveFile, amSndSendFile, amRcvReceiveFile, and
amDstSendFile) will return an error with reason code
AMRC_FILE_TRANSFER_INVALID (144) if used in a CICS application running on
0S/390.

Publish/subscribe messaging

With publish/subscribe messaging, publisher applications publish messages to
subscriber applications using a broker. The messages published contain application
data and one or more fopic strings that describe the data. Subscribing applications
register subscriptions informing the broker which topics they are interested in.
When the broker receives a published message, it forwards the message to all
subscribing applications for which a topic in the message matches a topic in the
subscription.

Subscribing applications can exploit content-based publish/subscribe by passing a
filter on subscribe and unsubscribe calls (see [1lsi i i

).

For more information, refer to the MQSeries Integrator Version 2 Programming Guide
or the MQSeries Publish/Subscribe User’s Guide.

Publish

Use the amPublish high-level function (page kd) to publish a message. You need to
specify the name of the publisher for the publish/subscribe broker. The topic
relating to this publication and the publication data must also be specified:

Publishing a message

success = amPublish(hSession, myPublisher, NULL, myReceiver,
strlen(topic), pTopic, datalLen, pData, myPubMsg,
&compCode, &reason);

The name myReceiver identifies the receiver service to which the broker will send a
response message. You can also specify a policy name to change the behavior of
the function (as with the amSend functions).

You can specify the publication message name myPubMsg and set or get attributes of
the message object (using the object interface functions). This might include adding

22 MQSeries Application Messaging Interface

Writing applications in C

another topic (using amMsgAddTopic) before invoking amPublish, if there are
multiple topics associated with this publication.

Instead of sending the publication data using the data buffer, it can be added to
the message object. Unlike the amSend functions, this gives no difference in
performance with large messages. This is because, whichever method is used, the
MQRFH header has to be added to the publication data before sending it (similarly
the header has to be removed when the publication is received).

Subscribe

The amSubscribe high-level function (page Bd) is used to subscribe to a
publish/subscribe broker specified by the name of a subscriber service. The
receiver to which publications will be sent is included within the definition of the
subscriber. The name of a receiver service to which the broker can send a response
message (myReceiver) is also specified.

Subscribing to a broker
success = amSubscribe(hSession, mySubscriber, NULL, myReceiver,
strlen(topic), pTopic, 0L, NULL, mySubMsg,
&compCode, &reason);

A subscription for a single topic can be passed by the pTopic parameter. You can
subscribe to multiple topics by using the object interface amMsgAddTopic function
to add topics to the subscription message object, before invoking amSubscribe.

If the policy specifies that the Correlld is to be used as part of the identity for the
subscribing application, it can be added to the subscription message object with the
object interface amMsgSetCorrelld function, before invoking amSubscribe.

To remove a subscription, use the amUnsubscribe high-level function (page kd). To
remove all subscriptions, you can specify a policy that has the ‘Deregister All
Topics” subscriber attribute.

To receive a publication from a broker, use the amReceivePublication function
(page E1). For example:

Receiving a publication

success = amReceivePublication(hSession, mySubscriber, NULL, NULL,
TOPICBUFLEN, BUFLEN, &topicCount, &topiclLen, pFirstTopic,
&datalen, pData, myRcvMsg, &compCode, &reason);

You need to specify the name of the subscriber service used for the original
subscription. You can also specify a policy name and a selection message name, as
described in 'Receiving messages” on page 18, but they are shown as NULL in this
example.

If there are multiple topics associated with the publication, only the first one is
returned by this function. So, if topicCount indicates that there are more topics,
you have to access them from the myRcvMsg message object, using the object-level
amSesGetMessageHandle and amMsgGetTopic functions.

Chapter 2. Using the Application Messaging Interface in C 23

Writing applications in C

Sample programs
For more details, refer to the amtshpub.c, amtshsub.c, amtsopub.c, and amtsosub.c

sample programs (see [’Sample programs for Unix and Windows” on page 45().

Using name/value elements

Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
used. The amPublish, amSubscribe, amUnsubscribe, and amReceivePublication
high-level functions provide these name/value pairs implicitly.

For less commonly used commands and options, the name/value pairs can be
added to a message using an AMELEM structure, which is defined as follows:

typedef struct tagAMELEM {

AMCHAR8 strucld; /* Structure identifier */
AMLONG version; /* Structure version number =*/
AMLONG groupBufflLen; /* Reserved, must be zero */
AMLONG grouplLen; /* Reserved, must be zero */
AMSTR pGroup; /* Reserved, must be NULL */
AMLONG nameBuffLen; /* Name buffer length */
AMLONG namelen; /* Name length in bytes x/
AMSTR pName; /* Name */
AMLONG valueBuffLen; /* Value buffer length */
AMLONG valuelen; /* Value length in bytes */
AMSTR pValue; /* Value */
AMLONG typeBufflLen; /* Reserved, must be zero =*/
AMLONG typelen; /* Reserved, must be zero */
AMSTR pType; /* Reserved, must be NULL */
} AMELEM;

See [Initial valiles for strictures” aon page 29 for advice on initialization of this
structure.

Parameters

strucld
The AMELEM structure identifier (input). Its value must be
AMELEM_STRUC_ID. The constant AMELEM_STRUC_ID_ARRAY is also
defined; this has the same value as AMELEM_STRUC_ID but is an array of
characters instead of a string.

version
The version number of the AMELEM structure (input). Its value must be
AMELEM_VERSION_1.

groupBuffLen
Reserved, must be zero.

grouplLen
Reserved, must be zero.

pGroup Reserved, must be NULL.

nameBuffLen
The length of the name buffer (input). If the nameBufflLen parameter value
is set to 0, the AMI returns the nameLen value but not the pName value. This
is not an error.

namelen
The length of the name in bytes (input or output). A value of
AMLEN_NULL_TERM can be used to denote a null-terminated string of
unspecified length.

24 MQSeries Application Messaging Interface

Writing applications in C
pName The name buffer (input or output).

valueBuffLen
The length of the value buffer (input).If valueBufflen is set to zero, the
AMI returns the valuelen value but not the pValue value. This is not an
error.

valuelen
The value length in bytes (input or output). A value of
AMLEN_NULL_TERM can be used to denote a null-terminated string of
unspecified length.

pValue The value buffer (input or output).

typeBuffLen
Reserved, must be zero.

typelen
Reserved, must be zero.

pType Reserved, must be NULL.

Example
As an example, to send a message containing a ‘Request Update’ command,
initialize the AMELEM structure and then set the following values:

pName AMPS_COMMAND
pvalue AMPS_REQUEST_UPDATE

Having set the values, create a message object (mySndMsg) and add the element to
it:

Using name/value elements
hMsg = amSessCreateMessage(hSession, mySndMsg, &compCode, &reason);

success = amMsgAddElement (hMsg, pElem, OL, &compCode, &reason);

You must then send the message, using amSendMsg, to the sender service
specified for the publish/subscribe broker.

If you need to use streams with MQSeries Publish/Subscribe, you must add the
appropriate stream name/value element explicitly to the message object. Helper
macros (such as AmMsgAddStreamName) are provided to simplify this and other
tasks.

The message element functions can, in fact, be used to add any element to a
message before issuing a publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications.
They can be used in other applications as well.

Chapter 2. Using the Application Messaging Interface in C 25

Writing applications in C

Error handling

Each AMI C function returns a completion code reflecting the success or failure
(OK, warning, or error) of the request. Information indicating the reason for a
warning or error is returned in a reason code. Both completion and reason codes
are optional.

In addition, each function returns an AMBOOL value or an AMI object handle. For
those functions that return an AMBOOL value, this is set to AMB_TRUE if the
function completes successfully or with a warning, and AMB_FALSE if an error
occurs.

The “get last error” functions (such as amSesGetLastError) always reflect the last
most severe error detected by an object. These functions can be used to return the
completion and reason codes associated with this error. Once the error has been
handled, call the “clear error codes” functions (for instance,
amMsgClearErrorCodes) to clear the error information.

All C high-level functions record last error information in the session object. This
information can be accessed using the session’s ‘get last error” call,
amSesGetLastError (you need the session handle returned by amlInitialize as the
first parameter of this call).

Transaction support

Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.

¢ MQSeries messages are the only resource

A transaction is started by the first message sent or received under syncpoint
control, as specified in the policy specified for the send or receive. Multiple
messages can be included in the same unit of work. The transaction is
committed or backed out using an amCommit or amBackout high-level interface
call (or the amSesCommit or amSesRollback object-level calls).

* Using MQSeries as an XA transaction coordinator

The transaction must be started explicitly using the amSesBegin call before the
first recoverable resource (such as a relational database) is changed. The
transaction is committed or backed out using an amCommit or amBackout
high-level interface call (or the amSesCommit or amSesRollback object-level
calls).

MQSeries cannot be used as an XA transaction coordinator on OS/390.
* Using an external transaction coordinator

The transaction is controlled using the API calls of an external transaction
coordinator (such as CICS, Encina or Tuxedo). The AMI calls are not used but
the syncpoint attribute must still be specified in the policy used on the call.

Sending group messages

The AMI allows a sequence of related messages to be included in, and sent as, a
message group. Group context information is sent with each message to allow the
message sequence to be preserved and made available to a receiving application.

26 MQSeries Application Messaging Interface

Writing applications in C

In order to include messages in a group, the group status information of the first
and subsequent messages in the group must be set as follows:
AMGRP_FIRST MSG_IN GROUP for the first message

AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
AMGRP_LAST_MSG_IN_GROUP for the Tast message

The message status is set using amMsgSetGroupStatus.

Although native group message support is not available using MQSeries for
0OS/390 Version 5.2, group messages can be sent and received using AMI by
selecting ‘Simulated Group Support’ in the repository service point definitions of
the sender and receiver services used by the applications. Group messages are sent
and received by an application in exactly the same way regardless of whether
‘Simulated Group Support’ is enabled for the repository service definitions.

Certain restrictions apply when ‘Simulated Group Support’ is enabled. These are as
follows:.

* Applications may not set or use the correlation id.

* A message that is not part of a group will be sent as a group of one message
(that is, its group flags will be set to specify it is the only message in a group).

* When receiving a message, the ‘Open shared’ receive policy option must be
enabled (the default).

* Any non-simulated group messages that are on the same underlying queue will
be ignored by the receive request.

Note that if MQSeries for OS/390 Version 5.2 s involved in any way in sending or
receiving group messages or files, then ‘Simulated Group Support’ must be
enabled on both the sending and receiving systems. This applies even if one of the
systems is not an OS/390 platform.

Other considerations

You should consider the following when writing your applications:
* Multithreading

* Using MQSeries with the AMI

 Field limits

* Using the AMI OAMAS subset

Multithreading

If you are using multithreading with the AMI, a session normally remains locked
for the duration of a single AMI call. If you use receive with wait, the session
remains locked for the duration of the wait, which might be unlimited (that is,
until the wait time is exceeded or a message arrives on the queue). If you want
another thread to run while a thread is waiting for a message, it must use a
separate session.

AMI handles and object references can be used on a different thread from that on
which they were first created for operations that do not involve an access to the
underlying (MQSeries) message transport. Functions such as initialize, terminate,
open, close, send, receive, publish, subscribe, unsubscribe, and receive publication
will access the underlying transport restricting these to the thread on which the
session was first opened (for example, using amlInitialize or amSesOpen). An
attempt to issue these on a different thread will cause an error to be returned by
MQSeries and a transport error (AMRC_TRANSPORT_ERR) will be reported to the
application.

Chapter 2. Using the Application Messaging Interface in C 27

Writing applications in C
Multithreaded applications are not supported on OS/390.
Using MQSeries with the AMI

You must not mix MQSeries function calls with AMI function calls within the same
process.

Field limits

When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries,
the underlying message transport. See the rules for naming MQSeries objects in the

Using the AMI OAMAS subset

A subset of the AMI conforms to the Open Applications Group Middleware
Application Programming Interface Specification (OAMAS). See
http:/ /www.openapplications.org for further details.

To ensure that your C applications conform to the OAMAS subset, your C
functions should include the oamasami.h header in place of amtc.h.

28 MQSeries Application Messaging Interface

Building C applications

Building C applications

This section contains information that will help you write, prepare, and run your C
application programs on the various operating systems supported by the AML

AMI include file

The AMI provides an include file, amtc.h, to assist you with the writing of your
applications. It is recommended that you become familiar with the contents of this
file.

The include file is installed under:
/amt/inc (UNIX)

\amt\include (Windows)

h1q.SCSQC370 (0S/390)

See “Directory structure” on page 25 (AIX), page k2d (HP-UX), page ka3 (Solaris),
page kad (Windows), or page (0S/390).

Your AMI C program must contain the statement:
#include <amtc.h>

The AMI include file must be accessible to your program at compilation time.

Data types

All data types are defined by means of the typedef statement. For each data type,
the corresponding pointer data type is also defined. The name of the pointer data
type is the name of the elementary or structure data type prefixed with the letter

"P" to denote a pointer; for example:

typedef AMHSES AMPOINTER PAMHSES; /* pointer to AMHSES =/

Initial values for structures

The include file amtc.h defines a macro variable that provides initial values for the
AMELEM structure. This is the structure used to pass name/value element
information across the AMI. Use it as follows:

AMELEM MyElement = {AMELEM DEFAULT};

You are recommended to initialize all AMELEM structures in this way so that the
structld and version fields have valid values. If the values passed for these fields
are not valid, AMI will reject the structure.

It should be noted that some of the fields in this structure are string pointers that,

in the default case, are set to NULL. If you wish to use these fields you must
allocate the correct amount of storage prior to setting the pointer.

Chapter 2. Using the Application Messaging Interface in C 29

Building C applications

— Next step
Now go to one of the following to continue building a C application:

7 n

° 4 _ 7

. ” . . .« g

. ” . . . 17

. 4 : : ”

C applications on AIX

This section explains what you have to do to prepare and run your C programs on

the AIX operating system. See [Language compilers” an page 429 for compilers

supported by the AMI.

Preparing C programs on AlX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the xlc command you need to
specify a number of options:

* Where the AMI include files are.
This can be done using the -1 flag. In the case of AIX, they are usually located
at /usr/mgm/amt/inc.

* Where the AMI library is.
This can be done using the -L flag. In the case of AIX, it is usually located at
/usr/mgm/1ib.

* Link with the AMI library.
This is done with the -1 flag, more specifically -1amt.

For example, compiling the C program mine.c into an executable called mine:
x1c -I/usr/mgm/amt/inc -L/usr/mgm/1ib -Tamt mine.c -o mine

If, however, you are building a threaded program, you must use the correct
compiler and the threaded library, Tibamt_r.a. For example:

xTc_r -I/usr/mgm/amt/inc -L/usr/mgm/1ib -lamt_r mine.c -o mine

Running C programs on AIX

When running a C executable you must have access to the C libraries 1ibamt.a,
1ibamtXML310.a, and 1ibamtICUUC140.a in your runtime environment. If the
amtInstall utility has been run, this environment will be set up for you (see

If you have not run the utility, the easiest way of achieving this is to construct a
link from the AIX default library location to the actual location of the C libraries.
To do this:

In -s /usr/mgm/1ib/libamt.a /usr/1ib/libamt.a

In -s /usr/mgm/1ib/1ibamtXML310.a /usr/1ib/TibamtXML310.a
In -s /usr/mgm/1ib/1ibamtICUUC140.a /usr/1ib/1ibamtICUUC140.a

You must have sufficient access to perform this operation.

If you are using the threaded libraries, you can perform a similar operation:

30 MQSeries Application Messaging Interface

C applications on AIX

In -s /usr/mgm/1ib/1ibamt_r.a /usr/1ib/Tibamt_r.a
In -s /usr/mgm/1ib/1ibamtXML310_r.a /usr/1ib/1ibamtXML310_r.a
In -s /usr/mgm/1ib/1ibamtICUUC140 r.a /usr/1ib/1ibamtICUUC140 r.a

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries
dynamically.

For the non-threaded MQSeries Server library, perform:
In -s /usr/mgm/1ib/amtcmgm /usr/Tib/amtcmgm

For the non-threaded MQSeries Client library, perform:
In -s /usr/mgm/1ib/amtcmgic /usr/1ib/amtcmgic

For the threaded MQSeries Server library, perform:
In -s /usr/mgm/1ib/amtcmgm_r /usr/1ib/amtcmgm_r

For the threaded MQSeries Client library, perform:
In -s /usr/mgm/1ib/amtcmgic_r /usr/1ib/amtcmqic_r

C applications on HP-UX

This section explains what you have to do to prepare and run your C programs on
the HP-UX operating system. See [" for compilers
supported by the AMI.

Preparing C programs on HP-UX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the aCC command you need to
specify a number of options:

* Where the AMI include files are.
This can be done using the -1 flag. In the case of HP-UX, they are usually
located at /opt/mgm/amt/inc.

* Where the AMI libraries are.
This can be done using the -W1,+b,:,-L flags. In the case of HP-UX, they are
usually located at /opt/mqm/1ib.

* Link with the AMI library.
This is done with the -1 flag, more specifically -1amt.

For example, compiling the AMI C program mine.c into an executable called mine:

aCC +DAportable -W1,+b,:,-L/opt/mgm/1ib -0 mine mine.c
-I/opt/mgm/amt/inc -lamt

Note that you could equally link to the threaded library using -lamt_r. On HP-UX
there is no difference since the unthreaded versions of the AMI binaries are simply
links to the threaded versions.

Running C programs on HP-UX

When running a C executable you must have access to the C libraries 1ibamt.s1,
1ibamtXML310.s1, and 1ibamtICUUC140.s1 in your runtime environment. If the
amtInstall utility has been run, this environment will be set up for you (see

UInstallation on HP-TIX” on page 427).

Chapter 2. Using the Application Messaging Interface in C 31

C applications on HP-UX

If you have not run the utility, the easiest way of achieving this is to construct a
link from the HP-UX default library location to the actual location of the C
libraries. To do this:

In -s /opt/mgm/1ib/1ibamt_r.s1 /usr/1ib/1ibamt.s]
Tn -s /opt/mgm/1ib/1ibamtXML310 r.s1 /usr/1ib/1ibamtXML310.s1
In -s /opt/mgm/1ib/1ibamtICUUC140_r.s1 /usr/1ib/1ibamtICUUC140.s]

You must have sufficient access to perform this operation.

If you are using the threaded libraries, you can perform a similar operation:

In -s /opt/mgm/1ib/1ibamt_r.s1 /usr/1ib/Tibamt_r.s]l
Tn -s /opt/mgm/1ib/TibamtXML310_r.s1 /usr/1ib/1ibamtXML310_r.s]
In -s /opt/mgm/1ib/1ibamtICUUC140 r.s1 /usr/1ib/1ibamtICUUC140 r.s]

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries

dynamically.

For the non-threaded MQSeries Server library, perform:
In -s /opt/mgm/1ib/amtcmgm_r /usr/1ib/amtcmgm

For the non-threaded MQSeries Client library, perform:
In -s /opt/mgm/1ib/amtcmgic_r /usr/lib/amtcmgic

For the threaded MQSeries Server library, perform:
In -s /opt/mgm/1ib/amtcmgm_r /usr/1ib/amtcmgm_r

For the threaded MQSeries Client library, perform:
In -s /opt/mgm/1ib/amtcmgic_r /usr/1ib/amtcmqic_r

As before, note that the unthreaded versions are simply links to the threaded
versions.

32 MQSeries Application Messaging Interface

C applications on Solaris

C applications on Solaris

This section explains what you have to do to prepare and run your C programs in
the Sun Solaris operating environment. See Language compilers” on page 422 for
compilers supported by the AMI

Preparing C programs on Solaris
The following is not prescriptive as there are many ways to set up environments to

build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the CC command you need to
specify a number of options:

Where the AMI include files are.

This can be done using the -1 flag. In the case of Solaris, they are usually
located at /opt/mgm/amt/inc.

Where the AMI library is.

This can be done using the -L flag. In the case of Solaris, it is usually located at
/opt/mgm/1ib.

Link with the AMI library.
This is done with the -1 flag, more specifically -1amt.

For example, compiling the C program mine.c into an executable called mine:

CC -mt -I/opt/mgm/amt/inc -L/opt/mgm/1ib -lamt mine.c -o mine

Running C programs on Solaris

When running a C executable you must have access to the C libraries Tibamt.so,
TibamtXML310.s0, and TibamtICUUC140.s0 in your runtime environment. If the
amtlInstall utility has been run, this environment will be set up for you (see

UInstallation on Sun Solaris” on page 431)).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the Solaris default library location to the actual location of the C
libraries. To do this:

In -s /opt/mgm/1ib/1ibamt.so /usr/Tib/1libamt.so
In -s /opt/mgm/1ib/TibamtXML310.s0 /usr/1ib/TibamtXML310.s0
In -s /opt/mgm/1ib/1ibamtICUUC140.s0 /usr/1ib/1ibamtICUUC140.s0

You must have sufficient access to perform this operation.

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries
dynamically. For the non-threaded MQSeries Server library, perform:

In -s /opt/mgm/1ib/amtcmgm /usr/1ib/amtcmgm

For the MQSeries Client library, perform:

In -s /opt/mgm/1ib/amtcmgic /usr/1ib/amtcmqic

Chapter 2. Using the Application Messaging Interface in C 33

C applications on Windows

C applications on Windows

This section explains what you have to do to prepare and run your C programs on
the Windows 98 and Windows NT® operating systems. See [’
for compilers supported by the AMI.

Preparing C programs on Windows
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the ¢l command you need to
specify a number of options:

¢ Where the AMI include files are.

This can be done using the -1 flag. In the case of Windows, they are usually
located at \amt\include relative to where you installed MQSeries. Alternatively,
the include files could exist in one of the directories pointed to by the INCLUDE
environment variable.

* Where the AMI library is.

This can be done by including the library file amt.LIB as a command line
argument. The amt.LIB file should exist in one of the directories pointed to by
the LIB environment variable.

For example, compiling the C program mine.c into an executable called mine.exe:
¢l -IC:\MQSeries\amt\include /Fomine mine.c amt.LIB

Running C programs on Windows

When running a C executable you must have access to the C DLLs amt.d11 and
amtXML.d11 in your runtime environment. Make sure they exist in one of the
directories pointed to by the PATH environment variable. For example:

SET PATH=%PATH%;C:\MQSeries\bin;

If you already have MQSeries installed, and you have installed AMI under the
MQSeries directory structure, it is likely that the PATH has already been set up for
you.

You must also make sure that your AMI runtime environment can access the
MQSeries runtime environment. (This will be the case if you installed MQSeries
using the documented method.)

C applications on 0S/390

This section explains what you have to do to prepare and run your C programs on

the OS/390 operating system. See Language compilers” on page 423 for compilers

supported by the AMI.

Preparing C programs on 0S/390

C application programs using the AMI must be compiled, pre-linked, and link
edited. Programs containing CICS commands must be processed by the CICS
translator prior to compilation.

Compile: Make sure that the AMI include file (installed in library h1q.SCSQC370)
is added to the C compiler’s SYSLIB concatenation.

Pre-link:: The pre-link job step is essential for importing the AMI DLL function
references from an appropriate sidedeck. A DD statement for the sidedeck member,

34 MQSeries Application Messaging Interface

C applications on 0S/390

h1q.SCSQDEFS (member), must be specified in the pre-link step SYSIN concatenation
after the application object code member. The appropriate sidedeck member for
each application type is as follows:

Batch AMTBD10

RRS-batch
AMTRDI10

CICS AMTCDI10
IMS AMTID10

Link Edit:: There are no special requirements for link editing.

Running C programs on 0S/390
The AMI needs access to the MQSeries datasets SCSQLOAD and SCSQAUTH, as

well as one of the language-specific datasets such as SCSQANLE. See the IM._Q@

icati i idd for details of the supported languages. The
following list shows which JCL concatenation to add the datasets to for each
AMlI-supported environment:

Batch STEPLIB or JOBLIB
CICS DFHRPL
IMS The Message Processing Regions” STEPLIB

Chapter 2. Using the Application Messaging Interface in C 35

C applications on 0S/390

36 MQSeries Application Messaging Interface

Chapter 3. The C high-level interface

The C high-level interface contains functions that cover the requirements of the
majority of applications. If extra functionality is needed, C object interface
functions can be used in the same application as the C high-level functions.

This chapter contains:

.IilD . E] :].]_]]. E 173 38

. n 17

© Copyright IBM Corp. 1999, 2000

37

C high-level interface overview

Overview of the C high-level interface

The high-level functions are listed below. Follow the page references to see the
detailed descriptions of each function.

Initialize and terminate
Functions to create and open an AMI session, and to close and delete an AMI

session.
amlInitialize page |
amTerminate page kd

Sending messages

Functions to send a datagram (send and forget) message, and to send request and
response messages.

amSendMsg page 7
amSendRequest page 64
amSendResponse page

Receiving messages

Functions to receive a message from amSendMsg or amSendResponse, and to
receive a request message from amSendRequest.

amReceiveMsg page kd
amReceiveRequest page B4
amBrowseMsg page i

File transfer

Functions to send message data from a file, and to receive message data sent by
amSendFile into a file.

amSendFile page B4
amReceiveFile page k7
Publish/subscribe

Functions to publish a message to a publish/subscribe broker, and to subscribe,
unsubscribe, and receive publications.

amPublish page Ld
amSubscribe page bd
amUnsubscribe page k1
amReceivePublication page 51

Transaction support

Functions to begin, commit, and backout a unit of work.

amBegin page 7RI
amCommit page k4
amBackout page

38 MQSeries Application Messaging Interface

C high-level interface

Reference information for the C high-level interface

In the following sections the high-level interface functions are listed in alphabetical
order. Note that all functions return a completion code (pCompCode) and a reason
code (pReason). The completion code can take one of the following values:
AMCC_OK Function completed successfully
AMCC_WARNING

Function completed with a warning
AMCC_FAILED

An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the

reason for the error or warning (see LA.p.pendJ.x_A_Reasan_cadts_m:_pa.geASJJ)

Most functions require the session handle to be specified. If this handle is not
valid, the results are unpredictable.

Chapter 3. The C high-level interface 39

C high-level interface

amBackout
Function to backout a unit of work.
AMBOOL amBackout (

AMHSES hSession,

AMSTR policyName,

PAMLONG pCompCode,

PAMLONG pReason);

Parameters

hSession The session handle returned by amlnitialize (input).

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

40 MQSeries Application Messaging Interface

C high-level interface

amBegin
Function to begin a unit of work.
AMBOOL amBegin (

AMHSES hSession,

AMSTR policyName,

PAMLONG pCompCode,

PAMLONG pReason);

Parameters

hSession The session handle returned by amlnitialize (input).

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

Chapter 3. The C high-level interface 41

C high-level interface

amBrowselMsg

Function to browse a message. See the IMQSeries Application Programming Guidd for

a full description of the browse options.
AMBOOL amBrowseMsg (

AMHSES hSession,
AMSTR receiverName,
AMSTR policyName,
AMLONG options,
AMLONG bufflLen,
PAMLONG pDatalen,
PAMBYTE pData,
AMSTR rcvMsgName,
AMSTR senderName,
PAMLONG pCompCode,
PAMLONG pReason);
Parameters
hSession The session handle returned by amlnitialize (input).
receiverName The name of a receiver service (input). If specified as NULL, the

policyName

options

system default receiver name (constant: AMSD_RCV) is used.

The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

Options controlling the browse operation (input). Possible values
are:

AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT

AMBRW_DEFAULT
AMBRW_LOCK_NEXT
AMBRW_LOCK_FIRST
AMBRW_LOCK_CURRENT

(AMBRW_NEXT)

(AMBRW_LOCK + AMBRW_NEXT)
(AMBRW_LOCK + AMBRW_FIRST)
(AMBRW_LOCK + AMBRW_CURRENT)

bufflLen

pDatalen

pData

rcvMsgName

senderName

AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message. The locking
feature is not available on OS/390.

The length in bytes of a buffer in which the data is returned
(input).

The length of the message data, in bytes (output). Specify as NULL
if this is not required.

The received message data (output).

The name of the message object for the received message (output).
Properties, and message data if not returned in the pData
parameter, can be extracted from the message object using the
object interface (see L i ions”). The
message object is implicitly reset before the browse takes place. If
rcvMsgName is specified as NULL, the system default receive
message name (constant: AMSD_RCV_MSG) is used.

The name of a special type of sender service known as a response

42 MQSeries Application Messaging Interface

C high-level interface

sender, to which the response message will be sent (output). This
sender name must not be defined in the repository. It is only
applicable if the message type is AMMT_REQUEST.

pCompCode Completion code (output).

pReason Reason code (output).

Usage notes

To return the data in the message object (rcvMsgName), set bufflLen to zero and
pDatalLen to NULL.

To return the message data in the pData parameter, set bufflLen to the required
length and pDatalLen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set buffLen to zero.
pDatalen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message data will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set bufflLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message data is returned with an
AMRC_MSG_TRUNCATED warning.

Chapter 3. The C high-level interface 43

C high-level interface

amCommit
Function to commit a unit of work.
AMBOOL amCommit (

AMHSES hSession,

AMSTR policyName,

PAMLONG pCompCode,

PAMLONG pReason);

Parameters

hSession The session handle returned by amlnitialize (input).

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

44 MQSeries Application Messaging Interface

C high-level interface

aminitialize
Function to create and open an AMI session. It returns a session handle of type
AMHSES, which is valid until the session is terminated. One amlInitialize is
allowed per thread. A session handle can be used on different threads, subject to
any limitations of the underlying transport layer (MQSeries).
AMHSES amInitialize(
AMSTR name,
AMSTR policyName,
PAMLONG pCompCode,
PAMLONG pReason);
Parameters
name An optional name that can be used to identify the application
(input).

policyName The name of a policy defined in the repository (input). If specified
as NULL, the system default policy name (constant: AMSD_POL)

is used.
pCompCode Completion code (output).
pReason Reason code (output).

Chapter 3. The C high-level interface 45

C high-level interface

amPublish
Function to publish a message to a publish/subscribe broker.
AMBOOL amPublish(
AMHSES hSession,
AMSTR publisherName,
AMSTR policyName,
AMSTR responseName,
AMLONG topiclLen,
AMSTR pTopic,
AMLONG datalen,
PAMBYTE pData,
AMSTR pubMsgName,
PAMLONG pCompCode,
PAMLONG pReason);
Parameters
hSession The session handle returned by amlnitialize (input).

publisherName

policyName

responseName

topiclLen

pTopic

datalen

pData
pubMsgName

pCompCode

pReason

The name of a publisher service (input). If specified as NULL, the
system default publisher name (constant: AMSD_PUB) is used.

The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

The name of the receiver service to which the response to this
publish request should be sent (input). Specify as NULL if no
response is required. This parameter is mandatory if the policy
specifies implicit publisher registration (the default).

The length of the topic for this publication, in bytes (input). A
value of AMLEN_NULL_TERM specifies that the string is NULL
terminated.

The topic for this publication (input).

The length of the publication data in bytes (input). A value of zero
indicates that any publication data has been added to the message

object (pubMsgName) using the object interface (see
3 . ”)'
The publication data, if datalen is non-zero (input).

The name of a message object that contains the header for the
publication message (input). If datalen is zero it also holds any
publication data. If specified as NULL, the system default message
name (constant: AMSD_SND_MSG) is used.

Completion code (output).

Reason code (output).

46 MQSeries Application Messaging Interface

C high-level interface

amReceiveFile

Function to receive message data sent by amSendFile into a file.
AMBOOL amReceiveFile(

AMHSES hSession,
AMSTR receiverName,
AMSTR policyName,
AMLONG options,
AMSTR selMsgName,
AMLONG directorylen,
AMSTR directory,
AMLONG fileNameLen,
AMSTR fileName,
AMSTR rcvMsgName,
PAMLONG pCompCode,
PAMLONG pReason);
Parameters
hSession The session handle returned by amlInitialize (input).
receiverName The name of a receiver service (input). If specified as NULL, the

policyName

options

selMsgName

directoryLen
directory

fileNameLen

fileName

rcvMsgName

pCompCode

system default receiver name (constant: AMSD_RCV) is used.

The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

A reserved field that must be specified as zero (input).

Optional selection message object used to specify information (such
as a Correlld) needed to select the required message (input).

A reserved field that must be specified as zero (input).
A reserved field that must be specified as NULL (input).

The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

The name of the file into which the transferred data is to be
received (input). This can include a directory prefix to define a
fully-qualified or relative file name. If NULL or a null string is
specified, then the AMI will use the name of the originating file
(including any directory prefix), exactly as it was supplied on the
send file call. Note that the original file name may not be
appropriate for use by the receiver, either because a path name
included in the file name is not applicable to the receiving system,
or because the sending and receiving systems use different file
name conventions.

The name of the message object to be used to receive the file
(output). This parameter is updated with the message properties
(for example, the Message ID). If the message is not from a file,
rcvMsgName receives the message data. If specified as NULL, the
system default receive message name (constant AMSD_RCV_MSG)
is used. is used.

Property information and message data can be extracted from the
message object using the object interface (see L. i

functions” on page 90). The message object is reset implicitly before

the receive takes place.

Completion code (output).

Chapter 3. The C high-level interface 47

C high-level interface

pReason Reason code (output).

Usage notes

If fileName is blank (indicating that the originating file name specified in the
message is to be used), then fileNameLen should be set to zero.

48 MQSeries Application Messaging Interface

C high-level interface

amReceivelMsg

Function to receive a message.

AMBOOL amReceiveMsg(
AMHSES hSession,
AMSTR receiverName,
AMSTR policyName,
AMSTR selMsgName,
AMLONG bufflLen,
PAMLONG pDatalen,
PAMBYTE pData,
AMSTR rcvMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters

hSession

receiverName
policyName
selMsgName
buffLen
pDatalen

pData

rcvMsgName

pCompCode

pReason

Usage notes

The session handle returned by amlInitialize (input).

The name of a receiver service (input). If specified as NULL, the
system default receiver name (constant: AMSD_RCV) is used.

The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

Optional selection message object used to specify information (such
as a Correlld) needed to select the required message (input).

The length in bytes of a buffer in which the data is returned
(input).

The length of the message data, in bytes (output). Specify as NULL
if this is not required.

The received message data (output).

The name of the message object for the received message (output).
If specified as NULL, the system default receive message name
(constant: AMSD_RCV_MSG) is used. Properties, and message data
if not returned in the pData parameter, can be extracted from the

message object using the object interface (see Message interfacd
functions” on page 9(0). The message object is implicitly reset before

the receive takes place.

Completion code (output).

Reason code (output).

To return the data in the message object (rcvMsgName), set bufflLen to zero and
pDatalLen to NULL.

To return the message data in the pData parameter, set bufflLen to the required
length and pDatalLen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set buffLen to zero.
pDatalen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

Chapter 3. The C high-level interface 49

C high-level interface

To return the message data in the pData parameter, together with the data length,
set bufflLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be selected in the policy receive
attributes. You can then remove the message by specifying zero in the bufflen
parameter, a null in the pDatalLen parameter, and a non-null in the pData
parameter.

50 MQSeries Application Messaging Interface

C high-level interface

amReceivePublication

Function to receive a publication from a publish/subscribe broker.

AMBOOL amReceivePublication(
AMHSES hSession,
AMSTR subscriberName,
AMSTR policyName,
AMSTR selMsgName,
AMLONG topicBufflLen,
AMLONG bufflen,
PAMLONG pTopicCount,
PAMLONG pTopiclLen,
AMSTR pFirstTopic,
PAMLONG pDatalen,
PAMBYTE pData,
AMSTR rcvMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amlInitialize (input).

subscriberName
The name of a subscriber service (input). If specified as NULL, the
system default subscriber name (constant: AMSD_SUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

selMsgName Optional selection message object used to specify information (such
as a Correlld) needed to select the required message (input).

topicBuffLen The length in bytes of a buffer in which the topic is returned
(input).

buffLen The length in bytes of a buffer in which the publication data is
returned (input).

pTopicCount The number of topics in the message (output). Specify as NULL if
this is not required.

pTopicLen The length in bytes of the first topic (output). Specify as NULL if
this is not required.

pFirstTopic The first topic (output). Specify as NULL if this is not required.
Topics can be extracted from the message object (r‘cvMsgName) using
the object interface (see L

pDatalen The length in bytes of the publication data (output). Specify as
NULL if this is not required.

pData The publication data (output). Specify as NULL if this is not
required. Data can be extracted from the message ob]ect
(rcvMsgName) using the object interface (see L

”

rcvMsgName The name of a message object for the received message (input). If
specified as NULL, the default message name (constant:
AMSD_RCV_MSG) is used. The publication message properties
and data update this message object, in addition to being returned
in the parameters above. The message object is implicitly reset to
the default before the receive takes place.

Chapter 3. The C high-level interface 51

C high-level interface
pCompCode Completion code (output).

pReason Reason code (output).

Usage notes

We recommend that, when using amReceivePublication, you always have data
conversion enabled in the specified policy. If data conversion is not enabled,
amReceivePublication will fail if the local CCSID and/or encoding values differ
from those on the platform from which the publication was sent.

If data conversion is enabled by the specified policy, and a selection message is
specified, then the conversion is performed using the target encoding and coded
character set identifier (CCSID) values designated in the selection message. (The
selection message is specified in the selMsgName parameter).

If a selection message is not specified, then the platform encoding and Queue
Manager CCSID values are used as defaults for the conversion.

If a normal message that is not a publication message is received by the specified
subscriber, then amReceivePublication behaves the same as amReceiveMsg.

52 MQSeries Application Messaging Interface

C high-level interface

amReceiveRequest

Function to receive a request message.

