

November 2016
Hands-on lab built at product
Version 10.0.0.6

IBM Integration Bus

A REST API processing a .jpeg image
with the image included as a

JSON message element

Featuring:

 REST API using JSON domain

 Handling embedded image encoded as Base64

 Testing using the Chrome Postman utility

16L16

IBM Integration Bus V10 Workshop November 2016

Page 2 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

1. INTRODUCTION .. 3

1.1 LAB PREPARATION .. 4
1.1.1 The Chrome Postman plugin ... 4
1.1.2 MQ Configuration .. 4

1.2 OUTLINE OF LAB .. 5
1.3 CONFIGURE TESTNODE_IIBUSER FOR REST APIS ... 6
1.4 CONFIGURE INTEGRATION BUS NODE TO WORK WITH DB2 ... 7

2. IMPORT THE REST API .. 8

2.1 IMPORT THE IIB REST API ... 8
2.2 EXPLORE THE HR_SERVICE REST API .. 10
2.3 EXPLORE THE REST API IN DETAIL... 12

3. DEPLOY AND TEST THE REST API .. 18

3.1 DEPLOY ... 18
3.2 TEST ... 19

3.2.1 Start Postman test tool .. 19
3.2.2 Test with Postman ... 23

3.3 DEPLOY AND EXECUTE THE MQ APPLICATION .. 26
3.4 ERROR PROCESSING ... 28

IBM Integration Bus V10 Workshop November 2016

Page 3 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

1. Introduction

This lab guide is the seconds of two labs that show you how to create a REST API that processes a
message that contains a binary image. In this case, the binary image is encoded as a BASE64 file, and the
encoded data is transmitted as one of the elements in the REST JSON message.

This lab is based on the standard HR_Service example used in most of the labs in this series. However, to
accommodate the encoded binary image, one additional element, IMAGE, has been added at the end of
the EMPLOYEE model. Thus, the JSON model definition that is used in this lab is as follows (some sample
data is shown).

 "EMPLOYEE": {

"EMPNO": "000003",
"FIRSTNME": "Albert",
"MIDINIT": "J",
"LASTNAME": "Einstein",
"WORKDEPT": "A00",
"PHONENO": "0101",
"HIREDATE": "1912-07-27",
"JOB": "Manager",
"EDLEVEL": 9,
"SEX": "M",
"BIRTHDATE": "1879-03-14",
"SALARY": 9990,
"BONUS": 4440,
"COMM":6660,
“IMAGE”: “xxxxxxxxxxxxxxxxxxxxxxxxxx”

 }

xxxxxxxxx represents the binary data encoded as BASE64. In this lab, we have provided an image of
Albert Einstein, and we have also provided the Base64 encoded version of this image. This was done with
one of the many freeware utilities that are available on the internet.

IBM Integration Bus V10 Workshop November 2016

Page 4 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

1.1 Lab preparation
This lab is based on the solution of the REST API HR_Service. This lab uses an IIB node called
TESTNODE_iibuser. You should have it already created. If not, refer to the REST API HR Service Lab
Guide document.

This lab is based on a set of REST scenarios that are described in other lab guides in this series.
Specifically, it may be useful to review the lab “Lab 02, Developing a REST API using a Swagger JSON
document”.

This lab does not ask you to build the solution from scratch. A complete solution is provided, and you will
investigate various aspects of the solution, and perform a test of the provided solution.

1.1.1 The Chrome Postman plugin
In this lab, we will use the Chrome Postman test tool to provide the client REST request. Alternative tools
such as SOAPUI could also be used for this propose, but we have used Postman for consistency with the
“REST with MIME attachment lab (lab 16L15), which requires Postman.

To obtain this tool, from a Chrome browser, search for “get Postman”. Select the “Postman Chrome Web
Store” at Google, and click “Add to Chrome” to install.

Note that when it executes, this app does not actually run under Chrome; it executes as a stand-alone
application.

If you are using the supplied VMWare workshop image, Postman has already been installed.

1.1.2 MQ Configuration
This lab uses an MQ queue to hold incoming images from the REST request prior to writing to a file.

In your queue manager (IB10QMGR on the workshop VMWare system), create an MQ queue called
IMAGES.EMBEDDED.OUT.

IBM Integration Bus V10 Workshop November 2016

Page 5 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

1.2 Outline of Lab

This lab provides a technique for an IIB REST API to receive a REST request that contains an
accompanying image.

In this case, the REST message contains a standard JSON-formatted message. The JSON message
contains “new employee” data, and the IIB REST API will take this information and add a new row to the
EMPLOYEE table. The JSON message also contains an additional element, IMAGE, which contains a
Base64 encoded version of the related image (a .jpeg file). This image is processed by the REST API,
and is written to a local MQ queue for subsequent processing.

