
Version 9 Release 2

A Guide to Graphical Data Mapping in
IBM Integration Bus

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 341.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Using message maps 1

Chapter 2. Graphical Mapping overview 3
Graphical Data Mapping editor 5
Message maps 7
Submaps 10
Guidelines for developing reusable graphical data
mapping assets 13
Considerations for mapping messages modeled in
message sets 13

Chapter 3. Designing a message map 15
Input and output messages to a message map . . . 17
Advanced XML schema structures valid in input
and output messages 18

Substitution groups. 19
Wildcards (xsd:any) 19
Derived types 19
List types (xs:list). 20
Union types (xs:union) 20

Chapter 4. Transforms (Mapping
operations) 21
Choosing a transform to set the value of a simple
type output element 23
Choosing a transform to set the value of a complex
output element 25
Choosing a transform to map repeating elements . . 27

Selecting the indexes of input array elements . . 28
Choosing a transform to concatenate input data . . 29
Choosing a transform to perform an arithmetic
operation 31
Choosing a transform to define a conditional
mapping 31
Choosing a transform to map an input message to
multiple output messages 32

Chapter 5. Handling nulls in message
maps 35

Chapter 6. Using nested maps 37

Chapter 7. Configuring your workspace
mapping preferences 39
Setting mapping preferences for your workspace . . 39
Setting mapping keyboard preferences for your
workspace 41

Chapter 8. Creating a message map . . 45
Creating a message map 47

Creating a message map in the Application
Development view 48
Creating a message map from a Mapping node 49

Creating a submap 50
Creating a submap by using the Graphical Data
Mapping editor 51
Creating a submap in the Application
Development view 52
Creating a submap by using the Submap
transform 53
Converting a local map into a submap 54

Creating a message map programmatically 56
Creating a local map by using the Local map
transform 57
Converting a submap into a local map 57
Creating a graphical data map in the Eclipse editor 59

Chapter 9. Editing message maps . . . 61
Configuring the general properties of a message
map 62
Adding input and output messages 63
Mapping xsd:any on an input or output message. . 64
Casting wildcards in a map 65

Casting a wildcard defined as xsd:any into a
specific type for a SOAP message 65
Casting a base type to a derived type or
extension type 68

Mapping input to output elements manually . . . 70
Adding connections between input and output
elements 70
Connecting multiple input elements to a
transform 71

Mapping input to output elements automatically . . 73
Mapping by same name 75
Mapping by similar name 76
Examples of similarity values 77
Format of the synonym file 77
Algorithm used to match synonyms 80
Creating and using a synonym file 81
Selecting matches 82

Specifying a transform (mapping operation) . . . 82
Configuring the properties of a transform 84
Defining an XPath conditional expression for a
transform 85

Defining an XPath conditional expression for a
structural transform (ForEach) 89
Choosing an XPath conditional expression that
tests for a nil value in a transform 91

Grouping transforms into nested maps 92
Using content assist (Mapping syntax) 93
Deleting objects and transforms 94

Chapter 10. Advanced editing in a
message map. 95
Configuring the message map to include message
assembly components 95

Choosing message assembly components to
include in a message map 96

© Copyright IBM Corp. 2014 iii

Choosing a mapping action 98
Customizing a message map to include a
message assembly component 105

Configuring the properties of the input and the
output message assembly to a message map . . . 108
Mapping transport headers 109
Mapping data in the local environment tree . . . 111

Configuring the local environment tree
Variables folder by using the Cast function . . 113

Adding database definitions to the IBM Integration
Studio 116

Creating a data design project 117
Creating a database definition (.dbm file) by
using the New Database Definition File wizard . 118
Creating a database definition from scratch . . 120

Accessing integration node properties from a
Mapping node 122
Accessing user-defined properties from a Mapping
node 122

Chapter 11. Setting the value of an
output element by using a transform
or a function. 125
Setting the value of an output element to a simple
data type 126
Setting the value of an output element with a
explicit data type 128
Setting the value of a simple output element to a
default or fixed value. 130
Setting the value of a simple type element included
in a complex type output structure to a default or
fixed value 130
Creating a nil output element 132
Creating an empty output element 134

Initializing an output element by using the
Assign transform 134
Initializing a simple or complex output element
by using the Create transform 135

Chapter 12. Copying a selected
element of a repeating structure to a
single output 139

Chapter 13. Copying some values of a
repeating element when the input and
output structures are the same. . . . 141

Chapter 14. Copying some values of a
repeating element when the input and
output structures are different 143

Chapter 15. Splitting an input
message into multiple identical output
messages 145

Chapter 16. Mapping an input
message into different output
messages 151

Chapter 17. Using Java API classes
for Custom Java mapping transforms . 155

Chapter 18. Applying mapping
overrides 157

Chapter 19. Mapping database content 159
Selecting data from a table 159
Modifying data in a database by using mapping 161

Inserting data into a table 162
Updating data in a table. 163
Deleting data from a table 165
Data type considerations for mapping database
content 167

Calling a stored procedure from a map 168
Handling database exceptions in a graphical data
map 171
Behavior when modifying database column values
from optional source elements 172

Chapter 20. Referencing message
maps in your solution. 175
Referencing an existing message map from a
Mapping node 175
Dynamically selecting a message map 176
Calling a submap 177

Chapter 21. Transforming a SOAP
message in a message map 179
Mapping a SOAP message by using a conditional
transform. 181
Mapping a SOAP message by using the Override
function 183

iv Designing a message map

Chapter 22. Creating or transforming
a BLOB output message by using a
graphical data map 185

Chapter 23. Mapping from a BLOB
message to an output message using
a graphical data map 187

Chapter 24. Troubleshooting graphical
data maps 189

Chapter 25. Deploying message maps 191

Chapter 26. Transform types in the
Graphical Data Mapping editor 193
Append 195
Assign. 198
Cast type (xs:type) 199
Concat 201
Convert 204
Create 204
Custom ESQL 208

Equivalent ESQL types and schema types . . . 209
Equivalent ESQL and XPath mapping functions 210

Custom Java. 212
Custom XPath 214
Database Routine 216
Delete 216
Failure 217
For Each 218
Group 222
If, Else if, and Else 222
Insert 223
Join 223
Local map 225
Move 225
Normalize 226
Return. 226
Select 227
Submap 227
Substring 227
Update 228
Built-in XPath transforms 229

fn:concat 231
fn:string-join. 234
fn:substring 237
fn:count 239
fn:sum. 241

Chapter 27. Scenario: Transforming
SOAP messages by using a message
map 245
Introduction to the "Transforming SOAP messages
by using a message map" scenario 245

Context 246
Technical solution 247

Implementing the solution 248
Creating the scenario initial configuration . . . 249

Creating a message map to transform SOAP
messages 250
Transforming elements in the Properties folder
by using the Override function 254
Customizing a message map to include the local
environment tree 257
Configuring the local environment tree
Variables folder by using the Cast function . . 260
Configuring the message map to include the
SOAP message 264

Chapter 28. Scenario: Using a
message map to enrich a message
with data from a database 289
Introduction to the "Using a message map to
enrich a message with data from a database"
scenario 289

Context 290
Technical solution 291

Implementing the solution 292
Creating the scenario graphical data map
configuration 292
Creating the scenario database configuration 294
Configuring a database in the IBM Integration
Studio 295
Configuring an integration solution to access
database resources. 303
Adding database tables your message map . . 305
Configuring the Select transform in a message
map 309
Handling database failures in a Select transform 312
Configuring a database to be available at run
time 316

Chapter 29. Using or converting
legacy resources into message maps . 321
Changes in behavior in message maps converted
from legacy message maps 322

Behavior changes during the development
phase 322
Behavior changes during the deployment phase 323
Behavior changes at run time 324

Planning the conversion of a legacy message map 324
Converting a message map from a .msgmap file to a
.map file 325
Managing conversion warnings on converted
legacy message maps. 327
Managing conversion errors on converted legacy
message maps 330
Converting a legacy message map that includes
transformations of the local environment tree or
xsd:any elements 332
Converting a legacy message map that includes
user-defined ESQL procedures. 333
Converting a legacy message map that includes
ESQL mapping functions 334
Converting a legacy message map that includes
calls to message map functions 336
Converting a legacy message map that includes
relational database operations 337

Contents v

Converting a legacy message map that is called
from an ESQL statement in a Compute node . . . 337
Replacing a WebSphere Message Broker Version 7
Mapping node 339

Notices 341
Programming interface information 343

Trademarks 343

Sending your comments to IBM . . . 345

vi Designing a message map

Chapter 1. Using message maps

You can use a message map to graphically transform an input message into a
required output message; to enrich the output message with data from a database;
to dynamically set routing or destination control for the output message; and to
modify data in a database system. You can use drag actions to make connections,
select transforms, and build logic to transform your message data without
programming.

About this task

A message map is the IBM® Integration Bus implementation of a graphical data
map. It is based on XML schema and XPath 2.0 standards.

A message map offers the ability to achieve the transformation of a message
without the need to write code. It provides a visual image of the transformation,
and simplifies its implementation and ongoing maintenance.

You can use a message map to adopt any of the following integration requirements
graphically:
v Transform a message: You can use a message map to graphically transform a

message assembly, message body, and properties, according to the transforms
and XPath functions defined in the message map. You can use the full set of
XPath 2.0 expressions and functions to implement data calculations and
manipulations in a message map. To define the input and output messages to a
map, you can use a schema base message model, which defines the structure of
the data and provides information about the data type.

v Enrich a message with data available in an external database: You can use a
message map to enrich, or conditionally set the output message with data from a
database table. The table data structure must be defined to the message map,
and an SQL where clause can be used to select specific rows. The resulting row
data is presented as an extra input in the message map, according to the
database schema.

v Modify data located in an external database.
v Route a message based on content: You can use a message map to graphically

route a message. You can modify the local environment tree to set a dynamic
message destination.

Procedure

Read the following sections to learn how to design, create, configure, and
troubleshoot a message map and its associated resources:
v Graphical data maps offer the ability to achieve the transformation of a message

without the need to write code. Depending on the data transformation
re-usability and manageability requirements, you can use a message map, a
submap, a local map, or a legacy message map. For more information, see
Chapter 2, “Graphical Mapping overview,” on page 3.

v You can create a graphical data map, a message map, a submap, or a legacy
message map to transform a message. For more information, see Chapter 8,
“Creating a message map,” on page 45.

