<|lI!

MQSeries™ for AS/400®

Application Programming Reference
(ILE RPG)

Va1

SC34-5559-00

<|lI!

MQSeries™ for AS/400®

Application Programming Reference
(ILE RPG)

Va1

SC34-5559-00

Note!
Before using this information and the product it supports, be sure to read the general information under FAppendix Gl

First edition (March 2000)
This edition applies to MQSeries for AS/400 Version 5 Release 1 and to any subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
Tables

About thisbookXx
Who this book is for . . . Y
What you need to know to understand thls book Y
How to use this book Lxii
Appearance of text in this book T (|
Terms used in thisbook Xxii

[ERN

Part 1. Data type descriptions

Chapter 1. Elementary data types
Conventions used in the descriptions of data types
Elementary data types . e
MQBYTE - Byte
MQBYTEn - String of n bytes
MQCHAR - character .
MQCHARnN - String of n characters
MQHCONN - Connection handle .
MQHOBJ — Object handle .
MQLONG - Long integer .
Elementary data types .

OO ADdMBEDMOWWWW

Chapter 2. Structure data types —
programming considerations 7
Conventions used in the descriptions of data types .7
Language considerations 8
8

COPY files . e
Calls9
Structures . . . X0
Notational conventlons P ()
MQI procedures.10
Threading considerations.10
MQI call parameters1
Named constants1
Commitment control1
Coding the bound calls11
Coding the dynamiccalls.12
Chapter 3. MQBO Begln optlons .. .15
Overview15
Fields15
Initial values and RPG declaratlon16
RPG declaration.16

Chapter 4. MQCIH CICS bndge header 17

Overview18
Fields 19
Initial values and RPG declaratlon28

RPG declaration.29

Chapter 5. MQCNO Connect optlons 31

Overview . . . R

© Copyright IBM Corp. 1994, 2000

Fields . . . X
Initial values and RPG declaratlon35
RPG declaration.35

Chapter 6. MQDH Distribution header 37

Overview P V4
Fields38
Initial values and RPG declaratlon P |

RPG declaration.41

Chapter 7. MQDLH Dead-letter header 43

Overview43
Fields45
Initial values and RPG declaratlon PR |

RPG declaration.49

Chapter 8. MQGMO - Get-message

optonsbl1
Overviewh”
Fields . . . T Y §
Initial values and RPG declaratlon T4

RPG declaration.74

Chapter 9. MQIIH - IMS bndge header 77

Overview oL T7
Fields18
Initial values and RPG declaratlon L.8

RPG declaration.82

Chapter 10. MQMD - Message

descriptor83
Overview84
Fields85
Initial values and RPG declaratlon Lo ... 129

RPG declaration130

Chapter 11. MQMDE - Message

descriptor extension 131
Overview.13
Fields1383
Initial values and RPG declaratlon13

RPG declaration136

Chapter 12. MQOD Object descrlptor 137

Overview. 137
Fields138
Initial values and RPG declaratlon 145

RPG declaration146

Chapter 13. MQOR Object record 147

Overview. 147
Fields 4
Initial values and RPG declaratlon 148

RPG declaration

Chapter 14. MQPMO - Put message
options
Overview.
Fields .
Initial values and RPG declaratlon
RPG declaration

Chapter 15. MQPMR - Put-message
record
Overview.
Fields .
Initial values and RPG declaratlon
RPG declaration

Chapter 16. MQRMH - Message

reference header

Overview.

Fields .

Initial values and RPG declaratlon
RPG declaration

. 148

. 149

. 149
. 150
. 163
. 164

. 165

. 165
. 165
. 167
. 167

. 169

. 169
. 170
. 175
. 176

Chapter 17. MQRR Response record 177

Overview. . 177
Fields . L 177
Initial values and RPG declaratlon . 177
RPG declaration . 178
Chapter 18. MQTM Trlgger message 179
Overview. . 179
Fields . . 180
Initial values and RPG declaratlon . 182
RPG declaration . 183
Chapter 19. MQTMC2 - Trigger
message (character format) . 185
Overview. . 185
Fields . . 186
Initial values and RPG declaratlon . 187
RPG declaration . 187
Chapter 20. MQWIH - Work
information header . 189
Overview. . 189
Fields . . 189
Initial values and RPG declaratlon . 191
RPG declaration . 192
Chapter 21. MQXQH - Transmission
queue header . 193
Overview. . 193
Fields . . 196
Initial values and RPG declaratlon . 197
RPG declaration . 197
Part 2. Function calls 199

iv MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 22. Call descriptions
Conventions used in the call descriptions .

Chapter 23. MQBACK - Back out
changes

Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 24. MQBEGIN - Begln unit of
work

Syntax.

Parameters .

Usage notes .

RPG invocation (ILE)

Chapter 25. MQCLOSE Close object

Syntax.
Parameters .
Usage notes .
RPG invocation.

Chapter 26. MQCMIT - Commit
changes

Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 27. MQCONN - Connect
gueue manager

Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 28. MQCONNX - Connect
gqueue manager (extended)

Syntax.

Parameters .

RPG invocation.

Chapter 29. MQDISC - Disconnect
qgueue manager

Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 30. MQGET Get message
Syntax.

Parameters .

Usage notes .

RPG invocation.

. 201

. 201

. 203

. 203
. 203
. 204
. 205

. 207

. 207
. 207
. 208
. 210

211
211
L 211
. 214
. 215

. 217

. 217
. 217
. 218
. 219

. 221

. 221
. 221
. 224
. 225

. 227

. 227
. 227
. 228

. 229

. 229
. 229
. 230
. 230

231
. 231
. 231
. 235
. 239

Chapter 31. MQINQ - Inquire about

object attributes . 241
Syntax. . 241
Parameters . . 241
Usage notes . . 248
RPG invocation. . 250
Chapter 32. MQOPEN Open object 251
Syntax. . 251
Parameters . . 251
Usage notes . . 259
RPG invocation. . 264
Chapter 33. MQPUT Put message 265
Syntax. . 265
Parameters . . 265
Usage notes . . 270
RPG invocation. . 273
Chapter 34. MQPUTL - Put one

message . 275
Syntax. . 275
Parameters . . 275
Usage notes . . 279
RPG invocation. . 281
Chapter 35. MQSET - Set object

attributes . 283
Syntax. . 283
Parameters . . 283
Usage notes . . 286
RPG invocation. . 287
Part 3. Attributes of objects . 289
Chapter 36. Attributes of MQSeries

objects . 291
Chapter 37. Attributes for all queues 293
Chapter 38. Attributes for local

queues and model queues . 299
Chapter 39. Attributes for local

definitions of remote queues . 313
Chapter 40. Attributes for alias

queues . 315
Chapter 41. Attributes for namelists 317
Chapter 42. Attributes for process

definitions . . 319

Chapter 43. Attributes for the queue

manager 323
Part 4. Applications 335
Chapter 44. Building your appllcatlon 337
MQSeries copy files 337
Preparing your programs to run 337
Interfaces to the AS/400 external syncpomt
manager 338
Syncpoints in CICS for AS/400 appllcatlons ... 339
Chapter 45. Sample programs 341
Features demonstrated in the sample programs . . 342
Preparing and running the sample programs. . . 343
Running the sample programs. 343
The Put sample program 343
Design of the Put sample program P . ¥
The Browse sample program 344
Design of the Browse sample program 344
The Get sample program34
Design of the Get sample program 345
The Request sample program 346
Using triggering with the Request sample. .. 346
Design of the Request sample program. . . . 347
The Echo sample program 348
Design of the Echo sample program 349
The Inquire sample program 349
Design of the Inquire sample program35
The Set sample program.35
Design of the Set sample program38
The Triggering sample programs 352
The AMQ3TRG4 sample trigger monltor .. . 352
The AMQ3SRV4 sample trigger server 352
Ending the Triggering sample programs . . . 353
Running the samples using remote queues . . . 353
Part 5. Appendixes 355
Appendix A. Returncodes 357
Completioncodes.35
Reasoncodes35
Appendix B. MQSeries constants. . . 421
List of constants . . . P A
LN* (Lengths of character strlng and byte flelds) 421
AC* (Accounting token) 422
ATT* (Accounting token type). 422
AT* (Application type)423
BND* (Binding) 423
BO* (Begin options) 423
BO* (Begin options structure |dent|f|er) ... 423
BO* (Begin options version) 423
CA* (Character attribute selector). 424
AD* (CICS header ADS descriptor) 424
CC* (Completion code) 425
CS* (Coded character set |dent|f|er) 425
CT* (CICS header conversational task) 425
FC* (CICS header facility)425

Contents V

CF* (CICS header function name)

WI* (CICS header get-wait interval) .

CI* (Correlation identifier) .

MQ* (Call identifier) .

CIF* (CICS header flags).

CI* (CICS header length) .

CI* (CICS header structure identifier)

CI* (CICS header version) . .

LT* (CICS header link type)

CMLV* (Command level)

CN* (Connect options)

CN* (Connect options structure |dent|f|er)
CN* (Connect options version)

CO* (Close options) .

OL* (CICS header output data Iength)

CRC* (CICS header return code) . .

SC* (CICS header transaction start code)

TE* (CICS header task end status)

CU* (CICS header unit-of-work control)
DCC* (Convert-characters masks and factors)
DCC* (Convert-characters options) .

DH* (Distribution header structure |dent|f|er)
DH* (Distribution header version)

DHF* (Distribution header flags) .

DL* (Distribution list support).

DL* (Dead-letter header structure |dent|f|er)
DL* (Dead-letter header version) . .o
DX* (Data-conversion-exit parameter structure
identifier).

DX* (Data-conversion- exrt parameter structure
version)

El* (Expiry |nterval)

EN* (Encoding). .

EN* (Encoding masks) .

EN* (Encoding for packed- deC|maI |ntegers)
EN* (Encoding for floating-point numbers)
EN* (Encoding for binary integers) .

EV* (Event reporting)

FB* (Feedback) .

FM* (Format) .

GI* (Group identifier)

GM* (Get message options).

GM* (Get message options structure |dent|f|er)
GM* (Get message options version) .

GS* (Group status)

HC* (Connection handle)

HO* (Object handle) .

IA* (Integer attribute selector) .

IAU* (IMS authenticator)

IAV* (Integer attribute value) .

ICM* (IMS commit mode) .

1I* (IMS header flags).

II* (IMS header length) . .

1I* (IMS header structure |dent|f|er)

1I* (IMS header version) .

ISS* (IMS security scope)

ITI* (IMS transaction instance |dent|f|er)

ITS* (IMS transaction state).

MD* (Message descriptor structure |dent|f|er)
MD* (Message descriptor version) .
ME* (Message descriptor extension length)

MQSeries for AS/400, V5.1 APR (ILE RPG)

. 425
. 425
. 425
. 426
. 426
. 426
. 426
. 426
. 426
. 427
. 427
. 427
. 427
. 427
. 427
. 427
. 428
. 428
. 428

428

. 428

429

. 429
. 429
. 429
. 429
. 429

. 430

. 430
. 430
. 430
. 430
. 430
. 430
. 431
. 431
. 431
. 432
. 432
. 432

433

. 433
. 433
. 433
. 433
. 433
. 435
. 435
. 435
. 435
. 435
. 435
. 435
. 435
. 436
. 436

436

. 436
. 436

ME* (Message descriptor extension structure
identifier). . .
ME* (Message descrlptor extensmn ver3|0n)
MEF* (Message descriptor extension flags)
MS* (Message delivery sequence).

MF* (Message flags) .

MF* (Message-flags masks).

MI* (Message identifier) .

MO* (Match options) .

MT* (Message type) .

MTK* (Message token)

NC* (Name count)

OD* (Object descriptor Iength)

OD* (Object descriptor structure |dent|f|er)
OD* (Object descriptor version)

Oll* (Object instance identifier)

OL* (Original length).

OO* (Open options) .

OT* (Object type) .

PE* (Persistence)

PL* (Platform) .

PM* (Put message optrons)

PM* (Put message options structure Iength)
PM* (Put message options structure identifier)
PM* (Put message options version) .

PF* (Put message record field flags) .

PR* (Priority)

QA* (Inhibit get)

QA* (Inhibit put) . .

QA* (Backout hardening)

QA* (Queue shareability)

QD* (Queue definition type)

QSIE* (Service interval events)

QT* (Queue type) .

RC* (Reason code).

RL* (Returned length)

RM* (Reference message header structure
identifier). . .
RM* (Reference message header verS|on)
RM* (Reference message header flags) .
RO* (Report options) .

RO* (Report-options masks)

SCO* (Queue scope) .

SEG* (Segmentation) .

SI* (Security identifier)

SIT* (Security identifier type) .

SP* (Syncpoint).

SS* (Segment status) .

TC* (Trigger control) . .

TM* (Trigger message structure |dent|f|er)
TM* (Trigger message version)

TC* (Trigger message character format structure
identifier). .

TC* (Trigger message character format versmn)
TT* (Trigger type) .

US* (Usage) .

WI* (Wait interval)

WI* (Workload information header flags)
WI* (Workload information header structure
length)

. 436
. 436
. 437
. 437
. 437
. 437
. 437
. 437
. 438
. 438
. 438
. 438
. 438
. 438
. 438
. 439
. 439
. 439
. 439
. 439
. 440
. 440

440

. 440
. 440
. 441
. 441
. 441
. 441
. 441
. 441
. 441
. 442
. 442
. 446

. 446
. 446
. 446
. 446
. 447
. 447
. 447
. 447
. 447
. 448
. 448
. 448
. 448

. 448

. 448
448

. 449
. 449
. 449
. 449

. 449

WI* (Workload information header structure

identifier). 449
WI* (Workload |nformat|on header verS|on) . 449
XR* (Data-conversion-exit response). 450
XQ* (Transmission queue header structure

identifier). 450
XQ* (Transmission queue header verS|on) .. 450

Appendix C. Rules for valldatlng MQI

options 451
MQOPENccall451
MQPUTcall.451
MQPUTlcall452
MQGETecall.452
MQCLOSEcall.452
Appendix D. Machine encodings . . . 453
Binary-integer encoding. 453
Packed-decimal-integer encoding. 454
Floating-point encoding. 454
Constructing encodings455
Analyzing encodings.455
Using arithmetic 455
Summary of machine archltecture encodlngs . . 456
Appendix E. Report options 457
Structure of the report field. 457
Analyzing the report field458
Using arithmetic458
Structure of the message-flags fleld459
Appendix F. Data conversion 461
Conversion processing461
Processing conventions462
Conversion of report messages 467

MQDXP - Data-conversion exit parameter.

Fields . .
RPG declaration (ILE)
MQXCNVC - Convert characters .
Syntax.
Parameters .
RPG invocation. .
MQCONVX - Data conversion e><|t .
Syntax.
Parameters .
Usage notes .
RPG invocation.

Appendix G. Notices .
Programming interface information .
Trademarks .

Glossary of terms and abbreviations

Bibliography .
MQSeries cross-platform publlcatlons
MQSeries platform-specific publications
Softcopy books . .
BookManager format .
HTML format .
Portable Document Format (PDF)
PostScript format .
Windows Help format

MQSeries information available on the Internet .

Related publications .
Index .

Sending your comments to IBM

Contents

. 468
. 468
. 473
. 473
. 473
. 473
. 478
. 478
. 479
. 479
. 480
. 482

. 483
. 484
. 485

487

. 499
. 499
. 501
. 502
. 502
. 502
. 502
. 502
. 502
. 502
. 502

. 503

. 509

Vii

Viil MQSeries for AS/400, V5.1 APR (ILE RPG)

Tables

wn

N o ok

o

11.
12.
13.
14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.
30.

Elementary data types

RPG COPY files

ILE RPG bound calls supported by each
service program .

Fields in MQBO .

Initial values of fields in MQBO

Fields in MQCIH.

Contents of error information flelds in MQCIH

structure

Initial values of f|elds in MQCIH
Fields in MQCNO

Initial values of fields in MQCNO
Fields in MQDH . .

Initial values of fields in MQDH
Fields in MQDLH

Initial values of fields in MQDLH
Fields in MQGMO .

MQGET options relating to messages in
groups and segments of logical messages
Outcome when MQGET or MQCLOSE call not

consistent with group and segment
information

Initial values of flelds in MQGMO
Fields in MQIIH .

Initial values of fields in MQIIH
Fields in MQMD. .

Initial values of fields in MQMD
Fields in MQMDE .

Queue-manager action when MQMDE
specified on MQPUT or MQPUTL.
Initial values of fields in MQMDE
Fields in MQOD . .
Initial values of fields in MQOD .
Fields in MQOR .

Initial values of fields in MQOR
Fields in MQPMO .

© Copyright IBM Corp. 1994, 2000

11
. 15
. 16

.17

. 18
. 28
.31
. 35
.37
.41
. 43
. 49
. 51

. 63

. 65
.74
77

. 81

. .83
. 129

. 131

. 132
. 135
. 137
. 145
. 147
. 148
. 149

31.

32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.

48.
49.
50.
51.

52.
53.
54.
55.
56.

57.
58.

59.

MQPUT options relating to messages in
groups and segments of logical messages .
Outcome when MQPUT or MQCLOSE call
not consistent with group and segment
information .

Initial values of flelds in MQPMO

Fields in MQPMR .

Fields in MQRMH . .

Initial values of fields in MQRMH

Fields in MQRR. .

Initial values of fields in MQRR

Fields in MQTM . .

Initial values of fields in MQTM .

Fields in MQTMC2

Initial values of fields in MQTMC2

Fields in MQWIH . .

Initial values of fields in MQWIH

Fields in MQXQH . .

Initial values of fields in MQXQH

Effect of MQCLOSE options on various types

of object and queue .

Valid MQOPEN options for each queue type
Attributes for all queues .

Attributes for local and model queues
Attributes for local definitions of remote
queues. .

Attributes for namellsts . .
Attributes for process definitions .
Attributes for the queue manager .

Names of the sample programs

Sample programs demonstrating use of the
MQI .o

Client/Server sample program detalls
Summary of encodings for machine
architectures .

Fields in MQDXP .

. 153

. 1565
. 163
. 165
. 169
. 175
. 177
177
. 179
. 182
. 185
. 187
. 189
. 191
. 193
. 197

. 212

256

. 293

299

. 313
. 317
. 319
. 323
. 341

. 342

348

. 456
. 468

ix

X MQSeries for AS/400, V5.1 APR (ILE RPG)

About this book

MQSeries for AS/400 Version 5 Release 1 is part of the IBM® MQSeries set of
products. It provides application programming services on the AS/400 platform
that allow a new style of programming. This style enables you to code indirect
program-to-program communication using message queues.

This book:

» Gives a full description of the MQSeries for AS/400 programming interface in
the RPG programming language.

» Contains information on how to build an executable application.
» Contains descriptions of sample programs.

— Notes to users

1. This book describes the MQSeries for AS/400 programming interface only
in the RPG-ILE programming language. If you require details of the
RPG-OPM programming language, you should refer to the MQSeries
Application Programming Reference (RPG) V4R2 manual.

2. There are two approaches that can be taken when using the MQI from
within an RPG program:
* Dynamic calls to the QMQM program interface.
 Static Bound Calls to the MQI procedures.

Using bound calls is generally the preferred method, particulary when the
program is making repeated calls to the MQI, as it requires less resource.

New functionality is only available through the Static Bound Call
interface.

For information on how to design and write applications that use the services
MQSeries provides, see the i icati i i

Who this book is for

This book is for the designers of applications that will use message queuing
techniques, and for programmers who have to implement these designs.

What you need to know to understand this book

To write message queuing applications using MQSeries for AS/400, you need to
know how to write programs in the RPG programming language.

To understand this book, you do not need to have written message queuing
programs before.

© Copyright IBM Corp. 1994, 2000 Xi

About this book

How to use this book

This book contains reference information that enables you to find out quickly, for
example, how to use a particular call or how to correct a particular error situation.

The book is divided into parts:
| leccrintiond
Describes the data types that the MQI calls use.
Part 2_Function calld
Describes the parameters and return codes for the calls,
| : q f obiecid
Describes the attributes of MQSeries for AS/400 objects.
E Anolicationd
Describes how to build MQSeries for AS/400 programs and the design of
the sample applications that are provided with MQSeries for AS/400.

Appearance of text in this book

This book uses the following type styles:
MQOPEN

Example of the name of a call
CMPCOD Example of the name of a parameter of a call
MQMD

Example of the name of a data type or structure
OOSETA

Example of the name of a value

Terms used in this book

All new terms that this book introduces are defined in the glossary. In the body of
this book, the following shortened names are used for these products:
CICS The CICS® for AS/400 product

Also, we use the following shortened name for this language compiler:
RPG Means the IBM ILE RPG for OS/400™ compiler

Xil MQSeries for AS/400, V5.1 APR (ILE RPG)

Part 1. Data type descriptions

Chapter 1. Elementary data types
Conventions used in the descriptions of data types
Elementary data types .
MQBYTE - Byte
MQBYTEn - String of n bytes
MQCHAR - character
MQCHARnN - String of n characters
MQHCONN - Connection handle .
MQHOBJ — Object handle .
MQLONG - Long integer .
Elementary data types .

Chapter 2. Structure data types — programming
considerations .
Conventions used in the descrlptlons of data types
Language considerations

COPY files .

Calls .

Structures .

Notational conventlons

MQI procedures . .

Threading considerations .

MQI call parameters

Named constants

Commitment control

Coding the bound calls

Coding the dynamic calls.

Chapter 3. MQBO - Begin options

Overview .

Fields

Initial values and RPG declaratlon
RPG declaration .

Chapter 4. MQCIH - CICS bridge header
Overview .
Fields
Initial values and RPG declaratlon
RPG declaration .

Chapter 5. MQCNO - Connect options

Overview .

Fields

Initial values and RPG declaratlon
RPG declaration .

Chapter 6. MQDH - Distribution header

Overview .

Fields

Initial values and RPG declaratlon
RPG declaration .

Chapter 7. MQDLH - Dead-letter header
Overview .
Fields

© Copyright IBM Corp. 1994, 2000

GO o~ WWWW

0 oo N~

. 10
. 10
. 10
11
11
11
11
.12

. 15
. 15
.15
. 16
. 16

.17
. 18
.19
. 28
. 29

.31
.31
.31
. 35
. 35

.37
.37
. 38
.41
.41

. 43
. 43
. 45

Initial values and RPG declaration.
RPG declaration .

Chapter 8. MQGMO - Get-message options
Overview .
Fields
Initial values and RPG declaratlon
RPG declaration .

Chapter 9. MQIIH - IMS bridge header

Overview .

Fields

Initial values and RPG declaratlon
RPG declaration .

Chapter 10. MQMD - Message descriptor
Overview .
Fields
Initial values and RPG declaratlon
RPG declaration

Chapter 11. MQMDE - Message descriptor
extension
Overview.
Fields .
Initial values and RPG declaratlon
RPG declaration

Chapter 12. MQOD - Object descriptor

Overview. o

Fields .

Initial values and RPG declaratlon
RPG declaration

Chapter 13. MQOR - Object record

Overview.

Fields .

Initial values and RPG declaratlon
RPG declaration

Chapter 14. MQPMO - Put message options
Overview.
Fields .
Initial values and RPG declaratlon
RPG declaration

Chapter 15. MQPMR - Put-message record
Overview.
Fields .
Initial values and RPG declaratlon
RPG declaration

Chapter 16. MQRMH - Message reference
header
Overview.

. 49
. 49

. 51
.51
. 51

.74
.74

s
.77
. 78

. 81
. 82

. 83

. 84

. .85
. 129

. 130

. 131
. 131
. 133
. 135
. 136

. 137
. 137
. 138
. 145
. 146

. 147
. 147
. 147
. 148
. 148

. 149
. 149
. 150
. 163
. 164

. 165
. 165
. 165
. 167
. 167

. 169
. 169

Data types

Fields .
Initial values and RPG declaratlon
RPG declaration

Chapter 17. MQRR - Response record

Overview.

Fields .

Initial values and RPG declaratlon
RPG declaration

Chapter 18. MQTM - Trlgger message

Overview.

Fields .

Initial values and RPG declaratlon
RPG declaration

Chapter 19. MQTMC2 - Trigger message
(character format)
Overview.
Fields .
Initial values and RPG declaratlon
RPG declaration

Chapter 20. MQWIH - Work information header
Overview.
Fields .
Initial values and RPG declaratlon
RPG declaration

Chapter 21. MQXQH - Transmission queue
header
Overview.
Fields .
Initial values and RPG declaratlon

RPG declaration

2 MQSeries for AS/400, V5.1 APR (ILE RPG)

. 170
. 175
. 176

. 177
. 177
. 177
. 177
. 178

. 179
. 179
. 180
. 182
. 183

. 185
. 185
. 186
. 187
. 187

189

. 189
. 189
. 191
. 192

. 193
. 193
. 196
. 197
. 197

Chapter 1. Elementary data types

This chapter describes the elementary data types used by the MQI.

The elementary data types are:

* MQBYTE - Byte

* MQBYTEN - String of n bytes

* MQCHAR - Single-byte character

* MQCHARN - String of n single-byte characters
* MQHCONN - Connection handle

* MQHOBIJ - Object handle

* MQLONG - Long integer

Conventions used in the descriptions of data types

For each elementary data type, this chapter gives a description of its usage, in a
form that is independent of the programming language. This is followed by a
typical declarations in the ILE version of the RPG programming language. The
definitions of elementary data types are included here to provide consistency. RPG
uses ‘D’ specifications where working fields can be declared using whatever
attributes you need. You can, however, do this in the calculation specifications
where the field is used.

To use the elementary data types, you create:
* A /COPY member containing all the data types, or
* An external data structure (PF) containing all the data types. You then need to

specify your working fields with attributes ‘LIKE’ the appropriate data type
field.

The benefits of the second option are that the definitions can be used as a ‘FIELD
REFERENCE FILE’ for other AS/400 objects. If an MQ data type definition
changes, it is a relatively simple matter to recreate these objects.

Elementary data types

All of the other data types described in this chapter equate either directly to these
elementary data types, or to aggregates of these elementary data types (arrays or
structures).

MQBYTE - Byte
The MQBYTE data type represents a single byte of data. No particular

interpretation is placed on the byte—it is treated as a string of bits, and not as a
binary number or character. No special alignment is required.

An array of MQBYTE is sometimes used to represent an area of main storage
whose nature is not known to the queue manager. For example, the area may
contain application message data or a structure. The boundary alignment of this
area must be compatible with the nature of the data contained within it.

© Copyright IBM Corp. 1994, 2000

Elementary data types

MQBYTEN — String of n bytes
Each MQBYTEN data type represents a string of n bytes, where n can take one of
the following values:
16, 24, 32, or 64

Each byte is described by the MQBYTE data type. No special alignment is
required.

If the data in the string is shorter than the defined length of the string, the data
must be padded with nulls to fill the string.

When the queue manager returns byte strings to the application (for example, on
the MQGET call), the queue manager always pads with nulls to the defined length
of the string.

Constants are available that define the lengths of byte string fields; see TWNE|

MQCHAR - character

The MQCHAR data type represents a single character. The coded character set
identifier of the character is that of the queue manager (see the CodedCharSetId
attribute on page @). No special alignment is required.

Note: Application message data specified on the MQGET, MQPUT, and MQPUT1
calls is described by the MQBYTE data type, not the MQCHAR data type.

MQCHARN — String of n characters

Each MQCHARN data type represents a string of n characters, where n can take
one of the following values:

4, 8, 12, 16, 20, 28, 32, 48, 64, 128, or 256

Each character is described by the MQCHAR data type. No special alignment is
required.

If the data in the string is shorter than the defined length of the string, the data
must be padded with blanks to fill the string. In some cases a null character can be
used to end the string prematurely, instead of padding with blanks; the null
character and characters following it are treated as blanks, up to the defined length
of the string. The places where a null can be used are identified in the call and
data type descriptions.

When the queue manager returns character strings to the application (for example,
on the MQGET call), the queue manager always pads with blanks to the defined
length of the string; the queue manager does not use the null character to delimit
the string.

Constants are available that define the lengths of character string fields; see Ernd

MQHCONN — Connection handle

The MQHCONN data type represents a connection handle, that is, the connection
to a particular queue manager. A connection handle must be aligned on its natural
boundary.

4 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Elementary data types

Note: Applications must test variables of this type for equality only.

MQHOBJ — Object handle

The MQHOBJ data type represents an object handle that gives access to an object.
An object handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

MQLONG - Long integer
The MQLONG data type is a 32-bit signed binary integer that can take any value

in the range —2 147 483 648 through +2 147 483 647, unless otherwise restricted
by the context, aligned on its natural boundary.

Elementary data types

Table 1. Elementary data types

Data type Representation

MQBYTE A 1-byte alphanumeric field.
MQBYTE16 A 16-byte alphanumeric field.
MQBYTE24 A 24-byte alphanumeric field.
MQBYTE32 A 32-byte alphanumeric field.
MQBYTE64 A 64-byte alphanumeric field.
MQCHAR A 1-byte alphanumeric field.
MQCHAR4 A 4-byte alphanumeric field.
MQCHARS An 8-byte alphanumeric field.
MQCHAR12 A 12-byte alphanumeric field.
MQCHARL16 A 16-byte alphanumeric field.
MQCHAR20 A 20-byte alphanumeric field.
MQCHAR28 A 28-byte alphanumeric field.
MQCHAR32 A 32-byte alphanumeric field.
MQCHARA48 A 48-byte alphanumeric field.
MQCHARG4 A 64-byte alphanumeric field.
MQCHAR128 A 128-byte alphanumeric field.
MQCHAR256 A 256-byte alphanumeric field.
MQHCONN A 10-digit signed integer.
MQHOBJ A 10-digit signed integer.
MQLONG A 10-digit signed integer.
PMQLONG A 10-digit signed integer.

Chapter 1. Elementary data types

5

Elementary data types

6 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 2. Structu
considerations

re data types — programming

This chapter describes the structure data types used by the MQI, which are:
* MQGMO - Get-message options

* MQMD - Message descriptor

* MQMDE - Message descriptor extension

* MQOD - Object descriptor

* MQOR - Object record

* MQPMO - Put-message options

* MQPMR - Put message record

* MQRMH - Message reference header

* MQRR - Response record

The MQI also uses the following structure data types, which are included in this
chapter for completeness, but they are not part of the application programming
interface.

* MQCIH - CICS bridge header

* MQDH - Distribution header

* MQDLH - Dead-letter (undelivered-message) header

+ MQIIH - IMS™ bridge header

* MQTM - Trigger message

* MQTMC2 - Trigger message (character format 2)

* MQWIH - Work Information header

* MQXQH - Transmission queue header

Note:

The MQDXP — data conversion exit parameter structure is in FAppendix F]

Data conversion” on page 461, together with the associated data conversion

calls.

Conventions used in

the descriptions of data types

The description of each structure data type contains the following sections:

Structure name

Fields

© Copyright IBM Corp. 1994, 2000

The name of the structure, followed by a brief description of the purpose
of the structure.

For each field, the name is followed by its elementary data type in
parentheses (); for example:

Version (10-digit signed integer)

There is also a description of the purpose of the field, together with a list
of any values that the field can take. Names of constants are shown in
uppercase; for example, GMSIDV. A set of constants having the same prefix
is shown using the * character, for example: 1A*.

In the descriptions of the fields, the following terms are used:

input You supply information in the field when you make a call.

Structure data types

output
The queue manager returns information in the field when the call
completes or fails.

input/output
You supply information in the field when you make a call, and the
gueue manager changes the information when the call completes
or fails.

Initial values

A table showing the initial values for each field in the data definition files
supplied with the MQI.

ILE declaration

Typical declaration of the structure in ILE.

Language considerations

This section contains information to help you use the MQI from the RPG
programming language.

COPY files

Various COPY files are provided as part of the definition of the message queue
interface (MQI), to assist with the writing of RPG application programs that use
message queuing. There are two sets of COPY files:

* COPY files with names ending with the letter “G” are for use with programs
that use static linkage.

* COPY files with names ending with the letter “R” are for use with programs
that use dynamic linkage.

The COPY files reside in QRPGLESRC in the QMQM library.

For each set of COPY files, there are two files containing named constants, and one
file for each of the structures. The COPY files are summarized in

Table 2. RPG COPY files

Filename (static |Filename Contents
linkage) (dynamic

linkage)
CMQBOG - Begin options structure
CMQCIHG CMQCIHR CICS information header structure
CMQCNOG - Connect options structure
CMQDHG CMQDHR Distribution header structure
CMQDLHG CMQDLHR Dead-letter (undelivered-message) header structure
CMQDXPG CMQDXPR Data-conversion-exit parameter structure
CMQGMOG CMQGMOR Get-message options structure
CMQIIHG CMQIIHR IMS information header structure
CMQMDG CMQMDR Message descriptor structure
CMQMDEG CMQMDER Message descriptor extension structure
CMQMD1G CMQMDIR Message descriptor structure version 1
CMQODG CMQODR Object descriptor structure
CMQORG CMQORR Object record structure

8 MQSeries for AS/400, V5.1 APR (ILE RPG)

Table 2. RPG COPY files (continued)

Language considerations

Filename (static |Filename Contents
linkage) (dynamic
linkage)

CMQPMOG CMQPMOR Put-message options structure
CMQRRG CMQRRR Response record structure
CMQTMG CMQTMR Trigger-message structure
CMQTMCG CMQTMCR Trigger message structure (character format)
CMQTMC2G CMQTMC2R Trigger message structure (character format) version 2
CMQWIHG CMQWIHR Work information header structure
CMQXQHG CMQXQHR Transmission-queue header structure
CMQG CMQR Named constants for main MQI
CMQXG CMQXR Named constants for data-conversion exit

Calls

In ‘Chapter 22 _Call descriptions™ on page 201, the calls are described using their

individual names. In RPG using dynamic linkage, all calls are made to the single
name QMQM, and the particular function required is specified by coding an
additional parameter which precedes the normal parameters for that call. The
following named constants may be used for this additional parameter, in order to
identify the function required:

Named constant
Function required

MQCLOS

Close object.

MQCONN

Connect queue manager.

MQDISC

Disconnect queue manager.

MQGET

Get message.
MQINQ

Inquire about object attributes.
MQOPEN

Open object.
MQPUT

Put message.
MQPUT1

Put one message.
MQSET

Set object attributes.

These constants have names which are the same as the calls they identify, with the
exception of the constant for the MQCLOSE call, which is abbreviated to

MQCLOS.

Note: The calls MQBACK, MQCMIT, and MQCONNYX, are not available to

applications running in compatibility mode.

Chapter 2. Structure data types — programming considerations

9

Language considerations

Structures

With the exception of the MQTMC structure, all MQ structures are defined with
initial values for the fields. These initial values are defined in the relevant table for
each structure.

The structure declarations do not contain DS statements. This allows the
application to declare either a single data structure or a multiple-occurrence data
structure, by coding the DS statement and then using the /COPY statement to
copy in the remainder of the declaration:

[0 L PR SR/ UE SN U. PUPIPUPRE SR SRR SIS IUPIPUPE IR o DUPRPIPRE S
D+ Declare an MQMD data structure with 5 occurrences
DMYMD DS 5

D/COPY CMQMDR

Notational conventions

The sections that follow show how the:
e Calls should be invoked

e Parameters should be declared

» Various data types should be declared

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lower case “n” is used to represent a numeric constant. When
the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required.

MQI procedures

When using the ILE bound calls, you must bind to the MQI procedures when you
create your program. These procedures are exported from the following service
programs as appropriate:

QMQM/AMQZSTUB
This service program provides compatibility bindings for applications
written prior to version 5.1 that do not require access to any of the new
capabilities provided in version 5.1. The signature of this service program
matches that contained in version 4.2.1.

QMQM/LIBMQM
This service program contains the single-threaded bindings for version 5.1.
See below for special considerations when writing threaded applications.

QMQM/LIBMQM R
This service program contains the multi-threaded bindings for version 5.1.
See below for special considerations when writing threaded applications.

Use the CRTPGM command to create your programs. For example, the following
command would create a single-threaded program that uses the ILE bound calls:

CRTPGM PGM(MYPROGRAM) BNDSRVPGM(QMQM/LIBMQM)

Threading considerations

In general, RPG programs should not use the multi-threaded service programs.
Exceptions are RPG programs created using the version 4.4 ILE RPG compiler and
containing the THREAD (*SERIALIZE) keyword in the control specification. However,
even though these programs are thread-safe, careful consideration must be given to
the overall application design, as THREAD (*SERIALIZE) forces serialization of RPG
procedures at the module level, and this may have an adverse affect on overall
performance.

10 MQSeries for AS/400, V5.1 APR (ILE RPG)

Language considerations

Where RPG programs are used as data-conversion exits, they must be made
thread-safe, and should be recompiled using the version 4.4 ILE RPG compiler
with THREAD (*SERIALIZE) specified in the control specification.

For further information about threading, see the AS/400 ILE RPG/400 Reference, and
the AS/400 ILE RPG/400 Programmer’s Guide.

MQI call parameters

Many parameters passed to the MQI can have more than one concurrent function.
This is because the integer value passed is often tested on the setting of individual
bits within the field, and not on its total value. This allows you to ‘add’ several
functions together and pass them as a single parameter.

Named constants

There are a large number of different integer and character values that provide
data interchange between your application program and the MQI. To facilitate a
more readable and consistent approach to using these values, they have all been
allocated named constants.

You are recommended to use these named constants and not the values they
represent, as this improves the readibility of the program source code. Also, if the
value of any of these constants should change, you will only need to recompile
your program to incorporate the changes.

All named constants are available by referencing the COPY members.

Commitment control

The MQI syncpoint functions MQCMIT and MQBACK are available to ILE RPG
programs running in normal mode; these calls allow the program to commit and
back out changes to MQ resources.

The MQCMIT and MQBACK calls are not available to ILE RPG programs running
in compatibility mode. For these programs you should use the operation codes
COMMIT and ROLBK.

Coding the bound calls
MQI ILE procedures are listed in [ahle 3.

Table 3. ILE RPG bound calls supported by each service program

Name of call LIBMQM and AMQZSTUB AMQVSTUB
LIBMQM_R

MQBACK e

MQBEGIN v

MQCMIT e

MQCLOSE I v
MQCONN e e
MQCONNX v

MQDISC e e
MQGET v o
MQINQ e e

Chapter 2. Structure data types — programming considerations 11

Language considerations

Table 3. ILE RPG bound calls supported by each service program (continued)

Name of call LIBMQM and AMQZSTUB AMQVSTUB
LIBMQM_R

MQOPEN v -

MQPUT v v

MQPUT1 . v

MQSET v v

MQXCNVC - v

To use these procedures you need to:

1. Define the external procedures in your ‘D’ specifications. These are all available
within the COPY file member CMQG containing the named constants.

2. Use the CALLP operation code to call the procedure along with its parameters.

For example the MQOPEN call requires the inclusion of the following code:

DR e L T

Dxx MQOPEN Call -- Open Object (From COPY file CMQG) *k
D**
D*

[0 O U SN RC DR SO SN SO, TSP SRR < DU S A
DMQOPEN PR EXTPROC('MQOPEN"')

D* Connection handle

D HCONN 10I 0 VALUE

D* Object descriptor

D 0BJDSC 224A

D* Options that control the action of MQOPEN

D OPTS 10I 0 VALUE

D* Object handle

D HOBJ 10I 0

D+ Completion code

D CMPCOD 10I 0

D+ Reason code qualifying CMPCOD

D REASON 10I 0

D*

To call the procedure, after initializing the various parameters, you need the
following code:
S B PN IR Ny SN TP RPN :JP SUUT APURE SN

CALLP MQOPEN (HCONN : MQOD : OPTS : HOBJ :
CMPCOD : REASON)

Here, the structure MQOD is defined using the COPY member CMQODG which
breaks it down into its components.

Coding the dynamic calls

To use the MQI through dynamic calls to QMQM, you require the following code.
The example is again MQOPEN:

C Z-ADD MQOPEN cID

C CALL rQMQM"

C PARM CID 90
C PARM HCONN 90
C PARM MQOD

C PARM 0PTS 90
C PARM HOBJ 90
C PARM CMPCOD 90
C PARM REASON 90

12 MQSeries for AS/400, V5.1 APR (ILE RPG)

Language considerations
Here, the structure MQOD is defined using the COPY member CMQODR which
splits it into its components.

Note: Function that is new in version 5 release 1 cannot be accessed by calls that
use dynamic linkage. For example, the MQBACK, MQBEGIN, MQCMIT,
and MQCONNX calls can be used only with static linkage.

Chapter 2. Structure data types — programming considerations

13

Language considerations

14 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 3. MQBO

- Begin options

The following table summarizes the fields in the structure.

Table 4. Fields in MQBO

Field Description Page
BOSID Structure identifier i3
BOVER Structure version number g
BOOPT Options that control the action of MQBEGIN ig

Overview
The MQBO structure is an input/output parameter for the MQBEGIN call.
This structure is supported in the following environments: AlX, HP-UX, OS/2,
0OS/400, Sun Solaris, Windows NT.

Fields

BOSID (4-byte character string)

S

tructure identifier.

The value must be:
BOSIDV

Identifier for begin-options structure.

This is always an input field. The initial value of this field is BOSIDV.

BOVER (10-digit signed integer)
Structure version number.

The value must be:
BOVER1

The following constant specifies the version number of the current version:

Version number for begin-options structure.

BOVERC

Current version of begin-options structure.

This is always an input field. The initial value of this field is BOVERL1.

BOOPT (10-digit signed integer)
Options that control the action of MQBEGIN.

The value must be:

BONONE
No options specified.

This is always an input field. The initial value of this field is BONONE.

© Copyright IBM Corp. 1994, 2000

15

MQBO - Begin options

Initial values and RPG declaration

Table 5. Initial values of fields in MQBO

Field name Name of constant Value of constant
BOSID BOSIDV 'BObb"' (See note 1)
BOVER BOVER1 1
BOOPT BONONE 0
Notes:
1. The symbol ‘b’ represents a single blank character.
RPG declaration
Dx..l. .ot 2eentec s 3t i o bl bl T
D* MQBO Structure
D*
D* Structure identifier
D BOSID 1 4
D* Structure version number
D BOVER 5 8I 0
Dx Options that control the action of MQBEGIN
D BOOPT 9 121 0

16 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 4. MQCIH - CICS bridge header

The following table summarizes the fields in the structure.

Table 6. Fields in MQCIH

Field Description Page
CISID Structure identifier fid
CIVER Structure version number fid
CILEN Length of MQCIH structure id
CIENC Reserved id
CICSI Reserved id
CIFMT MQ™ format name of data that follows MQCIH
CIFLG Flags
CIRET Return code from bridge
cIcc MQ completion code or CICS EIBRESP k1
CIREA MQ reason or feedback code, or CICS EIBRESP2 b1
CIUOW Unit-of-work control b1
CIGWI Wait interval for MQGET call issued by bridge k1
task

CILT Link type %
cIoL Output COMMAREA data length %]
CIFKT Bridge facility release time %
CIADS Send/receive ADS descriptor %]
cIct Whether task can be conversational %
CITES Status at end of task 7|
CIFAC BVT token value b4
CIFNC MQ call name or CICS EIBFN function b4
CIAC Abend code b4
CIAUT Password or passticket %3]
CIRFM MQ format name of reply message b
CIRSI Remote sysid to use b3
CIRTI Remote transid to attach b3
CITI Transaction to attach b3
CIFL Terminal emulated attributes
CIAI AID key DG
CIsc Transaction start code DG
CICNC Abend transaction code DG
CINTI Next transaction to attach b7
Note: The remaining fields are not present if CIVER is less than CIVER2.

CICP Cursor position %
CIEO Offset of error in message %

© Copyright IBM Corp. 1994, 2000

17

MQCIH - CICS bridge header

Table 6. Fields in MQCIH (continued)
Field Description Page

CIIT Item number of last message read]

Overview

The MQCIH structure describes the information that can be present at the start of a
message sent to the CICS bridge through MQSeries for OS/390™. The structure can
be omitted if the values required by the application are the same as the initial
values shown in [[ahle 8 on page 29 and the bridge is running with AUTH=LOCAL
or IDENTIFY. The format name of this structure is FMCICS.

The current version of MQCIH is CIVER2. Fields that exist only in the version-2
structure are identified as such in the descriptions that follow. The declaration of
MQCIH provided in the COPY file contains the new fields, with the initial value of
the CIVER field set to GMVER?2.

Special conditions apply to the character set and encoding used for the MQCIH
structure and application message data:

* Applications that connect to the queue manager which owns the CICS bridge
queue must provide an MQCIH structure that is in the character set and
encoding of the queue manager. This is because data conversion of the MQCIH
structure is not performed in this case.

* Applications that connect to other queue managers can provide an MQCIH
structure that is in any of the supported character sets and encodings;
conversion of the MQCIH and application message data is performed by the
gueue manager as necessary.

Note: There is one exception to this. If the queue manager which owns the CICS
bridge queue is using CICS for distributed queuing, the MQCIH must be
in the character set and encoding of that queue manager.

* The application message data following the MQCIH structure must be in the
same character set and encoding as the MQCIH structure. The CICSI and CIENC
fields in the MQCIH structure cannot be used to specify the character set and
encoding of the application message data.

The application must ensure that fields documented as “request” fields have
appropriate values in the message that the application sends to the CICS bridge;
these fields are input to the bridge. Fields documented as “response” fields are set
by the CICS bridge in the reply message that the bridge sends to the application.

Error information is returned in the CIRET, CIFNC, CICC, CIREA, and CIAC fields.
Which of them is set depends on the value of the CIRET field; see Tahle 7.

Table 7. Contents of error information fields in MQCIH structure

CIRET CIFNC cIcc CIREA CIAC
CRCO000 - - - -
CRCO003 - - FBC* -
CRC002 CRC008 MQ call name MQ CMPCOD MQ REASON -
CRC001 CRC006 CRC007 CRC009 CICS EIBFN CICS EIBRESP CICS EIBRESP2 -

CRC004 CRCO005

CICS ABCODE

18 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQCIH - CICS bridge header

Fields

CISID (4-byte character string)

Structure identifier.

The value must be:

CISIDV

Identifier for CICS information header structure.

This is a request field. The initial value of this field is CISIDV.
CIVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

CIVER1
Version-1 CICS information header structure.

CIVER2
Version-2 CICS information header structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

CIVERC
Current version of CICS information header structure.

This is a request field. The initial value of this field is CIVER2.

CILEN (10-digit signed integer)
Length of MQCIH structure.
The value must be one of the following:

CILEN1
Length of version-1 CICS information header structure.

CILEN2
Length of version-2 CICS information header structure.
The following constant specifies the length of the current version:
CILENC
Length of current version of CICS information header structure.
This is a request field. The initial value of this field is CILEN2.
CIENC (10-digit signed integer)
Reserved.
This is a reserved field; its value is not significant. The initial value of this field
is 0.
CICSI (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field
is 0.

Chapter 4. MQCIH - CICS bridge header 19

MQCIH - CICS bridge header

CIFMT (8-byte character string)
MQ format name of data that follows MQCIH.

This is the MQ format name of the data that follows the MQCIH structure. The
rules for coding this are the same as those for the MDFMT field in MQMD.

This format name is also used for the reply message, if the CIRFM field has the
value FMNONE.

If the request message results in the generation of an error reply message, the
error reply message has a format name of FMSTR.

This is a request field. The length of this field is given by LNFMT. The initial
value of this field is FMNONE.

CIFLG (10-digit signed integer)
Flags.

The value must be:

CIFNON
No flags.

This is a request field. The initial value of this field is CIFNON.

CIRET (10-digit signed integer)
Return code from bridge.

This is the return code from the CICS bridge describing the outcome of the
processing performed by the bridge. The CIFNC, CICC, CIREA, and CIAC fields
may contain additional information (see [Mahle 7 on page 1d). The value is one
of the following:

CRCO000
(0, X'000") No error.

CRCO001
(1, X'001") EXEC CICS statement detected an error.

CRCO002
(2, X'002") MQ call detected an error.

CRCO003
(3, X'003") CICS bridge detected an error.

CRCO004
(4, X'004") CICS bridge ended abnormally.

CRCO005
(5, X'005") Application ended abnormally.

CRCO006
(6, X'006") Security error occurred.

CRCO007
(7, X'007") Program not available.

CRCO008
(8, X'008") Second or later message within current unit of work not
received within specified time.

20 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQCIH - CICS bridge header
CRCO009
(9, X'009") Transaction not available.
This is a response field. The initial value of this field is CRCO00O.

CICC (10-digit signed integer)
MQ completion code or CICS EIBRESP.

The value returned in this field is dependent on CIRET; see Table 7 on page 14.

This is a response field. The initial value of this field is CCOK

CIREA (10-digit signed integer)
MQ reason or feedback code, or CICS EIBRESP2.

The value returned in this field is dependent on CIRET; see Mable 7 on page 14.

This is a response field. The initial value of this field is RCNONE.

CIUOW (10-digit signed integer)
Unit-of-work control.

This controls the unit-of-work processing performed by the CICS bridge. You
can request the bridge to run a single transaction, or one or more programs
within a unit of work. The field indicates whether the CICS bridge should start
a unit of work, perform the requested function within the current unit of work,
or end the unit of work by committing it or backing it out. Various
combinations are supported, to optimize the data transmission flows.

The value must be one of the following:

CUONLY
Start unit of work, perform function, then commit the unit of work
(DPL and 3270).

CUCONT

Additional data for the current unit of work (3270 only).
CUFRST

Start unit of work and perform function (DPL only).
CUMIDL

Perform function within current unit of work (DPL only).
CULAST

Perform function, then commit the unit of work (DPL only).
CUCMIT

Commit the unit of work (DPL only).
CUBACK

Back out the unit of work (DPL only).

This is a request field. The initial value of this field is CUONLY.
CIGWI (10-digit signed integer)
Wait interval for MQGET call issued by bridge task.

This field is applicable only when CIUOW has the value CUFRST. It allows the
sending application to specify the approximate time in milliseconds that the
MQGET calls issued by the bridge should wait for second and subsequent

Chapter 4. MQCIH - CICS bridge header 21

MQCIH - CICS bridge header

request messages for the unit of work started by this message. This overrides
the default wait interval used by the bridge. The following special values may
be used:

WIDFLT
Default wait interval.

This causes the CICS bridge to wait for the period of time specified
when the bridge was started.

WIULIM
Unlimited wait interval.

This is a request field. The initial value of this field is WIDFLT.

CILT (10-digit signed integer)
Link type.

This indicates the type of object that the bridge should try to link. The value
must be one of the following:

LTPROG
DPL program.

LTTRAN
3270 transaction.

This is a request field. The initial value of this field is LTPROG.

CIODL (10-digit signed integer)
Output COMMAREA data length.

This is the length of the user data to be returned to the client in a reply
message. This length includes the 8-byte program name. The length of the
COMMAREA passed to the linked program is the maximum of this field and
the length of the user data in the request message, minus 8.

Note: The length of the user data in a message is the length of the message
excluding the MQCIH structure.

If the length of the user data in the request message is smaller than CI0DL, the
DATALENGTH option of the LINK command is used; this allows the LINK to be
function-shipped efficiently to another CICS region.

The following special value can be used:

OLINPT
Output length is same as input length.

This value may be needed even if no reply is requested, in order to
ensure that the COMMAREA passed to the linked program is of
sufficient size.

This is a request field used only for DPL programs. The initial value of this
field OLINPT.

CIFKT (10-digit signed integer)
Bridge facility release time.

This is the length of time in seconds that the bridge facility will be kept after
the user transaction has ended.

22 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQCIH - CICS bridge header

This is a request field used only for 3270 transactions. The initial value of this
field is 0.

CIADS (10-digit signed integer)
Send/receive ADS descriptor.

This is an indicator specifying whether ADS descriptors should be sent on
SEND and RECEIVE BMS requests. The value must be one of the following:

ADNONE
No ADS descriptor.

ADSEND
Send ADS descriptor.

ADRECV
Receive ADS descriptor.

ADMSGF
Receive ADS descriptor.

This is a request field used only for 3270 transactions. The initial value of this
field is ADNONE.

CICT (10-digit signed integer)
Whether task can be conversational.

This is an indicator specifying whether the task should be allowed to issue
requests for more information, or should abend. The value must be one of the
following:

CTYES
Task is conversational.

CTNO
Task is not conversational.

This is a request field used only for 3270 transactions. The initial value of this
field is CTNO.

CITES (10-digit signed integer)
Status at end of task.

This field shows the status of the user transaction at end of task. One of the
following values is returned:

TENOSY
Not synchronized.

The user transaction has not yet completed and has not syncpointed.

TECMIT
Commit unit of work.

The user transaction has not yet completed, but has syncpointed the
first unit of work.

TEBACK
Back out unit of work.

The user transaction has not yet completed. The current unit of work
will be backed out.

Chapter 4. MQCIH - CICS bridge header 23

MQCIH - CICS bridge header

TEENDT
End task.

The user transaction has ended (or abended).

This is a response field used only for 3270 transactions. The initial value of this
field is TENOSY.

CIFAC (8-byte bit string)
BVT token value.

This is an 8-byte bridge-facility token. The purpose of a bridge-facility token is
to allow multiple transactions in a pseudoconversation to use the same bridge
facility (virtual 3270 terminal). In the first, or only, message in a
pseudoconversation, a value of FCNONE should be set; this tells CICS to
allocate a new bridge facility for this message. A bridge-facility token is
returned in response messages when a nonzero CIFKT is specified on the input
message. Subsequent input messages can then use the same bridge-facility
token.

The following special value is defined:
FCNONE
No BVT token specified.

This is both a request and a response field used only for 3270 transactions. The
length of this field is given by LNFAC. The initial value of this field is
FCNONE.

CIFNC (4-byte character string)
MQ call name or CICS EIBFN function.

The value returned in this field is dependent on CIRET; see [Mahle 7 on page 18,
The following values are possible when CIFNC contains an MQ call name:

CFCONN
MQCONN call.

CFGET
MQGET call.

CFINQ
MQINQ call.

CFOPEN
MQOPEN call.

CFPUT
MQPUT call.

CFPUT1
MQPUTL call.

CFNONE

No call.
This is a response field. The length of this field is given by LNFUNC. The
initial value of this field is CFNONE.

CIAC (4-byte character string)
Abend code.

24 MQseries for AS/400, V5.1 APR (ILE RPG)

MQCIH - CICS bridge header
The value returned in this field is dependent on CIRET; see [[able 7 on page 1§.

This is a response field. The length of this field is given by LNABNC. The
initial value of this field is 4 blank characters.

CIAUT (8-byte character string)
Password or passticket.

This is a password or passticket. If user-identifier authentication is active for
the CICS bridge, CIAUT is used with the user identifier in the MQMD identity
context to authenticate the sender of the message.

This is a request field. The length of this field is given by LNAUTH. The initial
value of this field is 8 blanks.

CIRSI (8-byte character string)
Reserved.

This is a reserved field. The value must be 8 blanks.

CIRFM (8-byte character string)
MQ format name of reply message.

This is the MQ format name of the reply message which will be sent in
response to the current message. The rules for coding this are the same as
those for the MDFMT field in MQMD.