AMBOOL amReceiveRequest (

AMHSES hSession,
AMSTR receiverName,
AMSTR policyName,
AMLONG bufflen,
PAMLONG pDatalen,
PAMBYTE pData,
AMSTR rcvMsgName,
AMSTR senderName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters

hSession

receiverName
policyName
buffLen
pDatalen

pData

rcvMsgName

senderName

pCompCode

pReason

Usage notes

The session handle returned by amlInitialize (input).

The name of a receiver service (input). If specified as NULL, the
system default receiver name (constant: AMSD_RCV) is used.

The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

The length in bytes of a buffer in which the data is returned
(input).

The length of the message data, in bytes (output). Specify as NULL
if this is not required.

The received message data (output).

The name of the message object for the received message (output).
If specified as NULL, the system default receiver service (constant:
AMSD_RCV_MSQG) is used. Header information, and message data
if not returned in the Data parameter, can be extracted from the

message object using the object interface (see I'Message interfacd

. The message object is implicitly reset before
the receive takes place.

The name of a special type of sender service known as a response
sender, to which the response message will be sent (output). This
sender name must not be defined in the repository. If specified as
NULL, the system default response sender service (constant:
AMSD_RSP_SND) is used.

Completion code (output).

Reason code (output).

The following notes contain details about use of the amReceiveRequest call.

Data conversion

If data conversion is enabled by the specified policy, and a selection message is
specified, then the conversion is performed using the target encoding and coded
character set identifier (CCSID) values designated in the selection message. (These
target values are specified in the selMsgName parameter).

If a selection message is not specified, then the platform encoding and Queue
Manager CCSID values are used as defaults for conversion.

Chapter 3. The C high-level interface 53

C high-level interface

Use of the buffLen parameter
To return the data in the message object (rcvMsgName), set bufflLen to zero and

pDatalen to NULL.

To return the message data in the pData parameter, set bufflLen to the required
length and pDatalen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set bufflLen to zero.
pDatalLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must be not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set bufflen to the required length. pDatalLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be selected in the policy receive
attributes. You can then remove the message by specifying zero in the bufflen
parameter, a null in the pDatalen parameter, and a non-null in the pData
parameter.

54 MQSeries Application Messaging Interface

C high-level interface

policyName

options

directoryLen

directory

fileNameLen

fileName

sndMsgName

pCompCode

pReason

Usage notes

amSendFile
Function to send data from a file.
AMBOOL amSendFile(
AMHSES hSession,
AMSTR senderName,
AMSTR policyName,
AMLONG options,
AMLONG directorylLen,
AMSTR directory,
AMLONG fileNamelen,
AMSTR fileName,
AMSTR sndMsgName,
PAMLONG pCompCode,
PAMLONG pReason);
Parameters
hSession The session handle returned by amlnitialize (input).
senderName The name of a sender service (input). If specified as NULL, the

system default sender name (constant: AMSD_SND) is used.

The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

A reserved field that must be specified as zero (input).
A reserved field that must be specified as zero (input).
A reserved field that must be specified as NULL (input).

The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel w1th the message for use with a receive file call (see

’ ” for more details). Note that the file
name sent will exactly match the supplied file name; it will not be
converted or expanded in any way.

The name of the message object to be used to send the file (input).
This parameter can be used, for example, to specify the Correlation
ID, which can be set from the message object using the object

interface (see ’Message interface functions” on page 90).

Completion code (output).

Reason code (output).

The message object is implicitly reset by the amSendFile call.

The system default object is used when you set sndMsgName to NULL or an empty

string.

Chapter 3. The C high-level interface 55

C high-level interface

amSendMsg
Function to send a datagram (send and forget) message.
AMBOOL amSendMsg (
AMHSES hSession,
AMSTR senderName,
AMSTR policyName,
AMLONG datalen,
PAMBYTE pData,
AMSTR sndMsgName,
PAMLONG pCompCode,
PAMLONG pReason);
Parameters
hSession The session handle returned by amlInitialize (input).
senderName The name of a sender service (input). If specified as NULL, the

system default sender name (constant: AMSD_SND) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

datalen The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (sndMsgName) using the object interface (see

4)'

pData The message data, if datalen is non-zero (input).

sndMsgName The name of a message object for the message being sent (input). If
datalen is zero it also holds any message data. If specified as
NULL, the system default message name (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

56 MQSeries Application Messaging Interface

C high-level interface

amSendRequest

Function to send a request message.

AMBOOL amSendRequest (
AMHSES hSession,
AMSTR senderName,
AMSTR policyName,
AMSTR responseName,
AMLONG datalen,
PAMBYTE pData,

AMSTR sndMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters

hSession

senderName
policyName

responseName

datalen

pData

sndMsgName

pCompCode

pReason

The session handle returned by amlnitialize (input).

The name of a sender service (input). If specified as NULL, the
system default sender name (constant: AMSD_SND) is used.

The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

The name of the receiver service to which the response to this send
request should be sent (input). See amReceiveRequest. Specify as
NULL if no response is required.

The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message

object (sndMsgName) using the object interface (see
- . ”)
The message data, if datalen is non-zero (input).

The name of a message object for the message being sent (input). If
specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

Completion code (output).

Reason code (output).

Chapter 3. The C high-level interface 57

C high-level interface

amSendResponse

Function to send a response to a request message.

AMBOOL amSendResponse (
AMHSES hSession,
AMSTR senderName,
AMSTR policyName,
AMSTR rcvMsgName,
AMLONG datalen,
PAMBYTE pData,
AMSTR sndMsgName,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSession The session handle returned by amlnitialize (input).
senderName The name of the sender service (input). It must be set to the

senderName specified for the amReceiveRequest function.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

rcvMsgName The name of the received message that this message is a response
to (input). It must be set to the rcvMsgName specified for the
amReceiveRequest function.

datalen The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (sndMsgName) using the object interface (see

”)'

pData The message data, if datalen is non-zero (input).

sndMsgName The name of a message object for the message being sent (input). If
specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

58 MQSeries Application Messaging Interface

C high-level interface

amSubscribe
Function to register a subscription with a publish/subscribe broker.
Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix . RECEIVER’.
Subscribing applications can exploit content based publish/subscribe by passing a
filter on the amSubscribe call.
AMBOOL amSubscribe(
AMHSES hSession,
AMSTR subscriberName,
AMSTR policyName,
AMSTR responseName,
AMLONG topiclLen,
AMSTR pTopic,
AMLONG filterLen,
AMSTR pFilter,
AMSTR subMsgName,
PAMLONG pCompCode,
PAMLONG pReason);
Parameters
hSession The session handle returned by amlInitialize (input).
subscriberName

The name of a subscriber service (input). If specified as NULL, the
system default subscriber (constant: AMSD_SUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

responseName The name of the receiver service to which the response to this
subscribe request should be sent (input). Specify as NULL if no
response is required.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

topiclen The length of the topic for this subscription, in bytes (input).

pTopic The topic for this subscription (input). Publications which match
this topic, including wildcards, will be sent to the subscriber.
Multiple topics can be specified in the message object (subMsgName)
using the object interface (see L i ions”

).

filterLen The length in bytes of the filter (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

pFilter The filter to be added (input). The syntax of the filter string is
described in the MQSeries Integrator Version 2.0 Programming Guide.

subMsgName The name of a message object for the subscribe message (input). If
specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

Chapter 3. The C high-level interface 59

C high-level interface

amTerminate

Closes the session, closes and deletes any implicitly created objects, and deletes the
session. Any outstanding units of work are committed (if the application
terminates without an amTerminate call being issued, any outstanding units of
work are backed out).
AMBOOL amTerminate(

PAMHSES ~ phSession,

AMSTR policyName,

PAMLONG pCompCode,

PAMLONG pReason);

Parameters

phSession A pointer to the session handle returned by amlnitialize
(input/output).

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

60 MQSeries Application Messaging Interface

C high-level interface

amUnsubscribe

Function to remove a subscription from a publish/subscribe broker.
AMBOOL amUnsubscribe(

AMHSES hSession,
AMSTR subscriberName,
AMSTR policyName,
AMSTR responseName,
AMLONG topicLen,
AMSTR pTopic,
AMLONG filterLen,
AMSTR pFilter,
AMSTR unsubMsgName,
PAMLONG pCompCode,
PAMLONG pReason);
Parameters
hSession The session handle returned by amlnitialize (input).
subscriberName

policyName

responseName

topicLen

pTopic

filterLen

pFilter

unsubMsgName

pCompCode

pReason

Usage notes

The name of a subscriber service (input). If specified as NULL, the
system default subscriber (constant: AMSD_SUB) is used.

The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

The name of the receiver service to which the response to this
unsubscribe request should be sent (input). Specify as NULL if no
response is required.

The length of the topic, in bytes (input).

The topic that identifies the subscription to be removed (input).
Multiple topics can be specified in the message object

(unsubMsgName) using the object interface (see ‘Message interfacd

To deregister all topics, a policy providing this option must be
specified (this is not the default policy). Otherwise, to remove a
previous subscription the topic information specified must match
that specified on the relevant amSubscribe request.

The length in bytes of the filter (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

The filter that identifies the subscription to be removed (input).
The syntax of the filter string is described in the MQSeries
Integrator Version 2.0 Programming Guide.

The name of a message object for the unsubscribe message (input).
If specified as NULL, the system default message (constant:
AMSD_SND_MSGQG) is used.

Completion code (output).

Reason code (output).

To successfully remove a previous subscription, you must ensure that the topic,
filter, and subscriber queue information exactly matches that used on the original
subscribe request.

Chapter 3. The C high-level interface 61

62 MQSeries Application Messaging Interface

Chapter 4. C object interface overview

This chapter contains an overview of the structure of the C object interface. Use it
to find out what functions are available in this interface.

The object interface provides sets of interface functions for each of the following

objects:

Session page k4
Message page kd
Sender page k4
Receiver page kd
Distribution list page
Publisher page 7]
Subscriber page 75
Policy page iZ|

These interface functions are invoked as necessary by the high-level functions.
They are made available to the application programmer through this object-style
interface to provide additional function where needed. An application program can
mix high-level functions and object-interface functions as required.

Details of the interface functions for each object are given in the following pages.
Follow the page references to see the detailed descriptions of each function.

Details of the object interface functions used by each high-level function are given
on page 4

© Copyright IBM Corp. 1999, 2000 63

C object interface overview

Session interface functions

The session object creates and manages all other objects, and provides the scope
for a unit of work.

Session management
Functions to create, open, close, and delete a session object.

amSesCreate page kd
amSesOpen page
amSesClose page kd
amSesDelete page k4

Create objects

Functions to create message, sender, receiver, distribution list, publisher, subscriber,
and policy objects. Handles to these objects are returned by these functions.

amSesCreateMessage page
amSesCreateSender page Rl
amSesCreateReceiver page Rl
amSesCreateDistList page kd
amSesCreatePublisher page BO
amSesCreateSubscriber page k1
amSesCreatePolicy page B0

Get object handles

Functions to get the handles for a message, sender, receiver, distribution list,
publisher, subscriber, and policy objects with a specified name (needed if the
objects were created implicitly by the high-level interface).

amSesGetMessageHandle page
amSesGetSenderHandle page k7
amSesGetReceiverHandle page k7
amSesGetDistListHandle page kH
amSesGetPublisherHandle page B7
amSesGetSubscriberHandle page
amSesGetPolicyHandle page kd

64 MQSeries Application Messaging Interface

C object interface overview

Delete objects

Functions to delete message, sender, receiver, distribution list, publisher, subscriber,
and policy objects.

amSesDeleteMessage page B3
amSesDeleteSender page |
amSesDeleteReceiver page ¥
amSesDeleteDistList page B4
amSesDeletePublisher page ¥
amSesDeleteSubscriber page |
amSesDeletePolicy page Rd

Transactional processing

Functions to begin, commit, and rollback a unit of work.

amSesBegin page
amSesCommit page kd
amSesRollback page

Error handling

Functions to clear the error codes, and return the completion and reason codes for
the last error associated with the session object.

amSesClearErrorCodes page
amSesGetLastError page

Chapter 4. C object interface overview 65

C object interface overview

Message interface functions

A message object encapsulates an MQSeries message descriptor (MQMD) structure.
It also contains the message data if this is not passed as a separate parameter.

Get values

Functions to get the coded character set ID, correlation ID, encoding, format, group
status, message ID, and name of the message object.

amMsgGetCCSID page b4
amMsgGetCorrelld page b4
amMsgGetElementCCSID page bd
amMsgGetEncoding page bd
amMsgGetFormat page bd
amMsgGetGroupStatus page bA
amMsgGetMsgld page BS
amMsgGetName page BS
amMsgGetReportCode page bd
amMsgGetType page 1LQ0
Set values

Functions to set the coded character set ID, correlation ID, encoding, format, and
group status of the message object.

amMsgSetCCSID page flo
amMsgSetCorrelld page flod
amMsgSetElementCCSID page flod
amMsgSetEncoding page TE
amMsgSetFormat page TE
amMsgSetGroupStatus page flod

Reset values

Function to reset the message object to the state it had when first created.

amMsgReset page flodl

Read and write data

Functions to get the length of the data, get and set the data offset, and read or
write byte data to or from the message object at the current offset.

amMsgGetDataLength page bd
amMsgGetDataOffset page bd
amMsgSetDataOffset page flod
amMsgReadBytes page fLod
amMsgWriteBytes page flod

66 MQSeries Application Messaging Interface

C object interface overview

Publish/subscribe topics

Functions to manipulate the topics in a publish/subscribe message.

amMsgAddTopic page b1
amMsgDeleteTopic page b4
amMsgGetTopic page flod
amMsgGetTopicCount page flod

Publish/subscribe filters

Functions to manipulate the filters in a publish/subscribe message.

amMsgAddFilter page b
amMsgDeleteFilter page bd
amMsgGetFilter page
amMsgGetFilterCount page

Publish/subscribe name/value elements

Functions to manipulate the name/value elements in a publish/subscribe message.

amMsgAddElement page
amMsgDeleteElement page 35
amMsgGetElement page bd

amMsgGetElementCount page bd
amMsgDeleteNamedElement page 5%
amMsgGetNamedElement page
amMsgGetNamedElementCount

page

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the message.

amMsgClearErrorCodes page b1
amMsgGetLastError page b7

Publish/subscribe helper macros

Helper macros provided for use with the publish/subscribe stream name and
publication timestamp name/value strings.

AmMsgAddStreamName page flod
AmMsgGetPubTimestamp page flod
AmMsgGetStreamName page flod

Chapter 4. C object interface overview 67

C object interface overview

Sender interface functions
A sender object encapsulates an MQSeries object descriptor (MQOD) structure for

sending a message.

Open and close

Functions to open and close the sender service.
amSndOpen page flod
amSndClose page fod

Send

Function to send a message.

amSndSend page fud
amSndSendFile page i
Get values

Functions to get the coded character set ID, encoding, and name of the sender
service.

amSndGetCCSID page flod

amSndGetEncoding page

amSndGetName page flod

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the sender service.

amSndClearErrorCodes page flod
amSndGetLastError page flod

68 MQSeries Application Messaging Interface

C object interface overview

Receiver interface functions

A receiver object encapsulates an MQSeries object descriptor (MQOD) structure for
receiving a message.

Open and close

Functions to open and close the receiver service.
amRcvOpen page fud
amRcvClose page fd

Receive and browse

Functions to receive or browse a message.

amRcvReceive page fd
amRcvReceiveFile page i1
amRcvBrowse page fd
amRcvBrowseSelect page flid
Get values
Functions to get the definition type, name, and queue name of the receiver service.
amRcvGetDefnType page fi1d
amRcvGetName page g
amRcvGetQueueName page fiid
Set values

Function to set the queue name of the receiver service.

amRcvSetQueueName page fi22

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver service.

amRcvClearErrorCodes page i3
amRcvGetLastError page |

Chapter 4. C object interface overview 69

C object interface overview

Distribution list interface functions

A distribution list object encapsulates a list of sender services.

Open and close

Functions to open and close the distribution list service.
amDstOpen page DE|
amDstClose page (DE|

Send

Function to send a message to the distribution list.

amDstSend page fiod
amDstSendFile page 24
Get values

Functions to get the name of the distribution list service, a count of the sender
services in the list, and a sender service handle.

amDstGetName page fio4
amDstGetSenderCount page fiod
amDstGetSenderHandle page fiod

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the distribution list.

amDstClearErrorCodes page i3
amDstGetLastError page i3

70 MQSeries Application Messaging Interface

C object interface overview

Publisher interface functions

A publisher object encapsulates a sender service. It provides support for publishing
messages to a publish/subscribe broker.

Open and close
Functions to open and close the publisher service.

amPubOpen page flad

amPubClose page flod
Publish

Function to publish a message.

amPubPublish page fad
Get values

Functions to get the coded character set ID, encoding, and name of the publisher

service.

amPubGetCCSID page fiod

amPubGetEncoding page fiod

amPubGetName page fiad

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the publisher.

amPubClearErrorCodes page fiod
amPubGetLastError page fizd

Chapter 4. C object interface overview 71

C object interface overview

Subscriber interface functions

A subscriber object encapsulates both a sender service and a receiver service. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

Open and close

Functions to open and close the subscriber service.
amSubOpen page EE|
amSubClose page fad

Broker messages

Functions to subscribe to a broker, remove a subscription, and receive publications
from the broker.

amSubSubscribe page flad

amSubUnsubscribe page fiad

amSubReceive page fiad
Get values

Functions to get the coded character set ID, definition type, encoding, name, and
queue name of the subscriber service.

amSubGetCCSID page fiad

amSubGetDefnType page fiad

amSubGetEncoding page fia3

amSubGetName page Y

amSubGetQueueName page fiad
Set value

Function to set the queue name of the subscriber service.

amSubSetQueueName page fiad

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver.

amSubClearErrorCodes page flad
amSubGetLastError page flad

72 MQSeries Application Messaging Interface

C object interface overview

Policy interface functions

A policy object encapsulates details of how the message is handled (such as
priority, persistence, and whether it is included in a unit of work).

Get values
Functions to get the name of the policy, and the wait time set in the policy.
amPolGetName page flad
amPolGetWaitTime page flad

Set value
Function to set the wait time for a receive using the policy.
amPolSetWaitTime page flad

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the policy.

amPolClearErrorCodes page fiad
amPolGetLastError page fiad

Chapter 4. C object interface overview 73

C object interface overview

High-level functions

Each high-level function described in !‘Chapter 3. The C high-level interface” onl
calls a number of the object interface functions, as shown below.

Table 2. Object interface calls used by the high-level functions

HTMLTABLEHigh-level
function

Equivalent object interface calls

amBackout

amSesCreatePolicy / amSesGetPolicyHandle
amSesRollback

amBegin

amSesCreatePolicy / amSesGetPolicyHandle
amSesBegin

amBrowseMsg

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatPolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvBrowseSelect

amCommit

amSesCreatePolicy / amSesGetPolicyHandle
amSesCommit

amlInitialize

amSesCreate
amSesOpen

amTerminate

amSesClose
amSesDelete

amSendMsg
amSendRequest
amSendResponse

amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSend

amReceiveMsg
amReceiveRequest

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceive

amSendFile

amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSendFile

amReceiveFile

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceiveFile

amPublish

amSesCreatePublisher / amSesGetPublisherHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amPubPublish

amSubscribe

amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubSubscribe

amUnsubscribe

amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubUnsubscribe

amReceivePublication

amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubReceive

74 MQSeries Application Messaging Interface

C object interface overview

Table 2. Object interface calls used by the high-level functions (continued)

HTMLTABLEHigh-level
function

Equivalent object interface calls

Note:

If an object already exists, the appropriate call to get its handle is used instead of
calling the create function again. For example, if the message object exists,
amSesGetMessageHandle is used instead of amSesCreateMessage.

Table 3. Object interface calls used by the high-level functions

High-level function

Equivalent object interface calls

amBackout

amSesCreatePolicy / amSesGetPolicyHandle
amSesRollback

amBegin

amSesCreatePolicy / amSesGetPolicyHandle
amSesBegin

amBrowseMsg

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatPolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvBrowseSelect

amCommit

amSesCreatePolicy / amSesGetPolicyHandle
amSesCommit

amlInitialize

amSesCreate
amSesOpen

amTerminate

amSesClose
amSesDelete

amSendMsg
amSendRequest
amSendResponse

amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSend

amReceiveMsg
amReceiveRequest

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceive

amSendFile

amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSendFile

amReceiveFile

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceiveFile

amPublish

amSesCreatePublisher / amSesGetPublisherHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amPubPublish

amSubscribe

amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubSubscribe

amUnsubscribe

amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubUnsubscribe

Chapter 4. C object interface overview

75

C object interface overview

Table 3. Object interface calls used by the high-level functions (continued)

High-level function

Equivalent object interface calls

amReceivePublication

amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubReceive

Note:

B If an object already exists, the appropriate call to get its handle is used instead of
calling the create function again. For example, if the message object exists,
amSesGetMessageHandle is used instead of amSesCreateMessage.

76 MQSeries Application Messaging Interface

Chapter 5. C object interface reference

In the following sections the C object interface functions are listed by the object
they refer to:

Session page kd

Message page

Sender page flod
Receiver page fd
Distribution list page DE|
Publisher page fiod
Subscriber page fad
Policy page flad

Within each section the functions are listed in alphabetical order.

Note that all functions return a completion code (pCompCode) and a reason code
(pReason). The completion code can take one of the following values:
AMCC_OK Function completed successfully
AMCC_WARNING

Function completed with a warning
AMCC_FAILED

An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the

reason for the error or warning (see ’/Appendix A_Reason cades” on page 481)).

You can specify the completion code and reason code as null pointers when the
function is called, in which case the value is not returned.

Most functions return AMBOOL. They return a value of AMB_TRUE if the
function completed successfully, otherwise AMB_FALSE. Functions that do not
return AMBOOL return a handle as specified in the following sections.

Most functions require a handle to the object they reference. If this handle is not
valid, the results are unpredictable.

© Copyright IBM Corp. 1999, 2000

C session interface

Session interface functions

A session object provides the scope for a unit of work and creates and manages all
other objects, including at least one connection object. Each (MQSeries) connection
object encapsulates a single MQSeries queue manager connection. The session
object definition specifying the required queue manager connection can be
provided by a repository policy definition and the local host file, or the local host
file only which by default will name a single local queue manager with no
repository. The session, when deleted, is responsible for releasing memory by
closing and deleting all other objects that it manages.

Note that you should not mix MQSeries MQCONN or MQDISC requests on the
same thread as AMI calls, otherwise premature disconnection might occur.

amSesBegin

Begins a unit of work, allowing an AMI application to take advantage of the
resource coordination provided in MQSeries. The unit of work can subsequently be
committed by amSesCommit, or backed out by amSesRollback. It should be used
only when MQSeries is the transaction coordinator. If an external transaction
coordinator (for example, CICS or Tuxedo) is being used, the API of the external
coordinator should be used instead.
AMBOOL amSesBegin (
AMHSES hSess,
AMHPOL hPolicy,

PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).
pReason Reason code (output).
amSesClearErrorCodes

Clears the error codes in the session object.

AMBOOL amSesClearErrorCodes (
AMHSES hSess,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).
pCompCode Completion code (output).
pReason Reason code (output).

amSesClose

Closes the session object and all open objects owned by the session, and
disconnects from the underlying message transport (MQSeries).
AMBOOL amSesClose(
AMHSES hSess,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

78 MQSeries Application Messaging Interface

C session interface

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).
pReason Reason code (output).
amSesCommit

Commits a unit of work that was started by amSesBegin, or by sending or
receiving a message under syncpoint control as defined in the policy options for
the send or receive request.
AMBOOL amSesCommit (

AMHSES hSess,

AMHPOL hPolicy,

PAMLONG pCompCode,

PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).
pReason Reason code (output).
amSesCreate

Creates the session and system default objects. amSesCreate returns the handle of
the session object (of type AMHSES). This must be specified by other session
function calls.
AMHSES amSesCreate(
AMSTR name,

PAMLONG pCompCode,
PAMLONG pReason);

name An optional session name that can be used to identify the
application from which a message is sent (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesCreateDistList

Creates a distribution list object. A distribution list handle (of type AMHDST) is
returned.

AMHDST amSesCreateDistList(
AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the distribution list (input). This must match the
name of a distribution list defined in the repository.

pCompCode Completion code (output).

pReason Reason code (output).

Chapter 5. C object interface reference 79

C session interface

amSesCreateMessage
Creates a message object. A message handle (of type AMHMSG) is returned.
AMHMSG amSesCreateMessage (

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);
hSess The session handle returned by amSesCreate (input).
name The name of the message (input). This can be any name that is
meaningful to the application. It is specified so that this message
object can be used with the high-level interface.
pCompCode Completion code (output).
pReason Reason code (output).
amSesCreatePolicy

Creates a policy object. A policy handle (of type AMHPOL) is returned.
AMHPOL amSesCreatePolicy (

AMHSES
AMSTR
PAMLONG
PAMLONG

hSess

name

pCompCode

pReason

hSess,
name,
pCompCode,
pReason) ;

The session handle returned by amSesCreate (input).

The name of the policy (input). If it matches a policy defined in the
repository, the policy will be created using the repository
definition, otherwise it will be created with default values.

If a repository is being used and the named policy is not found in
the repository, a completion code of AMCC_WARNING is returned
with a reason code of AMRC_POLICY_NOT_IN_REPOS.

Completion code (output).

Reason code (output).

amSesCreatePublisher
Creates a publisher object. A publisher handle (of type AMHPUB) is returned.
AMHPUB amSesCreatePublisher(

AMHSES
AMSTR
PAMLONG
PAMLONG

hSess

name

pCompCode

hSess,
name,
pCompCode,
pReason);

The session handle returned by amSesCreate (input).

The name of the publisher (input). If it matches a publisher
defined in the repository, the publisher will be created using the
repository definition, otherwise it will be created with default
values (that is, with a sender service name that matches the
publisher name).

If a repository is being used and the named publisher is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_PUBLISHER_NOT_IN_REPOS.

Completion code (output).

80 MQSeries Application Messaging Interface

C session interface

pReason Reason code (output).

amSesCreateReceiver

Creates a receiver service object. A receiver handle (of type AMHRCV) is returned.
AMHRCV amSesCreateReceiver(

AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);
hSess The session handle returned by amSesCreate (input).
name The name of the receiver service (input). If it matches a receiver
defined in the repository, the receiver will be created using the
repository definition, otherwise it will be created with default
values (that is, with a queue name that matches the receiver name).
If a repository is being used and the named receiver is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_RECEIVER_NOT_IN_REPOS.
pCompCode Completion code (output).
pReason Reason code (output).
amSesCreateSender

Creates a sender service object. A sender handle (of type AMHSND) is returned.
AMHSND amSesCreateSender (

AMHSES
AMSTR
PAMLONG
PAMLONG

hSess

name

pCompCode

pReason

hSess,
name,
pCompCode,
pReason) ;

The session handle returned by amSesCreate (input).

The name of the sender service (input). If it matches a sender
defined in the repository, the sender will be created using the
repository definition, otherwise it will be created with default
values (that is, with a queue name that matches the sender name).

If a repository is being used and the named sender is not found in
the repository, a completion code of AMCC_WARNING is returned
with a reason code of AMRC_SENDER_NOT_IN_REPOS.

Completion code (output).

Reason code (output).

amSesCreateSubscriber
Creates a subscriber object. A subscriber handle (of type AMHSUB) is returned.
AMHSUB amSesCreateSubscriber(

AMHSES
AMSTR
PAMLONG
PAMLONG

hSess

name

hSess,
name,
pCompCode,
pReason) ;

The session handle returned by amSesCreate (input).

The name of the subscriber (input). If it matches a subscriber
defined in the repository, the subscriber will be created using the
repository definition, otherwise it will be created with default

Chapter 5. C object interface reference 81

C session interface

values (that is, with a sender service name that matches the
subscriber name, and a receiver service name that is the same with
the addition of the suffix * RECEIVER’).

If a repository is being used and the named subscriber is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_SUBSCRIBER_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

82 MQSeries Application Messaging Interface

C session interface

amSesDelete

Deletes the session object. Performs an implicit close if the session is open. This
closes and deletes the session and all objects owned by it.

AMBOOL amSesDelete(
PAMHSES phSess,
PAMLONG pCompCode,
PAMLONG pReason);

phSess A pointer to the session handle returned by amSesCreate
(input/output).

pCompCode Completion code (output).

pReason Reason code (output).

amSesDeleteDistList

Deletes a distribution list object, and performs an implicit close if the distribution
list is open.
AMBOOL amSesDeleteDistList(
AMHSES hSess,
PAMHDST phDistList,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phDistList A pointer to the distribution list handle (input/output).

pCompCode Completion code (output).
pReason Reason code (output).
amSesDeleteMessage

Deletes a message object.

AMBOOL amSesDeleteMessage (
AMHSES hSess,
PAMHMSG ~ phMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).
phMsg A pointer to the message handle (input/output).
pCompCode Completion code (output).

pReason Reason code (output).

Chapter 5. C object interface reference 83

C session interface

amSesDeletePolicy
Deletes a policy object.

AMBOOL amSesDeletePolicy (
AMHSES hSess,
PAMHPOL phPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).
phPolicy A pointer to the policy handle (input/output).
pCompCode Completion code (output).

pReason Reason code (output).

amSesDeletePublisher
Deletes a publisher object, and performs an implicit close if the publisher is open.

AMBOOL amSesDeletePublisher(
AMHSES hSess,
PAMHPUB phPub,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phPub A pointer to the publisher handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).
amSesDeleteReceiver

Deletes a receiver object, and performs an implicit close if the receiver is open.

AMBOOL amSesDeleteReceiver(
AMHSES hSess,
PAMHRCV ~ phReceiver,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).
phReceiver A pointer to the receiver service handle (input/output).
pCompCode Completion code (output).

pReason Reason code (output).

84 MQSeries Application Messaging Interface

C session interface

amSesDeleteSender

Deletes a sender object, and performs an implicit close if the sender is open.
AMBOOL amSesDeleteSender (

AMHSES

PAMHSND
PAMLONG
PAMLONG

hSess
phSender
pCompCode

pReason

hSess,
phSender,
pCompCode,
pReason);

The session handle returned by amSesCreate (input).
A pointer to the sender service handle (input/output).
Completion code (output).

Reason code (output).

amSesDeleteSubscriber

Deletes a subscriber object, and performs an implicit close if the subscriber is open.
AMBOOL amSesDeleteSubscriber(

AMHSES

PAMHSUB
PAMLONG
PAMLONG

hSess
phSub
pCompCode

pReason

hSess,
phSub,
pCompCode,
pReason);

The session handle returned by amSesCreate (input).
A pointer to the subscriber handle (input/output).
Completion code (output).

Reason code (output).

amSesGetDistListHandle

Returns the handle of the distribution list object (of type AMHDST) with the
specified name.
AMHDST amSesGetDistListHandle(

AMHSES
AMSTR
PAMLONG
PAMLONG

hSess
name
pCompCode

pReason

hSess,
name,
pCompCode,
pReason);

The session handle returned by the amSesCreate function (input).
The name of the distribution list (input).
Completion code (output).

Reason code (output).

Chapter 5. C object interface reference 85

C session interface

amSesGetLastError

Gets the information (completion and reason codes) from the last error for the

session.

AMBOOL amSesGetLastError(

AMHSES
AMLONG
PAMLONG
AMSTR
PAMLONG
PAMLONG
PAMLONG

hSess
buffLen
pStringLen
pErrorText

pReason2

pCompCode

pReason

hSess,
bufflLen,
pStringlLen,
pErrorText,
pReason2,
pCompCode,
pReason);

The session handle returned by amSesCreate (input).
Reserved, must be zero (input).

Reserved, must be NULL (input).

Reserved, must be NULL (input).

A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

Completion code (output). Not returned if specified as NULL.

Reason code (output). Not returned if specified as NULL. A value
of AMRC_SESSION_HANDLE_ERR indicates that the
amSesGetLastError function call has itself detected an error and
failed.

amSesGetMessageHandle
Returns the handle of the message object (of type AMHMSG) with the specified

name.

AMHMSG amSesGetMessageHandle(

AMHSES
AMSTR
PAMLONG
PAMLONG

hSess
name
pCompCode

pReason

hSess,
name,
pCompCode,
pReason);

The session handle returned by amSesCreate (input).
The name of the message (input).
Completion code (output).

Reason code (output).

86 MQSeries Application Messaging Interface

C session interface

amSesGetPolicyHandle

Returns the handle of the policy object (of type AMHPOL) with the specified
name.

AMHPOL amSesGetPolicyHandle(
AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).
name The name of the policy (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesGetPublisherHandle

Returns the handle of the publisher object (of type AMHPUB) with the specified
name.

AMHPUB amSesGetPublisherHandle(
AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).
name The name of the publisher (input).

pCompCode Completion code (output).

pReason Reason code (output).

amSesGetReceiverHandle

Returns the handle of the receiver service object (of type AMHRCV) with the
specified name.

AMHRCV amSesGetReceiverHandle(
AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the receiver service (input).

pCompCode Completion code (output).

pReason Reason code (output).
amSesGetSenderHandle

Returns the handle of the sender service object (of type AMHSND) with the
specified name.

AMHSND amSesGetSenderHandle(
AMHSES hSess,
AMSTR name,
PAMLONG pCompCode,
PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the sender service (input).

Chapter 5. C object interface reference

87

C session interface
pCompCode

pReason

amSesGetSubs

Completion code (output).

Reason code (output).

criberHandle

Returns the handle of the subscriber object (of type AMHSUB) with the specified

name.

AMHSUB amSes
AMHSES
AMSTR
PAMLONG
PAMLONG

hSess
name
pCompCode

pReason

amSesOpen

Opens the se
with the loca

GetSubscriberHandle(
hSess,

name,

pCompCode,

pReason);

The session handle returned by amSesCreate (input).
The name of the subscriber (input).
Completion code (output).

Reason code (output).

ssion object using the specified policy options. The policy, together
1 host file, provides the connection definition that enables the

connection object to be created. The specified library is loaded and initialized. If
the policy connection type is specified as AUTO and the MQSeries local queue
manager library cannot be loaded, the MQSeries client library is loaded. (On
0S/390, client connections are not supported so applications must use a local
queue manager.) The connection to the underlying message transport (MQSeries) is

then opened.

AMBOOL amSesOpen (
AMHSES hSess,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);
hSess The session handle returned by amSesCreate (input).
hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.
pCompCode Completion code (output).
pReason Reason code (output).
amSesRollback
Rolls back a unit of work.
AMBOOL amSesRol1back(
AMHSES hSess,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);
hSess The session handle returned by amSesCreate (input).
hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.
pCompCode Completion code (output).

88 MQSeries Application Messaging Interface

C session interface

pReason Reason code (output).

Chapter 5. C object interface reference 89

C message interface

Message interface functions

A message object encapsulates an MQSeries message descriptor (MQMD), and
name/value elements such as the topic data for publish/subscribe messages. It can
also contain the message data, or this can be passed as a separate parameter.

A name/value element in a message object is held in an AMELEM structure. See
Tsi v for details.

The initial state of the message object is:

CCSID default queue manager CCSID
correlationId all zeroes

datalLength Zero

dataOffset Zero

elementCount zero

encoding AMENC_NATIVE

format AMFMT_STRING

groupStatus AMGRP_MSG_NOT_IN_GROUP
topicCount Zero

When a message object is used to send a message, it will not normally be left in
the same state as it was prior to the send. Therefore, if you use the message object
for repeated send operations, it is advisable to reset it to its initial state (see
amMsgReset on page flo1) and rebuild it each time.

Note that the following calls are valid only after a session has been opened with
an amSesOpen call or after you have explicitly set the element CCSID with an
amMsgSetElementCCSID call:

amMsgAddElement page B
amMsgDeleteElement page 5%
amMsgGetElement page R4

amMsgGetElementCount page %
amMsgDeleteNamedElement page b2
amMsgGetNamedElement page BS
amMsgGetNamedElementCount

page B3
amMsgAddTopic page b1
amMsgDeleteTopic page b3
amMsgGetTopic page flod
amMsgGetTopicCount page flod

amMsgAddElement
Adds a name/value element to a message (such as a publish/subscribe message).

AMBOOL amMsgAddETlement (
AMHMSG hMsg,
PAMELEM pElem,
AMLONG options,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

90 MQSeries Application Messaging Interface

pElem

options
pCompCode

pReason

amMsgAddFilter

C message interface

A pointer to an AMELEM element structure, which specifies the
element to be added (input). It will not replace an existing element
with the same name.

A reserved field, which must be set to zero (input).
Completion code (output).

Reason code (output).

Adds a filter to a subscribe or unsubscribe request message.

AMBOOL amMsgAddFiTlter(
AMHMSG hMsg,
AMLONG filterLen,
AMSTR pFilter,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hMsg

filterLen
pFilter

pCompCode

pReason

amMsgAddTopic

The message handle returned by amSesCreateMessage (input).

The length in bytes of the filter (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

The filter to be added (input). The syntax of the filter string is
described in the MQSeries Integrator Version 2.0 Programming Guide.

Completion code (output).

Reason code (output).

Adds a topic to a publish/subscribe message.

AMBOOL amMsgAddTopic(
AMHMSG hMsg,
AMLONG topicLen,
AMSTR pTopic,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

topiclen The length in bytes of the topic (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pTopic The topic to be added (input).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgClearErrorCodes

Clears the error codes in the message object.