© Copyright IBM Corp. 2014 1

v You can edit a message map by using the Graphical Data Mapping editor. For
more information, see Chapter 9, “Editing message maps,” on page 61.

v You can use the Graphical Data Mapping editor to set the value of an output
element by using an expression, a transform, or a function. For more
information, see Chapter 11, “Setting the value of an output element by using a
transform or a function,” on page 125.

v You can reference a message map during the development phase. You can also
reference a message map dynamically at run time. For more information, see
Chapter 20, “Referencing message maps in your solution,” on page 175.

v You can diagnose and solve problems that you encounter when you use a
message map. For more information, see Chapter 24, “Troubleshooting graphical
data maps,” on page 189.

v You can compile and deploy a legacy message map in IBM Integration Bus.
However, to modify the legacy message map, you must first convert the legacy
message map to a message map. For more information, see Chapter 29, “Using
or converting legacy resources into message maps,” on page 321.

2 Designing a message map

Chapter 2. Graphical Mapping overview

Graphical data maps offer the ability to achieve the transformation of a message
without the need to write code. You can use a message map, a submap, a local
map, or a legacy message map. To define the input and output messages to a map,
you can use a schema base message model, which defines the structure of the data
and provides information about the data type.

Message maps

A message map is the IBM Integration Bus implementation of a graphical data
map. It is based on XML schema and XPath 2.0 standards.

A message map offers the ability to achieve the transformation of a message
without the need to write code. It provides a visual image of the transformation,
and simplifies its implementation and ongoing maintenance.

You can use a message map to graphically transform, route, and enrich a message.
You can use a message map to modify data in a database system. You can use drag
actions to make connections, select transforms, and build logic to transform your
message data without programming.

For more information, see “Message maps” on page 7.

Submaps

A submap is a reusable form of message map.

You use a submap to reuse common data transformations. You define in the
submap the mapping functions that transform a set of elements from the input
object to the output object.

You can reuse submaps in other products that support graphical data maps.

Note: If you plan to reuse data transformations across different products, read
“Guidelines for developing reusable graphical data mapping assets” on page 13.

For more information, see “Submaps” on page 10.

Local maps

A local map is a subset of data transformations between input elements and output
elements that are part of a message map. You define a local map by creating a
Local map transform in a message map.

A local map is not an independent resource. There is no physical file that is
associated with a local map.

The scope of a local map is the message map. A local map is processed with the
message map.

Local maps provide a way of breaking up a large message map into nested groups
of mapping elements.

© Copyright IBM Corp. 2014 3

You can use local maps to simplify the overall message map presentation. You can
structure complex data transformations into nested groups that are easier to
manage and implement.

For more information, see “Local map” on page 225.

Legacy message maps

A legacy message map is a message map that is created as a .msgmap file in earlier
versions of WebSphere® Message Broker Version 8, for example in WebSphere
Message Broker Version 7.

Note: WebSphere Message Broker Version 8 introduces graphical data maps. These
message maps replace the previous message map format, and are created as .map
files.

You can compile and deploy a legacy message map in IBM Integration Bus.
However, if you need to modify a legacy message map, you must first convert the
legacy message map to a message map.

For more information, see Chapter 29, “Using or converting legacy resources into
message maps,” on page 321.

Choosing a type of graphical data map

Use the following table to identify the type of map that you must create when you
transform data graphically in the Graphical Data Mapping editor:

Table 1. Types of map based on design requirements

Recommended use Type of resource
Supported in IBM

Integration Bus

Message map Graphical data
mapping

.map file Yes

Submap Reuse of common
data transformations

.map file Yes

Local map Reduce complexity
when you read and
manage a message

map

No file. It is
embedded within a

Message map

Yes

Legacy message map Reuse of maps that
are developed in

earlier versions of
IBM Integration Bus

.map file Supported for
compatibility with
earlier releases of

IBM Integration Bus.
(See note below.)

Note: You can use a legacy message map, but you cannot modify it in IBM
Integration Bus. These types of maps are maintained for compatibility with earlier
versions of IBM Integration Bus.

Editing a graphical data map

You edit a message map or a submap in the Graphical Data Mapping editor.

The Graphical Data Mapping editor saves message maps as .map files.

4 Designing a message map

For more information, see “Graphical Data Mapping editor” and Chapter 9,
“Editing message maps,” on page 61.

Mapping operations

You can use transforms to map graphically your data in the Graphical Data
Mapping editor.

For more information, see Chapter 4, “Transforms (Mapping operations),” on page
21.

XPath

In the Graphical Data Mapping editor, you can use XPath functions in any of the
following ways:
v You can define an XPath function to transform data by using a built-in XPath

transform. For more information, see “Built-in XPath transforms” on page 229.
v You can define complex XPath expressions that combine multiple XPath

functions to transform data by using the Custom XPath transform. For more
information, see “Custom XPath” on page 214.

v You can define XPath expressions to set a condition on a transform or to filter an
element in a repeating element. For more information, see “Defining an XPath
conditional expression for a transform” on page 85.

v You can use XPath inline when you specify an argument to an XPath function.
For more information, see “Built-in XPath transforms” on page 229.

Graphical Data Mapping editor
Use the Graphical Data Mapping editor to create and edit graphical data maps.

You can use the Graphical Data Mapping editor to take input (source) objects and
transform them before you save the resulting output (target) objects.

Here is an example of the Graphical Data Mapping editor:

The input objects are shown on the left side of the canvas, and the output objects
are shown on the right side. You can create connections between the input and

output elements by clicking the grab handle , which is shown when you
point to an element, and dragging the mouse to the element to which you want to
connect. You can create connections either from left to right or from right to left.

You can use the Graphical Data Mapping editor to construct a graphical data map
by using a wide variety of mapping transform functions. The transforms operate
either from an input element to an output element on the canvas, or by directly
setting the value of an output element.

Chapter 2. Graphical Mapping overview 5

You can use the functions either by using drag-and-drop, or from a menu action on
the input or output element. The Graphical Data Mapping editor inserts the most
appropriate mapping function on the newly created transform connection. For
transforms that require multiple input connections, you can drag more connections
onto the transform, and you can then select either a primary or supplementary
connection mode. The Graphical Data Mapping editor adjusts the type of
transform based on the new connections. When you create a connection, you can
optionally change the type of transform function or start setting properties.

Some types of transforms involve complex input and outputs. They are edited by
entering a nested view. The editor provides arrow buttons and breadcrumb
navigation for nested transforms.

For information about the transforms that you can use in a graphical data map, see
Chapter 26, “Transform types in the Graphical Data Mapping editor,” on page 193.

The Graphical Data Mapping editor properties

The Properties pane displays the properties of the message map, its input and
output elements, and transformations. For information about configuring the
properties, see “Configuring the general properties of a message map” on page 62.

When you are working with the maximized view of the Graphical Data Mapping
editor, you can bring the Properties pane back into focus in either of the following
ways:
v Right-click the object and then select Show in > Properties view.
v Use the appropriate keyboard combination, which, by default, is Alt+Shift+Q, R.

You can configure these keyboard shortcuts by selecting Window > Preferences
> General > Keys.

Actions supported in the Graphical Data Mapping editor

Table 2. List of actions supported in the Graphical Data Mapping editor

Icon Label Action

Add an input object Adds an input object to the
map by selecting a map
input.

Add an output object Adds an output object to the
map by selecting a map
output.

Sort mapping by source Sorts the mapping objects so
that the appearance of
transforms is prioritized by
the source.

Sort mapping by target Sorts the mapping object so
that the appearance of
transforms is prioritized by
the target.

Delete selected elements Deletes the element or
elements that are currently
highlighted.

Create a new transform Creates a transform for the
map.

6 Designing a message map

Table 2. List of actions supported in the Graphical Data Mapping editor (continued)

Icon Label Action

Auto map input to output Automatically maps elements
by using the Automap
Wizard.

Select rows from a database Selects rows of data from a
database table.

Call a database routine Calls a database routine to
obtain the data to include in
the map.

Insert a row into a database
table

Inserts one row into a
database table.

Update rows in a database
table

Update one or more rows in
a database table.

Delete rows from a database
table

Delete one or more rows in a
database table.

Show object preferences Opens the Preferences
window for the currently
selected object.

Casting data structures

In the Graphical Data Mapping editor, you can use the Cast function to cast data
structures.

Wildcards can be used to create a flexible message model that can be redefined
when a more detailed definition is required. You define a wildcard as xsd:any in
your schema.

When your message model schemas contain one or more wildcards, you can use
the Cast function to redefine parts of the input or output model in a message map.

For more information, see “Casting wildcards in a map” on page 65.

Message maps
You can use a message map to graphically transform, route, and enrich a message.
You can use a message map to modify data in a database system. You can use drag
actions to make connections, select transforms, and build logic to transform your
message data without programming.

A message map is the IBM Integration Bus implementation of a graphical data
map. It is based on XML schema and XPath 2.0 standards.

You can use a message map to achieve the transformation of a message without
the need to write code, providing a visual image of the transformation, and
simplifying its implementation and ongoing maintenance.

Input and output data to a message map

In IBM Integration Bus, the logical tree structure is the internal representation of a
message. It is also known as the message assembly.

Chapter 2. Graphical Mapping overview 7

When a message arrives to IBM Integration Bus, a parser is called. Each parser is
suited for a particular type of message, and is known as a message domain. A
parser converts the bit stream of an input message to its internal format. The data
structure that you define in a message map for an input or an output message is
the IBM Integration Bus internal representation of the message.

To configure the input and the output to a message map, you define an input
message assembly and one or more output message assemblies.
v You can have 1 input to a message map.
v You can have multiple outputs in a message map.

For more information, see “Input and output messages to a message map” on page
17.

Supported message domains

The following message domains are supported when you use message maps:
v DFDL: You use this domain to manipulate general text or binary data streams

including industry standards.
v XMLNSC: You use this domain to manipulate XML documents.
v SOAP: You use this domain to manipulate SOAP messages.
v DataObject: You use this domain to manipulate data without a stream

representation.
v BLOB: You use this domain to manipulate messages with content that cannot be

interpreted and subdivided into smaller sections of information.
v MRM: This domain is maintained for compatibility with earlier versions of IBM

Integration Bus.