This is a request field used only for DPL programs. The length of this field is
given by LNFMT. The initial value of this field is FMNONE.

CIRSI (4-byte character string)
Remote sysid to use.

This is a reserved field. The value must be 4 blanks. The length of this field is
given by LNRSID.

CIRTI (4-byte character string)
Remote transid to attach.

This is a reserved field. The value must be 4 blanks. The length of this field is
given by LNTRID.

CITI (4-byte character string)
Transaction to attach.

If CILT has the value LTTRAN, CITI is the transaction identifier of the user
transaction to be run; a nonblank value must be specified in this case.

If CILT has the value LTPROG, CITI is the transaction code under which all
programs within the unit of work are to be run. If the value specified is blank,
the CICS DPL bridge default transaction code (CKBP) is used. If the value is
nonblank, it must have been defined to CICS as a local TRANSACTION whose
initial program is CSQCBPO00. This field is applicable only when CIUOW has the
value CUFRST or CUONLY.

This is a request field. The length of this field is given by LNTRID. The initial
value of this field is 4 blanks.

Chapter 4. MQCIH - CICS bridge header 25

MQCIH - CICS bridge header

CIFL (4-byte character string)
Terminal emulated attributes.

This is the name of an installed terminal that is to be used as a model for the
bridge facility. A value of blanks means that CIFL is taken from the bridge
transaction profile definition, or a default value is used.

This is a request field used only for 3270 transactions. The length of this field
is given by LNFACL. The initial value of this field is 4 blanks.

CIAI (4-byte character string)
AID key.

This is the initial value of the AID key when the transaction is started. It is a
1-byte value, left justified.

This is a request field used only for 3270 transactions. The length of this field
is given by LNATID. The initial value of this field is 4 blanks.

CISC (4-byte character string)
Transaction start code.

This is an indicator specifying whether the bridge emulates a terminal
transaction or a STARTed transaction. The value must be one of the following:

SCSTRT
Start.

SCDATA
Start data.

SCTERM
Terminate input.

SCNONE
None.

In the response from the bridge, this field is set to the start code appropriate to
the next transaction ID contained in the CINTI field. The following start codes
are possible in the response:

SCSTRT

SCDATA

SCTERM

For CICS Transaction Server Version 1.2, this field is a request field only; its
value in the response is undefined.

For CICS Transaction Server Version 1.3 and subsequent releases, this is both a
request and a response field.

This field is used only for 3270 transactions. The length of this field is given by
LNSTCO. The initial value of this field is SCNONE.

CICNC (4-byte character string)
Abend transaction code.

This is the abend code to be used to terminate the transaction (normally a
conversational transaction that is requesting more data). Otherwise this field is
set to blanks.

26 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQCIH - CICS bridge header

This is a request field used only for 3270 transactions. The length of this field
is given by LNCNCL. The initial value of this field is 4 blanks.

CINTI (4-byte character string)
Next transaction to attach.

This is the name of the next transaction returned by the user transaction
(usually by EXEC CICS RETURN TRANSID). If there is no next transaction,
this field is set to blanks.

This is a response field used only for 3270 transactions. The length of this field
is given by LNTRID. The initial value of this field is 4 blanks.
CIRSZ2 (8-byte character string)
Reserved.
This is a reserved field. The value must be 8 blanks.
CIRS3 (8-byte character string)
Reserved.

This is a reserved field. The value must be 8 blanks.

The remaining fields are not present if CIVER is less than CIVER2.
CICP (10-digit signed integer)
Cursor position.

This is the initial cursor position when the transaction is started. Subsequently,
for conversational transactions, the cursor position is in the RECEIVE vector.

This is a request field used only for 3270 transactions. The initial value of this
field is 0. This field is not present if CIVER is less than CIVER2.

CIEO (10-digit signed integer)
Offset of error in message.

This is the position of invalid data detected by the bridge exit. This field
provides the offset from the start of the message to the location of the invalid
data.

This is a response field used only for 3270 transactions. The initial value of this
field is 0. This field is not present if CIVER is less than CIVER2.

CIII (10-digit signed integer)
Item number of last message read.
This is a reserved field. The value must be 0. This field is not present if CIVER
is less than CIVER2.

CIRS4 (10-digit signed integer)
Reserved.

This is a reserved field. The value must be 0. This field is not present if CIVER
is less than CIVER2.

Chapter 4. MQCIH - CICS bridge header 27

RPG declaration

Initial values and RPG declaration

28 MQSeries for AS/400,

Table 8. Initial values of fields in MQCIH

Field name Name of constant Value of constant
CISID CISIDV 'CIHb' (See note 1)
CIVER CIVER2 2

CILEN CILENZ2 180

CIENC None 0

CICSI None 0

CIFMT FMNONE "bbbbbbbb'
CIFLG CIFNON 0

CIRET CRCO000 0

cIcc CCOK 0

CIREA RCNONE 0

CIUOW CUONLY 273

CIGWI WIDFLT -2

CILT LTPROG 1

cIopL OLINPT -1

CIFKT None 0

CIADS ADNONE 0

CICT CTNO 0

CITES TENOSY 0

CIFAC FCNONE Nulls
CIFNC CFNONE "bbbb'
CIAC None "bbbb'
CIAUT None "bbbbbbbb'
CIRS1 None "bbbbbbbb'
CIRFM FMNONE "bbbbbbbb'
CIRSI None 'bbbb'
CIRTI None "bbbb'
CITI None 'bbbb'
CIFL None "bbbb'
CIAI None 'bbbb'
CISC SCNONE "bbbb'
CICNC None "bbbb'
CINTI None "bbbb'
CIRS? None 'bbbbbbbb'
CIRS3 None "bbbbbbbb'
CICP None 0

CIEO None 0

CIII None 0

CIRS4 None 0

V5.1 APR (ILE RPG)

RPG declaration

Table 8. Initial values of fields in MQCIH (continued)

Field name | Name of constant |Va|ue of constant

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration

[0 /SRS SRR IU U SR RN SPUPUPU . DUPIPOE SO ¢ PAPUPE P A
D+ MQCIH Structure

D*

D* Structure identifier

D CISID 1 4

D* Structure version number

D CIVER 5 81 0
D* Length of MQCIH structure

D CILEN 9 121 0
D* Reserved

D CIENC 13 161 0
D* Reserved

D CICSI 17 201 0
D* MQ format name of data that follows MQCIH
D CIFMT 21 28

D+ Flags

D CIFLG 29 321 0
D* Return code from bridge

D CIRET 33 361 0
D+ MQ completion code or CICS EIBRESP
D CICC 37 401 0
D* MQ reason or feedback code, or CICS EIBRESP2
D CIREA 41 441 0
D* Unit-of-work control

D CIUOW 45 481 0
D* Wait interval for MQGET call issued by bridge task
D CIGWI 49 521 0
D* Link type

D CILT 53 561 0
D* Qutput COMMAREA data Tength

D CIODL 57 60I 0
D* Bridge facility release time

D CIFKT 61 641 0
D+ Send/receive ADS descriptor

D CIADS 65 681 0
D* Whether task can be conversational
D CICT 69 721 0
D+ Status at end of task

D CITES 73 761 0
D* BVT token value

D CIFAC 77 84

D* MQ call name or CICS EIBFN function
D CIFNC 85 88

D+ Abend code

D CIAC 89 92

D* Password or passticket

D CIAUT 93 100

D* Reserved

D CIRS1 101 108

D+ MQ format name of reply message

D CIRFM 109 116

D* Remote sysid to use

D CIRSI 117 120

D* Remote transid to attach

D CIRTI 121 124

D* Transaction to attach

D CITI 125 128

Chapter 4. MQCIH - CICS bridge header 29

RPG declaration

D* Terminal emulated attributes

D CIFL 129 132

D* AID key

D CIAI 133 136

D* Transaction start code

D CISC 137 140

D* Abend transaction code

D CICNC 141 144

D* Next transaction to attach

D CINTI 145 148

D* Reserved

D CIRS2 149 156

D* Reserved

D CIRS3 157 164

D* Cursor position

D CICP 165 1681 0
D+ Offset of error in message

D CIEO 169 1721 0
D* Item number of Tlast message read

D CIII 173 1761 0
D* Reserved

D CIRS4 177 1801 0

30 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 5. MQCNO - Connect options

The following table summarizes the fields in the structure.

Table 9. Fields in MQCNO

Field Description Page
CNSID Structure identifier Rl
CNVER Structure version number R1
CNOPT Options that control the action of MQCONNX Rl
Note: The remaining fields are not present if CNVER is less than CNVER?2.

CNCCO Offset of MQCD structure for client connection B3
CNCCP Address of MQCD structure for client connection &3

Overview
The MQCNO structure is an input/output parameter for the MQCONNX call.

Fields
CNSID (4-byte character string)

Structure identifier.

The value must be:

CNSIDV

Identifier for connect-options structure.

This is always an input field. The initial value of this field is CNSIDV.
CNVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

CNVER1
Version-1 connect-options structure.

CNVER2
Version-2 connect-options structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.
The following constant specifies the version number of the current version:
CNVERC
Current version of connect-options structure.
This is always an input field. The initial value of this field is CNVERL.

CNOPT (10-digit signed integer)
Options that control the action of MQCONNX.

© Copyright IBM Corp. 1994, 2000 31

MQCNO - Connect options

Binding options: The following options control the type of MQ binding that
will be used; only one of these options can be specified:

CNSBND
Standard binding.

This option causes the application and the local-queue-manager agent
(the component that manages queuing operations) to run in separate
units of execution (generally, in separate processes). This arrangement
maintains the integrity of the queue manager, that is, it protects the
gueue manager from errant programs.

CNSBND should be used in situations where the application may not
have been fully tested, or may be unreliable or untrustworthy.
CNSBND is the default.

CNSBND is defined to aid program documentation. It is not intended
that this option be used with any other option controlling the type of
binding used, but as its value is zero, such use cannot be detected.

CNFBND
Fastpath binding.

This option causes the application and the local-queue-manager agent
to be part of the same unit of execution. This is in contrast to the
normal method of binding, where the application and the
local-queue-manager agent run in separate units of execution.

CNFBND is ignored if specified by an MQ client application;
processing continues as though the option had not been specified.

CNFBND may be of advantage in situations where the use of multiple
processes is a significant performance overhead compared to the
overall resource used by the application. An application that uses the
fastpath binding is known as a trusted application.

The following important points must be considered when deciding
whether to use the fastpath binding:

* Use of the CNFBND option compromises the integrity of the
queue manager, because it permits a rogue application to alter or
corrupt messages and other data areas belonging to the queue
manager. It should therefore be considered for use only in
situations where these issues have been fully evaluated.

* The application must not use asynchronous signals or timer
interrupts (such as sigki1l) with CNFBND. There are also
restrictions on the use of shared memory segments. Refer to the

IMQSeries Application Programming Guidd for more information.

* The application must not have more than one thread connected to
the queue manager at any one time.

* The application must use the MQDISC call to disconnect from the
gueue manager.

* The application must finish before ending the queue manager with
the endmgm command.

The following points apply to the use of CNFBND in the environments
indicated:

* On 0OS/400, the job must run under a user profile that belongs to the
QMQMADM group. Also, the program must not terminate abnormally,
otherwise unpredictable results may occur.

32 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQCNO - Connect options

For more information about the implications of using trusted

applications, see the IMQSeries Application Programming Guidd.

Default option: If none of the options described above is required, the
following option can be used:

CNNONE
No options specified.

CNNONE is defined to aid program documentation. It is not intended
that this option be used with any other, but as its value is zero, such
use cannot be detected.

This is always an input field. The initial value of this field is CNNONE.

The remaining fields are not present if CNVER is less than CNVER2,

CNCCO (10-digit signed integer)
Offset of MQCD structure for client connection.

This is the offset in bytes of an MQCD channel definition structure from the
start of the MQCNO structure. The offset can be positive or negative.

CNCCO is used only when the application issuing the MQCONNX call is
running as an MQ client. For information on how to use this field, see the
description of the CNCCP field.

This is an input field. The initial value of this field is 0. This field is not
present if CNVER is less than CNVER?2.

CNCCP (pointer)
Address of MQCD structure for client connection.

CNCCO and CNCCP are used only when the application issuing the MQCONNX
call is running as an MQ client. By specifying one or other of these fields, the
application can control the definition of the client connection channel by
providing an MQCD channel definition structure that contains the values
required.

If the application is running as an MQ client but the application does not
provide an MQCD structure, the MQSERVER environment variable is used to
select the channel definition. If MQSERVER is not set, the client channel table is
used.

If the application is not running as an MQ client, CNCCO and CNCCP are ignored.

If the application provides an MQCD structure, the fields listed below must be
set to the values required; other fields in MQCD are ignored. Character strings
can be padded with blanks to the length of the field, or terminated by a null
character. Refer to the MQSeries Intercommunication book for more information
about the fields in the MQCD structure.

Field in MQCD Value

CDCHN Channel name.

CDVER Structure version number. Must not be less than CDVERG.
CDTRT Any supported transport type.

CDMOD LU 6.2 mode name.

coTP LU 6.2 transaction program name.

Chapter 5. MQCNO - Connect options 33

MQCNO - Connect options

Field in MQCD
CDSCX
CDSNX
CDRCX
CDMML

CDSCD
CDSND
CDRCD
CDUID
CDPW

CDCON
CDHBI
CDLEN
CDXNL

CDXDL

CDSXD

CDRXD

CDSXP
cbsup
CDRXP
CDRUP
CDLRL
CDLRP
CDRSI

Value

Name of channel security exit.

Name of channel send exit.

Name of channel receive exit.

Maximum length in bytes of messages that can be sent over the client
connection channel.

User data for security exit.

User data for send exit.

User data for receive exit.

User identifier to be used to establish an LU 6.2 session.

Password to be used to establish an LU 6.2 session.

Connection name.

Time in seconds between heartbeat flows.

Length of the MQCD structure.

Length of exit names addressed by CDSXP and CDRXP. Must be greater
than zero if CDSXP or CDRXP is set to a value that is not the null pointer.
Length of exit data addressed by CDSUP and CDRUP. Must be greater than
zero if CDSUP or CDRUP is set to a value that is not the null pointer.
Number of send exits addressed by CDSXP. If zero, CDSNX and CDSND
provide the exit name and data. If greater than zero, CDSXP and CDSUP
provide the exit names and data, and CDSNX and CDSND must be blank.
Number of receive exits addressed by CDRXP. If zero, CDRCX and CDRCD
provide the exit name and data. If greater than zero, CDRXP and CDRUP
provide the exit names and data, and CDRCX and CDRCD must be blank.
Address of name of first send exit.

Address of data for first send exit.

Address of name of first receive exit.

Address of data for first receive exit.

Length of long remote user identifier.

Address of long remote user identifier.

Remote security identifier.

The channel definition structure can be provided in one of two ways:

* By using the offset field CNCCO
In this case, the application should declare its own structure containing an
MQCNO followed by the channel definition structure MQCD, and set CNCCO
to the offset of the channel definition structure from the start of the
MQCNO. Care must be taken to ensure that this offset is correct. CNCCP must
be set to the null pointer or null bytes.

* By using the pointer field CNCCP
In this case, the application can declare the channel definition structure
separately from the MQCNO structure, and set CNCCP to the address of the
channel definition structure. CNCCO must be set to zero.

Whichever technique is chosen, only one of CNCCO and CNCCP can be used; the
call fails with reason code RC2278 if both are nonzero.

Once the MQCONNX called has completed, the MQCD structure is not
referenced again.

This is an input field. The initial value of this field is the null pointer. This
field is not present if CNVER is less than CNVER2.

34 MQseries for AS/400, V5.1 APR (ILE RPG)

MQCNO - Connect options

Initial values and RPG declaration

Table 10. Initial values of fields in MQCNO

Field name Name of constant Value of constant

CNSID CNSIDV '"CNOb"' (See note 1)

CNVER CNVER1 1

CNOPT CNNONE 0

CNCCOo None 0

CNCCP None Null pointer or null
bytes

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
B S . B SRR S SR S DUPUPRE SRR o SRR S A

D*
D*
D*
D
D*
D
D*
D
D*
D
D*
D

MQCNO Structure

Structure identifier

CNSID 1 4

Structure version number

CNVER 5 8l 0

Options that control the action of MQCONNX
CNOPT 9 121 0

O0ffset of MQCD structure for client connection
CNCCO 13 161 0

Address of MQCD structure for client connection
CNCCP 17 32+

Chapter 5. MQCNO - Connect options 35

MQCNO - Connect options

36 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 6. MQDH - Distribution header

The following table summarizes the fields in the structure.

Table 11. Fields in MQDH

Field Description Page

DHSID Structure identifier

DHVER Structure version number

DHLEN Length of MQDH structure plus following records

DHENC Numeric encoding of data that follows array of
MQPMR records

DHCSI Character set identifier of data that follows array
of MQPMR records

DHFMT Format name of data that follows array of RY
MQPMR records

DHFLG General flags

DHPRF Flags indicating which MQPMR fields are present

DHCNT Number of object records present

DHORO Offset of first object record from start of MQDH AQ)

DHPRO Offset of first put-message record from start of m
MQDH

Overview

The MQDH structure describes the data that is present in a message on a
transmission queue when that message is a distribution-list message (that is, the
message is being sent to multiple destination queues). This structure is for use by
specialized applications that put messages directly on transmission queues, or
which remove messages from transmission queues (for example: message channel
agents).

This structure should not be used by normal applications which simply want to
put messages to distribution lists. Those applications should use the MQOD
structure to define the destinations in the distribution list, and the MQPMO
structure to specify message properties or receive information about the messages
sent to the individual destinations.

This structure is supported in the following environments: AlX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

When an application puts a message to a distribution list, and some or all of the
destinations are remote, the queue manager prefixes the application message data
with the MQXQH and MQDH structures, and places the message on the relevant
transmission queue. The data therefore occurs in the following sequence when the
message is on a transmission queue:

* MQXQH structure

* MQDH structure

* Application message data

© Copyright IBM Corp. 1994, 2000 37

MQDH - Distribution header

Depending on the destinations, more than one such message may be generated by
the queue manager, and placed on different transmission queues. In this case, the
MQDH structures in those messages identify different subsets of the destinations
defined by the distribution list opened by the application.

An application that puts a distribution-list message directly on a transmission
queue must conform to the sequence described above, and must ensure that the
MQDH structure is correct. If the MQDH structure is not valid, the queue manager
may choose to fail the MQPUT or MQPUT1 call with reason code RC2135.

Messages can be stored on a queue in distribution-list form only if the queue is
defined as being able to support distribution list messages (see the DistLists
gueue attribute described in L i

Guewes” on page 29d). If an application puts a distribution-list message directly on
a queue that does not support distribution lists, the queue manager splits the
distribution list message into individual messages, and places those on the queue
instead.

Fields

DHSID (4-byte character string)
Structure identifier.

The value must be:

DHSIDV
Identifier for distribution header structure.

The initial value of this field is DHSIDV.

DHVER (10-digit signed integer)
Structure version number.

The value must be:

DHVER1
Version number for distribution header structure.

The following constant specifies the version number of the current version:

DHVERC
Current version of distribution header structure.

The initial value of this field is DHVERL.

DHLEN (10-digit signed integer)
Length of MQDH structure plus following records.

This is the number of bytes from the start of the MQDH structure to the start
of the message data following the arrays of MQOR and MQPMR records. The
data occurs in the following sequence:

* MQDH structure

* Array of MQOR records

* Array of MQPMR records

* Message data

The arrays of MQOR and MQPMR records are addressed by offsets contained
within the MQDH structure. If these offsets result in unused bytes between one

38 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQDH - Distribution header

or more of the MQDH structure, the arrays of records, and the message data,
those unused bytes must be included in the value of DHLEN, but the content of
those bytes is not preserved by the queue manager. It is valid for the array of
MQPMR records to precede the array of MQOR records.

The initial value of this field is 0.

DHENC (10-digit signed integer)
Numeric encoding of data that follows array of MQPMR records.

The initial value of this field is 0.

DHCSI (10-digit signed integer)
Character set identifier of data that follows array of MQPMR records.

The initial value of this field is 0.

DHFMT (8-byte character string)
Format name of data that follows array of MQPMR records.

The initial value of this field is FMNONE.

DHFLG (10-digit signed integer)
General flags.

The following flag can be specified:

DHFNEW
Generate new message identifiers.

This flag indicates that a new message identifier is to be generated for
each destination in the distribution list. This can be set only when
there are no put-message records present, or when the records are
present but they do not contain the PRMID field.

Using this flag defers generation of the message identifiers until the
last possible moment, namely the moment when the distribution-list
message is finally split into individual messages. This minimizes the
amount of control information that must flow with the distribution-list
message.

When an application puts a message to a distribution list, the queue

manager sets DHFNEW in the MQDH it generates when both of the

following are true:

* There are no put-message records provided by the application, or
the records provided do not contain the PRMID field.

* The MDMID field in MQMD is MINONE, or the PMOPT field in
MQPMO includes PMNMID

If no flags are needed, the following can be specified:

DHFNON
No flags.

This constant indicates that no flags have been specified. DHFNON is
defined to aid program documentation. It is not intended that this
constant be used with any other, but as its value is zero, such use
cannot be detected.

The initial value of this field is DHFNON.

Chapter 6. MQDH - Distribution header 39

MQDH - Distribution header

DHPRF (10-digit signed integer)
Flags indicating which MQPMR fields are present.

Zero or more of the following flags can be specified:

PFMID
Message-identifier field is present.

PFCID
Correlation-identifier field is present.

PFGID
Group-identifier field is present.

PFFB Feedback field is present.

PFACC
Accounting-token field is present.

If no MQPMR fields are present, the following can be specified:

PFNONE
No put-message record fields are present.

PFNONE is defined to aid program documentation. It is not intended
that this constant be used with any other, but as its value is zero, such
use cannot be detected.

The initial value of this field is PFNONE.

DHCNT (10-digit signed integer)
Number of object records present.

This defines the number of destinations. A distribution list must always
contain at least one destination, so DHCNT must always be greater than zero.

The initial value of this field is 0.

DHORO (10-digit signed integer)
Offset of first object record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQOR
object records containing the names of the destination queues. There are DHCNT
records in this array. These records (plus any bytes skipped between the first
object record and the previous field) are included in the length given by the
DHLEN field.

A distribution list must always contain at least one destination, so DHORO must
always be greater than zero.

The initial value of this field is 0.

DHPRO (10-digit signed integer)
Offset of first put message record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQPMR
put message records containing the message properties. If present, there are
DHCNT records in this array. These records (plus any bytes skipped between the
first put message record and the previous field) are included in the length
given by the DHLEN field.

40 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQDH - Distribution header

Put message records are optional; if no records are provided, DHPRO is zero, and

DHPRF has the value PFNONE.

The initial value of this field is 0.

Initial values and RPG declaration

Table 12. Initial values of fields in MQDH

Field name Name of constant Value of constant
DHSID DHSIDV 'DHbb"' (See note 1)
DHVER DHVER1 1

DHLEN None 0

DHENC None 0

DHCSI None 0

DHFMT FMNONE "bbbbbbbb'

DHFLG DHFNON 0

DHPRF PFNONE 0

DHCNT None 0

DHORO None 0

DHPRO None 0

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration

R A

Dx..l... .t 20 3ot b bl LB
D* MQDH Structure

D*

D* Structure identifier

D DHSID 1 4

D* Structure version number

D DHVER 5 8I 0

D* Length of MQDH structure plus following records

D DHLEN 9 121 0

D* Numeric encoding of data that follows array of MQPMR records
D DHENC 13 161 0

D* Character set identifier of data that follows array of MQPMR
D* records

D DHCSI 17 20I 0

D* Format name of data that follows array of MQPMR records
D DHFMT 21 28

D* General flags

D DHFLG 29 321 0

D* Flags indicating which MQPMR fields are present

D DHPRF 33 361 0

D* Number of object records present

D DHCNT 37 401 0

D* Offset of first object record from start of MQDH

D DHORO 41 441 0

D+ Offset of first put message record from start of MQDH

D DHPRO 45 481 0

Chapter 6. MQDH - Distribution header

41

MQDH - Distribution header

42 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 7. MQDLH - Dead-letter header

The following table summarizes the fields in the structure.

Table 13. Fields in MQDLH

Field Description Page
DLSID Structure identifier 5}
DLVER Structure version number kg
DLREA Reason message arrived on dead-letter queue kg
DLDQ Name of original destination queue
DLDM Name of original destination queue manager bd
DLENC Numeric encoding of data that follows MQDLH Ld
DLCSI Character set identifier of data that follows %
MQDLH
DLFMT Format name of data that follows MQDLH L7
DLPAT Type of application that put message on %
dead-letter queue
DLPAN Name of application that put message on
dead-letter queue
DLPD Date when message was put on dead-letter queue |48
DLPT Time when message was put on dead-letter queue |48

Overview

The MQDLH structure describes the information that is prefixed to the application
message data of messages on the dead-letter (undelivered-message) queue. A
message can arrive on the dead-letter queue either because the queue manager or
message channel agent has redirected it to the queue, or because an application has
put the message directly on the queue.

Special processing is done when a message which is a segment is put with an
MQDLH structure at the front; see the description of the MQMDE structure for
further details.

This structure is not supported in the following environments: 16-bit Windows,
32-bit Windows.

Applications that put messages directly on the dead-letter queue should prefix the
message data with an MQDLH structure, and initialize the fields with appropriate
values. However, the queue manager does not check that an MQDLH structure is
present, or that valid values have been specified for the fields.

If a message is too long to put on the dead-letter queue, the application should
consider doing one of the following:

» Truncate the message data to fit on the dead-letter queue.

* Record the message on auxiliary storage and place an exception report message
on the dead-letter queue indicating this.

© Copyright IBM Corp. 1994, 2000 43

MQDLH - Dead-letter header

» Discard the message and return an error to its originator. If the message is (or
might be) a critical message, this should be done only if it is known that the
originator still has a copy of the message—for example, a message received by a
message channel agent from a communication channel.

Which of the above is appropriate (if any) depends on the design of the
application.

When a message is put on the dead-letter queue, all of the fields in the message
descriptor MQMD should be copied from those in the original message descriptor
(if there is one), with the exception of the following:

* The MDCSI and MDENC fields should be set to whatever character set and encoding
are used for fields in the MQDLH structure.

* The MDFMT field should be set to FMDLH to indicate that the data begins with a
MQDLH structure.

* The context fields:

MDUID
MDACC
MDAID
MDPAT
MDPAN
MDPD

MDPT

MDAOD

should be set by using a context option appropriate to the nature of the
program:

— A program putting on the dead-letter queue a message that is not related to
any preceding message should use the PMDEFC option; this causes the queue
manager to set all of the context fields in the message descriptor to their
default values.

— A program putting on the dead-letter queue a message it has just received
should use the PMPASA option, in order to preserve the original context
information.

— A program putting on the dead-letter queue a reply to a message it has just

received should use the PMPASI option; this preserves the identity
information but sets the origin information to be that of the server.

— A message channel agent putting on the dead-letter queue a message it

received from its communication channel should use the PMSETA option, to
preserve the original context information.

In the MQDLH structure itself, the fields should be set as follows:

e The DLCSI, DLENC and DLFMT fields should be set to the values that describe the
application message data that follows the MQDLH structure—usually the values
from the original message descriptor.

* The context fields DLPAT, DLPAN, DLPD, and DLPT should be set to values
appropriate to the application that is putting the message on the dead-letter
queue; these values are not related to the original message.

» Other fields should be set as appropriate.

Character data in the MQDLH structure should be in the character set defined by
the MDCSI field of the message descriptor. Numeric data in the MQDLH structure
should be in the data encoding defined by the MDENC field of the message
descriptor. The application should ensure that all fields have valid values, and that

44 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQDLH - Dead-letter header

character fields are padded with blanks to the defined length of the field; the
character data should not be terminated prematurely by using a null character,
because the queue manager does not convert the null and subsequent characters to
blanks in the MQDLH structure.

Applications that get messages from the dead-letter queue should verify that the
messages begin with an MQDLH structure. The application can determine whether
an MQDLH structure is present by examining the MDFMT field in the message
descriptor MQMD; if the field has the value FMDLH, the message data begins
with an MQDLH structure. Applications that get messages from the dead-letter
queue should also be aware that such messages may have been truncated if they
were originally too long for the queue.

Fields

DLSID (4-byte character string)
Structure identifier.

The value must be:
DLSIDV
Identifier for dead-letter header structure.
The initial value of this field is DLSIDV.
DLVER (10-digit signed integer)
Structure version number.
The value must be:
DLVERI1
Version number for dead-letter header structure.
The following constant specifies the version number of the current version:
DLVERC
Current version of dead-letter header structure.
The initial value of this field is DLVER1.
DLREA (10-digit signed integer)

Reason message arrived on dead-letter (undelivered-message) queue.

This identifies the reason why the message was placed on the dead-letter
queue instead of on the original destination queue. It should be one of the FB*
or RC* values (for example, RC2053). See the description of the MDFB field in

EChapter 10 MQMD - Message descriptor” an page 83 for details of the

common FB* values that can occur.

If the value is in the range FBIFST through FBILST, the actual IMS error code
can be determined by subtracting FBIERR from the value of the DLREA field.

Some FB* values occur only in this field. They relate to repository messages,
trigger messages, or transmission-queue messages that have been transferred to
the dead-letter queue. These are:

FBABEG
Application cannot be started.

Chapter 7. MQDLH - Dead-letter header 45

MQDLH - Dead-letter header

An application processing a trigger message was unable to start the
appllcatlon named in the TMAI field of the trigger message (see

FBATYP
Application type error.

An application processing a trigger message was unable to start the
application because the TMAT field of the trigger message is not valid

(see EChapter 18 MQTM - Trigger message” on page 179).
FBNARM
Message is not a repository message.

FBSBCX
Message stopped by channel auto-definition exit.

FBSBMX
Message stopped by channel message exit.

FBTM MQTM structure not valid or missing.

The MDFMT field in MQMD specifies FMTM, but the message does not
begin with a valid MQTM structure. For example, the TMSID mnemonic
eye-catcher may not be valid, the TMVER may not be recognized, or the
length of the trigger message may be insufficient to contain the MQTM
structure.

FBXQME
Message on transmission queue not in correct format.

A message channel agent has found that a message on the transmission
gueue is not in the correct format. The message channel agent puts the
message on the dead-letter queue using this feedback code.

The initial value of this field is RCNONE.

DLDQ (48-byte character string)
Name of original destination queue.

This is the name of the message queue that was the original destination for the
message.

The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

DLDM (48-byte character string)
Name of original destination queue manager.

This is the name of the queue manager that was the original destination for the
message.

The length of this field is given by LNQMN. The initial value of this field is 48
blank characters.

DLENC (10-digit signed integer)
Numeric encoding of data that follows MQDLH.

This specifies the data encoding used for numeric data in the original message.
It applies to the message data which follows the MQDLH structure; it does not
apply to numeric data in the MQDLH structure itself.

46 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQDLH - Dead-letter header

When an MQDLH structure is prefixed to the message data, the original data
encoding should be preserved by copying it from the MDENC field in the
message descriptor MQMD to the DLENC field in the MQDLH structure. The
MDENC field in the message descriptor should then be set to the value
appropriate to the numeric data in the MQDLH structure.

The value ENNAT can be used for the DLENC field in both the MQDLH and
MQMD structures.

The initial value of this field is 0.

DLCSI (10-digit signed integer)
Character set identifier of data that follows MQDLH.

This specifies the coded character set identifier of character data in the original
message. It applies to the message data which follows the MQDLH structure; it
does not apply to character data in the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original coded
character set identifier should be preserved by copying it from the MDCSI field
in the message descriptor MQMD to the DLCSI field in the MQDLH structure.
The MDCST field in the message descriptor should then be set to the value
appropriate to the character data in the MQDLH structure.

The value CSQM can be used for the MDCSI field in the MQMD structure, but
should not be used for the DLCSI field in the MQDLH structure, as the queue
manager does not replace the value CSQM in the latter field by the value that
applies to the queue manager.

The initial value of this field is 0.

DLFMT (8-byte character string)
Format name of data that follows MQDLH.

This is the format name of the application data in the original message. It
applies to the message data which follows the MQDLH structure; it does not
apply to the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original
format name should be preserved by copying it from the MDFMT field in the
message descriptor MQMD to the DLFMT field in the MQDLH structure. The
MDFMT field in the message descriptor should then be set to the value FMDLH.

The length of this field is given by LNFMT. The initial value of this field is
FMNONE.

DLPAT (10-digit signed integer)
Type of application that put message on dead-letter (undelivered-message)
queue.

This field has the same meaning as the MDPAT field in the message descriptor

MQMD (see EChapter 10 MQMD - Message descriptor” an page 83 for details).

If it is the queue manager that redirects the message to the dead-letter queue,
DLPAT has the value ATQM.

The initial value of this field is 0.

Chapter 7. MQDLH - Dead-letter header 47

MQDLH - Dead-letter header

DLPAN (28-byte character string)
Name of application that put message on dead-letter (undelivered-message)
queue.

The format of the name depends on the DLPAT field. See, also, the description

of the MDPAN field in EChapter 10 MQMD - Message descriptor” on page 83,

If it is the queue manager that redirects the message to the dead-letter queue,
DLPAN contains the first 28 characters of the queue-manager name, padded with
blanks if necessary.

The length of this field is given by LNPAN. The initial value of this field is 28
blank characters.

DLPD (8-byte character string)
Date when message was put on dead-letter (undelivered-message) queue.

The format used for the date when this field is generated by the queue
manager is:

YYYYMMDD

where the characters represent:

YYYY vyear (four numeric digits)
MM month of year (01 through 12)
DD day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the DLPD and DLPT fields, subject to
the system clock being set accurately to GMT.

The length of this field is given by LNPDAT. The initial value of this field is 8
blank characters.

DLPT (8-byte character string)
Time when message was put on the dead-letter (undelivered-message) queue.

The format used for the time when this field is generated by the queue
manager is:

HHMMSSTH

where the characters represent (in order):

HH hours (00 through 23)

MM minutes (00 through 59)

SS seconds (00 through 59; see note below)
T tenths of a second (0 through 9)

H hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is
possible on rare occasions for 60 or 61 to be returned for the seconds in
DLPT. This happens when leap seconds are inserted into the global time
standard.

Greenwich Mean Time (GMT) is used for the DLPD and DLPT fields, subject to

the system clock being set accurately to GMT.

The length of this field is given by LNPTIM. The initial value of this field is 8
blank characters.

48 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQDLH - Dead-letter header

Initial values and RPG declaration

Table 14. Initial values of fields in MQDLH

Field name Name of constant Value of constant
DLSID DLSIDV 'DLHb"' (See note 1)
DLVER DLVER1 1

DLREA RCNONE 0

DLDQ None Blanks

DLDM None Blanks

DLENC None 0

DLCSI None 0

DLFMT FMNONE "bbbbbbbb'

DLPAT None 0

DLPAN None Blanks

DLPD None Blanks

DLPT None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration

[0 AR NS SR FUPPUP SRR SRR JUPPRE. DTSR PR ¢ PP S A
D* MQDLH Structure

D*

D* Structure identifier

D DLSID 1 4

D* Structure version number

D DLVER 5 8I 0

D+ Reason message arrived on dead-letter (undelivered-message)
D* queue

D DLREA 9 121 0

D+ Name of original destination queue

D DLDQ 13 60

D+ Name of original destination queue manager

D DLDM 61 108

D* Numeric encoding of data that follows MQDLH

D DLENC 109 1121 0

D* Character set identifier of data that follows MQDLH

D DLCSI 113 1161 0

D* Format name of data that follows MQDLH

D DLFMT 117 124

D+ Type of application that put message on dead-letter
Dx (undelivered-message) queue

D DLPAT 125 1281 0

D Name of application that put message on dead-letter
D* (undelivered-message) queue

D DLPAN 129 156

D+ Date when message was put on dead-letter (undelivered-message)
D* queue

D DLPD 157 164

D* Time when message was put on the dead-Tetter
Dx (undelivered-message) queue
D DLPT 165 172

Chapter 7. MQDLH - Dead-letter header 49

MQDLH - Dead-letter header

50 MQseries for AS/400, V5.1 APR (ILE RPG)

Chapter 8. MQGMO - Get-message options

The following table summarizes the fields in the structure.

Table 15. Fields in MQGMO

Field Description Page

GMSID Structure identifier Bl

GMVER Structure version number F|

GMOPT Options that control the action of MQGET F]

GMWI Wait interval

GMSG1 Signal

GMSG2 Signal identifier

GMRON Resolved name of destination queue

Note: The remaining fields are not present if GMVER is less than GMVER?2.

GMMO Options controlling selection criteria used for
MQGET

GMGST Flag indicating whether message retrieved is in a z3
group

GMSST Flag indicating whether message retrieved is a 3
segment of a logical message

GMSEG Flag indicating whether further segmentation is 3
allowed for the message retrieved

Note: The remaining fields are not present if GMVER is less than GMVERS3.

GMTOK Message token 3

GMRL Length of message data returned (bytes) 4

Overview

The current version of MQGMO is given by GMVERC. Fields that exist only in the
more-recent versions of the structure are identified as such in the descriptions that
follow. The declaration of MQGMO provided in the COPY file contains the
additional fields, but the initial value provided for the GMVER field is GMVER1. To
use the additional fields, the application must set the version humber to GMVERC.
Applications which are intended to be portable between several environments
should use a more-recent version MQGMO only if all of those environments
support that version.

The MQGMO structure is an input/output parameter for the MQGET call.

Fields

GMSID (4-byte character string)
Structure identifier.

The value must be:

GMSIDV
Identifier for get-message options structure.

© Copyright IBM Corp. 1994, 2000 51

MQGMO - Get-message options
This is always an input field. The initial value of this field is GMSIDV.

GMVER (10-digit signed integer)
Structure version number.

The value must be one of the following:

GMVER1
Version-1 get-message options structure.

GMVER2
Version-2 get-message options structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

GMVER3
Version-3 get-message options structure.

Fields that exist only in the version-3 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

GMVERC
Current version of get-message options structure.

This is always an input field. The initial value of this field is GMVERL.

GMOPT (10-digit signed integer)
Options that control the action of MQGET.

Zero or more of the options described below can be specified. If more than one
is required the values can be added together (do not add the same constant
more than once). Combinations of options that are not valid are noted; all
other combinations are valid.

GMWT
Wait for message to arrive.

The application is to wait until a suitable message arrives. The
maximum time the application waits is specified in GMWI.

If MQGET requests are inhibited, or MQGET requests become inhibited
while waiting, the wait is canceled and the call completes with CCFAIL
and reason code RC2016, regardless of whether there are suitable
messages on the queue.

This option can be used with the GMBRWF or GMBRWN options.

If several applications are waiting on the same shared queue, the
application, or applications, that are activated when a suitable message
arrives are described below.

Note: In the description below, a browse MQGET call is one which
specifies one of the browse options, but not GMLK; an MQGET
call specifying the GMLK option is treated as a nonbrowse call.

» If one or more nonbrowse MQGET calls is waiting, one is activated.

* |If one or more browse MQGET calls is waiting, but no nonbrowse
MQGET calls are waiting, all are activated.

* |If one or more nonbrowse MQGET calls, and one or more browse
MQGET calls are waiting, one nonbrowse MQGET call is activated,

52 MQseries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

and none, some, or all of the browse MQGET calls. (The number of
browse MQGET calls activated cannot be predicted, because it
depends on the scheduling considerations of the operating system,
and other factors.)

If more than one nonbrowse MQGET call is waiting on the same
shared queue, only one is activated; in this situation the queue
manager attempts to give priority to waiting nonbrowse calls in the
following order:

1. Specific get-wait requests that can be satisfied only by certain
messages, for example, ones with a specific MDMID or MDCID (or
both).

2. General get-wait requests that can be satisfied by any message.

The following points should be noted:

* Within the first category, no additional priority is given to more
specific get-wait requests, for example those that specify both MDMID
and MDCID.

* Within either category, it cannot be predicted which application is
selected. In particular, the application waiting longest is not
necessarily the one selected.

» Path length, and priority-scheduling considerations of the operating
system, can mean that a waiting application of lower operating
system priority than expected retrieves the message.

* It may also happen that an application that is not waiting retrieves
the message in preference to one that is.

GMWT is ignored if specified with GMBRWC or GMMUC; no error is
raised.

GMNWT
Return immediately if no suitable message.

The application is not to wait if no suitable message is available. This
is the opposite of the GMWT option, and is defined to aid program
documentation. It is the default if neither is specified.

GMSYP
Get message with syncpoint control.

The request is to operate within the normal unit-of-work protocols. The
message is marked as being unavailable to other applications, but it is
deleted from the queue only when the unit of work is committed. The
message is made available again if the unit of work is backed out.

If neither this option nor GMNSYP is specified, the get request is not
within a unit of work.

This option is not valid with any of the following options:

GMBRWF

GMBRWC

GMBRWN

GMLK

GMNSYP

GMPSYP

GMUNLK

Chapter 8. MQGMO - Get-message options 53

MQGMO - Get-message options

GMPSYP
Get message with syncpoint control if message is persistent.

The request is to operate within the normal unit-of-work protocols, but
only if the message retrieved is persistent. A persistent message has the
value PEPER in the MDPER field in MQMD.

» If the message is persistent, the queue manager processes the call as
though the application had specified GMSYP (see above for details).

» If the message is not persistent, the queue manager processes the
call as though the application had specified GMNSYP (see below for
details).

This option is not valid with any of the following options:

GMBRWF

GMBRWC

GMBRWN

GMCMPM

GMNSYP

GMSYP

GMUNLK

GMNSYP
Get message without syncpoint control.

The request is to operate outside the normal unit-of-work protocols.
The message is deleted from the queue immediately (unless this is a
browse request). The message cannot be made available again by
backing out the unit of work.

This option is assumed if GMBRWF or GMBRWN is specified.

If neither this option nor GMSYP is specified, the get request is not
within a unit of work.

This option is not valid with any of the following options:
GMSYP
GMPSYP

GMBRWF
Browse from start of queue.

When a queue is opened with the OOBRW option, a browse cursor is
established, positioned logically before the first message on the queue.
Subsequent MQGET calls specifying the GMBRWF, GMBRWN or
GMBRWC option can be used to retrieve messages from the queue
nondestructively. The browse cursor marks the position, within the
messages on the queue, from which the next MQGET call with
GMBRWN will search for a suitable message.

An MQGET call with GMBRWEF causes the previous position of the
browse cursor to be ignored. The first message on the queue that
satisfies the conditions specified in the message descriptor is retrieved.
The message remains on the queue, and the browse cursor is
positioned on this message.

After this call, the browse cursor is positioned on the message that has
been returned. If the message is removed from the queue before the
next MQGET call with GMBRWN s issued, the browse cursor remains
at the position in the queue that the message occupied, even though
that position is now empty.

54 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

The GMMUC option can subsequently be used with a nonbrowse
MQGET call if required, to remove the message from the queue.

Note that the browse cursor is hot moved by a nonbrowse MQGET call
using the same HOBJ handle. Nor is it moved by a browse MQGET call
that returns a completion code of CCFAIL, or a reason code of RC2080.

The GMLK option can be specified together with this option, to cause
the message that is browsed to be locked.

GMBRWEF can be specified with any valid combination of the GM* and
MO* options that control the processing of messages in groups and
segments of logical messages.

If GMLOGO is specified, the messages are browsed in logical order. If
that option is omitted, the messages are browsed in physical order.
When GMBRWEF is specified, it is possible to switch between logical
order and physical order, but subsequent MQGET calls using
GMBRWN must browse the queue in the same order as the
most-recent call that specified GMBRWF for the queue handle.

The group and segment information that the queue manager retains for
MQGET calls that browse messages on the queue is separate from the
group and segment information that the queue manager retains for
MQGET calls that remove messages from the queue. When GMBRWF
is specified, the queue manager ignores the group and segment
information for browsing, and scans the queue as though there were
no current group and no current logical message. If the MQGET call is
successful (completion code CCOK or CCWARN), the group and
segment information for browsing is set to that of the message
returned; if the call fails, the group and segment information remains
the same as it was prior to the call.

This option is not valid with any of the following options:
GMBRWC
GMBRWN
GMMUC
GMSYP
GMPSYP
GMUNLK

It is also an error if the queue was not opened for browse.

GMBRWN
Browse from current position in queue.

The browse cursor is advanced to the next message on the queue that
satisfies the selection criteria specified on the MQGET call. The
message is returned to the application, but remains on the queue.

After a queue has been opened for browse, the first browse call using
the handle has the same effect whether it specifies the GMBRWF or
GMBRWN option.

If the message is removed from the queue before the next MQGET call
with GMBRWN is issued, the browse cursor logically remains at the
position in the queue that the message occupied, even though that
position is now empty.

Messages are stored on the queue in one of two ways:
* FIFO within priority (MSPRIO), or
* FIFO regardless of priority (MSFIFO)

Chapter 8. MQGMO - Get-message options 55

MQGMO - Get-message options

The MsgDeliverySequence queue attribute indicates which method

applies (see I‘Chapter 38, Attributes for local queues and madel
Queues” on page 299 for details).

If the queue has a MsgDeliverySequence of MSPRIO, and a message
arrives on the queue that is of a higher priority than the one currently
pointed to by the browse cursor, that message will not be found during
the current sweep of the queue using GMBRWN. It can only be found
after the browse cursor has been reset with GMBRWF (or by reopening
the queue).

The GMMUC option can subsequently be used with a honbrowse
MQGET call if required, to remove the message from the queue.

Note that the browse cursor is not moved by nonbrowse MQGET calls
using the same HOBJ handle.

The GMLK option can be specified together with this option, to cause
the message that is browsed to be locked.

GMBRWN can be specified with any valid combination of the GM*
and MO* options that control the processing of messages in groups
and segments of logical messages.

If GMLOGO is specified, the messages are browsed in logical order. If
that option is omitted, the messages are browsed in physical order.
When GMBRWEF is specified, it is possible to switch between logical
order and physical order, but subsequent MQGET calls using
GMBRWN must browse the queue in the same order as the
most-recent call that specified GMBRWEF for the queue handle. The call
fails with reason code RC2259 if this condition is not satisfied.

Note: Special care is needed if an MQGET call is used to browse
beyond the end of a message group (or logical message not in a
group) when GMLOGO is not specified. For example, if the last
message in the group happens to precede the first message in the
group on the queue, using GMBRWN to browse beyond the end
of the group, specifying MOSEQN with MDSEQ set to 1 (to find
the first message of the next group) would return again the first
message in the group already browsed. This could happen
immediately, or a number of MQGET calls later (if there are
intervening groups).

The possibility of an infinite loop can be avoided by opening the
queue twice for browse:

* Use the first handle to browse only the first message in each
group.

* Use the second handle to browse only the messages within a
specific group.

» Use the MO* options to move the second browse cursor to the
position of the first browse cursor, before browsing the
messages in the group.

* Do not use GMBRWN to browse beyond the end of a group.

56 MQseries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

The group and segment information that the queue manager retains for
MQGET calls that browse messages on the queue is separate from the
group and segment information that it retains for MQGET calls that
remove messages from the queue.

This option is not valid with any of the following options:
GMBRWF
GMBRWC
GMMUC
GMSYP
GMPSYP
GMUNLK

It is also an error if the queue was not opened for browse.

GMBRWC
Browse message under browse cursor.

This option causes the message pointed to by the browse cursor to be
retrieved nondestructively, regardless of the MO* options specified in
the GMMO field in MQGMO.

The message pointed to by the browse cursor is the one that was last
retrieved using either the GMBRWEF or the GMBRWN option. The call
fails if neither of these calls has been issued for this queue since it was
opened, or if the message that was under the browse cursor has since
been retrieved destructively.

The position of the browse cursor is not changed by this call.

The GMMUC option can subsequently be used with a nonbrowse
MQGET call if required, to remove the message from the queue.

Note that the browse cursor is hot moved by a nonbrowse MQGET call
using the same HOBJ handle. Nor is it moved by a browse MQGET call
that returns a completion code of CCFAIL, or a reason code of RC2080.

If GMBRWC is specified with GMLK:

» If there is already a message locked, it must be the one under the
cursor, so that is returned without unlocking and relocking it; the
message remains locked.

 If there is no locked message, the message under the browse cursor
(if there is one) is locked and returned to the application; if there is
no message under the browse cursor the call fails.

If GMBRWC is specified without GMLK:

» If there is already a message locked, it must be the one under the
cursor. This message is returned to the application and then unlocked.
Because the message is how unlocked, there is no guarantee that it
can be browsed again, or retrieved destructively (it may be retrieved
destructively by another application getting messages from the
queue).

 If there is no locked message, the message under the browse cursor
(if there is one) is returned to the application; if there is no message
under the browse cursor the call fails.

If GMCMPM is specified with GMBRWC, the browse cursor must

identify a message whose MDOFF field in MQMD is zero. If this
condition is not satisfied, the call fails with reason code RC2246.

Chapter 8. MQGMO - Get-message options 57

MQGMO - Get-message options

The group and segment information that the queue manager retains for
MQGET calls that browse messages on the queue is separate from the
group and segment information that it retains for MQGET calls that
remove messages from the queue.

This option is not valid with any of the following options:
GMBRWF
GMBRWN
GMMUC
GMSYP
GMPSYP
GMUNLK

It is also an error if the queue was not opened for browse.

GMMUC
Get message under browse cursor.

This option causes the message pointed to by the browse cursor to be
retrieved, regardless of the MO* options specified in the GMMO field in
MQGMO. The message is removed from the queue.

The message pointed to by the browse cursor is the one that was last
retrieved using either the GMBRWEF or the GMBRWN option.

If GMCMPM s specified with GMMUC, the browse cursor must
identify a message whose MDOFF field in MQMD is zero. If this
condition is not satisfied, the call fails with reason code RC2246.

This option is not valid with any of the following options:
GMBRWF
GMBRWC
GMBRWN
GMUNLK

It is also an error if the queue was not opened both for browse and for
input. If the browse cursor is not currently pointing to a retrievable
message, an error is returned by the MQGET call.

GMLK
Lock message.

This option locks the message that is browsed, so that the message
becomes invisible to any other handle open for the queue. The option
can be specified only if one of the following options is also specified:

GMBRWF

GMBRWN

GMBRWC

Only one message can be locked per handle, but this can be a logical
message or a physical message:

* If GMCMPM is specified, all of the message segments that comprise
the logical message are locked to the queue handle (provided that
they are all present on the queue and available for retrieval).

* If GMCMPM is not specified, only a single physical message is
locked to the queue handle. If this message happens to be a segment
of a logical message, the locked segment prevents other applications
using GMCMPM to retrieve or browse the logical message.

58 MQseries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

The locked message is always the one under the browse cursor, and
the message can be removed from the queue by a later MQGET call
that specifies the GMMUC option. Other MQGET calls for that queue
handle can also remove the message (for example, a call that specifies
the message identifier of the locked message).

If CCFAIL is returned (or CCWARN with RC2080), no message is
locked.

If the application decides not to remove the message from the queue,
the lock is released by:

* Issuing another MQGET call for this handle, with either GMBRWF
or GMBRWN specified (with or without GMLK); the message is
unlocked if the call completes with CCOK or CCWARN, but remains
locked if the call completes with CCFAIL. However, the following
exceptions apply:

— The message is not unlocked if CCWARN is returned with
RC2080.

— The message is unlocked if CCFAIL is returned with RC2033.

If GMLK is also specified, the new message is locked. If GMLK is
not specified, there is no locked message after the call.

If GMWT is specified, and no message is immediately available, the
unlock on the original message occurs before the start of the wait
(providing the call is otherwise free from error).

* Issuing another MQGET call for this handle, with GMBRWC
(without GMLK); the message is unlocked if the call completes with
CCOK or CCWARN, but remains locked if the call completes with
CCFAIL. However, the following exception applies:

— The message is not unlocked if CCWARN is returned with
RC2080.

* Issuing another MQGET call for this handle with GMUNLK.

 Issuing an MQCLOSE call for this handle (either explicitly, or
implicitly by the application ending).

No special open option is required to specify this option, other than
OOBRW, which is needed in order to specify the accompanying browse
option.

This option is not valid with any of the following options:
GMSYP
GMPSYP
GMUNLK

GMUNLK
Unlock message.

The message to be unlocked must have been previously locked by an
MQGET call with the GMLK option. If there is no message locked for
this handle, the call completes with CCWARN and RC2209.

The MSGDSC, BUFLEN, BUFFER, and DATLEN parameters are not checked or
altered if GMUNLK is specified. No message is returned in BUFFER.

No special open option is required to specify this option (although
OOBRW is needed to issue the lock request in the first place).

Chapter 8. MQGMO - Get-message options 59

MQGMO - Get-message options

This option is not valid with any options except the following:
GMNWT
GMNSYP

Both of these options are assumed whether specified or not.

GMATM
Allow truncation of message data.

If the message buffer is too small to hold the complete message, this
option allows the MQGET call to fill the buffer with as much of the
message as the buffer can hold, issue a warning completion code, and
complete its processing. This means:

* When browsing messages, the browse cursor is advanced to the
returned message.

* When removing messages, the returned message is removed from
the queue.

* Reason code RC2079 is returned if no other error occurs.

Without this option, the buffer is still filled with as much of the
message as it can hold, a warning completion code is issued, but
processing is not completed. This means:

* When browsing messages, the browse cursor is not advanced.

* When removing messages, the message is not removed from the
queue.

* Reason code RC2080 is returned if no other error occurs.

GMFIQ
Fail if queue manager is quiescing.

This option forces the MQGET call to fail if the queue manager is in
the quiescing state.

If this option is specified together with GMWT, and the wait is
outstanding at the time the queue manager enters the quiescing state:

* The wait is canceled and the call returns completion code CCFAIL
with reason code RC2161.

If GMFIQ is not specified and the queue manager enters the quiescing
state, the wait is not canceled.

GMCONV
Convert message data.

This option requests that the application data in the message should be
converted, to conform to the MDCST and MDENC values specified in the
MSGDSC parameter on the MQGET call, before the data is copied to the
BUFFER parameter.

The MDFMT field specified when the message was put is assumed by the
conversion process to identify the nature of the data in the message.
Conversion of the message data is by the queue manager for built-in
formats, and by a user-written exit for other formats. See
ba.ta.canuemanlan.pageAﬁJ] for details of the data-conversion exit.
If conversion is performed successfully, the MDCST and MDENC fields
specified in the MSGDSC parameter are unchanged on return from the
MQGET call.
» If conversion cannot be performed successfully (but the MQGET call
otherwise completes without error), the message data is returned

60 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

unconverted, and the MDCSI and MDENC fields in MSGDSC are set to the
values for the unconverted message. The completion code is
CCWARN in this case.

In either case, therefore, these fields describe the character-set identifier
and encoding of the message data that is returned in the BUFFER
parameter.

See the MDFMT field described in EChapter 10_MQMOD - Messagd
descriptor” on page 83 for a list of format names for which the queue

manager performs the conversion.