AMBOOL amMsgClearErrorCodes (
AMHMSG hMsg,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg

The message handle returned by amSesCreateMessage (input).

Chapter 5. C object interface reference 91

C message interface

pCompCode Completion code (output).
pReason Reason code (output).
amMsgDeleteElement

Deletes an element with the specified index from a message (such as a
publish/subscribe message). Indexing is within all elements of the message, and
might include topics or filters (which are specialized elements).
AMBOOL amMsgDeleteETlement (

AMHMSG hMsg,

AMLONG elemIndex,

PAMLONG pCompCode,

PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

elemIndex The index of the required element in the message, starting from
zero (input). On completion, elements with higher elemIndex
values than that specified will have their index value reduced by
one.

amMsgGetElementCount gets the number of elements in the

message.
pCompCode Completion code (output).
pReason Reason code (output).
amMsgDeleteFilter

Deletes a filter from a subscribe or unsubscribe request message at the specified
index. Indexing is within all filters.

AMBOOL amMsgDeleteFilter(

AMHMSG hMsg, /* Message handle x/

AMLONG filterIndex, /* Filter index =*/

PAMLONG pCompCode, /* Completion code */

PAMLONG pReason); /* Reason code qualifying CompCode */
Parameters
hMsg The message handle returned by amSesCreateMessage (input).

filterIndex The index of the required filter in the message, starting from zero
(input). amMsgGetFilterCount gets the number of filters in the

message.
pCompCode Completion code (output).
pReason Reason code (output).

amMsgDeleteNamedElement

Deletes a named element from a message, at the specified index. Indexing is within
all elements that share the same name.

AMBOOL amMsgDeleteNamedElement (
AMHMSG hMsg,
AMLONG nameIndex,
AMLONG namelen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

92 MQSeries Application Messaging Interface

C message interface

nameIndex The index of the required named element in the message (input).
Specifying an index of zero deletes the first element with the
specified name. On completion, elements with higher nameIndex
values than that specified will have their index value reduced by
one.
amMsgGetNamedElementCount gets the number of elements in
the message with the specified name.

namelLen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pName The name of the element to be deleted (input).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgDeleteTopic

Deletes a topic from a publish/subscribe message, at the specified index. Indexing
is within all topics in the message.

AMBOOL amMsgDeleteTopic(

AMHMSG hMsg,
AMLONG topicIndex,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
topicIndex The index of the required topic in the message, starting from zero
(input). amMsgGetTopicCount gets the number of topics in the
message.
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetCCSID

Gets the coded character set identifier of the message.
AMBOOL amMsgGetCCSID(

AMHMSG hMsg,
PAMLONG pCCSID,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
pCCSID The coded character set identifier (output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetCorrelld

Gets the correlation identifier of the message.
AMBOOL amMsgGetCorrelId(

AMHMSG
AMLONG
PAMLONG
PAMBYTE
PAMLONG
PAMLONG

hMsg,
bufflLen,
pCorrelldLen,
pCorrelld,
pCompCode,
pReason);

Chapter 5. C object interface reference 93

C message interface
hMsg
buffLen

The message handle returned by amSesCreateMessage (input).

The length in bytes of a buffer in which the correlation identifier is
returned (input).

pCorrelldLen The length of the correlation identifier, in bytes (output). If

specified as NULL, the length is not returned.

pCorrelld The correlation identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).
amMsgGetDatalLength

Gets the length of the message data in the message object.
AMBOOL amMsgGetDatalength (

AMHMSG hMsg,
PAMLONG ~ pLength,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
pLength The length of the message data, in bytes (output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetDataOffset

Gets the current offset in the message data for reading or writing data bytes.
AMBOOL amMsgGetDataOffset (

AMHMSG hMsg,
PAMLONG pOffset,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
pOffset The byte offset in the message data (output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetElement

Gets an element from a message (such as a publish/subscribe message).
AMBOOL amMsgGetETlement (

AMHMSG
AMLONG
PAMELEM
PAMLONG
PAMLONG

hMsg

elemIndex

pElem
pCompCode

hMsg,
elemIndex,
pElem,
pCompCode,
pReason) ;

The message handle returned by amSesCreateMessage (input).

The index of the required element in the message, starting from
zero (input). amMsgGetElementCount gets the number of
elements in the message.

The selected element in the message (output).

Completion code (output).

94 MQSeries Application Messaging Interface

C message interface

pReason Reason code (output).

amMsgGetElementCCSID

Gets the message element CCSID. This is the coded character set identifier used for
passing message element data (including topic and filter data) to or from an
application.

AMBOOL amMsgGetElementCCSID(
AMHMSG hMsg,
PAMLONG pETementCCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
pElementCCSID The element coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetElementCount

Gets the total number of elements in a message (such as a publish/subscribe
message).

AMBOOL amMsgGetElementCount (
AMHMSG hMsg,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
pCount The number of elements in the message (output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetEncoding

Gets the value used to encode numeric data types for the message.

AMBOOL amMsgGetEncoding(
AMHMSG hMsg,
PAMLONG pEncoding,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
pEncoding The encoding of the message (output). The following values can be
returned:

AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT 390
AMENC_REVERSED
AMENC_REVERSED_FLOAT 390
AMENC_UNDEFINED

pCompCode Completion code (output).

pReason Reason code (output).

Chapter 5. C object interface reference 95

C message interface

amMsgGetFilter

Get a filter from a publish/subscribe message, at the specified index. Indexing is
within all filters.
AMBOOL amMsgGetFilter(

AMHMSG hMsg,

AMLONG filterIndex,

AMLONG bufflLen,

PAMLONG pFilterLen,

AMSTR pFilter,

PAMLONG pCompCode,

PAMLONG pReason);

Parameters
hMsg The message handle returned by amSesCreateMessage (input).

filterIndex The index of the required filter in the message (input). Specifying
an index of zero returns the first filter. amMsgGetFilterCount gets
the number of filters in a message.

bufflLen The length in bytes of a buffer in which the filter is returned
(input).
pFilterLen The length of the filter, in bytes (output).
pFilter The filter (output)
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetFilterCount

Gets the total number of filters in a publish/subscribe message.

AMBOOL amMsgGetFilterCount (
AMHMSG hMsg,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hMsg The message handle returned by amSesCreateMessage (input).
pCount The number of filters (output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetFormat

Gets the format of the message.

AMBOOL amMsgGetFormat (
AMHMSG hMsg,
AMLONG bufflen,
PAMLONG pFormatLen,
AMSTR pFormat,
PAMLONG ~ pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
bufflLen The length in bytes of a buffer in which the format is returned
(input).

96 MQSeries Application Messaging Interface

C message interface

pFormatLen The length of the format, in bytes (output). If specified as NULL,
the length is not returned.

pFormat The format of the message (output). The values that can be
returned include the following:
AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

pCompCode Completion code (output).

pReason Reason code (output).

amMsgGetGroupStatus

Gets the group status of the message. This indicates whether the message is in a
group, and if it is the first, middle, last or only one in the group.

AMBOOL amMsgGetGroupStatus (

AMHMSG hMsg,
PAMLONG pStatus,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
pStatus The group status (output). It can take one of the following values:
AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP
Alternatively, bitwise tests can be performed using the constants:
AMGF_IN_GROUP
AMGF_FIRST
AMGF_LAST
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetLastError

Gets the information (completion and reason codes) from the last error for the
message object.

AMBOOL amMsgGetLastError(

AMHMSG
AMLONG
PAMLONG
AMSTR
PAMLONG
PAMLONG
PAMLONG

hMsg
buffLen
pStringLen
pErrorText

pReason2

hMsg,
bufflen,
pStringLen,
pErrorText,
pReason2,
pCompCode,
pReason);

The message handle returned by amSesCreateMessage (input).
Reserved, must be zero (input).

Reserved, must be NULL (input).

Reserved, must be NULL (input).

A secondary reason code (output). Not returned if specified as

Chapter 5. C object interface reference 97

C message interface

NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.
pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_MSG_HANDLE_ERR indicates that the
amMsgGetLastError function call has itself detected an error and
failed.
amMsgGetMsgid

Gets the message identifier.
AMBOOL amMsgGetMsgId (

AMHMSG hMsg,
AMLONG bufflLen,
PAMLONG pMsgIdLen,
PAMBYTE pMsgId,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
buffLen The length in bytes of a buffer in which the message identifier is
returned (input).
pMsgIdLen The length of the message identifier, in bytes (output). If specified
as NULL, the length is not returned.
pMsgId The message identifier (output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetName

Gets the name of the message object.
AMBOOL amMsgGetName (

AMHMSG
AMLONG
PAMLONG
AMSTR
PAMLONG
PAMLONG

hMsg
buffLen

pNameLen

pName
pCompCode

pReason

hMsg,
bufflLen,
pNamelLen,
pName,
pCompCode,
pReason);

The message handle returned by amSesCreateMessage (input).

The length in bytes of a buffer into which the name is put (input).
If specified as zero, only the name length is returned.

The length of the name, in bytes (output). If specified as NULL,
only the name is returned.

The message object name (output).
Completion code (output).

Reason code (output).

amMsgGetNamedElement

Gets a named element from a message (such as a publish/subscribe message).

98 MQSeries Application Messaging Interface

C message interface

AMBOOL amMsgGetNamedETlement (

AMHMSG hMsg,
AMLONG nameIndex,
AMLONG nameLen,
AMSTR pName,
PAMELEM pElem,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
nameIndex The index of the required named element in the message (input).
Specifying an index of zero returns the first element with the
specified name. amMsgGetNamedElementCount gets the number
of elements in the message with the specified name.
namelen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.
pName The element name (input).
pElem The selected named element in the message (output).
pCompCode Completion code (output).
pReason Reason code (output).

amMsgGetNamedElementCount
Gets the number of elements in a message with a specified name.
AMBOOL amMsgGetNamedE1lementCount (

AMHMSG hMsg,
AMLONG namelen,
AMSTR pName,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
namelen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.
pName The specified element name (input).
pCount The number of elements in the message with the specified name
(output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetReportCode

Gets the feedback code from a message of type AMMT_REPORT. If the message
type is not AMMT_REPORT, error code AMRC_MSG_TYPE_NOT_REPORT will be

returned.
AMBOOL amMsgGetReportCode (
AMHMSG hMsg,
PAMLONG pCode,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
PCode The feedback code (output). The following values can be returned:

Chapter 5. C object interface reference 99

C message interface

AMFB_EXPIRATION

AMFB_COA
AMFB_COD
AMFB_ERROR
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetTopic

Gets a topic from a publish/subscribe message, at the specified index. Indexing is
within all topics.

AMBOOL amMsgGetTopic(
AMHMSG hMsg,
AMLONG topicIndex,
AMLONG bufflen,
PAMLONG pTopiclLen,
AMSTR pTopic,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
topicIndex The index of the required topic in the message (input). Specifying
an index of zero returns the first topic. amMsgGetTopicCount gets
the number of topics in the message.
bufflLen The length in bytes of a buffer in which the topic is returned
(input). If buffLen is specified as zero, only the topic length is
returned (in pTopicLen), not the topic itself.
pTopicLen The length of the topic, in bytes (output).
pTopic The topic (output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetType
Gets the message type from a message.
AMBOOL amMsgGetType (
AMHMSG hMsg,
PAMLONG pType,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
PType The message type (output). The following values can be returned:
AMMT_DATAGRAM
AMMT_REQUEST
AMMT_REPLY
AMMT_REPORT
pCompCode Completion code (output).
pReason Reason code (output).
amMsgGetTopicCount

Gets the total number of topics in a publish/subscribe message.

100 MQSeries Application Messaging Interface

C message interface

AMBOOL amMsgGetTopicCount (

AMHMSG hMsg,
PAMLONG pCount,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
pCount The number of topics (output).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgReadBytes

Reads up to the specified number of data bytes from the message object, starting at
the current data offset (which must be positioned before the end of the data for the
read operation to be successful). Use amMsgSetDataOffset to set the data offset.
amMsgReadBytes will advance the data offset by the number of bytes read,
leaving the offset immediately after the last byte read.

AMBOOL amMsgReadBytes (

AMHMSG
AMLONG
PAMLONG
PAMBYTE
PAMLONG
PAMLONG

hMsg

readLen

pBytesRead

pData
pCompCode

pReason

amMsgReset

hMsg,
readLen,
pBytesRead,
pData,
pCompCode,
pReason);

The message handle returned by amSesCreateMessage (input).

The maximum number of bytes to be read (input). The data buffer
specified by pData must be at least this size. The number of bytes
returned is the minimum of readlLen and the number of bytes
between the data offset and the end of the data.

The number of bytes read (output). If specified as NULL, the
number is not returned.

The read data (output).
Completion code (output).

Reason code (output).

Resets the message object its initial state (see page Bd).
AMBOOL amMsgReset (

AMHMSG hMsg,
AMLONG options,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).
options A reserved field that must be specified as zero (input).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgSetCCSID

Sets the coded character set identifier of the message.

101

Chapter 5. C object interface reference

C message interface

AMBOOL amMsgSetCCSID(
AMHMSG hMsg,
AMLONG CCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
CCSID The coded character set identifier (input).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgSetCorrelid

Sets the correlation identifier of the message.

AMBOOL amMsgSetCorrelId(
AMHMSG hMsg,
AMLONG correlldLen,
PAMBYTE pCorrelld,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
correlIdlen The length of the correlation identifier, in bytes (input).

pCorrelld The correlation identifier (input). Specify as NULL (with a
correlIdLen of OL) to set the correlation identifier to NULL.

pCompCode Completion code (output).
pReason Reason code (output).
amMsgSetDataOffset

Sets the data offset for reading or writing byte data. If the data offset is greater
than the current data length, it is valid to write data into the message at that offset,

but an attempt to read data will result in an error. See lamMsgReadBytes” onl
page 101 and FamMsgWriteBytes” on page 104,

AMBOOL amMsgSetDataOffset (
AMHMSG hMsg,
AMLONG offset,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
offset The offset in bytes (input). Set an offset of zero to read or write
from the start of the data.
pCompCode Completion code (output).
pReason Reason code (output).
amMsgSetElementCCSID

This specifies the character set to be used for subsequent element message data
(including topic and filter data) passed to or returned from the application.
Existing elements in the message are unmodified (but will be returned in this
character set). The default value of element CCSID is the queue manager CCSID.

102 MQSeries Application Messaging Interface

C message interface

AMBOOL amMsgSetETlementCCSID(
AMHMSG hMsg,
AMLONG elementCCSID,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
elementCCSID The element coded character set identifier (input).
pCompCode Completion code (output).
pReason Reason code (output).
amMsgSetEncoding

Sets the encoding of the data in the message.

AMBOOL amMsgSetEncoding(
AMHMSG hMsg,
AMLONG encoding,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
encoding The encoding of the message (input). It can take one of the
following values:
AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT 390
AMENC_REVERSED
AMENC_REVERSED_FLOAT_390
AMENC_UNDEFINED
pCompCode Completion code (output).
pReason Reason code (output).
amMsgSetFormat

Sets the format of the message.

AMBOOL amMsgSetFormat (
AMHMSG hMsg,
AMLONG formatLen,
AMSTR pFormat,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg

formatLen

pFormat

pCompCode

pReason

The message handle returned by amSesCreateMessage (input).

The length of the format, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL
terminated.

The format of the message (input). It can take one of the following
values, or an application defined string:

AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

If set to AMFMT_NONE, the default format for the sender will be
used (if available).

Completion code (output).

Reason code (output).

Chapter 5. C object interface reference 103

C message interface

amMsgSetGroupStatus

Sets the group status of the message. This indicates whether the message is in a
group, and if it is the first, middle, last or only one in the group. Once you start
sending messages in a group, you must complete the group before sending any
messages that are not in the group.

If you specify AMGRP_MIDDLE_MSG_IN_GROUP or
AMGRP_LAST_MSG_IN_GROUP without specifying
AMGRP_FIRST_MSG_IN_GROUP, the behavior is the same as for
AMGRP_FIRST_MSG_IN_GROUP and AMGRP_ONLY_MSG_IN_GROUP
respectively.

If you specify AMGRP_FIRST_MSG_IN_GROUP out of sequence, then the
behavior is the same as for AMGRP_MIDDLE_MSG_IN_GROUP.
AMBOOL amMsgSetGroupStatus (
AMHMSG hMsg,
AMLONG status,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

status The group status (input). It can take one of the following values:

AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

pCompCode Completion code (output).

pReason Reason code (output).

amMsgWriteBytes

Writes the specified number of data bytes into the message object, starting at the

current data offset. See lamMsgSetDataOffset” an page 102,

If the data offset is not at the end of the data, existing data is overwritten. If the
data offset is set beyond the current data length, the message data between the
data length and the data offset is undefined. This feature enables applications to
construct messages in a non-sequential manner, but care must be taken to ensure
that a message is completely filled with data before it is sent.

amMsgWriteBytes will advance the data offset by the number of bytes written,
leaving it immediately after the last byte written.

AMBOOL amMsgWriteBytes (
AMHMSG hMsg,
AMLONG writelLen,
PAMBYTE pByteData,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).
writelen The number of bytes to be written (input).

pByteData The data bytes (input).

pCompCode Completion code (output).

pReason Reason code (output).

104 MQSeries Application Messaging Interface

C message interface

Message interface helper macros

The following helper macros are provided for manipulation of the name/value
elements in a message object. Additional helper macros can be written as required.

AmMsgAddStreamName
Adds a name/value element for the publish/subscribe stream name.
AmMsgAddStreamName (

AMHMSG hMsg,
AMLONG streamNamelen,
AMSTR pStreamName,
PAMLONG pCompCode,
PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

streamNameLen The length of the stream name, in bytes (input).

pStreamName

pCompCode

pReason

The stream name (input).
Completion code (output).

Reason code (output).

AmMsgGetPubTimeStamp

Gets the publication time stamp name/value element.
AmMsgGetPubTimeStamp (

AMHMSG
AMLONG
PAMLONG
AMSTR
PAMLONG
PAMLONG

hMsg
bufflLen

hMsg,

bufflen,
pTimestampLen,
pTimestamp,
pCompCode,
pReason);

The message handle returned by amSesCreateMessage (input).

The length in bytes of a buffer in which the publication time stamp
is returned (input). Specify as zero to return only the length.

pTimestampLen The length of the publication time stamp, in bytes (output). If

specified as NULL, the length is not returned.

pTimestamp The publication time stamp (output).
pCompCode Completion code (output).
pReason Reason code (output).
AmMsgGetStreamName
Gets the name/value element for the publish/subscribe stream name.
AmMsgGetStreamName (
AMHMSG hMsg,
AMLONG bufflLen,
PAMLONG pStreamNamelen,
AMSTR pStreamName,
PAMLONG pCompCode,
PAMLONG pReason);
hMsg The message handle returned by amSesCreateMessage (input).

bufflLen

The length in bytes of a buffer in which the stream name is
returned (input). Specify as zero to return only the length.

105

Chapter 5. C object interface reference

C message interface

pStreamNameLen
The length of the stream name, in bytes (output). If specified as
NULL, the length is not returned.

pStreamName The stream name (output).
pCompCode Completion code (output).

pReason Reason code (output).

106 MQSeries Application Messaging Interface

C sender interface

Sender interface functions

A sender object encapsulates an MQSeries object descriptor (MQOD) structure. This
represents an MQSeries queue on a local or remote queue manager. An open
sender service is always associated with an open connection object (such as a
queue manager connection). Support is also included for dynamic sender services
(those that encapsulate model queues). The required sender service object
definitions can be provided from a repository, or created without a repository
definition by defaulting to the existing queue objects on the local queue manager.

The high-level functions amSendMsg, amSendRequest and amSendResponse call
these interface functions as required to open the sender service and send a
message. Additional calls are provided here to give the application program extra
functionality.

A sender service object must be created before it can be opened. This is done
implicitly using the high-level functions, or the amSesCreateSender session
interface functions.

A response sender service is a special type of sender service used for sending a
response to a request message. It must be created using the default definition, and
not a definition stored in a repository (see I'Services and palicies” on page 45).
Once created, it must not be opened until used in its correct context as a response
sender when receiving a request message with amRcvReceive or
amReceiveRequest. When opened, its queue and queue manager properties are
modified to reflect the ReplyTo destination specified in the message being received.
When first used in this context, the sender service becomes a response sender
service.

amSndClearErrorCodes
Clears the error codes in the sender object.

AMBOOL amSndClearErrorCodes (
AMHSND hSender,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).
pCompCode Completion code (output).
pReason Reason code (output).

amSndClose

Closes the sender service.

AMBOOL amSndClose(
AMHSND hSender,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

Chapter 5. C object interface reference 107

C sender interface

amSndGetCCSID

Gets the coded character set identifier of the sender service. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.
AMBOOL amSndGetCCSID(
AMHSND hSender,
PAMLONG ~ pCCSID,

PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).
pCCSID The coded character set identifier (output).
pCompCode Completion code (output).
pReason Reason code (output).
amSndGetEncoding

Gets the value used to encode numeric data types for the sender service. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.
AMBOOL amSndGetEncoding(
AMHSND hSender,
PAMLONG pEncoding,

PAMLONG pCompCode,
PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).
pEncoding The encoding (output).

pCompCode Completion code (output).

pReason Reason code (output).

108 MQSeries Application Messaging Interface

C sender interface

amSndGetLastError

Gets the information (completion and reason codes) from the last error for the

sender object.

AMBOOL amSndGetLastError(
AMHSND hSender,
AMLONG bufflLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hSender
buffLen
pStringLen
pErrorText

pReason2

pCompCode

pReason

amSndGetName

The sender handle returned by amSesCreateSender (input).
Reserved, must be zero (input).

Reserved, must be NULL (input).

Reserved, must be NULL (input).

A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

Completion code (output). Not returned if specified as NULL.

Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amSndGetLastError function call has itself detected an error and
failed.

Gets the name of the sender service.

AMBOOL amSndGetName (
AMHSND hSender,
AMLONG bufflLen,
PAMLONG pNamelLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hSender
buffLen

pNameLen

pName
pCompCode

pReason

amSndOpen

The sender handle returned by amSesCreateSender (input).

The length in bytes of a buffer in which the name is returned
(input). If specified as zero, only the name length is returned.

The length of the name, in bytes (output). If specified as NULL,
only the name is returned.

The name of the sender service (output).
Completion code (output).

Reason code (output).

Opens the sender service.

AMBOOL amSndOpen (
AMHSND hSender,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

Chapter 5. C object interface reference 109

C sender interface
hSender
hPolicy

pCompCode

pReason

amSndSend

The sender handle returned by amSesCreateSender (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

Completion code (output).

Reason code (output).

Sends a message to the destination specified by the sender service. If the sender
service is not open, it will be opened (if this action is specified in the policy

options).

The message data can be passed in the message object, or as a separate parameter
(this means that the data does not have to be copied into the message object prior
to sending the message, which might improve performance especially if the
message data is large).

AMBOOL amSndSend (

AMHSND
AMHPOL
AMHRCV
AMHMSG
AMLONG
PAMBYTE
AMHMSG
PAMLONG
PAMLONG

hSender
hPolicy

hReceiver

hRcvMsg

datalen

pData

hSndMsg

pCompCode

pReason

hSender,
hPolicy,
hReceiver,
hRcvMsg,
datalen,
pData,
hSndMsg,
pCompCode,
pReason) ;

The sender handle returned by amSesCreateSender (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

The handle of the receiver service to which the response to this
message should be sent, if the message being sent is a request
message (input). Specify as AMH_NULL_HANDLE if no response
is required.

The handle of a received message that is being responded to, if this
is a response message (input). Specify as AMH_NULL_HANDLE if
this is not a response message.

The length of the message data, in bytes (input). If specified as
zero, any message data will be passed in the message object
(hSndMsg).

The message data, if datalen is non-zero (input).

The handle of a message object that specifies the properties of the
message being sent (input). If datalen is zero, it can also contain
the message data. If specified as AMH_NULL_HANDLE, the
default message object (constant: AMSD_SND_MSG_HANDLE) is
used.

Completion code (output).

Reason code (output).

110 MQSeries Application Messaging Interface

amSndSendFile

C sender interface

Sends data from a file.The file data can be received as normal message data by a
target application using amRcvReceive or used to reconstruct the file with
amRcvReceiveFile.

AMBOOL amSndSendFile(
AMHSND hSender,
AMHPOL hPolicy,
AMLONG options,
AMLONG directorylLen,
AMSTR directory,
AMLONG fileNamelen,
AMSTR fileName,
AMHMSG hSndMsg,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hSender

hPolicy

options
directoryLen
directory

fileNameLen

fileName

hSndMsg

pCompCode

pReason

Usage notes

The sender handle returned by amSesCreateSender (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

A reserved field that must be specified as zero.
A reserved field that must be specified as zero (input).
A reserved field that must be specified as NULL (input).

The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the filename will
travel with the message for use with a receive file call (see
tamRcvReceiveFile” on page 121 for more details). Note that the
filename sent will exactly match the supplied filename; it will not
be converted or expanded in any way.

The handle of the message object to use to send the file (input).
This can be used to specify the Correlation ID for example. If
specified as AMH_NULL_HANDLE, the system default send
message (constant: AMSD_SND_MSG_HANDLE) is used.

Completion code (output).

Reason code (output).

If, in your application, you have previously used a message object, referenced by
either handle or name, to send or receive data (including AMI elements or topics),
you will need to explicitly call amMsgReset before re-using the object for sending a
file. This applies even if you use the system default object handle (constant:
AMSD_SND_MSG_HANDLE).

Chapter 5. C object interface reference 111

C receiver interface

Receiver interface functions

A receiver object encapsulates an MQSeries object descriptor (MQOD) structure.
This represents a local MQSeries queue. An open receiver service is always
associated with an open connection object, such as a queue manager connection.
Support is also included for dynamic receiver services (that encapsulate model
queues). The required receiver service object definitions can be provided from a
repository or can be created automatically from the set of existing queue objects
available on the local queue manager.

There is a definition type associated with each receiver service:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

A receiver service created from a repository definition will be initially of type
AMDT_PREDEFINED or AMDT_DYNAMIC. When opened, its definition type
might change from AMDT_DYNAMIC to AMDT_TEMP_DYNAMIC according to
the properties of its underlying queue object.

A receiver service created with default values (that is, without a repository
definition) will have its definition type set to AMDT_UNDEFINED until it is
opened. When opened, this will become AMDT_DYNAMIC,
AMDT_TEMP_DYNAMIC, or AMDT_PREDEFINED, according to the properties of
its underlying queue object.

amRcvBrowse

Browses a message. See the MQSeries Application Programming Guidd for a full

description of the browse options.
AMBOOL amRcvBrowse (

AMHRCV
AMHPOL
AMLONG
AMLONG
PAMLONG
PAMBYTE
AMHMSG
AMHSND
PAMLONG
PAMLONG

hReceiver

hPolicy

hReceiver,
hPolicy,
options,
bufflLen,
pDatalLen,
pData,
hRcvMsg,
hSender,
pCompCode,
pReason);

The receiver handle returned by amSesCreateReceiver (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

112 MQSeries Application Messaging Interface

C receiver interface

options Options controlling the browse operation (input). Possible values
are:

AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT

AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)

AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message. The locking
feature is not available on OS/390.

bufflLen The length in bytes of a buffer in which the data is returned
(input).

pDatalen The length of the message data in bytes (output). If specified as
NULL, the data length is not returned.

pData The received message data (output).

hRcvMsg The handle of the message object for the received message
(output).

hSender The handle of the response sender service that the response

message must be sent to, if this is a request message (output). This
sender service must be created without a repository definition, and
used exclusively for sending a response. Its definition type must be
AMDT_UNDEFINED (it will be set to AMDT_RESPONSE by this

call).
pCompCode Completion code (output).
pReason Reason code (output).

Usage notes
To return the data in the message object (hRcvMsg), set bufflLen to zero and
pDatalLen to NULL.

To return the message data in the pData parameter, set bufflLen to the required
length and pDatalLen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set bufflLen to zero.
pDatalLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set bufflLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

Chapter 5. C object interface reference 113

C receiver interface

amRcvBrowseSelect

Browses a message identified by specifying the Correlation ID from the selection

message as a selection criterion. See the MQSeries Application Programming Guidd for

a full description of the browse options.

AMBOOL amRcvBrowseSelect (
AMHRCV hReceiver,
AMHPOL hPolicy,
AMLONG options,
AMHMSG hSelMsg,
AMLONG bufflen,
PAMLONG pDatalen,
PAMBYTE pData,
AMHMSG hRcvMsg,
AMHSND hSender,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

options Options controlling the browse operation (input). Possible values
are:

AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT

AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)

AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message. The locking
feature is not available on OS/390.

hSelMsg The handle of a selection message object (input). This is used
together with the browse options to identify the message to be
received (for example, using the Correlation ID). Specify as
AMH_NULL_HANDLE to get the next available message. The
CCSID, element CCSID, and encoding values from the selection
message define the target values for any data conversions. If target
conversion values are required without using the Correlation ID
for selection, then this can be reset (see amMsgSetCorrelld on
page fLod) before invoking the amRcvBrowseSelect function.

buffLen The length in bytes of a buffer in which the data is returned
(input).

pDatalen The length of the message data in bytes (output). If specified as
NULL, the data length is not returned.

pData The received message data (output).

hRcvMsg The handle of the message object for the received message
(output).

114 MQSeries Application Messaging Interface

C receiver interface

hSender The handle of the response sender service that the response
message must be sent to, if this is a request message (output). This
sender service must be created without a repository definition, and
used exclusively for sending a response. Its definition type must be
AMDT_UNDEFINED (it will be set to AMDT_RESPONSE by this

call).
pCompCode Completion code (output).
pReason Reason code (output).

Usage notes
To return the data in the message object (hRcvMsg), set bufflLen to zero and
pDatalLen to NULL.

To return the message data in the pData parameter, set bufflLen to the required
length and pDatalen to NULL.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set bufflLen to zero.
pDatalLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message data will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set bufflLen to the required length. pDataLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

amRcvClearErrorCodes

Clears the error codes in the receiver service object.

AMBOOL amRcvClearErrorCodes (
AMHRCV hReceiver,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).
pCompCode Completion code (output).
pReason Reason code (output).

Chapter 5. C object interface reference 115

C receiver interface

amRcvClose

Closes the receiver service.
AMBOOL amRcvClose(

AMHRCV hReceiver,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);
hReceiver The receiver handle returned by amSesCreateReceiver (input).
hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.
pCompCode Completion code (output).
pReason Reason code (output).
amRcvGetDefnType

Gets the definition type of the receiver service.
AMBOOL amRcvGetDefnType (

AMHRCV

PAMLONG
PAMLONG
PAMLONG

hReceiver

pType

pCompCode

pReason

hReceiver,
pType,

pCompCode,
pReason) ;

The receiver handle returned by amSesCreateReceiver (input).

The definition type (output). It can be one of the following;:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

Values other than AMDT_UNDEFINED reflect the properties of the
underlying queue object.
Completion code (output).

Reason code (output).

116 MQSeries Application Messaging Interface

C receiver interface

amRcvGetLastError

Gets the information (completion and reason codes) from the last error for the

receiver object.

AMBOOL amRcvGetlLastError(
AMHRCV hReceiver,
AMLONG bufflLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver
buffLen
pStringLen
pErrorText

pReason2

pCompCode

pReason

amRcvGetName

The receiver handle returned by amSesCreateReceiver (input).
Reserved, must be zero (input).

Reserved, must be NULL (input).

Reserved, must be NULL (input).

A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

Completion code (output). Not returned if specified as NULL.

Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the

amRcvGetLastError function call has itself detected an error and
failed.

Gets the name of the receiver service.

AMBOOL amRcvGetName (
AMHRCV hReceiver,
AMLONG bufflLen,
PAMLONG pNamelLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver

buffLen

pNameLen

pName
pCompCode

pReason

The receiver handle returned by amSesCreateReceiver (input).

The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

The length of the name, in bytes (output). Set it to NULL to return
only the name.

The name of the receiver service (output).
Completion code (output).

Reason code (output).

Chapter 5. C object interface reference 117

C receiver interface

amRcvGetQueueName

Gets the queue name of the receiver service. This is used to determine the queue
name of a permanent dynamic receiver service, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. (See also
amRcvSetQueueName.)

AMBOOL amRcvGetQueueName (

AMHRCV
AMLONG
PAMLONG
AMSTR
PAMLONG
PAMLONG

hReceiver

bufflLen

pNameLen
pQueueName
pCompCode

pReason

amRcvOpen

hReceiver,
bufflLen,
pNamelLen,
pQueueName,
pCompCode,
pReason);

The receiver handle returned by amSesCreateReceiver (input).

The length in bytes of a buffer in which the queue name is
returned (input).

The length of the queue name, in bytes (output).
The queue name of the receiver service (output).
Completion code (output).

Reason code (output).

Opens the receiver service.
AMBOOL amRcvOpen (

AMHRCV
AMHPOL
PAMLONG
PAMLONG

hReceiver

pCompCode

pReason

hReceiver,
hPolicy,
pCompCode,
pReason);

The receiver handle returned by amSesCreateReceiver (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

Completion code (output).

Reason code (output).

118 MQSeries Application Messaging Interface

amRcvReceive

C receiver interface

Receives a message.
AMBOOL amRcvReceive(

AMHRCV
AMHPOL
AMHMSG
AMLONG
PAMLONG
PAMBYTE
AMHMSG
AMHSND
PAMLONG
PAMLONG

hReceiver

hPolicy

hSelMsg

buffLen

pDatalen

pData
hRcvMsg

hSender

pCompCode

pReason

hReceiver,
hPolicy,
hSelMsg,
buffLen,
pDatalLen,
pData,
hRcvMsg,
hSender,
pCompCode,
pReason);

The receiver handle returned by amSesCreateReceiver (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH_NULL_HANDLE to get the next
available message with no selection. The CCSID, element CCSID,
and encoding values from the selection message define the target
values for any data conversions. If target conversion values are
required without using the Correlation ID for selection, then this
can be reset (see amMsgSetCorrelld on page £9) vefore invoking
the amRcvReceive function.

The length in bytes of a buffer in which the data is returned
(input).

The length of the message data, in bytes (output). If specified as
NULL, the data length is not returned.

The received message data (output).

The handle of the message object for the received message
(output). If specified as AMH_NULL_HANDLE, the default
message object (constant: AMSD_RCV_MSG_HANDLE) is used.
The message object is reset implicitly before the receive takes place.

The handle of the response sender service that a response message
must be sent to, if this is a request message (output). This sender
service must be created without a repository definition, and used
exclusively for sending a response. Its definition type must be
AMDT_UNDEFINED (it will be set to AMDT_RESPONSE by this
call).

Completion code (output).

Reason code (output).

Usage notes
To return the data in the message object (hRcvMsg), set bufflLen to zero and
pDatalLen to NULL.

To return the message data in the pData parameter, set bufflLen to the required
length and pDatalLen to NULL.

Chapter 5. C object interface reference 119

C receiver interface

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set bufflLen to zero.
pDatalLen must not be set to NULL. Accept Truncated Message in the policy receive
attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with the data length,
set bufflen to the required length. pDatalLen must not be set to NULL. If the buffer
is too small, and Accept Truncated Message is not selected in the policy receive
attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated Message is selected in
the policy receive attributes, the truncated message is returned with an
AMRC_MSG_TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be set to selected in the policy
receive attributes. You can then remove the message by specifying zero in the
buffLen parameter, a null in the pDatalen parameter, and a non-null in the pData
parameter.

120 MQSeries Application Messaging Interface

C receiver interface

amRcvReceiveFile

Receives file message data into a file.
AMBOOL amRcvReceiveFile(

AMHRCV
AMHPOL
AMHLONG
AMHMSG
AMLONG
AMSTR
AMLONG
AMSTR
AMHMSG
PAMLONG
PAMLONG

hReceiver

hPolicy

options

hSelMsg

directoryLen
directory

fileNameLen

fileName

hRcvMessage

pCompCode

hReceiver,
hPolicy,
options,
hSelMsg,
directorylen,
directory,
fileNamelen,
fileName,
hRcvMsg,
pCompCode,
pReason);

The receiver handle returned by amSesCreateReceiver (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

A reserved field that must be specified as zero (input).

The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH_NULL_HANDLE to get the next
available message with no selection. The CCSID, element CCSID,
and encoding values from the selection message define the target
values for any data conversions. If target conversion values are
required without using the Correlation ID for selection, then this
can be reset (see amMsgSetCorrelld on page fLod) before invoking
the amRcvReceiveFile function.

A reserved field that must be specified as zero (input).
A reserved field that must be specified as NULL (input).

The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated,
in which case the AMI will work out the length itself.

The name of the file into which the transferred data is to be
received (input). This can include a directory prefix to define a
fully-qualified or relative file name. If NULL or a null string is
specified, then the AMI will use the name of the originating file
(including any directory prefix), exactly as it was supplied on the
send file call. Note that the original filename may not be
appropriate for use by the receiver, either because a pathname
included in the filename is not applicable to the receiving system,
or because the sending and receiving systems use different
filename conventions.

The handle of the message object to use to receive the file. This
parameter is updated with the message properties, for example the
Message ID. If the message is not a file message, hRcvMessage
receives the message data. If hRcvMessage is specified as
AMH_NULL_HANDLE, the default message object (constant
AMSD_RCV_MSG_HANDLE) is used. The message object is reset
implicitly before the receive takes place.

Completion code (output).

121

Chapter 5. C object interface reference

C receiver interface

pReason Reason code (output).