Message assembly components

You can configure a message map to include the following message assembly
components:
v The Properties folder.
v The message tree transport headers: For more information, see “Mapping

transport headers” on page 109.
v The local environment tree: For more information, see “Mapping data in the

local environment tree” on page 111.
v The message body

Note: Other message assembly components, such as the Exception list tree, are
passed on unchanged. They cannot be modified in a message map.

Message body

You define the message body by defining a message model in any of the following
ways:
v Define a message model by using a predefined message model.
v Define a message model by using a user-provided message model.

You can use message models for any messages that you want to include in a
mapping. You can select the message model from your existing message models in
your application, integration service, or library when you create a message map.

8 Designing a message map

The mapping facility supports message models that are provided in DFDL schema
and XML schema files, or MRM message sets.

In a message map, input and output body objects are defined by reference to
message models, which provide a definition of the message structure and type
through the following components:
v Simple elements and attributes, which define the type, range, and default values
v Complex elements, which build the structure of the message
v Repeating simple or complex elements
v Other (embedded) messages

If your message model includes wildcards (xsd:any), you can use a Cast function
to redefine these data elements to a global type or element from any message
schema in your application. For more information, see “Casting wildcards in a
map” on page 65.

Editing a message map

You edit a message map in the Graphical Data Mapping editor. You can create,
modify, or delete a message map.

The Graphical Data Mapping editor saves message maps as .map files.

For more information, see Chapter 9, “Editing message maps,” on page 61.

Mapping behavior

By default, any message assembly component that is not included in the message
map is copied from input to output unchanged.

To modify a message assembly component, you add the header or folder to the
input and output message assembly in the message map, and provide
transformations.

To delete a message assembly component, you add the component to the input
message assembly, but not the output message assembly in the message map.

To create a message assembly component, you add the component only to the
output message assembly in the message map.

Mapping operations

You can use any of the following transforms to map graphically your data in the
Graphical Data Mapping editor:
v Core mapping transforms: You can use built-in structural and functional

mapping operations to graphically construct the required message
transformations to build the output message.

v Custom transforms: You can use custom transformations to define specialized
transformations in XPath 2.0, Java™, or ESQL functions.

v XPath functions (fn:functionName): You can use XPath 1.0 and XPath 2.0
functions to transform data in a message map.

v Database transforms:
– You can use the Select transform to query one or more database tables, and

retrieve data that you can use in the message map. You can use the data to

Chapter 2. Graphical Mapping overview 9

set output element values, define conditions, or use as input to build other
transforms conditions. Database tables can be set as extra outputs of a
message map.

– You can use a database routine transform to call a stored procedure from a
database, and retrieve data that you can use in the message map. You can use
the data to set output element values, define conditions, or use as input to
build other transforms conditions.

Note: Only IBM DB2® stored procedures are supported in IBM Integration
Bus.

– You can use the Insert transform to add one new row of data, or multiple
rows of data, into a database table.

– You can use the Update transform to modify a row of data, or multiple rows
of data, in a database table.

– You can use the Delete transform to delete a row of data, or multiple rows of
data, in a database table.

v Cast function: You can use the Cast function to cast schema types.

For more information, see Chapter 4, “Transforms (Mapping operations),” on page
21.

Local maps

You can use local maps as navigation aids. You view the map elements in a
hierarchical way. Unlike submaps, local maps are not separate files and they are
not reusable. They provide a way of breaking up a large map into nested groups of
mapping elements and processing the complex elements of the whole message.

Deploying a message map

Message map files are deployed to the IBM Integration Bus run time environment
to enable them to be run in a message flow.

When you build and deploy a BAR file for an integration solution, the message
map files are automatically included.

When you deploy independent resources, the BAR file editor provides a resource
category to allow message maps to be selected for deployment.

If your message map file is used by multiple solutions, you might store the map in
a shared library. Shared libraries that are referenced by applications must be
deployed with or before the applications that refer to them. You can deploy the
shared libraries directly to the integration server before you deploy the
applications. Alternatively, you can include the applications and shared libraries in
a BAR file and deploy the BAR file. If you update the message map in a shared
library, those changes are available automatically to all applications that refer to
that shared library.

Submaps
You can use a submap to use the same mapping transformation in multiple
message maps.

You use submaps to define a set of mapping functions that you can reuse in
multiple message maps.

10 Designing a message map

A submap references another map. It calls or invokes a map from the same file or
another map file, which can be stored in a library, an application, an integration
service, or an Integration project.

A submap can contain components of the message body only, such as global
elements and global types. A submap does not contain Properties, message
headers, or the Local Environment tree.

For more information, see “Creating a submap” on page 50.

When you use submaps, you must consider the following behavior:
v You can use a submap to define transformations between global elements or

global types.
v A submap cannot be used to transform local anonymous complex types, that is,

xs:any elements.
v A submap can be placed in any project that is visible to the main map that calls

the submap.

Editing a submap

You edit a submap in the Graphical Data Mapping editor.

The Graphical Data Mapping editor saves submaps as .map files.

For more information, see “Graphical Data Mapping editor” on page 5.

Input and output data to a submap

To configure the input and the output to a submap, you must define one input
message, and one output message.

The input message and the output message must be defined by a user-provided
message model if it is to be transformed by using a message map.

You must have message models for any messages that you want to include in a
mapping. You can select the message model from your existing message models in
your application, integration service, or library when you create a message map.
The mapping facility supports message models that are provided in DFDL schema
and XML schema files, or MRM message sets.

In a message map, input and output objects are defined by reference to message
models. They provide a definition of the message structure and type through the
following components:
v Simple elements and attributes, which define the type, range, and default values
v Complex elements, which build the structure of the message
v Repeating simple or complex elements
v Other (embedded) messages

If your message model includes wildcards (xsd:any), you can use a Cast function
to redefine these data elements to a global type or element from any message
schema in your application. For more information, see “Casting wildcards in a
map” on page 65.

Chapter 2. Graphical Mapping overview 11

Mapping operations

You can use any of the following transforms to map graphically your data in the
Graphical Data Mapping editor:
v Core mapping transforms: You can use built-in structural and functional

mapping operations to graphically construct the required message
transformations to build the output message.

v Custom transforms: You can use custom transformations to define specialized
transformations in XPath 2.0, Java, or ESQL functions.

v XPath functions (fn:functionName): You can use XPath 1.0 and XPath 2.0
functions to transform data in a message map.

v Database transforms:
– You can use the Select transform to query one or more database tables, and

retrieve data that you can use in the message map. You can use the data to
set output element values, define conditions, or use it as input to build other
transforms conditions. Database tables can be set as extra outputs of a
message map.

– You can use a database routine transform to call a stored procedure from a
database, and retrieve data. You can use the data to set output element
values, define conditions, or use as input to build other transforms conditions.

Note: Only IBM DB2 stored procedures are supported in IBM Integration
Bus.

– You can use the Insert transform to add one new row of data, or multiple
rows of data, into a database table.

– You can use the Update transform to modify a row of data, or multiple rows
of data, in a database table.

– You can use the Delete transform to delete a row of data, or multiple rows of
data, in a database table.

v Cast function: You can use the Cast function to cast schema types.

For more information, see Chapter 4, “Transforms (Mapping operations),” on page
21.

Starting a submap

A submap can be referenced from other message maps.

When you construct your transformation map, you create a submap to group part
of the message transformation. The submap must be in a project visible to the
main map that they are called from.

To start a submap, you define a Submap transform between the input object and
the output object in your message map. The submap can then be used to enable
reuse of common transformations for sections of, or the whole of, the message.

For more information, see “Calling a submap” on page 177.

Limitations
v A submap can provide callable mapping between global elements or global

types from a message model.

12 Designing a message map

v A submap cannot be used for local anonymous complex types. Anonymous
complex types must be mapped within the main map, for example, by a local
map.

Reusing a submap

You can use a submap to reuse common data transformations.

You can reuse submaps in other solutions, and in other products that support
graphical data maps.

Note: If you plan to reuse a submap across different products, read “Guidelines
for developing reusable graphical data mapping assets.”

Guidelines for developing reusable graphical data mapping assets
You can create graphical data maps (.map files) for reuse by other products that
include the Graphical Data Mapping editor.

When you create graphical data maps that you want to reuse in other products,
ensure that your graphical data maps conform to the following guidelines:

Build your reusable mapping structures as a submap

Many products use extra metadata to supplement the business message data, but a
reusable transformation asset that is contained in a submap processes only the
common business data.

Create a submap to contain the mapping structures that you want to reuse in other
products, and then call this submap from a top-level mapping structure. You can
use the Graphical Data Mapping editor to refactor a local map to a submap; see
“Converting a local map into a submap” on page 54.

For more information about submaps, see “Creating a submap” on page 50.

Custom transforms can be only Custom Java and Custom XPath

Create custom transforms in your reusable submaps by using only Custom Java
and Custom XPath transforms. Other custom transform types, such as Custom
ESQL in IBM Integration Bus, are product-specific, and cannot be used.

Considerations for mapping messages modeled in message sets
You can use the Graphical Data Mapping editor to transform XML messages that
are defined in XML Schema (.xsd files). Message Set modeling in IBM Integration
Bus supports XML Schema extensions.

The Graphical Data Mapping editor supports both XML and text or binary
messages that are modeled in IBM Integration Bus message sets, with the
following considerations:
v Message sets provide facilities for defining message composition. When these

extensions are used to redefine a wildcard in a message, they are not shown in
the message map. The Graphical Data Mapping editor provides equivalent
facilities for modeling choice in schema wildcards by using the Cast function.
For more information about the Cast function, see “Mapping xsd:any on an
input or output message” on page 64.

Chapter 2. Graphical Mapping overview 13

When you create a message map or convert a message map that includes a
schema wildcard from a message set with XML Schema extensions, you must
manually add a Cast function from the wildcard to the required schema element.

v The message map requires the message set schema (.xsdzip file) to be deployed
to run your message map. If your existing message set is used for text and
binary formats only, you can deploy your message map with only a .dictionary
file in the BAR file. In this case, you must modify the message set to
additionally set the XMLNSC domain support option, so it is added to a BAR
with both a .dictionary file and .xsdzip file. If this option is not set, a warning
is displayed in the Problems view, along with a quick fix action.

14 Designing a message map

Chapter 3. Designing a message map

You can use a message map to graphically transform, route, or update an external
system. For best performance and capability, you must design it to include the
most appropriate transforms.