Group and segment options: The options described below control the way
that messages in groups and segments of logical messages are returned by the
MQGET call. The following definitions may be of help in understanding these

options:

Physical message

Logical

This is the smallest unit of information that can be placed on or
removed from a queue; it often corresponds to the information
specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD).
Generally, physical messages are distinguished by differing values for
the message identifier (MDMID field in MQMD), although this is not
enforced by the queue manager.

message
This is a single unit of application information. In the absence of
system constraints, a logical message would be the same as a physical
message. But where logical messages are extremely large, system
constraints may make it advisable or necessary to split a logical
message into two or more physical messages, called segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier (MDGID
field in MQMD), and the same message sequence number (MDSEQ field
in MQMD). The segments are distinguished by differing values for the
segment offset (MDOFF field in MQMD), which gives the offset of the
data in the physical message from the start of the data in the logical
message. Because each segment is a physical message, the segments in
a logical message usually have differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also has a
nonnull group identifier, although in this case there is only one
physical message with that group identifier if the logical message does
not belong to a message group. Logical messages for which
segmentation has been inhibited by the sending application have a null
group identifier (GINONE), unless the logical message belongs to a
message group.

Message group

This is a set of one or more logical messages that have the same
nonnull group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number,
which is an integer in the range 1 through n, where n is the number of
logical messages in the group. If one or more of the logical messages is
segmented, there will be more than n physical messages in the group.

Chapter 8. MQGMO - Get-message options 61

MQGMO - Get-message options

GMLOGO
Messages in groups and segments of logical messages are returned in
logical order.

This option controls the order in which messages are returned by
successive MQGET calls for the queue handle. The option must be
specified on each of those calls in order to have an effect.

If GMLOGO is specified for successive MQGET calls for the queue
handle, messages in groups are returned in the order given by their
message sequence numbers, and segments of logical messages are
returned in the order given by their segment offsets. This order may be
different from the order in which those messages and segments occur
on the queue.

Note: Specifying GMLOGO has no adverse consequences on messages
that do not belong to groups and that are not segments. In
effect, such messages are treated as though each belonged to a
message group consisting of only one message. Thus it is
perfectly safe to specify GMLOGO when retrieving messages
from queues that may contain a mixture of messages in groups,
message segments, and unsegmented messages not in groups.

To return the messages in the required order, the queue manager
retains the group and segment information between successive
MQGET calls. This information identifies the current message group
and current logical message for the queue handle, the current position
within the group and logical message, and whether the messages are
being retrieved within a unit of work. Because the queue manager
retains this information, the application does not need to set the group
and segment information prior to each MQGET call. Specifically, it
means that the application does not need to set the MDGID, MDSEQ, and
MDOFF fields in MQMD. However, the application does need to set the
GMSYP or GMNSYP option correctly on each call.

When the queue is opened, there is no current message group and no
current logical message. A message group becomes the current message
group when a message that has the MFMIG flag is returned by the
MQGET call. With GMLOGO specified on successive calls, that group
remains the current group until a message is returned that has:

* MFLMIG without MFSEG (that is, the last logical message in the
group is not segmented), or

* MFLMIG with MFLSEG (that is, the message returned is the last
segment of the last logical message in the group).

When such a message is returned, the message group is terminated,
and on successful completion of that MQGET call there is no longer a
current group. In a similar way, a logical message becomes the current
logical message when a message that has the MFSEG flag is returned
by the MQGET call, and that logical message is terminated when the
message that has the MFLSEG flag is returned.

If no selection criteria are specified, successive MQGET calls return (in

the correct order) the messages for the first message group on the
gueue, then the messages for the second message group, and so on,

62 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

until there are no more messages available. It is possible to select the
particular message groups returned by specifying one or more of the
following options in the GMMO field:
MOMSGI
MOCORI
MOGRPI

However, these options are effective only when there is no current
message group or logical message; see the GMMO field described in

EChapter 8 MQGMQ - Get-message options” on page 5 for further

details.

[able 14 shows the values of the MDMID, MDCID, MDGID, MDSEQ, and MDOFF
fields that the queue manager looks for when attempting to find a
message to return on the MQGET call. This applies both to removing
messages from the queue, and browsing messages on the queue. The
columns in the table have the following meanings:

LOG ORD
A “»” means that the row applies only when the GMLOGO

Cur grp

option is specified.

A “»” means that the row applies only when a current
message group exists prior to the call.

A “(»)” means that the row applies whether or not a current
message group exists prior to the call.

Cur log

msg

A “»” means that the row applies only when a current logical
message exists prior to the call.

A “(»*)” means that the row applies whether or not a current
logical message exists prior to the call.

Other columns
These show the values that the queue manager looks for.
“Previous” denotes the value returned for the field in the
previous message for the queue handle.

Table 16. MQGET options relating to messages in groups and segments of logical messages

Options Group and log-msg Values the queue manager looks for
you status prior to call
specify
LOG Cur grp Cur log MDMID MDCID MDGID MDSEQ MDOFF
ORD msg
I Controlled by Controlled by Controlled by 1 0
GMMO GMMO GMMO
” I Any message Any correlation | Previous group 1 Previous offset +
identifier identifier identifier previous segment
length
v I Any message Any correlation | Previous group Previous 0
identifier identifier identifier sequence number
+1
I I I Any message Any correlation | Previous group Previous Previous offset +
identifier identifier identifier sequence number | previous segment
length
)) Controlled by Controlled by Controlled by Controlled by Controlled by

GMMO

GMMO

GMMO

GMMO

GMMO

Chapter 8. MQGMO - Get-message options 63

MQGMO - Get-message options

When multiple message groups are present on the queue and eligible
for return, the groups are returned in the order determined by the
position on the queue of the first segment of the first logical message
in each group (that is, the physical messages that have message
sequence numbers of 1, and offsets of 0, determine the order in which
eligible groups are returned).

The GMLOGO option affects units of work as follows:

* If the first logical message or segment in a group is retrieved within
a unit of work, all of the other logical messages and segments in the
group must be retrieved within a unit of work, if the same queue
handle is used. However, they need not be retrieved within the same
unit of work. This allows a message group consisting of many
physical messages to be split across two or more consecutive units of
work for the queue handle.

» |f the first logical message or segment in a group is not retrieved
within a unit of work, none of the other logical messages and
segments in the group can be retrieved within a unit of work, if the
same queue handle is used.

If these conditions are not satisfied, the MQGET call fails with reason
code RC2245.

When GMLOGO is specified, the MQGMO supplied on the MQGET
call must not be less than GMVER2, and the MQMD must not be less
than MDVER?2. If this condition is not satisfied, the call fails with
reason code RC2256 or RC2257, as appropriate.

If GMLOGO is not specified for successive MQGET calls for the queue
handle, messages are returned without regard for whether they belong
to message groups, or whether they are segments of logical messages.
This means that messages or segments from a particular group or
logical message may be returned out of order, or they may be
intermingled with messages or segments from other groups or logical
messages, or with messages that are not in groups and are not
segments. In this situation, the particular messages that are returned by
successive MQGET calls is controlled by the MO* options specified on

those calls (see the GMMO field described in [‘Chapter 8 MQGMO |
Get-message options” on page 51 for details of these options).

This is the technique that can be used to restart a message group or
logical message in the middle, after a system failure has occurred.
When the system restarts, the application can set the MDGID, MDSEQ,
MDOFF, and GMMO fields to the appropriate values, and then issue the
MQGET call with GMSYP or GMNSYP set as desired, but without
specifying GMLOGQO. If this call is successful, the queue manager
retains the group and segment information, and subsequent MQGET
calls using that queue handle can specify GMLOGO as normal.

The group and segment information that the queue manager retains for
the MQGET call is separate from the group and segment information
that it retains for the MQPUT call. In addition, the queue manager
retains separate information for:

* MQGET calls that remove messages from the queue.

* MQGET calls that browse messages on the queue.

64 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

For any given queue handle, the application is free to mix MQGET
calls that specify GMLOGO with MQGET calls that do not, but the
following points should be noted:

e Each successful MQGET call that does not specify GMLOGO causes
the queue manager to set the saved group and segment information
to the values corresponding to the message returned; this replaces
the existing group and segment information retained by the queue
manager for the queue handle. Only the information appropriate to
the action of the call (browse or remove) is modified.

* If GMLOGO is not specified, the call does not fail if there is a
current message group or logical message, but the message or
segment retrieved is not the next one in the group or logical
message. The call may however succeed with an CCWARN
completion code. shows the various cases that can arise. In
these cases, if the completion code is not CCOK, the reason code is
one of the following (as appropriate):

RC2241
RC2242
RC2245

Note: The queue manager does not check the group and segment
information when browsing a queue, or when closing a queue
that was opened for browse but not input; in those cases the
completion code is always CCOK (assuming no other errors).

Table 17. Outcome when MQGET or MQCLOSE call not consistent with group and segment information

Current call

Previous call

MQGET with GMLOGO MQGET without GMLOGO

MQGET with GMLOGO CCFAIL CCFAIL
MQGET without GMLOGO CCWARN CCOK
MQCLOSE with an unterminated group CCWARN CCOK

or logical message

Applications that simply want to retrieve messages and segments in
logical order are recommended to specify GMLOGO, as this is the
simplest option to use. This option relieves the application of the need
to manage the group and segment information, because the queue
manager manages that information. However, specialized applications
may need more control than provided by the GMLOGO option, and
this can be achieved by not specifying that option. If this is done, the
application must ensure that the MDMID, MDCID, MDGID, MDSEQ, and MDOFF
fields in MQMD, and the MO* options in GMM0 in MQGMO, are set
correctly, prior to each MQGET call.

For example, an application that wants to forward physical messages
that it receives, without regard for whether those messages are in
groups or segments of logical messages, should not specify GMLOGO.
This is because in a complex network with multiple paths between
sending and receiving queue managers, the physical messages may
arrive out of order. By specifying neither GMLOGO, nor the
corresponding PMLOGO on the MQPUT call, the forwarding
application can retrieve and forward each physical message as soon as
it arrives, without having to wait for the next one in logical order to
arrive.

Chapter 8. MQGMO - Get-message options 65

MQGMO - Get-message options

GMLOGO can be specified with any of the other GM* options, and
with various of the MO* options in appropriate circumstances (see
above).

GMCMPM
Only complete logical messages are retrievable.

This option specifies that only a complete logical message can be
returned by the MQGET call. If the logical message is segmented, the
gueue manager reassembles the segments and returns the complete
logical message to the application; the fact that the logical message was
segmented is not apparent to the application retrieving it.

Note: This is the only option that causes the queue manager to
reassemble message segments. If not specified, segments are
returned individually to the application if they are present on
the queue (and they satisfy the other selection criteria specified
on the MQGET call). Applications that do not wish to receive
individual segments should therefore always specify GMCMPM.

To use this option, the application must provide a buffer which is big
enough to accommodate the complete message, or specify the GMATM
option.

If the queue contains segmented messages with some of the segments
missing (perhaps because they have been delayed in the network and
have not yet arrived), specifying GMCMPM prevents the retrieval of
segments belonging to incomplete logical messages. However, those
message segments still contribute to the value of the CurrentQDepth
gueue attribute; this means that there may be no retrievable logical
messages, even though CurrentQDepth is greater than zero.

For persistent messages, the queue manager can reassemble the
segments only within a unit of work:

« If the MQGET call is operating within a user-defined unit of work,
that unit of work is used. If the call fails partway through the
reassembly process, the queue manager reinstates on the queue any
segments that were removed during reassembly. However, the
failure does not prevent the unit of work being committed
successfully.

 If the call is operating outside a user-defined unit of work, and there
is no user-defined unit of work in existence, the queue manager
creates a unit of work just for the duration of the call. If the call is
successful, the queue manager commits the unit of work
automatically (the application does not need to do this). If the call
fails, the queue manager backs out the unit of work.

» If the call is operating outside a user-defined unit of work, but a
user-defined unit of work does exist, the queue manager is unable to
perform reassembly. If the message does not require reassembly, the
call can still succeed. But if the message does require reassembly, the
call fails with reason code RC2255.

For nonpersistent messages, the queue manager does not require a unit
of work to be available in order to perform reassembly.

66 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

Each physical message that is a segment has its own message
descriptor. For the segments constituting a single logical message, most
of the fields in the message descriptor will be the same for all
segments in the logical message — usually it is only the MDMID, MDOFF,
and MDMFL fields that differ between segments in the logical message.
However, if a segment is placed on a dead-letter queue at an
intermediate queue manager, the DLQ handler retrieves the message
specifying the GMCONV option, and this may result in the character
set or encoding of the segment being changed. If the DLQ handler
successfully sends the segment on its way, the segment may have a
character set or encoding that differs from the other segments in the
logical message when the segment finally arrives at the destination
gueue manager.

A logical message consisting of segments in which the MDCST and/or
MDENC fields differ cannot be reassembled by the queue manager into a
single logical message. Instead, the queue manager reassembles and
returns the first few consecutive segments at the start of the logical
message that have the same character-set identifiers and encodings,
and the MQGET call completes with completion code CCWARN and
reason code RC2243 or RC2244, as appropriate. This happens
regardless of whether GMCONV is specified. To retrieve the remaining
segments, the application must reissue the MQGET call without the
GMCMPM option, retrieving the segments one by one. GMLOGO can
be used to retrieve the remaining segments in order.

It is also possible for an application which puts segments to set other
fields in the message descriptor to values that differ between segments.
However, there is no advantage in doing this if the receiving
application uses GMCMPM to retrieve the logical message. When the
gueue manager reassembles a logical message, it returns in the
message descriptor the values from the message descriptor for the first
segment; the only exception is the MDMFL field, which the queue
manager sets to indicate that the reassembled message is the only
segment.

If GMCMPM s specified for a report message, the queue manager
performs special processing. The queue manager checks the queue to
see if all of the report messages of that report type relating to the
different segments in the logical message are present on the queue. If
they are, they can be retrieved as a single message by specifying
GMCMPM. For this to be possible, either the report messages must be
generated by a queue manager or MCA which supports segmentation,
or the originating application must request at least 100 bytes of
message data (that is, the appropriate RO*D or RO*F options must be
specified). If less than the full amount of application data is present for
a segment, the missing bytes are replaced by nulls in the report
message returned.

If GMCMPM is specified with GMMUC or GMBRWC, the browse
cursor must be positioned on a message whose MDOFF field in MQMD
has a value of 0. If this condition is not satisfied, the call fails with
reason code RC2246.

GMCMPM implies GMASGA, which need not therefore be specified.

Chapter 8. MQGMO - Get-message options 67

MQGMO - Get-message options

GMCMPM can be specified with any of the other GM* options apart
from GMPSYP, and with any of the MO* options apart from MOOFFS.

GMAMSA
All messages in group must be available.

This option specifies that messages in a group become available for
retrieval only when all messages in the group are available. If the
gueue contains message groups with some of the messages missing
(perhaps because they have been delayed in the network and have not
yet arrived), specifying GMAMSA prevents retrieval of messages
belonging to incomplete groups. However, those messages still
contribute to the value of the CurrentQDepth queue attribute; this
means that there may be no retrievable message groups, even though
CurrentQDepth is greater than zero. If there are no other messages that
are retrievable, reason code RC2033 is returned after the specified wait
interval (if any) has expired.

The processing of GMAMSA depends on whether GMLOGO is also

specified:

 If both options are specified, GMAMSA has an effect only when
there is no current group or logical message. If there is a current
group or logical message, GMAMSA is ignored. This means that
GMAMSA can remain on when processing messages in logical order.

* If GMAMSA is specified without GMLOGO, GMAMSA always has
an effect. This means that the option must be turned off after the
first message in the group has been removed from the queue, in
order to be able to remove the remaining messages in the group.

If this option is not specified, messages belonging to groups can be
retrieved even when the group is incomplete.

GMAMSA implies GMASGA, which need not therefore be specified.

GMAMSA can be specified with any of the other GM* options, and
with any of the MO* options.

GMASGA
All segments in a logical message must be available.

This option specifies that segments in a logical message become
available for retrieval only when all segments in the logical message
are available. If the queue contains segmented messages with some of
the segments missing (perhaps because they have been delayed in the
network and have not yet arrived), specifying GMASGA prevents
retrieval of segments belonging to incomplete logical messages.
However those segments still contribute to the value of the
CurrentQDepth queue attribute; this means that there may be no
retrievable logical messages, even though CurrentQDepth is greater than
zero. If there are no other messages that are retrievable, reason code
RC2033 is returned after the specified wait interval (if any) has expired.

The processing of GMASGA depends on whether GMLOGO is also

specified:

» If both options are specified, GMASGA has an effect only when there
is no current logical message. If there is a current logical message,

GMASGA is ignored. This means that GMASGA can remain on
when processing messages in logical order.

68 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

* If GMASGA is specified without GMLOGO, GMASGA always has an
effect. This means that the option must be turned off after the first
segment in the logical message has been removed from the queue, in
order to be able to remove the remaining segments in the logical
message.

If this option is not specified, message segments can be retrieved even
when the logical message is incomplete.

While both GMCMPM and GMASGA require all segments to be
available before any of them can be retrieved, the former returns the
complete message, whereas the latter allows the segments to be
retrieved one by one.

If GMASGA is specified for a report message, the queue manager
performs special processing. The queue manager checks the queue to
see if there is at least one report message for each of the segments that
comprise the complete logical message. If there is, the GMASGA
condition is satisfied. However, the queue manager does not check the
type of the report messages present, and so there may be a mixture of
report types in the report messages relating to the segments of the
logical message. As a result, the success of GMASGA does not imply
that GMCMPM will succeed. If there is a mixture of report types
present for the segments of a particular logical message, those report
messages must be retrieved one by one.

GMASGA can be specified with any of the other GM* options, and
with any of the MO* options.

GMNONE
No options specified.

This value can be used to indicate that no other options have been
specified; all options assume their default values. GMNONE is defined
to aid program documentation; it is not intended that this option be
used with any other, but as its value is zero, such use cannot be
detected.

The initial value of the GMOPT field is GMNWT.

GMWI (10-digit signed integer)
Wait interval.

This is the approximate time, expressed in milliseconds, that the MQGET call
waits for a suitable message to arrive (that is, a message satisfying the selection
criteria specified in the MSGDSC parameter of the MQGET call; see the MDMID
field described in LChapteLlD_M.QMD_Message_clescw;page.Bd for
more details). If no suitable message has arrived after this time has elapsed,
the call completes with CCFAIL and reason code RC2033.

GMWI is used in conjunction with the GMWT option. It is ignored if this option
is not specified. If it is specified, GMWI must be greater than or equal to zero, or
the following special value:

WIULIM
Unlimited wait interval.

The initial value of this field is 0.

Chapter 8. MQGMO - Get-message options 69

MQGMO - Get-message options

GMSGI1 (10-digit signed integer)
Signal.

This is a reserved field; its value is not significant. The initial value of this field
is 0.

GMSG2 (10-digit signed integer)
Signal identifier.

This is a reserved field; its value is not significant.

GMRQN (48-byte character string)
Resolved name of destination queue.

This is an output field which is set by the queue manager to the local name of
the queue from which the message was retrieved, as defined to the local queue
manager. This will be different from the name used to open the queue if:

* An alias queue was opened (in which case, the name of the local queue to
which the alias resolved is returned), or

* A model queue was opened (in which case, the name of the dynamic local
gueue is returned).

The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

The remaining fields are not present if GMVER is less than GMVER2.

GMMO (10-digit signed integer)
Options controlling selection criteria used for MQGET.

These options allow the application to choose which fields in the MSGDSC
parameter will be used to select the message returned by the MQGET call. The
application sets the required options in this field, and then sets the
corresponding fields in the MSGDSC parameter to the values required for those
fields. Only messages that have those values in the MQMD for the message are
candidates for retrieval using that ¥SGDSC parameter on the MQGET call. Fields
for which the corresponding match option is not specified are ignored when
selecting the message to be returned. If no selection criteria are to be used on
the MQGET call (that is, any message is acceptable), GMMO should be set to
MONONE.

If GMLOGO is specified, only certain messages are eligible for return by the
next MQGET call:

» If there is no current group or logical message, only messages that have
MDSEQ equal to 1 and MDOFF equal to 0 are eligible for return. In this situation,
one or more of the following match options can be used to select which of
the eligible messages is the one actually returned:

MOMSGI
MOCORI
MOGRPI

» If there is a current group or logical message, only the next message in the
group or next segment in the logical message is eligible for return, and this
cannot be altered by specifying MO* options.

In both of the above cases, match options which are not applicable can still be
specified, but the value of the relevant field in the MSGDSC parameter must

70 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

match the value of the corresponding field in the message to be returned; the
call fails with reason code RC2247 is this condition is not satisfied.

GMMO is ignored if either GMMUC or GMBRW(C is specified.

One or more of the following match options can be specified:

MOMSGI
Retrieve message with specified message identifier.

This option specifies that the message to be retrieved must have a
message identifier that matches the value of the MDMID field in the
MSGDSC parameter of the MQGET call. This match is in addition to any
other matches that may apply (for example, the correlation identifier).

If this option is not specified, the MDMID field in the MSGDSC parameter is
ignored, and any message identifier will match.

Note: The message identifier MINONE is a special value that matches
any message identifier in the MQMD for the message. Therefore,
specifying MOMSGI with MINONE is the same as not specifying
MOMSGI.

MOCORI
Retrieve message with specified correlation identifier.

This option specifies that the message to be retrieved must have a
correlation identifier that matches the value of the MDCID field in the
MSGDSC parameter of the MQGET call. This match is in addition to any
other matches that may apply (for example, the message identifier).

If this option is not specified, the MDCID field in the MSGDSC parameter is
ignored, and any correlation identifier will match.

Note: The correlation identifier CINONE is a special value that
matches any correlation identifier in the MQMD for the message.
Therefore, specifying MOCORI with CINONE is the same as not
specifying MOCORI.

MOGRPI
Retrieve message with specified group identifier.

This option specifies that the message to be retrieved must have a
group identifier that matches the value of the MDGID field in the MSGDSC
parameter of the MQGET call. This match is in addition to any other
matches that may apply (for example, the correlation identifier).

If this option is not specified, the MDGID field in the MSGDSC parameter is
ignored, and any group identifier will match.

Note: The group identifier GINONE is a special value that matches
any group identifier in the MQMD for the message. Therefore,
specifying MOGRPI with GINONE is the same as not specifying
MOGRPI.

MOSEQN
Retrieve message with specified message sequence number.

This option specifies that the message to be retrieved must have a
message sequence number that matches the value of the MDSEQ field in

Chapter 8. MQGMO - Get-message options 71

MQGMO - Get-message options

the MSGDSC parameter of the MQGET call. This match is in addition to
any other matches that may apply (for example, the group identifier).

If this option is not specified, the MDSEQ field in the MSGDSC parameter is
ignored, and any message sequence number will match.

MOOFFS
Retrieve message with specified offset.

This option specifies that the message to be retrieved must have an
offset that matches the value of the MDOFF field in the MSGDSC parameter
of the MQGET call. This match is in addition to any other matches that
may apply (for example, the message sequence number).

If this option is not specified, the MDOFF field in the MSGDSC parameter is
ignored, and any offset will match.

If none of the options described above is specified, the following option can be
used:

MONONE
No matches.

This option specifies that no matches are to be used in selecting the
message to be returned; therefore, all messages on the queue are
eligible for retrieval (but subject to control by the GMAMSA,
GMASGA, and GMCMPM options).

MONONE is defined to aid program documentation. It is not intended
that this option be used with any other, but as its value is zero, such
use cannot be detected.

This is an input field. The initial value of this field is MOMSGI with MOCORI.
This field is not present if GMVER is less than GMVER?2.

Note: The initial value of the GMMO field is defined for compatibility with
earlier MQSeries queue managers. However, when reading a series of
messages from a queue without using selection criteria, this initial value
requires the application to reset the MDMID and MDCID fields to MINONE
and CINONE prior to each MQGET call. The need to reset MDMID and
MDCID can be avoided by setting GMVER to GMVERZ2, and GMMO to
MONONE.

GMGST (1-byte character string)
Flag indicating whether message retrieved is in a group.

It has one of the following values:

GSNIG
Message is not in a group.

GSMIG
Message is in a group, but is not the last in the group.

GSLMIG
Message is the last in the group.

This is also the value returned if the group consists of only one
message.

This is an output field. The initial value of this field is GSNIG. This field is not
present if GMVER is less than GMVER2.

72 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGMO - Get-message options

GMSST (1-byte character string)

Flag indicating whether message retrieved is a segment of a logical message.

It has one of the following values:

SSNSEG
Message is not a segment.

SSSEG
Message is a segment, but is not the last segment of the logical
message.

SSLSEG
Message is the last segment of the logical message.

This is also the value returned if the logical message consists of only
one segment.

This is an output field. The initial value of this field is SSNSEG. This field is
not present if GMVER is less than GMVER2.

GMSEG (1-byte character string)

Flag indicating whether further segmentation is allowed for the message
retrieved.

It has one of the following values:

SEGIHB
Segmentation not allowed.

SEGALW
Segmentation allowed.

This is an output field. The initial value of this field is SEGIHB. This field is
not present if GMVER is less than GMVER2.

GMRE1 (1-byte character string)

Reserved.

This is a reserved field. The initial value of this field is a blank character. This
field is not present if GMVER is less than GMVER?2.

The remaining fields are not present if GMVER is less than GMVERS.
GMTOK (16-byte bit string)

Message token.
This is a reserved field; its value is not significant. The following special value
is defined:

MTKNON
No message token.

The value is binary zero for the length of the field.

The length of this field is given by LNMTOK. The initial value of this field is
MTKNON. This field is not present if GMVER is less than GMVER3.

GMRL (10-digit signed integer)

Length of message data returned (bytes).

Chapter 8. MQGMO - Get-message options 73

MQGMO - Get-message options

This is a reserved field; its value is not significant. The following special value
is defined:

RLUNDF
Length of returned data not defined.

On 0S/390, the value returned for the GMRL field is always RLUNDF.

The initial value of this field is RLUNDF. This field is not present if GMVER is
less than GMVERS3.

Initial values and RPG declaration

Table 18. Initial values of fields in MQGMO

Field name Name of constant Value of constant
GMSID GMSIDV 'GMOb' (See note 1)
GMVER GMVER1 1

GMOPT GMNWT 0

GMWI None 0

GMSG1 None 0

GMSG2 None 0

GMRQN None Blanks

GMMO MOMSGI + MOCORI 3

GMGST GSNIG b’

GMSST SSNSEG 'b'

GMSEG SEGIHB b’

GMREI None ‘b’

GMTOK MTKNON Nulls

GMRL RLUNDF -1

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration

Dx..l. .ot 2eente 3t b o bl aBll el T
D+ MQGMO Structure

D*

D* Structure identifier

D GMSID 1 4

D* Structure version number

D GMVER 5 81 0

D+ Options that control the action of MQGET

D GMOPT 9 121 0

D* Wait interval

D GMWI 13 161 0

D* Signal

D GMSGL 17 201 0

D* Signal identifier

D GMSG2 21 241 0

D* Resolved name of destination queue

D GMRQN 25 72

D+ Options controlling selection criteria used for MQGET
D GMMO 73 761 0

74 MQSeries for AS/400, V5.1 APR (ILE RPG)

D*

D*
D*

D*
D*

D*

D*

D*

RPG declaration

Flag indicating whether message retrieved is in a group

GMGST

Flag indicating whether message retrieved is a segment of a

logical message
GMSST

Flag indicating whether further segmentation is allowed for the

message retrieved
GMSEG

Reserved

GMRE1

Message token
GMTOK

77 77
78 78
79 79
80 80
81 96

Length of message data returned (bytes)

GMRL

97

1001 0

Chapter 8. MQGMO - Get-message options

75

RPG declaration

76 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 9. MQIIH - IMS bridge header

The following table summarizes the fields in the structure.

Table 19. Fields in MQIIH

Field Description Page
IISID Structure identifier
IIVER Structure version number
IILEN Length of MQIIH structure
IIFMT MQ format name of data that follows MQIIH 73
IIFLG Flags kd
IILTO Logical terminal override fd
TIMMN Message format services map name fd
TIRFM MQ format name of reply message fd
TTAUT RACF™ password or passticket fd
IITID Transaction instance identifier fd
IITST Transaction state
IICMT Commit mode
IISEC Security scope R0

Overview

The MQIIH structure describes the information that must be present at the start of
a message sent to the IMS bridge through MQSeries for OS/390. The format name
of this structure is FMIMS.

Special conditions apply to the character set and encoding used for the MQIIH
structure and application message data:

» Applications that connect to the queue manager which owns the IMS bridge
queue must provide an MQIIH structure that is in the character set and
encoding of the queue manager. This is because data conversion of the MQIIH
structure is not performed in this case.

» Applications that connect to other queue managers can provide an MQIIH
structure that is in any of the supported character sets and encodings;
conversion of the MQIIH and application message data is performed by the
gueue manager as necessary.

Note: There is one exception to this. If the queue manager which owns the IMS
bridge queue is using CICS for distributed queuing, the MQIIH must be
in the character set and encoding of that queue manager.

* The application message data following the MQIIH structure must be in the
same character set and encoding as the MQIIH structure. The IICSI and ITENC
fields in the MQIIH structure cannot be used to specify the character set and
encoding of the application message data.

© Copyright IBM Corp. 1994, 2000 77

MQIIH - IMS bridge header

Fields
IISID (4-byte character string)

Structure identifier.
The value must be:
11SIDV
Identifier for IMS information header structure.
The initial value of this field is IISIDV.
ITVER (10-digit signed integer)
Structure version number.
The value must be:
IIVER1
Version number for IMS information header structure.
The following constant specifies the version number of the current version:
IIVERC
Current version of IMS information header structure.
The initial value of this field is IIVER1.
ITLEN (10-digit signed integer)
Length of MQIIH structure.
The value must be:
IHLEN1
Length of IMS information header structure.
The initial value of this field is ILEN1.

ITTENC (10-digit signed integer)
Reserved.

This is a reserved field; its value is not significant. The initial value of this field

is 0.

IICST (10-digit signed integer)
Reserved.

This is a reserved field; its value is not significant. The initial value of this field

is 0.

IIFMT (8-byte character string)
MQ format name of data that follows MQIIH.

This is the MQ format name of the application message data which follows the
MQIIH structure. The rules for coding this are the same as those for the MDFMT

field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is
FMNONE.

IIFLG (10-digit signed integer)
Flags.

78 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQIIH - IMS bridge header
The value must be:

IINONE
No flags.

The initial value of this field is IINONE.

IILTO (8-byte character string)
Logical terminal override.

This is placed in the 10 PCB field. It is optional; if it is not specified the TPIPE
name is used. It is ignored if the first byte is blank, or null.

The length of this field is given by LNLTOV. The initial value of this field is 8
blank characters.

IIMMN (8-byte character string)
Message format services map name.

This is placed in the 10 PCB field. It is optional. On input it represents the
MID, on output it represents the MOD. It is ignored if the first byte is blank or
null.

The length of this field is given by LNMFMN. The initial value of this field is 8
blank characters.

IIRFM (8-byte character string)
MQ format name of reply message.

This is the MQ format name of the reply message which will be sent in
response to the current message. The rules for coding this are the same as
those for the MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is
FMNONE.

ITAUT (8-byte character string)
RACF password or passticket.

This is optional; if specified, it is used with the user ID in the MQMD security
context to build a Utoken that is sent to IMS to provide a security context. If it
is not specified, the user ID is used without verification. This depends on the
setting of the RACF switches, which may require an authenticator to be
present.

This is ignored if the first byte is blank or null. The following special value
may be used:
IAUNON
No authentication.
The length of this field is given by LNAUTH. The initial value of this field is
IAUNON.
IITID (16-byte bit string)
Transaction instance identifier.

This field is used by output messages from IMS so is ignored on first input. If
IITST is set to ITSIC, this must be provided in the next input, and all

Chapter 9. MQIIH - IMS bridge header 79

MQIIH - IMS bridge header

subsequent inputs, to enable IMS to correlate the messages to the correct
conversation. The following special value may be used:

ITINON
No transaction instance id.

The length of this field is given by LNTIID. The initial value of this field is
ITINON.

IITST (1-byte character string)
Transaction state.

This indicates the IMS conversation state. This is ignored on first input because
no conversation exists. On subsequent inputs it indicates whether a
conversation is active or not. On output it is set by IMS. The value must be
one of the following:

ITSIC In conversation.

ITSNIC
Not in conversation.

ITSARC
Return transaction state data in architected form.

This value is used only with the IMS /DISPLAY TRAN command. It
causes the transaction state data to be returned in the IMS architected

form instead of character form. See the MQSeries Application)
Programming Guidd for further details.

The initial value of this field is ITSNIC.

IICMT (1-byte character string)
Commit mode.

See the OTMA Reference for more information about IMS commit modes. The
value must be one of the following:

ICMCTS
Commit then send.

This mode implies double queuing of output, but shorter region
occupancy times. Fast-path and conversational transactions cannot run
with this mode.

ICMSTC
Send then commit.
The initial value of this field is ICMCTS.
IISEC (1-byte character string)
Security scope.
This indicates the desired IMS security processing. The following values are
defined:

ISSCHK
Check security scope.

An ACEE is built in the control region, but not in the dependent
region.

80 MQsSeries for AS/400, V5.1 APR (ILE RPG)

ISSFUL

Full security scope.

MQIIH - IMS bridge header

A cached ACEE is built in the control region and a non-cached ACEE
is built in the dependent region. If you use ISSFUL, you must ensure
that the user ID for which the ACEE is built has access to the resources

used in the dependent region.

If neither ISSCHK nor ISSFUL is specified for this field, ISSCHK is assumed.

The initial value of this field is ISSCHK.

ITIRSV (1-byte character string)
Reserved.

This is a reserved field; it must be blank.

Initial values and RPG declaration

Table 20. Initial values of fields in MQIIH

Field name Name of constant Value of constant
IISID IISIDV '"IIHb' (See note 1)
IIVER IIVER1 1

IILEN IILEN1 84

IIENC None 0

IICSI None 0

IIFMT FMNONE "bbbbbbbb'

IIFLG IINONE 0

IILTO None "bbbbbbbb'

TIMMN None "bbbbbbbb'

ITIRFM FMNONE "bbbbbbbb'

ITAUT IAUNON "bbbbbbbb'

IITID ITINON Nulls

IITST ITSNIC 'b!

IICMT ICMCTS 0!

1ISEC ISSCHK ‘c

IIRSV None 'b!

Notes:

1. The symbol ‘b’ represents a single blank character.

Chapter 9. MQIIH - IMS bridge header 81

MQIIH - IMS bridge header
RPG declaration

Dx..l. oot 2eeeite 3t b o bl albel el T
D+ MQIIH Structure

D*

D* Structure identifier

D TIISID 1 4

D* Structure version number

D IIVER 5 8I 0
D* Length of MQIIH structure

D TIILEN 9 121 0
D* Reserved

D TIENC 13 161 0
D* Reserved

D TIICSI 17 201 0
D* MQ format name of data that follows MQIIH
D IIFMT 21 28

D* Flags

D IIFLG 29 321 0
D+ Logical terminal override

D IILTO 33 40

D* Message format services map name

D IIMMN 41 48

D+ MQ format name of reply message

D IIRFM 49 56

D* RACF password or passticket

D IIAUT 57 64

D* Transaction instance identifier

D IITID 65 80

D* Transaction state

D IITST 81 81

D+ Commit mode

D TIICMT 82 82

D* Security scope

D TIISEC 83 83

D* Reserved

D TIIRSV 84 84

82 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 10. MQMD - Message descriptor

The following table summarizes the fields in the structure.

Table 21. Fields in MQMD

Field Description Page
MDSID Structure identifier B
MDVER Structure version number RS
MDREP Options for report messages RS
MDMT Message type 05
MDEXP Message lifetime
MDFB Feedback or reason code 08
MDENC Numeric encoding of message data flod
MDCSI Character set identifier of message data fod
MDFMT Format name of message data flod
MDPRI Message priority fod
MDPER Message persistence flod
MDMID Message identifier flod
MDCID Correlation identifier fd
MDBOC Backout counter g
MDRQ Name of reply queue g
MDRM Name of reply queue manager fd
MDUID User identifier fud
MDACC Accounting token |
MDAID Application data relating to identity fid
MDPAT Type of application that put the message id
MDPAN Name of application that put the message fd
MDPD Date when message was put fiid
MDPT Time when message was put fizd
MDAOD Application data relating to origin i1
Note: The remaining fields are not present if MDVER is less than MDVER?2.
MDGID Group identifier fiod
MDSEQ Sequence number of logical message within group >3
MDOFF Offset of data in physical message from start of 23
logical message
MDMFL Message flags 24
MDOLN Length of original message fi>d

© Copyright IBM Corp. 1994, 2000

83

MQMD - Message descriptor

Overview

The MQMD structure contains the control information that accompanies the
application data when a message travels between the sending and receiving
applications.

Character data in the message descriptor is in the character set of the queue
manager to which the application is connected; this is given by the CodedCharSetId
queue-manager attribute. Numeric data in the message descriptor is in the native
machine encoding (given by ENNAT).

If the sending and receiving queue managers use different character sets or
encodings, the data in the message descriptor is converted automatically—it is not
necessary for the receiving application to perform these conversions.

If the application message data requires conversion, this can be accomplished by
means of a user-written exit invoked when the message is retrieved using the
MQGET call. For further information, see:

+ The GMCONYV option described in EChapter 8 MQGMQ - Get-message options’]

. Tb?ﬂe note describing GMCONYV in |“(‘haptpr 30 MQGET - Get message” an

. The MOSen At oo G

When a message is on a transmission queue, some of the fields in MQMD are set

to Eartlcular values; see [‘Chapter 21_MQXQH - Transmission queue header” on

for details.

The current version of MQMD is MDVER?2. Fields that exist only in the version-2
structure are identified as such in the descriptions that follow. The declaration of
MQMD provided in the COPY file contains the new fields, but the initial value
provided for the MDVER field is MDVER1,; this ensures compatibility with existing
applications. To use the new fields, the application must set the version number to
MDVER2. A declaration for the version-1 structure is available with the name
MQMD1. Applications which are intended to be portable between several
environments should use a version-2 MQMD only if all of those environments
support version 2.

A version-2 MQMD is generally equivalent to using a version-1 MQMD and
prefixing the application message data with an MQMDE structure. However, if all
of the fields in the MQMDE structure have their default values, the MQMDE can
be omitted. A version-1 MQMD plus MQMDE are used as follows:

* On the MQPUT and MQPUTTL calls, if the application provides a version-1
MQMD, the application can optionally prefix the message data with an
MQMDE, setting the MDFMT field in MQMD to FMMDE to indicate that an
MQMDE is present. If the application does not provide an MQMDE, the queue
manager assumes default values for the fields in the MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the
version-1 MQMD are input/output fields on MQPUT and MQPUTL.
However, the queue manager does not return any values in the equivalent
fields in the MQMDE on output from the MQPUT and MQPUTL1 calls; if
the application requires those output values, it must use a version-2
MQMD.

84 MQseries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

* On the MQGET call, if the application provides a version-1 MQMD, the queue
manager prefixes the message returned with an MQMDE, but only if one or
more of the fields in the MQMDE has a non-default value. The MDFMT field in
MQMD will have the value FMMDE to indicate that an MQMDE is present.

The default values that the queue manager used for the fields in the MOMDE are
the same as the initial values of those fields, shown in

This structure is an input/output parameter for the MQGET, MQPUT, and
MQPUT1 calls.

Fields

MDSID (4-byte character string)
Structure identifier.

The value must be:

MDSIDV
Identifier for message descriptor structure.

This is always an input field. The initial value of this field is MDSIDV.

MDVER (10-digit signed integer)
Structure version number.

The value must be one of the following:

MDVER1
Version-1 message descriptor structure.

MDVER?2
Version-2 message descriptor structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

Note: When a version-2 MQMD is used, the queue manager performs
additional checks on any MQ header structures that may be
present at the beginning of the application message data; for
further details see usage note l.an page 272 for the MQPUT call.

The following constant specifies the version number of the current version:

MDVERC
Current version of message descriptor structure.

This is always an input field. The initial value of this field is MDVERL.

MDREP (10-digit signed integer)
Options for report messages.

A report message is a message about another message, used to inform an
application about expected or unexpected events that relate to the original
message. The MDREP field enables the application sending the original message
to specify which report messages are required, whether the application
message data is to be included in them, and also (for both reports and replies)
how the message and correlation identifiers in the report or reply message are
to be set. Any or all (or none) of the following report types can be requested:

Chapter 10. MQMD - Message descriptor 85

MQMD - Message descriptor

* Exception

» Expiration

» Confirm on arrival (COA)

» Confirm on delivery (COD)

» Positive action notification (PAN)

* Negative action notification (NAN)

If more than one type of report message is required, or other report options are
needed, the values can be added together (do not add the same constant more
than once).

The application that receives the report message can determine the reason the
report was generated by examining the MDFB field in the MQMD; see the MDFB
field for more details.

Exception options: You can specify one of the options listed below to request
an exception report message.

ROEXC
Exception reports required.

This type of report can be generated by a message channel agent when
a message is sent to another queue manager and the message cannot
be delivered to the specified destination queue. For example, the
destination queue or an intermediate transmission queue might be full,
or the message might be too big for the queue.

Generation of the exception report message depends on the persistence
of the original message, and the speed of the message channel (normal
or fast) through which the original message travels:

» For all persistent messages, and for nonpersistent messages traveling
through normal message channels, the exception report is generated
only if the action specified by the sending application for the error
condition can be completed successfully. The sending application can
specify one of the following actions to control the disposition of the
original message when the error condition arises:

— RODLQ (this causes the original message to be placed on the
dead-letter queue).
— RODISC (this causes the original message to be discarded).

If the action specified by the sending application cannot be
completed successfully, the original message is left on the
transmission queue, and no exception report message is generated.

» For nonpersistent messages traveling through fast message channels,
the original message is removed from the transmission queue and
the exception report generated even if the specified action for the
error condition cannot be completed successfully. For example, if
RODLQ is specified, but the original message cannot be placed on
the dead-letter queue because (say) that queue is full, the exception
report message is generated and the original message discarded.

Refer to the MQSeries Intercommunication book for more information

about normal and fast message channels.

An exception report is not generated if the application that put the
original message can be notified synchronously of the problem by
means of the reason code returned by the MQPUT or MQPUT1 call.

86 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

Applications can also send exception reports, to indicate that a
message that it has received cannot be processed (for example, because
it is a debit transaction that would cause the account to exceed its
credit limit).

Message data from the original message is not included with the report
message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

ROEXCD
Exception reports with data required.

This is the same as ROEXC, except that the first 100 bytes of the
application message data from the original message are included in the
report message. If the length of the message data in the original
message is less than 100 bytes, the length of the message data in the
report is the same length as the original message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

ROEXCF
Exception reports with full data required.

This is the same as ROEXC, except that all of the application message
data from the original message is included in the report message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

Expiration options: You can specify one of the options listed below to request
an expiration report message.

ROEXP
Expiration reports required.

This type of report is generated by the queue manager if the message
is discarded prior to delivery to an application because its expiry time
has passed (see the MDEXP field). If this option is not set, no report
message is generated if a message is discarded for this reason (even if
one of the ROEXC* options is specified).

Message data from the original message is not included with the report
message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

ROEXPD
Expiration reports with data required.

This is the same as ROEXP, except that the first 100 bytes of the
application message data from the original message are included in the
report message. If the length of the message data in the original
message is less than 100 bytes, the length of the message data in the
report is the same length as the original message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

ROEXPF
Expiration reports with full data required.

This is the same as ROEXP, except that all of the application message
data from the original message is included in the report message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

Chapter 10. MQMD - Message descriptor 87

MQMD - Message descriptor

Confirm-on-arrival options: You can specify one of the options listed below to
request a confirm-on-arrival report message.

ROCOA
Confirm-on-arrival reports required.

This type of report is generated by the queue manager that owns the
destination queue, when the message is placed on the destination
gueue. Message data from the original message is not included with
the report message.

If the message is put as part of a unit of work, and the destination
gueue is a local queue, the COA report message generated by the
gueue manager becomes available for retrieval only if and when the
unit of work is committed.

A COA report is not generated if the MDFMT field in the message
descriptor is FMXQH or FMDLH. This prevents a COA report being
generated if the message is put on a transmission queue, or is
undeliverable and put on a dead-letter queue.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

ROCOAD
Confirm-on-arrival reports with data required.

This is the same as ROCOA, except that the first 100 bytes of the
application message data from the original message are included in the
report message. If the length of the message data in the original
message is less than 100 bytes, the length of the message data in the
report is the same length as the original message.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

ROCOAF
Confirm-on-arrival reports with full data required.

This is the same as ROCOA, except that all of the application message
data from the original message is included in the report message.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

Confirm-on-delivery options: You can specify one of the options listed below
to request a confirm-on-delivery report message.

ROCOD
Confirm-on-delivery reports required.

This type of report is generated by the queue manager when an
application retrieves the message from the destination queue in a way
that causes the message to be deleted from the queue. Message data
from the original message is not included with the report message.

If the message is retrieved as part of a unit of work, the report
message is generated within the same unit of work, so that the report
is not available until the unit of work is committed. If the unit of work
is backed out, the report is not sent.

A COD report is not generated if the MDFMT field in the message
descriptor is FMDLH. This prevents a COD report being generated if
the message is undeliverable and put on a dead-letter queue.

ROCOD is not valid if the destination queue is an XCF queue.

88 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor
Do not specify more than one of ROCOD, ROCODD, and ROCODF.

ROCODD
Confirm-on-delivery reports with data required.

This is the same as ROCOD, except that the first 100 bytes of the
application message data from the original message are included in the
report message. If the length of the message data in the original
message is less than 100 bytes, the length of the message data in the
report is the same length as the original message.

If GMATM is specified on the MQGET call for the original message,
and the message returned is truncated, the amount of message data
placed in the report message depends on the environment:

* On 0S/390, it is the minimum of:
— The length of the original message
— The length of the buffer used to retrieve the message
— 100 bytes.

* In other environments, it is the minimum of:

— The length of the original message
— 100 bytes.

ROCODD is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

ROCODF
Confirm-on-delivery reports with full data required.

This is the same as ROCOD, except that all of the application message
data from the original message is included in the report message.

ROCODEF is not valid if the destination queue is an XCF queue.
Do not specify more than one of ROCOD, ROCODD, and ROCODF.

Action-notification options: You can specify one or both of the options listed
below to request that the receiving application send a positive-action or
negative-action report message.

ROPAN
Positive action notification reports required.

This type of report is generated by the application that retrieves the
message and acts upon it. It indicates that the action requested in the
message has been performed successfully. The application generating
the report determines whether or not any data is to be included with
the report.

Other than conveying this request to the application retrieving the
message, the queue manager takes no action based upon this option. It
is the responsibility of the retrieving application to generate the report
if appropriate.

RONAN
Negative action notification reports required.

This type of report is generated by the application that retrieves the
message and acts upon it. It indicates that the action requested in the
message has not been performed successfully. The application
generating the report determines whether or not any data is to be

Chapter 10. MQMD - Message descriptor 89

MQMD - Message descriptor

included with the report. For example, it may be desirable to include
some data indicating why the request could not be performed.

Other than conveying this request to the application retrieving the
message, the queue manager takes no action based upon this option. It
is the responsibility of the retrieving application to generate the report
if appropriate.

Determination of which conditions correspond to a positive action and which
correspond to a negative action is the responsibility of the application.
However, it is recommended that if the request has been only partially
performed, a NAN report rather than a PAN report should be generated if
requested. It is also recommended that every possible condition should
correspond to either a positive action, or a negative action, but not both.

Message-identifier options: You can specify one of the options listed below to
control how the MDMID of the report message (or of the reply message) is to be
set.

RONMI
New message identifier.

This is the default action, and indicates that if a report or reply is
generated as a result of this message, a new MDMID is to be generated
for the report or reply message.

ROPMI
Pass message identifier.

If a report or reply is generated as a result of this message, the MDMID
of this message is to be copied to the MDMID of the report or reply
message.

If this option is not specified, RONMI is assumed.

Correlation-identifier options: You can specify one of the options listed below
to control how the MDCID of the report message (or of the reply message) is to
be set.

ROCMTC
Copy message identifier to correlation identifier.

This is the default action, and indicates that if a report or reply is
generated as a result of this message, the MDMID of this message is to be
copied to the MDCID of the report or reply message.

ROPCI
Pass correlation identifier.

If a report or reply is generated as a result of this message, the MDCID
of this message is to be copied to the MDCID of the report or reply
message.

If this option is not specified, ROCMTC is assumed.

Servers replying to requests or generating report messages are recommended
to check whether the ROPMI or ROPCI options were set in the original
message. If they were, the servers should take the action described for those
options. If neither is set, the servers should take the corresponding default
action.

90 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

Disposition options: You can specify one of the options listed below to control
the disposition of the original message when it cannot be delivered to the
destination queue. These options apply only to those situations that would
result in an exception report message being generated if one had been
requested by the sending application. The application can set the disposition
options independently of requesting exception reports.

RODLQ
Place message on dead-letter queue.

This is the default action, and indicates that the message should be
placed on the dead-letter queue, if the message cannot be delivered to
the destination queue. An exception report message will be generated,
if one was requested by the sender.

RODISC
Discard message.

This indicates that the message should be discarded if it cannot be
delivered to the destination queue. An exception report message will
be generated, if one was requested by the sender.

If it is desired to return the original message to the sender, without the
original message being placed on the dead-letter queue, the sender
should specify RODISC with ROEXCF.

Default option: You can specify the following if no report options are required:

RONONE
No reports required.

This value can be used to indicate that no other options have been
specified. RONONE is defined to aid program documentation. It is not
intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

General information: All report types required must be specifically requested
by the application sending the original message. For example, if a COA report
is requested but an exception report is not, a COA report is generated when
the message is placed on the destination queue, but no exception report is
generated if the destination queue is full when the message arrives there. If no
MDREP options are set, no report messages are generated by the queue manager
or message channel agent (MCA).

Some report options can be specified even though the local queue manager
does not recognize them; this is useful when the option is to be processed by
the destination queue manager. See £ i ions”

for more details.

If a report message is requested, the name of the queue to which the report
should be sent must be specified in the MDRQ field. When a report message is
received, the nature of the report can be determined by examining the MDFB
field in the message descriptor.

If the queue manager or MCA that generates a report message is unable to put
the report message on the reply queue (for example, because the reply queue
or transmission queue is full), the report message is placed instead on the
dead-letter queue. If that also fails, or there is no dead-letter queue, the action
taken depends on the type of the report message:

Chapter 10. MQMD - Message descriptor 91

MQMD - Message descriptor

 If the report message is an exception report, the message which caused the
exception report to be generated is left on its transmission queue; this
ensures that the message is not lost.

» For all other report types, the report message is discarded and processing
continues normally. This is done because either the original message has
already been delivered safely (for COA or COD report messages), or is no
longer of any interest (for an expiration report message).

Once a report message has been placed successfully on a queue (either the
destination queue or an intermediate transmission queue), the message is no
longer subject to special processing — it is treated just like any other message.

When the report is generated, the MDRQ queue is opened and the report
message put using the authority of the MDUID in the MQMD of the message
causing the report, except in the following cases:

» Exception reports generated by a receiving MCA are put with whatever
authority the MCA used when it tried to put the message causing the report.
The CDPA channel attribute determines the user identifier used.

* COA reports generated by the queue manager are put with whatever
authority was used when the message causing the report was put on the
gqueue manager generating the report. For example, if the message was put
by a receiving MCA using the MCA’s user identifier, the queue manager
puts the COA report using the MCA'’s user identifier.

Applications generating reports should normally use the same authority as
they would have used to generate a reply; this should normally be the
authority of the user identifier in the original message.

If the report has to travel to a remote destination, senders and receivers can
decide whether or not to accept it, in the same way as they do for other
messages.

If a report message with data is requested:

* The report message is always generated with the amount of data requested
by the sender of the original message. If the report message is too big for the
reply queue, the processing described above occurs; the report message is
never truncated in order to fit on the reply queue.

» If the MDFMT of the original message is FMXQH, the data included in the
report does not include the MQXQH. The report data starts with the first
byte of the data beyond the MQXQH in the original message. This occurs
whether or not the queue is a transmission queue.

If a COA, COD, or expiration report message is received at the reply queue, it
is guaranteed that the original message arrived, was delivered, or expired, as
appropriate. However, if one or more of these report messages is requested
and is not received, the reverse cannot be assumed, since one of the following
may have occurred:

1. The report message is held up because a link is down.

2. The report message is held up because a blocking condition exists at an
intermediate transmission queue or at the reply queue (for example, the
queue is full or inhibited for puts).

3. The report message is on a dead-letter queue.

4. When the queue manager was attempting to generate the report message, it
was unable to put it on the appropriate queue, and was also unable to put
it on the dead-letter queue, so the report message could not be generated.

92 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

5. A failure of the queue manager occurred between the action being reported
(arrival, delivery or expiry), and generation of the corresponding report
message. (This does not happen for COD report messages if the application
retrieves the original message within a unit of work, as the COD report
message is generated within the same unit of work.)

Exception report messages may be held up in the same way for reasons 1, 2,
and 3 above. However, when an MCA is unable to generate an exception
report message (the report message cannot be put either on the reply queue or
the dead-letter queue), the original message remains on the transmission queue
at the sender, and the channel is closed. This occurs irrespective of whether the
report message was to be generated at the sending or the receiving end of the
channel.

If the original message is temporarily blocked (resulting in an exception report
message being generated and the original message being put on a dead-letter
queue), but the blockage clears and an application then reads the original
message from the dead-letter queue and puts it again to its destination, the
following may occur:

* Even though an exception report message has been generated, the original
message eventually arrives successfully at its destination.

* More than one exception report message is generated in respect of a single
original message, since the original message may encounter another
blockage later.

Report messages for message segments: Report messages can be requested for
messages that have segmentation allowed (see the description of the MFSEGA
flag). If the queue manager finds it necessary to segment the message, a report
message can be generated for each of the segments that subsequently
encounters the relevant condition. Applications should therefore be prepared to
receive multiple report messages for each type of report message requested.
The MDGID field in the report message can be used to correlate the multiple
reports with the group identifier of the original message, and the MDFB field
used to identify the type of each report message.

If GMLOGO is used to retrieve report messages for segments, be aware that
reports of different types may be returned by the successive MQGET calls. For
example, if both COA and COD reports are requested for a message that is
segmented by the queue manager, the MQGET calls for the report messages
may return the COA and COD report messages interleaved in an unpredictable
fashion. This can be avoided by using the GMCMPM option (optionally with
GMATM). GMCMPM causes the queue manager to reassemble report messages
that have the same report type. For example, the first MQGET call might
reassemble all of the COA messages relating to the original message, and the
second MQGET call might reassemble all of the COD messages. Which is
reassembled first depends on which type of report message happens to occur
first on the queue.

Applications that themselves put segments can specify different report options
for each segment. However, the following points should be noted:

* If the segments are retrieved using the GMCMPM option, only the report
options in the first segment are honored by the queue manager.