Usage notes
If fileName is blank (indicating that the originating file name specified in the
message is to be used), then fileNameLength should be set to zero.

amRcvSetQueueName

Sets the queue name of the receiver service, when this encapsulates a model queue.
This can be used to specify the queue name of a recreated permanent dynamic
receiver service, in order to receive messages in a session subsequent to the one in
which it was created. (See also amRcvGetQueueName.)

AMBOOL amRcvSetQueueName (
AMHRCV hReceiver,
AMLONG namelen,
AMSTR pQueueName,
PAMLONG pCompCode,
PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

namelen The length of the queue name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pQueueName The queue name of the receiver service (input).

pCompCode Completion code (output).

pReason Reason code (output).

122 MQSeries Application Messaging Interface

C distribution list interface

Distribution list interface functions
A distribution list object encapsulates a list of sender objects.
amDstClearErrorCodes

Clears the error codes in the distribution list object.
AMBOOL amDstClearErrorCodes (

AMHDST hDistList,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList

(input).
pCompCode Completion code (output).
pReason Reason code (output).
amDstClose

Closes the distribution list.
AMBOOL amDstClose(

AMHDST hDistList,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);
hDistList The distribution list handle returned by amSesCreateDistList
(input).
hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.
pCompCode Completion code (output).
pReason Reason code (output).
amDstGetLastError

Gets the information (completion and reason codes) from the last error in the
distribution list object.

AMBOOL amDstGetlLastError(

AMHDST hDistList,
AMLONG bufflLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);
hDistList The distribution list handle returned by amSesCreateDistList
(input).
buffLen Reserved, must be zero (input).
pStringLen Reserved, must be NULL (input).
pErrorText Reserved, must be NULL (input).
pReason2 A secondary reason code (output). Not returned if specified as

NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

123

Chapter 5. C object interface reference

C distribution list interface
pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amDstGetLastError function call has itself detected an error and
failed.

amDstGetName
Gets the name of the distribution list object.

AMBOOL amDstGetName (
AMHDST hDistList,
AMLONG bufflen,
PAMLONG ~ pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

bufflLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The distribution list object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amDstGetSenderCount

Gets a count of the number of sender services in the distribution list.

AMBOOL amDstGetSenderCount (
AMHDST hDistList,
PAMLONG pCount,

PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).
pCount The number of sender services (output).
pCompCode Completion code (output).
pReason Reason code (output).
amDstGetSenderHandle

Returns the handle (type AMHSND) of a sender service in the distribution list
object with the specified index.

AMHSND amDstGetSenderHandle(
AMHDST hDistList,
AMLONG handleIndex,
PAMLONG pCompCode,
PAMLONG pReason);
hDistList The distribution list handle returned by amSesCreateDistList
(input).

handleIndex The index of the required sender service in the distribution list

124 MQSeries Application Messaging Interface

C distribution list interface

(input). Specify an index of zero to return the first sender service in
the list. amDstGetSenderCount gets the number of sender services
in the distribution list.

pCompCode Completion code (output).
pReason Reason code (output).
amDstOpen

Opens the distribution list object for each of the destinations in the distribution list.
The completion and reason codes returned by this function call indicate if the open
was unsuccessful, partially successful, or completely successful.

AMBOOL amDstOpen (
AMHDST hDistList,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).
hPolicy The handle of a policy (input). If specified as

AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

Chapter 5. C object interface reference 125

C distribution list interface

amDstSend

Sends a message to each sender in the distribution list.
AMBOOL amDstSend (

AMHDST
AMHPOL
AMHRCV
AMLONG
PAMBYTE
AMHMSG
PAMLONG
PAMLONG

hDistList

hPolicy

hReceiver

datalen

pData
hMsg

pCompCode

pReason

hDistList,
hPolicy,
hReceiver
datalen,
pData,
hMsg,
pCompCode,
pReason) ;

The distribution list handle returned by amSesCreateDistList
(input).
The handle of a policy (input). If specified as

AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

The handle of the receiver service to which the response to this
message should be sent, if the message being sent is a request
message (input). Specify as AMH_NULL_HANDLE if no response
is required.

The length of the message data, in bytes (input). If set to zero, the
data should be passed in the message object (hMsg).

The message data (input).

The handle of a message object that specifies the properties for the
message being sent (input). If datalen is zero, it should also
contain the message data. If specified as AMH_NULL_HANDLE,
the default send message object (constant:
AMSD_SND_MSG_HANDLE) is used.

Completion code (output).

Reason code (output).

126 MQSeries Application Messaging Interface

amDstSendFile

C distribution list interface

Sends data from a file to each sender in the distribution list. The file data can be
received as normal message data by a target application using amRcvReceive or
used to reconstruct the file with amRcvReceiveFile.

AMBOOL amDstSendFile(
AMHDST hDistList,
AMHPOL hPolicy,
AMLONG options,
AMLONG directorylLen,
AMSTR directory,
AMLONG fileNamelen,
AMSTR fileName,
AMHMSG hMsg,
PAMLONG pCompCode,
PAMLONG pReason);

Parameters
hDistList

hPolicy
options
directoryLen

directory

fileNameLen

fileName

hMsg

pCompCode

pReason

Usage notes

The distribution list handle returned by amSesCreateDistList
(input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

Reserved, must be specified as OL (input).
A reserved field that must be specified as zero (input).
A reserved field that must be specified as NULL (input).

The length of the file name in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the filename will
travel with the message for use with a receive file call (see
tamRcvReceiveFile” on page 121 for more details). Note that the
filename sent will exactly match the supplied filename; it will not
be converted or expanded in any way.

The handle of the message object to use to send the file (input).
This can be used to specify the Correlation ID for example. If
specified as ANM_NULL_HANDLE, the default send message
object (constant: AMSD_SND_MSG_HANDLE) is used.

Completion code (output).

Reason code (output).

If, in your application, you have previously used a message object, referenced by
either handle or name, to send or receive data (including AMI elements or topics),
you will need to explicitly call amMsgReset before re-using the object for sending a
file. This applies even if you use the system default object handle (constant:
AMSD_SND_MSG_HANDLE).

The system default message object handle is used when you specify hMsg as
AMH_NULL_HANDLE.

Chapter 5. C object interface reference 127

C publisher interface

Publisher interface functions

A publisher object encapsulates a sender object. It provides support for publish
messages to a publish/subscribe broker.

amPubClearErrorCodes
Clears the error codes in the publisher object.

AMBOOL amPubClearErrorCodes (
AMHPUB hPublisher,
PAMLONG pCompCode,
PAMLONG pReason);

hPubTisher The publisher handle returned by amSesCreatePublisher (input).

pCompCode Completion code (output).
pReason Reason code (output).
amPubClose

Closes the publisher service.

AMBOOL amPubCTose(
AMHPUB hPublisher,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).
pReason Reason code (output).
amPubGetCCSID

Gets the coded character set identifier of the publisher service. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.
AMBOOL amPubGetCCSID(
AMHPUB hPublisher,
PAMLONG ~ pCCSID,

PAMLONG ~ pCompCode,
PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).
amPubGetEncoding

Gets the value used to encode numeric data types for the publisher service. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

128 MQSeries Application Messaging Interface

C publisher interface

AMBOOL amPubGetEncoding(

AMHPUB hPubTisher,
PAMLONG pEncoding,
PAMLONG pCompCode,
PAMLONG pReason);
hPublisher The publisher handle returned by amSesCreatePublisher (input).
pEncoding The encoding (output).
pCompCode Completion code (output).
pReason Reason code (output).
amPubGetLastError

Gets the information (completion and reason codes) from the last error for the
publisher object.

AMBOOL amPubGetLastError(

AMHPUB
AMLONG
PAMLONG
AMSTR
PAMLONG
PAMLONG
PAMLONG

hPublisher
buffLen

pStringLen
pErrorText

pReason2

pCompCode

pReason

hPubTisher,
buffLen,
pStringLen,
pErrorText,
pReason2,
pCompCode,
pReason);

The publisher handle returned by amSesCreatePublisher (input).
Reserved, must be zero (input).

Reserved, must be NULL (input).

Reserved, must be NULL (input).

A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

Completion code (output). Not returned if specified as NULL.

Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amPubGetLastError function call has itself detected an error and
failed.

Chapter 5. C object interface reference 129

C publisher interface

amPubGetName
Gets the name of the publisher service.

AMBOOL amPubGetName (
AMHPUB hPubTisher,
AMLONG bufflLen,
PAMLONG ~ pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);

hPubTisher The publisher handle returned by amSesCreatePublisher (input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The publisher object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amPubOpen

Opens the publisher service.

AMBOOL amPubOpen (
AMHPUB hPublisher,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hPubTisher The publisher handle returned by amSesCreatePublisher (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

130 MQSeries Application Messaging Interface

amPubPublish

C publisher interface

Publishes a message using the publisher service.

The message data is passed in the message object. There is no option to pass it as a
separate parameter as with amSndSend (this would not give any performance
improvement because the MQRFH header has to be added to the message data
prior to publishing it).

AMBOOL amPubPublish(

AMHPUB
AMHPOL
AMHRCV
AMHMSG
PAMLONG
PAMLONG

hPublisher
hPolicy

hReceiver

hPubMsg

pCompCode

pReason

hPubTlisher,
hPolicy,
hReceiver,
hPubMsg,
pCompCode,
pReason);

The publisher handle returned by amSesCreatePublisher (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

The handle of the receiver service to which the response to this
publish request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

The handle of a message object for the publication message (input).
If specified as AMH_NULL_HANDLE, the default message object
(constant: AMSD_SND_MSG_HANDLE) is used.

Completion code (output).

Reason code (output).

Chapter 5. C object interface reference 131

C subscriber interface

Subscriber interface functions

A subscriber object encapsulates both a sender object and a receiver object. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

amSubClearErrorCodes
Clears the error codes in the subscriber object.

AMBOOL amSubClearErrorCodes (
AMHSUB hSubscriber,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

pCompCode Completion code (output).
pReason Reason code (output).
amSubClose

Closes the subscriber service.

AMBOOL amSubCTose(
AMHSUB hSubscriber,
AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).
pReason Reason code (output).
amSubGetCCSID

Gets the coded character set identifier of the subscriber’s sender service. A
non-default value reflects the CCSID of a remote system unable to perform CCSID
conversion of received messages. In this case the subscriber must perform CCSID
conversion of the message before it is sent.
AMBOOL amSubGetCCSID(

AMHSUB hSubscriber,

PAMLONG pCCSID,

PAMLONG pCompCode,

PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).
amSubGetDefnType

Gets the definition type of the subscriber’s receiver service.

132 MQSeries Application Messaging Interface

C subscriber interface

AMBOOL amSubGetDefnType (
AMHSUB hSubscriber,
PAMLONG pType,
PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

pType The definition type (output). It can be:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

pCompCode Completion code (output).
pReason Reason code (output).
amSubGetEncoding

Gets the value used to encode numeric data types for the subscriber’s sender
service. A non-default value reflects the encoding of a remote system unable to
convert the encoding of received messages. In this case the subscriber must convert
the encoding of the message before it is sent.
AMBOOL amSubGetEncoding(
AMHSUB hSubscriber,
PAMLONG pEncoding,

PAMLONG pCompCode,
PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).

pEncoding The encoding (output).
pCompCode Completion code (output).
pReason Reason code (output).

Chapter 5. C object interface reference 133

C subscriber interface

amSubGetLastError

Gets the information (completion and reason codes) from the last error for the

subscriber object.
AMBOOL amSubGetlLastError(

AMHSUB hSubscriber,
AMLONG bufflLen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);
hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).
buffLen Reserved, must be zero (input).
pStringLen Reserved, must be NULL (input).
pErrorText Reserved, must be NULL (input).
pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.
pCompCode Completion code (output). Not returned if specified as NULL.
pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amSubGetLastError function call has itself detected an error and
failed.
amSubGetName

Gets the name of the subscriber object.
AMBOOL amSubGetName (

AMHSUB hSubscriber,
AMLONG bufflLen,
PAMLONG pNamelLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);
hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).
buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.
pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.
pName The subscriber object name (output).
pCompCode Completion code (output).
pReason Reason code (output).
amSubGetQueueName

Gets the queue name of the subscriber’s receiver service object. This can be used to
determine the queue name of a permanent dynamic receiver service, so that it can
be recreated with the same queue name in order to receive messages in a
subsequent session. (See also amSubSetQueueName.)

134 MQSeries Application Messaging Interface

C subscriber interface

AMBOOL amSubGetQueueName (

AMHSUB
AMLONG
PAMLONG
AMSTR
PAMLONG
PAMLONG

hSubscriber

buffLen
pStringLen

pQueueName
pCompCode

pReason

amSubOpen

hSubscriber,
bufflLen,
pStringLen,
pQueueName,
pCompCode,
pReason);

The subscriber handle returned by amSesCreateSubscriber (input).

The length in bytes of a buffer in which the queue name is
returned (input). Specify as zero to return only the length.

The length of the queue name, in bytes (output). If specified as
NULL, the length is not returned.

The queue name (output).
Completion code (output).

Reason code (output).

Opens the subscriber service.
AMBOOL amSubOpen (

AMHSUB
AMHPOL
PAMLONG
PAMLONG

hSubscriber

hPolicy

pCompCode

pReason

hSubscriber,
hPolicy,
pCompCode,
pReason);

The subscriber handle returned by amSesCreateSubscriber (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

Completion code (output).

Reason code (output).

Chapter 5. C object interface reference 135

C subscriber interface

amSubReceive

Receives a message, normally a publication, using the subscriber service. The
message data, topic and other elements can be accessed using the message
interface functions (see page Bd).

The message data is passed in the message object. There is no option to pass it as a
separate parameter as with amRcvReceive (this would not give any performance
improvement because the MQRFH header has to be removed from the message
data after receiving it).

AMBOOL amSubReceive(

AMHSUB hSubscriber,
AMHPOL hPolicy,
AMHMSG hSelMsg,
AMHMSG hRcvMsg,
PAMLONG pCompCode,
PAMLONG pReason);
hSubscriber The subscriber handle returned by amSesCreateSubscriber (input).
hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.
hSelMsg The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH_NULL_HANDLE to get the next
available message with no selection.
hRcvMsg The handle of the message object for the received message
(output). If specified as AMH_NULL_HANDLE, the default
message object (constant: AMSD_RCV_MSG_HANDLE) is used.
The message object is reset implicitly before the receive takes place.
pCompCode Completion code (output).
pReason Reason code (output).
amSubSetQueueName

Sets the queue name of the subscriber’s receiver object, when this encapsulates a
model queue. This can be used to specify the queue name of a recreated
permanent dynamic receiver service, in order to receive messages in a session
subsequent to the one in which it was created. (See also amSubGetQueueName.)

AMBOOL amSubSetQueueName (

AMHSUB
AMLONG
AMSTR
PAMLONG
PAMLONG

hSubscriber
namelen
pQueueName
pCompCode

pReason

hSubscriber,
namelen,
pQueueName,
pCompCode,
pReason);

The subscriber handle returned by amSesCreateSubscriber (input).
The length of the queue name, in bytes (input).

The queue name (input).

Completion code (output).

Reason code (output).

136 MQSeries Application Messaging Interface

C subscriber interface

amSubSubscribe

Sends a subscribe message to a publish/subscribe broker using the subscriber
service, to register a subscription. The topic and other elements can be specified
using the message interface functions (see page Bd) before sending the message.

Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix *.RECEIVER’.

AMBOOL amSubSubscribe(

AMHSUB
AMHPOL
AMHRCV
AMHMSG
PAMLONG
PAMLONG

hSubscriber

hPolicy

hReceiver

hSubMsg

pCompCode

pReason

hSubscriber,
hPolicy,
hReceiver,
hSubMsg,
pCompCode,
pReason);

The subscriber handle returned by amSesCreateSubscriber (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

The handle of the receiver service to which the response to this
subscribe request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

The handle of a message object for the subscribe message (input).
If specified as AMH_NULL_HANDLE, the default message object
(constant: AMSD_SND_MSG_HANDLE) is used.

Completion code (output).

Reason code (output).

Chapter 5. C object interface reference 137

C subscriber interface

amSubUnsubscribe

Sends an unsubscribe message to a publish/subscribe broker using the subscriber
service, to deregister a subscription. The topic and other elements can be specified
using the message interface functions (see page Bd) before sending the message.

To deregister all topics, a policy providing this option must be specified (this is not
the default policy). Otherwise, to remove a previous subscription the topic
information specified must match that specified on the relevant amSubSubscribe

request.

AMBOOL amSubUnsubscribe (

AMHSUB
AMHPOL
AMHRCV
AMHMSG
PAMLONG
PAMLONG

hSubscriber

hPolicy

hReceiver

hUnsubMsg

pCompCode

pReason

hSubscriber,
hPolicy,
hReceiver,
hUnsubMsg,
pCompCode,
pReason) ;

The subscriber handle returned by amSesCreateSubscriber (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

The handle of the receiver service to which the response to this
unsubscribe request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required.

The handle of a message object for the unsubscribe message
(input). If specified as AMH_NULL_HANDLE, the default message
object (constant: AMSD_SND_MSG_HANDLE) is used.

Completion code (output).

Reason code (output).

138 MQSeries Application Messaging Interface

C policy interface

Policy interface functions

A policy object encapsulates the set of options used for each AMI request (open,
close, send, receive, publish and so on). Examples are the priority and persistence
of the message, and whether the message is included in a unit of work.

amPolClearErrorCodes

Clears the error codes in the policy object.
AMBOOL amPolClearErrorCodes (

AMHPOL hPolicy,
PAMLONG pCompCode,
PAMLONG pReason);
hPolicy The policy handle returned by amSesCreatePolicy (input).
pCompCode Completion code (output).
pReason Reason code (output).
amPolGetLastError

Gets the information (completion and reason codes) from the last error for the
policy object.
AMBOOL amPolGetLastError(

AMHPOL hPolicy,
AMLONG bufflen,
PAMLONG pStringLen,
AMSTR pErrorText,
PAMLONG pReason2,
PAMLONG pCompCode,
PAMLONG pReason);
hPolicy The policy handle returned by amSesCreatePolicy (input).
buffLen Reserved, must be zero (input).
pStringLen Reserved, must be NULL (input).
pErrorText Reserved, must be NULL (input).
pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.
pCompCode Completion code (output). Not returned if specified as NULL.
pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_POLICY_HANDLE_ERR indicates that the
amPolGetLastError function call has itself detected an error and
failed.

amPolGetName

Returns the name of the policy object.
AMBOOL amPolGetName (

AMHPOL hPolicy,
AMLONG bufflen,
PAMLONG pNameLen,
AMSTR pName,
PAMLONG pCompCode,
PAMLONG pReason);
hPolicy The policy handle returned by amSesCreatePolicy (input).

139

Chapter 5. C object interface reference

C policy interface

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The policy object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

amPolGetWaitTime

Returns the wait time (in ms) set for this policy.

AMBOOL amPolGetWaitTime(
AMHPOL hPolicy,
PAMLONG pWaitTime,
PAMLONG pCompCode,
PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).
pWaitTime The wait time, in ms (output).
pCompCode Completion code (output).
pReason Reason code (output).
amPolSetWaitTime

Sets the wait time for any receive function using this policy.

AMBOOL amPolSetWaitTime (
AMHPOL hPolicy,
AMLONG waitTime,
PAMLONG pCompCode,
PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).
waitTime The wait time (in ms) to be set in the policy (input).
pCompCode Completion code (output).

pReason Reason code (output).

140 MQSeries Application Messaging Interface

Part 3. The C++ interface

Chapter 6. Using the Appllcatlon Messaglng

Interface in C++ .
Structure of the AMI .
Base classes .
Interface and helper classes
Exception classes .
Using the repository .
System default objects
Writing applications in C++

Creating and opening objects .

Deleting objects

Sending messages .
Sample program

Receiving messages
Sample program

Request/response messaging .

Sample programs .
File transfer .

Publish/subscribe messagmg .

Sample programs .
Using AmElement objects
Error handling .
Transaction support .
Sending group messages
Other considerations .

Multithreading .

Using MQSeries with the AMI

Field limits . .

Building C++ applications .
AMI include files .

C++ applications on AIX

Preparing C++ programs on AIX
Running C++ programs on AIX .

C++ applications on HP-UX

Preparing C++ programs on HP- UX
Running C++ programs on HP-UX .

C++ applications on Solaris.

Preparing C++ programs on Solaris .
Running C++ programs on Solaris

C++ applications on Windows. .
Preparing C++ programs on W1ndows .
Running C++ programs on Windows

Chapter 7. C++ interface overview

Base classes .
Helper classes .
Exception classes .
AmSessionFactory .
Constructor .
Session factory management
Create and delete session
AmSession . ..
Session management .
Create objects
Delete objects .
Transactional processing.

© Copyright IBM Corp. 1999, 2000

. 145
. 145
. 145
. 146
. 146
. 146
. 146
. 147
. 147
. 148
. 148
. 149
. 149
. 150
. 150
. 151
. 151
. 152
. 153
. 153
. 153
. 155
. 156
. 156
. 156
. 156
. 156
. 158
. 158
. 158
. 158
. 159
. 159
. 159
. 160
. 160
. 161
. 161
. 162
. 162
. 162

. 163
. 163
. 163
. 163
. 164
. 164
. 164
. 164
. 165
. 165
. 165
. 165
. 165

Error handling .
AmMessage .

Get values

Set values

Reset values. .

Read and write data .

Publish/subscribe topics.

Publish/subscribe filters.

Publish/subscribe name/value elements

Error handling .
AmSender

Open and close.

Send

Send file .

Get values

Error handling .
AmReceiver .

Open and close. .

Receive and browse .

Receive file .

Get values

Set value .

Error handling .
AmDistributionList

Open and close.

Send . .

Send file .

Get values

Error handling .
AmPublisher

Open and close.

Publish

Get values

Error handling .
AmSubscriber .

Open and close.

Broker messages

Get values

Set value .

Error handling .
AmPolicy. .

Policy management

Error handling .
Helper classes .

AmBytes .

AmElement .

AmObject

AmStatus.

AmString.
Exception classes .

AmEXxception

AmErrorException.

AmWarningException

Chapter 8. C++ interface reference

Base classes .

. 166
. 167
. 167
. 167
. 167
. 167
. 168
. 168
. 168
. 168
. 169
. 169
. 169
. 169
. 169
. 169
. 170
. 170
. 170
. 170
. 170
. 170
. 170
. 171
. 171
171
. 171
. 171
. 171
. 172
. 172
. 172
. 172
. 172
. 173
. 173
. 173
. 173
. 173
. 173
. 174
. 174
. 174
. 175
. 175
. 175
. 175
. 175
. 176
. 177
. 177
. 177
. 177

. 179
. 179

141

Helper classes .
Exception classes .
AmSessionFactory .
AmSessionFactory .
createSession
deleteSession
getFactoryName
getLocalHost
getRepository
getTraceLevel
getTraceLocation
setLocalHost.
setRepository
setTraceLevel
setTraceLocation
AmSession . .
begin
clearErrorCodes
close
commit

createDistributionList.

createMessage .
createPolicy .
createPublisher .
createReceiver .
createSender.
createSubscriber

deleteDistributionList.

deleteMessage .
deletePolicy .
deletePublisher .
deleteReceiver .
deleteSender.
deleteSubscriber
enableWarnings
getLastErrorStatus .
getName .
getTraceLevel
getTraceLocation
open
rollback
AmMessage .
addElement .
addFilter .
addTopic .
clearErrorCodes
deleteElement .
deleteFilter .

deleteNamedElement.

deleteTopic .
enableWarnings
getCCSID.
getCorrelationId
getDataLength .
getDataOffset
getElement . .
getElementCCSID .
getElementCount .
getEncoding .
getFilter .
getFilterCount .

142 MQSeries Application Messaging Interface

. 179
. 179
. 180
. 180
. 180
. 180
. 180
. 180
. 180
. 180
. 180
. 180
. 181
. 181
. 181
. 182
. 182
. 182
. 182
. 182
. 182
. 183
. 183
. 183
. 183
. 184
. 184
. 184
. 184
. 184
. 185
. 185
. 185
. 185
. 185
. 185
. 185
. 186
. 186
. 186
. 186
. 187
. 187
. 188
. 188
. 188
. 188
. 188
. 188
. 188
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 189
. 190
. 190

getFormat
getGroupStatus.
getLastErrorStatus .
getMessageld
getName
getNamedElement.

getNamedElementCount.

getReportCode .
getTopic .
getTopicCount .
getType
readBytes.
reset
setCCSID.
setCorrelationld
setDataOffset
setElementCCSID .
setEncoding .
setFormat
setGroupStatus .
writeBytes
AmSender
clearErrorCodes
close .
enableWarnings
getCCSID.
getEncoding .
getLastErrorStatus .
getName .
open
send
sendFile .
AmReceiver .
browse .
clearErrorCodes
close .
enableWarnings
getDefinitionType .
getLastErrorStatus .
getName .
getQueueName.
open
receive
receiveFile
setQueueName .
AmDistributionList
clearErrorCodes
close .
enableWarnings
getLastErrorStatus .
getName .
getSender
getSenderCount
open
send
sendFile .
AmPublisher
clearErrorCodes
close .
enableWarnings
getCCSID.

. 190
. 190
. 190
. 190
. 191
. 191
. 191
. 191
. 191
. 191
. 191
. 192
. 192
. 192
. 192
. 192
. 192
. 193
. 193
. 193
. 193
. 195
. 195
. 195
. 195
. 195
. 195
. 196
. 196
. 196
. 196
. 196
. 198
. 198
. 199
. 199
. 199
. 199
. 199
. 199
. 200
. 200
. 200
. 200
. 201
. 202
. 202
. 202
. 202
. 202
. 202
. 202
. 202
. 202
. 203
. 203
. 204
. 204
. 204
. 204
. 204

getEncoding .
getLastErrorStatus .
getName .

open

publish

AmSubscriber .
clearErrorCodes
close .
enableWarnings
getCCSID.
getDefinitionType .
getEncoding .
getLastErrorStatus .
getName .
getQueueName.
open
receive .
setQueueName .
subscribe .
unsubscribe .

AmPolicy.
clearErrorCodes
enableWarnings
getLastErrorStatus .
getName .
getWaitTime.
setWaitTime .

AmBytes .
cmp .
constructors .
cpy. .
dataPtr
destructor
length .
operators .
pad.

AmElement .
AmElement .
getName .
getValue .
getVersion
setVersion
toString

AmObject
clearErrorCodes
getLastErrorStatus .
getName .

AmStatus.

AmStatus. .
getCompletionCode
getReasonCode.
getReasonCode2
toString

AmString.
cat . .
cmp .
constructors .
contains .
cpy. .
destructor
operators .

. 204
. 204
. 204
. 204
. 205
. 206
. 206
. 206
. 206
. 206
. 206
. 206
. 206
. 207
. 207
. 207
. 208
. 208
. 209
. 209
. 210
. 210
. 210
. 210
. 210
. 210
. 210
. 211
. 211
. 211
. 212
. 212
. 212
. 212
. 212
. 212
. 213
. 213
. 213
. 213
. 213
. 213
. 213
. 214
. 214
. 214
. 214
. 215
. 215
. 215
. 215
. 215
. 215
. 216
. 216
. 216
. 216
. 216
. 216
. 216
. 217

pad.

split

strip

length .

text.

truncate .
AmException

getClassName .

getCompletionCode .

getMethodName
getReasonCode.
getSource.
toString .
AmErrorException.
getClassName .

getCompletionCode .

getMethodName

getReasonCode.

getSource.

toString .
AmWarningException

getClassName .

getCompletionCode .

getMethodName
getReasonCode.
getSource.
toString

Part 3. The C++ interface

. 217
. 217
. 217
. 217
. 217
. 217
. 218
. 218
. 218
. 218
. 218
. 218
. 218
. 219
. 219
. 219
. 219
. 219
. 219
. 219
. 220
. 220
. 220
. 220
. 220
. 220
. 220

143

144 MQSeries Application Messaging Interface

Chapter 6. Using the Application Messaging Interface in C++

The Application Messaging Interface for C++ (amCpp) provides a C++ style of
programming, while being consistent with the object-style interface of the
Application Messaging Interface for C.

This chapter describes the following:
e UStructure of the AMI]

% o e . . . 17

. ” ”

Note that the term object is used in this book in the object-oriented programming
sense, not in the sense of MQSeries ‘objects’ such as channels and queues.

Structure of the AMI

The following classes are provided:

Base classes

AmSessionFactory Creates AmSession objects.

AmSession Creates objects within the AMI session, and
controls transactional support.

AmMessage Contains the message data, message ID and
correlation ID, and options that are used when
sending or receiving a message (most of which
come from the policy definition).

AmSender This is a service that represents a destination (such
as an MQSeries queue) to which messages are sent.

AmReceiver This is a service that represents a source (such as
an MQSeries queue) from which messages are
received.

AmDistributionList Contains a list of sender services to provide a list

of destinations.

AmPublisher Contains a sender service where the destination is
a publish/subscribe broker.

AmSubscriber Contains a sender service (to send subscribe and
unsubscribe messages to a publish/subscribe
broker) and a receiver service (to receive
publications from the broker).

AmPolicy Defines how the message should be handled,
including items such as priority, persistence, and
whether it is included in a unit of work.

© Copyright IBM Corp. 1999, 2000 145

Structure of the AMI
Interface and helper classes

AmODbject This is an abstract class, from which the base
classes listed above inherit (with the exception of
AmSessionFactory).

AmElement This encapsulates name/value pairs for use in
publish/subscribe applications.

AmStatus This encapsulates the error status of amCpp
objects.

AmString This encapsulates string data.

AmBytes This encapsulates binary/byte data.

Exception classes

AmException This is the base Exception class for amCpp; all
other amCpp Exceptions inherit from this class.

AmErrorException An Exception of this type is raised when an
amCpp object experiences an error with a severity
level of FAILED (CompletionCode =
AMCC_FAILED).

AmWarningException An Exception of this type is raised when an
amCpp object experiences an error with a severity
level of WARNING (CompletionCode =
AMCC_WARNING), provided that warnings have
been enabled using the enableWarnings method.

Using the repository

You can run AMI applications with or without a repository. If you don’t have a
repository, you can create an object by specifying its name in a method. It will be
created using the appropriate system provided definition (see ['System provided
Hefinifions” 15).

If you have a repository, and you specify the name of an object in a method that
matches a name in the repository, the object will be created using the repository
definition. (If no matching name is found in the repository, the system provided
definition will be used.)

System default objects

The set of system default objects created in C is not accessible directly in C++, but
the SYSTEM.DEFAULT.POLICY (constant: AMSD_POL) is used to provide default
behavior when a policy is not specified. Objects with identical properties to the
system default objects can be created for use in C++ using the built-in definitions
(see E - — >

146 MQSeries Application Messaging Interface

Writing applications in C++

Writing applications in C++

This section gives a number of examples showing how to access the Application
Messaging Interface using C++.

Many of the method calls are overloaded and in some cases this results in default
objects being used. One example of this is the AmPolicy object which can be
passed on many of the methods. For example:

Method overloading
mySender->send (*mySendMessage, *myPolicy);

mySender->send (*xmySendMessage) ;

If a policy has been created to provide specific send behavior, use the first
example. However, if the default policy is acceptable, use the second example.

The defaulting of behavior using method overloading is used throughout the
examples.

Creating and opening objects

Before using the AMI, you must create and open the required objects. Objects are
created with names, which might correspond to named objects in the repository. In
the case of the creation of a response sender (myResponder) in the example below,
the default name for a response type object is specified, so the object is created
with default responder values.

— Creating AMI objects

mySessionFactory = new AmSessionFactory("MY.REPOSITORY.XML");
mySession = mySessionFactory->createSession("MY.SESSION");
myPolicy = mySession->createPolicy("MY.POLICY");

mySender = mySession->createSender("AMT.SENDER.QUEUE");
myReceiver = mySession->createReceiver("AMT.RECEIVER.QUEUE");
myResponder = mySession->createSender (AMDEF_RSP_SND);

mySendMessage = mySession->createMessage("MY.SEND.MESSAGE");
myReceiveMessage = mySession->createMessage("MY.RECEIVE.MESSAGE")

The objects are then opened. In the following examples, the session object is
opened with the default policy, whereas the sender and receiver objects are opened
with a specified policy (myPolicy).

Opening the AMI objects
mySession->open();
mySender->open (*myPolicy);
myReceiver->open (*myPolicy);

Chapter 6. Using the Application Messaging Interface in C++ 147

Writing applications in C++

Deleting objects

In order to avoid memory leaks, it is essential to explicitly delete all C++ objects
that you have created at the end of your program. Delete the session after
everything other than the session factory. Delete the session factory last.

The following is an example from the Receiver.cpp sample program:

Deleting AMI objects

mySession->deleteMessage (myReceiveMsg);
mySession->deleteReceiver(myReceiver);
mySession->deletePolicy(myPolicy);
mySessionFactory->deleteSession(mySession);
delete *mySessionFactory;

Sending messages

The examples in this section show how to send a datagram (send and forget)
message. First, the message data is written to the mySendMessage object. Data is
always sent in byte form using the AmBytes helper class.

Writing data to a message object

AmBytes *dataSent = new AmBytes((const charx)'message to be sent");
mySendMessage->writeBytes (*dataSent);

Next, the message is sent using the sender service mySender.

mySender->send (*xmySendMessage) ;

” Sending a message

The policy used is either the default policy for the service, if specified, or the
system default policy. The message attributes are set from the policy or service, or
the default for the messaging transport.

When more control is needed you can pass a policy object:

Sending a message with a specified policy
F mySender->send (*xmySendMessage, *myPolicy);

The policy controls the behavior of the send command. In particular, the policy
specifies whether the send is part of a unit of work, the priority, persistence and
expiry of the message and whether policy components should be invoked.
Whether the queue should be implicitly opened and left open can also be
controlled.

To send a message to a distribution list, for instance myDistList, use it as the
sender service:

148 MQSeries Application Messaging Interface

Writing applications in C++

Sending a message to a distribution list
F myDistList->send(*mySendMessage) ;

You can set an attribute such as the Format before a message is sent, to override
the default in the policy or service.

Setting an attribute in a message
F mySendMessage->setFormat ("MyFormat") :

Similarly, after a message has been sent you can retrieve an attribute such as the
MessagelID. Binary data, such as Messageld can be extracted using the AmBytes
helper class.

Getting an attribute from a message
F AmBytes msgld = mySendMessage.getMessageld();

For details of the message attributes that you can set and get, see LAmMessage” onl

When a message object is used to send a message, it might not be left in the same

state as it was prior to the send. Therefore, if you use the message object for

repeated send operations, it is advisable to reset it to its initial state (see l'reset” on
) and rebuild it each time.

Sample program
For more details, refer to the SendAndForget.cpp sample program (see w

”).

Receiving messages

The next example shows how to receive a message from the receiver service
myReceiver, and to read the data from the message object myReceiveMessage.

Receiving a message and retrieving the data

myReceiver->receive (*myReceiveMessage) ;
AmBytes data = myReceiveMessage->readBytes (
myReceiveMessage->getDatalength());

The policy used will be the default for the service if defined, or the system default
policy. Greater control of the behavior of the receive can be achieved by passing a
policy object.

Receiving a message with a specified policy
F myReceiver->receive(*myReceiveMessage, *myPolicy);

Chapter 6. Using the Application Messaging Interface in C++ 149

Writing applications in C++

The policy can specify the wait interval, whether the call is part of a unit of work,
whether the message should be code page converted, whether all the members of a
group must be there before any members can be read, and how to deal with
backout failures.

To receive a specific message using its correlation ID, create a selection message
object and set its Correlld attribute to the required value. The selection message is
then passed as a parameter on the receive.

Receiving a specific message using the correlation ID

AmBytes * myCorrelld = new AmBytes("MYCORRELATION");
mySelectionMessage = mySession->createMessage("MY.SELECTION.MESSAGE");
mySelectionMessage->setCorrelationId(*myCorrelld);
myReceiver->receive(*myReceiveMessage, *mySelectionMessage, *myPolicy);

As before, the policy is optional.

You can view the attributes of the message just received, such as the Encoding.

Getting an attribute from the message
’(encoding = myReceiveMessage->getEncoding();

Sample program
For more details, refer to the Receiver.cpp sample program (see [!‘Sample pragramd

Eor 1o and Wisdores” =),

Request/response messaging

In the request/response style of messaging, a requester (or client) application sends a
request message and expects to receive a response message back. The responder
(or server) application receives the request message and produces the response
message (or messages) which it sends back to the requester application. The
responder application uses information in the request message to know how to
send the response message back to the requester.

In the following examples ‘my’ refers to the requesting application (the client);
‘your’ refers to the responding application (the server).

The requester sends a message as described in !Sending messages” on page 148§,

specifying the service (myReceiver) to which the response message should be sent.

Sending a request message
’(mySender->send (*xmySendMessage, *myReceiver);

A policy object can also be specified if required.

The resgonder receives the message as described in 'Receiving messages” on

, using its receiver service (yourReceiver). It also receives details of the
response service (yourResponder) for sending the response.

150 MQSeries Application Messaging Interface

Writing applications in C++

Receiving the request message
yourReceiver->receive(*yourReceiveMessage, xyourResponder);

A policy object can be specified if required, as can a selection message object (see

”).

The responder sends its response message (yourReplyMessage) to the response
service, specifying the received message to which this is a response.

Sending a response to the request message
’(yourResponder->send (*yourReplyMessage, *yourReceiveMessage);

Finally, the requester application receives the response (myResponseMessage), which
is correlated with the original message it sent (mySendMessage).