IBM Integration Bus V10 Workshop November 2016

Page 6 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

1.3 Configure TESTNODE_iibuser for REST APIs

The instructions in this lab guide are based on a Windows implementation, with a user named
“iibuser”.
The Windows VMWare image on which this lab is based is not available outside IBM, so you will
need to provide your own software product installations where necessary.

Login to Windows as the user "iibuser", password = "passw0rd". (You may already be logged in).

Start the IIB Toolkit from the Start menu.

The IIB support for the REST API requires some special configuration for the IIB node and server.

If you have already done a previous lab involving the REST API function in this series of lab guides,
you can skip to the next heading.

The IIB support for the REST API requires some special configuration for the IIB node and server.

1. Ensure that TESTNODE_iibuser is started.

2. Enable Cross-Origin Resource Scripting for REST. This is required when testing with the
SwaggerUI test tool. See
http://www.w3.org/TR/cors/?cm_mc_uid=09173639950214518562833&cm_mc_sid_502000
00=1452177651 for further information.

(Helpful hint - the VM keyboard is set to UK English. If you cannot find the "\" with your
keyboard, use "cd .." to move the a higher-level folder in a DOS window), or change the
keyboard settings to reflect your locale.)

In an IIB Integration Console (shortcut on the Start menu), run the following command.

Note, the text should be typed on a single line - the parameters are shown on different lines
here for readability; the same approach is taken throughout this and other lab documents.

mqsichangeproperties TESTNODE_iibuser

-e default

-o HTTPConnector

-n corsEnabled -v true

http://www.w3.org/TR/cors/?cm_mc_uid=09173639950214518562833&cm_mc_sid_50200000=1452177651
http://www.w3.org/TR/cors/?cm_mc_uid=09173639950214518562833&cm_mc_sid_50200000=1452177651

IBM Integration Bus V10 Workshop November 2016

Page 7 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

1.4 Configure Integration Bus node to work with DB2

If you have already done a previous lab involving the HRDB database in this series of lab
guides, you can skip to the next heading.

To run this lab, the Integration Bus node must be enabled to allow a JDBC connection to the HRDB
database.

1. Open an IIB Command Console (from the Start menu), and navigate to

c:\student10\Create_HR_database

2. Run the command
3_Create_JDBC_for_HRDB

Accept the defaults presented in the script. This will create the required JDBC configurable
service for the HRDB database.

3. Run the command

4_Create_HRDB_SecurityID

4. Stop and restart the node to enable the above definitions to be activated

mqsistop TESTNODE_iibuser

mqsistart TESTNODE_iibuser

This will create the necessary security credentials enabling TESTNODE_iibuser to connect to the database.

Recreating the HRDB database and tables
The HRDB database, and the EMPLOYEE and DEPARTMENT tables have already been created on the
supplied VMWare image. If you wish to recreate your own instance of this database, the command
1_Create_HRDB_database.cmd and 2_Create_HRDB_Tables.cmd are provided for this. If used in

conjunction with the VM image, these commands must be run under the user "iibadmin". Appropriate
database permissions are included in the scripts to GRANT access to the user iibuser.

IBM Integration Bus V10 Workshop November 2016

Page 8 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

2. Import the REST API

In this part of the lab exercise, you will import and deploy the provided IIB shared library and REST API.

2.1 Import the IIB REST API

 To avoid naming clashes with earlier labs, this lab will be developed using a new workspace.

In the Integration Toolkit, click File, Switch Workspace. Give the new workspace the name
"embedded_image", or similar.

 Right-click in the Application Development pane and click ‘Import’:

Import the following Project Interchange (PI) file:

C:\student10\REST_withImages\REST_embeddedImage\solution\
HR_Service_embeddedImage.10.0.0.6.zip

Note: Make sure that all projects in this PI file are selected for import. The PI includes the HRDB shared
library and database project.

IBM Integration Bus V10 Workshop November 2016

Page 9 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

 When imported, you should have in your workspace the HR_Service REST API and the HRDB shared library
that is referenced by the REST API.

The application ImageEmbedded_ProcessImages is also provided to perform the subsequent processing
of images using MQ. This will be described towards the end of this lab.

IBM Integration Bus V10 Workshop November 2016

Page 10 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

2.2 Explore the HR_Service REST API

In this section, you will explore the imported REST API.

1. Expand the REST API Service and double-click “REST API Description”.

2. You will be familiar with the REST API Description, Header and Resources from earlier lab scenarios,
so proceed to the Resources section, and focus on the createEmbeddedImageEmployee POST
operation in the /employees/embeddedimage resource.