» If the segments are retrieved one by one, and most of them have one of the
ROCOD* options, but at least one segment does not, it will not be possible

Chapter 10. MQMD - Message descriptor 93

MQMD - Message descriptor

to use the GMCMPM option to retrieve the report messages with a single
MQGET call, or use the GMASGA option to detect when all of the report
messages have arrived.

In an MQ network, it is possible for the queue managers to have differing
capabilities. If a report message for a segment is generated by a queue
manager or MCA that does not support segmentation, the queue manager or
MCA will not by default include the necessary segment information in the
report message, and this may make it difficult to identify the original message
that caused the report to be generated. This difficulty can be avoided by
requesting data with the report message, that is, by specifying the appropriate
RO*D or RO*F options. However, be aware that if RO*D is specified, less than
100 bytes of application message data may be returned to the application
which retrieves the report message, if the report message is generated by a
queue manager or MCA that does not support segmentation.

Contents of the message descriptor for a report message: When the queue
manager or message channel agent (MCA) generates a report message, it sets
the fields in the message descriptor to the following values, and then puts the
message in the normal way:

Field in MQMD
Value used

MDSID MDSIDV

MDVER MDVER2

MDREP RONONE

MDMT ~ MTRPRT

MDEXP EIULIM

MDFB As appropriate for the nature of the report (FBCOA, FBCOD, FBEXP,
or an RC* value)

MDENC Copied from the original message descriptor

MDCSI Copied from the original message descriptor

MDFMT Copied from the original message descriptor

MDPRI ~ Copied from the original message descriptor

MDPER Copied from the original message descriptor

MDMID As specified by the report options in the original message descriptor

MDCID As specified by the report options in the original message descriptor

MDBOC 0O

MDRQ Blanks

MDRM Name of queue manager

MDUID As set by the PMPASI option

MDACC As set by the PMPASI option

MDAID As set by the PMPASI option

MDPAT ATQM, or as appropriate for the message channel agent

MDPAN First 28 bytes of the queue-manager name or message channel agent
name. For report messages generated by the IMS bridge, this field
contains the XCF group name and XCF member name of the IMS
system to which the message relates.

MDPD Date when report message is sent

MDPT Time when report message is sent

MDAOD Blanks

MDGID Copied from the original message descriptor

MDSEQ Copied from the original message descriptor

MDOFF Copied from the original message descriptor

MDMFL Copied from the original message descriptor

94 MQseries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

MDOLN Copied from the original message descriptor if not OLUNDF, and set
to the length of the original message data otherwise

An application generating a report is recommended to set similar values,
except for the following:

* The MDRM field can be set to blanks (the queue manager will change this to
the name of the local queue manager when the message is put).

* The context fields should be set using the option that would have been used
for a reply, normally PMPASI.

Analyzing the report field: The MDREP field contains subfields; because of this,
applications that need to check whether the sender of the message requested a
particular report should use one of the techniques described in éﬁm

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUTT1 calls. The initial value of this field is RONONE.

MDMT (10-digit signed integer)
Message type.

This indicates the type of the message. Message types are grouped as follows:

MTSFST
Lowest value for system-defined message types.

MTSLST
Highest value for system-defined message types.

The following values are currently defined within the system range:
MTDGRM

Message not requiring a reply.

The message is one that does not require a reply.

MTRQST
Message requiring a reply.

The message is one that requires a reply.

The name of the queue to which the reply should be sent must be
specified in the MDRQ field. The MDREP field indicates how the MDMID and
MDCID of the reply are to be set.

MTRPLY
Reply to an earlier request message.

The message is the reply to an earlier request message (MTRQST). The
message should be sent to the queue indicated by the MDRQ field of the
request message. The MDREP field of the request should be used to
control how the MDMID and MDCID of the reply are set.

Note: The queue manager does not enforce the request-reply
relationship; this is an application responsibility.

MTRPRT
Report message.

The message is reporting on some expected or unexpected occurrence,
usually related to some other message (for example, a request message

Chapter 10. MQMD - Message descriptor 95

MQMD - Message descriptor

was received which contained data that was not valid). The message
should be sent to the queue indicated by the MDRQ field of the message
descriptor of the original message. The MDFB field should be set to
indicate the nature of the report. The MDREP field of the original
message can be used to control how the MDMID and MDCID of the report
message should be set.

Report messages generated by the queue manager or message channel
agent are always sent to the MDRQ queue, with the MDFB and MDCID fields
set as described above.

Other values within the system range may be defined in future versions of the
MQI, and are accepted by the MQPUT and MQPUT1 calls without error.

Application-defined values can also be used. They must be within the
following range:

MTAFST
Lowest value for application-defined message types.

MTALST
Highest value for application-defined message types.

For the MQPUT and MQPUTL calls, the MDMT value must be within either the
system-defined range or the application-defined range; if it is not, the call fails
with reason code RC2029.

This is an output field for the MQGET call, and an input field for MQPUT and
MQPUT1 calls. The initial value of this field is MTDGRM.

MDEXP (10-digit signed integer)
Message lifetime.

This is a period of time expressed in tenths of a second, set by the application
that puts the message. The message becomes eligible to be discarded if it has
not been removed from the destination queue before this period of time
elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if the put
is to a remote queue. It may also be decremented by message channel agents
to reflect transmission times, if these are significant. Likewise, an application
forwarding this message to another queue might decrement the value if
necessary, if it has retained the message for a significant time. However, the
expiration time is treated as approximate, and the value need not be
decremented to reflect small time intervals.

When the message is retrieved by an application using the MQGET call, the
MDEXP field represents the amount of the original expiry time that still remains.

After a message’s expiry time has elapsed, it becomes eligible to be discarded
by the queue manager. In the current implementations, the message is
discarded when a browse or nonbrowse MQGET call occurs that would have
returned the message had it not already expired. For example, a nonbrowse
MQGET call with the GMMO field in MQGMO set to MONONE reading from a
FIFO ordered queue will cause all the expired messages to be discarded up to
the first unexpired message. With a priority ordered queue, the same call will

96 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

discard expired messages of higher priority and messages of an equal priority
that arrived on the queue before the first unexpired message.

A message that has expired is never returned to an application (either by a
browse or a non-browse MQGET call), so the value in the MDEXP field of the
message descriptor after a successful MQGET call is either greater than zero, or
the special value EIULIM.

If a message is put on a remote queue, the message may expire (and be
discarded) whilst it is on an intermediate transmission queue, before the
message reaches the destination queue.

A report is generated when an expired message is discarded, if the message
specified one of the ROEXP* report options. If none of these options is
specified, no such report is generated; the message is assumed to be no longer
relevant after this time period (perhaps because a later message has
superseded it).

Any other program that discards messages based on expiry time must also
send an appropriate report message if one was requested.

Notes:

1. If a message is put with an MDEXP time of zero, the MQPUT or MQPUT1
call fails with reason code RC2013; no report message is generated in this
case.

2. Since a message whose expiry time has elapsed may not actually be
discarded until later, there may be messages on a queue that have passed
their expiry time, and which are not therefore eligible for retrieval. These
messages nevertheless count towards the number of messages on the queue
for all purposes, including depth triggering.

3. An expiration report is generated, if requested, when the message is
actually discarded, not when it becomes eligible for discarding.

4. Discarding of an expired message, and the generation of an expiration
report if requested, are never part of the application’s unit of work, even if
the message was scheduled for discarding as a result of an MQGET call
operating within a unit of work.

5. If a nearly-expired message is retrieved by an MQGET call within a unit of
work, and the unit of work is subsequently backed out, the message may
become eligible to be discarded before it can be retrieved again.

6. If a nearly-expired message is locked by an MQGET call with GMLK, the
message may become eligible to be discarded before it can be retrieved by
an MQGET call with GMMUC,; reason code RC2034 is returned on this
subsequent MQGET call if that happens.

7. When a request message with an expiry time greater than zero is retrieved,
the application can take one of the following actions when it sends the
reply message:

* Copy the remaining expiry time from the request message to the reply
message.

» Set the expiry time in the reply message to an explicit value greater than
Zero.

» Set the expiry time in the reply message to EIULIM.

The action to take depends on the design of the application suite. However,
the default action for putting messages to a dead-letter

Chapter 10. MQMD - Message descriptor 97

MQMD - Message descriptor

(undelivered-message) queue should be to preserve the remaining expiry
time of the message, and to continue to decrement it.

8. Trigger messages are always generated with EIULIM.

9. A message (normally on a transmission queue) which has a MDFMT name of
FMXQH has a second message descriptor within the MQXQH. It therefore
has two MDEXP fields associated with it. The following additional points
should be noted in this case:

* When an application puts a message on a remote queue, the queue
manager places the message initially on a local transmission queue, and
prefixes the application message data with an MQXQH structure. The
queue manager sets the values of the two MDEXP fields to be the same as
that specified by the application.

If an application puts a message directly on a local transmission queue,
the message data must already begin with an MQXQH structure, and the
format name must be FMXQH (but the queue manager does not enforce
this). In this case the application need not set the values of these two
MDEXP fields to be the same. (The queue manager does not check that the
MDEXP field within the MQXQH contains a valid value, or even that the
message data is long enough to include it.)

* When a message with a MDFMT name of FMXQH is retrieved from a
queue (whether this is a normal or a transmission queue), the queue
manager decrements both these MDEXP fields with the time spent waiting
on the queue. No error is raised if the message data is not long enough
to include the MDEXP field in the MQXQH.

* The queue manager uses the MDEXP field in the separate message
descriptor (that is, not the one in the message descriptor embedded
within the MQXQH structure) to test whether the message is eligible for
discarding.

 If the initial values of the two MDEXP fields were different, it is therefore
possible for the MDEXP time in the separate message descriptor when the
message is retrieved to be greater than zero (so the message is not
eligible for discarding), while the time according to the MDEXP field in the
MQXQH has elapsed. In this case the MDEXP field in the MQXQH is set to
zZero.

The following special value is recognized:

EIULIM
Unlimited lifetime.

The message has an unlimited expiration time.
This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The initial value of this field is EIULIM.
MDFB (10-digit signed integer)
Feedback or reason code.

This is used with a message of type MTRPRT to indicate the nature of the
report, and is only meaningful with that type of message. The field can contain
one of the FB* values, or one of the RC* values. Feedback codes are grouped as
follows:

FBNONE
No feedback provided.

98 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

FBSFST
Lowest value for system-generated feedback.

FBSLST
Highest value for system-generated feedback.

The range of system-generated feedback codes FBSFST through
FBSLST includes the general feedback codes listed below (FB*), and
also the reason codes (RC*) that can occur when the message cannot be
put on the destination queue.

FBAFST
Lowest value for application-generated feedback.

FBALST
Highest value for application-generated feedback.

Applications that generate report messages should not use feedback codes in
the system range (other than FBQUIT), unless they wish to simulate report
messages generated by the queue manager or message channel agent.

On the MQPUT or MQPUT1 calls, the value specified must either be FBNONE,
or be within the system range or application range. This is checked whatever
the value of MDMT.

General feedback codes:

FBCOA
Confirmation of arrival on the destination queue (see ROCOA).

FBCOD
Confirmation of delivery to the receiving application (see ROCOD).

FBEXP
Message expired.

Message was discarded because it had not been removed from the
destination queue before its expiry time had elapsed.

FBPAN
Positive action notification (see ROPAN).

FBNAN
Negative action notification (see RONAN).

FBQUIT
Application should end.

This can be used by a workload scheduling program to control the
number of instances of an application program that are running.
Sending an MTRPRT message with this feedback code to an instance of
the application program indicates to that instance that it should stop
processing. However, adherence to this convention is a matter for the
application; it is not enforced by the queue manager.

IMS-bridge feedback codes: When the IMS bridge receives a nonzero
IMS-OTMA sense code, the IMS bridge converts the sense code from
hexadecimal to decimal, adds the value FBIERR (300), and places the result in
the MDFB field of the reply message. This results in the feedback code having a
value in the range FBIFST (301) through FBILST (399) when an IMS-OTMA
error has occurred.

Chapter 10. MQMD - Message descriptor 99

MQMD - Message descriptor
The following feedback codes can be generated by the IMS bridge:

FBDLZ
Data length zero.

A segment length was zero in the application data of the message.

FBDLN
Data length negative.

A segment length was negative in the application data of the message.

FBDLTB
Data length too big.

A segment length was too big in the application data of the message.

FBBUFO
Buffer overflow.

The value of one of the length fields would cause the data to overflow
the MQSeries message buffer.

FBLOB1
Length in error by one.

The value of one of the length fields was one byte too short.
FBIIH MQIIH structure not valid or missing.

The MDFMT field in MQMD specifies FMIMS, but the message does not
begin with a valid MQIIH structure.

FBNAFI
Userid not authorized for use in IMS.

The user ID contained in the message descriptor MQMD, or the
password contained in the ITAUT field in the MQIIH structure, failed
the validation performed by the IMS bridge. As a result the message
was not passed to IMS.

FBIERR
Unexpected error returned by IMS.

An unexpected error was returned by IMS. Consult the MQSeries error
log on the system on which the IMS bridge resides for more
information about the error.

FBIFST
Lowest value for IMS-generated feedback.

IMS-generated feedback codes occupy the range FBIFST (300) through
FBILST (399). The IMS-OTMA sense code itself is MDFB minus FBIERR.

FBILST

Highest value for IMS-generated feedback.
CICS-bridge feedback codes: The following feedback codes can be generated
by the CICS bridge:

FBCAAB
Application abended.

The application program specified in the message abended. This
feedback code occurs only in the DLREA field of the MQDLH structure.

100 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

FBCANS
Application cannot be started.

The EXEC CICS LINK for the application program specified in the
message failed. This feedback code occurs only in the DLREA field of the
MQDLH structure.

FBCBRF
CICS bridge terminated abnormally without completing normal error
processing.
FBCCSE
Character set identifier not valid.
FBCIHE
CICS information header structure missing or not valid.
FBCCAE
Length of CICS commarea not valid.
FBCCIE
Correlation identifier not valid.
FBCDLQ

Dead-letter queue not available.

The CICS bridge task was unable to copy a reply to this request to the
dead-letter queue. The request was backed out.

FBCENE
Encoding not valid.

FBCINE
CICS bridge encountered an unexpected error.

This feedback code occurs only in the DLREA field of the MQDLH
structure.

FBCNTA
User identifier not authorized or password not valid.

This feedback code occurs only in the DLREA field of the MQDLH
structure.

FBCUBO
Unit of work backed out.
The unit of work was backed out, for one of the following reasons:

* A failure was detected while processing another request within the
same unit of work.

* A CICS abend occurred while the unit of work was in progress.

FBCUWE
Unit-of-work control field CIUOW not valid.

MQ reason codes: For exception report messages, MDFB contains an MQ reason
code. Among possible reason codes are:

RC2051
(2051, X'803") Put calls inhibited for the queue.

RC2053
(2053, X'805") Queue already contains maximum number of messages.

Chapter 10. MQMD - Message descriptor 101

MQMD - Message descriptor

RC2035
(2035, X'7F3") Not authorized for access.

RC2056
(2056, X'808") No space available on disk for queue.

RC2048
(2048, X'800") Message on a temporary dynamic queue cannot be
persistent.

RC2031
(2031, X'7TEF') Message length greater than maximum for queue
manager.

RC2030
(2030, X'7TEE") Message length greater than maximum for queue.

For a full list of reason codes, see I‘Reason cades” on page 357,

This is an output field for the MQGET call, and an input field for MQPUT and
MQPUT1 calls. The initial value of this field is FBNONE.

MDENC (10-digit signed integer)
Numeric encoding of message data.

This identifies the representation used for numeric values in the application
message data; this applies to binary integer data, packed-decimal integer data,
and floating-point data. The following value is defined:

ENNAT
Native machine encoding.

The encoding is the default for the programming language and
machine on which the application is running.

Note: The value of this constant is programming-language and
environment specific.

The queue manager does not validate the contents of this field.

Applications that put messages should normally specify ENNAT. Applications
that retrieve messages should compare this field against the value ENNAT; if
the values differ, the application may need to convert numeric data in the

message. See Appendix D_Machine encodings” on page 453 for details of how

this field is constructed.

If the GMCONV option is specified on the MQGET call, this field is an
input/output field. The value specified by the application is the encoding to
which the message data should be converted if necessary. If conversion is
successful or unnecessary, the value is unchanged. If conversion is
unsuccessful, the value after the MQGET call represents the encoding of the
unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for
the MQPUT and MQPUT1 calls. The initial value of this field is ENNAT.

MDCSI (10-digit signed integer)
Character set identifier of message data.

102 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

This specifies the coded character set identifier of character data in the
application message data.

Note that character data in the message descriptor and the other MQI data
structures must be in the character set used by the queue manager. This is
defined by the queue manager’s CodedCharSetId attribute; see m

i Z for details of this attribute.

The following values are defined:

CSQM
Queue manager’s character set identifier.

Character data in the message is in the queue manager’s character set.

CSINHT
Inherit character-set identifier of this structure.

Character data in the message is in the same character set as MQMD;
this is the queue-manager’s character set.

CSEMBD
Embedded character set identifier.

Character data in the message is in a character set whose identifier is
contained within the message data itself. There can be any number of
character-set identifiers embedded within the message data, applying
to different parts of the data. This value must be used for PCF
messages that contain data in a mixture of character sets. PCF
messages have a format name of FMPCF.

Specify this value only on the MQPUT and MQPUT1 calls. If it is
specified on the MQGET call, it prevents conversion of the message.

On the MQPUT and MQPUT1 calls, the queue manager changes the value
CSQM in the MDCSI field in the MQMD sent with the message to the value of
the queue manager’s CodedCharSetId attribute; as a result, the value CSQM is
never returned by the MQGET call. The MDCSI field in the MQMD specified on
the MQPUT or MQPUT1 call is not altered. No other check is carried out on
the value specified.

Applications that retrieve messages should compare this field against the value
the application is expecting; if the values differ, the application may need to
convert character data in the message.

If the GMCONYV option is specified on the MQGET call, this field is an
input/Zoutput field. The value specified by the application is the coded
character-set identifier to which the message data should be converted if
necessary. If conversion is successful or unnecessary, the value is unchanged
(except that the value CSQM is converted to the actual value). If conversion is
unsuccessful, the value after the MQGET call represents the coded character-set
identifier of the unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for
the MQPUT and MQPUT1 calls. The initial value of this field is CSQM.

MDFMT (8-byte character string)
Format name of message data.

Chapter 10. MQMD - Message descriptor 103

MQMD - Message descriptor

This is a name that the sender of the message may use to indicate to the
receiver the nature of the data in the message. Any characters that are in the
queue manager’s character set may be specified for the name, but it is
recommended that the name be restricted to the following:

» Uppercase A through Z

* Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name
between the character sets of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field, or a null
character used to terminate the name before the end of the field; the null and
any subsequent characters are treated as blanks. Do not specify a name with
leading or embedded blanks. For the MQGET call, the queue manager returns
the name padded with blanks to the length of the field.

The queue manager does not check that the name complies with the
recommendations described above.

Names beginning “MQ” have meanings that are defined by the queue
manager; you should not use nhames beginning with these letters for your own
formats. The queue manager built-in formats are:

FMNONE
No format name.

The nature of the application message data is undefined. This means
that the data cannot be converted when the message is retrieved from
a queue.

Note: If GMCONV is specified on the MQGET call for a message that
has a format name of FMNONE, and the character set or
encoding of the message differs from that specified in the MSGDSC
parameter, the message is still returned in the BUFFER parameter
(assuming no other errors), but the call completes with
completion code CCWARN and reason code RC2110.

FMADMN
Command server request/reply message.

The message is a command-server request or reply message in
programmable command format (PCF). Messages of this format can be
converted if the GMCONV option is specified on the MQGET call.

Refer to the MQSeries Programmable System Managementl book for more

information about using programmable command format messages.

FMCICS
CICS information header.

The message data begins with the CICS information header MQCIH,
which is followed by the application data. The format name of the
application data is given by the CIFMT field in the MQCIH structure.

FMCMD1
Type 1 command reply message.

The message is an MQSC command-server reply message containing
the object count, completion code, and reason code. Messages of this
format can be converted if the GMCONV option is specified on the
MQGET call.

104 MQseries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

FMCMD?2

Type 2 command reply message.

The message is an MQSC command-server reply message containing
information about the object(s) requested. Messages of this format can
be converted if the GMCONYV option is specified on the MQGET call.

FMDLH

FMDH

Dead-letter header.

The message data begins with the dead-letter header MQDLH. The
data from the original message immediately follows the MQDLH
structure. The format name of the original message data is given by the
DLFMT field in the MOQDLH structure; see L
IDead-letter header” an page 43 for details of this structure. Messages of
this format can be converted if the GMCONYV option is specified on
the MQGET call.

COA and COD reports are not generated for messages which have a
MDFMT of FMDLH.

Distribution-list header.

The message data begins with the distribution-list header MQDH; this
includes the arrays of MQOR and MQPMR records. The
distribution-list header may be followed by additional data. The format
of the additional data (if any) is given by the DHFMT field in the MQDH
structure; see EChapter 8 MQDH - Distribution header” on page 37 for
details of this structure. Messages with format FMDH can be converted

if the GMCONV option is specified on the MQGET call.

FMEVNT

Event message.

The message is an MQ event message that reports an event that
occurred. Messages of this format can be converted if the GMCONV
option is specified on the MQGET call. Event messages have the same
structure as programmable commands; Refer to the m

[Programmable System Management book for more information about this

structure.

FMIMS

IMS information header.

The message data begins with the IMS information header MQIIH,
which is followed by the application data. The format name of the
application data is given by the IIFMT field in the MQIIH structure.
Messages of this format can be converted if the GMCONYV option is
specified on the MQGET call.

FMIMVS

IMS variable string.

The message is an IMS variable string, which is a string of the form
11zzccc, where:

11 is a 2-byte length field specifying the total length of the IMS
variable string item. This length is equal to the length of 11 (2
bytes), plus the length of zz (2 bytes), plus the length of the
character string itself. 11 is a 2-byte binary integer in the
encoding specified by the MDENC field.

Chapter 10. MQMD - Message descriptor 105

MQMD - Message descriptor

2z is a 2-byte field containing flags that are significant to IMS. zz
is a byte string consisting of two 1-byte bit string fields, and is
transmitted without change from sender to receiver (that is, zz
is not subject to any conversion).

ccc is a variable-length character string containing 11-4 characters.
ccc is in the character set specified by the MDCST field.

Messages of this format can be converted if the GMCONV option is
specified on the MQGET call.

FMMDE
Message-descriptor extension.

The message data begins with the message-descriptor extension
MQMDE, and is optionally followed by other data (usually the
application message data). The format name, character set, and
encoding of the data which follows the MQMDE is given by the MEFMT,

MECSI, and MEENC fields in the MQMDE. See EChapter 11_MQMDE |
Mﬁsage_dsmpmr_ex.tensm_an_pa.gp_’lﬁll for details of this structure.

Messages of this format can be converted if the GMCONYV option is
specified on the MQGET call.

FMPCF
User-defined message in programmable command format (PCF).

The message is a user-defined message that conforms to the structure
of a programmable command format (PCF) message. Messages of this
format can be converted if the GMCONV option is specified on the
MQGET call. Refer to the MQSeries Programmable System Management
book for more information about using programmable command
format messages.

FMRMH
Reference message header.

The message data begins with the reference message header MQRMH,
and is optionally followed by other data. The format name, character
set, and encoding of the data is given by the RMFMT, RMCSI, and RMENC

fields in the MQRMH. See I‘Chapter 16 MQRMH - Message referencd
header” on page 169 for details of this structure. Messages of this

format can be converted if the GMCONV option is specified on the
MQGET call.

FMRFH
Rules and formatting header.

The message data begins with the rules and formatting header
MQRFH, and is optionally followed by other data. The format name,
character set, and encoding of the data (if any) is given by the RFFMT,
RFCSI, and RFENC fields in the MQRFH.

FMSTR
Message consisting entirely of characters.

The application message data can be either an SBCS string (single-byte
character set), or a DBCS string (double-byte character set). Messages
of this format can be converted if the GMCONV option is specified on
the MQGET call.

FMTM
Trigger message.

106 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

The message is a trigger message, described by the MQTM structure;
see [‘Chapter 18. MQTM - Trigger message” on page 179 for details of
this structure. Messages of this format can be converted if the
GMCONYV option is specified on the MQGET call.

FMWIH
Work information header.

The message data begins with the work information header MQW!IH,
which is followed by the application data. The format name of the
application data is given by the WIFMT field in the MQWIH structure.

FMXQH
Transmission queue header.

The message data begins with the transmission queue header MQXQH.
The data from the original message immediately follows the MQXQH
structure. The format name of the original message data is given by the
MDFMT field in the MQMD structure which is part of the transmission

queue header MQXQH. See EChapter 21_MQXQH - Transmission
lqueve header” an page 193

for details of this structure.

COA and COD reports are not generated for messages which have a
MDFMT of FMXQH.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The length of this field is given by LNFMT. The initial
value of this field is FMNONE.

MDPRI (10-digit signed integer)
Message priority.

For the MQPUT and MQPUTL1 calls, the value must be greater than or equal to
zero; zero is the lowest priority.

The following special value can also be used:

PRQDEF
Default priority for queue.

» If the queue is a cluster queue, the priority for the message is taken
from the DefPriority attribute as defined at the destination queue
manager that owns the particular instance of the queue on which the
message is placed. Usually, all of the instances of a cluster queue
have the same value for the DefPriority attribute, although this is
not mandated.

The value of DefPriority is copied into the MDPRI field when the
message is placed on the destination queue. If DefPriority is
changed subsequently, messages that have already been placed on
the queue are not affected.

+ If the queue is not a cluster queue, the priority for the message is
taken from theDefPriority attribute as defined at thelocal queue
manager, even if the destination queue manager is remote.

If there is more than one definition in the queue-name resolution
path, the default priority is taken from the value of this attribute in
the first definition in the path. This could be:

— An alias queue

— A local queue

— A local definition of a remote queue

Chapter 10. MQMD - Message descriptor 107

MQMD - Message descriptor

— A gueue-manager alias
— A transmission queue (for example, the DefXmitQName queue)

The value of DefPriority is copied into the MDPRI field when the
message is put. If DefPriority is changed subsequently, messages
that have already been put are not affected.

When replying to a message, applications should normally use for the reply
message the priority of the request message. In other situations, defaulting to
the queue definition allows priority tuning to be carried out without changing
the application.

If a message is put with a priority greater than the maximum supported by the
local queue manager (this maximum is given by the MaxPriority
gqueue-manager attribute), the message is accepted by the queue manager, but
placed on the queue at the queue manager’s maximum priority; the MQPUT
or MQPUT1 call completes with CCWARN and reason code RC2049. However,
the MDPRI field retains the value specified by the application which put the
message.

The value returned by the MQGET call is always greater than or equal to zero;
the value PRQDEF is never returned.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The initial value of this field is PRQDEF.

MDPER (10-digit signed integer)
Message persistence.

For the MQPUT and MQPUT1 calls, the value must be one of the following:

PEPER
Message is persistent.

The message survives restarts of the queue manager. Because
temporary dynamic queues do not survive restarts of the queue
manager, persistent messages cannot be placed on temporary dynamic
gueues; persistent messages can however be placed on permanent
dynamic queues, and predefined queues.

Once a persistent message has been put (or the unit of work
committed, if the MQPUT or MQPUT1 call is part of a unit of work),
the message is available on auxiliary storage until such time as the
message is removed from the queue (or the unit of work committed, if
the MQGET call is part of a unit of work).

When a persistent message is sent to a remote queue, a
store-and-forward mechanism is used to hold the message at each
gueue manager along the route to the destination, until the message is
known to have arrived at the next queue manager.

PENPER
Message is not persistent.

The message does not survive restarts of the queue manager. This
applies even if an intact copy of the message is found on auxiliary
storage during the restart procedure.

PEQDEF
Message has default persistence.

108 MQseries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

* If the queue is a cluster queue, the persistence of the message is
taken from the DefPersistence attribute defined at the destination
gueue manager that owns the particular instance of the queue on
which the message is placed.

Usually, all of the instances of a cluster queue have the same value
for the DefPersistence attribute, although this is not mandated.

The value of DefPersistence is copied into the MDPER field when the
message is placed on the destination queue. If DefPersistence is
changed subsequently, messages that have already been placed on
the queue are not affected.

» |If the queue is not a cluster queue, the persistence of the message is
taken from theDefPersistence attribute defined at thelocal queue
manager, even if the destination queue manager is remote.

If there is more than one definition in the queue-name resolution
path, the default persistence is taken from the value of this attribute
in the first definition in the path. This could be:

— An alias queue

— A local queue

— A local definition of a remote queue

— A queue-manager alias

— A transmission queue (for example, the DefXmitQName queue)

The value of DefPersistence is copied into the MDPER field when the
message is put. If DefPersistence is changed subsequently, messages
that have already been put are not affected.

Both persistent and nonpersistent messages can exist on the same queue.

When replying to a message, applications should normally use for the reply
message the persistence of the request message. In other situations, defaulting
to the queue definition allows persistence to be changed without changing the
application.

For an MQGET call, the value returned is either PEPER or PENPER.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUTT1 calls. The initial value of this field is PEQDEF.

MDMID (24-byte bit string)
Message identifier.

This is a byte string that is used to distinguish one message from another.
Generally, no two messages should have the same message identifier, although
this is not disallowed by the queue manager. The message identifier is a
permanent property of the message, and persists across restarts of the queue
manager. Because the message identifier is a byte string and not a character
string, the message identifier is not converted between character sets when the
message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, if MINONE or PMNMID is specified by
the application, the queue manager generates a unique message identifier *

1. AMDMID generated by the queue manager consists of a 4-byte product identifier (‘(AMQDb’ or ‘CSQb’ in either ASCII or EBCDIC,
where ‘b’ represents a blank), followed by a product-specific implementation of a unique string. In MQSeries this contains the
first 12 characters of the queue-manager name, and a value derived from the system clock. All queue managers that can

Chapter 10. MQMD - Message descriptor 109

MQMD - Message descriptor

when the message is put, and places it in the message descriptor sent with the
message. The queue manager also returns this message identifier in the
message descriptor belonging to the sending application. The application can
use this value to record information about particular messages, and to respond
to queries from other parts of the application.

If the message is being put to a distribution list, the queue manager generates
unique message identifiers as necessary, but the value of the MDMID field in
MQMD is unchanged on return from the call, even if MINONE or PMNMID
was specified. If the application needs to know the message identifiers
generated by the queue manager, the application must provide MQPMR
records containing the PRMID field.

The sending application can also specify a particular value for the message
identifier, other than MINONE; this stops the queue manager generating a
unigue message identifier. An application that is forwarding a message can use
this facility to propagate the message identifier of the original message.

The queue manager does not itself make any use of this field except to:
* Generate a unique value if requested, as described above

» Deliver the value to the application that issues the get request for the
message

* Copy the value to the MDCID field of any report message that it generates
about this message (depending on the MDREP options)

When the queue manager or a message channel agent generates a report
message, it sets the MDMID field in the way specified by the MDREP field of the
original message, either RONMI or ROPMI. Applications that generate report
messages should also do this.

For the MQGET call, MDMID is one of the five fields that can be used to select a
particular message to be retrieved from the queue. Normally the MQGET call
returns the next message on the queue, but if a particular message is required,
this can be obtained by specifying one or more of the five selection criteria, in
any combination; these fields are:

MDMID

MDCID

MDGID

MDSEQ

MDOFF

The application sets one or more of these field to the values required, and then
sets the corresponding MO* match options in the GMMO field in MQGMO to
indicate that those fields should be used as selection criteria. Only messages
that have the specified values in those fields are candidates for retrieval. The
default for the GMMO field (if not altered by the application) is to match both the
message identifier and the correlation identifier.

Normally, the message returned is the first message on the queue that satisfies
the selection criteria. But if GMBRWN is specified, the message returned is the

intercommunicate must therefore have names that differ in the first 12 characters, in order to ensure that message identifiers are
unique. The ability to generate a unique string also depends upon the system clock not being changed backward. To eliminate the
possibility of a message identifier generated by the queue manager duplicating one generated by the application, the application
should avoid generating identifiers with initial characters in the range A through | in ASCII or EBCDIC (X'41' through X'49' and
X'C1' through X'C9'). However, the application is not prevented from generating identifiers with initial characters in these ranges.

110 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

next message that satisfies the selection criteria; the scan for this message starts
with the message following the current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the
selection criteria, so retrieval times will be slower than if no selection
criteria are specified, especially if many messages have to be scanned
before a suitable one is found.

See Ifable 16 on page 63 for more information about how selection criteria are

used in various situations.

Specifying MINONE as the message identifier has the same effect as not
specifying MOMSGI, that is, any message identifier will match.

This field is ignored if the GMMUC option is specified in the GMO parameter on
the MQGET call.

On return from an MQGET call, the MDMID field is set to the message identifier
of the message returned (if any).

The following special value may be used:

MINONE
No message identifier is specified.

The value is binary zero for the length of the field.

This is an input/output field for the MQGET, MQPUT, and MQPUT1 calls.
The length of this field is given by LNMID. The initial value of this field is
MINONE.

MDCID (24-byte bit string)
Correlation identifier.

This is a byte string that the application can use to relate one message to
another, or to relate the message to other work that the application is
performing. The correlation identifier is a permanent property of the message,
and persists across restarts of the queue manager. Because the correlation
identifier is a byte string and not a character string, the correlation identifier is
not converted between character sets when the message flows from one queue
manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value. The
gqueue manager transmits this value with the message and delivers it to the
application that issues the get request for the message.

If the application specifies PMNCID, the queue manager generates a unique
correlation identifier which is sent with the message, and also returned to the
sending application on output from the MQPUT or MQPUT1 call.

When the queue manager or a message channel agent generates a report
message, it sets the MDCID field in the way specified by the MDREP field of the
original message, either ROCMTC or ROPCI. Applications which generate
report messages should also do this.

For the MQGET call, MDCID is one of the five fields that can be used to select a

particular message to be retrieved from the queue. See the description of the
MDMID field for details of how to specify values for this field.

Chapter 10. MQMD - Message descriptor 111

MQMD - Message descriptor

Specifying CINONE as the correlation identifier has the same effect as not
specifying MOCORI, that is, any correlation identifier will match.

If the GMMUC option is specified in the 610 parameter on the MQGET call,
this field is ignored.

On return from an MQGET call, the MDCID field is set to the correlation
identifier of the message returned (if any).

The following special values may be used:

CINONE
No correlation identifier is specified.

The value is binary zero for the length of the field.

CINEWS
Message is the start of a new session.

This value is recognized by the CICS bridge as indicating the start of a
new session, that is, the start of a new sequence of messages.

For the MQGET call, this is an input/output field. For the MQPUT and
MQPUT1 calls, this is an input field if PMNCID is not specified, and an output
field if PMINCID is specified. The length of this field is given by LNCID. The
initial value of this field is CINONE.

MDBOC (10-digit signed integer)
Backout counter.

This is a count of the number of times the message has been previously
returned by the MQGET call as part of a unit of work, and subsequently
backed out. It is provided as an aid to the application in detecting processing
errors that are based on message content. The count excludes MQGET calls
that specified any of the GMBRW?* options.

The accuracy of this count is affected by the HardenGetBackout local queue

attribute; see ‘Chapter 38 Attributes for local queues and madel queues” on

This is an output field for the MQGET call. It is ignored for the MQPUT and
MQPUT1 calls. The initial value of this field is 0.

MDRQ (48-byte character string)
Name of reply queue.

This is the name of the message queue to which the application that issued the
get request for the message should send MTRPLY and MTRPRT messages. The
name is the local name of a queue that is defined on the queue manager
identified by MDRM. This queue should not be a model queue, although the
sending queue manager does not verify this when the message is put.

For the MQPUT and MQPUTL1 calls, this field must not be blank if the MDMT
field has the value MTRQST, or if any reports are requested by the MDREP field.
However, the value specified (or substituted; see below) is passed on to the
application that issues the get request for the message, whatever the message

type.

112 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

If the MDRM field is blank, the local queue manager looks up the MDRQ name in
its own queue definitions. If a local definition of a remote queue exists with
this name, the MDRQ value in the transmitted message is replaced by the value
of the RemoteQName attribute from the definition of the remote queue, and this
value will be returned in the message descriptor when the receiving
application issues an MQGET call for the message. If a local definition of a
remote queue does not exist, MDRQ is unchanged.

If the name is specified, it may contain trailing blanks; the first null character
and characters following it are treated as blanks. Otherwise, however, no check
is made that the name satisfies the naming rules for queues; this is also true
for the name transmitted, if the MDRQ is replaced in the transmitted message.
The only check made is that a name has been specified, if the circumstances
require it.

If a reply-to queue is not required, it is recommended (although this is not
checked) that the MDRQ field should be set to blanks; the field should not be left
uninitialized.

For the MQGET call, the queue manager always returns the name padded with
blanks to the length of the field.

If a message that requires a report message cannot be delivered, and the report
message also cannot be delivered to the queue specified, both the original
message and the report message go to the dead-letter (undelivered-message)
queue (see the DeadletterQName attribute described in EChapter 43 Attributed

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The length of this field is given by LNQN. The initial
value of this field is 48 blank characters.

MDRM (48-byte character string)
Name of reply queue manager.

This is the name of the queue manager to which the reply message or report
message should be sent. MDRQ is the local name of a queue that is defined on
this queue manager.

If the MDRM field is blank, the local queue manager looks up the MDRQ name in
its queue definitions. If a local definition of a remote queue exists with this
name, the MDRM value in the transmitted message is replaced by the value of
the RemoteQMgrName attribute from the definition of the remote queue, and this
value will be returned in the message descriptor when the receiving
application issues an MQGET call for the message. If a local definition of a
remote queue does not exist, the MDRM that is transmitted with the message is
the name of the local queue manager.

If the name is specified, it may contain trailing blanks; the first null character
and characters following it are treated as blanks. Otherwise, however, no check
is made that the name satisfies the naming rules for queue managers, or that
this name is known to the sending queue manager; this is also true for the
name transmitted, if the MDRM is replaced in the transmitted message. For more

information about names, see the MQSeries Application Programming Guidd.

Chapter 10. MQMD - Message descriptor 113

MQMD - Message descriptor

If a reply-to queue is not required, it is recommended (although this is not
checked) that the MDRM field should be set to blanks; the field should not be left
uninitialized.

For the MQGET call, the queue manager always returns the name padded with
blanks to the length of the field.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUTT1 calls. The length of this field is given by LNQMN. The initial
value of this field is 48 blank characters.

MDUID (12-byte character string)
User identifier.

The fields from MDUID to MDAOD contain the identity context and origin context
of the message. Usually:

» ldentity context relates to the application that originally put the message
» Origin context relates to the application that most-recently put the message.

These two applications can be the same application, but they can also be
different applications (for example, when a message is forwarded from one
application to another).

Although identity and origin context usually have the meanings described
above, the content of both types of context actually depends on the PM*
options that are specified when the message is put. As a result, identity context
does not necessarily relate to the application that originally put the message,
and origin context does not necessarily relate to the application that
most-recently put the message — it depends on the design of the application
suite.

There is one class of application that never alters message context, namely the
message channel agent (MCA). MCAs that receive messages from remote
gueue managers use the context option PMSETA on the MQPUT or MQPUT1
call. This allows the receiving MCA to preserve exactly the message context
that travelled with the message from the sending MCA. However, the result is
that the origin context does not relate to the application that most-recently put
the message (the receiving MCA), but instead relates to an earlier application
that put the message (possibly the originating application itself).

In the descriptions that follow, the context fields are described as though they
are used in the normal way. For more information about message context, see

the MQSeries Application Programming Guide.

MDUID is part of the identity context of the message. It specifies the user
identifier of the application that originated the message. The queue manager
treats this information as character data, but does not define the format of it.

After a message has been received, MDUID can be used in the 0DAU field of the
0BJDSC parameter of a subsequent MQOPEN or MQPUT1 call, so that the
authorization check is performed for the MDUID user instead of the application
performing the open.

When the queue manager generates this information for an MQPUT or
MQPUT1 call:

114 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

* On 0OS/390, the queue manager uses the 0DAU from the 0BJDSC parameter of
the MQOPEN or MQPUT1 call if the OOALTU or PMALTU option was
specified. If the relevant option was not specified, the queue manager uses a
user identifier determined from the environment.

* In other environments, the queue manager always uses a user identifier
determined from the environment.

When the user identifier is determined from the environment:

* On 0S/400, the queue manager uses the name of the user profile associated
with the application job.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or
PMSETA is specified in the PMO parameter. Any information following a null
character within the field is discarded. The null character and any following
characters are converted to blanks by the queue manager. If PMSETI or
PMSETA is not specified, this field is ignored on input and is an output-only
field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDUID that was transmitted with the message. If the message has
no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by
LNUID. The initial value of this field is 12 blank characters.

MDACC (32-byte bit string)

Accounting token.

This is part of the identity context of the message. For more information about
message context, see the description of the MDUID field above; also see the

MDACC allows an application to cause work done as a result of the message to
be appropriately charged. The queue manager treats this information as a
string of bits and does not check its content.

When the queue manager generates this information, it is set as follows:

* The first byte of the field is set to the length of the accounting information
present in the bytes that follow; this length is in the range zero through 30,
and is stored in the first byte as a binary integer.

» The second and subsequent bytes (as specified by the length field) are set to
the accounting information appropriate to the environment.

— On 0OS/400, the accounting information is set to the accounting code for
the job.

* The last byte is set to the accounting-token type, one of the following values:

ATTCIC

CICS LUOW identifier.
ATTDOS

DOS client default accounting token.
ATTWNT

Windows NT security identifier.
ATTOS2

0S/2 default accounting token.
ATT400

0OS/400 accounting token.

Chapter 10. MQMD - Message descriptor 115

MQMD - Message descriptor

ATTUNX
UNIX systems numeric identifier.
ATTWIN
Windows client, 16-bit Windows, or 32-bit Windows default
accounting token.
ATTUSR
User-defined accounting token.
ATTUNK
Unknown accounting-token type.

The accounting-token type is set to an explicit value only in the following
environments: AlX, DOS client, HP-UX, OS/2, Sun Solaris, Windows client,
and Windows NT. In other environments, the accounting-token type is set to
the value ATTUNK. In these environments the MDPAT field can be used to
deduce the type of accounting token received.

» All other bytes are set to binary zero.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or
PMSETA is specified in the PMO parameter. If neither PMSETI nor PMSETA is
specified, this field is ignored on input and is an output-only field. For more

information on message context, see the MQSeries Application Programming
Guidd.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDACC that was transmitted with the message. If the message has
no context, the field is entirely binary zero.

This is an output field for the MQGET call.

This field is not subject to any translation based on the character set of the
queue manager—the field is treated as a string of bits, and not as a string of
characters.

The queue manager does nothing with the information in this field. The
application must interpret the information if it wants to use the information for
accounting purposes.

The following special value may be used for the MDACC field:

ACNONE
No accounting token is specified.

The value is binary zero for the length of the field.
The length of this field is given by LNACCT. The initial value of this field is
ACNONE.
MDAID (32-byte character string)
Application data relating to identity.

This is part of the identity context of the message. For more information about
message context, see the description of the MDUID field above; also see the

: . Ho D

MDAID is information that is defined by the application suite, and can be used
to provide additional information about the message or its originator. The

116 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

queue manager treats this information as character data, but does not define
the format of it. When the queue manager generates this information, it is
entirely blank.

For the MQPUT and MQPUTL1 calls, this is an input/output field if PMSETI or
PMSETA is specified in the PMO parameter. If a null character is present, the
null and any following characters are converted to blanks by the queue
manager. If neither PMSETI nor PMSETA is specified, this field is ignored on
input and is an output-only field. For more information on message context,
see the i icati i i

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDAID that was transmitted with the message. If the message has
no context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given by
LNAIDD. The initial value of this field is 32 blank characters.

MDPAT (10-digit signed integer)

Type of application that put the message.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the

MQSeries Application Programming Guidd,

MDPAT may have one of the following standard types. User-defined types can
also be used but should be restricted to values in the range ATUFST through
ATULST.

ATAIX
AIX application (same value as ATUNIX).

ATCICS
CICS transaction.

ATCICB
CICS bridge.

ATVSE
CICS/VSE transaction.

ATDOS
DOS client application.

ATGUAR
Tandem Guardian application (same value as ATNSK).

ATIMS
IMS application.

ATIMSB
IMS bridge.

ATMVS
0OS/390 or TSO application (same value as AT390).

ATNOTE
Lotus Notes Agent application.

Chapter 10. MQMD - Message descriptor 117

MQMD - Message descriptor

ATNSK
Tandem NonStop Kernel application.

ATOS2
0S/2 or Presentation Manager application.

AT390 0OS/390 application.
AT400 OS/400 application.

ATOM
Queue-manager-generated message.

ATUNIX
UNIX application.

ATVMS
Digital OpenVMS application.

ATVOS
Stratus VOS application.

ATWIN
Windows client or 16-bit Windows application.

ATWINT
Windows NT or 32-bit Windows application.

ATXCF
XCF.

ATDEF
Default application type.

This is the default application type for the platform on which the
application is running.

Note: The value of this constant is environment-specific.

ATUNK
Unknown application type.

This value can be used to indicate that the application type is
unknown, even though other context information is present.

ATUFST
Lowest value for user-defined application type.

ATULST
Highest value for user-defined application type.

The following special value can also occur:

ATNCON
No context information present in message.

This value is set by the queue manager when a message is put with no
context (that is, the PMNOC context option is specified).

When a message is retrieved, MDPAT can be tested for this value to
decide whether the message has context (it is recommended that MDPAT
is never set to ATNCON, by an application using PMSETA, if any of
the other context fields are nonblank).

118 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

When the queue manager generates this information as a result of an
application put, the field is set to a value that is determined by the
environment. Note that on OS/400, it is set to AT400; the queue manager never
uses ATCICS on 0OS/400.

For the MQPUT and MQPUTL1 calls, this is an input/output field if PMSETA is
specified in the PMO parameter. If PMSETA is not specified, this field is ignored
on input and is an output-only field.

After the successful completion of an MQPUT or MQPUTT1 call, this field
contains the MDPAT that was transmitted with the message. If the message has
no context, the field is set to ATNCON.

This is an output field for the MQGET call. The initial value of this field is
ATNCON.

MDPAN (28-byte character string)
Name of application that put the message.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the

MQSeries Application Programming Guidd,

The format of the MDPAN depends on the value of MDPAT.

When this field is set by the queue manager (that is, for all options except
PMSETA), it is set to value which is determined by the environment:

* On 0S/400, the queue manager uses the fully-qualified job name.

For the MQPUT and MQPUTL calls, this is an input/output field if PMSETA is
specified in the PMO parameter. Any information following a null character
within the field is discarded. The null character and any following characters
are converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDPAN that was transmitted with the message. If the message has
no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by
LNPAN. The initial value of this field is 28 blank characters.

MDPD (8-byte character string)
Date when message was put.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the

MQSeries Application Programming Guidd.

The format used for the date when this field is generated by the queue
manager is:

YYYYMMDD

where the characters represent:

YYYY year (four numeric digits)
MM month of year (01 through 12)
DD day of month (01 through 31)

Chapter 10. MQMD - Message descriptor 119

MQMD - Message descriptor

Greenwich Mean Time (GMT) is used for the MDPD and MDPT fields, subject to
the system clock being set accurately to GMT.

If the message was put as part of a unit of work, the date is that when the
message was put, and not the date when the unit of work was committed.

For the MQPUT and MQPUTL calls, this is an input/output field if PMSETA is
specified in the PMO parameter. The contents of the field are not checked by the
gqueue manager, except that any information following a null character within
the field is discarded. The null character and any following characters are
converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDPD that was transmitted with the message. If the message has no
context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given by
LNPDAT. The initial value of this field is 8 blank characters.

MDPT (8-byte character string)
Time when message was put.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the

MQSeries Application Programming Guidd,
The format used for the time when this field is generated by the queue
manager is:

HHMMSSTH

where the characters represent (in order):

HH hours (00 through 23)

MM minutes (00 through 59)

SS seconds (00 through 59; see note below)
T tenths of a second (0 through 9)

H hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is
possible on rare occasions for 60 or 61 to be returned for the seconds in
MDPT. This happens when leap seconds are inserted into the global time
standard.

Greenwich Mean Time (GMT) is used for the MDPD and MDPT fields, subject to

the system clock being set accurately to GMT.

If the message was put as part of a unit of work, the time is that when the
message was put, and not the time when the unit of work was committed.

For the MQPUT and MQPUTL1 calls, this is an input/output field if PMSETA is
specified in the PMO parameter. The contents of the field are not checked by the
gqueue manager, except that any information following a null character within
the field is discarded. The null character and any following characters are
converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

120 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDPT that was transmitted with the message. If the message has no
context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given by
LNPTIM. The initial value of this field is 8 blank characters.

MDAOD (4-byte character string)
Application data relating to origin.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the

MDAOD is information that is defined by the application suite that can be used to
provide additional information about the origin of the message. For example, it
could be set by suitably authorized applications to indicate whether the
identity data is trusted.

The queue manager treats this information as character data, but does not
define the format of it. When the queue manager generates this information, it
is entirely blank.

For the MQPUT and MQPUTL calls, this is an input/output field if PMSETA is
specified in the PMO parameter. Any information following a null character
within the field is discarded. The null character and any following characters
are converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDAOD that was transmitted with the message. If the message has
no context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given by
LNAORD. The initial value of this field is 4 blank characters.

The remaining fields are not present if MDVER is less than MDVER?2.

MDGID (24-byte bit string)
Group identifier.

This is a byte string that is used to identify the particular message group or
logical message to which the physical message belongs. MDGID is also used if
segmentation is allowed for the message. In all of these cases, MDGID has a
non-null value, and one or more of the following flags is set in the MDMFL field:

MFEMIG

MFLMIG

MFSEG

MFLSEG

MFSEGA

If none of these flags is set, MDGID has the special null value GINONE.

Chapter 10. MQMD - Message descriptor 121

MQMD - Message descriptor

This field need not be set by the application on the MQPUT or MQGET call if:
* On the MQPUT call, PMLOGO is specified.
* On the MQGET call, MOGRPI is not specified.

These are the recommended ways of using these calls for messages that are not
report messages. However, if the application requires more control, or the call
is MQPUTL, the application must ensure that MDGID is set to an appropriate
value.

Message groups and segments can be processed correctly only if the group
identifier is unique. For this reason, applications should not generate their own
group identifiers; instead, applications should do one of the following:

* If PMLOGO is specified, the queue manager automatically generates a
unique group identifier for the first message in the group or segment of the
logical message, and uses that group identifier for the remaining messages
in the group or segments of the logical message, so the application does not
need to take any special action. This is the recommended procedure.

* If PMLOGO is not specified, the application should request the queue
manager to generate the group identifier, by setting MDGID to GINONE on
the first MQPUT or MQPUT1 call for a message in the group or segment of
the logical message. The group identifier returned by the queue manager on
output from that call should then be used for the remaining messages in the
group or segments of the logical message. If a message group contains
segmented messages, the same group identifier must be used for all
segments and messages in the group.

When PMLOGO is not specified, messages in groups and segments of
logical messages can be put in any order (for example, in reverse order), but
the group identifier must be allocated by the first MQPUT or MQPUTL call
that is issued for any of those messages.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value
detailed in Mahle 31 on page 153. On output from the MQPUT and MQPUT1
calls, the queue manager sets this field to the value that was sent with the
message if the object opened is a single queue and not a distribution list, but
leaves it unchanged if the object opened is a distribution list. In the latter case,
if the application needs to know the group identifiers generated, the
application must provide MQPMR records containing the PRGID field.

On input to the MQGET call, the queue manager uses the value detailed in

[able 16 on page 63. On output from the MQGET call, the queue manager sets
this field to the value for the message retrieved.

The following special value is defined:

GINONE
No group identifier specified.

The value is binary zero for the length of the field. This is the value
that is used for messages that are not in groups, not segments of
logical messages, and for which segmentation is not allowed.

The length of this field is given by LNGID. The initial value of this field is
GINONE. This field is not present if MDVER is less than MDVER2.

MDSEQ (10-digit signed integer)
Sequence number of logical message within group.

122 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

Sequence numbers start at 1, and increase by 1 for each new logical message in
the group, up to a maximum of 999 999 999. A physical message which is not
in a group has a sequence number of 1.

This field need not be set by the application on the MQPUT or MQGET call if:
* On the MQPUT call, PMLOGO is specified.
* On the MQGET call, MOSEQN is not specified.

These are the recommended ways of using these calls for messages that are not
report messages. However, if the application requires more control, or the call
is MQPUT1, the application must ensure that MDSEQ is set to an appropriate
value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value
detailed in [[able 31 on page 153. On output from the MQPUT and MQPUT1
calls, the queue manager sets this field to the value that was sent with the
message.

On input to the MQGET call, the queue manager uses the value detailed in

[able 16 an page 63. On output from the MQGET call, the queue manager sets
this field to the value for the message retrieved.

The initial value of this field is one. This field is not present if MDVER is less
than MDVER2.

MDOFF (10-digit signed integer)
Offset of data in physical message from start of logical message.

This is the offset in bytes of the data in the physical message from the start of
the logical message of which the data forms part. This data is called a segment.
The offset is in the range 0 through 999 999 999. A physical message which is
not a segment of a logical message has an offset of zero.

This field need not be set by the application on the MQPUT or MQGET call if:
* On the MQPUT call, PMLOGO is specified.
* On the MQGET call, MOOFFS is not specified.

These are the recommended ways of using these calls for messages that are not
report messages. However, if the application does not comply with these
conditions, or the call is MQPUT1, the application must ensure that MDOFF is set
to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value
detailed in Table 31 on page 153. On output from the MQPUT and MQPUT1

calls, the queue manager sets this field to the value that was sent with the
message.

For a report message reporting on a segment of a logical message, the MDOLN
field (provided it is not OLUNDF) is used to update the offset in the segment
information retained by the queue manager.

On input to the MQGET call, the queue manager uses the value detailed in

[able 16 an page 63. On output from the MQGET call, the queue manager sets
this field to the value for the message retrieved.

The initial value of this field is zero. This field is not present if MDVER is less
than MDVER2.

Chapter 10. MQMD - Message descriptor 123

MQMD - Message descriptor

MDMFL (10-digit signed integer)
Message flags.

These are flags that specify attributes of the message, or control its processing.
The flags are divided into the following categories:

* Segmentation flag

» Status flags

These are described in turn.

Segmentation flag: When a message is too big for a queue, an attempt to put
the message on the queue usually fails. Segmentation is a technique whereby
the queue manager or application splits the message into smaller pieces called
segments, and places each segment on the queue as a separate physical
message. The application which retrieves the message can either retrieve the
segments one by one, or request the queue manager to reassemble the
segments into a single message which is returned by the MQGET call. The
latter is achieved by specifying the GMCMPM option on the MQGET call, and
supplying a buffer that is big enough to accommodate the complete message.
(See EChapter 8 MQGMOQ - Get-message options” on page 51 for details of the
GMCMPM option.) Segmentation of a message can occur at the sending queue
manager, at an intermediate queue manager, or at the destination queue
manager.