Procedure

Consider the following guidance to design a message map:
1. Design the data model of your input and output message per the solution

requirements.
The function of a message map is driven by the data models that define the
input and the output message structures of a map. At run time, the Graphical
Data Mapping engine must account for all possible states of the data when
executing the transformations you have defined in the map against the data
models. You may have control or not over the data models in your solution. If
you can influence the data model, these are some of the key points to consider:
a. Set the cardinality of each element in a data model to specific values

whenever possible.
When you define a logical model, you can configure the cardinality of each
element by setting the minoccurs and the maxoccurs properties.
Avoid, whenever possible, configuring maximum flexibility unless actually
required. Only set minoccurs to 0, when an element needs to be optional.
Only set maxoccurs above 1 if the element will actually repeat.

b. Define an element as nillable when you know that the application will need
to handle out of bound value in the data.

c. Enable schema validation when you are developing a map. Disable
validation in your test and production systems unless the solution requires
validation enabled.
Validation is the process of checking a message’s structure, and optionally
the values within, based on a description called a schema. The Mapping
node relies on schema definitions, but it does not enforce them. If the input
message does not conform to the schema being used, the output you expect
to see might not be produced. During the development of your integration
solutions, it is recommended that you enable validation. However, for other
environments such as test or production, you should only leave validation
on if your solution requires it because of the extra processing involved.
For more information, see Validating messages.

2. Identify the type of message map.
a. Use a message map to graphically transform, route, and enrich a message.

You can use a message map to modify data in a database system.
For more information, see “Message maps” on page 7.

b. Use a submap to define a set of mapping functions that you can reuse in
multiple message maps.
For more information, see “Submaps” on page 10.

For example, the Mapping node invokes a map that deals with a message
assembly. You can put the mapping for common parts of the message data into
a submap to enable reuse.

3. Identify the input and output components to a message map.

© Copyright IBM Corp. 2014 15

v You can select an XML schema, DFDL schema, or message set to define the
message body.

v You can choose any of the following message assembly components: the
Properties tree, the local environment tree.

v You can add database tables.
You should only include a component when you need to read data or write
data:
v To read elements of an input component, add the component to the input

message assembly only. The Graphical Data Mapping editor passes to the
output the input component unchanged.

v To modify elements of an input component, add the component to the input
message assembly and to the output message assembly. Then, define
transforms between its elements.

v To initialize an input component, that is, to create a new component in your
output message, add the component only to the output message assembly.

v To add an input component, add the component to the output message
assembly and populate at least one field. The Graphical Data Mapping editor
creates a new output structure containing the results of your transformations.

v To delete an input component from the input message, add the component to
the output message assembly and do not set any field.

For more information, see “Choosing a mapping action” on page 98.
4. For each output element, identify the transform and the input elements

required to calculate its value.
When the transformation of an element from input to output becomes more
than just a simple Move, or type conversion (xs:type), you can call on the full
set of standard XPath 2.0 operators and functions to manipulate the data as
required.
The Graphical Data Map editor offers the XPath functions as transform types in
the pick list as well as in the content assist, "Ctrl-space" when editing
expressions and conditions.
v “Choosing a transform to set the value of a simple type output element” on

page 23
v “Choosing a transform to set the value of a complex output element” on

page 25
v “Choosing a transform to map repeating elements” on page 27
v “Choosing a transform to concatenate input data” on page 29
v “Choosing a transform to perform an arithmetic operation” on page 31
v “Choosing a transform to define a conditional mapping” on page 31
v “Choosing a transform to map an input message to multiple output

messages” on page 32
5. Define structure in your map so that you can have a single condition that

applies to a group of transforms as opposed to having to repeat the condition
on each transform because all the transforms are at the same level in the map.
a. Define a conditional expression for each transform to determine at run time

whether the transform is applied or not.
For more information, see “Defining an XPath conditional expression for a
transform” on page 85.

16 Designing a message map

b. Use structural transforms to enhance the readability and maintenance of
your map. You obtain similar performance results whether all the
transforms are in the main map or grouped into nested maps that are
associated with structural transforms.
Other advantages when you use structural transforms are the following:
1) You can define a conditional expression that determines whether a

nested map is applied at run time. For example if a set of child fields
should only be mapped dependent on some attribute of the folder, place
them all inside an If transform. The nested map is executed when the
condition evaluates to true.

2) When you use a Local Map transform, you can convert the map to a
submap if the need for reuse comes at a later stage. You can use an
action in the Graphical Data Mapping editor to re-factor the Local Map
into a Submap.

3) You can use the Auto map wizard to automatically create Move
transforms from input to output elements based on some correlation of
the names of input and output elements to create mappings.

For more information, see Chapter 6, “Using nested maps,” on page 37.
6. When you need to process data, rather than just move it from source to target,

use custom transforms to define specialized transformations.
a. “Custom XPath” on page 214
b. “Custom Java” on page 212
c. “Custom ESQL” on page 208
From a performance point of view, it is recommended that you use XPath
transforms or the Custom XPath transform as your first choice, then Custom
Java. You can also use Custom ESQL.

Input and output messages to a message map
In a message map, you must define an input message and an output message. You
can choose from a predefined message format, or a custom message format. You
can cast xsd:any elements.

When a message arrives to IBM Integration Bus, a parser is called. Each parser is
suited for a particular type of message, and is known as a message domain. A
parser converts the bit stream of an input message to an internal format. A parser
is also called when a logical tree that represents an output message is converted
into a bit stream.

Note: The data structure that you define in a message map for an input or an
output message is the IBM Integration Bus internal representation of the message.

Message domains

The following message domains are supported in a message map:
DFDL
XMLNSC
SOAP
DataObject
BLOB
MRM

Chapter 3. Designing a message map 17

Note: The MRM domain is supported for compatibility with legacy message maps.

Message assembly

In a message map, the source message assembly describes the input message and the
target message assembly describes the output message.

A message assembly includes the properties tree, any relevant headers, the local
environment tree, and the message body.
v When you create a top-level message map, only the Properties folder is initially

included. A Move transformation from the input Properties folder to the output
Properties folder is created by default where all input values are copied to the
corresponding output values unchanged.

v The structure of the Properties folder, the transport headers, and the local
environment tree are predefined in IBM Integration Bus.

v You can define the local environment tree Variables folder structure by using the
Cast function.

v The input message body is defined by associating an input message model such
as a DFDL schema, or an XML schema.

v The output message body is defined by associating an output message model
such as a DFDL schema, or an XML schema.

You must set the Output domain property of the target message assembly to
define the message domain in which an output message is to be built.

The message map uses the schema types of the output elements to create and set
the elements of the output message tree.

Message models

The following message models are supported in a message map:
v Predefined message model
v Schema-based message model

You can select any of the following supplied message models as your input or
your output message format:
v SOAP_Domain_Msg {}: You use this message model to handle messages in the

SOAP domain.
v BLOB {}: You use this message model to handle messages in the BLOB domain.

For other supported message domains, you can select a schema-based message
model.
v You use a schema-based message model when you have the message model in

an XSD file. For more information on how to create a schema-based message
model, see Modeling different data formats.

Advanced XML schema structures valid in input and output messages
You can use several advanced schema structures in graphical data maps.

You can use any of the following XML features in message models that are defined
as inputs or outputs to the Graphical Data Mapping editor:
v “Substitution groups” on page 19

18 Designing a message map

v “Wildcards (xsd:any)”
v “Derived types”
v “List types (xs:list)” on page 20
v “Union types (xs:union)” on page 20

Substitution groups
A substitution group is an XML schema feature that provides a means of
substituting one element for another in an XML message.
v The element that can be substituted is called the head element.
v The substitution group is the list of elements that can be used in its place.

The head element and any mapped substitutions are shown by default in the
Graphical Data Mapping editor. The mapped substitutions are listed beneath the
head element.

You create mappings to or from members of substitution groups in the same way
as you map other elements.

Wildcards (xsd:any)
You can use wildcards to create open content models. You can define xsd:any and
xsd:anyAttribute wildcards.

Wildcards are characterized for the following attributes:
v The namespace attribute: You can use this attribute to specify the namespace

that the elements or attributes that match the wildcard can come from.
v The processContents attribute: You can use this attribute to specify how the XML

content matched by the wildcard is validated.

When you use wildcards in the Graphical Data Mapping editor, you must consider
the following behavior:
v You can wire a xs:any or a xs:anyAttribute as the input or output of a Submap

transform. Then, when you configure the Submap transform, you can define
that input or output to be a particular type.

v A wildcard element can be instantiated only with another element.
v A wildcard attribute can be instantiated only with another attribute.
v You can use a global element or attribute as a wildcard replacement.

For more information, see “Mapping xsd:any on an input or output message” on
page 64.

Derived types
A derived type is a data type that is related to another data type known as the base
type or super type.

In a message map, you can cast a base type to a derived type or extension type.
You can define transformations between subtypes of a data type.

When you use derived types in the Graphical Data Mapping editor, you must
consider the following behavior:

Chapter 3. Designing a message map 19

v For an element of a specific type, the base type and the mapped derived types
are shown by default. All attributes and elements of the base and derived types
are displayed.

v You create mappings to or from a derived type and its elements in the same way
that you map any base type and its elements.

v When you map an input element to an output element with a derived schema
type or an extension schema type, the created output element is set with the
relevant xsi:type attribute for that schema type.

List types (xs:list)
You can use xs:list to define a simple type element as a list of values of a
specified data type. For example:
<xs:simpleType name=’CustomerName’>
<xs:list itemType=’string’/>
</xs:simpleType>

When you use xs:list in the Graphical Data Mapping editor, you must consider
the following behavior:
v You map a simple type element that is defined as a list of values in the same

way that you would map any other simple type attribute or element.

Union types (xs:union)
You can use xs:union to define a simple type as a collection of values from
specified simple data types. It allows a value to conform to any one of several
different simple types. For example:
<xs:element name="zipUnion">
<xs:simpleType>
<xs:union memberTypes="USStateName StateID"/>
</xs:simpleType>
</xs:element>
<xs:element name="USStateName">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:minInclusive value="0"/>
<xs:maxInclusive value="100"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="StateID">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>
<xs:maxInclusive value="100"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

When you use xs:union in the Graphical Data Mapping editor, you must consider
the following behavior:
v You map a simple type element that is defined as a collection of values in the

same way that you would map any other simple type attribute or element.