Receiving the response message
myReceiver->receive(*myResponseMessage, *mySendMessage);

In a typical application the responder might be a server operating in a loop,
receiving requests and replying to them. In this case, the message objects should be
set to their initial state and the data cleared before servicing the next request. This
is achieved as follows:

Resetting the message object

yourReceiveMessage->reset();
yourResponseMessage->reset () ;

Sample programs
For more details, refer to the Client.cpp and Server.cpp sample programs (see

Fampl for 1 Windows” 150).

File transfer

You can perform file transfers using the AmSender.sendFile and
AmReceiver.receiveFile methods.

— Sending a file using the sendFile method
mySender->sendFile(*mySendMessage,myfilename,*myPolicy)

— Receiving a file using the receiveFile method
myReceiver->receiveFile(*myReceiveMessage,myfileName,*myPolicy)

For a complete description of file transfer, refer to I'File transfer” on page 21

Chapter 6. Using the Application Messaging Interface in C++ 151

Writing applications in C++

Publish/subscribe messaging

With publish/subscribe messaging a publisher application publishes messages to
subscriber applications using a broker. The message published contains application
data and one or more fopic strings that describe the data. A subscribing application
subscribes to topics informing the broker which topics it is interested in. When the
broker receives a message from a publisher it compares the topics in the messages
to the topics in the subscription from subscribing applications. If they match, the
broker forwards the message to the subscribing application.

Data on a particular topic is published as shown in the next example.

Publishing a message on a specified topic
AmBytes xpublicationData = new AmBytes("The weather is sunny");
myPubMessage->addTopic("Weather");

myPubMessage->writeBytes (publicationData);
myPublisher->publish(*myPubMessage, *myReceiver);

myReceiver identifies a response service to which the broker will send any
response messages (indicating whether the publish was successful or not). You can
also specify a policy object to modify the behavior of the command.

To subscribe to a publish/subscribe broker you need to specify one or more topics.

Subscribing to a broker on specified topics
mySubMessage->addTopic("Weather");
mySubMessage->addTopic("Birds");
mySubscriber->subscribe (*mySubMessage, *myReceiver);

Broker response messages will be sent to myReceiver.

To remove a subscription, add the topic or topics to be deleted to the message
object, and use:

Removing a subscription
mySubscriber->unsubscribe (*myUnsubMessage, *myReceiver);

To receive a publication from a broker, use:

Receiving a publication

mySubscriber->receive(*myReceiveMessage, *myPolicy);
publication = myReceiveMessage->readBytes(
*myReceiveMessage->getDatalength());

You can then use the getTopicCount and getTopic methods to extract the topic or
topics from the message object.

152 MQSeries Application Messaging Interface

Writing applications in C++

Subscribing applications can also exploit content-based publish/subscribe by

passing a filter on subscribe and unsubscribe calls (see [1lsing MQSeries Integratoi
Version 2” on page 447).

Sample programs
For more details, refer to the Publisher.cpp and Subscriber.cpp sample programs
(see LSample_pxog.nams_ﬁaLUlmandJMmdmuslon_pa.geAéd).

Using AmElement objects

Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
carried out. The Application Messaging Interface contains some methods which
produce these name/value pairs directly (such as AmSubscriber->subscribe). For
less commonly used commands, the name/value pairs can be added to a message
using an AmElement object.

For example, to send a message containing a ‘Request Update’” command, use the
following:

Using an AmElement object to construct a command message

AmElement *bespokeElement = new AmElement("MQPSCommand", "RegUpdate");
mySendMessage->addETement (*bespokeETement) ;

You must then send the message, using AmSender->send, to the sender service
specified for your publish/subscribe broker.

If you use streams with MQSeries Publish/Subscribe, you must add the
appropriate name/value element explicitly to the message object.

The message element methods can, in fact, be used to add any element to a
message before issuing an publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications.
They can be used in other applications as well.

Error handling

The getLastErrorStatus method always reflects the last most severe error
experienced by an object. It can be used to return an AmStatus object
encapsulating this error state. Once the error state has been handled,
clearErrorCodes can be called to reset this error state.

AmCpp can raise two types of Exception, one to reflect serious errors and the
other to reflect warnings. By default, only AmErrorExceptions are raised.
AmWarningExceptions can be enabled using the enableWarnings method. Since
both are types of AmException, a generic catch block can be used to process all
amCpp Exceptions.

Enabling AmWarningExceptions might have some unexpected side-effects,
especially when an AmObject is returning data such as another AmObject. For
example, if AmWarningExceptions are enabled for an AmSession object and an
AmSender is created that does not exist in the repository, an AmWarningException

Chapter 6. Using the Application Messaging Interface in C++ 153

Writing applications in C++

will be raised to reflect this fact. If this happens, the AmSender object will not be
created since its creation was interrupted by an Exception. However, there might
be times during the life of an AmObject when processing AmWarningExceptions is
useful.

154 MQSeries Application Messaging Interface

Writing applications in C++

For example:

try
{

mySession->enableWarnings (AMB_TRUE) ;
mySession->open();

}

catch (AmErrorException &errorEx)

{
AmStatus sessionStatus = mySession->getlLastErrorStatus();
switch (sessionStatus.getReasonCode())

case AMRC_XXXX:
case AMRC_XXXX:

}

mySession->clearErrorCodes();

catch (AmWarningException &warningEx)

{
}

Since most of the objects are types of AmObject, a generic error handling routine
can be written. For example:

try
{

mySession->open();
mySender->send (*myMessage) :
mySender->send (*xmyMessage) :

mySession->commit();
}

catch(AmException &amex);

{

AmStatus status = amex.getSource()->getLastErrorStatus();
printf("Object in error; name = %s\n", amex.getSource()->getName());
printf("Object in error; RC = %1d\n", status.getReasonCode());

amex.getSource()->clearErrorCodes();

}

The catch block works because all objects that throw the AmException in the try
block are AmObjects, and so they all have getName, getLastErrorStatus and
clearErrorCodes methods.

Transaction support

Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.

* MQSeries messages are the only resource

Chapter 6. Using the Application Messaging Interface in C++ 155

Writing applications in C++

A transaction is started by the first message sent or received under syncpoint
control, as specified in the policy specified for the send or receive. Multiple
messages can be included in the same unit of work. The transaction is
committed or backed out using the commit or rollback method.

* Using MQSeries as an XA transaction coordinator

The transaction must be started explicitly using the begin method before the
first recoverable resource (such as a relational database) is changed. The
transaction is committed or backed out using an commit or rollback method.

* Using an external transaction coordinator

The transaction is controlled using the API calls of an external transaction
coordinator (such as CICS, Encina or Tuxedo). The AMI calls are not used but
the syncpoint attributed must still be specified in the policy used on the call.

Sending group messages

The AMI allows a sequence of related messages to be included in, and sent as, a
message group. Group context information is sent with each message to allow the
message sequence to be preserved and made available to a receiving application.
In order to include messages in a group, the group status information of the first
and subsequent messages in the group must be set as follows:

AMGRP_FIRST _MSG_IN_GROUP for the first message

AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
AMGRP_LAST_MSG_IN_GROUP for the Tast message

The message status is set using the AmMessage.setGroupStatus method.

For a comglete description of group messages, refer to Sending group messages’]

Other considerations
You should also consider the following.

Multithreading

If you are using multithreading with the AMI, a session normally remains locked
for the duration of a single AMI call. If you use receive with wait, the session
remains locked for the duration of the wait, which might be unlimited (that is,
until the wait time is exceeded or a message arrives on the queue). If you want
another thread to run while a thread is waiting for a message, it must use a
separate session.

AMI handles and object references can be used on a different thread from that on
which they were first created for operations that do not involve an access to the
underlying (MQSeries) message transport. Functions such as initialize, terminate,
open, close, send, receive, publish, subscribe, unsubscribe, and receive publication
will access the underlying transport restricting these to the thread on which the
session was first opened (for example, using AmSession->open). An attempt to
issue these on a different thread will cause an error to be returned by MQSeries
and a transport error (AMRC_TRANSPORT_ERR) will be reported to the
application.

Using MQSeries with the AMI

You must not mix MQSeries function calls with AMI calls within the same process.

Field limits
When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries,

156 MQSeries Application Messaging Interface

Writing applications in C++

the underlying message transport. See the rules for naming MQSeries objects in the

Chapter 6. Using the Application Messaging Interface in C++ 157

Writing applications in C++

Building C++ applications

This section contains information that will help you write, prepare, and run your
C++ application programs on the various operating systems supported by the
AML

AMI include files

AMI provides include files, amtc.h and amtcpp.hpp, to assist you with the writing
of your applications. It is recommended that you become familiar with the
contents of these files.

The include files are installed under:
/amt/inc (UNIX)

\amt\include (Windows)

See “Directory structure” on page 24 (A1X), page k2d (HP-UX), page k33 (Solaris),
or page kad (Windows).

Your AMI C++ program must contain the statement:
#include <amtcpp.hpp>

Even though you need mention only the C++ include file, both amtc.h and
amtcpp.hpp must be accessible to your program at compilation time.

— Next step
Now go to one of the following to continue building a C++ application:

. Fe — ~

o PCya app]ir‘aﬁnnq on HP-UUX” on page 159

. 7 n N 7]

. 7 . . . 77

C++ applications on AIX

This section explains what you have to do to prepare and run your C++ programs

on the AIX operating system. See 'Language compilers” on page 429 for the

compilers supported by the AMI.

Preparing C++ programs on AIX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the xIC command you need to
specify a number of options:

¢ Where the AMI include files are.

This can be done using the -1 flag. In the case of AIX, they are usually located
at /usr/mgm/amt/inc.

158 MQSeries Application Messaging Interface

C++ applications on AIX

* Where the AMI library is.

This can be done using the -L flag. In the case of AIX, it is usually located at
/usr/mgm/11b.

* Link with the AMI library.
This is done with the -1 flag, more specifically -TamtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:
x1C -I/usr/mgm/amt/inc -L/usr/mgm/1ib -TamtCpp mine.cpp -o mine

If, however, you are building a threaded program, you must use the correct
compiler and the threaded library TibamtCpp_r.a. For example:

x1C_r -I/usr/mgm/amt/inc -L/usr/mgm/1ib -TamtCpp_r mine.cpp -o mine

Running C++ programs on AIX
When running a C++ executable you must have access to the C++ library
TibamtCpp.a in your runtime environment. If the amtInstall utility has been run,

this environment will be set up for you (see Unstallation on ATX” on page 423).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the AIX default library location to the actual location of the C++ library.
To do this:

In -s /usr/mqm/1ib/1ibamtCpp.a /usr/1ib/TibamtCpp.a

If you are using the threaded libraries, you can perform a similar operation:
Tn -s /usr/mgm/1ib/TibamtCpp_r.a /usr/1ib/1ibamtCpp r.a

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to
allow AMI to load MQSeries libraries dynamically. For the non-threaded MQSeries
Server library, perform:

In -s /usr/mgm/1ib/amtcmgm /usr/1ib/amtcmgm

For the non-threaded MQSeries Client library, perform:
In -s /usr/mgm/1ib/amtcmgic /usr/1ib/amtcmgic

For the threaded MQSeries Server library, perform:
In -s /usr/mgm/1ib/amtcmgm_r /usr/1ib/amtcmgm_r

For the threaded MQSeries Client library, perform:
In -s /usr/mgm/1ib/amtcmgic_r /usr/Tib/amtcmgic_r

C++ applications on HP-UX
This section explains what you have to do to prepare and run your C++ programs
on the HP-UX operating system. See ‘Language compilers” on page 422 for the
compilers supported by the AMIL

Preparing C++ programs on HP-UX

The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the aCC command you need to
specify a number of options:

1. Where the AMI include files are.

Chapter 6. Using the Application Messaging Interface in C++ 159

C++ applications on HP-UX

This can be done using the -1 flag. In the case of HP-UX, they are usually
located at /opt/mgm/amt/inc.

2. Where the AMI libraries are.
This can be done using the -W1,+b,:,-L flags. In the case of HP-UX, they are
usually located at /opt/mqm/1ib.

3. Link with the AMI library for C++.
This is done with the -1 flag, more specifically -1amtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:

aCC +DAportable -W1,+b,:,-L/opt/mgm/1ib -0 mine mine.cpp
-I/opt/mgm/amt/inc -TamtCpp

Note that you could equally link to the threaded library using -TamtCpp_r. On
HP-UX there is no difference since the unthreaded versions of the AMI binaries are
simply links to the threaded versions.

Running C++ programs on HP-UX
When running a C++ executable you must have access to the C++ library
1ibamtCpp.s1 in your runtime environment. If amtInstall utility has been run, this

”

environment will be set up for you (see I'Installation on HP-TIX” an page 427).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the HP-UX default library location to the actual location of the C++
library. To do this:

In -s /opt/mgm/1ib/1ibamtCpp_r.s1 /usr/1ib/1ibamtCpp.s]

If you are using the threaded libraries, you can peform a similar operation:
In -s /opt/mgm/1ib/1ibamtCpp_r.s1 /usr/1ib/TibamtCpp_r.s]

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to
allow AMI to load MQSeries libraries dynamically. For the non-threaded MQSeries
Server library, perform:

In -s /opt/mgm/1ib/amtcmgm_r /usr/1ib/amtcmgm

For the non-threaded MQSeries Client library, perform:
In -s /opt/mgm/1ib/amtcmgic_r /usr/1ib/amtcmqic

For the threaded MQSeries Server library, perform:
In -s /opt/mgm/1ib/amtcmgm_r /usr/1ib/amtcmgm_r

For the threaded MQSeries Client library, perform:
In -s /opt/mgm/1ib/amtcmgic_r /usr/Tib/amtcmgic_r

As before, note that the unthreaded versions are simply links to the threaded
versions.

C++ applications on Solaris

This section explains what you have to do to prepare and run your C++ programs

in the Sun Solaris operating environment. See ‘'Language compilers” on page 429

for the compilers supported by the AML

160 MQSeries Application Messaging Interface

C++ applications on Solaris

Preparing C++ programs on Solaris
The following is not prescriptive as there are many ways to set up environments to

build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the CC command you need to
specify a number of options:

¢ Where the AMI include files are.

This can be done using the -I flag. In the case of Solaris, they are usually
located at /opt/mgm/amt/inc.

* Where the AMI library is.
This can be done using the -L flag. In the case of Solaris, it is usually located at
/opt/mgm/1ib.

* Link with the AMI library.
This is done with the -1 flag, more specifically -1amtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:
CC -mt -I/opt/mgm/amt/inc -L/opt/mgm/1ib -TamtCpp mine.cpp -o mine

Running C++ programs on Solaris
When running a C++ executable you must have access to the C++ library
1ibamtCpp.so in your runtime environment. If the amtInstall utility has been run,

this environment will be set up for you (see Installation on Sun Solaris” od
hage 431).

If you have not run the utility, the easiest way of achieving this is to construct a
link from the Solaris default library location to the actual location of the C++
libraries. To do this:

In -s /opt/mgm/1ib/1ibamtCpp.so /usr/1ib/1ibamtCpp.so

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to
allow AMI to load MQSeries libraries dynamically. For the MQSeries Server library,
perform:

In -s /opt/mgm/1ib/amtcmgm /usr/T1ib/amtcmgm

For the MQSeries Client library, perform:
In -s /opt/mgm/1ib/amtcmgic /usr/1ib/amtcmgic

Chapter 6. Using the Application Messaging Interface in C++ 161

C++ applications on Windows

C++ applications on Windows

This section explains what you have to do to prepare and run your C++ programs
on the Windows 98 and Windows NT operating systems. See m

tompilers” onpage 422 for the compilers supported by the AML

Preparing C++ programs on Windows
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the ¢l command you need to
specify a number of options:

1. Where the AMI include files are.

This can be done using the /I flag. In the case of Windows, they are usually
located at \amt\include relative to where you installed MQSeries. Alternatively,
the include files could exist in one of the directories pointed to by the
INCLUDE environment variable.

2. Where the AMI library is.

This can be done by including the AMT library file amtCpp.LIB as a command
line argument. The amtCpp.LIB file should exist in one of the directories pointed
to by the LIB environment variable.

For example, compiling the C++ program mine.cpp into an executable called
mine.exe:

cl -IC:\MQSeries\amt\include /Fomine mine.cpp amtCpp.LIB

Running C++ programs on Windows

When running a C++ executable you must have access to the C++ DLL amtCpp.d11
in your runtime environment. Make sure it exists in one of the directories pointed
to by the PATH environment variable. For example:

SET PATH=%PATH%;C:\MQSeries\bin;
If you already have MQSeries installed, and you have installed AMI under the
MQSeries directory structure, it is likely that the PATH has already been set up for

you.

You also need access to the C libraries and MQSeries in your runtime environment.
(This will be the case if you installed MQSeries using the documented method.)

162 MQSeries Application Messaging Interface

Chapter 7. C++ interface overview

This chapter contains an overview of the structure of the Application Messaging
Interface for C++. Use it to find out what functions are available in this interface.

The C++ interface provides sets of methods for each of the classes listed below.

The methods available for each class are listed in the following pages. Follow the

page references to see the reference information for each method.

Base classes

AmSessionFactory
AmSession
AmMessage
AmSender
AmReceiver
AmDistributionList
AmPublisher
AmSubscriber

AmPolicy

Helper classes

AmBytes
AmElement
AmODbject
AmStatus
AmString

Exception classes

AmException
AmErrorException

AmWarningExcpetion

© Copyright IBM Corp. 1999, 2000

page fled
page |
page fLsd
page fed
page fizd
page iiz1
page i3
page i3
page fizd

page I3
page I3
page [lZ4
page [lZ3
page [izd

page 72
page 172
page iz2

163

C++ interface overview

AmSessionFactory

The AmSessionFactory class is used to create AmSession objects.

Constructor
Constructor for AmSessionFactory.

AmSessionFactory page fied

Session factory management

Methods to return the name of an AmSessionFactory object, to get and set the
names of the AMI data files (local host and repository), and to control traces.

getFactoryName page fied
getLocalHost page fLed
getRepository page fizd
getTraceLevel page fied
getTraceLocation page fizd
setLocalHost page fizd
setRepository page s
setTraceLevel page e
setTraceLocation page e

Create and delete session

Methods to create and delete an AmSession object.

createSession page
deleteSession page

164 MQSeries Application Messaging Interface

C++ interface overview

AmSession

The AmSession object creates and manages all other objects, and provides scope
for a unit of work.

Session management
Methods to open and close an AmSession object, to return its name, and to control

traces.

open page fied
close page fisd
getName page |
getTraceLevel page fied
getTraceLocation page fied

Create objects

Methods to create AmMessage, AmSender, AmReceiver, AmDistributionList,
AmPublisher, AmSubscriber, and AmPolicy objects.

createMessage page fied
createSender page fizd
createReceiver page fisd
createDistributionList page fizd
createPublisher page fied
createSubscriber page fizd
createPolicy page fizd

Delete objects

Methods to delete AmMessage, AmSender, AmReceiver, AmDistributionList,
AmPublisher, AmSubscriber, and AmPolicy objects.

deleteMessage page fiz4
deleteSender page fisd
deleteReceiver page fiz3
deleteDistributionList page (84
deletePublisher page TE|
deleteSubscriber page fed
deletePolicy page fied

Transactional processing

Methods to begin, commit and rollback a unit of work.

begin page fisd
commit page fied
rollback page fied

Chapter 7. C++ interface overview 165

C++ interface overview

Error handling

Methods to clear the error codes, enable warnings, and return the status from the

last error.

clearErrorCodes page 182
enableWarnings page TE|
getLastErrorStatus page fed

166 MQSeries Application Messaging Interface

C++ interface overview

AmMessage

An AmMessage object encapsulates an MQSeries message descriptor (MQMD)
structure, and contains the message data.

Get values
Methods to get the coded character set ID, correlation ID, encoding, format, group
status, message ID and name of the message object.
getCCSID page fled
getCorrelationld page fled
getElementCCSID page fled
getEncoding page fied
getFormat page fad
getGroupStatus page flod
getMessageld page flad
getName page flod
getReportCode page fLo1
getType page flot

Set values

Methods to set the coded character set ID, correlation ID, format and group status
of the message object.

setCCSID page flod
setCorrelationId page flod
setElementCCSID page flod
setEncoding page flod
setFormat page flod
setGroupStatus page flod

Reset values

Method to reset the message object to the state it had when first created.

reset page fiod

Read and write data

Methods to read or write byte data to or from the message object, to get and set
the data offset, and to get the length of the data.

getDataLength page fled
getDataOffset page fled
setDataOffset page flod
readBytes page flod
writeBytes page flod

Chapter 7. C++ interface overview 167

C++ interface overview

Publish/subscribe topics

Methods to manipulate the topics in a publish/subscribe message.

addTopic page
deleteTopic page fled
getTopic page flag
getTopicCount page flag

Publish/subscribe filters

Methods to manipulate filters for content-based publish/subscribe.

addFilter page fied
deleteFilter page fied
getFilter page flad
getFilterCount page flad

Publish/subscribe name/value elements

Methods to manipulate the name/value elements in a publish/subscribe message.

addElement page a7
deleteElement page fied
getElement page fied
getElementCount page fizd
deleteNamedElement page fied
getNamedElement page fo
getNamedElementCount page fo

Error handling

Methods to clear the error codes, enable warnings, and return the status from the

last error.

clearErrorCodes page
enableWarnings page fizd
getLastErrorStatus page flod

168 MQSeries Application Messaging Interface

C++ interface overview

AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)

structure.

Open and close
Methods to open and close the sender service.

open page flad
close page TE|

Send

Method to send a message.

send page fLod
Send file
Method to send data from a file
sendFile page flod
Get values
Methods to get the coded character set ID, encoding and name of the sender
service.
getCCSID page flod
getEncoding page flod
getName page flod

Error handling

Methods to clear the error codes, enable warnings, and return the status from the

last error.

clearErrorCodes page flod
enableWarnings page flo3
getLastErrorStatus page flod

Chapter 7. C++ interface overview 169

C++ interface overview

AmReceiver

An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the receiver service.

open page
close page flod

Receive and browse

Methods to receive or browse a message.

receive page
browse page flod

Receive file

Method to receive file message data into a file.

receiveFile page
Get values
Methods to get the definition type, name and queue name of the receiver service.
getDefinitionType page flad
getName page [lod
getQueueName page
Set value

Method to set the queue name of the receiver service.

setQueueName page botl

Error handling

Methods to clear the error codes, enable warnings, and return the status from the

last error.

clearErrorCodes page 199
enableWarnings page flad
getLastErrorStatus page flad

170 MQSeries Application Messaging Interface

C++ interface overview

AmDistributionList

An AmDistributionList object encapsulates a list of AmSender objects.

Open and close

Send

Methods to open and close the distribution list service.
open page bad
close page bod

Method to send a message to the distribution list.

send page bad

Send file

Method to send date from a file to the each sender defined in the distribution list.

sendFile page bod

Get values

Methods to get the name of the distribution list service, a count of the AmSenders
in the list, and one of the AmSenders that is contained in the list.

getName page bod
getSenderCount page bod
getSender page bod

Error handling

Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page
enableWarnings page bod
getLastErrorStatus page bod

Chapter 7. C++ interface overview 171

C++ interface overview

AmPublisher

An AmPublisher object encapsulates a sender service and provides support for
publishing messages to a publish/subscribe broker.

Open and close
Methods to open and close the publisher service.

open page bod

close page bod
Publish

Method to publish a message.

publish page 03
Get values

Methods to get the coded character set ID, encoding and name of the publisher

service.

getCCSID page bod

getEncoding page bod

getName page bod

Error handling

Methods to clear the error codes, enable warnings, and return the status from the

last error.

clearErrorCodes page bod
enableWarnings page bod
getLastErrorStatus page bod

172 MQSeries Application Messaging Interface

C++ interface overview

AmSubscriber

An AmSubscriber object encapsulates both a sender service and a receiver service.
It provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

Open and close
Methods to open and close the subscriber service.

open page bad
close page bod

Broker messages

Methods to subscribe to a broker, remove a subscription, and receive a publication
from the broker.

subscribe page bod

unsubscribe page bod

receive page
Get values

Methods to get the coded character set ID, definition type, encoding, name and
queue name of the subscriber service.

getCCSID page
getDefinitionType page
getEncoding page
getName page b0
getQueueName page bo7
Set value
Method to set the queue name of the subscriber service.
setQueueName page

Error handling

Methods to clear the error codes, enable warnings, and return the status from the

last error.

clearErrorCodes page kod
enableWarnings page bod
getLastErrorStatus page kod

Chapter 7. C++ interface overview 173

C++ interface overview

AmPolicy
An AmPolicy object encapsulates the options used during AMI operations.

Policy management

Methods to return the name of the policy, and to get and set the wait time when
receiving a message.

getName page bid
getWaitTime page bid
setWaitTime page bid

Error handling

Methods to clear the error codes, enable warnings, and return the status from the

last error.

clearErrorCodes page bid
enableWarnings page bid
getLastErrorStatus page bid

174 MQSeries Application Messaging Interface

C++ interface overview

Helper classes

The classes that encapsulate name/value elements for publish/subscribe, strings,
binary data and error status.

AmBytes

The AmBytes class is an encapsulation of a byte array. It allows the AMI to pass
byte strings across the interface and enables manipulation of byte strings. It
contains constructors, operators and a destructor, and methods to copy, compare,
and pad. AmBytes also has methods to give the length of the encapsulated bytes
and a method to reference the data contained within an AmBytes object.

constructors page b
destructor page b1d
operators page b1d
cmp page b1
cpy page b1d
dataPtr page b1
length page b1d
pad page b1
AmElement

Constructor for AmElement, and methods to return the name, type, value and
version of an element, to set the version, and to return an AmString representation
of the element.

AmElement page 13

getName page 13

getValue page 13

getVersion page 13

setVersion page 13

toString page 13
AmObiject

A virtual class containing methods to return the name of the object, to clear the
error codes and to return the last error condition.

clearErrorCodes page bid

getLastErrorStatus page bid

getName page bid
AmStatus

Constructor for AmStatus, and methods to return the completion code, reason
code, secondary reason code and status text, and to return an AmString
representation of the AmStatus.

AmStatus page ¥
getCompletionCode page ¥

Chapter 7. C++ interface overview 175

C++ interface overview

getReasonCode page b14

getReasonCode2 page 13

toString page b1d
AmString

The AmString class is an encapsulation of a string. It allows the AMI to pass
strings across the interface and enables manipulation of strings. It contains
constructors, operators, a destructor, and methods to copy, concatenate, pad, split,
truncate and strip. AmString also has methods to give the length of the
encapsulated string, compare AmStrings, check whether one AmString is contained
within another and a method to reference the text of an AmString.

constructors page bid
destructor page bid
operators page B1d
cat page bid
cmp page bid
contains page bid
cpy page Bid
length page 14
pad page 14
split page b17
strip page b17
text page 17
truncate page 17

176 MQSeries Application Messaging Interface

C++ interface overview

Exception classes

Classes that encapsulate error and warning conditions. AmErrorException and
AmWarningException inherit from AmException.

AmException

Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page bid
getCompletionCode page bid
getMethodName page bid
getReasonCode page b1d
getSource page bid
toString page bid
AmErrorException

Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page b1d
getCompletionCode page b1d
getMethodName page b1d
getReasonCode page b1d
getSource page b1d
toString page b1d
AmWarningException

Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page b2d
getCompletionCode page b2d
getMethodName page bad
getReasonCode page bad
getSource page bad
toString page bad

Chapter 7. C++ interface overview 177

C++ interface overview

178 MQSeries Application Messaging Interface

Chapter 8. C++ interface reference

In the following sections the C++ interface methods are listed by the class they
refer to. Within each section the methods are listed in alphabetical order.

Base classes

Note that all of the methods in these classes can throw AmWarningException and

AmErrorException (see below). However, by default, AmWarningExceptions are

not raised.
AmSessionFactory
AmSession
AmMessage
AmSender
AmReceiver
AmDistributionList
AmPublisher
AmSubscriber
AmPolicy

Helper classes

AmBytes
AmElement
AmODbject
AmStatus
AmString

Exception classes

AmException

AmErrorException

AmWarningException

© Copyright IBM Corp. 1999, 2000

page fied
page fied
page fLed
page fod
page fod
page bod
page bod
page
page bid

page b1
page b3
page b14
page b1d
page b14

page k18
page b1d
page k2d

179

C++ AmSessionFactory

AmSessionFactory

The AmSessionFactory class is used to create AmSession objects.

AmSessionFactory

Constructors for an AmSessionFactory.

AmSessionFactory();
AmSessionFactory(char * name);

name The name of the AmSessionFactory. This is the location of the data
files used by the AMI (the repository file and the local host file).
The name should be a fully qualified directory that includes the
path under which the files are located. Otherwise, see
i i i i ” for the

location of these files.

createSession

Creates an AmSession object.
AmSession * createSession(char * name);

name The name of the AmSession.

deleteSession

Deletes an AmSession object previously created using the createSession method.
void deleteSession(AmSession ** pSession);

pSession A pointer to the AmSession pointer returned by the createSession
method.

getFactoryName

Returns the name of the AmSessionFactory.
AmString getFactoryName();

getLocalHost

Returns the name of the local host file.
AmString getlLocalHost();

getRepository
Returns the name of the repository file.
AmString getRepository();

getTraceLevel

Returns the trace level for the AmSessionFactory.

int getTracelLevel();

getTraceLocation

Returns the location of the trace for the AmSessionFactory.
AmString getTracelLocation();

setLocalHost

Sets the name of the AMI local host file to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default host file amthost.xml is used.)

180 MQSeries Application Messaging Interface

C++ AmSessionFactory
void setLocalHost(char * fileName);

fileName The name of the file used by the AMI as the local host file. This
file must be present on the local file system or an error will be
produced upon the creation of an AmSession.

setRepository

Sets the name of the AMI repository to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default repository file amt.xml is used.)

void setRepository(char * fileName);
fileName The name of the file used by the AMI as the repository. This file

must be present on the local file system or an error will be
produced upon the creation of an AmSession.

setTracelLevel
Sets the trace level for the AmSessionFactory.
void setTracelevel(int Tevel);
Tevel The trace level to be set in the AmSessionFactory. Trace levels are 0

through 9, where 0 represents minimal tracing and 9 represents a
fully detailed trace.

setTraceLocation
Sets the location of the trace for the AmSessionFactory.

void setTracelLocation(char * location);

Tocation The location on the local system where trace files will be written.
This location must be a directory, and it must exist prior to the
trace being run.

Chapter 8. C++ interface reference 181

C++ AmSession

AmSession

An AmSession object provides the scope for a unit of work and creates and
manages all other objects, including at least one connection object. Each (MQSeries)
connection object encapsulates a single MQSeries queue manager connection. The
session object definition specifying the required set of queue manager connection(s)
can be provided by a repository policy definition, or by default will name a single
local queue manager with no repository. The session, when deleted, is responsible
for releasing memory by closing and deleting all other objects that it manages.

Note that you should not mix MQSeries MQCONN or MQDISC requests (or their
equivalent in the MQSeries C++ interface) on the same thread as AMI calls,
otherwise premature disconnection might occur.

begin
Begins a unit of work in this AmSession, allowing an AMI application to take
advantage of the resource coordination provided in MQSeries. The unit of work
can subsequently be committed by the commit method, or backed out by the
rollback method. This should be used only when AMI is the transaction

coordinator. If available, native coordination APIs (for example CICS or Tuxedo)
should be used.

begin is overloaded. The policy parameter is optional.
void begin(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

clearErrorCodes

Clears the error codes in the AmSession.
void clearErrorCodes();

close

Closes the AmSession, and all open objects owned by it. close is overloaded: the
policy parameter is optional.

void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

commit

Commits a unit of work that was started by AmSession.begin. commit is
overloaded: the policy parameter is optional.

void commit(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

createDistributionList

Creates an AmDistributionList object.
AmDistributionList * createDistributionList(char * name);

name The name of the AmDistributionList. This must match the name of
a distribution list defined in the repository.

182 MQSeries Application Messaging Interface

C++ AmSession

createMessage
Creates an AmMessage object.
AmMessage * createMessage(char * name);

name The name of the AmMessage. This can be any name that is
meaningful to the application.

createPolicy

Creates an AmPolicy object.
AmPolicy * createPolicy(char * name);
name The name of the AmPolicy. If it matches a policy defined in the

repository, the policy will be created using the repository
definition, otherwise it will be created with default values.

createPublisher

Creates an AmPublisher object.
AmPublisher * createPublisher(char * name);
name The name of the AmPublisher. If it matches a publisher defined in
the repository, the publisher will be created using the repository

definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the publisher name).

createReceiver

Creates an AmReceiver object.
AmReceiver * createReceiver(char * name);
name The name of the AmReceiver. If it matches a receiver defined in the
repository, the receiver will be created using the repository

definition, otherwise it will be created with default values (that is,
with a queue name that matches the receiver name).

Chapter 8. C++ interface reference 183

C++ AmSession

createSender
Creates an AmSender object.
AmSender * createSender(char * name);
name The name of the AmSender. If it matches a sender defined in the
repository, the sender will be created using the repository

definition, otherwise it will be created with default values (that is,
with a queue name that matches the sender name).

createSubscriber
Creates an AmSubscriber object.
AmSubscriber * createSubscriber(char * name);
name The name of the AmSubscriber. If it matches a subscriber defined
in the repository, the subscriber will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the subscriber name, and an

AmReceiver name that is the same with the addition of the suffix
*RECEIVER’).

deleteDistributionList

Deletes an AmDistributionList object.
void deleteDistributionList(AmDistributionList ** dList);

dList A pointer to the AmDistributionList * returned on a
createDistributionList call.

deleteMessage

Deletes an AmMessage object.
void deleteMessage(AmMessage ** message);

message A pointer to the AmMessage * returned on a createMessage call.

deletePolicy
Deletes an AmPolicy object.
void deletePolicy(AmPolicy ** policy);

policy A pointer to the AmPolicy * returned on a createPolicy call.

184 MQSeries Application Messaging Interface

C++ AmSession

deletePublisher
Deletes an AmPublisher object.
void deletePublisher(AmPublisher ** publisher);

publisher A pointer to the AmPublisher returned on a createPublisher call.

deleteReceiver

Deletes an AmReceiver object.
void deleteReceiver(AmReceiver ** receiver);

receiver A pointer to the AmReceiver returned on a createReceiver call.

deleteSender

Deletes an AmSender object.
void deleteSender(AmSender ** sender);

sender A pointer to the AmSender returned on a createSender call.

deleteSubscriber
Deletes an AmSubscriber object.

void deleteSubscriber(AmSubscriber *x subscriber);

subscriber A pointer to the AmSubscriber returned on a createSubscriber call.

enableWarnings

Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings (AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getLastErrorStatus
Returns the AmStatus of the last error condition.
AmStatus getlLastErrorStatus();

getName

Returns the name of the AmSession.
String getName();

Chapter 8. C++ interface reference 185

C++ AmSession

getTraceLevel

Returns the trace level of the AmSession.

int getTracelLevel();

getTracelLocation

Returns the location of the trace for the AmSession.
AmString getTracelLocation();

open
Opens an AmSession using the specified policy. The application profile group of
this policy provides the connection definitions enabling the connection objects to
be created. The specified library is loaded for each connection and its dispatch
table initialized. If the transport type is MQSeries and the MQSeries local queue
manager library cannot be loaded, then the MQSeries client queue manager is
loaded. Each connection object is then opened.

open is overloaded: the policy parameter is optional.
void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

rollback

Rolls back a unit of work that was started by AmSession.begin, or under policy
control. rollback is overloaded: the policy parameter is optional.

void rollback(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

186 MQSeries Application Messaging Interface

C++ AmMessage

AmMessage
An AmMessage object encapsulates the MQSeries MQMD message properties, and
name/value elements such as the topics for publish/subscribe messages. In
addition it contains the application data.
The initial state of the message object is:
CCSID default queue manager CCSID
correlationId all zeroes
datalLength Zero
dataOffset zero
elementCount zero
encoding AMENC_NATIVE
format AMFMT_STRING
groupStatus ~ AMGRP_MSG_NOT_IN_GROUP
reportCode AMFBP_NONE
topicCount zero
type AMMT_DATAGRAM
When a message object is used to send a message, it might not be left in the same
state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see reset on
page flad) and rebuild it each time.
Note that the following methods are only valid after a session has been opened
with AmSession.open or after you have explicitly set the element CCSID with
AmMessage.setElementCCSID:
addElement page fiz7
deleteElement page fizd
getElement page fizd
getElementCount page fizd
deleteNamedElement page
getNamedElement page flotl
getNamedElementCount page flotl
addTopic page
deleteTopic page
getTopic page flo1l
getTopicCount page flad
addElement

Adds a name/value element to an AmMessage object. addElement is overloaded:
the element parameter is required, but the options parameter is optional.

void addElement (

AmETement
int

element

options

&element,
options);

The element to be added to the AmMessage.

The options to be used. This parameter is reserved and must be set
to zero.