You can specify one of the following to control the segmentation of a message:

MFSEGI
Segmentation inhibited.

This option prevents the message being broken into segments by the
gueue manager. If specified for a message that is already a segment,
this option prevents the segment being broken into smaller segments.

The value of this flag in binary zero. This is the default.

MFSEGA
Segmentation allowed.

This option allows the message to be broken into segments by the
gueue manager. If specified for a message that is already a segment,
this option allows the segment to be broken into smaller segments.
MFSEGA can be set without either MFSEG or MFLSEG being set.

When the queue manager segments a message, the queue manager
turns on the MFSEG flag in the copy of the MQMD that is sent with
each segment, but does not alter the settings of these flags in the
MQMD provided by the application on the MQPUT or MQPUTL call.
For the last segment in the logical message, the queue manager also
turns on the MFLSEG flag in the MQMD that is sent with the segment.

Note: Care is needed when messages are put with MFSEGA but
without PMLOGO. If the message is:
* Not a segment, and
* Not in a group, and
* Not being forwarded,

the application must remember to reset the MDGID field to
GINONE prior to each MQPUT or MQPUTL1 call, in order to
cause a unique group identifier to be generated by the queue
manager for each message. If this is not done, unrelated

124 MQseries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

messages could inadvertently end up with the same group
identifier, which might lead to incorrect processing subsequently.
See the descriptions of the MDGID field and the PMLOGO option
for more information about when the MDGID field must be reset.

The queue manager splits messages into segments as necessary in
order to ensure that the segments (plus any header data that may be
required) fit on the queue. However, there is a lower limit for the size
of a segment generated by the queue manager (see below), and only
the last segment created from a message can be smaller than this limit.
The lower limit for the size of an application-generated segment is one
byte. Segments generated by the queue manager may be of unequal
length. The queue-manager processes the message as follows:

» User-defined formats are split on boundaries which are multiples of
16 bytes. This means that the queue manager will not generate
segments that are smaller than 16 bytes (other than the last
segment).

 Built-in formats other than FMSTR are split at points appropriate to
the nature of the data present. However, the queue manager never
splits a message in the middle of an MQ header structure. This
means that a segment containing a single MQ header structure
cannot be split further by the queue manager, and as a result the
minimum possible segment size for that message is greater than 16
bytes.

The second or later segment generated by the queue manager will
begin with one of the following:

— An MQ header structure

— The start of the application message data

— Part-way through the application message data

* FMSTR is split without regard for the nature of the data present
(SBCS, DBCS, or mixed SBCS/DBCS). When the string is DBCS or
mixed SBCS/DBCS, this may result in segments which cannot be
converted from one character set to another (see below). The queue
manager never splits FMSTR messages into segments that are
smaller than 16 bytes (other than the last segment).

* The MDFMT, MDCSI, and MDENC fields in the MQMD of each segment
are set by the queue manager to describe correctly the data present
at the start of the segment; the format name will be either the name
of a built-in format, or the name of a user-defined format.

* The MDREP field in the MQMD of segments with MDOFF greater than
zero are modified as follows:

— For each report type, if the report option is RO*D, but the
segment cannot possibly contain any of the first 100 bytes of user
data (that is, the data following any MQ header structures that
may be present), the report option is changed to RO*.

The queue manager follows the above rules, but otherwise splits
messages as it thinks fit; no assumptions should be made about the
way that the queue manager will choose to split a particular message.

For persistent messages, the queue manager can perform segmentation
only within a unit of work:

* If the MQPUT or MQPUT1 call is operating within a user-defined
unit of work, that unit of work is used. If the call fails partway

Chapter 10. MQMD - Message descriptor 125

MQMD - Message descriptor

through the segmentation process, the queue manager removes any
segments that were placed on the queue as a result of the failing
call. However, the failure does not prevent the unit of work being
committed successfully.

+ If the call is operating outside a user-defined unit of work, and there
is no user-defined unit of work in existence, the queue manager
creates a unit of work just for the duration of the call. If the call is
successful, the queue manager commits the unit of work
automatically (the application does not need to do this). If the call
fails, the queue manager backs out the unit of work.

 If the call is operating outside a user-defined unit of work, but a
user-defined unit of work does exist, the queue manager is unable to
perform segmentation. If the message does not require segmentation,
the call can still succeed. But if the message does require
segmentation, the call fails with reason code RC2255.

For nonpersistent messages, the queue manager does not require a unit
of work to be available in order to perform segmentation.

Special consideration must be given to data conversion of messages
which may be segmented:

» If data conversion is performed only by the receiving application on
the MQGET call, and the application specifies the GMCMPM option,
the data-conversion exit will be passed the complete message for the
exit to convert, and the fact that the message was segmented will
not be apparent to the exit.

 If the receiving application retrieves one segment at a time, the
data-conversion exit will be invoked to convert one segment at a
time. The exit must therefore be capable of converting the data in a
segment independently of the data in any of the other segments.

If the nature of the data in the message is such that arbitrary
segmentation of the data on 16-byte boundaries may result in
segments which cannot be converted by the exit, or the format is
FMSTR and the character set is DBCS or mixed SBCS/DBCS, the
sending application should itself create and put the segments,
specifying MFSEGI to suppress further segmentation. In this way,
the sending application can ensure that each segment contains
sufficient information to allow the data-conversion exit to convert
the segment successfully.

» If sender conversion is specified for a sending message channel
agent (MCA), the MCA converts only messages which are not
segments of logical messages; the MCA never attempts to convert
messages which are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and an output
flag on the MQGET call. On the latter call, the queue manager also echoes the
value of the flag to the GMSEG field in MQGMO.

The initial value of this flag is MFSEGI.
Status flags: These are flags that indicate whether the physical message
belongs to a message group, is a segment of a logical message, both, or neither.

One or more of the following can be specified on the MQPUT or MQPUT1 call,
or returned by the MQGET call:

126 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

MFMIG

Message is a member of a group.

MFLMIG

Message is the last logical message in a group.

If this flag is set, the queue manager turns on MFMIG in the copy of
MQMD that is sent with the message, but does not alter the settings of
these flags in the MQMD provided by the application on the MQPUT
or MQPUT1 call.

It is valid for a group to consist of only one logical message. If this is
the case, MFLMIG is set, but the MDSEQ field has the value one.

MFSEG

Message is a segment of a logical message.

When MFSEG is specified without MFLSEG, the length of the
application message data in the segment (excluding the lengths of any
MQ header structures that may be present) must be at least one. If the
length is zero, the MQPUT or MQPUT1 call fails with reason code
RC2253.

MFLSEG

Message is the last segment of a logical message.

If this flag is set, the queue manager turns on MFSEG in the copy of
MQMD that is sent with the message, but does not alter the settings of
these flags in the MQMD provided by the application on the MQPUT
or MQPUTL call.

It is valid for a logical message to consist of only one segment. If this
is the case, MFLSEG is set, but the MDOFF field has the value zero.

When MFLSEG is specified, it is permissible for the length of the
application message data in the segment (excluding the lengths of any
header structures that may be present) to be zero.

The application must ensure that these flags are set correctly when putting
messages. If PMLOGO is specified, or was specified on the preceding MQPUT
call for the queue handle, the settings of the flags must be consistent with the
group and segment information retained by the queue manager for the queue
handle. The following conditions apply to successive MQPUT calls for the
gueue handle when PMLOGO is specified:

If there is no current group or logical message, all of these flags (and
combinations of them) are valid.

Once MFMIG has been specified, it must remain on until MFLMIG is
specified. The call fails with reason code RC2241 if this condition is not
satisfied.

Once MFSEG has been specified, it must remain on until MFLSEG is
specified. The call fails with reason code RC2242 if this condition is not
satisfied.

Once MFSEG has been specified without MFMIG, MFMIG must remain off
until after MFLSEG has been specified. The call fails with reason code
RC2242 if this condition is not satisfied.

[able 31 on page 153 shows the valid combinations of the flags, and the values
used for various fields.

Chapter 10. MQMD - Message descriptor 127

MQMD - Message descriptor

These flags are input flags on the MQPUT and MQPUTL1 calls, and output
flags on the MQGET call. On the latter call, the queue manager also echoes the
values of the flags to the GMGST and GMSST fields in MQGMO.

Default flags: The following can be specified to indicate that the message has
default attributes:

MFNONE
No message flags (default message attributes).

This inhibits segmentation, and indicates that the message is not in a
group and is not a segment of a logical message. MFNONE is defined
to aid program documentation. It is not intended that this flag be used
with any other, but as its value is zero, such use cannot be detected.

The MDMFL field is partitioned into subfields; for details see |1A.ppe—nd.i.x_E|
The initial value of this field is MFNONE. This field is not present if MDVER is
less than MDVER2.

MDOLN (10-digit signed integer)
Length of original message.

This field is of relevance only for report messages; it specifies the length of the
message to which the report relates. If the report message is reporting on a
segment, MDOLN is the length of the segment, and not the length of the logical
message of which the segment forms part, nor the length of the data in the
report message.

MDOLN should be set by the program which generates the report, but if that
program does not set the field, MDOLN has the following special value:

OLUNDF
Original length of message not defined.

This is an input field on the MQPUT and MQPUT1 calls, but the value

provided by the application is used only in particular circumstances:

» If the message being put is a segment but not a report message, the queue
manager ignores the field and uses the length of the application message
data instead.

» If the message being put is a report message reporting on a segment, the
queue manager accepts the value specified. The value must be:

— Greater than zero if the segment is not the last segment
— Not less than zero if the segment is the last segment
— Not less than the length of data present in the message

If these conditions are not satisfied, the call fails with reason code RC2252.

* In all other cases, the queue manager ignores the field and uses the value
OLUNDEF instead.

This is an output field on the MQGET call.

The initial value of this field is OLUNDF. This field is not present if MDVER is
less than MDVER2.

128 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMD - Message descriptor

Initial values and RPG declaration

Table 22. Initial values of fields in MQMD

Field name Name of constant Value of constant
MDSID MDSIDV 'MDbb"' (See note 1)
MDVER MDVER1 1

MDREP RONONE 0

MDMT MTDGRM 8

MDEXP EIULIM -1

MDFB FBNONE 0

MDENC ENNAT See note 2
MDCSIT CSQM 0

MDFMT FMNONE "bbbbbbbb"'
MDPRI PRQDEF -1

MDPER PEQDEF 2

MDMID MINONE Nulls
MDCID CINONE Nulls
MDBOC None 0

MDRQ None Blanks
MDRM None Blanks
MDUID None Blanks
MDACC ACNONE Nulls
MDAID None Blanks
MDPAT ATNCON 0

MDPAN None Blanks
MDPD None Blanks
MDPT None Blanks
MDAOD None Blanks
MDGID GINONE Nulls
MDSEQ None 1

MDOFF None 0

MDMF L MFNONE 0

MDOLN OLUNDF -1

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

Chapter 10. MQMD - Message descriptor 129

MQMD - Message descriptor
RPG declaration

L /2 P o | s R ¢ P Y A
D* MQMD Structure

D*

D* Structure identifier

D MDSID 1 4

D+ Structure version number

D MDVER 5 81 0

Dx Options for report messages

D MDREP 9 121 0

D* Message type

D MDMT 13 16I 0

D* Message lifetime

D MDEXP 17 201 0

D* Feedback or reason code

D MDFB 21 241 0

D* Numeric encoding of message data

D MDENC 25 281 0

D+ Character set identifier of message data
D MDCSI 29 321 0

D* Format name of message data

D MDFMT 33 40

D* Message priority

D MDPRI 41 441 0

D* Message persistence

D MDPER 45 481 0

D* Message identifier

D MDMID 49 72

D+ Correlation identifier

D MDCID 73 96

D+ Backout counter

D MDBOC 97 1001 0

D+ Name of reply queue

D MDRQ 101 148

D+ Name of reply queue manager

D MDRM 149 196

D+ User identifier

D MDUID 197 208

D* Accounting token

D MDACC 209 240

D* Application data relating to identity
D MDAID 241 272

D* Type of application that put the message
D MDPAT 273 2761 0

D+ Name of application that put the message
D MDPAN 277 304

D+ Date when message was put

D MDPD 305 312

D* Time when message was put

D MDPT 313 320

D+ Application data relating to origin

D MDAOD 321 324

D* Group identifier

D MDGID 325 348

D* Sequence number of Togical message within group
D MDSEQ 349 3521 0

Dx Offset of data in physical message from start of logical message
D MDOFF 353 3561 0

D* Message flags

D MDMFL 357 3601 0

D* Length of original message

D MDOLN 361 3641 0

130 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 11. MQMDE - Message descriptor extension

The following table summarizes the fields in the structure.

Table 23. Fields in MQMDE

Field Description Page
MESID Structure identifier iz3
MEVER Structure version number 23
MELEN Length of MQMDE structure 34
MEENC Numeric encoding of data that follows MQMDE L34
MECST Character set identifier of data that follows Y
MQMDE
MEFMT Format name of data that follows MQMDE EY,
MEFLG General flags EY,
MEGID Group identifier EY
MESEQ Sequence number of logical message within group Y,
MEOFF Offset of data in physical message from start of f2d
logical message
MEMFL Message flags f=d
MEOLN Length of original message flad

Overview

The MQMDE structure describes the data that sometimes occurs preceding the
application message data. Normal applications should use a version-2 MQMD, in
which case they will not encounter an MQMDE structure. However, specialized
applications, and applications that continue to use a version-1 MQMD, may
encounter an MQMDE in some situations.

The MQMDE structure contains those MQMD fields that exist in the version-2
MQMD, but not in the version-1 MQMD. It can occur in the following
circumstances:

» Specified on the MQPUT and MQPUT1 calls

* Returned by the MQGET call

* In messages on transmission queues

These are described below.

MQMDE specified on MQPUT and MQPUT1 calls: On the MQPUT and
MQPUT1 calls, if the application provides a version-1 MQMD, the application can
optionally prefix the message data with an MQMDE, setting the MDFMT field in
MQMD to FMMDE to indicate that an MQMDE is present. If the application does
not provide an MQMDE, the queue manager assumes default values for the fields
in the MQMDE. The default values that the queue manager uses are the same as

the initial values for the structure — see [[ahle 25 on page 135,

If the application provides a version-2 MQMD and prefixes the application message
data with an MQMDE, the structures are processed as shown in

© Copyright IBM Corp. 1994, 2000 131

MQMDE - Message descriptor extension

There is one special case. If the application uses a version-2 MQMD to put a
message that is a segment (that is, the MFSEG or MFLSEG flag is set), and the
format name in the MQMD is FMDLH, the queue manager generates an MQMDE
structure and inserts it between the MQDLH structure and the data that follows it.
In the MQMD that the queue manager retains with the message, the version-2
fields are set to their default values.

Table 24. Queue-manager action when MQMDE specified on MQPUT or MQPUTL1. This
table shows the action taken by the queue manager when the application specifies an
MQMDE structure at the start of the application message data on the MQPUT or MQPUT1

call.
MQMD version Values of Values of corresponding fields | Action taken by queue
version-2 fields | in MQMDE manager
1 - Valid MQMDE is honored
1 - Not valid Call fails with an appropriate
reason code
1 - MQMDE is in the wrong MQMDE is treated as message
character set or encoding, or is | data
an unsupported version
2 Default Valid MQMDE is honored
2 Default Not valid Call fails with an appropriate
reason code
2 Default MQMDE is in the wrong MQMDE is treated as message
character set or encoding, or is | data
an unsupported version
2 Not default Valid, and same as MQMD MQMDE is honored
2 Not default Valid, but different from MQMD | MQMDE is treated as message
data
2 Not default Not valid Call fails with an appropriate
reason code
2 Not default MQMDE is in the wrong MQMDE is treated as message
character set or encoding, or is | data
an unsupported version

The data in the MQMDE structure must be in the queue manager’s character set
and encoding. The former is given by the CodedCharSetId queue-manager attribute

(see EChapter 43_Attributes for the queue manager” on page 323), while in most

cases the latter is given by the value of ENNAT. If this condition is not satisfied,
the MQMDE is accepted but not honored, that is, the MQMDE is treated as

message data.

Note: On OS/2 and Windows NT, applications compiled with Micro Focus
COBOL use a value of ENNAT that is different from the queue-manager’s
encoding. Although numeric fields in the MQMD structure on the MQPUT,
MQPUT1, and MQGET calls must be in the Micro Focus COBOL encoding,
numeric fields in the MQMDE structure must be in the queue-manager’s
encoding. This latter is given by ENNAT for the C programming language,

and has the value 546.

Several of the fields that exist in the version-2 MQMD but not the version-1
MQMD are input/output fields on MQPUT and MQPUT1. However, the queue
manager does not return any values in the equivalent fields in the MQMDE on
output from the MQPUT and MQPUT1 calls; if the application requires those
output values, it must use a version-2 MQMD.

132 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMDE - Message descriptor extension

MQMDE returned by MQGET call: On the MQGET call, if the application
provides a version-1 MQMD, the queue manager prefixes the message returned
with an MQMDE, but only if one or more of the fields in the MQMDE has a
nondefault value. The queue manager sets the MDFMT field in MQMD to the value
FMMDE to indicate that an MQMDE is present.

If the application provides an MQMDE at the start of the BUFFER parameter, the
MQMDE is ignored. On return from the MQGET call, it is replaced by the
MQMDE for the message (if one is needed), or overwritten by the application
message data (if the MQMDE is not needed).

If an MQMDE is returned by the MQGET call, the data in the MQMDE is usually
in the queue manager’s character set and encoding. However the MQMDE may be
in some other character set and encoding if:
* The MQMDE was treated as data on the MQPUT or MQPUT1 call (see fable 24
for the circumstances that can cause this).
» The message was received from a remote queue manager connected by a TCP
connection, and the receiving message channel agent (MCA) was not set up

correctly (see the MQSeries Intercommunicatiod manual for further information).

Note: On OS/2 and Windows NT, applications compiled with Micro Focus
COBOL use a value of ENNAT that is different from the queue-manager’s
encoding (see above).

MQMDE in messages on transmission queues: Messages on transmission queues
are prefixed with the MQXQH structure, which contains within it a version-1
MQMD. An MQMDE may also be present, positioned between the MQXQH
structure and application message data, but it will usually be present only if one or
more of the fields in the MQMDE has a nondefault value.

Other MQ header structures can also occur between the MQXQH structure and the
application message data. For example, when the dead-letter header MQDLH is
present, and the message is not a segment, the order is:

* MQXQH (containing a version-1 MQMD)

+ MQMDE

« MQDLH

» application message data

Fields

MESID (4-byte character string)
Structure identifier.
The value must be:
MESIDV
Identifier for message descriptor extension structure.
The initial value of this field is MESIDV.
MEVER (10-digit signed integer)
Structure version number.
The value must be:

MEVER?2
Version-2 message descriptor extension structure.

Chapter 11. MQMDE - Message descriptor extension 133

MQMDE - Message descriptor extension
The following constant specifies the version number of the current version:
MEVERC
Current version of message descriptor extension structure.
The initial value of this field is MEVER2.
MELEN (10-digit signed integer)
Length of MQMDE structure.
The following value is defined:
MELEN2
Length of version-2 message descriptor extension structure.
The initial value of this field is MELEN2.
MEENC (10-digit signed integer)
Numeric encoding of data that follows MQMDE.

The queue manager does not check the value of this field. See the MDENC field

described in EChapter 10 MQMD - Message descriptar” on page 83 for more

information about data encodings.

The initial value of this field is ENNAT.
MECSI (10-digit signed integer)
Character-set identifier of data that follows MQMDE.

The queue manager does not check the value of this field.

The initial value of this field is 0.

MEFMT (8-byte character string)
Format name of data that follows MQMDE.

The queue manager does not check the value of this field. See the MDFMT field

described in EChapter 10 MQMD - Message descriptor” an page 83 for more

information about format names.

The initial value of this field is FMNONE.
MEFLG (10-digit signed integer)
General flags.
The following flag can be specified:
MEFNON
No flags.
The initial value of this field is MEFNON.

MEGID (24-byte bit string)
Group identifier.

See the MDGID field described in L = i z
bage 83. The initial value of this field is GINONE.

MESEQ (10-digit signed integer)
Sequence number of logical message within group.

134 MQseries for AS/400, V5.1 APR (ILE RPG)

MQMDE - Message descriptor extension

See the MDSEQ field described in I‘Chapter 10. MQMD - Message descriptor” on

. The initial value of this field is 1.
MEOFF (10-digit signed integer)

Offset of data in physical message from start of logical message.

See the MDOFF field described in LChapter 10 MQMD - Message descriptor” od

. The initial value of this field is 0.

MEMFL (10-digit signed integer)
Message flags.

See the MDMFL field described in Chapter 10 MQMD - Message descriptor” on

. The initial value of this field is MFNONE.

MEOLN (10-digit signed integer)
Length of original message.

See the MDOLN field described in EChapter 10_MQMD - Message descriptor” ad

. The initial value of this field is OLUNDF.

Initial values and RPG declaration

Table 25. Initial values of fields in MOMDE

Field name Name of constant Value of constant
MESID MESIDV '"MDEb' (See note 1)
MEVER MEVER2 2

MELEN MELEN2 72

MEENC ENNAT See note 2

MECSI None 0

MEFMT FMNONE "bbbbbbbb"'

MEFLG MEFNON 0

MEGID GINONE Nulls

MESEQ None 1

MEOFF None 0

MEMFL MFNONE 0

MEOLN OLUNDF -1

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

Chapter 11. MQMDE - Message descriptor extension 135

RPG declaration
RPG declaration

Dx..l. oot 2eeeite 3t b o bl albel el T
D+ MQMDE Structure

D*

D* Structure identifier

D MESID 1 4

D* Structure version number

D MEVER 5 81 0

D* Length of MQMDE structure

D MELEN 9 121 0

D* Numeric encoding of data that follows MQMDE

D MEENC 13 161 0

D* Character-set identifier of data that follows MQMDE
D MECSI 17 201 0

D* Format name of data that follows MQMDE

D MEFMT 21 28

D* General flags

D MEFLG 29 321 0

D* Group identifier

D MEGID 33 56

D* Sequence number of Togical message within group

D MESEQ 57 601 0

D+ Offset of data in physical message from start of logical message
D MEOFF 61 641 0

D* Message flags

D MEMFL 65 681 0

D* Length of original message

D MEOLN 69 721 0

136 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 12. MQOD - Object descriptor

The following table summarizes the fields in the structure.

Table 26. Fields in MQOD

Field Description

oDSID Structure identifier

ODVER Structure version number
obot Object type

ODON Object name

ODMN Object queue manager name
ODDN Dynamic queue name

O0DAU Alternate user identifier

Note: The remaining fields are not present if ODVER is less than ODVER2.

Bl ElEl BB EEEEEE |EEE EEEESE

ODREC Number of object records present

O0DKDC Number of local queues opened successfully

obunc Number of remote queues opened successfully

oDnInc Number of queues that failed to open

O0DORO Offset of first object record from start of MQOD

ODRRO Offset of first response record from start of
MQOD

ODORP Address of first object record

ODRRP Address of first response record

Note: The remaining fields are not present if ODVER is less than ODVER3.

ODAST Alternate security identifier

ODRQN Resolved queue name

ODRMN Resolved queue manager name

Overview

The MQOD structure is used to specify an object by name. The following types of
object are valid:

* Queue or distribution list

* Process definition

* Queue manager

The current version of MQOD is given by ODVERC. Fields that exist only in the
more-recent versions of the structure are identified as such in the descriptions that
follow. The declaration of MQOD provided in the COPY file contains the
additional fields, but the initial value provided for the ODVER field is ODVERL1. To
use the additional fields, the application must set the version number to ODVERC.
Applications which are intended to be portable between several environments
should use a more-recent version MQOD only if all of those environments support
that version.

To open a distribution list, ODVER must be ODVER?2 or greater.

© Copyright IBM Corp. 1994, 2000 137

MQOD - Object descriptor
This structure is an input/output parameter for the MQOPEN and MQPUT1 calls.

Fields

0DSID (4-byte character string)
Structure identifier.

The value must be:

ODSIDV
Identifier for object descriptor structure.

This is always an input field. The initial value of this field is ODSIDV.
ODVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

ODVER1
Version-1 object descriptor structure.

ODVER?2
Version-2 object descriptor structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

ODVERS3
Version-3 object descriptor structure.

Fields that exist only in the version-3 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

ODVERC
Current version of object descriptor structure.

This is always an input field. The initial value of this field is ODVERL1.

0DOT (10-digit signed integer)

Object type.

Type of object being named in 0DON. Possible values are:

OTQ Queue.

OTNLST
Namelist.

OTPRO
Process definition.

OTQM
Queue manager.
This is always an input field. The initial value of this field is OTQ.

ODON (48-byte character string)
Object name.

138 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQOD - Object descriptor

This is the local name of the object as defined on the queue manager identified
by ODMN. The name can contain the following characters:

» Uppercase alphabetic characters (A through 2)

» Lowercase alphabetic characters (a through z)

* Numeric digits (0 through 9)

» Period (.), forward slash (/), underscore (), percent (%)

The name must not contain leading or embedded blanks, but may contain
trailing blanks. A null character can be used to indicate the end of significant
data in the name; the null and any characters following it are treated as blanks.

The following restrictions apply in the environments indicated:
» On systems that use EBCDIC Katakana, lowercase characters cannot be used.

* On 0OS/400, names containing lowercase characters, forward slash, or
percent, must be enclosed in quotation marks when specified on commands.
These quotation marks must not be specified in the QUNAME parameter.

If 0DOT is OTQM, special rules apply; in this case the name must be entirely
blank up to the first null character or the end of the field.

If 0DON is the name of a model queue, the queue manager creates a dynamic
queue with the attributes of the model queue, and returns in the 0DON field the
name of the queue created. A model queue can be specified only for the
MQOPEN call.

If a distribution list is being opened (that is, ODREC is present and greater than
zero), 0DON must be blank or the null string. If this condition is not satisfied,
the call fails with reason code RC2152.

This is an input/output field for the MQOPEN call when 0DON is the name of a
model queue, and an input-only field in all other cases. The length of this field
is given by LNQN. The initial value of this field is 48 blank characters.

ODMN (48-byte character string)
Object queue manager name.

This is the name of the queue manager on which the 0DON object is defined.
The characters that are valid in the name are the same as those for 0DON (see
above).

A name that is entirely blank up to the first null character or the end of the
field denotes the queue manager to which the application is connected.

If 0DOT is OTNLST, OTPRO, or OTQM, the name of the local queue manager
must either be specified explicitly, or specified as blank.

If 0ODON is the name of a model queue, the queue manager creates a dynamic
queue with the attributes of the model queue, and returns in the ODMN field the
name of the queue manager on which the queue is created; this is the name of
the local queue manager. A model queue can be specified only for the
MQOPEN call.

If 0ODON is the name of a cluster queue, and 0DMN is blank, the actual destination

of messages sent using the queue handle returned by the MQOPEN call is
chosen by the queue manager (or by a cluster workload exit if there is one):

Chapter 12. MQOD - Object descriptor 139

MQOD - Object descriptor

* If OOBNDO is specified, the queue manager selects a particular instance of
the cluster queue during the processing of the MQOPEN call, and all
messages put using this queue handle are sent to that instance.

» If OOBNDN is specified, the queue manager may choose a different instance
of the destination queue (residing on a different queue manager in the
cluster) on each successive MQPUT call that uses this queue handle.

If the application needs to send a message to a specific instance of a cluster
gueue (that is, a queue instance that resides on a particular queue manager),
the application should specify the name of that queue manager in the 0ODMN
field. This forces the local queue manager to send the message to the specified
destination queue manager.

If a distribution list is being opened (that is, ODREC is greater than zero), ODMN
must be blank or the null string. If this condition is not satisfied, the call fails
with reason code RC2153.

This is an input/output field for the MQOPEN call when 0DON is the name of a
model queue, and an input-only field in all other cases. The length of this field
is given by LNQMN. The initial value of this field is 48 blank characters.

ODDN (48-byte character string)
Dynamic queue name.

This is the name of a dynamic queue that is to be created by the MQOPEN
call. This is of relevance only when 0DON specifies the name of a model queue;
in all other cases 0DDN is ignored.

The characters that are valid in the name are the same as those for 0ODON (see
above), except that an asterisk is also valid (see below). A name that is
completely blank (or one in which only blanks appear before the first null
character) is not valid if 0DON is the name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue manager
replaces the asterisk with a string of characters that guarantees that the name
generated for the queue is unique at the local queue manager. To allow a
sufficient number of characters for this, the asterisk is valid only in positions 1
through 33. There must be no characters other than blanks or a null character
following the asterisk.

It is valid for the asterisk to appear in the first character position, in which
case the name consists solely of the characters generated by the queue
manager.

This is an input field. The length of this field is given by LNQN. The initial
value of this field is 'AMQ.*', padded with blanks.

ODAU (12-byte character string)
Alternate user identifier.

If OOALTU is specified for the MQOPEN call, or PMALTU for the MQPUT1
call, this field contains an alternate user identifier that is to be used to check
the authorization for the open, in place of the user identifier that the
application is currently running under. Some checks, however, are still carried
out with the current user identifier (for example, context checks).

140 MQseries for AS/400, V5.1 APR (ILE RPG)

MQOD - Object descriptor

If OOALTU or PMALTU is specified and this field is entirely blank up to the
first null character or the end of the field, the open can succeed only if no user
authorization is needed to open this object with the options specified.

If neither OOALTU nor PMALTU is specified, this field is ignored.

This is an input field. The length of this field is given by LNUID. The initial
value of this field is 12 blank characters.

The remaining fields are not present if ODVER is less than ODVER?2.

ODREC (10-digit signed integer)
Number of object records present.

This is the number of MQOR object records that have been provided by the
application. If this number is greater than zero, it indicates that a distribution
list is being opened, with ODREC being the number of destination queues in the
list. It is valid for a distribution list to contain only one destination.

The value of ODREC must not be less than zero, and if it is greater than zero
0DOT must be OTQ); the call fails with reason code RC2154 if these conditions
are not satisfied.

This is an input field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER2.

ODKDC (10-digit signed integer)
Number of local queues opened successfully.

This is the number of queues in the distribution list that resolve to local
queues and that were opened successfully. The count does not include queues
that resolve to remote queues (even though a local transmission queue is used
initially to store the message). If present, this field is also set when opening a
single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER?2.

0bUDC (10-digit signed integer)
Number of remote queues opened successfully

This is the number of queues in the distribution list that resolve to remote
queues and that were opened successfully. If present, this field is also set when
opening a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER?2.

0DIDC (10-digit signed integer)
Number of queues that failed to open.

This is the number of queues in the distribution list that failed to open
successfully. If present, this field is also set when opening a single queue which
is not in a distribution list.

Note: If present, this field is set only if the CMPCOD parameter on the MQOPEN
or MQPUT1 call is CCOK or CCWARN; it is not set if the CMPCOD
parameter is CCFAIL.

Chapter 12. MQOD - Object descriptor 141

MQOD - Object descriptor

This is an output field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER?2.

ODORO (10-digit signed integer)
Offset of first object record from start of MQOD.

This is the offset in bytes of the first MQOR object record from the start of the
MQOD structure. The offset can be positive or negative. 0DOR0 is used only
when a distribution list is being opened. The field is ignored if ODREC is zero.

When a distribution list is being opened, an array of one or more MQOR object
records must be provided in order to specify the names of the destination
gueues in the distribution list. This can be done in one of two ways:

* By using the offset field 0DORO

In this case, the application should declare its own structure containing an
MQOD followed by the array of MQOR records (with as many array
elements as are needed), and set 0DORO to the offset of the first element in
the array from the start of the MQOD. Care must be taken to ensure that
this offset is correct.

* By using the pointer field 0DORP

In this case, the application can declare the array of MQOR structures
separately from the MQOD structure, and set ODORP to the address of the
array.

Whichever technique is chosen, one of 0DOR0O and ODORP must be used; the call
fails with reason code RC2155 if both are zero, or both are nonzero.

This is an input field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER?2.

ODRRO (10-digit signed integer)
Offset of first response record from start of MQOD.

This is the offset in bytes of the first MQRR response record from the start of
the MQOD structure. The offset can be positive or negative. 0DRRO is used only
when a distribution list is being opened. The field is ignored if ODREC is zero.

When a distribution list is being opened, an array of one or more MQRR
response records can be provided in order to identify the queues that failed to
open (RRCC field in MQRR), and the reason for each failure (RRREA field in
MQRR). The data is returned in the array of response records in the same
order as the queue names occur in the array of object records. The queue
manager sets the response records only when the outcome of the call is mixed
(that is, some queues were opened successfully while others failed, or all failed
but for differing reasons); reason code RC2136 from the call indicates this case.
If the same reason code applies to all queues, that reason is returned in the
REASON parameter of the MQOPEN or MQPUTL call, and the response records
are not set. Response records are optional, but if they are supplied there must
be ODREC of them.

The response records can be provided in the same way as the object records,
either by specifying an offset in ODRRO, or by specifying an address in 0DRRP;
see the description of 0DOR0 above for details of how to do this. However, no
more than one of 0DRRO and ODRRP can be used; the call fails with reason code
RC2156 if both are nonzero.

142 MQseries for AS/400, V5.1 APR (ILE RPG)

MQOD - Object descriptor

For the MQPUTTL call, these response records are used to return information
about errors that occur when the message is sent to the queues in the
distribution list, as well as errors that occur when the queues are opened. The
completion code and reason code from the put operation for a queue replace
those from the open operation for that queue only if the completion code from
the latter was CCOK or CCWARN.

This is an input field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER?2.

ODORP (pointer)

Address of first object record.

This is the address of the first MQOR object record. ODORP is used only when a
distribution list is being opened. The field is ignored if ODREC is zero.

Either ODORP or ODORO can be used to specify the object records, but not both;
see the description of the 0DORO field above for details. If 0DORP is not used, it
must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This
field is not present if ODVER is less than ODVER2.

ODRRP (pointer)

Address of first response record.

This is the address of the first MQRR response record. ODRRP is used only when
a distribution list is being opened. The field is ignored if ODREC is zero.

Either ODRRP or ODRRO can be used to specify the response records, but not both;
see the description of the 0ODRRO field above for details. If 0DRRP is not used, it
must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This
field is not present if ODVER is less than ODVER2.

The remaining fields are not present if ODVER is less than ODVERS3.
ODASI (40-byte bit string)

Alternate security identifier.

This is a security identifier that is passed with the 0DAU to the authorization
service to allow appropriate authorization checks to be performed. ODASI is
used only if:

* OOALTU is specified on the MQOPEN call, or
* PMALTU is specified on the MQPUT1 call,

and the 0DAU field is not entirely blank up to the first null character or the end
of the field.

The 0DASI field has the following structure:

* The first byte is a binary integer containing the length of the significant data
that follows; the length excludes the length byte itself. If no security
identifier is present, the length is zero.

* The second byte indicates the type of security identifier that is present; the
following values are possible:

Chapter 12. MQOD - Object descriptor 143

MQOD - Object descriptor

SITWNT

Windows NT security identifier.
SITNON

No security identifier.

» The third and subsequent bytes up to the length defined by the first byte
contain the security identifier itself.

* Remaining bytes in the field are set to binary zero.

The following special value may be used:

SINONE
No security identifier specified.

The value is binary zero for the length of the field.
This is an input field. The length of this field is given by LNSCID. The initial

value of this field is SINONE. This field is not present if ODVER is less than
ODVERS.

ODRQN (48-byte character string)

Resolved queue name.

This is the name of the final destination queue, as known to the local queue
manager. It is set to a nonblank value by the queue manager only for queues
that are opened for browse, input, or output (or any combination).

ODRQN is set to blanks if the object opened is any of the following:
* A distribution list

* Not opened for browse, input, or output

* Not a queue

This is an output field. The length of this field is given by LNQN. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages. This field is not present if ODVER is less than
ODVERS.

ODRMN (48-byte character string)

Resolved queue manager name.

This is the name of the final destination queue manager, as known to the local
gueue manager. It is set to a nonblank value by the queue manager only for
gueues that are opened for browse, input, or output (or any combination).

ODRMN is set to blanks if the object opened is any of the following:

* A cluster queue with OOBNDN specified (or with OOBNDQ in effect when
the DefBind queue attribute has the value BNDNOT)

* A distribution list

* Not opened for browse, input, or output

* Not a queue

This is an output field. The length of this field is given by LNQN. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages. This field is not present if ODVER is less than
ODVERS.

144 MmQSeries for AS/400, V5.1 APR (ILE RPG)

MQOD - Object descriptor

Initial values and RPG declaration

Table 27. Initial values of fields in MQOD

Field name Name of constant Value of constant

oDSID ODSIDV 'ODbb"' (See note 1)

ODVER ODVER1 1

0DoT oTQ 1

O0DON None Blanks

ODMN None Blanks

ODDN None "AMQ. '

ODAU None Blanks

ODREC None 0

0DKDC None 0

obunc None 0

obnIDc None 0

ODORO None 0

ODRRO None 0

ODORP None Null pointer or null
bytes

ODRRP None Null pointer or null
bytes

ODAST SINONE Nulls

ODRQN None Blanks

ODRMN None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

Chapter 12. MQOD - Object descriptor

145

MQOD - Object descriptor
RPG declaration

L /2 P o | s R ¢ P Y A
D+ MQOD Structure

D*

D* Structure identifier

D 0DSID 1 4

D* Structure version number

D ODVER 5 81 0

D* Object type

D 0DOT 9 121 0

D* Object name

D ODON 13 60

D* Object queue manager name

D ODMN 61 108

D* Dynamic queue name

D ODDN 109 156

D+ Alternate user identifier

D ODAU 157 168

D* Number of object records present

D ODREC 169 1721 0

D+ Number of Tocal queues opened successfully
D 0DKDC 173 1761 0

D* Number of remote queues opened successfully
D 0DUDC 177 1801 0

D* Number of queues that failed to open

D 0DIDC 181 1841 0

D* Offset of first object record from start of MQOD
D O0DORO 185 1881 0

Dx Offset of first response record from start of MQOD
D ODRRO 189 1921 0

D* Address of first object record

D ODORP 193 208+

D* Address of first response record

D ODRRP 209 224+

D* Alternate security identifier

D ODASI 225 264

D* Resolved queue name

D ODRQN 265 312

D* Resolved queue manager name

D ODRMN 313 360

146 MQseries for AS/400, V5.1 APR (ILE RPG)

Chapter 13. MQOR - Object record

The following table summarizes the fields in the structure.

Table 28. Fields in MQOR

Field Description Page
ORON Object name fiad
ORMN Object queue manager name a2

Overview

The MQOR structure is used to specify the queue name and queue-manager hame
of a single destination queue. By providing an array of these structures on the
MQOPEN call, it is possible to open a list of queues; this list is called a distribution
list. Each message put using the queue handle returned by that MQOPEN call is
placed on each of the queues in the list, provided that the queue was opened
successfully.

The character data in the MQOR structure must be in the queue-manager’s
character set. MQOR is an input structure for the MQOPEN and MQPUT1 calls.

Fields

ORON (48-byte character string)

Object name.

This is the same as the 0DON field in the MQOD structure (see MQOD for
details), except that:

* It must be the name of a queue.

* It must not be the name of a model queue.

This is always an input field. The initial value of this field is 48 blank
characters.

ORMN (48-byte character string)

Object queue manager name.

This is the same as the 0DMN field in the MQOD structure (see MQOD for
details).

This is always an input field. The initial value of this field is 48 blank
characters.

© Copyright IBM Corp. 1994, 2000 147

RPG declaration

Initial values and RPG declaration

Table 29. Initial values of fields in MQOR

Field name Name of constant Value of constant
ORON None Blanks
ORMN None Blanks
RPG declaration
D O UL UG IUPUPRE AR SRS SO SUPUPUE ST o DUPIPE S A

D* MQOR Structure

D*

D* Object name

D ORON

1 48

D* Object queue manager name

D ORMN

148 MQseries for AS/400, V5.1 APR (ILE RPG)

49 96

Chapter 14. MQPMO - Put message options

The following table summarizes the fields in the structure.

Table 30. Fields in MQPMO

Field Description Page

PMSID Structure identifier fi=d

PMVER Structure version number fi=d

PMOPT Options that control the action of MQPUT and fi=d
MQPUT1

PMCT Object handle of input queue fisd

PMKDC Number of messages sent successfully to local fisd
queues

PMUDC Number of messages sent successfully to remote fi=d
queues

PMIDC Number of messages that could not be sent fisd

PMRQN Resolved name of destination queue fi=d

PMRMN Resolved name of destination queue manager f=d

Note: The remaining fields are not present if PMVER is less than PMVER?2.

PMREC Number of put message records or response fied
records present

PMPRF Flags indicating which MQPMR fields are present T

PMPRO Offset of first put-message record from start of T
MQPMO

PMRRO Offset of first response record from start of fied
MQPMO

PMPRP Address of first put message record fied

PMRRP Address of first response record fisd

Overview

The current version of MQPMO is given by PMVERC. Fields that exist only in the
more-recent versions of the structure are identified as such in the descriptions that
follow. The declaration of MQPMO provided in the COPY file contains the
additional fields, but the initial value provided for the PMVER field is PMVERL. To
use the additional fields, the application must set the version number to PMVERC.
Applications which are intended to be portable between several environments
should use a more-recent version MQPMO only if all of those environments
support that version.

The MQPMO structure is an input/output parameter for the MQPUT and
MQPUT1 calls.

© Copyright IBM Corp. 1994, 2000 149

MQPMO - Put-message options
Fields

PMSID (4-byte character string)
Structure identifier.

The value must be:

PMSIDV
Identifier for put-message options structure.

This is always an input field. The initial value of this field is PMSIDV.
PMVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

PMVER1
Version-1 put-message options structure.

PMVER2
Version-2 put-message options structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

PMVERC
Current version of put-message options structure.

This is always an input field. The initial value of this field is PMVER1.

PMOPT (10-digit signed integer)
Options that control the action of MQPUT and MQPUTL.

Any or none of the following can be specified. If more than one is required the
values can be added together (do not add the same constant more than once).
Combinations that are not valid are noted; any other combinations are valid.

PMSYP
Put message with syncpoint control.

The request is to operate within the normal unit-of-work protocols. The
message is not visible outside the unit of work until the unit of work is
committed. If the unit of work is backed out, the message is deleted.

If neither this option nor PMNSYP is specified, the put request is not
within a unit of work.

PMSYP must not be specified with PMNSYP.

PMNSYP
Put message without syncpoint control.

The request is to operate outside the normal unit-of-work protocols.
The message is available immediately, and it cannot be deleted by
backing out a unit of work.

If neither this option nor PMSYP is specified, the put request is not
within a unit of work.

PMNSYP must not be specified with PMSYP.

150 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQPMO - Put-message options

PMNMID

Generate a new message identifier.

This option causes the queue manager to replace the contents of the
MDMID field in MQMD with a new message identifier. This message
identifier is sent with the message, and returned to the application on
output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a
distribution list; see the description of the PRMID field in the MQPMR
structure for details.

Using this option relieves the application of the need to reset the MDMID
field to MINONE prior to each MQPUT or MQPUT1 call.

PMNCID

Generate a new correlation identifier.

This option causes the queue manager to replace the contents of the
MDCID field in MQMD with a new correlation identifier. This correlation
identifier is sent with the message, and returned to the application on
output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a
distribution list; see the description of the PRCID field in the MQPMR
structure for details.

PMNCID is useful in situations where the application requires a
unique correlation identifier.

Group and segment option: The option described below relates to messages in
groups and segments of logical messages. The following definitions may be of

help in

understanding this option:

Physical message

Logical

This is the smallest unit of information that can be placed on or
removed from a queue; it often corresponds to the information
specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD).
Generally, physical messages are distinguished by differing values for
the message identifier (MDMID field in MQMD), although this is not
enforced by the queue manager.

message

This is a single unit of application information. In the absence of
system constraints, a logical message would be the same as a physical
message. But where logical messages are extremely large, system
constraints may make it advisable or necessary to split a logical
message into two or more physical messages, called segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier (MDGID
field in MQMD), and the same message sequence number (MDSEQ field
in MQMD). The segments are distinguished by differing values for the
segment offset (MDOFF field in MQMD), which gives the offset of the
data in the physical message from the start of the data in the logical
message. Because each segment is a physical message, the segments in
a logical message usually have differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also has a

Chapter 14. MQPMO - Put message options 151

MQPMO - Put-message options

nonnull group identifier, although in this case there is only one
physical message with that group identifier if the logical message does
not belong to a message group. Logical messages for which
segmentation has been inhibited by the sending application have a null
group identifier (GINONE), unless the logical message belongs to a
message group.

Message group
This is a set of one or more logical messages that have the same
nonnull group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number,
which is an integer in the range 1 through n, where n is the number of
logical messages in the group. If one or more of the logical messages is
segmented, there will be more than n physical messages in the group.

PMLOGO
Messages in groups and segments of logical messages will be put in
logical order.

This option tells the queue manager how the application will put
messages in groups and segments of logical messages. It can be
specified only on the MQPUT call; it is not valid on the MQPUT1 call.

If PMLOGO is specified, it indicates that the application will use
successive MQPUT calls to:

* Put the segments in each logical message in the order of increasing
segment offset, starting from 0, with no gaps.

» Put all of the segments in one logical message before putting the
segments in the next logical message.

» Put the logical messages in each message group in the order of
increasing message sequence number, starting from 1, with no gaps.

« Put all of the logical messages in one message group before putting
logical messages in the next message group.

The above order is called “logical order”.

Because the application has told the queue manager how it will put
messages in groups and segments of logical messages, the application
does not have to maintain and update the group and segment
information on each MQPUT call, as the queue manager does this.
Specifically, it means that the application does not need to set the
MDGID, MDSEQ, and MDOFF fields in MQMD, as the queue manager sets
these to the appropriate values. The application need set only the
MDMFL field in MQMD, to indicate when messages belong to groups or
are segments of logical messages, and to indicate the last message in a
group or last segment of a logical message.

Once a message group or logical message has been started, subsequent
MQPUT calls must specify the appropriate MF* flags in MDMFL in
MQMD. If the application tries to put a message not in a group when
there is an unterminated message group, or put a message which is not
a segment when there is an unterminated logical message, the call fails
with reason code RC2241 or RC2242, as appropriate. However, the
gqueue manager retains the information about the current message
group and/or current logical message, and the application can
terminate them by sending a message (possibly with no application

152 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPMO - Put-message options

message data) specifying MFLMIG and/or MFLSEG as appropriate,
before reissuing the MQPUT call to put the message that is not in the
group or not a segment.

able 31 shows the combinations of options and flags that are valid,
and the values of the MDGID, MDSEQ, and MDOFF fields that the queue
manager uses in each case. Combinations of options and flags that are
not shown in the table are not valid. The columns in the table have the
following meanings:

LOG ORD
A “»” means that the row applies only when the PMLOGO
option is specified.

MIG A “»” means that the row applies only when the MFMIG or
MFLMIG option is specified.

SEG A “»” means that the row applies only when the MFSEG or
MFLSEG option is specified.

A “(»)” means that the row applies whether or not the
MFSEG or MFLSEG option is specified.

SEG OK
A “»” means that the row applies only when the MFSEGA
option is specified.

A “(»)” means that the row applies whether or not the
MFSEGA option is specified.

Cur grp
A “»” means that the row applies only when a current
message group exists prior to the call.

A “(»*)” means that the row applies whether or not a current
message group exists prior to the call.

Cur log msg
A “»”” means that the row applies only when a current logical
message exists prior to the call.

A “(»)” means that the row applies whether or not a current
logical message exists prior to the call.

Other columns
These show the values that the queue manager uses.
“Previous” denotes the value used for the field in the previous
message for the queue handle.

Table 31. MQPUT options relating to messages in groups and segments of logical messages

Options you specify Group and log-msg Values the queue manager uses
status prior to call

LOG MIG SEG SEG OK | Cur grp Cur log MDGID MDSEQ MDOFF
ORD msg

I GINONE 1 0

I I New group id 1 0

I I) New group id 1 0

I I () I Previous group id 1 Previous offset +

previous segment length
I I) () New group id 1 0
I I) () I Previous group id Previous sequence 0
number + 1

Chapter 14. MQPMO - Put message options 153

MQPMO - Put-message options

Table 31. MQPUT options relating to messages in groups and segments of logical messages (continued)

Options you specify Group and log-msg Values the queue manager uses
status prior to call
I 7 I) I I Previous group id Previous sequence Previous offset +
number previous segment length
)) GINONE 1 0
e (=)) New group id if 1 0
GINONE, else value in
field
I))) New group id if 1 Value in field
GINONE, else value in
field
7))) New group id if Value in field 0
GINONE, else value in
field
I I))) New group id if Value in field Value in field
GINONE, else value in
field
Notes:

* PMLOGO is not valid on the MQPUT1 call.

» For the MDMID field, the queue manager generates a new message identifier if PMNMID or MINONE is specified, and uses the value in the field

otherwise.

» For the MDCID field, the queue manager generates a new correlation identifier if PMNCID is specified, and uses the value in the field otherwise.

When PMLOGO is specified, the queue manager requires that all
messages in a group and segments in a logical message be put with
the same value in the MDPER field in MQMD, that is, all must be
persistent, or all must be nonpersistent. If this condition is not
satisfied, the MQPUT call fails with reason code RC2185.

The PMLOGO option affects units of work as follows:

+ If the first physical message in a group or logical message is put
within a unit of work, all of the other physical messages in the
group or logical message must be put within a unit of work, if the
same queue handle is used. However, they need not be put within
the same unit of work. This allows a message group or logical
message consisting of many physical messages to be split across two
or more consecutive units of work for the queue handle.

 If the first physical message in a group or logical message is not put
within a unit of work, none of the other physical messages in the
group or logical message can be put within a unit of work, if the
same queue handle is used.

If these conditions are not satisfied, the MQPUT call fails with reason
code RC2245.

When PMLOGO is specified, the MQMD supplied on the MQPUT call
must not be less than MDVER?2. If this condition is not satisfied, the
call fails with reason code RC2257.

If PMLOGO is not specified, messages in groups and segments of
logical messages can be put in any order, and it is not necessary to put
complete message groups or complete logical messages. It is the
application’s responsibility to ensure that the MDGID, MDSEQ, MDOFF, and
MDMFL fields have appropriate values.

This is the technique that can be used to restart a message group or
logical message in the middle, after a system failure has occurred.

154 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPMO - Put-message options

When the system restarts, the application can set the MDGID, MDSEQ,
MDOFF, MDMFL, and MDPER fields to the appropriate values, and then issue
the MQPUT call with PMSYP or PMINSYP set as desired, but without
specifying PMLOGO. If this call is successful, the queue manager
retains the group and segment information, and subsequent MQPUT
calls using that queue handle can specify PMLOGO as normal.

The group and segment information that the queue manager retains for
the MQPUT call is separate from the group and segment information
that it retains for the MQGET call.

For any given queue handle, the application is free to mix MQPUT
calls that specify PMLOGO with MQPUT calls that do not, but the
following points should be noted:

» Each successful MQPUT call that does not specify PMLOGO causes
the queue manager to set the group and segment information for the
gueue handle to the values specified by the application; this replaces
the existing group and segment information retained by the queue
manager for the queue handle.

« If PMLOGO is not specified, the call does not fail if there is a current
message group or logical message, but the message or segment put
is not the next one in the group or logical message. The call may
| | wit leti |
shows the various cases that can arise. In these cases, if the
completion code is not CCOK, the reason code is one of the
following (as appropriate):

RC2241
RC2242
RC2185
RC2245

Note: The queue manager does not check the group and segment
information for the MQPUTL call.

Table 32. Outcome when MQPUT or MQCLOSE call not consistent with group and segment information

Current call Previous call
MQPUT with PMLOGO MQPUT without PMLOGO
MQPUT with PMLOGO CCFAIL CCFAIL
MQPUT without PMLOGO CCWARN CCOK
MQCLOSE with an unterminated group CCWARN CCOK
or logical message

Applications that simply want to put messages and segments in logical
order are recommended to specify PMLOGQO, as this is the simplest
option to use. This option relieves the application of the need to
manage the group and segment information, because the queue
manager manages that information. However, specialized applications
may need more control than provided by the PMLOGO option, and
this can be achieved by not specifying that option. If this is done, the
application must ensure that the MDGID, MDSEQ, MDOFF, and MDMFL fields
in MQMD are set correctly, prior to each MQPUT or MQPUTL call.

Chapter 14. MQPMO - Put message options 155

MQPMO - Put-message options

For example, an application that wants to forward physical messages
that it receives, without regard for whether those messages are in
groups or segments of logical messages, should not specify PMLOGO.
There are two reasons for this:

+ If the messages are retrieved and put in order, specifying PMLOGO
will cause a new group identifier to be assigned to the messages,
and this may make it difficult or impossible for the originator of the
messages to correlate any reply or report messages that result from
the message group.

* In a complex network with multiple paths between sending and
receiving queue managers, the physical messages may arrive out of
order. By specifying neither PMLOGO, nor the corresponding
GMLOGO on the MQGET call, the forwarding application can
retrieve and forward each physical message as soon as it arrives,
without having to wait for the next one in logical order to arrive.

Applications that generate report messages for messages in groups or
segments of logical messages should also not specify PMLOGO when
putting the report message.

PMLOGO can be specified with any of the other PM* options.

PMNOC
No context is to be associated with the message.

Both identity and origin context are set to indicate no context. This
means that the context fields in MQMD are set to:

» Blanks for character fields

* Nulls for byte fields

» Zeros for numeric fields

PMDEFC
Use default context.

The message is to have default context information associated with it,
for both identity and origin. The queue manager sets the context fields
in the message descriptor as follows:

Field in MQMD

Value used

MDUID Determined from the environment if possible; set to blanks
otherwise.

MDACC Determined from the environment if possible; set to ACNONE
otherwise.

MDAID Set to blanks.

MDPAT Determined from the environment.

MDPAN Determined from the environment if possible; set to blanks
otherwise.

MDPD Set to date when message is put.

MDPT Set to time when message is put.

MDAOD Set to blanks.

For more information on message context, see the MQSeries Application

This is the default action if no context options are specified.

156 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPMO - Put-message options

PMPASI
Pass identity context from an input queue handle.

The message is to have context information associated with it. Identity
context is taken from the queue handle specified in the PMCT field.
Origin context information is generated by the queue manager in the
same way that it is for PMDEFC (see above for values). For more

information on message context, see the MQSeries Application

For the MQPUT call, the queue must have been opened with the
OOPASI option (or an option that implies it). For the MQPUT1 call, the
same authorization check is carried out as for the MQOPEN call with
the OOPASI option.

PMPASA
Pass all context from an input queue handle.

The message is to have context information associated with it. Both
identity and origin context are taken from the queue handle specified
in the PMCT field. For more information on message context, see the

IMQSeries Application Programming Guid.

For the MQPUT call, the queue must have been opened with the
OOPASA option (or an option that implies it). For the MQPUTL call,
the same authorization check is carried out as for the MQOPEN call
with the OOPASA option.