Note that the Request body has a schema type of EMPLOYEE, and the Response body has a schema
type of EmployeeResponse.

3. Scroll to the right, and open the subflow implementation.

IBM Integration Bus V10 Workshop November 2016

Page 11 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

4. This opens the implementation subflow. Each node will be investigated in detail over the next few
pages.

At a high level, the subflow performs the following actions:

1. The first mapping node inserts the new employee row into the HRDB database, using the JSON

data from the message tree as input. It also extracts the encoded base42 image (the IMAGE
element) and invokes a small custom ESQL transform to decode the Base64 image. This is then
saved in the Environment tree.

The ESQL module is called decodeBase64Image.esql.

Note that the IMAGE element is then discarded, and not included in the message tree.

2. The Route node tests whether the insert was successful.

 If the insert was successful (rows inserted not = 0), then control passes to the FlowOrder node

 If the insert was not successful, a duplicate key may have been detected (control passes to the
dupRecord map node). Otherwise, control passes directly to the response Compute node.

3. The FlowOrder node will:
1. Send the message tree to the “Create output BLOB message” compute node for processing of

the binary image part.
2. Send a response to the client (userReturnCode=0 will indicate success to the client).

4. The “Create output BLOB message” node retrieves the binary image from the Environment tree,

and reinstates it in the main message tree, from where it is subsequently written to a holding MQ
queue, for later processing. This approach was taken because it allows the employee image to be
stored transactionally (ie. to MQ), before being written to a file by a subsequent application.

Two versions of this function are provided – a map node and an ESQL compute node.

IBM Integration Bus V10 Workshop November 2016

Page 12 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

2.3 Explore the REST API in detail

1. Open the map “Mapping – add Employee to database and decode image”.

This map has an input assembly in JSON format, which contains a full Employee record. The map inserts
the EMPLOYEE data into the HRDB/EMPLOYEE table.

Failure scenarios such as “duplicate record” are handled by saving database returned data such as
SQLSTATE in the output message.

IBM Integration Bus V10 Workshop November 2016

Page 13 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

2. Highlight the Custom ESQ transform by clicking it.

In the Properties of the transform, note that parameter encodedImage has been created. The Type is
CHARACTER, and the value is IMAGE. This means that the input IMAGE element is sent by the map to
the ESQL module input parameter encodedImage.

The output of the transform is connected to the output element Environment/Variables/Image. This is
defined as hexBinary, and holds the decoded version of the IMAGE element.

IBM Integration Bus V10 Workshop November 2016

Page 14 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

3. Open the ESQL module decodeBase64Image.esql.

The ESQL is created as a Procedure, and the input parameter to the procedure is encodedImage (as
mentioned in the corresponding map ESQL transform).

The ESQL command BASE64DECODE converts an element that is held as BASE64 encoded, and
decodes it into the corresponding binary element.

The converted image is returned to the map by specifying the RETURN statement with the
“decodedImage” parameter.

4. Highlight the Route node and review the node properties.

 The Match terminal is used when the database insert was successful (when the number of rows
added was not zero).

 The dupRec terminal is used when the SQLSTATE value is 23505 (SQL duplicate row). You can
extend the flow yourself if you want to check for other specific returns.

You will see a message suggesting that the Data element in the Filter pattern was not found in the XML
schema. This is because the XPath Expression builder does not support the JSON form of messages, so
XPath evaluation expressions (including filter patterns) must be manually built.

IBM Integration Bus V10 Workshop November 2016

Page 15 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

5. Open the dupRecord record map node. Click “Local Map” in the main map editor.

Review the various mappings that are provided. In particular, the SQL_Error_Message is set with an
Assign transform, setting the message to a more readable form of the SQL error message.

Close the map.

6. The Flow Order node first invokes the processing of the image contained in the original request.
Secondly, it sends a response to the invoking client.

IBM Integration Bus V10 Workshop November 2016

Page 16 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

7. Open the “Create output BLOB message” map.

The map performs a simple copy (Move) of the Environment/Variables/Image element to the output
BLOB/value element (still defined as hexBinary).

8. The remainder of the flow sends the output MQ message. An MQ Output node is provided to write the
message to a local queue, IMAGES.EMBEDDED.OUT.

IBM Integration Bus V10 Workshop November 2016

Page 17 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

9. Click the MQOutput node to highlight its properties.

On the Basic tab, note that the Queue Name has been set to IMAGES.EMBEDDED.OUT. If you are
running this lab on your own system, you will need to define this queue on your nominated MQ queue
manager.

10. On the MQ Connection tab, note that the Destination queue manager name has been set to IB10QMGR.

As in the previous step, if you are running this lab on your own system, you will need to change this
property to the name of your own queue manager.