187

Chapter 8. C++ interface reference

C++ AmMessage

addFilter

Adds a publish/subscribe filter to an AmMessage object.
void addFilter(char * filter);

filter The filter to be added to the AmMessage.

addTopic
Adds a publish/subscribe topic to an AmMessage object.
void addTopic(char * topicName);

topicName The name of the topic to be added to the AmMessage.

clearErrorCodes

Clears the error in the AmMessage object.
void clearErrorCodes();

deleteElement

Deletes the element in the AmMessage object at the specified index. Indexing is
within all elements of a message, and might include topics (which are specialized
elements).

void deleteElement(int index);
index The index of the element to be deleted, starting from zero. On

completion, elements with higher index values than that specified
will have those values reduced by one.

getElementCount gets the number of elements in the message.

deleteFilter

Deletes a publish/subscribe filter in an AmMessage object at the specified index.
Indexing is within all filters in the message.

void deleteFilter(int filterIndex);

filterIndex The index of the filter to be deleted, starting from zero.
getFilterCount gets the number of filters in a message.

deleteNamedElement

Deletes the element with the specified name in the AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

void deleteNamedElement (
char * name,

int index);
name The name of the element to be deleted.
index The index of the element to be deleted, starting from zero. On

completion, elements with higher index values than that specified
will have those values reduced by one.

getNamedElementCount gets the number of elements in the
message with the specified name.

deleteTopic

Deletes a publish/subscribe topic in an AmMessage object at the specified index.
Indexing is within all topics in the message.

void deleteTopic(int index);

188 MQSeries Application Messaging Interface

C++ AmMessage

index The index of the topic to be deleted, starting from zero.
getTopicCount gets the number of topics in the message.

enableWarnings

Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getCCSID

Returns the coded character set identifier used by the AmMessage.
int getCCSID();

getCorrelationid

Returns the correlation identifier for the AmMessage.
AmBytes getCorrelationId();

getDataLength
Returns the length of the message data in the AmMessage.
int getDatalength();

getDataOffset

Returns the current offset in the message data for reading or writing data bytes.
int getDataOffset();

getElement

Returns an element in an AmMessage object at the specified index. Indexing is
within all elements in the message, and might include topics (which are specialized
elements).

AmElement getElement(int index);

index The index of the element to be returned, starting from zero.
getElementCount gets the number of elements in the message.
getElementCCSID

Returns the message element CCSID. This is the coded character set identifier for
passing message element data (including topic and filter data) to or from an
application.

int getElementCCSID();

getElementCount

Returns the total number of elements in an AmMessage object. This might include
topics (which are specialized elements).

int getElementCount();

getEncoding
Returns the value used to encode numeric data types for the AmMessage.
int getEncoding();

Chapter 8. C++ interface reference 189

C++ AmMessage

The following values can be returned:

AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT 390
AMENC_REVERSED
AMENC_REVERSED_FLOAT 390
AMENC_UNDEFINED

getFilter
Returns the publish/subscribe filter in the AmMessage object at the specified
index. Indexing is within all filters.
AmString getFilter(int filterIndex);

filterIndex The index of the filter to be returned, starting from zero.
getElementCount gets the number of filters in a message.

getFilterCount

Returns the total number of publish/subscribe filters in the AmMessage object.
AmElement getFilterCount();

getFormat

Returns the format of the AmMessage.
AmString getFormat();

The following values can be returned:

AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

getGroupStatus
Returns the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.
int getGroupStatus();

The following values can be returned:

AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

Alternatively, bitwise tests can be performed using the constants:

AMGF_IN_GROUP
AMGF_FIRST
AMGF_LAST

getLastErrorStatus

Returns the AmStatus of the last error condition for this object.
AmStatus getlLastErrorStatus();

getMessageld

Returns the message identifier from the AmMessage object.
AmBytes getMessageld();

190 MQSeries Application Messaging Interface

C++ AmMessage

getName

Returns the name of the AmMessage object.
AmString getName();

getNamedElement

Returns the element with the specified name in an AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

AmETement getNamedETlement (
char * name,

int index);

name The name of the element to be returned.

index The index of the element to be returned, starting from zero.
getNamedElementCount

Returns the total number of elements with the specified name in the AmMessage

object.

int getNamedElementCount(char * name);

name The name of the elements to be counted.

getReportCode

Returns the feedback code from an AmMessage of type AMMT_REPORT.
int getReportCode();

The following values can be returned:

AMFB_NONE
AMFB_EXPIRATION
AMFB_COA
AMFB_COD
AMFB_ERROR

getTopic
Returns the publish/subscribe topic in the AmMessage object, at the specified
index. Indexing is within all topics.
AmString getTopic(int index);

index The index of the topic to be returned, starting from zero.
getTopicCount gets the number of topics in the message.

getTopicCount
Returns the total number of publish/subscribe topics in the AmMessage object.
int getTopicCount();

getType
Returns the message type from the AmMessage.
int getType();

The following values can be returned:

AMMT_REQUEST
AMMT_REPLY
AMMT_REPORT
AMMT_DATAGRAM

Chapter 8. C++ interface reference 191

C++ AmMessage

readBytes

Populates an AmByte object with data from the AmMessage, starting at the current
data offset (which must be positioned before the end of the data for the read to be
successful). Use setDataOffset to specify the data offset. readBytes will advance
the data offset by the number of bytes read, leaving the offset immediately after
the last byte read.

AmBytes readBytes(int datalength);
dataLength The maximum number of bytes to be read from the message data.
The number of bytes returned is the minimum of datalLength and

the number of bytes between the data offset and the end of the
data.

reset
Resets the AmMessage object to its initial state (see page fied).

reset is overloaded: the options parameter is optional.
void reset(int options);

options A reserved field that must be set to zero.

setCCSID

Sets the coded character set identifier used by the AmMessage object.
void setCCSID(int codedCharSetld);

codedCharSetId
The CCSID to be set in the AmMessage.

setCorrelationid

Sets the correlation identifier in the AmMessage object.
void setCorrelationId(AmBytes &correlld);
correlld An AmBytes object containing the correlation identifier to be set in

the AmMessage. The correlation identifier can be reset by
specifying this as a null string; for example:

myMessage.setCorrelationId(AmBytes(""));

setDataOffset

Sets the data offset for reading or writing byte data.
void setDataOffset(int dataOffset);

dataOffset The data offset to be set in the AmMessage. Set an offset of zero to
read or write from the start of the data.

setElementCCSID

This specifies the character set to be used for subsequent message element data
(including topic and filter data) passed to or returned from the application.
Existing elements in the message are unmodified (but will be returned in the
character set). The default value of element CCSID is the queue manager CCSID.

void setElementCCSID(int elementCCSID);
elementCCSID The element CCSID to be set in the AmMessage.

192 MQSeries Application Messaging Interface

C++ AmMessage

setEncoding

Sets the encoding of the data in the AmMessage object.
void setEncoding(int encoding);

encoding The encoding to be used in the AmMessage. It can take one of the
following values:
AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT 390
AMENC_REVERSED
AMENC_REVERSED_FLOAT 390
AMENC_UNDEFINED

setFormat

Sets the format for the AmMessage object.
void setFormat(char * format);

format The format to be used in the AmMessage. It can take one of the
following values:
AMFMT_NONE

AMFMT_STRING
AMFMT_RF_HEADER

If set to AMEFMT _NONE, the default format for the sender will be
used (if available).

setGroupStatus

Sets the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.
Once you start sending messages in a group, you must complete the group before
sending any messages that are not in the group.

If you specifty AMGRP_MIDDLE_MSG_IN_GROUP or
AMGRP_LAST_MSG_IN_GROUP without specifying
AMGRP_FIRST_MSG_IN_GROUP, the behavior is the same as for
AMGRP_FIRST_MSG_IN_GROUP and AMGRP_ONLY_MSG_IN_GROUP.

If you specify AMGRP_FIRST_MSG_IN_GROUP out of sequence, then the
behavior is the same as for AMGRP_MIDDLE_MSG_IN_GROUP.

void setGroupStatus(int groupStatus);

groupStatus The group status to be set in the AmMessage. It can take one of
the following values:
AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN GROUP
AMGRP_LAST MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

writeBytes

Writes a byte array into the AmMessage object, starting at the current data offset. If
the data offset is not at the end of the data, existing data is overwritten. Use
setDataOffset to specify the data offset. writeBytes will advance the data offset by
the number of bytes written, leaving it immediately after the last byte written.

void writeBytes(AmBytes &data);

Chapter 8. C++ interface reference 193

C++ AmMessage

data An AmBytes object containing the data to be written to the
AmMessage.

194 MQSeries Application Messaging Interface

C++ AmSender

AmSender

An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue manager.
An open sender service is always associated with an open connection object (such
as a queue manager connection). Support is also included for dynamic sender
services (those that encapsulate model queues). The required sender service object
definitions can be provided from a repository, or created without a repository
definition by defaulting to the existing queue objects on the local queue manager.

The AmSender object must be created before it can be opened. This is done using
AmSession.createSender.

A responder is a special type of AmSender used for sending a response to a request
message. It is not created from a repository definition. Once created, it must not be
opened until used in its correct context as a responder receiving a request message
with AmReceiver.receive. When opened, its queue and queue manager properties
are modified to reflect the ReplyTo destination specified in the message being
received. When first used in this context, the sender service becomes a responder
sender service.

clearErrorCodes

Clears the error codes in the AmSender.
void clearErrorCodes();

close
Closes the AmSender. close is overloaded: the policy parameter is optional.
void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings

Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getCCSID

Returns the coded character set identifier for the AmSender. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.

int getCCSID();

getEncoding

Returns the value used to encode numeric data types for the AmSender. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.

int getEncoding();

Chapter 8. C++ interface reference 195

C++ AmSender

getLastErrorStatus

Returns the AmStatus of the last error condition.
AmStatus getlLastErrorStatus();

getName

Returns the name of the AmSender.
AmString getName();

open
Opens an AmSender service. open is overloaded: the policy parameter is optional.
void open(AmPolicy &policy);
policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.
send
Sends a message using the AmSender service. If the AmSender is not open, it will
be opened (if this action is specified in the policy options).
send is overloaded: the sendMessage parameter is required, but the others are
optional. receivedMessage and responseService are used in request/response
messaging, and are mutually exclusive.
void send(
AmMessage &sendMessage,
AmReceiver &responseService,
AmMessage &receivedMessage,
AmPolicy &policy);
sendMessage The message object that contains the data to be sent.
responseService
The AmReceiver to which the response to this message should be
sent. Omit it if no response is required.
receivedMessage
The previously received message which is used for correlation with
the sent message. If omitted, the sent message is not correlated
with any received message.
policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.
sendFile

Sends data from a file. To send data from a file, the sendMessage and fileName
parameters are required, but the policy is optional. The file data can be received as
normal message data by a target application using AmReceiver.receive, or used to
reconstruct the file with AmReceiver.receiveFile.
void sendFile(
AmMessage &sendMessage,

char = filename,
AmPolicy &policy);

sendMessage The message object to use to send the file. This can be used to
specify the Correlation ID for example.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send

196 MQSeries Application Messaging Interface

C++ AmSender

operation is a physical-mode file transfer, then the file name will
travel with the message for use with the receive file method (see
EreceiveFile” on page 200 for more details). Note that the file name
sent will exactly match the supplied file name; it will not be
converted or expanded in any way.

policy The policy to be used. If omitted, the system default policy (name
constant : AMSD_POL) is used.

Chapter 8. C++ interface reference 197

C++ AmReceiver

AmReceiver

An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue manager.
An open AmReceiver is always associated with an open connection object, such as
a queue manager connection. Support is also included for a dynamic AmReceiver
(that encapsulates a model queue). The required AmReceiver object definitions can
be provided from a repository or can be created automatically from the set of
existing queue objects available on the local queue manager.

There is a definition type associated with each AmReceiver:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

An AmReceiver created from a repository definition will be initially of type
AMDT_PREDEFINED or AMDT_DYNAMIC. When opened, its definition type
might change from AMDT_DYNAMIC to AMDT_TEMP_DYNAMIC according to
the properties of its underlying queue object.

An AmReceiver created with default values (that is, without a repository
definition) will have its definition type set to AMDT_UNDEFINED until it is
opened. When opened, this will become AMDT_DYNAMIC,
AMDT_TEMP_DYNAMIC, or AMDT_PREDEFINED, according to the properties of
its underlying queue object.

browse

Browses an AmReceiver service. browse is overloaded: the browseMessage and
options parameters are required, but the others are optional.

void browse(
AmMessage &browseMessage,
int options,
AmSender &responseService,
AmMessage &selectionMessage,
AmPolicy &policy);

browseMessage The message object that receives the browse data.

options Options controlling the browse operation. Possible values are:

AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT

AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)

AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to AmReceiver.receive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message.

responseService
The AmSender to be used for sending any response to the browsed
message. If omitted, no response can be sent.

198 MQSeries Application Messaging Interface

C++ AmReceiver

selectionMessage
A message object which contains the Correlation ID used to
selectively browse a message from the AmReceiver. If omitted, the
first available message is browsed. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationld on page @) before
invoking the browse method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

clearErrorCodes

Clears the error codes in the AmReceiver.
void clearErrorCodes();

close
Closes the AmReceiver. close is overloaded: the policy parameter is optional.
void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings

Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getDefinitionType
Returns the definition type (service type) for the AmReceiver.
int getDefinitionType();

The following values can be returned:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

Values other than AMDT_UNDEFINED reflect the properties of the underlying
queue object.

getLastErrorStatus
Returns the AmStatus of the last error condition.
AmStatus getlastErrorStatus();

getName

Returns the name of the AmReceiver.
AmString getName();

Chapter 8. C++ interface reference 199

C++ AmReceiver

getQueueName

Returns the queue name of the AmReceiver. This is used to determine the queue
name of a permanent dynamic AmReceiver, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. (See also
setQueueName.)

AmString getQueueName();

open
Opens an AmReceiver service. open is overloaded: the policy parameter is
optional.
void open(AmPolicy &policy);
policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.
receive
Receives a message from the AmReceiver service. receive is overloaded: the
receiveMessage parameter is required, but the others are optional.
void receive(
AmMessage &receiveMessage,
AmSender &responseService,
AmMessage &selectionMessage,
AmPolicy &policy);
receiveMessage
The message object that receives the data. The message object is
reset implicitly before the receive takes place.
responseService
The AmSender to be used for sending any response to the received
message. If omitted, no response can be sent.
selectionMessage
A message object containing the Correlation ID used to selectively
receive a message from the AmReceiver. If omitted, the first
available message is received. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationld on page [92) before
invoking the receive method.
policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.
receiveFile

Receives file message data into a file. To receive data into a file, the receiveMessage
parameter is required, but the others are optional.
void receiveFile(

AmMessage &receiveMessage,

char * &fileName,

AmMessage &selectionMessage,

AmPolicy &policy);

receiveMessage
The message object used to receive the file. This is updated with
the message properties, for example the Message ID. If the

200 MQSeries Application Messaging Interface

fileName

C++ AmReceiver

message is not from a file, the message object receives the data.
The message object is reset implicitly before the receive takes place.

The name of the file to be received (input). This can include a
directory prefix to define a fully-qualified or relative file name. If
NULL or a null string is specified, then the AMI will use the name
of the originating file (including any directory prefix), exactly as it
was supplied on the send file call. Note that the original file name
may not be appropriate for use by the receiver, either because a
path name included in the file name is not applicable to the
receiving system, or because the sending and receiving systems use
different file naming conventions.

selectionMessage

policy

setQueueName

A message object containing the Correlation ID used to selectively
receive a message from the AmReceiver. If omitted, the first
available message is received. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be reset
(see AmMessage.setCorrelationld on page fLad) before invoking
the receive method.

The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

Sets the queue name of the AmReceiver (when this encapsulates a model queue).
This is used to specify the queue name of a recreated permanent dynamic
AmReceiver, in order to receive messages in a session subsequent to the one in
which it was created. (See also getQueueName.)

void setQueueName(char * queueName);

queueName

The queue name to be set in the AmReceiver.

Chapter 8. C++ interface reference 201

C++ AmDistributionList

AmDistributionList

An AmDistributionList object encapsulates a list of AmSender objects.

clearErrorCodes

Clears the error codes in the AmDistributionList.
void clearErrorCodes();

close

Closes the AmDistributionList. close is overloaded: the policy parameter is
optional.

void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings

Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getLastErrorStatus
Returns the AmStatus of the last error condition of this object.
AmStatus getlastErrorStatus();

getName

Returns the name of the AmDistributionList object.
AmString getName();

getSender

Returns a pointer to the AmSender object contained within the AmDistributionList
object at the index specified. AmDistributionList.getSenderCount gets the number
of AmSender services in the distribution list.

AmSender * getSender(int index);

index The index of the AmSender in the AmDistributionList, starting at
Zero.

getSenderCount

Returns the number of AmSender services in the AmDistributionList object.
int getSenderCount();

open
Opens an AmDistributionList object for each of the destinations in the distribution
list. open is overloaded: the policy parameter is optional.

void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

202 MQSeries Application Messaging Interface

C++ AmDistributionList

send
Sends a message to each AmSender defined in the AmDistributionList object. send
is overloaded: the sendMessage parameter is required, but the others are optional.
void send(
AmMessage &sendMessage,
AmReceiver &responseService,
AmPolicy &policy);
sendMessage The message object containing the data to be sent.
responseService
The AmReceiver to be used for receiving any response to the sent
message. If omitted, no response can be received.
policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.
sendFile

Sends data from a file to each AmSender defined in the AmDistributionList object.
The sendMessage and fileName parameters are required to send data from a file,
but the policy is optional. The file data can be received as normal message data by
a target application using AmReceiver.receive, or used to reconstruct the file with
AmReceiver.receiveFile.
void sendFile(
AmMessage &sendMessage,

char* fileName,
AmPolicy &policy);

sendMessage The message object to use to send the file. This can be used to
specify the Correlation ID, for example.

fileName The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel with the message for use with the receive file method (see
EreceiveFile” an page 200 for more details). Note that the file name
sent will exactly match the supplied file name; it will not be
converted or expanded in any way.

policy The policy to be used. If omitted, the system default policy (name
constant: AMSD_POL) is used.

Chapter 8. C++ interface reference 203

C++ AmPublisher

AmPublisher

An AmPublisher object encapsulates an AmSender and provides support for
publish requests to a publish/subscribe broker.

clearErrorCodes

Clears the error codes in the AmPublisher.
void clearErrorCodes();

close
Closes the AmPublisher. close is overloaded: the policy parameter is optional.
void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings

Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getCCSID

Returns the coded character set identifier for the AmPublisher. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.

int getCCSID();

getEncoding

Returns the value used to encode numeric data types for the AmPublisher. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

int getEncoding();

getLastErrorStatus
Returns the AmStatus of the last error condition.
AmStatus getlastErrorStatus();

getName

Returns the name of the AmPublisher.
AmString getName();

open
Opens an AmPublisher service. open is overloaded: the policy parameter is
optional.

void open(AmPolicy &policy);

204 MQSeries Application Messaging Interface

C++ AmPublisher

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

publish

Publishes a message using the AmPublisher. publish is overloaded: the pubMessage
parameter is required, but the others are optional.
void publish(
AmMessage &pubMessage,
AmReceiver &responseService,
AmPoTicy &policy);

pubMessage The message object that contains the data to be published.

responseService
The AmReceiver to which the response to this publish request
should be sent. Omit it if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

Chapter 8. C++ interface reference 205

C++ AmSubscriber

AmSubscriber

An AmSubscriber object encapsulates both an AmSender and an AmReceiver. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

clearErrorCodes

Clears the error codes in the AmSubscriber.
void clearErrorCodes();

close
Closes the AmSubscriber. close is overloaded: the policy parameter is optional.
void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

enableWarnings

Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getCCSID

Returns the coded character set identifier for the AmSender in the AmSubscriber. A
non-default value reflects the CCSID of a remote system unable to perform CCSID
conversion of received messages. In this case the subscriber must perform CCSID
conversion of the message before it is sent.

int getCCSID();

getDefinitionType

Returns the definition type for the AmReceiver in the AmSubscriber.
int getDefinitionType();

The following values can be returned:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

getEncoding

Returns the value used to encode numeric data types for the AmSender in the
AmSubscriber. A non-default value reflects the encoding of a remote system unable
to convert the encoding of received messages. In this case the subscriber must
convert the encoding of the message before it is sent.

int getEncoding();

getLastErrorStatus
Returns the AmStatus of the last error condition.
AmStatus getLastErrorStatus();

206 MQSeries Application Messaging Interface

C++ AmSubscriber

getName

Returns the name of the AmSubscriber.
AmString getName();

getQueueName

Returns the queue name used by the AmSubscriber to receive messages. This is
used to determine the queue name of a permanent dynamic AmReceiver in the
AmSubscriber, so that it can be recreated with the same queue name in order to
receive messages in a subsequent session. (See also setQueueName.)

AmString getQueueName();

open
Opens an AmSubscriber. open is overloaded: the policy parameter is optional.
void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

Chapter 8. C++ interface reference 207

C++ AmSubscriber

receive

Receives a message, normally a publication, using the AmSubscriber. The message
data, topic and other elements can be accessed using the message interface
methods (see page [183).

receive is overloaded: the pubMessage parameter is required, but the others are
optional.
void receive(
AmMessage &pubMessage,

AmMessage &selectionMessage,
AmPolicy &policy);

pubMessage The message object containing the data that has been published.
The message object is reset implicitly before the receive takes place.

selectionMessage
A message object containing the correlation ID used to selectively
receive a message from the AmSubscriber. If omitted, the first
available message is received. The CCSID, element CCSID and
encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationld on page fL9d) before
invoking the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

setQueueName

Sets the queue name in the AmReceiver of the AmSubscriber, when this
encapsulates a model queue. This is used to specify the queue name of a recreated
permanent dynamic AmReceiver, in order to receive messages in a session
subsequent to the one in which it was created. (See also getQueueName.)

void setQueueName(char * queueName);

queueName The queue name to be set.

208 MQSeries Application Messaging Interface

C++ AmSubscriber
subscribe

Sends a subscribe message to a publish/subscribe broker using the AmSubscriber,
to register a subscription. The topic and other elements can be specified using the
message interface methods (see page [L87) before sending the message.

Publications matching the subscription are sent to the AmReceiver associated with
the AmSubscriber. By default, this has the same name as the AmSubscriber, with
the addition of the suffix “.RECEIVER’.

subscribe is overloaded: the subMessage parameter is required, but the others are
optional.
void subscribe(
AmMessage &subMessage,

AmReceiver &responseService,
AmPoTicy &policy);

subMessage The message object that contains the topic subscription data.

responseService
The AmReceiver to which the response to this subscribe request
should be sent. Omit it if no response is required.

This is not the AmReceiver to which publications will be sent by
the broker; they are sent to the AmReceiver associated with the
AmSubscriber (see above).

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

unsubscribe

Sends an unsubscribe message to a publish/subscribe broker using the
AmSubscriber, to deregister a subscription. The topic and other elements can be
specified using the message interface methods (see page fi87) before sending the
message.

unsubscribe is overloaded: the unsubMessage parameter is required, but the others
are optional.
void unsubscribe(
AmMessage &unsubMessage,

AmReceiver &responseService,
AmPolicy &policy);

unsubMessage The message object that contains the topics to which the
unsubscribe request applies.

responseService
The AmReceiver to which the response to this unsubscribe request
should be sent. Omit it if no response is required.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

Chapter 8. C++ interface reference 209

C++ AmPolicy

AmPolicy

An AmPolicy object encapsulates details of how the AMI processes the message
(for instance, the priority and persistence of the message, how errors are handled,
and whether transactional processing is used).

clearErrorCodes

Clears the error codes in the AmPolicy.
void clearErrorCodes();

enableWarnings

Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

getLastErrorStatus
Returns the AmStatus of the last error condition.
AmStatus getlastErrorStatus();

getName

Returns the name of the AmPolicy object.
AmString getName();

getWaitTime
Returns the wait time (in ms) set for this AmPolicy.
int getWaitTime();

setWaitTime

Sets the wait time for any receive using this AmPolicy.
void setWaitTime(int waitTime);

waitTime The wait time (in ms) to be set in the AmPolicy.

210 MQSeries Application Messaging Interface

C++ AmBytes

AmBytes

An AmBytes object encapsulates an array of bytes. It allows the AMI to pass bytes
across the interface and enables manipulation of these bytes.

cmp

Methods used to compare AmBytes objects. These methods return 0 if the data is
the same, and 1 otherwise.
AMLONG cmp(const AmBytes &amBytes);

AMLONG cmp(const char * stringData);
AMLONG cmp(const char * charData, AMLONG length);

amBytes
stringData
charData

length

constructors

A reference to the AmBytes object being compared.
A char pointer to the NULL terminated string being compared.
A char pointer to the bytes being compared.

The length, in bytes, of the data to be compared. If this length is
not the same as the length of the AmBytes object, the comparison
fails.

Constructors for an AmBytes object.

AmBytes ()

AmBytes (const
AmBytes (const
AmBytes (const
AmBytes (const
AmBytes (const
AmBytes (const
AmBytes (const

amBytes

byte
long

charData

stringData
character

length

AmBytes &amBytes);

AMBYTE byte);

AMLONG Tong);

char = charData);

AmString &amString);

AMSTR stringData);

AMBYTE =character, const AMLONG length);

A reference to an AmBytes object used to create the new AmBytes
object.

A single byte used to create the new AmBytes object.
An AMLONG used to create the new AmBytes object.

A char pointer to a NULL terminated string used to create the new
AmBytes object.

A NULL terminated string used to create the new AmBytes object.
The character to populate the new AmBytes object with.
The length, in bytes, of the new AmBytes object.

Chapter 8. C++ interface reference 211

C++ AmBytes
cpy

Methods used to copy from an AmBytes object. Any existing data in the AmBytes
object is discarded.

AmBytes
AmBytes
AmBytes
AmBytes
AmBytes
AmBytes

&epy () s

&cpy(const AMSTR stringData);

&cpy(const AMBYTE xbyteData, const AMLONG Tength);
&cpy(const AMBYTE byte);

&cpy(const AMLONG long);

&cpy(const AmBytes &amBytes);

stringData A NULL terminated string being copied.

byteData
length
byte
long

amBytes

dataPtr

A pointer to the bytes being copied.

The length, in bytes, of the data to be copied.
The single byte being copied.

An AMLONG being copied.

A reference to the AmBytes object being copied.

Method to reference the byte data contained within an AmBytes object.
const AMBYTE = dataPtr() const;

destructor

Destructor for an AmBytes object.
“AmBytes();

length

Returns the length of an AmBytes object.
AMLONG length();

operators

Operators for an AmBytes object.

AmBytes &operator = (const AmBytes &);
AMBOOL operator == (const AmBytes &) const;
AMBOOL operator != (const AmBytes &) const;

pad

Method used to pad AmBytes objects with a specified byte value.
AmBytes &pad(const AMLONG length, const AMBYTE byte);

Tength The required length of the AmBytes after the padding.

byte The byte value used to pad the AmBytes object.

212 MQSeries Application Messaging Interface

C++ AmElement

AmElement

An AmElement object encapsulates a name/value pair which can be added to an

AmMessage object.

AmElement

Constructor for an AmElement object.
AmETement (char * name, char * value);

name The name of the element.

value The value of the element.

getName

Returns the name of the AmElement.
AmString getName();

getValue

Returns the value of the AmElement.
AmString getValue();

getVersion

Returns the version of the AmElement (the default value is
AMELEM_VERSION_1).

int getVersion();

setVersion

Sets the version of the AmElement.
void setVersion(int version);

version The version of the AmElement that is set. It can take the value
AMELEM_VERSION_1 or AMELEM_CURRENT_VERSION.

toString
Returns a AmString representation of the AmElement.
AmString toString();

Chapter 8. C++ interface reference

213

C++ AmObject

AmObject

AmODbiject is a virtual class. The following classes inherit from the AmObject class:
AmSession
AmMessage
AmSender
AmDistributionList
AmReceiver
AmPublisher
AmSubscriber
AmPolicy

This allows application programmers to use generic error handling routines.

clearErrorCodes

Clears the error codes in the AmObject.
void clearErrorCodes();

getLastErrorStatus
Returns the AmStatus of the last error condition.
AmStatus getlastErrorStatus();

getName

Returns the name of the AmObject.
AmString getName();

214 MQSeries Application Messaging Interface

C++ AmStatus

AmStatus

An AmStatus object encapsulates the error status of other AmObjects.

AmStatus

Constructor for an AmStatus object.
AmStatus();

getCompletionCode
Returns the completion code from the AmStatus object.
int getCompletionCode();

getReasonCode

Returns the reason code from the AmStatus object.
int getReasonCode();

getReasonCode2

Returns the secondary reason code from the AmStatus object. (This code is specific
to the underlying transport used by the AMI). For MQSeries, the secondary reason
code is an MQSeries reason code of type MQRC_xxx.

int getReasonCode2();

toString
Returns an AmString representation of the internal state of the AmStatus object.
AmString toString();

Chapter 8. C++ interface reference 215

C++ AmString

AmString

cat

cmp

An AmString object encapsulates a string or array of characters. It allows the AMI
to pass strings across the interface and enables manipulation of these strings.

Methods used to concatenate.

AmString &cat(const AmString &amString);
AmString &cat(const AMSTR stringData);

amString A reference to the AmString object being concatenated.

stringData The NULL terminated string being concatenated into the AmString
object.

Methods to compare AmStrings with AmStrings and data of type AMSTR. A return
value of 0 indicates that the two strings match exactly.

AMLONG cmp(const AmString &amString) const;
AMLONG cmp(const AMSTR stringData) const;

amString A reference to the AmString object being compared.

stringData The NULL terminated string being compared.

constructors

Constructors for an AmString object.

AmString();
AmString(const AmString &amString);
AmString(const AMSTR stringData);

amString A reference to an AmString object used to create the new
AmString.

stringData A NULL terminated string, from which the AmString is
constructed.

contains

cpy

Method to indicate whether a specified character is contained within the AmString.
AMBOOL contains(const AMBYTE character) const;

character The character being used for the search.

Methods used to copy from an AmString. Any existing data in the AmString is
discarded.

AmString &cpy(const AmString &amString);
AmString &cpy(const AMSTR stringData);

amString A reference to an AmString object being copied.

stringData The NULL terminated string being copied into the AmString.

destructor

Destructor for an AmString object.
“AmString();

216 MQSeries Application Messaging Interface

C++ AmString
operators

Operators for an AmString object.

AmString &operator = (const AmString &);
AmString &operator = (const AMSTR);

AMBOOL operator == (const AmString &) const;
AMBOOL operator != (const AmString &) const;

pad
Method used to pad AmStrings with a specified character.
AmString &pad(const AMLONG length, const AMBYTE character);

Tength The required length of the AmString after the padding.
charString The character used to pad the AmString.

split
Method used to split AmStrings at the first occurrence of a specified character.
AmString &split(AmString &newString, const AMBYTE splitCharacter);

newString A reference to an AmString object to contain the latter half of the
split string.

splitCharacter
The first character at which the split will occur.

strip

Method used to strip leading and trailing blanks from AmStrings.
AmString &strip();

length
Returns the length of an AmString.
AMLONG length();

text

Method to reference the string contained within an AmString.
AMSTR text() const;

truncate

Method used to truncate AmStrings.
AmString &truncate(const AMLONG length);

Tength The length to which the AmString is to be truncated.

Chapter 8. C++ interface reference 217

C++ AmEXxception

AmEXxception

AmException is the base Exception class; all other Exceptions inherit from this
class.

getClassName

Returns the type of object throwing the Exception.
AmString getClassName();

getCompletionCode
Returns the completion code for the Exception.
int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.
AmString getMethodName();

getReasonCode

Returns the reason code for the Exception.
int getReasonCode();

getSource

Returns the AmObject throwing the Exception.
AmObject getSource();

toString
Returns an AmString representation of the Exception.
AmString toString();

218 MQSeries Application Messaging Interface

C++ AmErrorException

AmErrorException

An Exception of type AmErrorException is raised when an object experiences an
error with a severity level of FAILED (CompletionCode = AMCC_FAILED).

getClassName

Returns the type of object throwing the Exception.
AmString getClassName();

getCompletionCode
Returns the completion code for the Exception.
int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.
AmString getMethodName();

getReasonCode

Returns the reason code for the Exception.
int getReasonCode();

getSource

Returns the AmObject throwing the Exception.
AmObject getSource();

toString
Returns an AmString representation of the Exception.
AmString toString();

Chapter 8. C++ interface reference 219

C++ AmWarningException

AmWarningException

An Exception of type AmWarningException is raised when an object experiences
an error with a severity level of WARNING (CompletionCode =
AMCC_WARNING).

getClassName

Returns the type of object throwing the Exception.
AmString getClassName();

getCompletionCode

Returns the completion code for the Exception.
int getCompletionCode();

getMethodName
Returns the name of the method throwing the Exception.
AmString getMethodName();

getReasonCode

Returns the reason code for the Exception.
int getReasonCode();

getSource

Returns the AmObject throwing the Exception.
AmObject getSource();

toString
Returns an AmString representation of the Exception.
AmString toString();

220 MQSeries Application Messaging Interface

Part 4. The COBOL interface

Chapter 9. Using the Application Messaglng
Interface in COBOL . . .
Structure of the AMI .
Using the repository .
System default objects
Writing applications in COBOL
Opening and closing a session.
Sending messages .
Using the message ob]ect
Sample programs .
Receiving messages
Using the message object
Sample programs . .
Request/response messaging .
Request
Response . .
Sample programs .
File transfer .
Publish/subscribe messagmg
Publish
Subscribe.
Sample programs .
Using name/value elements
Example .
Error handling .
Transaction support .
Sending group messages
Other considerations .
Multithreading . .
Using MQSeries with the AMI
Field limits . .o
Building COBOL apphcatlons .
COBOL applications on OS/390 .
AMI Copybooks .
Preparing COBOL programs on OS/ 390
Running COBOL programs on OS/390 .

Chapter 10. The COBOL high-level interface
Overview of the COBOL high-level interface .
Initialize and terminate . o

Sending messages .
Receiving messages
File transfer .
Publish/subscribe .
Transaction support .
Reference information for the COBOL hlgh level
interface .
AMHBACK (backout)
AMHBEGIN (begin) .
AMHBRMS (browse message)
Usage notes .
AMHCMIT (commit) .
AMHINIT (initialize) .
AMHPB (publish) .
AMHRCEFL (receive file).
Usage notes .

© Copyright IBM Corp. 1999, 2000

. 225
. 225
. 226
. 226
. 228
. 228
. 228
. 229
. 230
. 230
. 232
. 232
. 232
. 232
. 233
. 233
. 234
. 234
. 234
. 235
. 235
. 236
. 237
. 238
. 238
. 238
. 239
. 239
. 239
. 239
. 240
. 240
. 240
. 240
. 241

243

. 244
. 244
. 244
. 244
. 244
. 244
. 244

. 246
. 247
. 248
. 249
. 250
. 251
. 252
. 253
. 254
. 255

AMHRCMS (receive message).
Usage notes .
AMHRCPB (receive pubhcat1on)
Usage notes . .
AMHRCRQ (receive request) .
Usage notes .
Data conversion .
Use of the buffLen parameter .
AMHSNEFL (send file)
Usage notes .
AMHSNMS (send message)
AMHSNRQ (send request) .
AMHSNRS (send response)
AMHSB (subscribe) .
AMHTERM (terminate) .
AMHUN (unsubscribe) .
Usage notes .

Chapter 11. COBOL object interface overview
Session interface functions . .

Session management .

Create objects

Get object handles.

Delete objects .

Transactional processing.

Error handling . .
Message interface functions

Get values

Set values

Reset values. .

Read and write data .

Publish/subscribe topics.

Publish/subscribe filters.

Publish /subscribe name/value elements

Error handling .
Sender interface functions .

Open and close.

Send

Get values

Error handling . .
Receiver interface functions

Open and close.

Receive and browse .

Get values

Set values

Error handling . .
Distribution list interface functlons .

Open and close.

Send

Get values

Error handling .
Publisher interface functlons

Open and close.

Publish

Get values

Error handling .

. 256
. 256
. 258
. 259
. 260
. 260
. 260
. 261
. 262
. 262
. 263
. 264
. 265
. 266
. 267
. 268
. 268

269

. 270
. 270
. 270
. 270
. 271
. 271
. 271
. 272
. 272
. 272
. 272
. 272
. 273
. 273
. 273
. 273
. 274
. 274
. 274
. 274
. 274
. 275
. 275
. 275
. 275
. 275
. 275
. 276
. 276
. 276
. 276
. 276
. 277
. 277
. 277
. 277
. 277

221

Subscriber interface functions .
Open and close.
Broker messages
Get values
Set value .

Error handling .

Policy interface functions
Get values
Set value .

Error handling .

High-level functions .

Chapter 12. COBOL object interface reference

Session interface functions . e
AMSEBG (begin) .

AMSECLEC (clear error codes)
AMSECL (close) .
AMSECM (commit)

AMSECR (create) . .
AMSECRDL (create drstr1but10n llst)
AMSECRMS (create message) .
AMSECRPO (create policy).
AMSECRPB (create publisher).
AMSECRRC (create receiver) .
AMSECRSN (create sender)
AMSECRSB (create subscriber)
AMSEDL (delete) .