PMSETI
Set identity context from the application.

The message is to have context information associated with it. The
application specifies the identity context in the MQMD structure.
Origin context information is generated by the queue manager in the
same way that it is for PMDEFC (see above for values). For more

information on message context, see the MQSeries Application|

For the MQPUT call, the queue must have been opened with the
OOSETI option (or an option that implies it). For the MQPUT1 call, the
same authorization check is carried out as for the MQOPEN call with
the OOSETI option.

PMSETA
Set all context from the application.

The message is to have context information associated with it. The
application specifies the identity and origin context in the MOQMD
structure. For more information on message context, see the

For the MQPUT call, the queue must have been opened with the
OOSETA option. For the MQPUT1 call, the same authorization check is
carried out as for the MQOPEN call with the OOSETA option.

Only one of the PM* context options can be specified. If none of these options
is specified, PMDEFC is assumed.

PMALTU
Validate with specified user identifier.

Chapter 14. MQPMO - Put message options 157

MQPMO - Put-message options

This indicates that the 0DAU field in the 0BJDSC parameter of the
MQPUT1 call contains a user identifier that is to be used to validate
authority to put messages on the queue. The call can succeed only if
this ODAU is authorized to open the queue with the specified options,
regardless of whether the user identifier under which the application is
running is authorized to do so. (This does not apply to the context
options specified, however, which are always checked against the user
identifier under which the application is running.)

This option is valid only with the MQPUT1 call.

PMFIQ
Fail if queue manager is quiescing.

This option forces the MQPUT or MQPUTL call to fail if the queue
manager is in the quiescing state.

The call returns completion code CCFAIL with reason code RC2161.

PMNONE
No options specified.

This value can be used to indicate that no other options have been
specified; all options assume their default values. PMNONE is defined
to aid program documentation; it is not intended that this option be
used with any other, but as its value is zero, such use cannot be
detected.

This is an input field. The initial value of the PMOPT field is PMNONE.

PMTO (10-digit signed integer)
Reserved.

This is a reserved field; its value is not significant. The initial value of this field
is -1.

PMCT (10-digit signed integer)
Object handle of input queue.

If PMPASI or PMPASA is specified, this field must contain the input queue
handle from which context information to be associated with the message
being put is taken.

If neither PMPASI nor PMPASA is specified, this field is ignored.

This is an input field. The initial value of this field is 0.

PMKDC (10-digit signed integer)
Number of messages sent successfully to local queues.

This is the number of messages that the current MQPUT or MQPUT1 call has
sent successfully to queues in the distribution list that are local queues. The
count does not include messages sent to queues that resolve to remote queues
(even though a local transmission queue is used initially to store the message).
This field is also set when putting a message to a single queue which is not in
a distribution list.

This is an output field. The initial value of this field is 0. This field is not set if
PMVER is less than PMVER2.

158 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPMO - Put-message options

PMUDC (10-digit signed integer)
Number of messages sent successfully to remote queues.

This is the number of messages that the current MQPUT or MQPUT1 call has
sent successfully to queues in the distribution list that resolve to remote
queues. Messages that the queue manager retains temporarily in
distribution-list form count as the number of individual destinations that those
distribution lists contain. This field is also set when putting a message to a
single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not set if
PMVER is less than PMVER2.

PMIDC (10-digit signed integer)
Number of messages that could not be sent.

This is the number of messages that could not be sent to queues in the
distribution list. The count includes queues that failed to open, as well as
queues that were opened successfully but for which the put operation failed.
This field is also set when putting a message to a single queue which is not in
a distribution list.

Note: This field is set only if the CMPCOD parameter on the MQPUT or MQPUT1
call is CCOK or CCWARN; it is not set if the CMPCOD parameter is
CCFAIL.

This is an output field. The initial value of this field is 0. This field is not set if
PMVER is less than PMVER2.

PMRQN (48-byte character string)
Resolved name of destination queue.

This is an output field that is set by the queue manager to the name of the
queue (after alias resolution) on which the message will be placed. This can be
either the name of a local queue, or the name of a remote queue. If the
destination queue opened was a model queue, the name of the dynamic local
queue that was created is returned. In all cases, the name returned is the name
of a queue that is defined on the queue manager identified by PMRMN.

If the MQPUT or MQPUT1 call is used to put the message to a distribution
list, the value returned in this field is undefined.

This is an output field. The length of this field is given by LNQN. The initial
value of this field is 48 blank characters.

PMRMN (48-byte character string)
Resolved name of destination queue manager.

This is the name of the queue manager (after alias resolution) that owns the
queue specified by PMRQN.

If the MQPUT or MQPUT1 call is used to put the message to a distribution
list, the value returned in this field is undefined.

This is an output field. The length of this field is given by LNQMN. The initial
value of this field is 48 blank characters.

Chapter 14. MQPMO - Put message options 159

MQPMO - Put-message options
The remaining fields are not present if PMVER is less than PMVER?2.

PMREC (10-digit signed integer)
Number of put message records or response records present.

This is the number of MQPMR put message records or MQRR response
records that have been provided by the application. This number can be
greater than zero only if the message is being put to a distribution list. Put
message records and response records are optional — the application need not
provide any records, or it can choose to provide records of only one type.
However, if the application provides records of both types, it must provide
PMREC records of each type.

The value of PMREC need not be the same as the number of destinations in the
distribution list. If too many records are provided, the excess are not used; if
too few records are provided, default values are used for the message
properties for those destinations that do not have put message records (see
PMPRO below).

If PMREC is less than zero, or is greater than zero but the message is not being
put to a distribution list, the call fails with reason code RC2154.

This is an input field. The initial value of this field is 0. This field is not
present if PMVER is less than PMVER?2.

PMPRF (10-digit signed integer)
Flags indicating which MQPMR fields are present.

This field contains flags that must be set to indicate which MQPMR fields are
present in the put message records provided by the application. PMPRF is used
only when the message is being put to a distribution list. The field is ignored if
PMREC is zero, or both PMPRO and PMPRP are zero.

For fields that are present, the queue manager uses for each destination the
values from the fields in the corresponding put message record. For fields that
are absent, the queue manager uses the values from the MQMD structure.

One or more of the following flags can be specified to indicate which fields are
present in the put message records:

PFMID
Message-identifier field is present.

PFCID
Correlation-identifier field is present.

PFGID
Group-identifier field is present.

PFFB Feedback field is present.

PFACC
Accounting-token field is present.

If this flag is specified, either PMSETI or PMSETA must be specified in
the PMOPT field; if this condition is not satisfied, the call fails with
reason code RC2158.

If no MQPMR fields are present, the following can be specified:

160 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPMO - Put-message options

PFNONE
No put-message record fields are present.

If this value is specified, either PMREC must be zero, or both PMPRO and
PMPRP must be zero.

PFNONE is defined to aid program documentation. It is not intended
that this constant be used with any other, but as its value is zero, such
use cannot be detected.

If PMPRF contains flags which are not valid, or put message records are
provided but PMPRF has the value PFNONE, the call fails with reason code
RC2158.

This is an input field. The initial value of this field is PFNONE. This field is
not present if PMVER is less than PMVER?2.

PMPRO (10-digit signed integer)
Offset of first put message record from start of MQPMO.

This is the offset in bytes of the first MQPMR put message record from the
start of the MQPMO structure. The offset can be positive or negative. PMPRO is
used only when the message is being put to a distribution list. The field is
ignored if PMREC is zero.

When the message is being put to a distribution list, an array of one or more
MQPMR put message records can be provided in order to specify certain
properties of the message for each destination individually; these properties
are:

* message identifier

» correlation identifier

» group identifier

» feedback value

* accounting token

It is not necessary to specify all of these properties, but whatever subset is
chosen, the fields must be specified in the correct order. See the description of
the MQPMR structure for further details.

Usually, there should be as many put message records as there are object
records specified by MQOD when the distribution list is opened; each put
message record supplies the message properties for the queue identified by the
corresponding object record. Queues in the distribution list which fail to open
must still have put message records allocated for them at the appropriate
positions in the array, although the message properties are ignored in this case.

It is possible for the number of put message records to differ from the number
of object records. If there are fewer put message records than object records,
the message properties for the destinations which do not have put message
records are taken from the corresponding fields in the message descriptor
MQMD. If there are more put message records than object records, the excess
are not used (although it must still be possible to access them). Put message
records are optional, but if they are supplied there must be PMREC of them.

The put message records can be provided in a similar way to the object records
in MQOD, either by specifying an offset in PMPRO, or by specifying an address

Chapter 14. MQPMO - Put message options 161

MQPMO - Put-message options
|n PMPRP; for details of how to do thls see the 0ODORO field described in

No more than one of PMPRO and PMPRP can be used; the call fails with reason
code RC2159 if both are nonzero.

This is an input field. The initial value of this field is 0. This field is not
present if PMVER is less than PMVER?2.

PMRRO (10-digit signed integer)
Offset of first response record from start of MQPMO.

This is the offset in bytes of the first MQRR response record from the start of
the MQPMO structure. The offset can be positive or negative. PMRRO is used
only when the message is being put to a distribution list. The field is ignored if
PMREC is zero.

When the message is being put to a distribution list, an array of one or more
MQRR response records can be provided in order to identify the queues to
which the message was not sent successfully (RRCC field in MQRR), and the
reason for each failure (RRREA field in MQRR). The message may not have been
sent either because the queue failed to open, or because the put operation
failed. The queue manager sets the response records only when the outcome of
the call is mixed (that is, some messages were sent successfully while others
failed, or all failed but for differing reasons); reason code RC2136 from the call
indicates this case. If the same reason code applies to all queues, that reason is
returned in the REASON parameter of the MQPUT or MQPUTL1 call, and the
response records are not set.

Usually, there should be as many response records as there are object records
specified by MQOD when the distribution list is opened; when necessary, each
response record is set to the completion code and reason code for the put to
the queue identified by the corresponding object record. Queues in the
distribution list which fail to open must still have response records allocated
for them at the appropriate positions in the array, although they are set to the
completion code and reason code resulting from the open operation, rather
than the put operation.

It is possible for the number of response records to differ from the number of
object records. If there are fewer response records than object records, it may
not be possible for the application to identify all of the destinations for which
the put operation failed, or the reasons for the failures. If there are more
response records than object records, the excess are not used (although it must
still be possible to access them). Response records are optional, but if they are
supplied there must be PMREC of them.

The response records can be provided in a similar way to the object records in
MQOD, either by specifying an offset in PMRRO, or by specifying an address in
PMRRP for details of how to do thls see the 0DORO field described in

" . However, no more than
one of PMRRO and PMRRP can be used; the call fails W|th reason code RC2156 if
both are nonzero.

For the MQPUTT1 call, this field must be zero. This is because the response
information (if requested) is returned in the response records specified by the
object descriptor MQOD.

162 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPMO - Put-message options

This is an input field. The initial value of this field is 0. This field is not
present if PMVER is less than PMVER?2.

PMPRP (pointer)

Address of first put message record.

This is the address of the first MQPMR put message record. PMPRP is used only
when the message is being put to a distribution list. The field is ignored if

PMREC is zero.

Either PMPRP or PMPRO can be used to specify the put message records, but not
both; see the description of the PMPRO field above for details. If PMPRP is not
used, it must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This
field is not present if PMVER is less than PMVER2.

PMRRP (pointer)

Address of first response record.

This is the address of the first MQRR response record. PMRRP is used only when
the message is being put to a distribution list. The field is ignored if PMREC is

Zero.

Either PMRRP or PMRRO can be used to specify the response records, but not both;
see the description of the PMRRO field above for details. If PMRRP is not used, it
must be set to the null pointer or null bytes.

For the MQPUTL call, this field must be the null pointer or null bytes. This is
because the response information (if requested) is returned in the response
records specified by the object descriptor MQOD.

This is an input field. The initial value of this field is the null pointer. This
field is not present if PMVER is less than PMVER2.

Initial values and RPG declaration

Table 33. Initial values of fields in MQPMO

Field name Name of constant Value of constant
PMSID PMSIDV '"PMOb"' (See note 1)
PMVER PMVER1 1

PMOPT PMNONE 0

PMTO None -1

PMCT None 0

PMKDC None 0

PMUDC None 0

PMIDC None 0

PMRQN None Blanks

PMRMN None Blanks

PMREC None 0

PMPRF PFNONE 0

PMPRO None 0

Chapter 14. MQPMO

- Put message options 163

RPG declaration

Table 33. Initial values of fields in MQPMO (continued)

Field name Name of constant Value of constant

PMRRO None 0

PMPRP None Null pointer or null
bytes

PMRRP None Null pointer or null
bytes

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration

)L R /S RIC R SOy ST U FOE S TP SR A
D* MQPMO Structure

D*

D* Structure identifier

D PMSID 1 4

D* Structure version number

D PMVER 5 81 0

D* Options that control the action of MQPUT and MQPUT1

D PMOPT 9 121 0

D* Reserved

D PMTO 13 161 0

D* Object handle of input queue

D PMCT 17 201 0

D* Number of messages sent successfully to local queues
D PMKDC 21 241 0

D* Number of messages sent successfully to remote queues
D PMUDC 25 281 0

D* Number of messages that could not be sent

D PMIDC 29 321 0

D* Resolved name of destination queue

D PMRQN 33 80

D* Resolved name of destination queue manager

D PMRMN 81 128

D* Number of put message records or response records present
D PMREC 129 1321 0

D* Flags indicating which MQPMR fields are present

D PMPRF 133 1361 0

D+ Offset of first put message record from start of MQPMO
D PMPRO 137 1401 0

Dx Offset of first response record from start of MQPMO

D PMRRO 141 1441 0

D* Address of first put message record

D PMPRP 145 160*

D* Address of first response record

D PMRRP 161 176%*

164 MQseries for AS/400, V5.1 APR (ILE RPG)

Chapter 15. MQPMR - Put-message record

The following table summarizes the fields in the structure.

Table 34. Fields in MOPMR

Field

Description

PRMID

Message identifier

PRCID

Correlation identifier

PRGID

Group identifier

PRFB

Feedback or reason code

PRACC

Accounting token

SEEEEE

Overview

The MQPMR structure is used to specify various message properties for a single
destination. By providing an array of these structures on the MQPUT or MQPUT1
call, it is possible to specify different values for each destination queue in a
distribution list. Some of the fields are input only, others are input/output.

Note: This structure is unusual in that it does not have a fixed layout. The fields

in this structure are optional, and the presence or absence of each field is
indicated by the flags in the PMPRF field in MQPMO. Fields that are present
must occur in the order shown below. Fields that are absent occupy no space

in the record.

Because MQPMR does not have a fixed layout, no declaration is provided
for it in a COPY file. The application programmer should create a
declaration containing the fields that are required by the application, and set

the flags in PMPRF to indicate the fields that are present.

MQPMR is an input/output structure for the MQPUT and MQPUT1 calls.

Fields

PRMID (24-byte bit string)
Message identifier.

This is the message identifier to be used for the message sent to the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed
in the same way as the MDMID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR
records than destinations, the value in MQMD is used for those destinations
that do not have an MQPMR record containing a PRMID field. If that value is
MINONE, a new message identifier is generated for each of those destinations
(that is, no two of those destinations have the same message identifier).

© Copyright IBM Corp. 1994, 2000

165

MQPMR - Put-message record

If PMNMID is specified, new message identifiers are generated for all of the
destinations in the distribution list, regardless of whether they have MQPMR
records. This is different from the way that PMNCID is processed (see below).

This is an input/output field.

PRCID (24-byte bit string)
Correlation identifier.

This is the correlation identifier to be used for the message sent to the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed
in the same way as the MDCID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR
records than destinations, the value in MQMD is used for those destinations
that do not have an MQPMR record containing a PRCID field.

If PMNCID is specified, a single new correlation identifier is generated and
used for all of the destinations in the distribution list, regardless of whether
they have MQPMR records. This is different from the way that PMNMID is
processed (see above).

This is an input/output field.

PRGID (24-byte bit string)
Group identifier.

This is the group identifier to be used for the message sent to the queue whose
name was specified by the corresponding element in the array of MQOR
structures provided on the MQOPEN or MQPUT1 call. It is processed in the
same way as the MDGID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR
records than destinations, the value in MQMD is used for those destinations
that do not have an MQPMR record containing a PRGID field. The value is

processed as documented in [[able 31 on page 153, but with the following
differences:

* In those cases where a new group identifier would be used, the queue
manager generates a different group identifier for each destination (that is,
no two destinations have the same group identifier).

¢ In those cases where the value in the field would be used, the call fails with
reason code RC2258.

This is an input/output field.

PRFB (10-digit signed integer)
Feedback or reason code.

This is the feedback code to be used for the message sent to the queue whose
name was specified by the corresponding element in the array of MQOR
structures provided on the MQOPEN or MQPUT1 call. It is processed in the
same way as the MDFB field in MQMD for a put to a single queue. If this field
is not present, the value in MQMD is used.

This is an input field.

166 MQSeries for AS/400, V5.1 APR (ILE RPG)

PRACC (32-byte bit string)
Accounting token.

This is the accounting token to be used for the message sent to the queue

MQPMR - Put-message record

whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUTL1 call. It is processed

in the same way as the MDACC field in MOMD for a put to a singl

the description of MDACC in EChapter 10_MQMOD - Message descriptar” on

for information about the content of this field.

If this field is not present, the value in MQMD is used.

This is an input field.

e gqueue. See

Initial values and RPG declaration

There are no initial values defined for this structure, as no structure declaration is
provided. The sample declaration below shows how the structure should be
declared by the application programmer if all of the fields are required.

RPG declaration
B S . O R S S - WUPIPIPIE SRR o BRI S A

D*
D*
D*
D
D*
D
D*
D
D*
D
D*
D

MQPMR Structure

Message identifier

PRMID 1
Correlation identifier
PRCID 25
Group identifier

PRGID 49
Feedback or reason code
PRFB 73
Accounting token

PRACC 77

24

48

72

761 0

108

Chapter 15. MQPMR - Put-message record

167

RPG declaration

168 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 16. MQRMH - Message reference header

The following table summarizes the fields in the structure.

Table 35. Fields in MQRMH

Field Description Page
RMSID Structure identifier fizd
RMVER Structure version number fizd
RMLEN Total length of MQRMH, including strings at end |71
of fixed fields, but not the bulk data
RMENC Numeric encoding of bulk data iz
RMCSI Character set identifier of bulk data fizd
RMFMT Format name of bulk data izd
RMFLG Reference message flags iz
RMOT Object type izd
RMOII Object instance identifier izd
RMSEL Length of source environment data izd
RMSEO Offset of source environment data izd
RMSNL Length of source object name i
RMSNO Offset of source object name izd
RMDEL Length of destination environment data i
RMDEO Offset of destination environment data izd
RMDNL Length of destination object name izd
RMDNO Offset of destination object name izd
RMDL Length of bulk data izd
RMDO Low offset of bulk data fiz4
RMDO2 High offset of bulk data izd

Overview

The MQRMH structure defines the format of a reference message header. An
application can put a message in this format, omitting the bulk data. When the
message is read from the transmission queue by a message channel agent (MCA), a
user-supplied message exit is invoked to process the reference message header. The
exit can append to the reference message the bulk data identified by the MQRMH
structure, before the MCA sends the message through the channel to the next
gueue manager.

At the receiving end, a message exit that waits for reference messages should exist.
When a reference message is received, the exit should create the object from the
bulk data that follows the MQRMH in the message, and then pass on the reference
message without the bulk data. The reference message can later be retrieved by an
application reading the reference message (without the bulk data) from a queue.

© Copyright IBM Corp. 1994, 2000 169

MQRMH - Message reference header

Normally, the MQRMH structure (optionally with the bulk data) is all that is in the
message. However, if the message is on a transmission queue, one or more
additional headers will precede the MQRMH structure.

A reference message can also be sent to a distribution list. In this case, the MQDH
structure and its related records precede the MQRMH structure when the message
is on a transmission queue.

Note: A reference message should not be sent as a segmented message, because
the message exit cannot process it correctly.

For data conversion purposes, conversion of the MQRMH structure includes
conversion of the source environment data, source object name, destination
environment data, and destination object name. Any other bytes within RMLEN are
either discarded or have undefined values after data conversion. The bulk data will
be converted provided that all of the following are true:

* The bulk data is present in the message when the data conversion is performed.
e The RMFMT field in MQRMH has a value other than FMNONE.
* A user-written data-conversion exit exists with the format name specified.

Be aware, however, that usually the bulk data is not present in the message when
the message is on a queue, and that as a result the bulk data will not be converted
by the GMCONV option.

The format name of an MQRMH structure is FMRMH. The fields in the MQRMH
structure, and the strings addressed by the offset fields, are in the character set and
encoding given by the MDCSI and MDENC fields in the header structure that precedes
the MQRMH, or by those fields in the MQMD structure if the MQRMH is at the
start of the application message data.

Fields

RMSID (4-byte character string)
Structure identifier.
The value must be:
RMSIDV
Identifier for reference message header structure.
The initial value of this field is RMSIDV.
RMVER (10-digit signed integer)
Structure version number.
The value must be:
RMVER1
Version-1 reference message header structure.
The following constant specifies the version number of the current version:
RMVERC

Current version of reference message header structure.

The initial value of this field is RMVERL.

170 MQseries for AS/400, V5.1 APR (ILE RPG)

MQRMH - Message reference header

RMLEN (10-digit signed integer)
Total length of MQRMH, including strings at end of fixed fields, but not the
bulk data.

The initial value of this field is zero.

RMENC (10-digit signed integer)
Numeric encoding of bulk data.

This identifies the representation used for numeric values in the bulk data; this
applies to binary integer data, packed-decimal integer data, and floating-point
data.

The initial value of this field is ENNAT.

RMCSI (10-digit signed integer)
Character set identifier of bulk data.

This specifies the coded character set identifier of character data in the bulk
data.

Note that character data in the MQ data structures must be in the character set
used by the queue manager. This is defined by the queue manager’s

CodedCharSetId attribute; see 'Chapter 43 Attrihutes for the queue manager’]

for details of this attribute.

The initial value of this field is 0.

RMFMT (8-byte character string)
Format name of bulk data.

This is a name that the sender of the message may use to indicate to the
receiver the nature of the bulk data. Any characters that are in the queue
manager’s character set may be specified for the name, but it is recommended
that the name be restricted to the following:

* Uppercase A through zZ

* Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name
between the character sets of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field. Do not use
a null character to terminate the name before the end of the field, as the queue
manager does not change the null and subsequent characters to blanks in the
MQRMH structure. Do not specify a name with leading or embedded blanks.

The initial value of this field is FMNONE.
RMFLG (10-digit signed integer)
Reference message flags.

The following flags are defined:

RMLAST
Reference message contains or represents last part of object.

This flag indicates that the reference message represents or contains the
last part of the referenced object.

Chapter 16. MQRMH - Message reference header 171

MQRMH - Message reference header

RMNLST
Reference message does not contain or represent last part of object.

RMNLST is defined to aid program documentation. It is not intended
that this option be used with any other, but as its value is zero, such
use cannot be detected.

The initial value of this field is RMNLST.

RMOT (8-byte character string)
Object type.

This is a name that can be used by the message exit to recognize types of
reference message that it supports. It is recommended that the name conform
to the same rules as the RMFMT field described above.

The initial value of this field is 8 blanks.

RMOII (24-byte bit string)
Obiject instance identifier.

This field can be used to identify a specific instance of an object. If it is not
needed, it should be set to the following value:

OIINON
No object instance identifier specified.

The value is binary zero for the length of the field.

The length of this field is given by LNOIID. The initial value of this field is
OIINON.

RMSEL (10-digit signed integer)
Length of source environment data.

If this field is zero, there is no source environment data, and RMSEOQ is ignored.

The initial value of this field is 0.

RMSEO (10-digit signed integer)
Offset of source environment data.

This field specifies the offset of the source environment data from the start of
the MQRMH structure. Source environment data can be specified by the
creator of the reference message, if that data is known to the creator. For
example, on OS/2 the source environment data might be the directory path of
the object containing the bulk data. However, if the creator does not know the
source environment data, it is the responsibility of the user-supplied message
exit to determine any environment information needed.

The length of the source environment data is given by RMSEL; if this length is
zero, there is no source environment data, and RMSEOQ is ignored. If present, the
source environment data must reside completely within RMLEN bytes from the
start of the structure.

Applications should not assume that the environment data starts immediately

after the last fixed field in the structure or that it is contiguous with any of the
data addressed by the RMSNO, RMDEO, and RMDNO fields.

172 MQseries for AS/400, V5.1 APR (ILE RPG)

MQRMH - Message reference header
The initial value of this field is 0.

RMSNL (10-digit signed integer)
Length of source object name.

If this field is zero, there is no source object name, and RMSNO is ignored.

The initial value of this field is 0.

RMSNO (10-digit signed integer)
Offset of source object name.

This field specifies the offset of the source object name from the start of the
MQRMH structure. The source object name can be specified by the creator of
the reference message, if that data is known to the creator. However, if the
creator does not know the source object name, it is the responsibility of the
user-supplied message exit to identify the object to be accessed.

The length of the source object name is given by RMSNL; if this length is zero,
there is no source object name, and RMSNO is ignored. If present, the source
object name must reside completely within RMLEN bytes from the start of the
structure.

Applications should not assume that the source object name is contiguous with
any of the data addressed by the RMSEO, RMDEO, and RMDNO fields.

The initial value of this field is 0.

RMDEL (10-digit signed integer)
Length of destination environment data.

If this field is zero, there is no destination environment data, and RMDEO is
ignored.

RMDEO (10-digit signed integer)
Offset of destination environment data.

This field specifies the offset of the destination environment data from the start
of the MQRMH structure. Destination environment data can be specified by
the creator of the reference message, if that data is known to the creator. For
example, on OS/2 the destination environment data might be the directory
path of the object where the bulk data is to be stored. However, if the creator
does not know the destination environment data, it is the responsibility of the
user-supplied message exit to determine any environment information needed.

The length of the destination environment data is given by RMDEL; if this length
is zero, there is no destination environment data, and RMDEO is ignored. If
present, the destination environment data must reside completely within RMLEN
bytes from the start of the structure.

Applications should not assume that the destination environment data is
contiguous with any of the data addressed by the RMSEOQ, RMSNO, and RMDNO
fields.

The initial value of this field is 0.

RMDNL (10-digit signed integer)
Length of destination object name.

Chapter 16. MQRMH - Message reference header 173

MQRMH - Message reference header
If this field is zero, there is no destination object name, and RMDNO is ignored.

RMDNO (10-digit signed integer)
Offset of destination object name.

This field specifies the offset of the destination object name from the start of
the MQRMH structure. The destination object name can be specified by the
creator of the reference message, if that data is known to the creator. However,
if the creator does not know the destination object name, it is the responsibility
of the user-supplied message exit to identify the object to be created or
modified.

The length of the destination object name is given by RMDNL; if this length is
zero, there is no destination object name, and RMDNO is ignored. If present, the
destination object name must reside completely within RMLEN bytes from the
start of the structure.

Applications should not assume that the destination object name is contiguous
with any of the data addressed by the RMSEQ, RMSNO, and RMDEO fields.

The initial value of this field is 0.

RMDL (10-digit signed integer)
Length of bulk data.

The RMDL field specifies the length of the bulk data referenced by the MQRMH
structure.

If the bulk data is actually present in the message, the data begins at an offset
of RMLEN bytes from the start of the MQRMH structure. The length of the entire
message minus RMLEN gives the length of the bulk data present.

If data is present in the message, RMDL specifies the amount of that data that is
relevant. The normal case is for RMDL to have the same value as the length of
data actually present in the message.

If the MQRMH structure represents the remaining data in the object (starting
from the specified logical offset), the value zero can be used for RMDL, provided
that the bulk data is not actually present in the message.

If no data is present, the end of MQRMH coincides with the end of the
message.

The initial value of this field is 0.

RMDO (10-digit signed integer)
Low offset of bulk data.

This field specifies the low offset of the bulk data from the start of the object of
which the bulk data forms part. The offset of the bulk data from the start of
the object is called the logical offset. This is not the physical offset of the bulk
data from the start of the MQRMH structure — that offset is given by RMLEN.

To allow large objects to be sent using reference messages, the logical offset is

divided into two fields, and the actual logical offset is given by the sum of
these two fields:

174 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQRMH - Message reference header

* RMDO represents the remainder obtained when the logical offset is divided by
1 000 000 000. It is thus a value in the range 0 through 999 999 999.

* RMDOZ2 represents the result obtained when the logical offset is divided by
1 000 000 000. It is thus the number of complete multiples of 1 000 000 000
that exist in the logical offset. The number of multiples is in the range 0
through 999 999 999.

The initial value of this field is 0.

RMDO2 (10-digit signed integer)
High offset of bulk data.

This field specifies the high offset of the bulk data from the start of the object
of which the bulk data forms part. It is a value in the range 0 through
999 999 999. See RMDO for details.

The initial value of this field is 0.

Initial values and RPG declaration

Table 36. Initial values of fields in MORMH

Field name Name of constant Value of constant
RMSID RMSIDV 'RMHb"' (See note 1)
RMVER RMVER1 1

RMLEN None 0

RMENC ENNAT See note 2
RMCSI None 0

RMFMT FMNONE "bbbbbbbb'
RMFLG RMNLST 0

RMOT None "bbbbbbbb'
RMOII OIINON Nulls
RMSEL None 0

RMSEO None 0

RMSNL None 0

RMSNO None 0

RMDEL None 0

RMDEO None 0

RMDNL None 0

RMDNO None 0

RMDL None 0

RMDO None 0

RMDO2 None 0

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

Chapter 16. MQRMH

- Message reference header 175

RPG declaration
RPG declaration

Dx..l. oot 2eeeite 3t b o bl albel el T
D+ MQRMH Structure

D*

D* Structure identifier

D RMSID 1 4

D* Structure version number

D RMVER 5 8I 0

D* Total Tength of MQRMH, including strings at end of fixed fields,
D* but not the bulk data

D RMLEN 9 121 0
D* Numeric encoding of bulk data

D RMENC 13 161 0
D* Character set identifier of bulk data
D RMCSI 17 201 0
D* Format name of bulk data

D RMFMT 21 28

D* Reference message flags

D RMFLG 29 321 0
D* Object type

D RMOT 33 40

D* Object instance identifier

D RMOII 41 64

D* Length of source environment data
D RMSEL 65 681 0
D+ Offset of source environment data
D RMSEO 69 721 0
D* Length of source object name

D RMSNL 73 761 0
D= Offset of source object name

D RMSNO 77 80I 0
D* Length of destination environment data
D RMDEL 81 841 0
D* Offset of destination environment data
D RMDEO 85 881 0
D* Length of destination object name
D RMDNL 89 921 0
D+ Offset of destination object name
D RMDNO 93 961 0
D* Length of bulk data

D RMDL 97 1001 0
D* Low offset of bulk data

D RMDO 101 1041 0
D* High offset of bulk data

D RMDO2 105 1081 0

176 MQseries for AS/400, V5.1 APR (ILE RPG)

Chapter 17. MQRR - Response record

The following table summarizes the fields in the structure.

Table 37. Fields in MQRR

Field Description Page
RRCC Completion code for queue izd
RRREA Reason code for queue iza

Overview

The MQRR structure is used to receive the completion code and reason code
resulting from the open or put operation for a single destination queue. By
providing an array of these structures on the MQOPEN and MQPUT calls, or on
the MQPUT1 call, it is possible to determine the completion codes and reason
codes for all of the queues in a distribution list, when the outcome of the call is
mixed, that is, when the call succeeds for some queues in the list, but fails for
others. Reason code RC2136 from the call indicates that the response records (if
provided by the application) have been set by the queue manager.

MQRR is an output structure for the MQOPEN, MQPUT, and MQPUT1 calls.

Fields

RRCC (10-digit signed integer)
Completion code for queue.

This is the completion code resulting from the open or put operation for the
queue whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is CCOK.

RRREA (10-digit signed integer)
Reason code for queue.

This is the reason code resulting from the open or put operation for the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is RCNONE.

Initial values and RPG declaration

Table 38. Initial values of fields in MORR

Field name Name of constant Value of constant
RRCC CCOK 0
RRREA RCNONE 0

© Copyright IBM Corp. 1994, 2000

177

RPG declaration

RPG declaration

L /2 P o | s R ¢ P Y A
D* MQRR Structure

D*

D+ Completion code for queue

D RRCC 1 41 0

D* Reason code for queue

D RRREA 5 81 0

178 MQseries for AS/400, V5.1 APR (ILE RPG)

Chapter 18. MQTM - Trigger message

The following table summarizes the fields in the structure.

Table 39. Fields in MQTM

Field Description Page
TMSID Structure identifier
TMVER Structure version number
TMQN Name of triggered queue
TMPN Name of process object fal
TMTD Trigger data (Y|
TMAT Application type Y|
TMAT Application identifier fled
TMED Environment data fad
TMUD User data fed

Overview

The MQTM structure describes the data in the trigger message that is sent by the
queue manager to a trigger-monitor application when a trigger event occurs for a
queue. This structure is part of the MQSeries Trigger Monitor Interface (TMI),
which is one of the MQSeries framework interfaces.

A trigger-monitor application may need to pass some or all of the information in
the trigger message to the application which is started by the trigger-monitor
application. Information which may be needed by the started application includes
TMQN, TMTD, and TMUD. The trigger-monitor application can pass the MQTM structure
directly to the started application, or pass an MQTMC2 structure, depending on
what is most convenient for the started application. For information about

METMCZ see EChapter 19 MQTMC? - Trigger message (character format)” od

For information about triggers, see the MQSeries Application Programming Guids,

The fields in the message descriptor of the trigger message are set as follows:

Field in MQMD
Value used
MDSID MDSIDV
MDVER MDVER1
MDREP RONONE
MDMT ~ MTDGRM
MDEXP EIULIM
MDFB FBNONE
MDENC ENNAT
MDCSI Queue manager’s CodedCharSetId attribute
MDFMT FMTM
MDPRI Initiation queue’s DefPriority attribute
MDPER PENPER

© Copyright IBM Corp. 1994, 2000 179

MQTM - Trigger message

MDMID A unique value

MDCID CINONE

MDBOC O

MDRQ Blanks

MDRM Name of queue manager

MDUID Blanks

MDACC ACNONE

MDAID Blanks

MDPAT ATQM, or as appropriate for the message channel agent
MDPAN First 28 bytes of the queue-manager name
MDPD Date when trigger message is sent

MDPT Time when trigger message is sent

MDAOD Blanks

An application that generates a trigger message is recommended to set similar
values, except for the following:

* The MDPRI field can be set to PRQDEF (the queue manager will change this to
the default priority for the initiation queue when the message is put).

» The MDRM field can be set to blanks (the queue manager will change this to the
name of the local queue manager when the message it put).

* The context fields should be set as appropriate for the application.

Fields

TMSID (4-byte character string)
Structure identifier.

The value must be:

TMSIDV
Identifier for trigger message structure.

The initial value of this field is TMSIDV.

TMVER (10-digit signed integer)
Structure version number.

The value must be:

TMVER1
Version number for trigger message structure.

The following constant specifies the version number of the current version:

TMVERC
Current version of trigger message structure.

The initial value of this field is TMVER1.

TMQN (48-byte character string)
Name of triggered queue.

This is the name of the queue for which a trigger event occurred, and is used
by the application started by the trigger-monitor application. The queue
manager initializes this field with the value of the QName attribute of the

triggered queue; see EChapter 37_Attributes for all queues” on page 293 for

details of this attribute.

180 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQTM - Trigger message

Names that are shorter than the defined length of the field are padded to the
right with blanks; they are not ended prematurely by a null character.

The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

TMPN (48-byte character string)
Name of process object.

This is the name of the queue-manager process object specified for the
triggered queue, and can be used by the trigger-monitor application that
receives the trigger message. The queue manager initializes this field with the
value of the ProcessName attribute of the queue identified by the TMON field; see

LChameB_Amhulesiaumaumeuesﬁndded_quemlon_page_ZQQ for

details of this attribute.

Names that are shorter than the defined length of the field are always padded
to the right with blanks; they are not ended prematurely by a null character.

The length of this field is given by LNPRON. The initial value of this field is
48 blank characters.

TMTD (64-byte character string)
Trigger data.

This is free-format data for use by the trigger-monitor application that receives
the trigger message. The queue manager initializes this field with the value of
the TriggerData attribute of the queue identified by the TMQN field; see
L'Chapter 38 Attributes for local queues and madel queties” an page 299 for
details of this attribute. The content of this data is of no significance to the
gueue manager.

The length of this field is given by LNTRGD. The initial value of this field is
64 blank characters.

TMAT (10-digit signed integer)
Application type.

This identifies the nature of the program to be started, and is used by the
trigger-monitor application that receives the trigger message. The queue
manager initializes this field with the value of the ApplType attribute of the

process object identified by the TMPN field; see I‘Chapter 42_Attributes for
pracess definitions” on page 319 for details of this attribute. The content of this

data is of no significance to the queue manager.

TMAT can have one of the following standard values. User-defined types can
also be used, but should be restricted to values in the range ATUFST through
ATULST:
ATCICS
CICS transaction.
ATVSE
CICS/VSE transaction.
AT400 OS/400 application.
ATUFST
Lowest value for user-defined application type.
ATULST
Highest value for user-defined application type.

Chapter 18. MQTM - Trigger message 181

MQTM - Trigger message

The initial value of this field is 0.

TMAI (256-byte character string)

Application identifier.

This is a character string that identifies the application to be started, and is
used by the trigger-monitor application that receives the trigger message. The
queue manager initializes this field with the value of the ApplId attrlbute of
the process object identified by the TMPN field; see

bracess definitions” an page 319 for details of this attribute. The content of this

data is of no significance to the queue manager.

The meaning of TMAI is determined by the trigger-monitor application. The
trigger monitor provided by MQSeries requires TMAI to be the name of an
executable program.

The length of this field is given by LNPROA. The initial value of this field is
256 blank characters.

TMED (128-byte character string)

Environment data.

This is a character string that contains environment-related information
pertaining to the application to be started, and is used by the trigger-monitor
application that receives the trigger message. The queue manager initializes
this field with the value of the EnvData attribute of the process object identified

bg the TMPN field; see FChapter 42 Attributes for pracess definitions” anl

for details of this attribute. The content of this data is of no
significance to the queue manager.

The length of this field is given by LNPROE. The initial value of this field is
128 blank characters.

TMUD (128-byte character string)

User data.

This is a character string that contains user information relevant to the
application to be started, and is used by the trigger-monitor application that
receives the trigger message. The queue manager initializes this field with the
value of the UserData attribute of the process object identified by the TMPN
field; see [‘Chapter 42_Attributes for pracess definitions” on page 319 for details
of this attribute. The content of this data is of no significance to the queue
manager.

The length of this field is given by LNPROU. The initial value of this field is
128 blank characters.

Initial values and RPG declaration

Table 40. Initial values of fields in MQTM

Field name Name of constant Value of constant
TMSID TMSIDV '"TMbb "' (See note 1)
TMVER TMVER1 1

TMQN None Blanks

TMPN None Blanks

182 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQTM - Trigger message

Table 40. Initial values of fields in MQTM (continued)

Field name Name of constant Value of constant
TMTD None Blanks
TMAT None 0
TMAI None Blanks
TMED None Blanks
TMUD None Blanks
Notes:
1. The symbol ‘b’ represents a single blank character.
RPG declaration
[0 N SN C S SR AR SO . DU SO ¢ DA S AN

Dx MQTM Structure

D*

D* Structure identifier

D TMSID

D* Structure version number

D TMVER

D* Name of triggered queue

D TMQON

D Name of process object

D TMPN

D+ Trigger data

D TMTD

D+ Application type

D TMAT

D+ Application identifier

D TMAI

D* Environment data

D TMED

D* User data

D TMUD

1 4
5 81 0
9 56
57 104
105 168
169 1721 0
173 428
429 556
557 684

Chapter 18. MQTM - Trigger message 183

MQTM - Trigger message

184 MQseries for AS/400, V5.1 APR (ILE RPG)

Chapter 19. MQTMC2 - Trigger message (character format)

The following table summarizes the fields in the structure.

Table 41. Fields in MQTMC2

Field Description Page
TC2SID Structure identifier
TC2VER Structure version number
TC20N Name of triggered queue
TC2PN Name of process object 186
TC2TD Trigger data fLed
TC2AT Application type fled
TC2AI Application identifier fled
TCZED Environment data fLed
TC2UD User data fLed
TC2QMN Queue manager name fled

Overview

When a trigger-monitor application retrieves a trigger message (MQTM) from an
initiation queue, the trigger monitor may need to pass some or all of the
information in the trigger message to the application that is started by the trigger
monitor. Information that may be needed by the started application includes TC2QN,
TC2TD, and TC2UD. The trigger monitor application can pass the MQTM structure
directly to the started application, or an MQTMC2 structure, depending on what is
most convenient for the started application.

This structure is part of the MQSeries Trigger Monitor Interface (TMI), which is
one of the MQSeries framework interfaces.

* On 0S/390, for an ATIMS application that is started using the CSQQTRMN
application, an MQTMC?2 structure is made available to the started application.
* On VSE/ESA, this structure is not supported.

* On 16-bit Windows and 32-bit Windows, there is no trigger monitor application,
and this structure is not supported.

The MQTMC2 structure is very similar to the format of the trigger message
(MQTM structure). The difference is that the non-character fields in MQTM are
changed in MQTMC?2 to character fields of the same length, and the queue
manager name is added at the end of the structure.

See ‘Chapter 18 MQTM - Trigger message” on page 179 for details of the fields

that are the same in this structure.

© Copyright IBM Corp. 1994, 2000 185

MQTMC2 - Trigger message (character format)

Fields
TC2SID (4-byte character string)

Structure identifier.
The value must be:

TCSIDV
Identifier for trigger message (character format) structure.

TC2VER (4-byte character string)
Structure version number.
The value must be:
TCVER2
Version 2 trigger message (character format) structure.
The following constant specifies the version number of the current version:

TCVERC
Current version of trigger message (character format) structure.

TC2QN (48-byte character string)

Name of triggered queue.

See the TMQN field in the MQTM structure.
TC2PN (48-byte character string)

Name of process object.

See the TMPN field in the MQTM structure.
TC2TD (64-byte character string)

Trigger data.

See the TMTD field in the MQTM structure.
TC2AT (4-byte character string)

Application type.

This field always contains blanks, whatever the value in the TMAT field in the

MQTM structure of the original trigger message.
TC2AI (256-byte character string)

Application identifier.

See the TMAI field in the MQTM structure.
TC2ED (128-byte character string)

Environment data.

See the TMED field in the MQTM structure.
TC2UD (128-byte character string)

User data.

See the TMUD field in the MQTM structure.

TC2QMN (48-byte character string)
Queue manager name.

186 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQTMC2 - Trigger message (character format)

This is the name of the queue manager at which the trigger event occurred.

Table 42. Initial values of fields in MQTMC2

Initial values and RPG declaration

Field name Name of constant Value of constant
TC2SID TCSIDV 'TMCh' (See note 1)
TC2VER TCVER2 'bbb2'
TC20N None Blanks
TC2PN None Blanks
TC2TD None Blanks
TC2AT None "bbbb'
TC2AI None Blanks
TC2ED None Blanks
TC2UD None Blanks
TC2QMN None Blanks
Notes:
1. The symbol ‘b’ represents a single blank character.
RPG declaration
[0 /NS SR BUU SR RN SPUPUPU . DUPIPOE SO ¢ PRI Y A

D+ MQTMC2 Structure

D*

Dx Structure identifier

D TC2SID

Dx Structure version number

D TC2VER

D* Name of triggered queue

D TC2QN

D+ Name of process object

D TC2PN

D* Trigger data

D TC2TD

D* Application type

D TC2AT

D* Application identifier

D TC2AI

Dx Environment data

D TC2ED

Dx User data

D TC2UD

D* Queue manager name

D TC2QMN

1 4

5 8

9 56
57 104
105 168
169 172
173 428
429 556
557 684
685 732

Chapter 19. MQTMC?2 - Trigger message (character format)

187

RPG declaration

188 MQseries for AS/400, V5.1 APR (ILE RPG)

Chapter 20. MQWIH - Work information header

The following table summarizes the fields in the structure.

Table 43. Fields in MQWIH

Field Description Page
WISID Structure identifier fizd
WIVER Structure version number
WILEN Length of MQWIH structure
WIENC Numeric encoding of data that follows MQWIH
WICSI Character-set identifier of data that follows flod
MQWIH
WIFMT Format name of data that follows MQWIH flad
WIFLG Flags flad
WISNM Service name flad
WISST Service step name flad
WITOK Message token flad

Overview
The MQWIH structure describes the information that must be present at the start
of a message that is to be handled by the OS/390 workload manager. The format
name of this structure is FMWIH.

Fields

WISID (4-byte character string)
Structure identifier.
The value must be:
WISIDV
Identifier for work information header structure.
The initial value of this field is WISIDV.
WIVER (10-digit signed integer)
Structure version number.
The value must be:
WIVER1
Version-1 work information header structure.
The following constant specifies the version number of the current version:
WIVERC

Current version of work information header structure.

The initial value of this field is WIVERL.

© Copyright IBM Corp. 1994, 2000 189

MQWIH - Work information header

WILEN (10-digit signed integer)
Length of MQWIH structure.
The value must be:
WILEN1

Length of version-1 work information header structure.
The following constant specifies the length of the current version:
WILENC
Length of current version of work information header structure.

The initial value of this field is WILEN1.

WIENC (10-digit signed integer)
Numeric encoding of data that follows MQWIH.
This is the numeric encoding of the data that follows the MQWIH structure.
The initial value of this field is 0.

WICSI (10-digit signed integer)
Character-set identifier of data that follows MQWIH.
This is the coded character-set identifier of the data that follows the MQWIH
structure. The initial value of this field is 0.

WIFMT (8-byte character string)
Format name of data that follows MQWIH.

This is the MQ format name of the data that follows the MQWIH structure.
The rules for coding this are the same as those for the MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is
FMNONE.
WIFLG (10-digit signed integer)
Flags
The value must be:
WINONE
No flags.
The initial value of this field is WINONE.
WISNM (32-byte character string)
Service name.
This is the name of the service that is to process the message.
The length of this field is given by LNSVNM. The initial value of this field is
32 blank characters.
WISST (8-byte character string)

Service step name.

This is the name of the step of WISNM to which the message relates.

190 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQWIH - Work information header

The length of this field is given by LNSVST. The initial value of this field is 8
blank characters.

WITOK (16-byte bit string)
Message token.
This is a message token that uniquely identifies the message.
For the MQPUT and MQPUT1 calls, this field is ignored. The length of this
field is given by LNMTOK. The initial value of this field is MTKNON.
WIRSV (32-byte character string)
Reserved.

This is a reserved field; it must be blank.

Initial values and RPG declaration

Table 44. Initial values of fields in MOQWIH

Field name Name of constant Value of constant
WISID WISIDV '"WIHb' (See note 1)
WIVER WIVER1 1

WILEN WILEN1 120

WIENC None 0

WICST None 0

WIFMT FMNONE "bbbbbbbb'

WIFLG WINONE 0

WISNM None Blanks

WISST None Blanks

WITOK MTKNON Nulls

WIRSV None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

Chapter 20. MQWIH - Work information header

191

RPG declaration
RPG declaration

Dx..l. oot 2eeeite 3t b o bl albel el T
D+ MQWIH Structure

D*

D* Structure identifier

D WISID 1 4

D* Structure version number

D WIVER 5 81 0

D* Length of MQWIH structure

D WILEN 9 121 0

D* Numeric encoding of data that follows MQWIH
D WIENC 13 161 0

D* Character-set identifier of data that follows MQWIH
D WICSI 17 201 0

D* Format name of data that follows MQWIH

D WIFMT 21 28

D* Flags

D WIFLG 29 321 0

D* Service name

D WISNM 33 64

D* Service step name

D WISST 65 72

D* Message token

D WITOK 73 88

D* Reserved

D WIRSV 89 120

192 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 21. MQXQH - Transmission queue header

The following table summarizes the fields in the structure.

Table 45. Fields in MQXQH

Field Description Page
XQSID Structure identifier
XQVER Structure version number
XQRQ Name of destination queue
XQRQM Name of destination queue manager 196
XQMD Original message descriptor flod

Overview

The MQXQH structure describes the information that is prefixed to the application
message data of messages when they are on transmission queues. A transmission
queue is a special type of local queue that temporarily holds messages destined for
remote queues (that is, destined for queues that do not belong to the local queue
manager). A transmission queue is denoted by the Usage queue attribute having
the value USTRAN.

A message that is on a transmission queue has two message descriptors:

* One message descriptor is stored separately from the message data; this is called
the separate message descriptor, and is a modified version of the message
descriptor provided by the application in the MSGDSC parameter of the MQPUT
or MQPUT1 call (see below for details).

The message put by the application may be a message in a group, or a segment
of a logical message, or may have segmentation allowed, but these properties are
not propagated into the separate message descriptor — the version-2 fields in the
separate message descriptor always have their default values.

The separate message descriptor is the one that is returned to the application in
the MSGDSC parameter of the MQGET call when the message is removed from the
transmission queue.

* A second message descriptor is stored within the MQXQH structure, as part of
the message data; this is called the embedded message descriptor, and is a close
copy of the message descriptor that was provided by the application in the
MSGDSC parameter of the MQPUT or MQPUTL call (see below for details).

The embedded message descriptor is always a version-1 MQMD. If the message

put by the application has nondefault values for one or more of the version-2

fields in the MQMD, an MQMDE structure follows the MQXQH, and is in turn

followed by the application message data (if any). The MQMDE is either:

— Generated by the queue manager (if the application uses a version-2 MQMD
to put the message), or

— Already present at the start of the application message data (if the application
uses a version-1 MQMD to put the message).

© Copyright IBM Corp. 1994, 2000 193

MQXQH - Transmission-queue header

The embedded message descriptor is the one that is returned to the application
in the MSGDSC parameter of the MQGET call when the message is removed from
the final destination queue.

Putting messages on remote queues: When an application puts a message on a
remote queue (either by specifying the name of the remote queue directly, or by
using a local definition of the remote queue), the local queue manager:

* Creates an MQXQH structure containing the embedded message descriptor

* Appends an MQMDE if one is needed and is not already present

* Appends the application message data

* Places the message on an appropriate transmission queue

Character data in the MQXQH structure is in the character set of the local queue
manager (defined by the CodedCharSetId queue manager attribute), and integer
data is in the native machine encoding. These values are stored in the separate
message descriptor, and may be different from the values of the MDCSI and MDENC
fields in the embedded message descriptor, because the latter fields relate to the
application message data and not the MQXQH structure itself.

The fields in the embedded message descriptor have the same values as those in
the MSGDSC parameter of the MQPUT or MQPUT1 call, with the exception of the

following:

The MDVER field always has the value MDVERL.

If the MDPRI field has the value PRQDEF, it is replaced by the value of the
queue’s DefPriority attribute.

If the MDPER field has the value PEQDEF, it is replaced by the value of the
queue’s DefPersistence attribute.

If the MDMID field has the value MINONE, or the PMNMID option was specified,
or the message is a distribution-list message, MDMID is replaced by a new
message identifier generated by the queue manager.

When a distribution-list message is split into smaller distribution-list messages
placed on different transmission queues, the MDMID field in each of the new
embedded message descriptors is the same as that in the original distribution-list
message.

If the PMINCID option was specified, MDCID is replaced by a new correlation
identifier generated by the queue manager.

The context fields are set as indicated by the PM* context options specified in
the PMO parameter; the context fields are the fields MDUID through MDAOD in the
list below.

The version-2 fields (if they were present) are removed from the MQMD, and
moved into an MQMDE structure, if one or more of the version-2 fields has a
nondefault value.

The fields in the separate message descriptor are set by the queue manager as
shown below. If the queue manager does not support the version-2 MQMD, a
version-1 MQMD is used without loss of function.

Field in separate MQMD
MDSID
MDVER
MDREP

MDMT

Value used

MDSIDV

MDVER2

Copied from the embedded message descriptor, but with the bits
identified by ROAUXM set to zero. (This prevents a COA or COD report
message being generated when a message is placed on or removed from
a transmission queue.)

Copied from the embedded message descriptor.

194 MQseries for AS/400, V5.1 APR (ILE RPG)

MQXQH - Transmission-queue header

Field in separate MQMD Value used

MDEXP Copied from the embedded message descriptor.

MDFB Copied from the embedded message descriptor.

MDENC ENNAT

MDCSI Queue manager’s CodedCharSetId attribute.

MDFMT FMXQH

MDPRI Copied from the embedded message descriptor.

MDPER Copied from the embedded message descriptor.

MDMID A new value is generated by the queue manager. This message identifier
is different from the MDMID that the queue manager may have generated
for the embedded message descriptor (see above).

MDCID The MDMID from the embedded message descriptor.

MDBOC 0

MDRQ Copied from the embedded message descriptor.

MDRM Copied from the embedded message descriptor.

MDUID Copied from the embedded message descriptor.

MDACC Copied from the embedded message descriptor.

MDAID Copied from the embedded message descriptor.

MDPAT ATQM

MDPAN First 28 bytes of the queue-manager name.

MDPD Date when message was put on transmission queue.

MDPT Time when message was put on transmission queue.

MDAOD Blanks

MDGID GINONE

MDSEQ 1

MDOFF 0

MDMFL MFNONE

MDOLN OLUNDF

Putting messages directly on transmission queues: It is also possible for an
application to put a message directly on a transmission queue. In this case the
application must prefix the application message data with an MQXQH structure,
and initialize the fields with appropriate values. In addition, the MDFMT field in the
MSGDSC parameter of the MQPUT or MQPUT1 call must have the value FMXQH.

Character data in the MQXQH structure created by the application must be in the
character set of the local queue manager (defined by the CodedCharSetId
gqueue-manager attribute), and integer data must be in the native machine
encoding. In addition, character data in the MQXQH structure must be padded
with blanks to the defined length of the field; the data must not be ended
prematurely by using a null character, because the queue manager does not
convert the null and subsequent characters to blanks in the MQXQH structure.

Note however that the queue manager does not check that an MQXQH structure is
present, or that valid values have been specified for the fields.

Getting messages from transmission queues: Applications that get messages from
a transmission queue must process the information in the MQXQH structure in an
appropriate fashion. The presence of the MQXQH structure at the beginning of the
application message data is indicated by the value FMXQH being returned in the
MDFMT field in the MSGDSC parameter of the MQGET call. The values returned in the
MDCST and MDENC fields in the MSGDSC parameter indicate the character set and
encoding of the character and integer data in the MQXQH structure, respectively.
The character set and encoding of the application message data are defined by the
MDCST and MDENC fields in the embedded message descriptor.

Chapter 21. MQXQH - Transmission queue header 195

MQXQH - Transmission-queue header

Fields

XQSID (4-byte character string)
Structure identifier.