20 Designing a message map

Chapter 4. Transforms (Mapping operations)

In the Graphical Data Mapping editor, you can define mapping operations such as
transforms, cast functions, or XPath 2.0 functions. Mapping operations define the
transformation actions on input data, and set the result to the output element.

Mapping operations to transform graphically your data

You can use any of the following transforms to map graphically your data in the
Graphical Data Mapping editor:
v Core mapping transforms: You can use built-in structural and functional

mapping operations to graphically construct the required message
transformations to build the output message. For more information, see
Chapter 26, “Transform types in the Graphical Data Mapping editor,” on page
193.

v Custom transforms: You can define specialized transformations to build custom
ESQL functions, XPath 2.0, or Java. For more information, see Chapter 26,
“Transform types in the Graphical Data Mapping editor,” on page 193.

v XPath functions: You can use XPath 1.0 and XPath 2.0 functions to transform
data in a message map.
All XPath 2.0 functions are supported in the form fn:functionName.
For more information about XPath, see the online document W3C XML Path
Language (XPath) 2.0.

v Database transforms:
– You can use the Select transform to query one or more database tables, and

retrieve data. You can use the data in the message map to set output element
values, define conditions, or use as input to build other transforms conditions.
Database tables can be set as extra outputs of a message map. For more
information, see “Selecting data from a table” on page 159.

– You can use a database routine transform to call a stored procedure from a
database, and retrieve data. You can use the data in the message map to set
output element values, define conditions, or use as input to build other
transforms conditions.

Note: Only IBM DB2 stored procedures are supported in IBM Integration
Bus. For more information, see “Calling a stored procedure from a map” on
page 168.

Mapping operations to modify data in a database

Database tables can be set as more outputs of a message map.

You can use any of the following transforms to modify data in a database:
v Insert transform: You use the Insert transform to add one new row of data, or

multiple rows of data, into a database table. For more information, see “Inserting
data into a table” on page 162.

v Update transform: You use the Update transform to modify a row of data, or
multiple rows of data, in a database table. For more information, see “Updating
data in a table” on page 163.

© Copyright IBM Corp. 2014 21

http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

v Delete transform: You use the Delete transform to delete a row of data, or
multiple rows of data, in a database table. For more information, see “Deleting
data from a table” on page 165.

v Database routine transform: You use a database routine transform to call a
stored procedure or user-defined function from a database to insert, delete, or
update data in one database table. For more information, see “Calling a stored
procedure from a map” on page 168.

Note: Only IBM DB2 stored procedures are supported in IBM Integration Bus.

At design time, you must have a database definition file (.dbm file) in an available
Data Design project for each database that you want to access. A data definition
file contains one connection per database system.

At run time, you must have a JDBC connection of Type 4 defined for each
database that your message map uses. You must configure a JDBCProvider
configurable service per database. The JDBCProvider service name for a runtime
database must be the same name as the development database name that you use
in your message map.

For more information, see “Modifying data in a database by using mapping” on
page 161.

Cast function to define a schema type

In the Graphical Data Mapping editor, you can use the Cast function to cast
schema types.

You must cast a schema in any of the following instances:
v Cast the value that you assign to an output element so it matches the output

element schema definition type.
v Cast the value of an element that you use as a parameter to a function where

the parameter is of a different type.
v Cast the value of an element that you use as a condition on a transform where

the type is different.
v Cast the value of an element when you work with a database, and the types

differ.

To cast a schema, you can use the xs:castOperation functions, where castOperation
is the name of the cast function.

Mapping behavior driven by the type of operation

When the transformations in the message map are constructed, the values for
output message elements can be derived from any of the following components:
v Input message elements, through any of the following mapping operations:

– Move, Convert, and other built-in transforms in the Graphical Data Mapping
editor.

– XPath 2.0 functions (prefix fn:). All XPath 2.0 functions are supported by the
Mapping node. For more information about XPath, see W3C XML Path
Language (XPath) 2.0.

– Database input by using a database Select transform.

22 Designing a message map

http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

– Schema type casts. For more information, see “Mapping xsd:any on an input
or output message” on page 64.

v Extra functions, which allow multiple input values to produce the output value,
such as concat and join.

v The result of database Select, Insert, Update, Delete, and Database routine
transforms.

v Constant values, through an Assign operation that uses a supplied value.
v Custom functions, user-defined XPath, Java, or ESQL.

The logic to derive values can be simple or complex. In addition to the
transformation operations that set an output value, structural transforms are
provided to enable conditional statements, loops, and nesting of transform logic
into local maps.

For information about the supported transform types, see Chapter 26, “Transform
types in the Graphical Data Mapping editor,” on page 193.

Choosing a transform to set the value of a simple type output element
You can use different transforms, such as the Assign transform, the Create
transform, the Move transform, or the xs:type transform, to set the value of an
output element.

Procedure

Complete the questionnaire to identify the transform that you can use to set the
value of an output element:
1. Do you want to set the value to a fixed value?

Use the Assign transform.
2. Do you want to initialize the output element, that is, do you want to create an

empty structure?
Use the Create transform to initialize a string output element or a hexBinary
output element.

3. Do you want to create a nil output element?
Use the Create transform and verify that the output element is defined as
nillable="true" in the schema.

4. Do you want to set the output element as nil by using an input element with a
value of nil?
Use the Move transform. Verify that the input element is defined as
nillable="true" in the schema. Ensure that the value of the input element is
nil.

5. Do you want to set the output element to a default value?
Use the Create transform and verify that the output element has a default
value set in the schema.

6. Do you want to set the output element with input from a database column?
Use the Select transform to obtain the database input value. Then, in the nested
map that is associated with the Select transform, use the Move transform to set
the value of the output element.

7. Do you want to set the value of the output element with the value of an input
element? Do the input element and the output element have the same type
associated? Do you want to cast the input value to the type of the output
value?

Chapter 4. Transforms (Mapping operations) 23

v When the input and output element have the same type, use the Move
transform.

v When the input and output element have different data types, use the
xs:type transform.

8. Do you want to calculate the value of the output element by using the value of
one or more input elements?
To set an output element with a string data type or hexBinary data type, use
any of the following transforms:
v Concat

v Normalize

v Append

v Substring

v fn:string-join

v Custom XPath

v Custom Java

v Custom ESQL

To set up an output element with any other data type, use any of the following
transforms:
v Any supported XPath functions, for example, fn:round

v Custom XPath

v Custom Java

v Custom ESQL

9. Do you want to apply the transform always? Do you want to apply the
transform when a condition based on input data occurs?
Define a conditional expression for the transform you choose. This expression
determines when the transform is applied. For more information, see “Defining
an XPath conditional expression for a transform” on page 85.

Results

Table 3. Setting the value of a simple output element

Number of input
elements that are

required to set the
value of the output

element

Transforms to set a
string data type, or a
hexBinary data type

Transforms to set
other simple data

types

Set the output
element with a fixed

value

0 Assign Assign

Initialize the output
element

0 Create not valid option

Set the output
element as nil

0 Create

Condition: The
output element must

be defined as
nillable="true" in

the schema.

Create

Condition: The
output element must

be defined as
nillable="true" in

the schema.

24 Designing a message map

Table 3. Setting the value of a simple output element (continued)

Number of input
elements that are

required to set the
value of the output

element

Transforms to set a
string data type, or a
hexBinary data type

Transforms to set
other simple data

types

Set the output
element as nil by
using a nil input

element

1 Move

Condition: The input
element must be

defined as
nillable="true" in

the schema.

Move

Condition: The input
element must be

defined as
nillable="true" in

the schema.

Set the output
element with a
default value

0 Create

Condition: The
output element must
have a default value

set in the schema.

Create

Condition: The
output element must
have a default value

set in the schema.

Set the output value
from a database table

column

1..N Select transform to
obtain the database

input value and
Move transform to

set the value

Select transform to
obtain the database

input value and
Move transform to

set the value

Copy the value of the
input element to the
output element (both

elements have the
same data type)

1 Move Move

Copy the value of the
input element to the

output element
(elements have

different data types)

1 xs:type xs:type

Calculate the value
by using the values

of multiple input
elements

1..N Concat, Normalize,
Append, Substring,

fn:string-join,
Custom XPath,
Custom Java,
Custom ESQL

XPath fn: functions,
Custom XPath,
Custom Java,
Custom ESQL

What to do next

Learn about the transforms. For more information, see Chapter 26, “Transform
types in the Graphical Data Mapping editor,” on page 193.

Choosing a transform to set the value of a complex output element
You can use different transforms, such as Move, Create, Assign, to set the value of
a complex output element.

Procedure

Complete the questionnaire to identify the transform that you can use to set the
value of a complex output element:

Chapter 4. Transforms (Mapping operations) 25

1. Do you want to set the value to a fixed value?
Use the Assign transform.

2. Do you want to initialize the output element, that is, do you want to create an
empty structure?
Use the Create transform.

3. Do you want to create a nil output element?
Use the Create transform and verify that the output element is defined as
nillable="true" in the schema.

4. Do you want to set the output element as nil by using an input element with a
value of nil?
Use the Move transform. Verify that the input element is defined as
nillable="true" in the schema. Ensure that the value of the input element is
nil.

5. Do you want to set the output element to a default value?
Use the Create transform and verify that the output element has a default
value set in the schema.

6. Do you want to set the output element with input from a database column?
Use the Select transform to obtain the database input value. Then, in the nested
map that is associated with the Select transform, use the Move transform to set
the values of the output element.

7. Do you want to set the value of the output element with the value of an input
element? Do the input element and the output element have the same type
associated? Do you want to cast the input value to the type of the output
value?
v When the input and output element have the same type, use the Move

transform.
v When the input and output element have different data types, use the

xs:type transform to set the value of each element.
8. Do you want to apply the transform always? Do you want to apply the

transform when a condition based on input data occurs?
Define a conditional expression for the transform you choose. This expression
determines when the transform is applied. For more information, see “Defining
an XPath conditional expression for a transform” on page 85.

Results

Table 4. Setting the value of a complex output element

Number of input elements
that are required to set the

value of the output element
Transforms to set a complex

type

Set the output element with
a fixed value

0 Assign

Initialize the output element 0 Create

Set the output element as nil 0 Create

Condition: The output
element is defined as
nillable="true" in the

schema.