AMSEDLDL (delete dlstrrbutron lrst)
AMSEDLMS (delete message) .
AMSEDLPO (delete policy).
AMSEDLPB (delete publisher).
AMSEDLRC (delete receiver) .
AMSEDLSN (delete sender)
AMSEDLSB (delete subscriber) .
AMSEGHDL (get distribution list handle)
AMSEGTLE (get last error codes).
AMSEGHMS (get message handle) .
AMSEGHPO (get policy handle) .
AMSEGHPB (get publisher handle) .
AMSEGHRC (get receiver handle)
AMSEGHSN (get sender handle) .
AMSEGHSB (get subscriber handle) .
AMSEOP (open) e
AMSERB (rollback)

Message interface functions
AMMSADEL (add element)
AMMSADFI (add filter) .
AMMSADTO (add topic)
AMMSCLEC (clear error codes)
AMMSDEEL (delete element) .
AMMSDEFI (delete filter)
AMMSDENE (delete named element)
AMMSDETO (delete topic) . .
AMMSGELC (get element CCSID)
AMMSGTCC (get CCSID) .
AMMSGTCI (get correl ID).
AMMSGTDL (get data length).
AMMSGTDO (get data offset) .
AMMSGTEL (get element) .
AMMSGTEC (get element count)
AMMSGTEN (get encoding)

222 MQSeries Application Messaging Interface

. 278
. 278
. 278
. 278
. 278
. 278
. 279
. 279
. 279
. 279
. 280

283

. 284
. 284
. 284
. 285
. 285
. 285
. 286
. 286
. 286
. 287
. 287
. 288
. 288
. 289
. 289
. 289
. 290
. 290
. 290
. 290
. 291
. 291
. 291
. 292
. 292
. 293
. 293
. 293
. 294
. 294
. 294
. 296
. 296
. 297
. 297
. 298
. 298
. 298
. 299
. 299
. 299
. 300
. 300
. 300
. 301
. 301
. 301
. 302

AMMSGTEC (get filter count) .
AMMSGTFI (get filter)
AMMSGTEFO (get format)
AMMSGTGS (get group status)
AMMSGTLE (get last error)
AMMSGTMI (get message ID).
AMMSGTNA (get name)
AMMSGTNE (get named element)

AMMSGTNC (get named element count) .

AMMSGTRC (get report code)
AMMSGTTO (get topic) .
AMMSGTTC (get topic count).
AMMSGTTY (get type) .
AMMSREBY (read bytes)
AMMSRS (reset) .
AMMSSTCC (set CCSID)
AMMSSTCI (set correl ID) .
AMMSSTDO (set data offset) .
AMMSSELC (set element ccsid)
AMMSSTEN (set encoding)
AMMSSTFO (set format)
AMMSSTGS (set group status).
AMMSWRBY (write bytes) .
Sender interface functions .
AMSNCLEC (clear error Codes)
AMSNCL (close) .
AMSNGTCC (get CCSID) .
AMSNGTEN (get encoding)
AMSNGTLE (get last error)
AMSNGTNA (get name)
AMSNOP (open) .
AMSNSN (send) .
AMSNSNFL (send file) .
Usage notes . .
Receiver interface functions
AMRCBR (browse)
Usage notes .
AMRCBRSE (browse selectlon message)
Usage notes . .
AMRCCLEC (clear error Codes)
AMRCCL (close)
AMRCGTDT (get defrnrtron type)
AMRCGTLE (get last error)
AMRCGTNA (get name)
AMRCGTQN (get queue name)
AMRCOP (open) .
AMRCRC (receive)
Usage notes .
AMRCRCFL (receive f1le)
AMRCSTON (set queue name)
Distribution list interface functions .
AMDLCLEC (clear error codes)
AMDLCL (close) .
AMDLGTLE (get last error)
AMDLGTNA (get name)
AMDLGTSC (get sender count)
AMDLGTSH (get sender handle) .
AMDLOP (open) . R
AMDLSN (send) .
AMDLSNEFL (send file) .
Usage notes . .

. 302
. 302
. 303
. 303
. 304
. 304
. 305
. 305
. 306
. 306
. 307
. 307
. 307
. 308
. 308
. 309
. 309
. 309
. 310
. 310
. 310
. 311
. 311
. 313
. 313
. 313
. 314
. 314
. 314
. 315
. 315
. 316
. 316
. 317
. 318
. 318
. 319
. 319
. 320
. 321
. 321
. 321
. 322
. 322
. 323
. 323
. 323
. 324
. 325
. 326
. 327
. 327
. 327
. 327
. 328
. 328
. 328
. 329
. 329
. 330
. 331

Publisher interface functions 332

AMPBCLEC (clear error codes) 332
AMPBCL (close) . . S L0332
AMPBGTCC (get CCSID) G 7
AMPBGTEN (get encoding)333
AMPBGTLE (get last error).333
AMPBGTNA (get name).333
AMPBOP (open)33
AMPBPB (publish)334
Subscriber interface functions336
AMSBCLEC (clear error codes) 336
AMSBCL (close)336
AMSBGTCC (get CCSID)336
AMSBGTDT (get definition type). 337
AMSBGTEN (get encoding)337
AMSBGTLE (get last error).337
AMSBGTNA (get name).338
AMSBGTON (get queue name)338
AMSBOP (open)33
AMSBRC (receive). . . L. ... 2339
AMSBSTON (set queue name) 340
AMSBSB (subscribe)340
AMSBUN (unsubscribe) 341
Policy interface functions . . L. .. 0342
AMPOCLEC (clear error codes) Lo 342
AMPOGTLE (get last error)342
AMPOGTNA (get name)342
AMPOGTWT (get wait time)343
AMPOSTWT (set wait time) 343

Part 4. The COBOL interface 223

224 MQSeries Application Messaging Interface

Chapter 9. Using the Application Messaging Interface in
COBOL

The Application Messaging Interface (AMI) in the COBOL programming language
has two interfaces:

1. A high-level procedural interface that provides the function needed by the
majority of users.

2. Alower-level, object-style interface, that provides additional function for
experienced MQSeries users.

This chapter describes the following:
e ['Structure of the AMI/

. % v . . . 7

° G ”

Structure of the AMI

Although the high-level interface is procedural in style, the underlying structure of
the AMI is object based. (The term object is used here in the object-oriented
programming sense, not in the sense of MQSeries ‘objects” such as channels and
queues.) The objects that are made available to the application are:

Session Contains the AMI session.

Message Contains the message data, message ID, correlation
ID, and options that are used when sending or
receiving a message (most of which come from the
policy definition).

Sender This is a service that represents a destination (such
as an MQSeries queue) to which messages are sent.

Receiver This is a service that represents a source from
which messages are received.

Distribution list Contains a list of sender services to provide a list
of destinations.

Publisher Contains a sender service where the destination is
a publish/subscribe broker.

Subscriber Contains a sender service (to send subscribe and
unsubscribe messages to a publish/subscribe
broker) and a receiver service (to receive
publications from the broker).

Policy Defines how the message should be handled,
including items such as priority, persistence, and
whether it is included in a unit of work.

When using the high-level functions the objects are created automatically and
(where applicable) populated with values from the repository. In some cases it
might be necessary to inspect these properties after a message has been sent (for
instance, the MessagelID), or to change the value of one or more properties before
sending the message (for instance, the Format). To satisfy these requirements, the

© Copyright IBM Corp. 1999, 2000 225

Structure of the AMI

AMI for COBOL has a lower-level object style interface in addition to the
high-level procedural interface. This provides access to the objects listed above,
with methods to set and get their properties. You can mix high-level and
object-level functions in the same application.

All the objects have both a handle and a name. The names are used to access objects
from the high-level interface. The handles are used to access them from the object
interface. Multiple objects of the same type can be created with the same name, but
are usable only from the object interface.

The high-level interface is described in EChapter 10 The COBQL high-level
Interface” on page 243, An overview of the obiject interface is given in m
CQBQL object interface overview” on page 264

, with reference information in

Using the repository

You can run AMI applications with or without a repository. If you don’t have a
repository, you can use a system default object (see below), or create your own by
specifying its name on a high-level function call. It will be created using the

appropriate system provided definition (see I‘System provided definitions” onl
EE;%_IE).

If you have a repository, and you specify the name of an object on a function call
that matches a name in the repository, the object will be created using the
repository definition. (If no matching name is found in the repository, the system
provided definition will be used.)

System default objects

Table 4. System default objects

Default object

Constant or handle (if applicable)

SYSTEM.DEFAULT.POLICY AMSD-POL
AMSD-POL-HANDLE
SYSTEM.DEFAULT.SYNCPOINT.POLICY AMSD-SYNC-POINT-POL
AMSD-SYNC-POINT-POL-HANDLE
SYSTEM.DEFAULT.SENDER AMSD-SND
SYSTEM.DEFAULT.RESPONSE.SENDER AMSD-RSP-SND

AMSD-RSP-SND-HANDLE

SYSTEM.DEFAULT.RECEIVER AMSD-RCV

AMSD-RCV-HANDLE

SYSTEM.DEFAULT.PUBLISHER AMSD-PUB

AMSD-PUB-SND

SYSTEM.DEFAULT.SUBSCRIBER AMSD-SUB

AMSD-SUB-SND

SYSTEM.DEFAULT.SEND.MESSAGE AMSD-SND-MSG

AMSD-SND-MSG-HANDLE

SYSTEM.DEFAULT.RECEIVE.MESSAGE AMSD-RCV-MSG

AMSD-RCV-MSG-HANDLE

A set of system default objects is created at session creation time. This removes the
overhead of creating the objects from applications using these defaults. The system

226 MQSeries Application Messaging Interface

Structure of the AMI

default objects are available for use from both the high-level and object interfaces
in COBOL. They are created using the system provided definitions (see

pravided definitions” on page 456).

The default objects can be specified explicitly using AMI constants, or used to
provide defaults if a parameter is omitted (by specifying it as a space or low value,
for example).

Constants representing synonyms for handles are also provided for these objects,
for use from the object interface (see /Appendix B Constants” on page 493). Note
that the first parameter on a call must be a real handle; you cannot use a synonym
in this case (that is why handles are not provided for all the default objects).

Chapter 9. Using the Application Messaging Interface in COBOL 227

Writing applications in COBOL

Writing applications in COBOL

This section gives a number of examples showing how to use the high-level
interface of the AMI, with some extensions using the object interface. Equivalent
operations to all high-level functions can be performed using combinations of

”

object interface functions (see I‘High-level functions” on page 280).

Opening and closing a session

Before using the AMI, you must open a session. This can be done with the
following high-level function (page bsd):

Opening a session

CALL '"AMHINIT' USING SESSION-NAME, POLICY-NAME, HSESSION,
COMPCODE, REASON.

The SESSION-NAME is optional. POLICY-NAME is the name of the policy to be used
during initialization of the AMI. If it consists of a space or low value, the
SYSTEM.DEFAULT.POLICY object is used. Or you can specify the constant
AMSD-POL to use the default policy.

The function returns HSESSION, a session handle that must be used by other calls in
this session. Errors are returned using a completion code and reason code.

To close a session, you can use this high-level function (page Rad):

Closing a session
’/CALL "AMHTERM' USING HSESSION, POLICY-NAME, COMPCODE, REASON.

This closes and deletes all objects that were created in the session.

Sending messages

You can send a datagram (send and forget) message using the high-level
AMHSNMS function (page R63). In the simplest case, all you need to specify is the
session handle returned by AMHINIT, the message data, and the message length.
Other parameters can be specified using the constants that represent the default
message, sender service, and policy objects.

Sending a message using all the defaults

CALL 'AMHSNMS' USING HSESSION, AMSD-SND, AMSD-POL, DATALEN, DATA,
AMSD-SND-MSG, COMPCODE, REASON.

If you want to send the message using a different sender service, specify its name
(such as SENDER-NAME) as follows:

Sending a message using a specified sender service

CALL 'AMHSNMS' USING HSESSION, SENDER-NAME, AMSD-POL, DATALEN, DATA,
AMSD-SND-MSG, COMPCODE, REASON.

228 MQSeries Application Messaging Interface

Writing applications in COBOL

If you are not using the default policy, you can specify a policy name:

Sending a message using a specified policy

CALL 'AMHSNMS' USING HSESSION, AMSD-SND, POLICY-NAME, DATALEN, DATA,
AMSD-SND-MSG, COMPCODE, REASON.

The policy controls the behavior of the send function. For example, the policy can
specify:

* The priority, persistence and expiry of the message

e If the send is part of a unit of work

* If the sender service should be implicitly opened and left open

To send a message to a distribution list, specify its name (such as DISTLIST-NAME)
as the sender service:

Sending a message to a distribution list

CALL 'AMHSNMS' USING HSESSION, DISTLIST-NAME, AMSD-POL, DATALEN, DATA,
AMSD-SND-MSG, COMPCODE, REASON.

Using the message object

Using the object interface gives you more functions when sending a message. For
example, you can get or set individual attributes in the message object. To get an
attribute after the message has been sent, you can specify a name for the message
object that is being sent:

Specifying a message object

CALL 'AMHSNMS' USING HSESSION, AMSD-SND, AMSD-POL, DATALEN, DATA,
SEND-MSG, COMPCODE, REASON.

The AMI creates a message object of the name specified (SEND-MSG), if one doesn’t
already exist. (In this example the defaults for the sender name and policy name
are used.) You can then use object interface functions to get the required attributes,
such as the MessagelID, from the message object:

Getting an attribute from a message object
CALL 'AMSEGHMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSGTMI' USING HMSG, BUFFLEN, MSGIDLEN, MSGID, COMPCODE, REASON.

The first call is needed to get the handle to the message object (HMSG). The second
call returns the message ID length, and the message ID itself (in a buffer of length
BUFFLEN).

To set an attribute such as the Format before the message is sent, you must first
create a message object and set the format in that object:

Chapter 9. Using the Application Messaging Interface in COBOL 229

Writing applications in COBOL

Setting an attribute in a message object
CALL 'AMSECRMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSSTFO' USING HMSG, FORMATLEN, FORMAT, COMPCODE, REASON.

Then you can send the message as before, making sure to specify the same
message object name (SEND-MSG) in the AMHSNMS call.

Look at 'Message interface functions” on page 272 to find out what other attributes

of the message object you can get and set.

After a message object has been used to send a message, it might not be left in the
same state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see AMMSRS
on page B0d) and rebuild it each time.

Instead of sending the message data using the data buffer, it can be added to the
message object. However, this is not recommended for large messages because of
the overhead of copying the data into the message object before it is sent (and also
extracting the data from the message object when it is received).

Sample programs
For more details, refer to the AMTVHSND and AMTVOSND sample programs (see

”

Receiving messages

Use the AMHRCMS high-level function (page B54) to receive a message to which
no response is to be sent (such as a datagram). In the simplest case, all you need to
specify are the session handle and a buffer for the message data. Other parameters
can be specified using the constants that represent the default message, receiver
service, and policy objects.

Receiving a message using all the defaults

CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, AMSD-SND-MSG,
BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
COMPCODE, REASON.

If you want to receive the message using a different receiver service, specify its
name (such as RECEIVER-NAME) as follows:

Receiving a message using a specified receiver service

CALL 'AMHRCMS' USING HSESSION, RECEIVER-NAME, AMSD-POL, AMSD-SND-MSG,
BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
COMPCODE, REASON.

If you are not using the default policy, you can specify a policy name:

230 MQSeries Application Messaging Interface

Writing applications in COBOL

Receiving a message using a specified policy

CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, POLICY-NAME, AMSD-SND-MSG,
BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
COMPCODE, REASON.

Chapter 9. Using the Application Messaging Interface in COBOL 231

Writing applications in COBOL

The policy can specify, for example:

* The wait interval

e If the message is part of a unit of work

e If the message should be code page converted

* If all the members of a group must be there before any members can be read

Using the message object

To get the attributes of a message after receiving it, you can specify your own
message object name, or use the system default
SYSTEM.DEFAULT.RECEIVE.MESSAGE (constant: AMSD-RCV-MSG). If a message
object of that name does not exist it will be created. You can access the attributes
(such as the Encoding) using the object interface functions:

— Getting an attribute from a message object
CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, AMSD-SND-MSG,
BUFFLEN, DATALEN, DATA, RECEIVE-MSG,
COMPCODE, REASON.
CALL 'AMSEGHMS' USING HSESSION, RECEIVE-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSGTEN' USING HMSG, ENCODING, COMPCODE, REASON.

If a specific message is to be selectively received using its correlation identifier, a
message object must first be created and its Correlld property set to the required
value (using the object interface). This message object is passed as the selection
message on the AMHRCMS call:

— Using a selection message object
CALL 'AMSECRMS' USING HSESSION, SELECTION-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSSTCI' USING HMSG, CORRELIDLEN, CORRELID, COMPCODE, REASON.
CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, SELECTION-MSG,

BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
COMPCODE, REASON.

Sample programs
For more details, refer to the AMTVHRCV and AMTVORCYV sample programs (see

7 ”

Request/response messaging

In the request/response style of messaging, a requester (or client) application sends a
request message and expects to receive a message in response. The responder (or
server) application receives the request message and produces the response
message (or messages) which it returns to the requester application. The responder
application uses information in the request message to determine how to send the
response message to the requester.

In the following examples ‘CLIENT’ refers to the requesting application, and
‘SERVER’ refers to the responding application.

Request
Use the AMHSNRQ high-level function (page Bad) to send a request message. This
is similar to AMHSNMS, but it includes the name of the service to which the

232 MQSeries Application Messaging Interface

Writing applications in COBOL

response message is to be sent. In this example the sender service (CLIENT-SENDER)
is specified in addition to the receiver service (CLIENT-RECEIVER). A send message
name (CLIENT-SND-MSG) is specified as well.

Sending a request message

CALL 'AMHSNRQ' USING HSESSION, CLIENT-SENDER, AMSD-POL, CLIENT-RECEIVER,
DATALEN, DATA, CLIENT-SND-MSG, COMPCODE, REASON.

The AMHRCRQ high-level function (page Red) is used by the responding (or
server) application to receive a request message. It is similar to AMHRCMS, but it
includes the name of the sender service that will be used for sending the response
message. When the message is received, the sender service is updated with the
information needed for sending the response to the required destination.

Receiving a request message

CALL "AMHRCRQ' USING HSESSION, SERVER-RECEIVER, AMSD-POL, BUFFLEN,
DATALEN, DATA, SERVER-RCV-MSG, SERVER-SENDER,
COMPCODE, REASON.

A golici\é name can be specified as well, as described in I‘Receiving messages” onl

A receiver message name (SERVER-RCV-MSG) is specified so that the response
message can refer to it. Note that, unlike AMHRCMS, this function does not have a
selection message.

Response
After the requested actions have been performed, the responding application sends
the response message (or messages) with the AMHSNRS function (page R&3):

Sending a response message

CALL 'AMHSNRS' USING HSESSION, SERVER-SENDER, AMSD-POL, SERVER-RCV-MSG,
DATALEN, DATA, AMSD-SND-MSG, COMPCODE, REASON.

The sender service for the response message (SERVER-SENDER) and the receiver
message name (SERVER-RCV-MSG) are the same as those used with AMHRCRQ
(receive request). This causes the Correlld and Messageld to be set in the response
message, as requested by the flags in the request message.

Finally, the requester (or client) application uses the AMHRCMS function to receive
the response message as described in I'Receiving messages” an page 230. You
might need to receive a specific response message (for example if three request
messages have been sent, and you want to receive the response to the first request
message first). In this case the sender message name from the AMHSNRQ function
(CLIENT-SND-MSG) should be used as the selection message name in AMHRCMS.

Sample programs
For more details, refer to the AMTVHCLT, AMTVOCLT, AMTVHSVR, and

AMTSOSVR sample programs (see [!Sample programs for QS/390” on page 457).

Chapter 9. Using the Application Messaging Interface in COBOL 233

Writing applications in COBOL

File transfer

You can perform file transfers using the AMHSNFL and AMHRCFL high-level
functions, and the AMSNSNFL, AMDLSNFL and AMRCRCFL object-level
functions.

— Sending a file using the high-level AMHSNFL function

CALL 'AMHSNFL' USING HSESSION, SENDER-NAME, POLICYNAME, OPTIONS,
FILENAME-LENGTH, FILENAME, SNDMSG-NAME.

— Receiving a file using the high-level AMHRCFL function

CALL 'AMHRCFL' USING HSESSION, RECEIVER-NAME, POLICY-NAME, OPTIONS,
SELMSG-NAME, FILENAME-LENGTH, SNDMSG-NAME.

For a complete description of file transfer, refer to I'File transfer” an page 21
Publish/subscribe messaging

With publish/subscribe messaging, publisher applications publish messages to
subscriber applications using a broker. The messages published contain application
data and one or more fopic strings that describe the data. Subscribing applications
register subscriptions informing the broker which topics they are interested in.
When the broker receives a published message, it forwards the message to all
subscribing applications for which a topic in the message matches a topic in the
subscription.

Subscribing applications can exploit content-based publish/subscribe by passing a
filter on subscribe and unsubscribe calls (see [1lsi i i

).

For more information, refer to the MQSeries Publish/Subscribe User’s Guide.

Publish

Use the AMHPB high-level function (page R53) to publish a message. You need to
specify the name of the publisher for the publish/subscribe broker (or use the
default by specifying AMSD-PUB). The topic relating to this publication and the
publication data must also be specified:

Publishing a message

CALL 'AMHPB' USING HSESSION, PUBLISHER-NAME, AMSD-POL, RECEIVER-NAME,
TOPICLEN, TOPIC, DATALEN, DATA, PUBLISH-MSG,
COMPCODE, REASON.

The RECEIVER-NAME identifies the receiver service to which the broker will send a
response message. You can also specify a policy name to change the behavior of
the function (as with the AMHSNxx functions).

You can specify the publication message name PUBLISH-MSG and set or get
attributes of the message object (using the object interface functions). This might
include adding another topic (using AMMSADTO) before invoking AMHPB, if
there are multiple topics associated with this publication.

234 MQSeries Application Messaging Interface

Writing applications in COBOL

Instead of sending the publication data using the data buffer, it can be added to
the message object. Unlike the AMHSNxx functions, this gives no difference in
performance with large messages. This is because, whichever method is used, the
MQRFH header has to be added to the publication data before sending it (similarly
the header has to be removed when the publication is received).

Subscribe

The AMHSB high-level function (page Réd) is used to subscribe to a
publish/subscribe broker specified by the name of a subscriber service. The
receiver to which publications will be sent is included within the definition of the
subscriber. The name of a receiver service to which the broker can send a response
message (RECEIVER-NAME) is also specified.

Subscribing to a broker

CALL 'AMHSB' USING HSESSION, SUBSCRIBER-NAME, AMSD-POL, RECEIVER-NAME,
TOPICLEN, TOPIC, 0, 0, SUBSCRIBE-MSG,
COMPCODE, REASON.

A subscription for a single topic can be passed by the TOPIC parameter. You can
subscribe to multiple topics by using the object interface AMMSADTO function to
add topics to the SUBSCRIBE-MSG message object, before invoking AMHSB.

If the policy specifies that the Correlld is to be used as part of the identity for the
subscribing application, it can be added to the subscription message object with the
object interface AMMSSTCI function, before invoking AMHSB.

To remove a subscription, use the AMHUN high-level function (page Bsd). To
remove all subscriptions, you can specify a policy that has the ‘Deregister All
Topics’ subscriber attribute.

To receive a publication from a broker, use the AMHRCPB function (page Bsd). For
example:

Receiving a publication

CALL 'AMHRCPB' USING HSESSION, SUBSCRIBER-NAME, AMSD-POL, SELECTION-MSG,
TOPICBUFFLEN, BUFFLEN, TOPICCOUNT, TOPICLEN,
FIRSTTOPIC, DATALEN, DATA, RECEIVE-MSG,
COMPCODE, REASON.

You need to specify the name of the subscriber service used for the original
subscription. You can also specify a policy name and a selection message name, as
described in L ivi ”

If there are multiple topics associated with the publication, only the first one is
returned by this function. So, if TOPICCOUNT indicates that there are more topics,
you have to access them from the RECEIVE-MSG message object, using the
object-level AMSEGHMS (get message handle) and AMMSGTTO (get topic)
functions.

Sample programs
For more details, refer to the AMTVHPUB, AMTSOPUB, AMTVHSUB, and

AMTSOSUB sample programs (see !Sample programs for QS/390” on page 457).

Chapter 9. Using the Application Messaging Interface in COBOL 235

Writing applications in COBOL

Using name/value elements

Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
used. The AMHPB, AMHSB, AMHUN, and AMHRCPB high-level functions
provide these name/value pairs implicitly.

For less commonly used commands and options, the name/value pairs can be
added to a message using an AMELEM structure. The AMTELEMYV and
AMTELEML copybooks define the AMELEM structure, with and without default
values respectively. Here is the AMTELEMV copybook:

#% AMELEM structure

10 AMELEM.
*k Structure identifier

15 AMELEM-STRUCID PIC X(8) VALUE 'COEL .
*k Structure version number

15 AMELEM-VERSION PIC S9(9) BINARY VALUE 1.
*k Reserved, must be zero

15 AMELEM-GROUP-BUFF-LEN PIC S9(9) BINARY VALUE 0.
*k Reserved, must be zero

15 AMELEM-GROUP-LEN PIC S9(9) BINARY VALUE 0.
*k Reserved, must be zero

15 AMELEM-GROUP-OFFSET PIC S9(9) BINARY VALUE 0.
*k Name buffer length

15 AMELEM-NAME-BUFF-LEN PIC S9(9) BINARY VALUE 0.
*% Name Tength in bytes

15 AMELEM-NAME-LEN PIC S9(9) BINARY VALUE 0.
*k Name

15 AMELEM-NAME-OFFSET PIC S9(9) BINARY VALUE 0.
% Value buffer length

15 AMELEM-VALUE-BUFF-LEN PIC S9(9) BINARY VALUE 0.
*% Value Tength in bytes

15 AMELEM-VALUE-LEN PIC S9(9) BINARY VALUE 0.
*k Value

15 AMELEM-VALUE-OFFSET PIC S9(9) BINARY VALUE 0.
*k Reserved, must be zero

15 AMELEM-TYPE-BUFF-LEN PIC S9(9) BINARY VALUE 0.
Kk Reserved, must be zero

15 AMELEM-TYPE-LEN PIC S9(9) BINARY VALUE 0.
*k Reserved, must be zero

15 AMELEM-TYPE-OFFSET PIC S9(9) BINARY VALUE 0.

The offset fields in the AMELEM structure allow you to give the location of the
name and value buffers relative to the start of the AMELEM structure. The offsets
can be positive or negative.

Following are short descriptions of the fields and an example of how to use the
AMELEM structure.

AMELEM-STRUCID
The AMELEM structure identifier (input).

AMELEM-VERSION
The version number of the AMELEM structure (input). Its value must be one.

AMELEM-GROUP-BUFF-LEN
Reserved, must be zero.

AMELEM-GROUP-LEN
Reserved, must be zero.

AMELEM-GROUP-OFFSET
Reserved, must be zero.

236 MQSeries Application Messaging Interface

Writing applications in COBOL

AMELEM-NAME-BUFF-LEN
The length of the name buffer (input). If this field is set to zero, the AMI
returns the name length value (in AMELEM-NAME-LEN) but not the name
value (in AMELEM-NAME-OFFSET). This is not an error.

AMELEM-NAME-LEN
The length of the name in bytes (input or output).

AMELEM-NAME-OFFSET
The name buffer (input or output).

AMELEM-VALUE-BUFF-LEN
The length of the value buffer (input).

AMELEM-VALUE-LEN
The value length in bytes (input or output).

AMELEM-VALUE-OFFSET
The value buffer (input or output).

AMELEM-TYPE-BUFF-LEN
Reserved, must be zero.

AMELEM-TYPE-LEN
Reserved, must be zero.

AMELEM-TYPE-OFFSET
Reserved, must be zero.

Example
As an example, to send a message containing a ‘Request Update’ command, define
the command data and the AMELEM structure as follows::

01 OPTIONS PIC S9(9) BINARY VALUE ZERO.
01 AMELEM-DATA.
10 COMMAND-NAME PIC X(16) VALUE 'MQPSCommand'.
10 COMMAND-VALUE PIC X(16) VALUE 'ReqUpdate’

COPY AMTELEMV.

Set the length and offset values as follows:

MOVE 11 TO AMELEM-NAME-LEN.
MOVE -48 TO AMELEM-NAME-OFFSET.
MOVE 9 TO AMELEM-VALUE-LEN.
MOVE -32 TO AMELEM-VALUE-OFFSET.

Having set the values, create a message object (SEND-MSG) and add the element to
it:

Using name/value elements
CALL 'AMSECRMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

CALL 'AMMSADEL' USING HMSG, AMELEM, OPTIONS, COMPCODE, REASON.

You must then send the message, using AMHSNMS, to the sender service specified
for the publish/subscribe broker.

If you need to use streams with MQSeries Publish/Subscribe, you must add the
appropriate stream name/value element explicitly to the message object.

Chapter 9. Using the Application Messaging Interface in COBOL 237

Writing applications in COBOL

The message element functions can, in fact, be used to add any element to a
message before issuing a publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications.
They can be used in other applications as well.

Error handling

Each AMI COBOL function returns a completion code reflecting the success or
failure (OK, warning, or error) of the request. Information indicating the reason for
a warning or error is returned in a reason code.

The ‘get last error” functions (such as AMSEGTLE) always reflect the last most
severe error detected by an object. These functions can be used to return the
completion and reason codes associated with this error. Once the error has been
handled, call the “clear error codes’ functions (for instance, AMMSCLEC) to clear
the error information.

All COBOL high-level functions record last error information in the session object.
This information can be accessed using the session’s ‘get last error” call,
AMSEGTLE (you need the session handle returned by AMHINIT as the first
parameter of this call).

Transaction support

Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.

* MQSeries messages are the only resource

This is supported under OS/390 batch. A transaction is started by the first
message sent or received under syncpoint control, as specified in the policy
specified for the send or receive. Multiple messages can be included in the same
unit of work. The transaction is committed or backed out using an AMHCMIT
or AMHBACK high-level interface call (or the AMSECM or AMSERB object-level
calls).

» Using an external transaction coordinator

The transaction is controlled using the API calls of an external transaction
coordinator. Supported coordinators are CICS, IMS, and RRS. The AMI calls are
not used but the syncpoint attribute must still be specified in the policy used on
the call.

Sending group messages

The AMI allows a sequence of related messages to be included in, and sent as, a

message group. Group context information is sent with each message to allow the

message sequence to be preserved and made available to a receiving application.

In order to include messages in a group, the group status information of the first

and subsequent messages in the group must be set as follows:
AMGRP_FIRST_MSG_IN_GROUP for the first message

AMGRP_MIDDLE_MSG_IN _GROUP for all messages other than first and last
AMGRP_LAST_MSG_IN_GROUP for the Tast message

238 MQSeries Application Messaging Interface

Writing applications in COBOL
The message status is set using AMMSSTGS.

For a comﬁlete description of group messages, refer to ['Sending group messages”]

Other considerations

You should consider the following when writing your applications:
* Multithreading

* Using MQSeries with the AMI

* Field limits

Multithreading
Multithreading is not supported for COBOL applications running on OS/390.

Using MQSeries with the AMI
You must not mix MQSeries function calls with AMI function calls within the same
process.

Field limits

When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries,
the underlying message transport. See the rules for naming MQSeries objects in the

Chapter 9. Using the Application Messaging Interface in COBOL 239

Building COBOL applications

Building COBOL applications

The Application Messaging Interface for COBOL is available only on the OS/390
operating system.

COBOL applications on 0S/390

This section explains what you have to do to prepare and run your COBOL

programs on the OS/390 operating system. See Language compilers” on page 423

for compilers supported by the AML

AMI Copybooks

The AMI provides COBOL copybooks to assist you with the writing of your
applications. The copybook AMTYV contains constants and return codes. Copybooks
AMTELEML and AMTELEMYV contain the definition of the AMELEM data
structure that is used to pass name/value element information across the AMI.
AMTELEML provides a data definition without initial values; AMTELEMV
provides the same definition with initial values.

These copybooks are installed in the MQSeries for OS/390 library hlq.SCSQCOBC.
Use the COPY statement to include them in your program. For example:
WORKING STORAGE SECTION.

01 AMI-CONSTANTS.
COPY AMTV.

You are recommended to use the copybook AMTELEMYV to define an AMELEM
structure. This provides default initial values which ensures that the strucld and
version fields have valid values. If the values passed for these fields are not valid,
the AMI will reject them.

Preparing COBOL programs on 0S/390

COBOL programs that use the AMI must be compiled and linked edited. Programs
containing CICS commands must be processed by the CICS translator before
compilation. To add AMI support, include the appropriate COBOL stub (interface
module) in the link edit. The AMI provides a COBOL stub for each supported
environment (batch, RRS batch, or CICS), as follows:

Batch AMTBS10
RRS batch AMTRS10
CICS AMTCS10
IMS AMTIS10

Note: If you are using COBOL, you should select the NODYNAM compiler option
to enable the linkage editor to resolve references to the AMI stub.

Thus the link edit JCL should specify a ‘DD’ name for the MQSeries for OS/390
hlq.SCSQLOAD library and an INCLUDE statement for the stub. For example, to
link edit an AMI batch application:

//LKED EXEC PGM=HEWL....

//0BJLIB DD DSN=thlqual.SCSQLOAD,DISP=SHR
//SYSIN DD *

ENTRY CEESTART

INCLUDE OBJLIB(AMTBS10)

NAME progname (R)
/*

240 MQSeries Application Messaging Interface

COBOL applications on 0S/390

Running COBOL programs on 0S/390
The AMI needs access to the MQSeries datasets SCSQLOAD and SCSQAUTH, as
well as one of the language-specific datasets such as SCSQANLE. See the

Wpplication Programming Guidd for details of the supported languages.

For CICS operation, the library hlq.SCSQLOAD and the Language Environment®
SCEERUN library must be included in the DFHRPL concatenation. COBOL
programs using the AMI must be defined to CICS with a language code of ‘Le370’.

For information about AMI tracing, see ‘Using trace (QS/390)” on page 474.

Chapter 9. Using the Application Messaging Interface in COBOL 241

COBOL applications on 0S/390

242 MQSeries Application Messaging Interface

Chapter 10. The COBOL high-level interface

The COBOL high-level interface contains functions that cover the requirements of
the majority of applications. If extra functionality is needed, COBOL object
interface functions can be used in the same application as the COBOL high-level
functions.

This chapter contains:

° 4 : : ”

. ” 17

© Copyright IBM Corp. 1999, 2000 243

COBOL high-level interface overview

Overview of the COBOL high-level interface

The high-level functions are listed below. Follow the page references to see the
detailed descriptions of each function.

Initialize and terminate
Functions to create and open an AMI session, and to close and delete an AMI

session.
AMHINIT (initialize) page bsd
AMHTERM (terminate) page bsd

Sending messages

Functions to send a datagram (send and forget) message, and to send request and
response messages.

AMHSNMS (send message) page bsd
AMHSNRQ (send request) page bed
AMHSNRS (send response) page bed

Receiving messages

Functions to receive a message from AMHSNMS or AMHSNRS, to receive a
request message from AMHSNRQ), and to browse a message.

AMHRCMS (receive message)
page b5d
AMHRCRQ (receive request) page bad

AMHBRMS (browse message)
page bad

File transfer

Functions to send message data from a file, and to receive message data sent by
AMHSNEFL into a file.

AMHSNEFL (send file) page bad
AMHRCEFL (receive file) page b54
Publish/subscribe

Functions to publish a message to a publish/subscribe broker, and to subscribe,
unsubscribe, and receive publications.

AMHPB (publish) page bsd
AMHSB (subscribe) page bsd
AMHUN (unsubscribe) page bsd
AMHRCPB (receive publication)

page bsd

Transaction support

Functions to begin, commit and backout a unit of work.

AMHBEGIN (begin) page bad

244 MQSeries Application Messaging Interface

COBOL high-level interface overview
AMHCMIT (commit) page B51
AMHBACK (backout) page 47

Chapter 10. The COBOL high-level interface 245

COBOL high-level interface

Reference information for the COBOL high-level interface

In the following sections the high-level interface functions are listed in alphabetical
order. Note that all functions return a completion code (COMPCODE) and a reason
code (REASON). The completion code can take one of the following values:
AMCC-OK Function completed successfully
AMCC-WARNING

Function completed with a warning
AMCC-FAILED

An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the

reason for the error or warning (see LA.ppen.dJ.x_A_Reasan_cadis_an_pa.geASﬂ)

Object names can be up to AMLEN-MAX-NAME-LENGTH characters, and are
terminated by a space or by a low value (a single byte zero). If a space or low
value is not found, the name will be truncated at AMLEN-MAX-NAME-LENGTH.

If an object name is specified as a space or low value, the relevant system default
name will be used.

Most functions require the session handle to be specified. If this handle is not
valid, the results are unpredictable.

246 MQSeries Application Messaging Interface

COBOL high-level interface

AMHBACK (backout)

Function to backout a unit of work.
CALL "AMHBACK' USING HSESSION, POLICY, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 POLICY
01 COMPCODE
01 REASON

HSESSION
POLICY

COMPCODE
REASON

PIC S9(9) BINARY.
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.
The session handle returned by AMHINIT (input).

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

Completion code (output).

Reason code (output).

Chapter 10. The COBOL high-level interface 247

COBOL high-level interface

AMHBEGIN (begin)

Function to begin a unit of work.
CALL "AMHBEGIN' USING HSESSION, POLICY, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION PIC S9(9) BINARY.

01 POLICY PIC X(n).

061 COMPCODE PIC S9(9) BINARY.

01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

248 MQSeries Application Messaging Interface

COBOL high-level interface

AMHBRMS (browse message)

Function to browse a message. See the IMQSeries Application Programming Guidd for

a full description of the browse options.
CALL 'AMHBRMS' USING HSESSION, RECEIVER, POLICY, OPTIONS,

BUFFLEN, DATALEN, DATA, RCVMSGNAME,
SENDER, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 RECEIVER
01 POLICY
01 OPTIONS
01 BUFFLEN
01 DATALEN
01 DATA

01 RCVMSGNAME

01 SENDER
01 COMPCODE
01 REASON

HSESSION

RECEIVER

POLICY

OPTIONS

BUFFLEN

DATALEN

DATA
RCVMSGNAME

SENDER

COMPCODE

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a receiver service (input). If specified as a space or
low value, the system default receiver name (constant:
AMSD-RCV) is used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

Options controlling the browse operation (input). Possible values
are:

AMBRW-NEXT

AMBRW-FIRST

AMBRW-RECEIVE-CURRENT
AMBRW-DEFAULT

(AMBRW-NEXT)
AMBRW-RECEIVE-CURRENT is equivalent to AMRCRC (receive) for the
message under the browse cursor.