The value must be:
XQSIDV
Identifier for transmission-queue header structure.
The initial value of this field is XQSIDV.
XQVER (10-digit signed integer)
Structure version number.
The value must be:
XQVER1
Version number for transmission-queue header structure.
The following constant specifies the version number of the current version:
XQVERC
Current version of transmission-queue header structure.
The initial value of this field is XQVERL1.
XQRQ (48-byte character string)

Name of destination queue.

This is the name of the message queue that is the apparent eventual
destination for the message (this may prove not to be the actual eventual
destination if, for example, this queue is defined at XQrROM to be a local
definition of another remote queue).

If the message is a distribution-list message (that is, the MDFMT field in the
embedded message descriptor is FMDH), XQRQ is blank.

The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

XQRQM (48-byte character string)
Name of destination queue manager.

This is the name of the queue manager that owns the queue that is the
apparent eventual destination for the message.

If the message is a distribution-list message, XQRQM is blank.

The length of this field is given by LNQMN. The initial value of this field is 48
blank characters.

XQMD (MQMD1)
Original message descriptor.

This is the embedded message descriptor, and is a close copy of the message
descriptor MQMD that was specified as the MSGDSC parameter on the MQPUT
or MQPUT1 call when the message was originally put to the remote queue.

196 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQXQH - Transmission-queue header

Note: This is a version-1 MQMD.

The initial values
MQMD structure.

of the fields in this structure are the same as those in the

Initial values and RPG declaration

Table 46. Initial values of fields in MQXQH

Field name Name of constant Value of constant
XQSID XQSIDV 'XQHb' (See note 1)
XQVER XQVER1 1
XQRQ None Blanks
XQROM None Blanks
XQMD Same names and values as for MQMD; see
[fahle 22 on page 12d
Notes:
1. The symbol ‘b’ represents a single blank character.
RPG declaration

[0 /NS SRR IUU SR O SPUPUPU . PP SO ¢ PP S AN

D* MQXQH Structure

D*

D* Structure identifier

D XQSID 1 4

Dx Structure version number

D XQVER 5 81 0

D+ Name of destination queue

D XQRQ 9 56

D* Name of destination queue manager

D XQRQM 57 104

D* Original message descriptor

D*

D* Structure identifier

D XQ1SID 105 108

D* Structure version number

D XQ1VER 109 1121 0

D* Report options

D XQI1REP 113 1161 0

D* Message type

D XQIMT 117 1201 0

D* Expiry time

D XQlEXP 121 1241 0

D* Feedback or reason code

D XQlFB 125 1281 0

D* Numeric encoding of message data

D XQlENC 129 1321 0

D* Character set identifier of message data

D XQ1CSI 133 1361 0

D* Format name of message data

D XQ1FMT 137 144

D* Message priority

D XQ1PRI 145 1481 0

D Message persistence

D XQlPER 149 1521 0

D* Message identifier

D XQIMID 153 176

D* Correlation identifier

D XQ1CID 177 200

Chapter 21. MQXQH - Transmission queue header 197

RPG declaration
D*
D+
D*
D*
D*
D*
D*
D*
D+
D*

D=*

Backout counter
XQ1BOC 201 2041 0
Name of reply-to queue
XQ1RQ 205 252
Name of reply queue manager
XQ1RM 253 300
User identifier
XQ1UID 301 312
Accounting token
XQ1ACC 313 344
Application data relating to identity
XQ1AID 345 376
Type of application that put the message
XQ1PAT 377 3801 0
Name of application that put the message
XQ1PAN 381 408
Date when message was put
XQ1PD 409 416
Time when message was put
XQ1PT 417 424
Application data relating to origin
XQ1A0D 425 428

198 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Part 2. Function calls

Chapter 22. Call descriptions
Conventions used in the call descrlptlons .

Chapter 23. MQBACK - Back out changes
Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 24. MQBEGIN - Begin unit of work
Syntax.

Parameters .

Usage notes .

RPG invocation (ILE)

Chapter 25. MQCLOSE - Close object
Syntax.

Parameters

Usage notes .

RPG invocation.

Chapter 26. MQCMIT - Commit changes
Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 27. MQCONN - Connect queue manager
Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 28. MQCONNX - Connect queue
manager (extended)

Syntax.

Parameters .

RPG invocation.

Chapter 29. MQDISC - Disconnect queue
manager

Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 30. MQGET - Get message
Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 31. MQINQ - Inquire about object

attributes
Syntax.

© Copyright IBM Corp. 1994, 2000

. 201
. 201

. 203
. 203
. 203
. 204
. 205

. 207
. 207
. 207
. 208
. 210

.21
211
. 211
. 214
. 215

. 217
. 217
. 217
. 218
. 219

221

. 221
. 221
. 224
. 225

. 227
. 227
. 227
. 228

. 229
. 229
. 229
. 230
. 230

. 231
. 231
. 231
. 235
. 239

. 241
. 241

Parameters .
Usage notes .
RPG invocation.

Chapter 32. MQOPEN Open obJect
Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 33. MQPUT - Put message
Syntax.

Parameters .

Usage notes .

RPG invocation.

Chapter 34. MQPUTL1 - Put one message
Syntax.
Parameters .

Usage notes .

RPG invocation.

Chapter 35. MQSET - Set object attributes
Syntax.

Parameters .

Usage notes .

RPG invocation.

. 241
. 248
. 250

. 251
. 251
. 251
. 259
. 264

. 265
. 265
. 265
. 270
. 273

. 275
. 275
. 275
. 279
. 281

. 283
. 283
. 283
. 286
. 287

199

Function calls

200 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 22. Call descriptions

This chapter describes the MQI calls:

* MQCLOSE - Close object

* MQCONN - Connect to queue manager

* MQDISC - Disconnect from queue manager
* MQGET - Get message

* MQINQ - Inquire about object attributes

* MQOPEN - Open object

* MQPUT - Put message

* MQPUT1 - Put one message

* MQSET - Set object attributes

Note: The calls associated with data conversion, MOXCNVC and
MQDATACONVEXIT, are in L i ion”

Conventions used in the call descriptions

For each call, this chapter gives a description of the parameters and usage of the
call. This is followed by typical invocations of the call, and typical declarations of
its parameters, in the RPG programming language.

The description of each call contains the following sections:

Call name
The call name, followed by a brief description of the purpose of the call.

Parameters
For each parameter, the name is followed by its data type in parentheses
() and its direction; for example:

CMPCOD (9-digit decimal integer) — output

There is more information about the structure data types in EChapter 11

The direction of the parameter can be:

Input You (the programmer) must provide this parameter.

Output
The call returns this parameter.

Input/output
You must provide this parameter, but it is modified by the call.

There is also a brief description of the purpose of the parameter, together
with a list of any values that the parameter can take.

The last two parameters in each call are a completion code and a reason
code. The completion code indicates whether the call completed
successfully, partially, or not at all. Further information about the partial
success or the failure of the call is given in the reason code. You will find
more information about each completion and reason code in

© Copyright IBM Corp. 1994, 2000 201

Call descriptions

Usage notes
Additional information about the call, describing how to use it and any

restrictions on its use.

RPG invocation
Typical invocation of the call, and declaration of its parameters, in RPG.

Other notational conventions are:

Constants
Names of constants are shown in uppercase; for example, OOOUT.

Arrays
In some calls, parameters are arrays of character strings whose size is not
fixed. In the descriptions of these parameters, a lowercase “n” represents a
numeric constant. When you code the declaration for that parameter,
replace the “n” with the numeric value you require.

202 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 23. MQBACK - Back out changes

The MQBACK call indicates to the queue manager that all of the message gets and
puts that have occurred since the last syncpoint are to be backed out. Messages put
as part of a unit of work are deleted; messages retrieved as part of a unit of work
are reinstated on the queue.

* On 0S/400, this call is not supported for applications running in compatibility
mode.

Syntax

MQBACK (HCONN, COMCOD, REASON)

Parameters

HCONN (10-digit signed integer) — input
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

COMCOD (10-digit signed integer) — output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying COMCOD.

If Comcop is CCOK:
RCNONE
(0, X'000") No reason to report.

If ComcoD is CCFAIL:
RC2219
(2219, X'8AB") MQI call reentered before previous call complete.
RC2009
(2009, X'7D9") Connection to queue manager lost.
RC2018
(2018, X'7E2") Connection handle not valid.
RC2101
(2101, X'835") Object damaged.
RC2123
(2123, X'84B") Result of commit or back-out operation is mixed.
RC2162
(2162, X'872") Queue manager shutting down.
RC2102
(2102, X'836") Insufficient system resources available.

© Copyright IBM Corp. 1994, 2000 203

MQBACK — Back out changes

RC2071

(2071, X'817") Insufficient storage available.
RC2195

(2195, X'893") Unexpected error occurred.

See EAppendix A_Return cades” an page 357 for more details.

Usage notes

1. This call can be used only when the queue manager itself coordinates the unit
of work. This is a local unit of work, where the changes affect only MQ
resources.

In environments where the queue manager does not coordinate the unit of
work, the appropriate back-out call must be used instead of MQBACK. The
environment may also support an implicit back out caused by the application
terminating abnormally.

* On 0S/400, this call can be used for local units of work coordinated by the
gueue manager. This means that a commitment definition must not exist at
job level, that is, the STRCMTCTL command with the CMTSCOPE (*JOB) parameter
must not have been issued for the job.

2. When an application puts or gets messages in groups or segments of logical
messages, the queue manager retains information relating to the message group
and logical message for the last successful MQPUT and MQGET calls. This
information is associated with the queue handle, and includes such things as:

* The values of the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD.
* Whether the message is part of a unit of work.
» For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set
for each of the following:

* The last successful MQPUT call (this can be part of a unit of work).

* The last successful MQGET call that removed a message from the queue (this
can be part of a unit of work).

* The last successful MQGET call that browsed a message on the queue (this
cannot be part of a unit of work).

If the application puts or gets the messages as part of a unit of work, and the
application then decides to back out the unit of work, the group and segment
information is restored to the value that it had previously:

* The information associated with the MQPUT call is restored to the value that
it had prior to the first successful MQPUT call for that queue handle in the
current unit of work.

* The information associated with the MQGET call is restored to the value that
it had prior to the first successful MQGET call for that queue handle in the
current unit of work.

Queues which were updated by the application after the unit of work had
started, but outside the scope of the unit of work, do not have their group and
segment information restored if the unit of work is backed out.

Restoring the group and segment information to its previous value when a unit
of work is backed out allows the application to spread a large message group
or large logical message consisting of many segments across several units of
work, and to restart at the correct point in the message group or logical

204 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

message if one of the units of work fails. Using several units of work may be
advantageous if the local queue manager has only limited queue storage.
However, the application must maintain sufficient information to be able to
restart putting or getting messages at the correct point in the event that a
system failure occurs. For details of how to restart at the correct point after a

system failure, see the PMLOGO option described in EChapter 14 MQPMQ |
Eu.t_messaqe_apnans_m:_paqew

2 and the GMLOGO option described in

The remaining usage notes apply only when the queue manager coordinates the
units of work:

3. A unit of work has the same scope as a connection handle. This means that all

MQ calls which affect a particular unit of work must be performed using the
same connection handle. Calls issued using a different connection handle (for
example, calls issued by another application) affect a different unit of work. See
the HCONN parameter described in

manager” an page 221 for information about the scope of connection handles.
Only messages that were put or retrieved as part of the current unit of work
are affected by this call.

A long-running application that issues MQGET, MQPUT, or MQPUT1 calls
within a unit of work, but which never issues a commit or backout call, will
cause queues to fill up with messages that are not available to other
applications.

RPG invocation

Cr..looioseiii2eiire s 3 bl L TP S 6ot 7..
C CALLP MQBACK(HCONN : COMCOD : REASON)

The prototype definition for the call is:

[0 AP A SN JUPADUP S | S SN ST R ¢ DT S
DMQBACK PR EXTPROC(MQBACK")

D* Connection handle

D HCONN 10I 0 VALUE

D* Completion code

D ComCcoD 10I 0

D* Reason code qualifying COMCOD

D REASON 10I 0

Chapter 23. MQBACK - Back out changes 205

RPG invocation

206 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 24. MQBEGIN - Begin unit of work

The MQBEGIN call begins a unit of work that is coordinated by the queue
manager, and that may involve external resource managers.

This call is supported in the following environments: AlIX, HP-UX, OS/2, OS/400,
Sun Solaris, Windows NT.

Syntax

MQBEGIN (HCONN, BEGOP, CMPCOD, REASON)

Parameters

HCONN (10-digit signed integer) — input
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

BEGOP (MQBO) - input/output
Options that control the action of MQBEGIN.

See ‘Chapter 3 MQBO - Begin options” on page 19 for details.

BEGOP is a reserved parameter. Programs written in C or S/390 assembler can
specify a null parameter address, instead of specifying the address of an
MQBO structure.

CMPCOD (10-digit signed integer) — output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE
(0, X'000") No reason to report.

If CMPCOD is CCWARN:
RC2121

(2121, X'849") No participating resource managers registered.
RC2122

(2122, X'84A") Participating resource manager not available.

© Copyright IBM Corp. 1994, 2000 207

MQBEGIN — Begin unit of work

If CMPCOD is CCFAIL:
RC2134

(2134, X'856") Begin-options structure not valid.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9") Connection to queue manager lost.
RC2012

(2012, X'7DC") Call not valid in environment.
RC2018

(2018, X'7E2") Connection handle not valid.
RC2046

(2046, X'7TFE'") Options not valid or not consistent.
RC2162

(2162, X'872") Queue manager shutting down.
RC2102

(2102, X'836") Insufficient system resources available.
RC2071

(2071, X'817") Insufficient storage available.
RC2195

(2195, X'893") Unexpected error occurred.
RC2128

(2128, X'850") Unit of work already started.

For more information on these reason codes, see Appendix A Retirn codes’]

Usage notes

1. The MQBEGIN call can be used to start a unit of work that is coordinated by
the queue manager and that may involve changes to resources owned by other
resource managers.

The queue manager supports three types of unit-of-work:

Queue-manager-coordinated local unit of work
This is a unit of work in which the queue manager is the only resource
manager participating, and so the queue manager acts as the
unit-of-work coordinator.

» To start this type of unit of work, the PMSYP or GMSYP option
should be specified on the first MQPUT, MQPUT1, or MQGET call in
the unit of work.

It is not necessary for the application to issue the MQBEGIN call to
start the unit of work. However, if MQBEGIN is used, the unit of
work is started but the call completes with CCWARN and reason
code RC2121.

* To commit or back out this type of unit of work, the MQCMIT and
MQBACK calls must be used. If the application issues neither call,
the unit of work is committed if the application issues the MQDISC
call, but backed out if the application ends without issuing the
MQDISC call.

Queue-manager-coordinated global unit of work
This is a unit of work in which the queue manager acts as the
unit-of-work coordinator, both for MQ resources and for resources
belonging to other resource managers. Those resource managers

208 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

cooperate with the queue manager to ensure that all changes to
resources in the unit of work are committed or backed out together.

* To start this type of unit of work, the MQBEGIN call must be used.

» To commit or back out this type of unit of work, the MQCMIT and
MQBACK calls must be used. If the application issues neither call,
the unit of work is committed if the application issues the MQDISC
call, but backed out if the application ends without issuing the
MQDISC call.

Externally-coordinated global unit of work
This is a unit of work in which the queue manager is a participant, but
the queue manager does not act as the unit-of-work coordinator.
Instead, there is an external unit-of-work coordinator with whom the
gqueue manager cooperates.

+ To start this type of unit of work, the relevant call provided by the
external unit-of-work coordinator must be used.

If the MQBEGIN call is used to try to start the unit of work, the call
fails with reason code RC2012.

* To commit or back out this type of unit of work, the commit and
back-out calls provided by the external unit-of-work coordinator
must be used; the MQCMIT and MQBACK calls cannot be used.

. An application can participate in only one unit of work at a time. The

MQBEGIN call fails with reason code RC2128 if there is already a unit of work
in existence for the application, regardless of which type of unit of work it is.

. The MQBEGIN call is not valid in an MQ client environment. An attempt to

use the call fails with reason code RC2012.

. When the queue manager is acting as the unit-of-work coordinator for global

units of work, the resource managers that can participate in the unit of work
are defined in the queue manager’s configuration file.

On 0OS/400, the three types of unit of work are supported as follows:

* Queue-manager-coordinated local units of work can be used only when a
commitment definition does not exist at the job level, that is, the STRCMTCTL
command with the CMTSCOPE (*JOB) parameter must not have been issued for
the job.

* Queue-manager-coordinated global units of work are not supported.

» Externally-coordinated global units of work can be used only when a
commitment definition exists at job level, that is, the STRCMTCTL command
with the CMTSCOPE (*JOB) parameter must have been issued for the job. If this
has been done, the OS/400 COMMIT and ROLLBACK operations apply to MQ
resources as well as to resources belonging to other participating resource
managers.

Chapter 24. MQBEGIN - Begin unit of work 209

RPG invocation

RPG invocation (ILE)

[0 AR PSP SN PUPIPUP NI’ SRS R, DUPPRRE NN« PP SRR A
C CALLP MQBEGIN(HCONN : BEGOP : CMPCOD :
C REASON)

The prototype definition for the call is:

)L R RGP SO ST . JOE S TP S A
DMQBEGIN PR EXTPROC ('MQBEGIN')

D+ Connection handle

D HCONN 101 0 VALUE

Dx Options that control the action of MQBEGIN

D BEGOP 12A

D* Completion code

D CMPCOD 10I 0

D* Reason code qualifying CMPCOD

D REASON 10I 0

210 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 25. MQCLOSE - Close object

The MQCLOSE call relinquishes access to an object, and is the inverse of the
MQOPEN call.

Syntax

MQCLOSE (HCONN, HOBJ, OPTS, CMPCOD, REASON)

Parameters

HCONN (10-digit signed integer) — input
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On 0OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) — input/output
Object handle.

This handle represents the object that is being closed. The object can be of any
type. The value of H0BJ was returned by a previous MQOPEN call.

On successful completion of the call, the queue manager sets this parameter to
a value that is not a valid handle for the environment. This value is:

HOUNUH
Unusable object handle.
OPTS (10-digit signed integer) — input
Options that control the action of MQCLOSE.

The OPTS parameter controls how the object is closed. Only permanent
dynamic queues can be closed in more than one way, being either retained or
deleted; these are queues whose DefinitionType attribute has the value
QDPERM (see the DefinitionType attribute described in

are summarized in [Table 47 on page 212,

One (and only one) of the following must be specified:

CONONE
No optional close processing required.

). The close options

This must be specified for:
* Objects other than queues
* Predefined queues

© Copyright IBM Corp. 1994, 2000 211

MQCLOSE — Close object

* Temporary dynamic queues (but only in those cases where HOBJ is
not the handle returned by the MQOPEN call that created the
gueue).

* Distribution lists

In all of the above cases, the object is retained and not deleted.

If this option is specified for a temporary dynamic queue:

* The queue is deleted, if it was created by the MQOPEN call that
returned HOBJ; any messages that are on the queue are purged.

* In all other cases the queue (and any messages on it) are retained.

If this option is specified for a permanent dynamic queue, the queue is
retained and not deleted.

CODEL
Delete the queue.

The queue is deleted if either of the following is true:

* Itis a permanent dynamic queue, and there are no messages on the
gueue and no uncommitted get or put requests outstanding for the
gueue (either for the current task or any other task).

* It is the temporary dynamic queue that was created by the
MQOPEN call that returned HOBJ. In this case, all the messages on
the queue are purged.

In all other cases the call fails with reason code RC2045, and the object
is not deleted.

COPURG
Delete the queue, purging any messages on it.

The queue is deleted if either of the following is true:

* It is a permanent dynamic queue and there are no uncommitted get
or put requests outstanding for the queue (either for the current task
or any other task).

* It is the temporary dynamic queue that was created by the
MQOPEN call that returned HOBJ.

In all other cases the call fails with reason code RC2045, and the object
is not deleted.

Table 47. Effect of MQCLOSE options on various types of object and queue. This table shows which close options are
valid, and whether the object is retained or deleted.

Type of object or queue CONONE CODEL COPURG
Object other than a queue retained not valid not valid
Predefined queue retained not valid not valid
Permanent dynamic queue retained deleted if empty and no messages deleted; queue
pending updates deleted if no pending updates
Temporary dynamic queue (call issued by deleted deleted deleted

creator of queue)

Temporary dynamic queue (call not issued retained not valid not valid
by creator of queue)

Distribution list retained not valid not valid

CMPCOD (10-digit signed integer) — output
Completion code.

212 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQCLOSE — Close object

It is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE
(0, X'000") No reason to report.

If CMPCOD is CCWARN:
RC2241

(2241, X'8C1") Message group not complete.
RC2242

(2242, X'8C2") Logical message not complete.

If CMPCOD is CCFAIL:
RC2219
(2219, X'8AB") MQI call reentered before previous call complete.
RC2009
(2009, X'7D9") Connection to queue manager lost.
RC2018
(2018, X'7E2") Connection handle not valid.
RC2019
(2019, X'7E3") Object handle not valid.
RC2035
(2035, X'7F3") Not authorized for access.
RC2101
(2101, X'835") Object damaged.
RC2045
(2045, X'7FD") Option not valid for object type.
RC2046
(2046, X'7FE") Options not valid or not consistent.
RC2058
(2058, X'80A") Queue manager name not valid or not known.
RC2059
(2059, X'80B") Queue manager not available for connection.
RC2162
(2162, X'872") Queue manager shutting down.
RC2055
(2055, X'807") Queue contains one or more messages or uncommitted
put or get requests.
RC2102
(2102, X'836") Insufficient system resources available.
RC2063
(2063, X'80F") Security error occurred.
RC2071
(2071, X'817") Insufficient storage available.
RC2195
(2195, X'893") Unexpected error occurred.

See EAppendix A_Return cades” an page 357 for more details.

Chapter 25. MQCLOSE - Close object 213

Usage notes

Usage notes

1. When an application issues the MQDISC call, or ends either normally or
abnormally, any objects that were opened by the application and are still open
are closed automatically with the CONONE option.

2. The following points apply if the object being closed is a queue:

» If operations on the queue were performed as part of a unit of work, the
queue can be closed before or after the syncpoint occurs without affecting the
outcome of the syncpoint.

* |If the queue was opened with the OOBRW option, the browse cursor is
destroyed. If the queue is subsequently reopened with the OOBRW option, a
new browse cursor is created (see the OOBRW option described in
MQOPEN).

» |f a message is currently locked for this handle at the time of the MQCLOSE
call, the lock is released (see the GMLK option described in

3. The following points apply if the object being closed is a dynamic queue (either
permanent or temporary):

» For a dynamic queue, the options CODEL or COPURG can be specified
regardless of the options specified on the corresponding MQOPEN call.

* When a dynamic queue is deleted, all MQGET calls with the GMWT option
that are outstanding against the queue are canceled and reason code RC2052
is returned. See the GMWT option described in FChapter 8 MQGMOQ 4
After a dynamic queue has been deleted, any call (other than MQCLOSE)
that attempts to reference the queue using a previously acquired HOBJ handle
fails with reason code RC2052.

Be aware that although a deleted queue cannot be accessed by applications,
the queue is not removed from the system, and associated resources are not
freed, until such time as all handles that reference the queue have been
closed, and all units of work that affect the queue have been either
committed or backed out.

* When a permanent dynamic queue is deleted, if the HOBJ handle specified on
the MQCLOSE call is not the one that was returned by the MQOPEN call
that created the queue, a check is made that the user identifier which was
used to validate the MQOPEN call is authorized to delete the queue. If the
OOALTU option was specified on the MQOPEN call, the user identifier
checked is the 0DAU.

This check is not performed if:

— The handle specified is the one returned by the MQOPEN call that created
the queue.

— The queue being deleted is a temporary dynamic queue.

* When a temporary dynamic queue is closed, if the HOBJ handle specified on
the MQCLOSE call is the one that was returned by the MQOPEN call that
created the queue, the queue is deleted. This occurs regardless of the close
options specified on the MQCLOSE call. If there are messages on the queue,
they are discarded; no report messages are generated.

If there are uncommitted units of work that affect the queue, the queue and
its messages are still deleted, but this does not cause the units of work to fail.
However, as described above, the resources associated with the units of work
are not freed until each of the units of work has been either committed or
backed out.

214 MQSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

4. The following points apply if the object being closed is a distribution list:

* The only valid close option for a distribution list is CONONE; the call fails
with reason code RC2046 or RC2045 if any other options are specified.

* When a distribution list is closed, individual completion codes and reason
codes are not returned for the queues in the list — only the CMPCOD and REASON
parameters of the call are available for diagnostic purposes.

If a failure occurs closing one of the queues, the queue manager continues
processing and attempts to close the remaining queues in the distribution
list. The CMPCOD and REASON parameters of the call are then set to return
information describing the failure. Thus it is possible for the completion code
to be CCFAIL, even though most of the queues were closed successfully. The
queue that encountered the error is not identified.

If there is a failure on more than one queue, it is not defined which failure is
reported in the CMPCOD and REASON parameters.

5. On OS/400, if the application was connected implicitly when the first
MQOPEN call was issued, an implicit MQDISC occurs when the last
MQCLOSE is issued.

Only applications running in compatibility mode can be connected implicitly;
other applications must issue the MQCONN or MQCONNX call to connect to
the queue manager explicitly.

RPG invocation

[0 P NP SR FUPPUP SRR ST PR, DUPPUE PR ¢ PP S A
C CALLP MQCLOSE (HCONN : HOBJ : OPTS :
C CMPCOD : REASON)

The prototype definition for the call is:

[0 R R . BUN U SO NS ST s DADUDUPEE RN o AP Y SN
DMQCLOSE PR EXTPROC ('MQCLOSE")
D+ Connection handle

D HCONN 101 0 VALUE

D+ Object handle

D HOBJ 101 0

D* Options that control the action of MQCLOSE

D OPTS 101 0 VALUE

D+ Completion code

D CMPCOD 10I 0

D* Reason code qualifying CMPCOD

D REASON 101 0

Chapter 25. MQCLOSE - Close object 215

Usage notes

216 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 26. MQCMIT - Commit changes

The MQCMIT call indicates to the queue manager that the application has reached
a syncpoint, and that all of the message gets and puts that have occurred since the
last syncpoint are to be made permanent. Messages put as part of a unit of work
are made available to other applications; messages retrieved as part of a unit of
work are deleted.

* On 0S/400, this call is not supported for applications running in compatibility
mode.

Syntax

MQCMIT (HCONN, COMCOD, REASON)

Parameters

HCONN (10-digit signed integer) — input
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

COMCOD (10-digit signed integer) — output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying COMCOD.

If COMCOD is CCOK:
RCNONE
(0, X'000") No reason to report.

If comcob is CCWARN:
RC2003

(2003, X'7D3") Unit of work encountered fatal error or backed out.
RC2124

(2124, X'84C") Result of commit operation is pending.

If cComcoD is CCFAIL:
RC2219

(2219, X'8AB") MQI call reentered before previous call complete.
RC2009

(2009, X'7D9") Connection to queue manager lost.

© Copyright IBM Corp. 1994, 2000 217

MQCMIT — Commit changes

RC2018

(2018, X'7E2") Connection handle not valid.
RC2101

(2101, X'835") Object damaged.
RC2123

(2123, X'84B") Result of commit or back-out operation is mixed.
RC2162

(2162, X'872") Queue manager shutting down.
RC2102

(2102, X'836") Insufficient system resources available.
RC2071

(2071, X'817") Insufficient storage available.
RC2195

(2195, X'893") Unexpected error occurred.

See EAppendix A_Return cades” an page 357 for more details.

Usage notes

1. This call can be used only when the queue manager itself coordinates the unit
of work. This is a local unit of work, where the changes affect only MQ
resources.

In environments where the queue manager does not coordinate the unit of
work, the appropriate commit call must be used instead of MQCMIT. The
environment may also support an implicit commit caused by the application
terminating normally.

* On 0OS/400, this call can be used for local units of work coordinated by the
gueue manager. This means that a commitment definition must not exist at
job level, that is, the STRCMTCTL command with the CMTSCOPE (*JOB) parameter
must not have been issued for the job.

2. When an application puts or gets messages in groups or segments of logical
messages, the queue manager retains information relating to the message group
and logical message for the last successful MQPUT and MQGET calls. This
information is associated with the queue handle, and includes such things as:

* The values of the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD.
* Whether the message is part of a unit of work.
» For the MQPUT call: whether the message is persistent or nonpersistent.

When a unit of work is committed, the queue manager retains the group and
segment information, and the application can continue putting or getting
messages in the current message group or logical message.

Retaining the group and segment information when a unit of work is
committed allows the application to spread a large message group or large
logical message consisting of many segments across several units of work.
Using several units of work may be advantageous if the local queue manager
has only limited queue storage. However, the application must maintain
sufficient information to be able to restart putting or getting messages at the
correct point in the event that a system failure occurs. For details of how to
restart at the correct point after a system failure, see the PMLOGO option
described in EChapter 14 _MQPMQ - Put message options” on page 149, and the
GMLOGO option described in EChapter 8 MQGMQ - Get-message options” an

218 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

The remaining usage notes apply only when the queue manager coordinates the
units of work:

3. A unit of work has the same scope as a connection handle. This means that all
MQ calls which affect a particular unit of work must be performed using the
same connection handle. Calls issued using a different connection handle (for
example, calls issued by another application) affect a different unit of work. See
the HCONN parameter described in MQCONN for information about the scope of
connection handles.

4. Only messages that were put or retrieved as part of the current unit of work
are affected by this call.

5. If an application ends without issuing the MQCMIT or MQBACK call when
there are uncommitted changes within a unit of work, the disposition of those
changes depends on how the application ends:

» If the application issues the MQDISC call before ending, that call causes the
unit of work to be committed.

* If the application does not issue the MQDISC call but otherwise ends
normally, the unit of work is backed out.

 If the application ends abnormally, the unit of work is backed out; this has
the same effect as the application issuing the MQBACK call.

6. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls
within a unit of work, but which never issues a commit or back-out call, will
cause queues to fill up with messages that are not available to other

applications.
RPG invocation
{08 R RS AR BUU U U NS JPPP s DRDUPUPEE SRR o PPN Y A
C CALLP MQCMIT(HCONN : COMCOD : REASON)

The prototype definition for the call is:

[0 NS SRR BU U SN RN SPUPUPU . DUPIPOE SO ¢ PRI P A
DMQCMIT PR EXTPROC ('MQCMIT"')

D* Connection handle

D HCONN 101 0 VALUE

D* Completion code

D ComCoD 10I 0

D* Reason code qualifying COMCOD

D REASON 101 0

Chapter 26. MQCMIT - Commit changes 219

RPG invocation

220 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 27. MQCONN - Connect queue manager

The MQCONN call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent message queuing calls.

+ On 0S/400®, applications running in compatibility mode do not have to issue
this call. These applications are connected automatically to the queue manager
when they issue the first MQOPEN call. However, the MQCONN and MQDISC
calls are still accepted from OS/400 applications.

Other applications (that is, applications not running in compatibility mode) must
use the MQCONN or MQCONNX call to connect to the queue manager, and the
MQDISC call to disconnect from the queue manager. This is the recommended
style of programming.

Syntax

MQCONN (QMNAME, HCONN, CMPCOD, REASON)

Parameters

QMNAME (48-byte character string) — input
Name of queue manager.

This is the name of the queue manager to which the application wishes to
connect. The name can contain the following characters:

» Uppercase alphabetic characters (A through Z)

» Lowercase alphabetic characters (a through z)

* Numeric digits (0 through 9)

* Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but may contain
trailing blanks. A null character can be used to indicate the end of significant
data in the name; the null and any characters following it are treated as blanks.

The following restrictions apply in the environments indicated:

* On 0OS/400, names containing lowercase characters, forward slash, or
percent must be enclosed in quotation marks when specified on commands.
These quotation marks must not be specified in the QMNAME parameter.

If the name consists entirely of blanks, the name of the default queue manager
is used.

The name specified for QMNAME must be the name of a connectable queue
manager.

MQ client applications: For MQ client applications, a connection is attempted
for each client-connection channel definition with the specified queue-manager
name, until one is successful. The queue manager, however, must have the
same name as the specified name. If an all-blank name is specified, each

© Copyright IBM Corp. 1994, 2000 221

MQCONN — Connect queue manager

client-connection channel with an all-blank queue-manager name is tried until
one is successful; in this case there is no check against the actual name of the
gueue manager.

Queue-manager groups: If the specified name starts with an asterisk (*), the
actual queue manager to which connection is made may have a name that is
different from that specified by the application. The specified name (without
the asterisk) defines a group of queue managers that are eligible for connection.
The implementation selects one from the group by trying each one in turn (in
no defined order) until one is found to which a connection can be made. If
none of the queue managers in the group is available for connection, the call
fails. Each queue manager is tried once only. If an asterisk alone is specified for
the name, an implementation-defined default queue-manager group is used.

Queue-manager groups are supported only for applications running in a client
environment; the call fails if a non-client application specifies a queue-manager
name beginning with an asterisk. A group is defined by providing several
client connection channel definitions with the same queue-manager name (the
specified name without the asterisk), to communicate with each of the queue
managers in the group. The default group is defined by providing one or more
client connection channel definitions, each with a blank queue-manager name
(specifying an all-blank name therefore has the same effect as specifying a
single asterisk for the name for a client application).

After connecting to one queue manager of a group, an application can specify
blanks in the usual way in the queue-manager name fields in the message and
object descriptors to mean the name of the queue manager to which the
application has actually connected (the local queue manager). If the application
needs to know this name, the MQINQ call can be issued to inquire the
QMgrName queue-manager attribute.

Prefixing an asterisk to the connection name in this way implies that the
application is not sensitive to which queue manager in the group the
application is connected. This will not be suitable for certain types of
application, for example those which need to get messages from a particular
queue at a particular queue manager; such applications should not prefix the
name with an asterisk. Use of queue-manager groups is suitable for
applications that put messages, and/or get messages from temporary dynamic
queues which they have created.

Note that if an asterisk is specified, the maximum length of the remainder of
the name is 47 characters.

The length of this parameter is given by LNQMN.
HCONN (10-digit signed integer) — output

Connection handle.

This handle represents the connection to the queue manager. It must be
specified on all subsequent message queuing calls issued by the application. It
ceases to be valid when the MQDISC call is issued, or when the unit of
processing that defines the scope of the handle terminates.

222 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQCONN — Connect queue manager

The scope of the handle is restricted to the smallest unit of parallel processing
supported by the platform on which the application is running; the handle is
not valid outside the unit of parallel processing from which the MQCONN call
was issued.

* On 0S/400, the scope of the handle is the job issuing the call.

On 0OS/400 for applications running in compatibility mode, the value returned
is:

HCDEFH
Default connection handle.

CMPCOD (10-digit signed integer) — output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE
(0, X'000") No reason to report.

If CMPCOD is CCWARN:
RC2002
(2002, X'7D2") Application already connected.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB") MQI call reentered before previous call complete.
RC2267

(2267, X'8DB'") Unable to load cluster workload exit.
RC2009

(2009, X'7D9") Connection to queue manager lost.
RC2273

(2273, X'8E1") Error processing MQCONN call.
RC2018

(2018, X'7E2") Connection handle not valid.
RC2035

(2035, X'7F3") Not authorized for access.
RC2137

(2137, X'859") Object not opened successfully.
RC2058

(2058, X'80A") Queue manager name not valid or not known.
RC2059

(2059, X'80B") Queue manager not available for connection.
RC2161

(2161, X'871") Queue manager quiescing.
RC2162

(2162, X'872") Queue manager shutting down.

Chapter 27. MQCONN - Connect queue manager 223

MQCONN — Connect queue manager

RC2102
(2102, X'836") Insufficient system resources available.
RC2063
(2063, X'80F") Security error occurred.
RC2071
(2071, X'817") Insufficient storage available.
RC2195
(2195, X'893") Unexpected error occurred.

For more information on these reason codes, see EAppendix A_Return codes’]

Usage notes

1. The queue manager to which connection is made using the MQCONN call is
called the local queue manager.

2. Queues that belong to the local queue manager appear to the application as
local queues. It is possible to put messages on and get messages from local
queues.

Queues belonging to remote queue managers appear as remote queues. It is
possible to put messages on remote queues, but not possible to get messages
from remote queues.

3. If the queue manager fails while an application is running, the application must
issue the MQCONN call again in order to obtain a new connection handle to
use on subsequent MQ calls. The application can issue the MQCONN call
periodically until the call succeeds.

If an application is not sure whether it is connected to the queue manager, the
application can safely issue an MQCONN call in order to obtain a connection
handle. If the application is already connected, the handle returned is the same
as that returned by the previous MQCONN call, but with completion code
CCWARN and reason code RC2002.

4. When the application has finished using MQ calls, the application should use
the MQDISC call to disconnect from the queue manager.

5. On OS/400, applications written for previous releases of the queue manager
can run without the need for recompilation. This is called compatibility mode.
This mode of operation provides a compatible run-time environment for
applications. It comprises the following:

* The service program AMQZSTUB residing in the library QMQM.
AMQZSTUB provides the same public interface as previous releases, and has
the same signature. This service program can be used to access the MQI
through bound procedure calls.

* The program QMQM residing in the library QMQM.

QMQM provides a means of accessing the MQI through dynamic program
calls.

* Programs MQCLOSE, MQCONN, MQDISC, MQGET, MQINQ, MQOPEN,
MQPUT, MQPUTL1, and MQSET residing in the library QMQM.

These programs also provide a means of accessing the MQI through dynamic

program calls, but with a parameter list that corresponds to the standard
descriptions of the MQ calls.

224 MQSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

These three interfaces do not include capabilities that were introduced in
version 5.1. For example, the MQBACK, MQCMIT, and MQCONNX calls are
not supported. The support provided by these interfaces is for single-threaded
applications only.

Support for the new MQ calls in single-threaded applications, and for all MQ
calls in multi-threaded applications, is provided through the service programs
LIBMQM and LIBMQM _R respectively.

RPG invocation

[0 R PSP SN, FUPPUPE PR’ SRS SRR DU R« DA SR A
C CALLP MQCONN (QMNAME : HCONN : CMPCOD :
C REASON)

The prototype definition for the call is:

[0 /RS SN BUU SR RN SPUPUPR . DUPIPE SO ¢ PRI P A
DMQCONN PR EXTPROC ("MQCONN"')

D* Name of queue manager

D QMNAME 48A

D* Connection handle

D HCONN 10I 0

D* Completion code

D CMPCOD 10I 0

D* Reason code qualifying CMPCOD

D REASON 10I 0

Chapter 27. MQCONN - Connect queue manager 225

Usage notes

226 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 28. MQCONNX - Connect queue manager (extended)

The MQCONNX call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent MQ calls.

The MQCONNX call is similar to the MQCONN call, except that MQCONNX
allows options to be specified to control the way that the call works.

* On 0OS/400, this call is not supported for applications running in compatibility
mode.

Syntax

MQCONNX (QMNAME, CNOPT, HCONN, CMPCOD, REASON)

Parameters

QMNAME (48-byte character string) — input
Name of queue manager.

See the QMNAME parameter described in F‘Chapter 27 MQCONN - Connect
gueue manager” on page 221 for details.

CNOPT (MQCNO) - input/output
Options that control the action of MQCONNX.

See ‘Chapter 5 MQCNO - Connect options” on page 31 for details.

HCONN (10-digit signed integer) — output
Connection handle.

See the HCONN parameter described in EChapter 27 MQCQNN. - Connect gueud
manager” on page 221 for details.

CMPCOD (10-digit signed integer) — output
Completion code.

See the CMPCOD parameter described in EChapter 27 MQCQNN - Connect
Gueue manager” an page 221 for details.

REASON (10-digit signed integer) — output
Reason code qualifying CMPCOD.

See the REASON parameter described in EChapter 27 MQCQNN - Connect
Gueue manager” on page 221 for details of possible reason codes.

The following additional reason codes can be returned by the MQCONNX call:

If CMPCOD is CCFAIL:
RC2278

(2278, X'8E6") Client connection fields not valid.
RC2139

(2139, X'85B") Connect-options structure not valid.

© Copyright IBM Corp. 1994, 2000 227

MQCONNX — Connect queue manager (extended)

RC2046
(2046, X'7TFE") Options not valid or not consistent.

For more information on these reason codes, see I‘Appendix A. Return codes’]
RPG invocation

[0 P NS SR TSP T UL, TP PR ¢ DU S A

C CALLP MQCONNX (QMNAME : CNOPT : HCONN :

C CMPCOD : REASON)

The prototype definition for the call is:

L A A o S - R ¢ P Y A
DMQCONNX PR EXTPROC ('MQCONNX")
D+ Name of queue manager

D QMNAME 48A

D+ Options that control the action of MQCONNX

D CNOPT 32A

D+ Connection handle

D HCONN 10I 0

D+ Completion code

D CMPCOD 10I 0

D* Reason code qualifying CMPCOD

D REASON 10I 0

228 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 29. MQDISC - Disconnect queue manager

The MQDISC call breaks the connection between the queue manager and the
application program, and is the inverse of the MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, this call is not

necessary. See LChapLeLZLMQC.QNN_C.aanect_queue_manager_an_page_zﬂ for

more information.

Syntax

MQDISC (HCONN, CMPCOD, REASON)

Parameters

HCONN (10-digit signed integer) — input/output
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

On successful completion of the call, the queue manager sets HCONN to a value
that is not a valid handle for the environment. This value is:

HCUNUH
Unusable connection handle.

CMPCOD (10-digit signed integer) — output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE
(0, X'000") No reason to report.

If CMPCOD is CCFAIL:

© Copyright IBM Corp. 1994, 2000 229

MQDISC — Disconnect queue manager

RC2219

(2219, X'8AB") MQI call reentered before previous call complete.
RC2009

(2009, X'7D9") Connection to queue manager lost.
RC2018

(2018, X'7E2") Connection handle not valid.
RC2058

(2058, X'80A") Queue manager name not valid or not known.
RC2059

(2059, X'80B") Queue manager not available for connection.
RC2162

(2162, X'872") Queue manager shutting down.
RC2102

(2102, X'836") Insufficient system resources available.
RC2071

(2071, X'817") Insufficient storage available.
RC2195

(2195, X'893") Unexpected error occurred.

For more information on these reason codes, see EAppendix A_Return cades’]

Usage notes

1. If an MQDISC call is issued when the application still has objects open, these
objects are implicitly closed, with the close options set to CONONE.

2. On 0S/400 for applications running in compatibility mode, this call need not
be used; see the MQCONN call for more details.

RPG invocation

[RS SR PUN. SN U SO AU SPUPUPU. DUPIPE SO ¢ PRSP P AN
C CALLP MQDISC(HCONN : CMPCOD : REASON)

The prototype definition for the call is:

Dx..l. .ot 2ecnitee 3t b bl aBel sl T
DMQDISC PR EXTPROC('MQDISC')

D* Connection handle

D HCONN 101 0

D+ Completion code

D CMPCOD 101 0

D* Reason code qualifying CMPCOD

D REASON 101 0

230 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 30. MQGET - Get message

The MQGET call retrieves a message from a local queue that has been opened
using the MQOPEN call.

Syntax

MQGET (HCONN, HOBJ, MSGDSC, GMO, BUFLEN, BUFFER, DATLEN,
CMPCOD, REASON)

Parameters

HCONN (10-digit signed integer) — input
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On 0OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) — input
Object handle.

This handle represents the queue from which a message is to be retrieved. The
value of HOBJ was returned by a previous MQOPEN call. The queue must have
been opened with one or more of the following options (see
MQOPEN - Open object” on page 251 for details):

OOINPS

OOINPX

OOINPQ

OOBRW

MSGDSC (MQMD) - input/output
Message descriptor.

This structure describes the attributes of the message required, and the

attributes of the message retrieved. See LC.ha.pLELLD_I&A.Q.M.D_I&Ae.ssa.gd
Hescriptor” on page 83 for details.

If BUFLEN is less than the message length, MSGDSC is still filled in by the queue
manager, whether or not GMATM is specified on the GMO parameter (see the
GMOPT field described in - -

hage 51).

If the application provides a version-1 MQMD, the message returned has an
MQMDE prefixed to the application message data, but only if one or more of
the fields in the MQMDE has a nondefault value. If all of the fields in the
MQMDE have default values, the MQMDE is omitted. A format name of
FMMDE in the MDFMT field in MQMD indicates that an MQMDE is present.

© Copyright IBM Corp. 1994, 2000 231

MQGET — Get message
GM0 (MQGMO) - input/output
Options that control the action of MQGET.

See l‘Chapter 8. MQGMQ - Get-message options” on page 51 for details.

BUFLEN (10-digit signed integer) — input
Length in bytes of the BUFFER area.

Zero can be specified for messages that have no data, or if the message is to be
removed from the queue and the data discarded (GMATM must be specified in
this case).

Note: The length of the longest message that it is possible to read from the
queue is given by the MaxMsglength local queue attribute; see

BUFFER (1-byte bit stringxBUFLEN) — output
Area to contain the message data.

If BUFLEN is less than the message length, as much of the message as possible is
moved into BUFFER; this happens whether or not GMATM s specified on the

GMO parameter (see the GMOPT field described in tChapter 8 MQGMOQ

= for more information).

The character set and encoding of the data in BUFFER are given (respectively)
by the MDCSI and MDENC fields returned in the MSGDSC parameter. If these are
different from the values required by the receiver, the receiver must convert the
application message data to the character set and encoding required. The
GMCONYV option can be used with a user-written exit to perform the
conversion of the message data (see t‘Chapter 8 MQGMQO - Get-messagd
bptions” on page 51| for details of this option).

Note: All of the other parameters on the MQGET call are in the character set
and encoding of the local queue manager (given by the CodedCharSetid
gueue-manager attribute and ENNAT, respectively).

If the call fails, the contents of the buffer may still have changed.

DATLEN (10-digit signed integer) — output
Length of the message.

This is the length in bytes of the application data in the message. If this is
greater than BUFLEN, only BUFLEN bytes are returned in the BUFFER parameter
(that is, the message is truncated). If the value is zero, it means that the
message contains no application data.

If BUFLEN is less than the message length, DATLEN is still filled in by the queue
manager, whether or not GMATM s specified on the GMO parameter (see the
GMOPT field described in EChapter 8 MQGMQ - Get-message options” od

for more information). This allows the application to determine the
size of the buffer required to accommodate the message data, and then reissue
the call with a buffer of the appropriate size.

However, if the GMCONV option is specified, and the converted message data
is too long to fit in BUFFER, the value returned for DATLEN is:

* The length of the unconverted data, for queue-manager defined formats.

232 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGET — Get message

In this case, if the nature of the data causes it to expand during conversion,
the application must allocate a buffer somewhat bigger than the value
returned by the queue manager for DATLEN.

* The value returned by the data-conversion exit, for application-defined
formats.

CMPCOD (10-digit signed integer) — output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying CMPCOD.

The reason codes listed below are the ones that the queue manager can return
for the REASON parameter. If the application specifies the GMCONV option, and
a user-written exit is invoked to convert some or all of the message data, it is
the exit that decides what value is returned for the REASON parameter. As a
result, values other than those documented below are possible.

If CMPCOD is CCOK :
RCNONE
(0, X'000") No reason to report.

If CMPCOD is CCWARN:
RC2120

(2120, X'848") Converted data too big for buffer.
RC2190

(2190, X'88E") Converted string too big for field.
RC2150

(2150, X'866") DBCS string not valid.
RC2110

(2110, X'83E") Message format not valid.
RC2243

(2243, X'8C3") Message segments have differing CCSIDs.
RC2244

(2244, X'8C4") Message segments have differing encodings.
RC2209

(2209, X'8A1") No message locked.
RC2119

(2119, X'847") Message data not converted.
RC2145

(2145, X'861") Source buffer parameter not valid.
RC2111

(2111, X'83F") Source coded character set identifier not valid.
RC2113

(2113, X'841") Packed-decimal encoding in message not recognized.
RC2114

(2114, X'842") Floating-point encoding in message not recognized.
RC2112

(2112, X'840") Source integer encoding not recognized.

Chapter 30. MQGET - Get message 233

MQGET — Get message

RC2143
(2143, X'85F") Source length parameter not valid.
RC2146
(2146, X'862") Target buffer parameter not valid.
RC2115
(2115, X'843") Target coded character set identifier not valid.
RC2117
(2117, X'845") Packed-decimal encoding specified by receiver not
recognized.
RC2118
(2118, X'846") Floating-point encoding specified by receiver not
recognized.
RC2116
(2116, X'844") Target integer encoding not recognized.
RC2079
(2079, X'81F") Truncated message returned (processing completed).
RC2080

(2080, X'820") Truncated message returned (processing not completed).

If CMPCOD is CCFAIL:
RC2004

(2004, X'7D4") Buffer parameter not valid.
RC2005

(2005, X'7D5") Buffer length parameter not valid.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9") Connection to queue manager lost.
RC2010

(2010, X'7TDA") Data length parameter not valid.
RC2016

(2016, X'7EQ") Gets inhibited for the queue.
RC2186

(2186, X'88A") Get-message options structure not valid.
RC2018

(2018, X'7E2") Connection handle not valid.
RC2019

(2019, X'7E3") Object handle not valid.
RC2241

(2241, X'8C1") Message group not complete.
RC2242

(2242, X'8C2") Logical message not complete.
RC2259

(2259, X'8D3") Inconsistent browse specification.
RC2245

(2245, X'8C5") Inconsistent unit-of-work specification.
RC2246

(2246, X'8C6") Message under cursor not valid for retrieval.
RC2247

(2247, X'8C7") Match options not valid.
RC2026

(2026, X'TEA") Message descriptor not valid.
RC2250

(2250, X'8CA") Message sequence number not valid.
RC2033

(2033, X'7F1") No message available.

234 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQGET — Get message

RC2034

(2034, X'7F2" Browse cursor not positioned on message.
RC2036

(2036, X'7F4") Queue not open for browse.
RC2037

(2037, X'7F5") Queue not open for input.
RC2041

(2041, X'7F9") Object definition changed since opened.
RC2101

(2101, X'835") Object damaged.
RC2046

(2046, X'7FE") Options not valid or not consistent.
RC2052

(2052, X'804") Queue has been deleted.
RC2058

(2058, X'80A") Queue manager name not valid or not known.
RC2059

(2059, X'80B") Queue manager not available for connection.
RC2161

(2161, X'871") Queue manager quiescing.
RC2162

(2162, X'872") Queue manager shutting down.
RC2102

(2102, X'836") Insufficient system resources available.
RC2071

(2071, X'817") Insufficient storage available.
RC2024

(2024, X'7TE8") No more messages can be handled within current unit of

work.
RC2072

(2072, X'818") Syncpoint support not available.
RC2195

(2195, X'893") Unexpected error occurred.
RC2255

(2255, X'8CF') Unit of work not available for the queue manager to use.
RC2090

(2090, X'82A") Wait interval in MQGMO not valid.
RC2256

(2256, X'8D0") Wrong version of MQGMO supplied.
RC2257

(2257, X'8D1") Wrong version of MQMD supplied.

For more information on these reason codes, see Appendix A Return codes’]

Usage notes

1. The message retrieved is normally deleted from the queue. This deletion can

occur as part of the MQGET call itself, or as part of a syncpoint. Message
deletion does not occur if an GMBRWF or GMBRWN option is specified on the
GMO parameter (see the GMOPT field described in EChapter 8 MQGMQ
Get-message aptions” on page 51).

If the GMLK option is specified with one of the browse options, the browsed
message is locked so that it is visible only to this handle.

Chapter 30. MQGET - Get message 235

Usage notes

If the GMUNLK option is specified, a previously-locked message is unlocked.
No message is retrieved in this case, and the MSGDSC, BUFLEN, BUFFER and DATLEN
parameters are not checked or altered.

If the application issuing the MQGET call is running as an MQ client, it is
possible for the message retrieved to be lost if during the processing of the
MQGET call the MQ client terminates abnormally or the client connection is
severed. This arises because the surrogate that is running on the
queue-manager’s platform and which issues the MQGET call on the client’s
behalf cannot detect the loss of the client until the surrogate is about to return
the message to the client; this is after the message has been removed from the
queue. This can occur for both persistent messages and nonpersistent messages.

The risk of losing messages in this way can be eliminated by always retrieving
messages within units of work (that is, by specifying the GMSYP option on the
MQGET call, and using the MQCMIT or MQBACK calls to commit or back out
the unit of work when processing of the message is complete). If GMSYP is
specified, and the client terminates abnormally or the connection is severed, the
surrogate backs out the unit of work on the queue manager and the message is
reinstated on the queue.

In principle, the same situation can arise with applications that are running on
the queue-manager’s platform, but in this case the window during which a
message can be lost is very small. However, as with MQ clients the risk can be
eliminated by retrieving the message within a unit of work.

If an application puts a sequence of messages on the same queue without using
message groups, the order of those messages is preserved provided that certain
conditions are satisfied. See the usage notes in the description of the MQPUT
call for details. If the conditions are satisfied, the messages will be presented to
the receiving application in the order in which they were sent, provided that:

* Only one receiver is getting messages from the queue.

If there are two or more applications getting messages from the queue, they
must agree with the sender the mechanism to be used to identify messages
that belong to a sequence. For example, the sender could set all of the MDCID
fields in the messages in a sequence to a value that was unique to that
sequence of messages.

* The receiver does not deliberately change the order of retrieval, for example
by specifying a particular MDMID or MDCID.

If the sending application put the messages as a message group, the messages
will be presented to the receiving application in the correct order provided that
the receiving application specifies the GMLOGO option on the MQGET call.
For more information about message groups, see:

o MDMFL field in MQMD

* PMLOGO option in MQPMO

* GMLOGO option in MQGMO

. Applications should test for the feedback code FBQUIT in the MDFB field of the

MSGDSC parameter. If this value is found, the application should end. See the
MDFB field described in L = i 2

for more information.

If the queue identified by HOBJ was opened with the OOSAVA option, and the
completion code from the MQGET call is CCOK or CCWARN, the context
associated with the queue handle HOBJ is set to the context of the message that
has been retrieved (unless the GMBRWF or GMBRWN option is set, in which
case it is marked as not available). This context can be used on a subsequent

236 MQSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

MQPUT or MQPUT1 call (for example, when a message is forwarded to
another queue). For more information on message context, see the

If the GMCONYV option is included in the GMO parameter, the application
message data is converted to the representation requested by the receiving
application, before the data is placed in the BUFFER parameter:

The MDFMT field in the control information in the message identifies the
structure of the application data, and the MDCST and MDENC fields in the
control information in the message specify its character-set identifier and
encoding.

The application issuing the MQGET call specifies in the MDCSI and MDENC

fields in the MSGDSC parameter the character-set identifier and encoding to
which the application message data should be converted.

If the MDCSI and MDENC values in the control information in the message are
identical to those in the MSGDSC parameter, no conversion is necessary.

When conversion of the message data is necessary, the conversion is performed
either by the queue manager itself or by a user-written exit, depending on the
value of the MDFMT field in the control information in the message:

» The format names listed below are formats that are converted automatically

by the queue manager; these are called “built-in” formats:
FMADMN
FMCICS
FMCMD1
FMCMD?2
FMDLH
FMDH
FMEVNT
FMIMS
FMIMVS
FMMDE
FMPCF
FMRMH
FMSTR
FMTM
FMXQH

* The format name FMNONE is a special value that indicates that the nature

of the data in the message is undefined. As a consequence, the queue
manager does not attempt conversion when the message is retrieved from
the queue.