26 Designing a message map

Table 4. Setting the value of a complex output element (continued)

Number of input elements
that are required to set the

value of the output element
Transforms to set a complex

type

Set the output element as nil
by using a nil input element

1 Move

Condition: The input element
must be defined as

nillable="true" in the
schema.

Set the output element with
a default value

0 Create

Condition: The output
element has a default value

set in the schema.

Set the output value from a
database table column

1..N Select transform to obtain
the database input value and

Move transform to set the
value

Copy the value of the input
element to the output

element (both elements have
the same data type)

1 Move

Copy the value of the input
element to the output

element (elements have
different data types)

1 xs:type

What to do next

Learn about the transforms. For more information, see Chapter 26, “Transform
types in the Graphical Data Mapping editor,” on page 193.

Choosing a transform to map repeating elements
In the Graphical Data Mapping editor, you can use the For Each transform, the
Append transform, the Join transform, XPath functions, the Custom XPath, and
the Custom Java transform to map input and output arrays. You can use any of
these transforms to choose the set of the elements in the array that you want to
transform, and place the result in an output array or single element.

Procedure

Choose one of the following transforms to map repeating elements:
1. When you have repeating elements as input and output to a transform, you can

use the ForEach transform to set the output array element.
The For Each transform iterates over one input array element, which can be
either a simple type or a complex type, and enters a nested mapping in which
you can provide transforms to populate an instance of the output from the
input. You can configure the cardinality to filter which instances to process
based on index. Also, you can provide a Boolean expression which will be
applied to each instance to determine if it will be mapped.

Chapter 4. Transforms (Mapping operations) 27

Additionally, you can also set the Allow empty input option so that the
Graphical Data Mapping editor enters the nested transform once when no
matches occur. This can be used to implement an outer join by providing a
supplementary input to the For Each.
For more information, see “For Each” on page 218.

2. When you have multiple inputs that are either simple type elements, complex
type elements, or repeating elements from which you need to construct an
array, you can use the Append transform to add instances to either a simple
type output array or a complex type output array.
For more information, see “Append” on page 195.

3. When you have multiple inputs that are either simple type elements, complex
type elements, or repeating elements as input to a transform, and you want to
join these elements, you can use the Join transform to combine them into a
single repeating output element. The output element can be an array or a single
element. You configure an expression to control the match conditions for the
join. The Graphical Data Mapping editor provides a link to create a simple
match by index expression.
For more information, see “Join” on page 223.

4. You can use XPath functions to map from an array to a single element. For
example, you can use fn:string-join to return a string created by concatenating
multiple string arguments or fn:sum to return the sum of a repeating numeric
element into a single element.
For more information, see “Built-in XPath transforms” on page 229.

5. When you want to map a particular instance from an array to a single output
you can use a Custom XPath transform that has an XPath predicate expression
to select a particular instance.

6. You can use a Custom Java transform to map an array by passing the array as
an input or output parameter using a list of MbElement objects.
For more information, see “Custom Java” on page 212.

Selecting the indexes of input array elements
When you are transforming array elements in the Graphical Data Mapping editor,
you can use the Cardinality page of the properties view to select the indexes of the
input elements that you want the transform to operate over.

To specify the indexes, enter a value in the Input array indexes field of the
Cardinality properties page for the transform.

The following table shows examples of the values that you can enter:

28 Designing a message map

Table 5. Example values of input array indexes

Selected index elements Value in input array indexes field

All indexes * (or leave empty)

Only index 5 5

indexes 1 - 3 1:3

indexes 1, 3, and 5 1,3,5

indexes 2 and up 2:*

indexes 1, 3, 5 and up 1,3,5:*

indexes 2 - 8, but not 5 2:4,6:8

All indexes except 5 1:4,6:*

The indexes are 1-based, which means that the first element of the array is
referenced as 1, the second element as 2, and so on. If the cardinality field is left
blank for a specified array, all indexes are taken. If you have multiple levels of
nested array elements, blank cardinality fields imply that all indexes are taken.
Therefore, if the input element to a transform is A/B[]/C[], where B and C are
arrays with no indexes specified, all indexes are taken. This means that all C's part
of B[1], all C's part of B[2], all C's part of B[3], and so on, are taken.

Choosing a transform to concatenate input data
In the Graphical Data Mapping editor, you can use a Concat transform, a Custom
XPath transform, or an XPath function to define a mapping operation that sets the
value of an output element by concatenating input data.

Procedure

Choose one of the following transforms to concatenate multiple input values and
set the value of an output element:
v If your input elements are simple non-repeatable elements, and you want to

create an output element that is the result of concatenating these input elements
with a common delimiter, use the Concat transform. The delimiter is optional.
The Concat transform concatenates two or more simple non-repeatable elements
from the input into a single string value in the output. You can specify a
constant to define a prefix, a suffix, and multiple delimiters.
For more information, see “Concat” on page 201.

v If your input elements are simple non-repeating elements, and you want to
create an output element that is the result of concatenating these input elements
by using an XPath expression with different delimiters, use the fn:concat
transform. The delimiters are optional.
For more information, see “fn:concat” on page 231.

Chapter 4. Transforms (Mapping operations) 29

v If the input is a repeatable simple element, and you want to create an output
element that is the result of concatenating the sequence of input elements with a
delimiter as optional, use the fn:string-join transform.
For more information, see “fn:string-join” on page 234.
The following figure shows the fn:string-join transform:

v Use the Custom XPath transform to define an XPath expression that
concatenates multiple input elements into a simple output type.
The following figure shows a Custom XPath transform that concatenates some
input elements in the array into a string element:

v If you need to specify the matching criteria for joining or filtering input
elements, use the Join transform. Then, define transforms between the input and
output elements in the nested map associated to the Join transform.
For more information, see “Join” on page 223.

30 Designing a message map

Choosing a transform to perform an arithmetic operation
In the Graphical Data Mapping editor, use the fn:sum or a Custom XPath
transform to implement an arithmetic operation.

Procedure

Choose one of the following transforms to implement an arithmetic operation to
set the value of an output element:
v Use the fn:sum transform to calculate the sum of the values of multiple input

elements.
For more information, see “fn:sum” on page 241.

v Use the Custom XPath transform to implement any of the following arithmetic
operations: addition (+), subtraction (-), multiplication (*), division (div), or any
combination of these operations.

Note: You can only use as arguments of an arithmetic operation non-repeating
simple type input elements.
For more information, see “Custom XPath” on page 214.

Choosing a transform to define a conditional mapping
In the Graphical Data Mapping editor, you can define conditional transformations
by using a transform or by defining a conditional expression in the transform.

Procedure

Choose any of the following options to configure a conditional mapping in your
map:
1. Use the If transform, the Else if transform, and the Else transform to control

the flow of the mapping. For more information, see Configuring an If, Else if,
and Else transform in a message map.

Chapter 4. Transforms (Mapping operations) 31

If, Else if, and Else operate as a group of conditional transforms. The condition
is applied to the input element of the conditional transform. If the condition is
satisfied, the nested transform within the conditional transform is run.

2. Use a Custom Java transform or a Custom ESQL transform to provide a
condition function
For more information, see “Custom Java” on page 212 and “Custom ESQL” on
page 208.

3. Define a conditional expression in a transform to determine when the
transform is applied bu configuring the Condition tab of the transform.
For more information, see “Defining an XPath conditional expression for a
transform” on page 85.

Note: If you use a condition to optionally create one or more child output
elements within a complex element, check that the condition is on the
transform targeting the whole complex element, not just a child. If the
conditional transform only targets a child, the folder element within the
complex element will be created in the output before the condition is evaluated.

What to do next

For more information about mapping transforms, see Chapter 26, “Transform types
in the Graphical Data Mapping editor,” on page 193.

Choosing a transform to map an input message to multiple output
messages

You can create a map that takes a single input message and produces either
multiple instances of an output message model, or one or more instances of
different output message models.

About this task

When you create a map in the New Message Map wizard, you can only select a
single input and a single output. However, you can use the Add output button in
the Graphical Data Mapping editor to add additional outputs.

Note: You can only split an input message into multiple output messages in main
maps. This is not valid in submaps.

Procedure

Choose any of the following options to split a message in your map:
v To produce multiple instances of a particular output message, you can use the

For Each transform or the Join transform.
A typical use of this function is message splitting, in which an input batch
message is divided into individual record messages.
When you run the map, a new message is propagated for each iteration of the
For Each or Join transform.
For more information, see Chapter 15, “Splitting an input message into multiple
identical output messages,” on page 145.

v To produce one or more instances of different output messages, you can use the
If/Else transform.

32 Designing a message map

When you run the map, a new message is propagated for each conditional
transform that is applied.
For more information, see Chapter 16, “Mapping an input message into different
output messages,” on page 151.

Chapter 4. Transforms (Mapping operations) 33

34 Designing a message map

Chapter 5. Handling nulls in message maps

A message might contain fields that can carry a specific out-of-range value. This is
distinct from the field being empty. Such values are termed nil or null, and the
field is said to be nillable or nullable.

About this task

The logical message tree supports the concept of out-of-range values by using one
of two techniques, depending on the data format:
1. For XML, the schema model allows for elements to be defined as nillable to

indicate that they support an out-of-range value. An XML element in a
document is identified as being nilled by having a xsi:nil attribute with the
value true. The XMLNSC parser logical tree for a simple nilled element has an
empty value and a child attribute set to xsi:nil with the value true.

2. For other text and binary messages modeled with a DFDL schema or MRM
message set, elements can also be defined as nillable to indicate that they
support an out-of-range value. In the message bit stream, a reserved value is
identified to indicate the nullable state. The DFDL and MRM parsers logical
tree for a nilled element have the value set to the special value NULL.

Procedure

When you map nilled values, consider the following behavior when using the
Move transform, Custom Java, or Custom ESQL to set a target.

Source Target Comment

Logical Message Tree XML
nillable element

XML nillable Target created as nilled, has
xsi:nil attribute 'true', if
source has xsi:nil attribute
'true'.

Logical Message Tree XML
nillable element

Non-XML nillable Target created with NULL
value, if source has xsi:nil
attribute 'true'.

Logical Message Tree XML
element set to NULL

XML or non-XML nillable Target created with empty
value. A Source XML having
NULL value is not
considered a nilled element.

Logical Message Tree
non-XML

XML nillable Target created as nilled, has
xsi:nil attribute 'true', if
source is NULL.