The length in bytes of a buffer in which the data is returned
(input).

The length of the message data, in bytes (output). Can be specified
as -1 (input).

The received message data (output).

The name of the message object for the received message (input).
Properties, and message data if not returned in the DATA parameter,
can be extracted from the message object using the object interface
(see L i ions”). The message
object is implicitly reset before the browse takes place. If specified
as a space or low value, the system default receive message name
(constant: AMSD-RCV-MSG) is used.

The name of a special type of sender service known as a response
sender, to which the response message will be sent (input). This
sender name must not have been defined in the repository prior to
the start of the AMI session. It is only applicable if the message
type is AMMT-REQUEST.

Completion code (output).

Chapter 10. The COBOL high-level interface 249

COBOL high-level interface
REASON Reason code (output).

Usage notes

To return the data in the message object (RCVMSGNAME) rather than the DATA
object, set BUFFLEN to zero and DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length and DATALEN to -1.

To return only the data length (so that the required amount of memory can be
allocated before issuing a second function call to return the data), set BUFFLEN to
zero. DATALEN must not be set to -1. Accept Truncated Message in the policy
options must not be selected (the default), otherwise the message data will be
discarded with an AMRC-MSG-TRUNCATED warning,.

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length. DATALEN must not be set to -1. If the buffer is too
small, and Accept Truncated Message is not selected in the policy receive attributes
(the default), an AMRC-RECEIVE-BUFF-LEN-ERR error will be generated. If the
buffer is too small, and Accept Truncated Message is selected in the policy receive
attributes, the truncated message data is returned with an AMRC-MSG-
TRUNCATED warning.

If Accept Truncated Messages is set to “Yes” in the policy options, and either
BUFFLEN is non-zero or DATALEN is not set to -1, the message data might be
truncated. If BUFFLEN is zero and DATALEN is not set to -1, the message data is
discarded.

250 MQSeries Application Messaging Interface

COBOL high-level interface

AMHCMIT (commit)

Function to commit a unit of work.
CALL "AMHCMIT' USING HSESSION, POLICY, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 POLICY
01 COMPCODE
01 REASON

HSESSION
POLICY

COMPCODE
REASON

PIC S9(9) BINARY.
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.
The session handle returned by AMHINIT (input).

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

Completion code (output).

Reason code (output).

Chapter 10. The COBOL high-level interface 251

COBOL high-level interface

AMHINIT (initialize)

Function to create and open an AMI session. It returns a session handle, which is
valid until the session is terminated.

CALL "AMHINIT' USING SESSNAME, POLICY, HSESSION, COMPCODE, REASON.

Declare the parameters as follows:

01 SESSNAME
01 POLICY
01 HSESSION
01 COMPCODE
01 REASON

SESSNAME

POLICY

HSESSION
COMPCODE
REASON

PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC S9(9) BINARY.

An optional name that can be used to identify the application
(input).

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

The session handle (output).
Completion code (output).

Reason code (output).

252 MQSeries Application Messaging Interface

COBOL high-level interface

AMHPB (publish)

Function to publish a message to a publish/subscribe broker.
CALL "AMHPB' USING HSESSION, PUBLISHER, POLICY, RESPNAME,

TOPICLEN, TOPIC, DATALEN, DATA, MSGNAME,
COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 PUBLISHER
01 POLICY
01 RESPNAME
01 TOPICLEN
01 TOPIC

01 DATALEN
01 DATA

01 MSGNAME
01 COMPCODE
01 REASON

HSESSION
PUBLISHER

POLICY

RESPNAME

TOPICLEN
TOPIC
DATALEN

DATA
MSGNAME

COMPCODE
REASON

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a publisher service (input). If specified as a space or
low value, the system default publisher name (constant:
AMSD-PUB) is used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

The name of the receiver service to which the response to this
publish request will be sent (input). If specified as a space or low
value, no response will be sent. This parameter is mandatory if the
policy specifies implicit publisher registration (the default).

The length of the topic for this publication, in bytes (input).
The topic for this publication (input).

The length of the publication data in bytes (input). A value of zero
indicates that any publication data has been added to the message

object (MSGNAME) using the object interface (see ’Message interfacd
h I 3 77 25!6').

The publication data, if DATALEN is non-zero (input).

The name of a message object that contains the header for the
publication message (input). If DATALEN is zero, the message object
also holds any publication data. If specified as a space or low
value, the system default message name (constant:
AMSD-SND-MSG) is used.

Completion code (output).

Reason code (output).

Chapter 10. The COBOL high-level interface 253

COBOL high-level interface

AMHRCFL (receive file)

Function to receive message data sent by AMHSNEFL into a file.

CALL 'AMHRCFL'

USING HSESSION, RECEIVERNAME, POLICYNAME,
OPTIONS, SELMSGNAME, DIRNAMELEN,
DIRNAME, FILENAMELEN, FILENAME,
RCVMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION

01 RECEIVERNAME
01 POLICYNAME
01 OPTIONS

01 SELMSGNAME
01 DIRNAMELEN
01 DIRNAME

01 FILENAMELEN
01 FILENAME

01 RCVMSGNAME
01 COMPCODE

01 REASON

HSESSION
RECEIVERNAME

POLICYNAME

OPTIONS
SELMSGNAME

DIRNAMELEN
DIRNAME
FILENAMELEN
FILENAME

RCVMSGNAME

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a receiver service (input). If specified as a space or
low value, the system default receiver name (constant:
AMSD-RCV) is used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

Reserved, must be specified as zero.

Optional selection message object used to specify information (such
as a Correlld) needed to select the required message (input).

Reserved, must be specified as zero (input).
Reserved.
The length of the file name in bytes (input). .

The name of the file into which the transferred data is to be
received (input). This can include a directory prefix to define a
fully-qualified or relative file name. If blank then the AMI will use
the name of the originating file (including any directory prefix)
exactly as it was supplied on the send file call. Note that the
original file name may not be appropriate for use by the receiver,
either because a path name included in the file name is not
applicable to the receiving system, or because the sending and
receiving systems use different file naming conventions.

The name of the message object to be used to receive the file
(output). This parameter is updated with the message properties
(for example, the Message ID). If the message is not from a file,
rcvMsgName receives the message data. If specified as a blank or
low value, the system default receive message name (constant
AMSD-RCV-MSG) is used.

Property information and message data can be extracted from the

message object using the object interface (see ﬂd.essa.ge_m.tenfacd

Z . The message object is reset implicitly
before the receive takes place.

254 MQSeries Application Messaging Interface

COBOL high-level interface
COMPCODE Completion code (output).
REASON Reason code (output).

Usage notes

If FILENAME is blank (indicating that the originating file name specified in the
message is to be used), then FILENAMELEN should be set to zero.

Chapter 10. The COBOL high-level interface 255

COBOL high-level interface

AMHRCMS (receive message)

Function to receive a message.
CALL 'AMHRCMS' USING HSESSION, RECEIVER, POLICY, SELMSGNAME,

BUFFLEN, DATALEN, DATA, RCVMSGNAME,
COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 RECEIVER
01 POLICY

01 SELMSGNAME
01 BUFFLEN

01 DATALEN

01 DATA

01 RCVMSGNAME
01 COMPCODE
01 REASON

HSESSION
RECEIVER
POLICY
SELMSGNAME
BUFFLEN

DATALEN

DATA
RCVMSGNAME

COMPCODE
REASON

Usage notes

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a receiver service (input). If specified as a space or
low value, the system default receiver name (constant:
AMSD-RCYV) is used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

Optional selection message object used to specify information (such
as a Correlld) needed to select the required message (input).

The length in bytes of a buffer in which the data is returned
(input).Can be specified as -1.

The length of the message data, in bytes (output). Can be specified
as -1 (input).

The received message data (output).

The name of the message object for the received message (output).
If specified as a space or low value, the system default receive
message name (constant: AMSD-RCV-MSG) is used. Properties,
and message data if not returned in the DATA parameter, can be
extracted from the message object using the object interface (see

’ i). The message object is
implicitly reset before the receive takes place.

Completion code (output).

Reason code (output).

To return the data in the message object (RCVMSGNAME), set BUFFLEN to zero and

DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length (an integer greater than zero) and DATALEN to -1.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set BUFFLEN to zero.
DATALEN must not be set to -1. Accept Truncated Message in the policy receive

256 MQSeries Application Messaging Interface

COBOL high-level interface

attributes must not be selected (the default), otherwise the message will be
discarded with an AMRC-MSG-TRUNCATED warning.

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length (an integer greater than zero) and ensure that
DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
not selected in the policy receive attributes (the default), an AMRC-RECEIVE-
BUFF-LEN-ERR error will be generated. If the buffer is too small, and Accept
Truncated Message is selected in the policy receive attributes, the truncated
message is returned with an AMRC_MSG_TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Messages must be set to “Yes” in the policy receive
attributes. You can then remove the message by specifying -1 in both the BUFFLEN
and DATALEN parameters.

Chapter 10. The COBOL high-level interface 257

COBOL high-level interface

AMHRCPB (receive publication)

Function to receive a publication from a publish/subscribe broker.

CALL 'AMHRCPB'

USING HSESSION, SUBSCRIBER, POLICY, SELMSGNAME,
TOPICBUFFLEN, BUFFLEN, TOPICCOUNT, TOPICLEN,
FIRSTTOPIC, DATALEN, DATA, RCVMSGNAME,
COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 SUBSCRIBER
01 POLICY

01 SELMSGNAME
01 TOPICBUFFLEN
01 BUFFLEN

01 TOPICCOUNT
01 TOPICLEN
01 FIRSTTOPIC
01 DATALEN

01 DATA

01 RCVMSGNAME
01 COMPCODE
01 REASON

HSESSION

SUBSCRIBER

POLICY

SELMSGNAME

TOPICBUFFLEN

BUFFLEN

TOPICCOUNT
TOPICLEN
FIRSTTOPIC

DATALEN
DATA

RCVMSGNAME

COMPCODE

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a subscriber service (input). If specified as a space or
low value, the system default subscriber name (constant:
AMSD-SUB) is used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

Optional selection message object used to specify information (such
as a Correlld) needed to select the required message (input).

The length in bytes of a buffer in which the topic is returned
(input).

The length in bytes of a buffer in which the publication data is
returned (input).

The number of topics in the message (output).
The length in bytes of the first topic (output).

The first topic (output). Topics can be extracted from the message
object (RCVMSGNAME) using the object interface (see FMessagd

Entorface Funchions” 30d).

The length in bytes of the publication data (output).

The publication data (output). Data can be extracted from the
message object (RCVMSGNAME) using the object interface (see

7)

The name of a message object for the received message (input). If
specified as a space or low value, the system default message name
(constant: AMSD-RCV-MSGQ) is used. The publication message
properties and data update this message object, in addition to
being returned in the parameters above. The message object is
implicitly reset before the receive takes place.

Completion code (output).

258 MQSeries Application Messaging Interface

COBOL high-level interface
REASON Reason code (output).

Usage notes

We recommend that, when using AMHRCPB, you always have data conversion
enabled in the specified policy. If data conversion is not enabled, AMHRCPB will fail
if the local CCSID and/or encoding values differ from those on the platform from
which the publication was sent.

If data conversion is enabled by the specified policy, and a selection message is
specified, then the conversion is performed using the target encoding and coded
character set identifier (CCSID) values designated in the selection message. (The
selection message is specified in the SELMSGNAME parameter).

If a selection message is not specified, then the platform encoding and Queue
Manager CCSID values are used as defaults for the conversion.

If a normal message that is not a publication message is received by the specified
subscriber, then AMHRCPB behaves the same as AMHRCMS.

Chapter 10. The COBOL high-level interface 259

COBOL high-level interface

AMHRCRAQ (receive request)

Function to receive a request message.
CALL 'AMHRCRQ' USING HSESSION, RECEIVER, POLICY, BUFFLEN, DATALEN,

DATA, RCVMSGNAME, SENDER, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 RECEIVER
01 POLICY
01 BUFFLEN
01 DATALEN
01 DATA

01 RCVMSGNAME

01 SENDER
01 COMPCODE
01 REASON

HSESSION

RECEIVER

POLICY

BUFFLEN

DATALEN

DATA
RCVMSGNAME

SENDER

COMPCODE
REASON

Usage notes

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a receiver service (input). If specified as a space or
low value, the system default receiver name (constant:
AMSD-RCV) is used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

The length in bytes of a buffer in which the data is returned
(input).

The length of the message data, in bytes (output). Can be specified
as -1 (input).

The received message data (output).

The name of the message object for the received message (output).
If specified as NULL, the system default receiver service (constant:
AMSD-RCV-MSQG) is used. Header information, and message data
if not returned in the DATA parameter, can be extracted from the
message object using the object interface (see I'Message interfacd
functions” on page 296). The message object is implicitly reset
before the receive takes place.

The name of a special type of sender service known as a response
sender, to which the response message will be sent (output). This
sender name must not be defined in the repository. If specified as a
space or low value, the system default response sender service
(constant: AMSD-RSP-SND) is used.

Completion code (output).

Reason code (output).

The following notes contain details about use of the AMHRCRQ function.

Data conversion

If data conversion is enabled by the specified policy, and a selection message is
specified, then the conversion is performed using the target encoding and coded
character set identifier (CCSID) values designated in the selection message. (These
target values are specified in the SELMSGNAME parameter).

260 MQSeries Application Messaging Interface

COBOL high-level interface

If a selection message is not specified, then the platform encoding and Queue
Manager CCSID values are used as defaults for the conversion.

Use of the buffLen parameter
To return the data in the message object (RCVMSGNAME), set BUFFLEN to zero and
DATALEN to -1.

To return the message data in the DATA parameter, set BUFFLEN to the required
length (an integer greater than zero) and DATALEN to -1.

To return only the data length (so that the required buffer size can be determined
before issuing a second function call to return the data), set BUFFLEN to zero.
DATALEN must not be set to -1. Accept Truncated Message in the policy receive
attributes must be set to ‘No’ (the default), otherwise the message will be
discarded with an AMRC-MSG-TRUNCATED warning.

To return the message data in the DATA parameter, together with the data length,
set BUFFLEN to the required length (an integer greater than zero) and ensure that
DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
set to ‘No’ in the policy receive attributes (the default), an AMRC-RECEIVE-BUFF-
LEN-ERR error will be generated. If the buffer is too small, and Accept Truncated
Message is set to “Yes’ in the policy receive attributes, the truncated message is
returned with an AMRC-MSG-TRUNCATED warning.

To remove the message from the queue (because it is not wanted by the
application), Accept Truncated Message must be set to “Yes’ in the policy receive
attributes. You can then remove the message by specifying -1 in both the BUFFLEN
and DATALEN parameters.

Chapter 10. The COBOL high-level interface 261

COBOL high-level interface

AMHSNFL (send file)

Function to send data from a file.
CALL "AMHSNFL' USING HSESSION, SENDERNAME, POLICYNAME,

OPTIONS, DIRNAMELEN, DIRNAME,
FILENAMELEN, FILENAME,
SNDMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION

01 SENDERNAME
01 POLICYNAME

01 OPTIONS

01 DIRNAMELEN

01 DIRNAME

01 FILENAMELEN

01 FILENAME

01 SNDMSGNAME

01 COMPCODE
01 REASON

HSESSION
SENDERNAME

POLICYNAME

OPTIONS
DIRNAMELEN
DIRNAME
FILENAMELEN
FILENAME

SNDMSGNAME

COMPCODE
REASON

Usage notes

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a sender service (input). If specified as a space or low
value, the system default sender name (constant: AMSD-SND) is
used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

Reserved, must be specified as zero.
Reserved, must be specified as zero (input).
Reserved.

The length of the file name in bytes (input).

The name of the file to be sent (input). This can include a directory
prefix to define a fully-qualified or relative file name. If the send
operation is a physical-mode file transfer, then the file name will
travel with the message for use with a receive file call (see
[“AMHRCEFI. (receive file)” on page 254 for more details). Note that
the file name sent will exactly match the supplied file name; it will
not be converted or expanded in any way.

The name of the message object to be used to send the file (input).
This can be used to specify the Correlation ID for example. The
Correlation ID can be set from the message object using the object
interface (see L i ions”). If
SNDMSGNAME is specified as a space or low value, the system default
send message name (constant: AMSD-SND-MSG) is used.

Completion code (output).

Reason code (output).

The message object is implicitly reset by this call.

The system default object is used when you set SNDMSGNAME as a space or low

value.

262 MQSeries Application Messaging Interface

COBOL high-level interface

AMHSNMS (send message)

Function to send a datagram (send and forget) message.
CALL "AMHSNMS' USING HSESSION, SENDER, POLICY, DATALEN, DATA,

SNDMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 SENDER

01 POLICY

01 DATALEN

01 DATA

01 SNDMSGNAME
01 COMPCODE
01 REASON

HSESSION

SENDER

POLICY

DATALEN

DATA
SNDMSGNAME

COMPCODE
REASON

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a sender service (input). If specified as a space or low
value, the system default sender name (constant: AMSD-SND) is
used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (SNDMSGNAME) using the object interface (see

4).
The message data, if DATALEN is non-zero (input).

The name of a message object for the message being sent (input). If
DATALEN is zero, the message object also holds any message data. If

specified as a space or low value, the system default message name
(constant: AMSD-SND-MSG) is used.

Completion code (output).

Reason code (output).

Chapter 10. The COBOL high-level interface 263

COBOL high-level interface

AMHSNRQ (send request)

Function to send a request message.
CALL 'AMHSNRQ' USING HSESSION, SENDER, POLICY, RESPNAME, DATALEN,

DATA, SNDMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 SENDER
01 POLICY
01 RESPNAME
01 DATALEN
01 DATA

01 SNDMSGNAME

01 COMPCODE
01 REASON

HSESSION

SENDER

POLICY

RESPNAME

DATALEN

DATA
SNDMSGNAME

COMPCODE
REASON

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a sender service (input). If specified as a space or low
value, the system default sender name (constant: AMSD-SND) is
used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

The name of the receiver service to which the response to this send
request will be sent (input). See AMHRCRQ (receive request).

The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (SNDMSGNAME) using the object interface (see

linterface functions” on page 294).

The message data, if DATALEN is non-zero (input).

The name of a message object for the message being sent (input). If
specified as a space or low value, the system default message name
(constant: AMSD-SND-MSG) is used.

Completion code (output).

Reason code (output).

264 MQSeries Application Messaging Interface

COBOL high-level interface

AMHSNRS (send response)

Function to send a response to a request message.
CALL 'AMHSNRS' USING HSESSION, SENDER, POLICY, RCVMSGNAME, DATALEN,

DATA, SNDMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION
01 SENDER

01 POLICY

01 RCVMSGNAME
01 DATALEN

01 DATA

01 SNDMSGNAME
01 COMPCODE
01 REASON

HSESSION
SENDER

POLICY

RCVMSGNAME

DATALEN

DATA
SNDMSGNAME

COMPCODE
REASON

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of the sender service (input). It must be set to the SENDER
specified for the AMHRCRQ receive request.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

The name of the received message that this message is a response
to (input). It must be set to the RCVMSGNAME specified for the
AMHRCRQ receive request.

The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (SNDMSGNAME) using the object interface (see

linterface functions” on page 29d).

The message data, if DATALEN is non-zero (input).

The name of a message object for the message being sent (input). If
specified as a space or low value, the system default message name
(constant: AMSD-SND-MSG) is used.

Completion code (output).

Reason code (output).

Chapter 10. The COBOL high-level interface 265

COBOL high-level interface
AMHSB (subscribe)

Function to register a subscription with a publish/subscribe broker.

Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix * RECEIVER’.

Subscribing applications can exploit content based publish/subscribe by passing a
filter on the AMHSUB call.

CALL 'AMHSB' USING HSESSION, SUBSCRIBER, POLICY, RESPNAME,
TOPICLEN, TOPIC, FILTERLEN, FILTER,
SUBMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION PIC S9(9) BINARY.

01 SUBSCRIBER PIC X(n).

01 POLICY PIC X(n).

01 RESPNAME PIC X(n).

01 TOPICLEN PIC S9(9) BINARY.

01 TOPIC PIC X(n).

01 FILTERLEN PIC S9(9) BINARY.

01 FILTER PIC X(n).

01 SUBMSGNAME PIC X(n).

01 COMPCODE PIC S9(9) BINARY.

01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).
SUBSCRIBER The name of a subscriber service (input). If specified as a space or

low value, the system default subscriber name (constant:
AMSD-SUB) is used.

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

RESPNAME The name of the receiver service to which the response to this
subscribe request will be sent (input). If specified as a space or low
value, no response is sent.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

TOPICLEN The length of the topic for this subscription, in bytes (input).

TOPIC The topic for this subscription (input). Publications that match this
topic, including wildcards, will be sent to the subscriber. Multiple
topics can be specified in the message object (SUBMSGNAME) using the

object interface (see 'Message interface functions” on page 294).
FILTERLEN The length in bytes of the filter (input).
FILTER The filter to be added (input). The syntax of the filter string is

described in the MQSeries Integrator Version 2.0 Programming Guide

SUBMSGNAME The name of a message object for the subscribe message (input). If
specified as a space or low value, the system default message name
(constant: AMSD-SND-MSG) is used.

COMPCODE Completion code (output).
REASON Reason code (output).

266 MQSeries Application Messaging Interface

COBOL high-level interface

AMHTERM (terminate)

Closes the session, closes and deletes any implicitly created objects, and deletes the
session. If MQSeries is the transaction coordinator, any outstanding units of work
are committed (if the application terminates without an AMHTERM call being
issued, any outstanding units of work are backed out).

CALL "AMHTERM' USING HSESSION, POLICY, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION PIC S9(9) BINARY.

01 POLICY PIC X(n).

01 COMPCODE PIC S9(9) BINARY.

01 REASON PIC S9(9) BINARY.

HSESSION The session handle returned by AMHINIT (input).

POLICY The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

COMPCODE Completion code (output).

REASON Reason code (output).

Chapter 10. The COBOL high-level interface 267

COBOL high-level interface

AMHUN (unsubscribe)

Function to remove a subscription from a publish/subscribe broker.
CALL '"AMHUN' USING HSESSION, SUBSCRIBER, POLICY, RESPNAME,

TOPICLEN, TOPIC, FILTERLEN, FILTER,
UNSUBMSGNAME, COMPCODE, REASON.

Declare the parameters as follows:

01 HSESSION

01 SUBSCRIBER

01 POLICY

01 RESPNAME
01 TOPICLEN
01 TOPIC

01 FILTERLEN
01 FILTER

01 UNSUBMSGNAME

01 COMPCODE
01 REASON

HSESSION

SUBSCRIBER

POLICY

RESPNAME

TOPICLEN
TOPIC

FILTERLEN

FILTER

UNSUBMSGNAME

COMPCODE
REASON

Usage notes

PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC S9(9) BINARY.
PIC X(n).
PIC X(n).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

The session handle returned by AMHINIT (input).

The name of a subscriber service (input). If specified as a space or
low value, the system default subscriber name (constant:
AMSD-SUB) is used.

The name of a policy (input). If specified as a space or low value,
the system default policy name (constant: AMSD-POL) is used.

The name of the receiver service to which the response to this
unsubscribe request will be sent (input).

The length of the topic, in bytes (input).

The topic that identifies the subscription which is to be removed
(input). Multiple topics can be specified in the message object

(UNSUBMSGNAME) using the object interface (see !Message interfacd
h I : 4 252&')'

To deregister all topics, a policy providing this option must be
specified (this is not the default policy). Otherwise, to remove a
previous subscription the topic information specified must match
that specified on the relevant AMHSB subscribe request.

The length in bytes of the filter (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

The filter that identifies the subscription to be removed (input).
The syntax of the filter string is described in the MQSeries
Integrator Version 2.0 Programming Guide

The name of a message object for the unsubscribe message (input).
If specified as a space or low value, the system default message
name (constant: AMSD-SND-MSG) is used.

Completion code (output).

Reason code (output).

To successfully remove a previous subscription, you must ensure that the topic,
filter, and subscriber queue information exactly matches that used on the original
subscribe request.

268 MQSeries Application Messaging Interface

Chapter 11. COBOL object interface overview

This chapter contains an overview of the structure of the COBOL object interface.
Use it to find out what functions are available in this interface.

The object interface provides sets of interface functions for each of the following

objects:

Session page bzd
Message page bz3
Sender page bzd
Receiver page bzd
Distribution list page bzd
Publisher page b4
Subscriber page bzd
Policy page bzd

These interface functions are invoked as necessary by the high-level functions.
They are made available to the application programmer through this object-style
interface to provide additional function where needed. An application program can
mix high-level functions and object-interface functions as required.

Details of the interface functions for each object are given in the following pages.
Follow the page references to see the detailed descriptions of each function.

Details of the object interface functions used by each high-level function are given
on page bad

© Copyright IBM Corp. 1999, 2000 269

COBOL object interface overview

Session interface functions

The session object creates and manages all other objects, and provides the scope
for a unit of work.

Session management
Functions to create, open, close, and delete a session object.

AMSECR (create) page bsd
AMSEOP (open) page bod
AMSECL (close) page bsd
AMSEDL (delete) page bsd

Create objects

Functions to create message, sender, receiver, distribution list, publisher, subscriber,
and policy objects. Handles to these objects are returned by these functions.

AMSECRMS (create message)
page bsd

AMSECRSN (create sender) page
AMSECRRC (create receiver) page bs7
AMSECRDL (create distribution list)

page
AMSECRPB (create publisher)

page bs7
AMSECRSB (create subscriber)

page

AMSECRPO (create policy) page

Get object handles
Functions to get the handles for a message, sender, receiver, distribution list,
publisher, subscriber, and policy objects with a specified name (needed if the
objects were created implicitly by the high-level interface).
AMSEGHMS (get message handle)
page ko2
AMSEGHSN (get sender handle)
page bad
AMSEGHRC (get receiver handle)
page
AMSEGHDL (get distribution list handle)
page bail
AMSEGHPB (get publisher handle)
page bad
AMSEGHSB (get subscriber handle)
page bod
AMSEGHPO (get policy handle)
page bad

270 MQSeries Application Messaging Interface

COBOL object interface overview

Delete objects

Functions to delete message, sender, receiver, distribution list, publisher, subscriber,
and policy objects.
AMSEDLMS (delete message)

page bsd
AMSEDLSN (delete sender) page bad
AMSEDLRC (delete receiver) page bad
AMSEDLDL (delete distribution list)

page
AMSEDLPB (delete publisher)

page Bad
AMSEDLSB (delete subscriber)

page Ra1l
AMSEDLPO (delete policy) page bad

Transactional processing

Functions to begin, commit, and rollback a unit of work.

AMSEBG (begin) page bad
AMSECM (commit) page bsd
AMSERB (rollback) page bod

Error handling

Functions to clear the error codes, and return the completion and reason codes for
the last error associated with the session object.

AMSECLEC (clear error codes)

page ka4
AMSEGTLE (get last error codes)

page ka1l

Chapter 11. COBOL object interface overview 271

COBOL object interface overview

Message interface functions

A message object encapsulates an MQSeries message descriptor (MQMD) structure.
It also contains the message data if this is not passed as a separate parameter.

Get values

Functions to get the coded character set ID, correlation ID, encoding, format, group
status, message ID, name, report code, and type of the message object.

AMMSGTCC (get CCSID) page
AMMSGTCI (get correl ID) page

AMMSGELC (get element CCSID)
page bad

AMMSGTEN (get encoding) page Bod

AMMSGTEFO (get format) page Bod

AMMSGTGS (get group status)
page Bod

AMMSGTMI (get message ID)
page

AMMSGTNA (get name) page kod

AMMSGTRC (get report code)
page

AMMSGTTY (get type) page

Set values

Functions to set the coded character set ID, correlation ID, encoding, format, and
group status of the message object.

AMMSSTCC (set CCSID) page
AMMSSTCI (set correl ID) page

AMMSSELC (set element CCSID)

page B1d
AMMSSTEN (set encoding) page B1d
AMMSSTFO (set format) page B1d
AMMSSTGS (set group status)

page kul

Reset values

Function to reset the message object to the state it had when first created.

AMMSRS (reset) page

Read and write data

Functions to get the length of the data, get and set the data offset, and read or
write byte data to or from the message object at the current offset.

AMMSGTDL (get data length)
page

272 MQSeries Application Messaging Interface

COBOL object interface overview

AMMSGTDO (get data offset)

page Ball
AMMSSTDO (set data offset) page
AMMSREBY (read bytes) page

AMMSWRBY (write bytes) page B1J

Publish/subscribe topics

Functions to manipulate the topics in a publish/subscribe message.
AMMSADTO (add topic) page ko2
AMMSDETO (delete topic) page bad
AMMSGTTO (get topic) page Bod
AMMSGTTC (get topic count)
page Bod

Publish/subscribe filters

Functions to manipulate the filters in a publish/subscribe message.

AMMSADFI (add filter) page bad
AMMSDEFI (delete filter) page bod
AMMSGTFI (get filter) page Bod

AMMSGTEFC(get filter count) page kod

Publish/subscribe name/value elements
Functions to manipulate the name/value elements in a publish/subscribe message.
AMMSADEL (add element) page bod
AMMSDEEL (delete element) page bod
AMMSGTEL (get element) page B0l
AMMSGTEC (get element count)

page Bl
AMMSDENE (delete named element)

page bod
AMMSGTNE (get named element)

page

AMMSGTNC (get named element count)
page

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the message.

AMMSCLEC (clear error codes)
page bad
AMMSGTLE (get last error) page Bod

Chapter 11. COBOL object interface overview 273

COBOL object interface overview

Sender interface functions

A sender object encapsulates an MQSeries object descriptor (MQOD) structure for
sending a message.

Open and close

Functions to open and close the sender service.

AMSNOP (open) page B14
AMSNCL (close) page Bid
Send
Function to send a message.
AMSNSN (send) page kid
AMSNSNFL(send file) page B1d
Get values
Functions to get the coded character set ID, encoding, and name of the sender
service.

AMSNGTCC (get CCSID) page B14
AMSNGTEN (get encoding) page k14
AMSNGTNA (get name) page kg

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the sender service.

AMSNCLEC (clear error codes)
page B13
AMSNGTLE (get last error) page B4

274 MQSeries Application Messaging Interface

COBOL object interface overview

Receiver interface functions

A receiver object encapsulates an MQSeries object descriptor (MQOD) structure for
receiving a message.

Open and close

Functions to open and close the receiver service.
AMRCOP (open) page B2d
AMRCCL (close) page k21

Receive and browse

Functions to receive or browse a message.

AMRCRC (receive) page kod
AMRCRCEFL (receive file) ~ page B23
AMRCBR (browse) page B1d

AMRCBRSE (browse selection mess%)
page

Get values

Functions to get the definition type, name, and queue name of the receiver service.

AMRCGTDT (get definition type)

page
AMRCGTNA (get name) page k22
AMRCGTON (get queue name)

page B24

Set values

Function to set the queue name of the receiver service.

AMRCSTON (set queue name)
page B2d

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver service.

AMRCCLEC (clear error codes)
page
AMRCGTLE (get last error) page B2d

Chapter 11. COBOL object interface overview 275

COBOL object interface overview

Distribution list interface functions

A distribution list object encapsulates a list of sender services.

Open and close

Functions to open and close the distribution list service.

AMDLOP (open) page B2d
AMDLCL (close) page B2d

Send
Function to send a message to the distribution list.
AMDLSN (send) page kod
AMDLSNFL (send file) page Bad

Get values

Functions to get the name of the distribution list service, a count of the sender
services in the list, and a sender service handle.

AMDLGTNA (get name) page kod
AMDLGTSC (get sender count)

page B2d
AMDLGTSH (get sender handle)

page B2d

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the distribution list.

AMDLCLEC (clear error codes)
page B27
AMDLGTLE (get last error) page B27

276 MQSeries Application Messaging Interface

COBOL object interface overview

Publisher interface functions

A publisher object encapsulates a sender service. It provides support for publishing
messages to a publish/subscribe broker.

Open and close
Functions to open and close the publisher service.

AMPBOP (open) page Bad
AMPBCL (close) page Bad
Publish
Function to publish a message.
AMPBPB (publish) page Bad
Get values
Functions to get the coded character set ID, encoding, and name of the publisher
service.

AMPBGTCC (get CCSID) page B3
AMPBGTEN (get encoding) page ka3
AMPBGTNA (get name) page ka4

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the publisher.

AMPBCLEC (clear error codes)
page B3
AMPBGTLE (get last error) page B33

Chapter 11. COBOL object interface overview 277

COBOL object interface overview

Subscriber interface functions

A subscriber object encapsulates both a sender service and a receiver service. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

Open and close
Functions to open and close the subscriber service.

AMSBOP (open) page Bad
AMSBCL (close) page kad

Broker messages

Functions to subscribe to a broker, remove a subscription, and receive publications
from the broker.

AMSBSB (subscribe) page Bad

AMSBUN (unsubscribe) page Bad

AMSBRC (receive) page Bad
Get values

Functions to get the coded character set ID, definition type, encoding, name, and
queue name of the subscriber service.

AMSBGTCC (get CCSID) page B3d
AMSBGTDT (get definition type)

page
AMSBGTEN (get encoding) page RaZ
AMSBGTNA (get name) page kad
AMSBGTON (get queue name)

page Bad

Set value

Function to set the queue name of the subscriber service.

AMSBSTOQN (set queue name)
page

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver.

AMSBCLEC (clear error codes)
page Bad
AMSBGTLE (get last error) page kad

278 MQSeries Application Messaging Interface

COBOL object interface overview

Policy interface functions

A policy object encapsulates details of how the message is handled (such as
priority, persistence, and whether it is included in a unit of work).

Get values
Functions to get the name of the policy, and the wait time set in the policy.
AMPOGTNA (get name) page Bad

AMPOGTWT (get wait time) page bad

Set value

Function to set the wait time for a receive using the policy.

AMPOSTWT (set wait time) page Bad

Error handling

Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the policy.

AMPOCLEC (clear error codes)
page Bad
AMPOGTLE (get last error) page Rad

Chapter 11. COBOL object interface overview 279

COBOL object interface overview

High-level functions
Each high-level function described in !Chapter 10. The COBOI. high-level

interface” on page 243 calls a number of the object interface functions, as shown

below.

Table 5. Object interface calls used by the high-level functions

High-level function

Equivalent object interface calls

AMHBACK (backout)

AMSECRPO / AMSEGHPO
AMSERB

AMHBEGIN (begin)

AMSECRPO / AMSEGHPO
AMSEBG

AMHBRMS (browse message)

AMSECRRC / AMSEGHRC
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMRCBRSE

AMHCMIT (commit)

AMSECRPO / AMSEGHPO
AMSECM

AMHINIT (initialize) AMSECR
AMSEOP
AMHTERM (terminate) AMSECL
AMSEDL

AMHSNMS (send message)
AMHSNRQ (send request)
AMHSNRS (send response)

AMSECRSN / AMSEGHSN
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSNSN

AMHRCMS (receive message)
AMHRCRQ (receive request)

AMSECRRC / AMSEGHRC
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMRCRC

AMHSNEFL (send file)

AMSECRSN / AMSEGHSN
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSNSNFL

AMHRCEFL (receive file)

AMSECRRC / AMSEGHRC
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMRCRCFL

AMHPB (publish)

AMSECRPB / AMSEGHPB
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMPBPB

AMHSB (subscribe)

AMSECRSB / AMSEGHSB
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSBSB

AMHUN (unsubscribe)

AMSECRSB / AMSEGHSB
AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSBUN

AMHRCPB (receive publication)

AMSECRSB / AMSEGHSB

AMSECRPO / AMSEGHPO
AMSECRMS / AMSEGHMS
AMSBRC

280 MQSeries Application Messaging Interface

COBOL object interface overview

If an object already exists, the appropriate call to get its handle is used instead of
calling the create function again. For example, if the policy object exists,
AMSEGHPO (get policy handle) is used instead of AMSECRPO (create policy).

Chapter 11. COBOL object interface overview 281

282 MQSeries Application Messaging Interface

Chapter 12. COBOL object interface reference

In the following sections the COBOL object interface functions are listed by the
object they refer to:

Session page bsd
Message page bod
Sender page kid
Receiver page kid
Distribution list page k24
Publisher page Bad
Subscriber page Bad
Policy page Bad

Within each section the functions are listed in alphabetical order.

Note that all functions return a completion code (COMPCODE) and a reason code
(REASON). The completion code can take one of the following values:
AMCC-OK

Function completed successfully
AMCC-WARNING

Function completed with a warning
AMCC-FAILED

An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the

reason for the error or warning (see ’/Appendix A Reason cades” on page 481)).

Most functions require a handle to the object they reference. If this handle is not
valid, the results are unpredictable.

© Copyright IBM Corp. 1999, 2000 283

COBOL session interface

Session interface functions

A session object provides the scope for a unit of work and creates and manages all
other objects, including at least one connection object. Each (MQSeries) connection
object encapsulates a single MQSeries queue manager connection. The session
object definition specifying the required queue manager connection can be
provided by a repository policy definition and the local host file, or the local host
file only which by default will name a single local queue manager with no
repository. (Under CICS, there can be only one queue manager connected to a
given CICS system, so in th