Note: If GMCONV is specified on the MQGET call for a message that has a
format name of FMNONE, and the character set or encoding of the
message differs from that specified in the MSGDSC parameter, the
message is still returned in the BUFFER parameter (assuming no other
errors), but the call completes with completion code CCWARN and
reason code RC2110.

FMNONE can be used either when the nature of the message data means
that it does not require conversion, or when the sending and receiving
applications have agreed between themselves the form in which the message
data should be sent.

All other format names cause the message to be passed to a user-written exit
for conversion. The exit has the same name as the format, apart from

Chapter 30. MQGET - Get message 237

Usage notes

environment-specific additions. User-specified format names should not
begin with the letters “MQ”, as such names may conflict with format names
supported in the future.

See [‘Appendix F._Data conversion” on page 461 for details of the

data-conversion exit.

User data in the message can be converted between any supported character
sets and encodings. However, be aware that if the message contains one or
more MQ header structures, the message cannot be converted from or to a
character set that has double-byte or multi-byte characters for any of the
characters that are valid in queue names. Reason code RC2111 or RC2115
results if this is attempted, and the message is returned unconverted. Unicode
character set UCS-2 is an example of such a character set.

On return from MQGET, the following reason code indicates that the message
was converted successfully:
RCNONE

The following reason code indicates that the message may have been converted
successfully; the application should check the MDCSI and MDENC fields in the
MSGDSC parameter to find out:

RC2079

All other reason codes indicate that the message was not converted.

Note: The interpretation of the reason code described above will be true for
conversions performed by user-written exits only if the exit conforms to

the Erocessing guidelines described in F*Appendix E_Data conversion” on

For the built-in formats listed above, the queue manager may perform default
conversion of character strings in the message when the GMCONYV option is
specified. Default conversion allows the queue manager to use an
installation-specified default character set that approximates the actual
character set, when converting string data. As a result, the MQGET call can
succeed with completion code CCOK, instead of completing with CCWARN
and reason code RC2111 or RC2115.

Note: The result of using an approximate character set to convert string data is
that some characters may be converted incorrectly. This can be avoided
by using in the string only characters which are common to both the
actual character set and the default character set.

Default conversion applies both to the application message data and to
character fields in the MQMD and MQMDE structures:

» Default conversion of the application message data occurs only when all of
the following are true:
— The application specifies GMCONV.
— The message contains data that must be converted either from or to a
character set which is not supported.
— Default conversion was enabled when the queue manager was installed or
restarted.

» Default conversion of the character fields in the MQMD and MQMDE
structures occurs as necessary, provided that default conversion is enabled
for the queue manager. The conversion is performed even if the GMCONV
option is not specified by the application on the MQGET call.

238 MQSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

8. The BUFFER parameter shown in the RPG programming example is declared as
a string; this restricts the maximum length of the parameter to 256 bytes. If a
larger buffer is required, the parameter should be declared instead as a
structure, or as a field in a physical file.

Declaring the parameter as a structure increases the maximum length possible
to 9999 bytes, while declaring the parameter as a field in a physical file
increases the maximum length possible to approximately 32K bytes.

RPG invocation

Cr..lo. ..., AN SN K Y R SN FSPUPIPIE-SAPUP ¢ DR Sy N
C CALLP MQGET (HCONN : HOBJ : MSGDSC : GMO :
C BUFLEN : BUFFER : DATLEN :

C CMPCOD : REASON)

0L A S P Y ST S T S ¢ DU S A
DMQGET PR EXTPROC ('MQGET")
D* Connection handle

D HCONN 10I 0 VALUE

Dx Object handle

D HOBJ 10I 0 VALUE

D* Message descriptor

D MSGDSC 364A

D+ Options that control the action of MQGET

D GMO 100A

D* Length in bytes of the BUFFER area

D BUFLEN 10T 0 VALUE

D* Area to contain the message data

D BUFFER * VALUE

D* Length of the message

D DATLEN 10I 0

D* Completion code

D CMPCOD 10I 0

D* Reason code qualifying CMPCOD

D REASON 10I 0

Chapter 30. MQGET - Get message 239

Usage notes

240 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 31. MQINQ - Inquire about object attributes

The MQINQ call returns an array of integers and a set of character strings
containing the attributes of an object. The following types of object are valid:
* Queue

* Namelist

* Process definition

* Queue manager

Syntax

MQINQ (HCONN, HOBJ, SELCNT, SELS, IACNT, INTATR, CALEN,
CHRATR, CMPCOD, REASON)

Parameters

HCONN (10-digit signed integer) — input
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) — input
Object handle.

This handle represents the object (of any type) whose attributes are required.
The handle must have been returned by a previous MQOPEN call that
specified the OOINQ option.

SELCNT (10-digit signed integer) — input
Count of selectors.

This is the count of selectors that are supplied in the SELS array. It is the
number of attributes that are to be returned. Zero is a valid value. The
maximum number allowed is 256.

SELS (10-digit signed integerxSELCNT) — input
Array of attribute selectors.

This is an array of SELCNT attribute selectors; each selector identifies an
attribute (integer or character) whose value is required.

Each selector must be valid for the type of object that HOBJ represents,
otherwise the call fails with completion code CCFAIL and reason code RC2067.

In the special case of queues:

» If the selector is not valid for queues of any type, the call fails with
completion code CCFAIL and reason code RC2067.

© Copyright IBM Corp. 1994, 2000 241

MQINQ — Inquire about object attributes

 If the selector is applicable only to queues of type or types other than that of
the object, the call succeeds with completion code CCWARN and reason
code RC2068.

Selectors can be specified in any order. Attribute values that correspond to
integer attribute selectors (IA* selectors) are returned in INTATR in the same
order in which these selectors occur in SELS. Attribute values that correspond
to character attribute selectors (CA* selectors) are returned in CHRATR in the
same order in which those selectors occur. IA* selectors can be interleaved with
the CA* selectors; only the relative order within each type is important.

Notes:

1. The integer and character attribute selectors are allocated within two
different ranges; the 1A* selectors reside within the range IAFRST through
IALAST, and the CA* selectors within the range CAFRST through CALAST.

For each range, the constants IALSTU and CALSTU define the highest
value that the queue manager will accept.

2. If all of the IA* selectors occur first, the same element numbers can be used
to address corresponding elements in the SELS and INTATR arrays.

For the CA* selectors in the following descriptions, the constant that defines
the length in bytes of the resulting string in CHRATR is given in parentheses.

Selectors for queue manager

CAALTD

Date of most-recent alteration (LNDATE).
CAALTT

Time of most-recent alteration (LNTIME).
CACADX

Automatic channel definition exit name (LNEXN).
CACLWD

Data passed to cluster workload exit (LNEXDA).
CACLWX

Name of cluster workload exit (LNEXN).
CACMDQ

System command input queue name (LNQN).
CADLQ

Name of dead-letter queue (LNQN).
CADXQN

Default transmission queue name (LNQN).
CAQMD

Queue manager description (LNQMD).
CAQMID

Queue-manager identifier (LNQMID).
CAQMN

Name of local queue manager (LNQMN).
CARPN

Name of cluster for which queue manager provides repository
services (LNQMN).
CARPNL
Name of namelist object containing names of clusters for which
queue manager provides repository services (LNNLN).
IAAUTE
Control attribute for authority events.
IACAD
Control attribute for automatic channel definition.

242 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQINQ — Inquire about object attributes

IACADE
Control attribute for automatic channel definition events.
IACLWL
Cluster workload length.
IACCSI
Coded character set identifier.
IACMDL
Command level supported by queue manager.
IADIST
Distribution list support.
IAINHE
Control attribute for inhibit events.
IALCLE
Control attribute for local events.
IAMHND
Maximum number of handles.
IAMLEN
Maximum message length.
IAMPRI
Maximum priority.
IAMUNC
Maximum number of uncommitted messages within a unit of
work.
IAPFME
Control attribute for performance events.
IAPLAT
Platform on which the queue manager resides.
IARMTE
Control attribute for remote events.
IASSE Control attribute for start stop events.
IASYNC
Syncpoint availability.
IATRGI
Trigger interval.

Selectors for namelists

CAALTD

Date of most-recent alteration (LNDATE).
CAALTT

Time of most-recent alteration (LNTIME).
CALSTD

Namelist description (LNNLD).
CALSTN

Name of namelist object (LNNLN).
CANAMS

Names in the namelist (LNQN x Number of names in the

list).
IANAMC

Number of names in the namelist.

Selectors for all types of queue
If the queue being inquired is a cluster queue, the selectors that are
valid depend on how the queue was resolved; see usage note 4 for
further details.
CAALTD
Date of most-recent alteration (LNDATE).

Chapter 31. MQINQ - Inquire about object attributes 243

MQINQ — Inquire about object attributes

CAALTT

Time of most-recent alteration (LNTIME).
CAQD

Queue description (LNQD).
CAQN

Queue name (LNQN).
IADPER

Default message persistence.
IADPRI

Default message priority.
IAIPUT

Whether put operations are allowed.
IAQTYP

Queue type.

Selectors for local queues
If the queue being inquired is a cluster queue, the selectors that are
valid depend on how the queue was resolved; see usage note 4 for
further details.
CABRQN
Excessive backout requeue name (LNQN).
CACLN
Cluster name (LNCLUN).
CACLNL
Cluster namelist (LNNLN).
CACRTD
Queue creation date (LNCRTD).
CACRTT
Queue creation time (LNCRTT).
CAINIQ
Initiation queue name (LNQN).
CAPRON
Name of process definition (LNPRON).
CATRGD
Trigger data (LNTRGD).
IABTHR
Backout threshold.
IACDEP
Number of messages on queue.
IADBND
Default binding.
IADINP
Default open-for-input option.
IADEFT
Queue definition type.
IADIST
Distribution list support.
IAHGB
Whether to harden backout count.
IAIGET
Whether get operations are allowed.
IAMLEN
Maximum message length.
IAMDEP
Maximum number of messages allowed on queue.

244 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQINQ — Inquire about object attributes

IAMDS
Whether message priority is relevant.
IAOIC
Number of MQOPEN calls that have the queue open for input.
IAOOC
Number of MQOPEN calls that have the queue open for
output.
IAQDHE
Control attribute for queue depth high events.
IAQDHL
High limit for queue depth.
IAQDLE
Control attribute for queue depth low events.
IAQDLL
Low limit for queue depth.
IAQDME

Control attribute for queue depth max events.
IAQSI Limit for queue service interval.
IAQSIE
Control attribute for queue service interval events.
IARINT
Queue retention interval.
IASCOP
Queue definition scope.
IASHAR
Whether queue can be shared.
IATRGC
Trigger control.
IATRGD
Trigger depth.
IATRGP
Threshold message priority for triggers.
IATRGT
Trigger type.
IAUSAG
Usage.

Selectors for local definitions of remote queues
CACLN
Cluster name (LNCLUN).
CACLNL
Cluster namelist (LNNLN).
CARQMN
Name of remote queue manager (LNQMN).
CARQN
Name of remote queue as known on remote queue manager
(LNQN).
CAXQN
Transmission queue name (LNQN).
IADBND
Default binding.
IASCOP
Queue definition scope.

Selectors for alias queues
CABASQ
Name of queue that alias resolves to (LNQN).

Chapter 31. MQINQ - Inquire about object attributes 245

MQINQ — Inquire about object attributes

CACLN

Cluster name (LNCLUN).
CACLNL

Cluster namelist (LNNLN).
IADBND

Default binding.
IAIGET

Whether get operations are allowed.
IASCOP

Queue definition scope.

Selectors for process definitions

CAALTD

Date of most-recent alteration (LNDATE).
CAALTT

Time of most-recent alteration (LNTIME).
CAAPPI

Application identifier (LNPROA).
CAENVD

Environment data (LNPROE).
CAPROD

Description of process definition (LNPROD).
CAPRON

Name of process definition (LNPRON).
CAUSRD

User data (LNPROU).
IAAPPT

Application type.

TACNT (10-digit signed integer) — input

Count of integer attributes.
This is the number of elements in the INTATR array. Zero is a valid value.

If this is at least the number of IA* selectors in the SELS parameter, all integer
attributes requested are returned.

INTATR (10-digit signed integerxIACNT) — output

Array of integer attributes.
This is an array of IACNT integer attribute values.

Integer attribute values are returned in the same order as the IA* selectors in
the SELS parameter. If the array contains more elements than the number of
IA* selectors, the excess elements are unchanged.

If HOBJ represents a queue, but an attribute selector is not applicable to that
type of queue, the specific value IAVNA is returned for the corresponding
element in the INTATR array.

CALEN (10-digit signed integer) — input

Length of character attributes buffer.
This is the length in bytes of the CHRATR parameter.

This must be at least the sum of the lengths of the requested character
attributes (see SELS). Zero is a valid value.

246 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQINQ — Inquire about object attributes

CHRATR (1-byte character stringxCALEN) — output
Character attributes.

This is the buffer in which the character attributes are returned, concatenated
together. The length of the buffer is given by the CALEN parameter.

Character attributes are returned in the same order as the CA* selectors in the
SELS parameter. The length of each attribute string is fixed for each attribute
(see SELS), and the value in it is padded to the right with blanks if necessary. If
the buffer is larger than that needed to contain all of the requested character
attributes (including padding), the bytes beyond the last attribute value
returned are unchanged.

If HOBJ represents a queue, but an attribute selector is not applicable to that
type of queue, a character string consisting entirely of asterisks (*) is returned
as the value of that attribute in CHRATR.

CMPCOD (10-digit signed integer) — output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE
(0, X'000") No reason to report.

If CMPCOD is CCWARN:
RC2008

(2008, X'7D8") Not enough space allowed for character attributes.
RC2022

(2022, X'7E6") Not enough space allowed for integer attributes.
RC2068

(2068, X'814") Selector not applicable to queue type.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB'") MQI call reentered before previous call complete.
RC2006

(2006, X'7D6") Length of character attributes not valid.
RC2007

(2007, X'7D7") Character attributes string not valid.
RC2009

(2009, X'7D9") Connection to queue manager lost.
RC2018

(2018, X'7E2") Connection handle not valid.
RC2019

(2019, X'7E3") Object handle not valid.

Chapter 31. MQINQ - Inquire about object attributes 247

MQINQ — Inquire about object attributes

RC2021

(2021, X'7TE5") Count of integer attributes not valid.
RC2023

(2023, X'7ET") Integer attributes array not valid.
RC2038

(2038, X'7F6") Queue not open for inquire.
RC2041

(2041, X'7F9") Obiject definition changed since opened.
RC2101

(2101, X'835") Object damaged.
RC2052

(2052, X'804") Queue has been deleted.
RC2058

(2058, X'80A") Queue manager name not valid or not known.
RC2059

(2059, X'80B') Queue manager not available for connection.
RC2162

(2162, X'872") Queue manager shutting down.
RC2102

(2102, X'836") Insufficient system resources available.
RC2065

(2065, X'811") Count of selectors not valid.
RC2067

(2067, X'813") Attribute selector not valid.
RC2066

(2066, X'812") Count of selectors too big.
RC2071

(2071, X'817") Insufficient storage available.
RC2195

(2195, X'893") Unexpected error occurred.

For more information on these reason codes, see I‘Appendix A Return codes’]

Usage notes

1. The values returned are a snapshot of the selected attributes. There is no
guarantee that the attributes will not change before the application can act
upon the returned values.

2. When you open a model queue, even for inquiring about its attributes, a
dynamic queue is created. The attributes of the dynamic queue (except for
CreationDate, CreationTime, and DefinitionType) are the same as those of the
model queue at the time the dynamic queue is created. If you subsequently use
the MQINQ call with the same object handle, the queue manager returns the
attributes of the dynamic queue, not those of the model queue.

3. If the object being inquired is an alias queue, the attribute values returned by
the MQINQ call are those of the alias queue, and not those of the base queue to
which the alias resolves.

4. If the object being inquired is a cluster queue, the attributes that can be
inquired depend on how the queue is opened:

 If the cluster queue is opened for inquire plus one or more of input, browse,
or set, there must be a local instance of the cluster queue in order for the
open to succeed. In this case the attributes that can be inquired are those
valid for local queues.

248 MQSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

» If the cluster queue is opened for inquire alone, or inquire and output, only
the attributes listed below can be inquired; the QType attribute has the value
QTCLUS in this case:

CAQD
CAQN
IADBND
IADPER
IADPRI
IAIPUT
IAQTYP

If the cluster queue is opened with no fixed binding (that is, OOBNDN
specified on the MQOPEN call, or OOBNDQ specified when the DefBind
attribute has the value BNDNOT), successive MQINQ calls for the queue
may inquire different instances of the cluster queue, although usually all of
the instances have the same attribute values.

For more information about cluster queues, refer to the MQSeries Queue
Manager Clusters book.

5. If a number of attributes are to be inquired, and subsequently some of them are
to be set using the MQSET call, it may be convenient to position at the
beginning of the selector arrays the attributes that are to be set, so that the
same arrays (with reduced counts) can be used for MQSET.

6. If more than one of the warning situations arise (see the CMPCOD parameter), the
reason code returned is the first one in the following list that applies:
a. RC2068
b. RC2022
c. RC2008

7. For more information about object attributes, see IChapter 36 Attributes of

Chapter 31. MQINQ - Inquire about object attributes 249

RPG invocation

RPG invocation

[0 AR PSP SN PUPIPUP NI’ SRS R, DUPPRRE NN« PP SRR A
C CALLP MQINQ(HCONN : HOBJ : SELCNT :

C SELS(1) : IACNT : INTATR(1) :
C CALEN : CHRATR : CMPCOD :

C REASON)

L R U N DN PN SO AU - RAPUPPE AP < PP P A
DMQINQ PR EXTPROC('MQINQ')
D+ Connection handle

D HCONN 101 0 VALUE
D* Object handle

D HOBJ 10I 0 VALUE
D+ Count of selectors

D SELCNT 10I 0 VALUE
D* Array of attribute selectors

D SELS 10I 0

D+ Count of integer attributes

D IACNT 10I 0 VALUE
D* Array of integer attributes

D INTATR 10I 0

D+ Length of character attributes buffer

D CALEN 10I 0 VALUE
D+ Character attributes

D CHRATR * VALUE
D* Completion code

D CMPCOD 10I 0

D* Reason code qualifying CMPCOD

D REASON 10I 0

250 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 32. MQOPEN - Open object

The MQOPEN call establishes access to an object. The following types of object are
valid:

* Queue (including distribution lists)

* Namelist

* Process definition

* Queue manager

Syntax

MQOPEN (HCONN, 0BJDSC, OPTS, HOBJ, CMPCOD, REASON)

Parameters

HCONN (10-digit signed integer) — input
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

0BJDSC (MQOD) - input/output
Object descriptor.

This is a structure that identifies the object to be opened; see m

MQQD - Qhject descriptar” on page 137 for details.

If the 0DON field in the 0BJDSC parameter is the name of a model queue, a
dynamic local queue is created with the attributes of the model queue; this
happens irrespective of the open options specified by the OPTS parameter.
Subsequent operations using the HOBJ returned by the MQOPEN call are
performed on the new dynamic queue, and not on the model queue. This is
true even for the MQINQ and MQSET calls. The name of the model queue in
the 0BJDSC parameter is replaced with the name of the dynamic queue created.
The type of the dynamic queue is determined by the value of the
DefinitionType attribute of the model queue (see ‘Chapter 38 Attributes for
lacal queues and madel queues” an page 29d). For information about the close
options applicable to dynamic queues, see the description of the MQCLOSE
call.

OPTS (10-digit signed integer) — input
Options that control the action of MQOPEN.

At least one of the following options must be specified:

OOBRW
OOINP* (only one of these)

© Copyright IBM Corp. 1994, 2000 251

MQOPEN — Open object

OOINQ
OooouT
OOSET

See below for details of these options; other options can be specified as
required. If more than one option is required, the values can be added together
(do not add the same constant more than once). Combinations that are not
valid are noted; all other combinations are valid. Only options that are

licable to the type of object specified by 0BJDSC are allowed (see

).

Access options: The following options control the type of operations that can
be performed on the object:

OOINPQ
Open queue to get messages using queue-defined default.

The queue is opened for use with subsequent MQGET calls. The type
of access is either shared or exclusive, depending on the value of the

DefInputOpenOption queue attribute; see EChapter 38 _Attributes foul
lacal queues and maodel queues” an page 299

for details.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

OOINPS
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call
can succeed if the queue is currently open by this or another
application with OOINPS, but fails with reason code RC2042 if the
gueue is currently open with OOINPX.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

OOINPX
Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The call
fails with reason code RC2042 if the queue is currently open by this or
another application for input of any type (OOINPS or OOINPX).

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

The following notes apply to these options:
* Only one of these options can be specified.
* An MQOPEN call with one of these options can succeed even if the

InhibitGet queue attribute is set to QAGETI (although subsequent MQGET
calls will fail while the attribute is set to this value).

» If the queue is defined as not being shareable (that is, the Shareability
local-queue attribute has the value QANSHR), attempts to open the queue
for shared access are treated as attempts to open the queue with exclusive
access.

252 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQOPEN — Open object

* If an alias queue is opened with one of these options, the test for exclusive
use (or for whether another application has exclusive use) is against the base
gqueue to which the alias resolves.

* These options are not valid if 0DMN is the name of a queue manager alias;
this is true even if the value of the RemoteQMgrName attribute in the local
definition of a remote queue used for queue-manager aliasing is the name of
the local queue manager.

OOBRW
Open queue to browse messages.

The queue is opened for use with subsequent MQGET calls with one
of the following options:

GMBRWF

GMBRWN

GMBRWC

This is allowed even if the queue is currently open for OOINPX. An
MQOPEN call with the OOBRW option establishes a browse cursor,
and positions it logically before the first message on the queue; see the

GMOPT field described in EChapter 8 MQGMQ - Get-message aptions’]

for further information.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects which are not
queues. It is also not valid if 0DMN is the name of a queue manager
alias; this is true even if the value of the RemoteQMgriame attribute in
the local definition of a remote queue used for queue-manager aliasing
is the name of the local queue manager.

ooouT
Open queue to put messages.

The queue is opened for use with subsequent MQPUT calls.

An MQOPEN call with this option can succeed even if the InhibitPut
gueue attribute is set to QAPUTI (although subsequent MQPUT calls
will fail while the attribute is set to this value).

This option is valid for all types of queue, including distribution lists.

OOINQ
Open object to inquire attributes.

The queue, namelist, process definition, or queue manager is opened
for use with subsequent MQINQ calls.

This option is valid for all types of object other than distribution lists.

It is not valid if ODMN is the name of a queue manager alias; this is true
even if the value of the RemoteQMgrName attribute in the local definition
of a remote queue used for queue-manager aliasing is the name of the
local queue manager.

OOSET
Open queue to set attributes.

The queue is opened for use with subsequent MQSET calls.

This option is valid for all types of queue other than distribution lists.
It is not valid if ODMN is the name of a local definition of a remote
gueue; this is true even if the value of the RemoteQMgrName attribute in

Chapter 32. MQOPEN - Open object 253

MQOPEN — Open object

the local definition of a remote queue used for queue-manager aliasing
is the name of the local queue manager.

Binding options: The following options apply when the object being opened is
a cluster queue; these options control the binding of the queue handle to a
particular instance of the cluster queue:

OOBNDO

Bind handle to destination when queue is opened.

This causes the local queue manager to bind the queue handle to a
particular instance of the destination queue when the queue is opened.
As a result, all messages put using this handle are sent to the same
instance of the destination queue, and by the same route.

This option is valid only for queues, and affects only cluster queues. If
specified for a queue that is not a cluster queue, the option is ignored.

OOBNDN

Do not bind to a specific destination.

This stops the local queue manager binding the queue handle to a
particular instance of the destination queue. As a result, successive
MQPUT calls using this handle may result in the messages being sent
to different instances of the destination queue, or being sent to the same
instance but by different routes. It also allows the instance selected to
be changed subsequently by the local queue manager, by a remote
gqueue manager, or by a message channel agent (MCA), according to
network conditions.

Note: Client and server applications which need to exchange a series of
messages in order to complete a transaction should not use
OOBNDN (or OOBNDQ when DefBind has the value
BNDNOT), because successive messages in the series may be
sent to different instances of the server application.

If OOBRW or one of the OOINP* options is specified for a cluster
gueue, the queue manager is forced to select the local instance of the
cluster queue. As a result, the binding of the queue handle is fixed,
even if OOBNDN is specified.

If OOINQ is specified with OOBNDN, successive MQINQ calls using
that handle may inquire different instances of the cluster queue,
although usually all of the instances have the same attribute values.

OOBNDN is valid only for queues, and affects only cluster queues. If
specified for a queue that is not a cluster queue, the option is ignored.

OOBNDQ

Use default binding for queue.

This causes the local queue manager to bind the queue handle in the
way defined by the DefBind queue attribute. The value of this attribute
is either BNDOPN or BNDNOT.

OOBNDQ is the default if neither OOBNDO nor OOBNDN is
specified.

254 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQOPEN — Open object

OOBNDQ is defined to aid program documentation. It is not intended
that this option be used with either of the other two bind options, but
because its value is zero such use cannot be detected.

Context options: The following options control the processing of message
context:

OOSAVA
Save context when message retrieved.

Context information is associated with this queue handle. This
information is set from the context of any message retrieved using this
handle. For more information on message context, see the m

This context information can be passed to a message that is
subsequently put on a queue using the MQPUT or MOQPUT1 calls. See

the PMPASI and PMPASA options described in EChapter 14_MQPMQ 1

Until a message has been successfully retrieved, context cannot be
passed to a message being put on a queue.

A message retrieved using one of the GMBRW* browse options does
not have its context information saved (although the context fields in
the MSGDSC parameter are set after a browse).

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects which are not
gueues. One of the OOINP* options must be specified.

OOPASI
Allow identity context to be passed.

This allows the PMPASI option to be specified in the PMO parameter
when a message is put on a queue; this gives the message the identity
context information from an input queue that was opened with the
OOSAVA option. For more information on message context, see the

IMQSeries Application Programming Guidd.

The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOPASA
Allow all context to be passed.

This allows the PMPASA option to be specified in the PMO parameter
when a message is put on a queue; this gives the message the identity
and origin context information from an input queue that was opened
with the OOSAVA option. For more information on message context,

see the MQSeries Application Programming Guidd.

This option implies OOPASI, which need not therefore be specified.
The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOSETI
Allow identity context to be set.

This allows the PMSETI option to be specified in the PMO parameter
when a message is put on a queue; this gives the message the identity
context information contained in the MSGDSC parameter specified on the

Chapter 32. MQOPEN - Open object 255

MQOPEN — Open object

MQPUT or MQPUT1 call. For more information on message context,

see the MQSeries Application Programming Guidd.

This option implies OOPASI, which need not therefore be specified.
The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOSETA

Allow all context to be set.

This allows the PMSETA option to be specified in the PMO parameter
when a message is put on a queue; this gives the message the identity
and origin context information contained in the MSGDSC parameter
specified on the MQPUT or MQPUT1 call. For more information on

message context, see the IMQSeries Application Programming Guids.

This option implies the following options, which need not therefore be
specified:

OOPASI

OOPASA

OOSETI

The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

Other options: The following options control authorization checking, and what
happens when the queue manager is quiescing:

OOALTU

OOFIQ

Validate with specified user identifier.

This indicates that the 0DAU field in the 0BJDSC parameter contains a
user identifier that is to be used to validate this MQOPEN call. The call
can succeed only if this 0DAU is authorized to open the object with the
specified options, regardless of whether the user identifier under which
the application is running is authorized to do so. (This does not apply
to any context options specified, however, which are always checked
against the user identifier under which the application is running.)

This option is valid for all types of object.

Fail if queue manager is quiescing.

This option forces the MQOPEN call to fail if the queue manager is in
quiescing state.

This option is valid for all types of object.

Table 48. Valid MQOPEN options for each queue type

Option Alias (see Local and Remote Nonlocal Distribution
note 1) Model Cluster list
OOINPQ I I — — —
OOINPS I I — — —
OOINPX I I — — —
OOBRW v I — — —
OOOouUT v v v v I
OOINQ I I see note 2 I —
OOSET I d I d see note 2 — —

256 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQOPEN — Open object

Table 48. Valid MQOPEN options for each queue type (continued)

Option Alias (see Local and Remote Nonlocal Distribution

note 1) Model Cluster list
OOBNDO (see note 3) I I I I e
OOBNDN (see note 3) I I d I I d I d
OOBNDQ (see note 3) I I I I I
OOSAVA e e — — _
OOPASI e e W W o
OOPASA v W W o P
OOSETI - - - - o
OOSETA e v e e W
OOALTU - - - o o
OOFIQ I e e e v
Notes:

1. The validity of options for aliases depends on the validity of the option for the queue to which the alias resolves.

2. This option is valid only for the local definition of a remote queue.

3. This option can be specified for any queue type, but is ignored if the queue is not a cluster queue.

HOBJ (10-digit signed integer) — output

Object handle.

This handle represents the access that has been established to the object. It
must be specified on subsequent message queuing calls that operate on the
object. It ceases to be valid when the MQCLOSE call is issued, or when the

unit of processing that defines the scope of the handle terminates.

The scope of the handle is restricted to the smallest unit of parallel processing
supported by the platform on which the application is running; the handle is
not valid outside the unit of parallel processing from which the MQOPEN call

was issued:

* On 0S/400, the scope of the handle is the job issuing the call.

CMPCOD (10-digit signed integer) — output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) — output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE
(0, X'000") No reason to report.

If CMPCOD is CCWARN:
RC2136

(2136, X'858") Multiple reason codes returned.

Chapter 32. MQOPEN - Open object

257

MQOPEN — Open object

If CMPCOD is CCFAIL:
RC2001

(2001, X'7D1") Alias base queue not a valid type.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2266

(2266, X'8DA") Cluster workload exit failed.
RC2268

(2268, X'8DC") Put calls inhibited for all queues in cluster.
RC2189

(2189, X'88D") Cluster name resolution failed.
RC2269

(2269, X'8DD") Cluster resource error.
RC2009

(2009, X'7D9") Connection to queue manager lost.
RC2198

(2198, X'896") Default transmission queue not local.
RC2199

(2199, X'897") Default transmission queue usage error.
RC2011

(2011, X'7DB") Name of dynamic queue not valid.
RC2017

(2017, X'7E1") No more handles available.
RC2018

(2018, X'7E2") Connection handle not valid.
RC2019

(2019, X'7E3") Object handle not valid.
RC2194

(2194, X'892") Object name not valid for object type.
RC2035

(2035, X'7F3") Not authorized for access.
RC2100

(2100, X'834") Object already exists.
RC2101

(2101, X'835") Object damaged.
RC2042

(2042, X'7TFA") Object already open with conflicting options.
RC2043

(2043, X'7FB") Object type not valid.
RC2044

(2044, X'TFC") Object descriptor structure not valid.
RC2045

(2045, X'7TFD") Option not valid for object type.
RC2046

(2046, X'7TFE") Options not valid or not consistent.
RC2052

(2052, X'804") Queue has been deleted.
RC2058

(2058, X'80A") Queue manager name not valid or not known.
RC2059

(2059, X'80B") Queue manager not available for connection.
RC2161

(2161, X'871") Queue manager quiescing.
RC2162

(2162, X'872") Queue manager shutting down.

258 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQOPEN — Open object

RC2057

(2057, X'809") Queue type not valid.
RC2184

(2184, X'888") Remote queue name not valid.
RC2102

(2102, X'836") Insufficient system resources available.
RC2063

(2063, X'80F") Security error occurred.
RC2188

(2188, X'88C") Call rejected by cluster workload exit.
RC2071

(2071, X'817") Insufficient storage available.
RC2195

(2195, X'893") Unexpected error occurred.
RC2082

(2082, X'822") Unknown alias base queue.
RC2197

(2197, X'895") Unknown default transmission queue.
RC2085

(2085, X'825") Unknown object name.
RC2086

(2086, X'826") Unknown object queue manager.
RC2087

(2087, X'827") Unknown remote queue manager.
RC2196

(2196, X'894") Unknown transmission queue.
RC2091

(2091, X'82B") Transmission queue not local.
RC2092

(2092, X'82C") Transmission queue with wrong usage.

For more information on these reason codes, see I‘Appendix A Return codes’]

Usage notes

1. The object opened is one of the following:

* A queue, in order to:

Get or browse messages (using the MQGET call)

Put messages (using the MQPUT call)

Inquire about the attributes of the queue (using the MQINQ call)
Set the attributes of the queue (using the MQSET call)

If the queue named is a model queue, a dynamic local queue is created. See

the 0BJDSC parameter described in EChapter 32 MQQOPEN - Qpen object” od

A distribution list is a special type of queue object that contains a list of
queues. It can be opened to put messages, but not to get or browse
messages, or to inquire or set attributes.

* A namelist, in order to:
— Inquire about the names of the queues in the list (using the MQINQ call).

* A process definition, in order to:
— Inquire about the process attributes (using the MQINQ call).

* The queue manager, in order to:

Chapter 32. MQOPEN - Open object 259

Usage notes

2.

— Inquire about the attributes of the local queue manager (using the
MQINQ call).
It is valid for an application to open the same object more than once. A
different object handle is returned for each open. Each handle that is returned
can be used for the functions for which the corresponding open was
performed.

If the object being opened is a queue but not a cluster queue, all name
resolution within the local queue manager takes place at the time of the
MQOPEN call. This may include one or more of the following for a given
MQOPEN call:

» Alias resolution to the name of a base queue

* Resolution of the name of a local definition of a remote queue to the remote
gueue-manager name and the name by which that queue is known at the
remote queue manager

* Resolution of the remote queue-manager name to the name of a
transmission queue

However, be aware that subsequent MQINQ or MQSET calls for the handle
relate solely to the name that has been opened, and not to the object resulting
after name resolution has occurred. For example, if the object opened is an
alias, the attributes returned by the MQINQ call are the attributes of the alias,
not the attributes of the base queue to which the alias resolves. Name
resolution checking is still carried out, however, regardless of what is specified
for the OPTS parameter on the corresponding MQOPEN.

If the object being opened is a cluster queue, name resolution can occur at the
time of the MQOPEN call, or be deferred until later. The point at which
resolution occurs is controlled by the OOBND* options specified on the
MQOPEN call:

OOBNDO

OOBNDN

OOBNDQ

Refer to the MQSeries Queue Manager Clusters book for more information
about name resolution for cluster queues.

The attributes of an object can change while an application has the object
open. In many cases, the application does not notice this, but for certain
attributes the queue manager marks the handle as no longer valid. These are:

* Any attribute that affects the name resolution of the object. This applies
regardless of the open options used, and includes the following:

— A change to the BaseQName attribute of an alias queue that is open.

— A change to the RemoteQName or RemoteQMgrName remote-queue attributes,
for any handle that is open for this queue, or for a queue which resolves
through this definition as a queue-manager alias.

— Any change that causes a currently-open handle for a remote queue to
resolve to a different transmission queue, or to fail to resolve to one at all.
For example, a change to the XmitQName attribute of the local definition of
a remote queue, whether the definition is being used for a queue, or for
a queue-manager alias.

There is one exception to this, namely the creation of a new transmission
queue. A handle that would have resolved to this queue had it been
present when the handle was opened, but instead resolved to the default
transmission queue, is not made invalid.

260 MQsSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

— A change to the DefXmitQName queue-manager attribute. In this case all
open handles that resolved to the previously-named queue (that resolved
to it only because it was the default transmission queue) are marked as
invalid. Handles that resolved to this queue for other reasons are not
affected.

* The Shareability local-queue attribute, if there are two or more handles
that are currently providing OOINPS access for this queue, or for a queue
that resolves to this queue. If this is the case, all handles that are open for
this queue, or for a queue that resolves to this queue, are marked as invalid,
regardless of the open options.

* The Usage local-queue attribute, for all handles that are open for this queue,
or for a queue that resolves to this queue, regardless of the open options.

When a handle is marked as invalid, all subsequent calls (other than
MQCLOSE) using this handle fail with reason code RC2041; the application
should issue an MQCLOSE call (using the original handle) and then reopen
the queue. Any uncommitted updates against the old handle from previous
successful calls can still be committed or backed out, as required by the
application logic.

If changing an attribute will cause this to happen, a special “force” version of
the command must be used.

The queue manager performs security checks when an MQOPEN call is
issued, to verify that the user identifier under which the application is
running has the appropriate level of authority before access is permitted. The
authority check is made on the name of the object being opened, and not on
the name, or names, resulting after a name has been resolved.

If the object being opened is a model queue, the queue manager performs a
full security check against both the name of the model queue and the name of
the dynamic queue that is created. If the resulting dynamic queue is
subsequently opened explicitly, a further resource security check is performed
against the name of the dynamic queue.

A remote queue can be specified in one of two ways in the 0BJDSC parameter

of this call (see the 0DON and 0DMN fields described in F‘Chapter 12 MQOD 4

Qbject descriptor” on page 137):

* By specifying for 0DON the name of a local definition of the remote queue. In
this case, 0DMN refers to the local queue manager, and can be specified as
blanks.

The security validation performed by the local queue manager verifies that
the application is authorized to open the local definition of the remote
queue.

* By specifying for ODON the name of the remote queue as known to the
remote queue manager. In this case, 0DMN is the name of the remote queue
manager.

The security validation performed by the local queue manager verifies that
the application is authorized to send messages to the transmission queue
resulting from the name resolution process.

In either case:

* No messages are sent by the local queue manager to the remote queue
manager in order to check that the application is authorized to put
messages on the queue.

Chapter 32. MQOPEN - Open object 261

Usage notes

* When a message arrives at the remote queue manager, the remote queue
manager may reject it because the user originating the message is not
authorized.

8. The following notes apply to the use of distribution lists.

a. Fields in the MQOD structure must be set as follows when opening a
distribution list:

* ODVER must be ODVER?2 or greater.

* 0DOT must be OTQ.

* 0DON must be blank or the null string.

* 0DMN must be blank or the null string.

* ODREC must be greater than zero.

* One of ODORO and 0DORP must be zero and the other nonzero.

* No more than one of ODRRO and ODRRP can be nonzero.

* There must be ODREC object records, addressed by either ODORO or ODORP.
The object records must be set to the names of the destination queues to
be opened.

* If one of ODRRO and ODRRP is nonzero, there must be ODREC response
records present. They are set by the queue manager if the call completes
with reason code RC2136.

A version-2 MQOD can also be used to open a single queue that is not in
a distribution list, by ensuring that ODREC is zero.

b. Only the following open options are valid in the OPTS parameter:
OoOouUT
OOPAS*
OOSET*
OOALTU
OOFIQ

c. The destination queues in the distribution list can be local, alias, or remote
gueues, but they cannot be model queues. If a model queue is specified,
that queue fails to open, with reason code RC2057. However, this does not
prevent other queues in the list being opened successfully.

d. The completion code and reason code parameters are set as follows:

» If the open operations for the queues in the distribution list all succeed
or fail in the same way, the completion code and reason code
parameters are set to describe the common result. The MQRR response
records (if provided by the application) are not set in this case.

For example, if every open succeeds, the completion code and reason
code are set to CCOK and RCNONE respectively; if every open fails
because none of the queues exists, the parameters are set to CCFAIL and
RC2085.

» |If the open operations for the queues in the distribution list do not all

succeed or fail in the same way:

— The completion code parameter is set to CCWARN if at least one
open succeeded, and to CCFAIL if all failed.

— The reason code parameter is set to RC2136.

— The response records (if provided by the application) are set to the
individual completion codes and reason codes for the queues in the
distribution list.

e. When a distribution list has been opened successfully, the handle H0BJ
returned by the call can be used on subsequent MQPUT calls to put
messages to queues in the distribution list, and on an MQCLOSE call to
relinquish access to the distribution list. The only valid close option for a
distribution list is CONONE.

262 MQSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

The MQPUT1 call can also be used to put a message to a distribution list;
the MQOD structure defining the queues in the list is specified as a
parameter on that call.

f. Each successfully-opened destination in the distribution list counts as a
separate handle when checking whether the application has exceeded the
permitted maximum number of handles (see the MaxHandles
gqueue-manager attribute). This is true even when two or more of the
destinations in the distribution list actually resolve to the same physical
queue. If the MQOPEN or MQPUT1 call for a distribution list would cause
the number of handles in use by the application to exceed MaxHandles, the
call fails with reason code RC2017.

g. Each destination that is opened successfully has the value of its
OpenOutputCount attribute incremented by one. If two or more of the
destinations in the distribution list actually resolve to the same physical
queue, that queue has its OpenOutputCount attribute incremented by the
number of destinations in the distribution list that resolve to that queue.

h. Any change to the queue definitions that would have caused a handle to
become invalid had the queues been opened individually (for example, a
change in the resolution path), does not cause the distribution-list handle
to become invalid. However, it does result in a failure for that particular
queue when the distribution-list handle is used on a subsequent MQPUT
call.

i. Itis valid for a distribution list to contain only one destination.

9. An MQOPEN call with the OOBRW option establishes a browse cursor, for use
with MQGET calls that specify the object handle and one of the browse
options. This allows the queue to be scanned without altering its contents. A
message that has been found by browsing can subsequently be removed from
the queue by using the GMMUC option.

Multiple browse cursors can be active for a single application by issuing several
MQOPEN requests for the same queue.

10. The following notes apply to the use of cluster queues.

a. When a cluster queue is opened for the first time, and the local queue
manager is not a full repository queue manager, the local queue manager
obtains information about the cluster queue from a full repository queue
manager. When the network is busy, it may take several seconds for the
local queue manager to receive the needed information from the repository
gueue manager. As a result, the application issuing the MQOPEN call may
have to wait for up to 10 seconds before control returns from the
MQOPEN call. If the local queue manager does not receive the needed
information about the cluster queue within this time, the call fails with
reason code RC2189.

b. When a cluster queue is opened and there are multiple instances of the
queue in the cluster, the instance actually opened depends on the options
specified on the MQOPEN call:

 If the options specified include any of the following:
OOBRW
OOINPQ
OOINPX
OOINPS
OOSET

the instance of the cluster queue opened is required to be the local
instance. If there is no local instance of the queue, the MQOPEN call
fails.

Chapter 32. MQOPEN - Open object 263

Usage notes

11.

12.

 If the options specified include none of the above, but do include one or
both of the following:
OOINQ
OoouT

the instance opened is the local instance if there is one, and a remote
instance otherwise. The instance chosen by the queue manager can,
however, be altered by a cluster workload exit (if there is one).

For more information about cluster queues, refer to the MQSeries Queue
Manager Clusters book.

Applications started by a trigger monitor are passed the name of the queue
that is associated with the application when the application is started. This
queue name can be specified in the 0BJDSC parameter to open the queue. See
the description of the MQTMC structure for further details.

On 0OS/400, applications running in compatibility mode are connected
automatically to the queue manager by the first MQOPEN call issued by the
application (if the application has not already connected to the queue manager
by using the MQCONN call).

Applications not running in compatibility mode must issue the MQCONN or
MQCONNX call to connect to the queue manager explicitly, before using the
MQOPEN call to open an object.

RPG invocation

The

{08 PR RPN SRR PUPIPUP NI’ SRS PR, DUPRPRPRE NN« PP SRR A
C CALLP MQOPEN(HCONN : OBJDSC : OPTS :
C HOBJ : CMPCOD : REASON)

prototype definition for the call is:

L R U NN DN SOOI ST AU PAPUPUE PP < PP S A
DMQOPEN PR EXTPROC ('"MQOPEN"')
D* Connection handle

D HCONN 101 0 VALUE

D* Object descriptor

D OBJDSC 360A

D+ Options that control the action of MQOPEN

D OPTS 10I 0 VALUE

D* Object handle

D HOBJ 101 0

D+ Completion code

D CMPCOD 101 0

D* Reason code qualifying CMPCOD

D REASON 101 0

264 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 33. MQPUT - Put message

The MQPUT call puts a message on a queue or distribution list. The queue or
distribution list must already be open.

Syntax

MQPUT (HCONN, HOBJ, MSGDSC, PMO, BUFLEN, BUFFER, CMPCOD,
REASON)

Parameters

HCONN (10-digit signed integer) — input
Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On 0OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) — input
Object handle.

This handle represents the queue to which the message is added. The value of
HOBJ was returned by a previous MQOPEN call that specified the OOOUT
option.

MSGDSC (MQMD) - input/output
Message descriptor.

This structure describes the attributes of the message being sent, and receives
information about the message after the put request is complete. See
EChapter 10_MQMD - Message descriptar” on page 83 for details.

If the application provides a version-1 MQMD, the message data can be
prefixed with an MQMDE structure in order to specify values for the fields
that exist in the version-2 MQMD but not the version-1. The MDFMT field in the
MQMD must be set to FMMDE to mdlcate that an MOQOQMDE is present. See

PMO (MQPMO) - input/output
Options that control the action of MQPUT.

See I‘Chapter 14 MQPMQ - Put message aptions” on page 149 for details.

BUFLEN (10-digit signed integer) — input
Length of the message in BUFFER.

Zero is valid, and indicates that the message contains no application data.

© Copyright IBM Corp. 1994, 2000 265

MQPUT — Put message

If the destination is a local queue, or resolves to a local queue, the upper limit
for BUFLEN depends on whether:

* The local queue manager supports segmentation.

* The sending application specifies the flag that allows the queue manager to
segment the message. This flag is MFSEGA, and can be specified either in a
version-2 MQMD, or in an MQMDE used with a version-1 MQMD.

If both of these conditions are satisfied, BUFLEN cannot exceed 999 999 999
minus the value of the MDOFF field in MQMD. The longest logical message that
can be put is therefore 999 999 999 bytes (when MDOFF is zero). However,
resource constraints imposed by the operating system or environment in which
the application is running may result in a lower limit.

If one or both of the above conditions is not satisfied, BUFLEN cannot exceed the
smaller of the queue’s MaxMsgLength attribute and queue-manager’s
MaxMsglength attribute.

If the destination is a remote queue, or resolves to a remote queue, the same
conditions apply, but at each queue manager through which the message must pass
in order to reach the destination queue; in particular:

1. The local transmission queue used to store the message temporarily at the
local queue manager

2. Intermediate transmission queues (if any) used to store the message at
gueue managers on the route between the local and destination queue
managers

3. The destination queue at the destination queue manager

The longest message that can be put is therefore governed by the most
restrictive of these queues and queue managers.

When a message is on a transmission queue, additional information resides
with the message data, and this reduces the amount of application data that
can be carried. In this situation it is recommended that LNMHD bytes be
subtracted from the MaxMsgLength values of the transmission queues when
determining the limit for BUFLEN.

Note: Only failure to comply with condition 1 can be diagnosed synchronously
(with reason code RC2030 or RC2031) when the message is put. If
conditions 2 or 3 are not satisfied, the message is redirected to a
dead-letter (undelivered-message) queue, either at an intermediate
gueue manager or at the destination queue manager. If this happens, a
report message is generated if one was requested by the sender.

BUFFER (1-byte bit stringxBUFLEN) — input
Message data.

This is a buffer containing the application data to be sent.

If BUFFER contains character and/or numeric data, the MDCSI and MDENC fields in
the MSGDSC parameter should be set to the values appropriate to the data; this
will enable the receiver of the message to convert the data (if necessary) to the
character set and encoding used by the receiver.

Note: All of the other parameters on the MQPUT call must be in the character

set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and ENNAT, respectively).

266 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPUT — Put message

CMPCOD (10-digit signed integer) — output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) — output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE
(0, X'000") No reason to report.

If CMPCOD is CCWARN:
RC2136
(2136, X'858") Multiple reason codes returned.
RC2049
(2049, X'801") Message Priority exceeds maximum value supported.
RC2104
(2104, X'838") Report option(s) in message descriptor not recognized.

If CMPCOD is CCFAIL:
RC2004
(2004, X'7D4") Buffer parameter not valid.
RC2005
(2005, X'7D5") Buffer length parameter not valid.
RC2219
(2219, X'8AB") MQI call reentered before previous call complete.
RC2266
(2266, X'8DA") Cluster workload exit failed.
RC2189
(2189, X'88D") Cluster name resolution failed.
RC2269
(2269, X'8DD") Cluster resource error.
RC2009
(2009, X'7D9") Connection to queue manager lost.
RC2097
(2097, X'831") Queue handle referred to does not save context.
RC2098
(2098, X'832") Context not available for queue handle referred to.
RC2135
(2135, X'857") Distribution header structure not valid.
RC2013
(2013, X'7DD") Expiry time not valid.
RC2014
(2014, X'7DE") Feedback code not valid.
RC2258
(2258, X'8D2") Group identifier not valid.
RC2018
(2018, X'7E2") Connection handle not valid.

Chapter 33. MQPUT - Put message 267

MQPUT — Put message

RC2019

(2019, X'7E3") Object handle not valid.
RC2241

(2241, X'8C1") Message group not complete.
RC2242

(2242, X'8C2") Logical message not complete.
RC2185

(2185, X'889") Inconsistent persistence specification.
RC2245

(2245, X'8C5") Inconsistent unit-of-work specification.
RC2026

(2026, X'TEA") Message descriptor not valid.
RC2248

(2248, X'8C8") Message descriptor extension not valid.
RC2027

(2027, X'TEB") Missing reply-to queue.
RC2249

(2249, X'8C9") Message flags not valid.
RC2250

(2250, X'8CA") Message sequence number not valid.
RC2030

(2030, X'7TEE") Message length greater than maximum for queue.
RC2031

(2031, X'7EF") Message length greater than maximum for queue

manager.
RC2029

(2029, X'7TED'") Message type in message descriptor not valid.
RC2136

(2136, X'858") Multiple reason codes returned.
RC2270

(2270, X'8DE") No destination queues available.
RC2039

(2039, X'7F7") Queue not open for output.
RC2093

(2093, X'82D") Queue not open for pass all context.
RC2094

(2094, X'82E") Queue not open for pass identity context.
RC2095

(2095, X'82F") Queue not open for set all context.
RC2096

(2096, X'830") Queue not open for set identity context.
RC2041

(2041, X'7F9") Object definition changed since opened.
RC2101

(2101, X'835") Object damaged.
RC2251

(2251, X'8CB') Message segment offset not valid.
RC2137

(2137, X'859") Object not opened successfully.
RC2046

(2046, X'7TFE") Options not valid or not consistent.
RC2252

(2252, X'8CC") Original length not valid.
RC2149

(2149, X'865") PCF structures not valid.

268 MQsSeries for AS/400, V5.1 APR (ILE RPG)

MQPUT — Put message

RC2047
(2047, X'TFF") Persistence not valid.
RC2048
(2048, X'800") Message on a temporary dynamic queue cannot be
persistent.
RC2173
(2173, X'87D") Put-message options structure not valid.
RC2158
(2158, X'86E") Put message record flags not valid.
RC2050
(2050, X'802") Message priority not valid.
RC2051
(2051, X'803") Put calls inhibited for the queue.
RC2159
(2159, X'86F") Put message records not valid.
RC2052
(2052, X'804") Queue has been deleted.
RC2053
(2053, X'805") Queue already contains maximum number of messages.
RC2058
(2058, X'80A") Queue manager name not valid or not known.
RC2059
(2059, X'80B") Queue manager not available for connection.
RC2161
(2161, X'871") Queue manager quiescing.
RC2162
(2162, X'872") Queue manager shutting down.
RC2056
(2056, X'808") No space available on disk for queue.
RC2154
(2154, X'86A") Number of records present not valid.
RC2061
(2061, X'80D") Report options in message descriptor not valid.
RC2156
(2156, X'86C") Response records not valid.
RC2102
(2102, X'836") Insufficient system resources available.
RC2253
(2253, X'8CD") Length of data in message segment is zero.
RC2188
(2188, X'88C") Call rejected by cluster workload exit.
RC2071
(2071, X'817") Insufficient storage available.
RC2024
(2024, X'7TE8") No more messages can be handled within current unit of
work.
RC2072
(2072, X'818") Syncpoint support not available.
RC2195
(2195, X'893") Unexpected error occurred.
RC2255
(2255, X'8CF") Unit of work not available for the queue manager to use.
RC2257
(2257, X'8D1") Wrong version of MQMD supplied.

Chapter 33. MQPUT - Put message 269

MQPUT — Put message
For more information on these reason codes, see I‘Appendix A. Return codes’]

Usage notes

1. Both the MQPUT and MQPUTL calls can be used to put messages on a queue;
which call to use depends on the circumstances:

* The MQPUT call should be used when multiple messages are to be placed
on the same queue.

An MQOPEN call specifying the OOOUT option is issued first, followed by
one or more MQPUT requests to add messages to the queue; finally the
queue is closed with an MQCLOSE call. This gives better performance than
repeated use of the MQPUT1 call.

* The MQPUT1 call should be used when only one message is to be put on a
queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a
single call, thereby minimizing the number of calls that must be issued.

2. If an application puts a sequence of messages on the same queue without using
message groups, the order of those messages is preserved provided that the
conditions detailed below are satisfied. Some conditions apply to both local and
remote destination queues; other conditions apply only to remote destination
gueues.

Conditions for local and remote destination queues

» All of the MQPUT calls are within the same unit of work, or none of them is
within a unit of work.

Be aware that when messages are put onto a particular queue within a single
unit of work, messages from other applications may be interspersed with the
sequence of messages on the queue.

* All of the MQPUT calls are made using the same object handle HOBJ.

In some environments, message sequence is also preserved when different
object handles are used, provided the calls are made from the same
application. The meaning of “same application” is determined by the
environment:

— On 0S/400, the application is the job.

* The messages all have the same priority.

Additional conditions for remote destination queues

* There is only one path from the sending queue manager to the destination
gueue manager.

If there is a possibility that some messages in the sequence may go on a
different path (for example, because of reconfiguration, traffic balancing, or
path selection based on message size), the order of the messages at the
destination queue manager cannot be guaranteed.

* Messages are not placed temporarily on dead-letter queues at the sending,
intermediate, or destination queue managers.

If one or more of the messages is put temporarily on a dead-letter queue (for
example, because a transmission queue or the destination queue is
temporarily full), the messages can arrive on the destination queue out of
sequence.

* The messages are either all persistent or all nonpersistent.

If a channel on the route between the sending and destination queue
managers has its CONPM attribute set to NPFAST, nonpersistent messages can

270 MQSeries for AS/400, V5.1 APR (ILE RPG)

Usage notes

jump ahead of persistent messages, resulting in the order of persistent
messages relative to nonpersistent messages not being preserved. However,
the order of persistent messages relative to each other, and of nonpersistent
messages relative to each other, is preserved.

If these conditions are not satisfied, message groups can be used to preserve
message order, but note that this requires both the sending and receiving
applications to use the message-grouping support. For more information about
message groups, see:

* MDMFL field in MQMD

* PMLOGO option in MQPMO

* GMLOGO option in MQGMO

3. The following notes apply to the use of distribut