If required on your own system, you may also need to change the Connection type to a value other than
“Local queue manager”.

IBM Integration Bus V10 Workshop November 2016

Page 18 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

3. Deploy and Test the REST API

3.1 Deploy

1. Deploy the following resources:

 HRDB shared library

 HR_Service

Do not deploy the ProcessImages application at this time.

IBM Integration Bus V10 Workshop November 2016

Page 19 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

3.2 Test
3.2.1 Start Postman test tool

1. From the Start menu, or from your installation folder, start the Postman tool (in the workshop VM system,
type Postman into the Start Search menu).

After the progress message…

… you will see the Postman main menu.

IBM Integration Bus V10 Workshop November 2016

Page 20 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

2. Import the Postman project for the EmbeddedImage lab. Click Import and import the file:

c:\student10\REST_withImages\REST_embeddedImage\postman\

EmbeddedImage.postman_collection.json

3. Highlight the line with the POST request.

IBM Integration Bus V10 Workshop November 2016

Page 21 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

4. On the right pane, note that the URL is set to the required URL for the imported REST API. If your
hostname or port are different, you will need to make appropriate changes to these values.

IBM Integration Bus V10 Workshop November 2016

Page 22 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

5. Click the “Body” tab.

Click the “raw” form of the message (form-data should not be used for this type of message).

Note that all the familiar element names of the EMPLOYEE message are present. In addition, the new
element IMAGE is shown at the end of the element list. The content of the IMAGE element is the
base64 encoded version of the binary image.

For backup, this data is also stored in the file

C:\student10\REST_withImages\REST_embeddedImage\data\

Einstein_Base64encoded_completeJSONmessage.txt

and can be copied/pasted into Postman if required.

IBM Integration Bus V10 Workshop November 2016

Page 23 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

3.2.2 Test with Postman

1. Set the employee number (EMPNO) to one that is known not to already exist (eg. 000001).

Click Send.

2. The input employee data will be returned, along with userReturnCode=0, indicating that the data was
successfully added to the database.

Note that the IMAGE element has not been returned with the original data, but now contains the
message “Image received for later processing”.

IBM Integration Bus V10 Workshop November 2016

Page 24 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

3. Using MQ Explorer, or your MQ tool of choice, observe that the queue IMAGES.EMBEDDED.OUT has
one message.

4. Return to the Postman tool, and click Send again, without changing the value of EMPNO.

Note that this time, the response shows that you are trying to add a duplicate row to the database, and
this has been rejected.

Note – this response is only received if the database EMPLOYEE table definition has defined the
EMPNO column as UNIQUE, or has defined EMPNO as a primary key. The HRDB table definition DDL
(in c:student10\Create_HR_database\Create_HRDB_Tables1.ddl) has been defined with a primary key
in this way.

IBM Integration Bus V10 Workshop November 2016

Page 25 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

5. Back in MQ Explorer, double-check that the number of MQ messages waiting to be processed is still 1.
This means that the incoming message (attached image) has not been written to the queue manager.

IBM Integration Bus V10 Workshop November 2016

Page 26 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

3.3 Deploy and execute the MQ Application
To complete the full processing of the scenario, use the ProcessImages application that is provided.

1. Deploy the ProcessImages application.

IBM Integration Bus V10 Workshop November 2016

Page 27 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

2. From the tests throughout this lab, there should be at least 1 message waiting on the MQ queue
IMAGES.EMBEDDED.OUT. These will be processed immediately when this application is deployed.

The messages, containing the original image attachment, will be written to file.

In Windows Explorer, navigate to c:\user\REST_withImages. You will see a newly-written file,
EmbeddedImage.jpg, which contains a copy of the original data that was attached to the REST request.

Also, note that the mqsiarchive folder contains several older copies of the same file.These have
filename components based on the current date and time, and have been created as a result of the
properties specified on the FileOutput node in the WriteImagesToFile message flow.

IBM Integration Bus V10 Workshop November 2016

Page 28 of 28 A REST API to handle a binary image with Version 10.0.0.6
binary (encoded) data included in the JSON message

Provided by IBM BetaWorks

3.4 Error Processing
This section of the lab illustrates one aspect of failure processing.

1. If the part of the flow connected to the FlowOrder First output terminal fails (highlighted below), then a
failure message should be returned to the client.

2. A failure in this part of the flow can be simulated by changing the MQ queue name on the MQOutput
node. Change the queuename to a queue that does not exist, and redeploy the flow.

3. Send a new message with Postman, as before.

The flow will terminate, and the Second terminal of the FlowOrder node will not be invokes. The
abnormal termination information will be returned to the client.

END OF LAB GUIDE