Logical Message Tree
non-XML

Non-XML nillable Target created with NULL
value, if source is NULL.

Database nullable column XML nillable Target created as nilled, has
xsi:nil attribute 'true', if
source is SQL NULL.

© Copyright IBM Corp. 2014 35

Source Target Comment

Database nullable column Non-XML nillable Target created with NULL
value, if source is SQL
NULL.

Custom ESQL XML nillable Target created as nilled, has
xsi:nil attribute 'true', if
return is ESQL NULL

Custom ESQL Non-XML nillable Target created with NULL
value, if return is ESQL
NULL

Custom Java XML nillable Target created as nilled, has
xsi:nil attribute 'true', if
return is an MbElement with
type set to
“TYPE_UNKNOWN? and a
value of “null? and a child
element xsi:nil 'true'.

Custom Java Non-XML nillable Target created with value
NULL, if return is an
MbElement with type set to
"TYPE_UNKNOWN" and a
value of "null"

Definitions:

In the preceding table, XML means XMLNSC or XMLNS logical trees. The term
non-XML means MRM or DFDL logical trees, and applies to all MRM physical
formats, including MRM XML.

36 Designing a message map

Chapter 6. Using nested maps

You can edit some types of transforms, involving complex inputs and outputs, by
entering a nested view in the Graphical Data Mapping editor.

About this task

Structural transforms control how nested elements are displayed in the Graphical
Data Mapping editor. These transforms control the display of nested elements, but
they do not affect the data. You can use In and Out arrow buttons and breadcrumb
navigation for the nested transforms.

The following transforms can contain nested graphical data maps:
v Local map
v Join
v Append
v ForEach
v If, Else if, and Else
v Database Routine

The elements in a nested map must be mapped in order for the transform to run.

A Local map is a navigation aid that you use to view the map elements in a
hierarchical way. A local map can have one primary input and multiple
supplementary inputs, which can be either a simple type or a complex type. The
output can be either a single element or an array element, but it must be a
complex type. The local map does not transform data; you must specify transforms
for the input and output elements in the nested map.

You can use the Join transform to join elements from two or more inputs. The
inputs can be arrays or single elements, which can be merged using nested
transforms to create a single output. The target element can be an array or single
element but must be a complex type.

The Append transform iterates over multiple inputs in the specified order to
append data. This transform takes multiple inputs of either simple or complex
types. The output must be an array of either a simple type or a complex type.

The For each transform contains a nested map, and it iterates over one input array
element (either a simple type or a complex type). The elements in the nested map
must be mapped, otherwise the transform has no effect.

The If, Else if, and Else transforms enable you to control the flow of a mapping by
setting conditions. If, Else if and Else operate as a group of conditional transforms,
and the condition is applied to the input element of the conditional transform. If
the condition is satisfied, the transform that is nested within the conditional
transform is run.

The Database Routine transform contains a nested map to call a stored procedure
or user-defined function from a database schema as input. Output from a Database
Routine is optional, using the Return transform.

© Copyright IBM Corp. 2014 37

The following steps provide an example of how you can edit a nested map:

Procedure
1. Some transforms, such as Local map and Append, contain nested maps. If a

nested map exists, an Edit icon is shown on the transform. Click the Edit icon
to edit the nested map.

Nested maps must contain transforms, or else when the map is run, nothing
happens. If a warning is displayed on the main map, you must edit the nested
map.

2. When you open a nested map for some transforms such as Append, the nested
map might also contain a nested map such as a For each transform:

In this case, you cannot create a mapping in the first nested map. Click Edit to
go down another level and you can then create your mapping, as shown:

What to do next

For more information about mapping transforms, see Chapter 26, “Transform types
in the Graphical Data Mapping editor,” on page 193.

38 Designing a message map

Chapter 7. Configuring your workspace mapping preferences

You can configure the Graphical Data Mapping editor preferences for mapping
objects. You can also configure the keyboard commands that you can use when
you develop message maps.

Procedure

Complete the following steps to configure your workspace:
v Optional: Configure the Graphical Data Mapping editor preferences for mapping

objects. For more information, see “Setting mapping preferences for your
workspace.”
You can set the options in the Preferences panel to specify the behavior of the
Graphical Data Mapping editor and the mapping transforms in your workspace.

v Optional: Configure the keyboard mapping preferences in your workspace. For
more information, see “Setting mapping keyboard preferences for your
workspace” on page 41.
You can set your keyboard preferences in the Graphical Data Mapping editor by
specifying your command choices in the workspace Preferences panel.

What to do next

Create a message map. For more information, see Chapter 8, “Creating a message
map,” on page 45.

Setting mapping preferences for your workspace
You can set the options in the Preferences panel to specify the behavior of the
Graphical Data Mapping editor and the mapping transforms in your workspace.

Procedure

Start the Preferences wizard by choosing one of the following options:
v Select the Preferences icon in the toolbar of the Graphical Data Mapping editor

to set your preferences for the mapping.

v Right-click in the message map canvas and then select Preferences from the
context menu.

© Copyright IBM Corp. 2014 39

v Select Window > Preferences > XML > XML Mapping Editor in the main IBM
Integration Studio menu.

Results

The Preferences wizard opens, and the XML Mapping Editor properties are
displayed.

40 Designing a message map

What to do next

Create a message map. For more information, see Chapter 8, “Creating a message
map,” on page 45.

Setting mapping keyboard preferences for your workspace
You can set your keyboard preferences in the Graphical Data Mapping editor by
specifying your choices in the workspace Preferences panel.

Procedure

Complete the following steps to change the default mapping keyboard commands,
or to add new key combinations based on your usage specification:
1. Select Window > Preferences > General > Keys in the main IBM Integration

Studio menu.

Chapter 7. Configuring your workspace mapping preferences 41

2. Identify the entries that refer to mapping. Enter Mapping in the type filter text
box.

You can see the list of keys related to mapping.

3. Optional: Select a command, for example, Assign.
4. Optional: For each command, complete the following steps to define the key:

42 Designing a message map

a. Enter the key combination in Binding.
b. Select Editing Maps in the field When.

Results

You have created a new key command for the Assign transform that you can use
when you edit a message map in your workspace.

What to do next

Change or add new commands to specify key actions when using the Graphical
Data Mapping editor.

Create a message map. For more information, see Chapter 8, “Creating a message
map,” on page 45.

Chapter 7. Configuring your workspace mapping preferences 43

44 Designing a message map

Chapter 8. Creating a message map

You can create a graphical data map, a message map, a submap, or a legacy
message map to transform a message without the need to write code, providing a
visual image of the transformation, and simplifying its implementation and
ongoing maintenance.

About this task

A message map is the IBM Integration Bus implementation of a graphical data
map. It is based on XML schema and XPath 2.0 standards. You can use a message
map to graphically transform, route, and enrich a message. You can use a message
map to modify data in a database system. You can use drag actions to make
connections, select transforms, and build logic to transform your message data
without programming.

A submap is a reusable form of graphical data map. Submaps enable you to use a
set of mapping functions in multiple graphical data maps to transform a common
set of elements in the input object to the output object. You can use a submap to
reuse common data transformations. You can reuse submaps in other products that
support graphical data maps.

Note: If you plan to reuse data transformations across different products, read
“Guidelines for developing reusable graphical data mapping assets” on page 13.

A local map is a subset of data transformations between input elements and output
elements that are part of a graphical data map. You define a local map by creating
a Local map transform in a message map. A local map is not an independent
resource. There is no physical file associated with a local map. The scope of a local
map is the message map. A local map is processed with the graphical data map.
Local maps provide a way of breaking up a large graphical data map into nested
groups of mapping elements. You can use local maps to simplify the overall
graphical data map presentation. You can structure complex data transformations
into nested groups that are easier to manage and implement.

A legacy message map is a message map created as a .msgmap file in earlier
versions of WebSphere Message Broker Version 8, for example in WebSphere
Message Broker Version 7. You can compile and deploy a legacy message map in
IBM Integration Bus. However, if you need to modify a legacy message map, you
must first convert the legacy message map to a message map. For more
information, see Chapter 29, “Using or converting legacy resources into message
maps,” on page 321.

Note: WebSphere Message Broker Version 8 introduces graphical data maps. These
message maps replace the previous message map format, and are created as .map
files.

Procedure

Choose any of the following options to create a graphical data map:
v Create a message map to transform you messages graphically. For more

information, see “Creating a message map” on page 47.

© Copyright IBM Corp. 2014 45

Use this type of map to create a graphical data map in IBM Integration Bus. You
can transform message assembly components, body data, and access a database
to retrieve data or modify data, if needed.

v Create a graphical data map to share a map across different products that
support the Graphical Data Mapping editor. For more information, see “Creating
a graphical data map in the Eclipse editor” on page 59.
Use this type of map to create a graphical data map that you can use as a
submap in IBM Integration Bus, or that you can use as a main map in other
products that support the Graphical Data Mapping editor. You can only
transform the body of a message. You cannot access a database when you use
this type of map to enrich a message or to modify database content.

v Create a submap to reuse common transformation logic. For more information,
see “Creating a submap” on page 50.
Use this type of map to create a graphical data map that you can use as a
submap in IBM Integration Bus. You can only transform the body of a message.
You can access a database to enrich a message or to modify database content.

v Create a local map to reduce complexity reading and managing graphical data
maps. For more information, see “Creating a local map by using the Local map
transform” on page 57.
Use this type of map to reduce the complexity of your maps and submaps. This
type of map is local, and you cannot reuse it, unless you convert it to a submap.

Results

You can use the following table to identify the type of map that you must create
when transforming data graphically in the Graphical Data Mapping editor:

Table 6. Types of map based on design requirements

Recommended use Type of resource
Supported in IBM

Integration Bus

Message map Transform messages
graphically

.map file Yes

Submap Reuse of common
data transformations

.map file Yes

Local map Reduce complexity
reading and

managing a Message
map

No file. It is
embedded within a

Message map

Yes

Graphical data map Share graphical data
maps across different

software products

.map file Yes

Legacy message map Solutions migrated
from earlier versions
of IBM Integration

Bus

.map file Supported for
compatibility with
earlier releases of

IBM Integration Bus.
(See note below.)

Note: You can use a legacy message map, but you cannot modify it in IBM
Integration Bus. These type of maps are maintained for compatibility with earlier
versions of IBM Integration Bus.

You can see the message map in the Application Development view displayed
under a Maps category, and organized by namespace.

46 Designing a message map

What to do next

After you create a graphical data map, edit the map, and define transformations
between the input message and the output message. For more information, see
Chapter 9, “Editing message maps,” on page 61.

Creating a message map
You can create message maps either in the Application Development view of the
IBM Integration Studio, or from a Mapping node in a message flow.

Before you begin

Before you create a message map, you must complete the following tasks:
1. Create an application, a library, an integration service, or an Integration

project, as described in the following topics:
v Creating an application
v Creating a library
v Creating an integration service based on a WSDL file or Creating an

integration service from scratch
v Creating an integration project

2. Create a message flow. For more information, see Creating a message flow.
3. Define the message flow content that includes a Mapping node. For more

information, see Defining message flow content.

About this task

A message map is a graphical data map.

The physical representation of a message map is a .map file.

Procedure

You can use any of the following methods to start the New Message Map wizard
and then create a message map:
v Create a message map in the Application Development view. For more

information, see “Creating a message map in the Application Development
view” on page 48.

v Create a message map from a Mapping node in a message flow. For more
information, see “Creating a message map from a Mapping node” on page 49.

Results

A message map is created as a .map file.

In the Application Development view, the message map is displayed under a Maps
category. Maps are organized by namespace.

What to do next

Edit the message map, and define transformations between the input message
assembly and the output message assembly. For more information, see “Mapping
input to output elements manually” on page 70.

Chapter 8. Creating a message map 47

Creating a message map in the Application Development view
You can create a message map for use in your message flows in the Application
Development view with messages as input and output objects. Data from database
tables can also be used as input to the message map.

Before you begin

Before you create a message map, you must complete the following tasks:
1. Create an application, a library, an integration service, or an Integration

project, as described in the following topics:
v Creating an application
v Creating a library
v Creating an integration service based on a wsdl or Creating an integration

service from scratch
v Creating an integration project

2. Create a message flow. For more information, see Creating a message flow.
3. Define the message flow content that includes a Mapping node. For more

information, see Defining message flow content.

Procedure

To create a message map in the Application Development view, complete the
following steps:
1. Choose one of the following options to start the New Message Map wizard:

v In the IBM Integration Studio, click File > New > Message Map.
v In the Application Development view, right-click the application, library,

integration service, or Integration project where you want to create the
message map. Then, click New > Message Map.

The New Message Map wizard opens.
2. On the Specify a new message map file pane, select Message map called by a

message flow.
A message map is created that can be accessed from a Mapping node. A
message map can contain components of a message body such as global
elements and global types. A message map contains Properties, message
headers, or the local environment.

3. Specify the Container, Map name, and broker schema for the message map.
Click Next.
If your message map is likely to be used by multiple solutions, store it in a
shared library.

4. On the Select map inputs and outputs pane, select your input type:
v If you want to use a schema-defined element, expand the list of available

input objects, and select the input objects that you want to use as inputs to
the message map.
If necessary, use the Filter map input names field to filter what is shown in
the list of available objects. Each object in the list is displayed in the form:
objectname {namespace}.

v If you want to use SOAP, JSON, or BLOB messages as input, expand IBM
supplied message models, and select the message model type.

5. Select your mapping output type:

48 Designing a message map

v If you want to use a schema-defined element, expand the list of available
output objects, and select the output objects that you want to use as outputs
for the message map.
If necessary, use the Filter map output names field to filter what is shown in
the list of available objects. Each object in the list is displayed in the form:
objectname {namespace}.

v If you want to use SOAP, JSON, or BLOB messages as input, expand IBM
supplied message models, and select the message model type.

6. Optional: If you are creating a Message map called by a message flow node,
click Next to specify the Output domain for the message map.

7. Click Finish to create the message map.

Results

The new message map is created, and the Graphical Data Mapping editor opens
with the selected sources and targets.

The message map is created as a .map file.

In the Application Development view, the message map is displayed under a Maps
category. Maps are organized by namespace.

What to do next

Edit the message map, and define transformations between the input message
assembly and the output message assembly. For more information, see Chapter 9,
“Editing message maps,” on page 61.

Creating a message map from a Mapping node
You can use a Mapping node to create a message map with messages as input and
output objects. Data from database tables can also be used as input to the message
map.

Before you begin

Before you create a message map, you must complete the following tasks:
1. Create an application, a library, an integration service, or an Integration

project, as described in the following topics:
v Creating an application
v Creating a library
v Creating an integration service based on a WSDL file or Creating an

integration service from scratch
v Creating an integration project

2. Create a message flow. For more information, see Creating a message flow.
3. Define the message flow content that includes a Mapping node. For more

information, see Defining message flow content.

Procedure

To create a graphical data mapping (.map) file from a Mapping node:
1. In the Integration Development perspective, open your message flow.

Chapter 8. Creating a message map 49

2. Double-click a Mapping node that does not have a message map associated
with it, or right-click the Mapping node and click Open Map. The New
Message Map wizard opens.

3. On the Specify a new message map file pane, the type of message map that
you want to create is selected as Message map called by a message flow node.
This is a message map that can be accessed from a node.

4. Specify the Container, Map name, and broker schema for the message map, or
use the values that have been entered for you by the wizard. Click Next.
If your message map is likely to be used by multiple solutions, store it in a
shared library.

5. On the Select map inputs and outputs pane, select your input type:
v If you want to use a schema-defined element, expand the list of available

input objects, and select the input objects that you want to use as inputs to
the message map.
If necessary, use the Filter map input names field to filter what is shown in
the list of available objects. Each object in the list is displayed in the form:
objectname {namespace}.

v If you want to use SOAP, JSON, or BLOB messages as input, expand IBM
supplied message models, and select the message model type.

6. Select your mapping output type:
v If you want to use a schema-defined element, expand the list of available

output objects, and select the output objects that you want to use as outputs
for the message map.
If necessary, use the Filter map output names field to filter what is shown in
the list of available objects. Each object in the list is displayed in the form:
objectname {namespace}.

v If you want to use SOAP, JSON, or BLOB messages as input, expand IBM
supplied message models, and select the message model type.

7. On the Select the domain to create the output pane, specify the Output
domain for the message map.

8. Click Finish to create the message map.

Results

The new message map is created, and the Graphical Data Mapping editor opens
with the selected inputs and outputs.

A message map is created as a .map file.

In the Application Development view, the message map is displayed under a Maps
category. Maps are organized by namespace.

What to do next

Edit the message map, and define transformations between the input message
assembly and the output message assembly. For more information, see Chapter 9,
“Editing message maps,” on page 61.

Creating a submap
You can create a submap from scratch or after you define a Submap transform
between an input object and an output object in a message map. You can also
convert a local map into a submap.

50 Designing a message map

About this task

You can use a submap to reuse common data transformations between input
objects and output objects.

Procedure

Choose one of the following methods to create a submap:
v Create a submap from scratch. For more information, see “Creating a submap by

using the Submap transform” on page 53.
Use this method to create a common transformation between an input object and
an output object.

v Create a submap by using the Graphical Data Mapping editor. For more
information, see “Creating a submap by using the Graphical Data Mapping
editor.”
Use this method when you have a message map where you have identified a
common transformation between an input object and an output object.

v Create a submap by converting a local map to a submap. For more information,
see “Converting a local map into a submap” on page 54.
Use this method when you have a local map defined in your message map that
you have identified as a common transformation between an input object and an
output object.

What to do next

Edit the submap and define the transformation logic between the input and output
elements in the submap. For more information, see “Specifying a transform
(mapping operation)” on page 82.

Creating a submap by using the Graphical Data Mapping
editor

Create a submap by defining a Submap transform between an input object and an
output object in a message map.

About this task

A submap enables you to use the same piece of mapping function in multiple
message maps.

Procedure

Complete the following steps to create a submap:
1. Create a connection between global input and output elements in a message

map, and then select the Submap transform on the connection.
2. In the Properties view of the Submap transform, click New to create a submap.

The New Message Map wizard is displayed.
3. In the New Message Map wizard, specify a new message map file. Complete

the following steps:
a. Select Submap called by another map as the type of map that you want to

create.
b. Select a container or create a new one. This is the project where the message

map is created.

Chapter 8. Creating a message map 51

c. Enter the map name.
d. Optional: Select Use default broker schema, or select a broker schema.

4. Click Next

5. In the New Message Map wizard, verify that the map inputs and outputs that
are selected are correct.

6. Click Next.
7. Click Finish.

Results

The new submap is displayed in the Graphical Data Mapping editor.

What to do next

Edit the submap. For more information, see Chapter 9, “Editing message maps,” on
page 61.

Creating a submap in the Application Development view
You can create a submap for use in your message flows in the Application
Development view with messages as input and output objects. Data from database
tables can also be used as input to the message map.

About this task

A submap enables you to use the same piece of mapping function in multiple
message maps.

Procedure

Complete the following steps to create a submap in the Application Development
view:
1. Choose one of the following options to start the New Message Map wizard:

v In the IBM Integration Studio, click File > New > Message Map.
v In the Application Development view, right-click the application, library,

integration service, or Integration project where you want to create the
message map. Then, click New > Message Map.

The New Message Map wizard opens.
2. On the Specify a new message map file pane, select Submap called by

another map.
A submap is created that can be referenced from another message map. A
submap can contain components of a message body such as global elements
and global types. A submap does not contain Properties, message headers, or
the local environment.

3. Specify the Container, Map name, and broker schema for the submap. Click
Next.

4. On the Select map inputs and outputs pane, expand the list of available input
objects, and select the input objects that you want to use as input to the
submap. If necessary, use the Filter map input names field to filter what is
shown in the list of available objects. Each object in the list is displayed in the
form: objectname {namespace}.

5. Expand the list of available output objects, and select the output object that you
want to use as output for the submap. If necessary, use the Filter map output

52 Designing a message map

names field to filter what is shown in the list of available objects. Each object in
the list is displayed in the form: objectname {namespace}.

6. Click Finish to create the submap.

Results

The submap is created, and the Graphical Data Mapping editor opens with the
selected sources and targets.

The submap is created as a .map file.

You can see the submap in the Application Development view displayed under a
Maps category, and organized by namespace.

What to do next

Edit the submap, and define transformations between the input message assembly
and the output message assembly. For more information, see Chapter 9, “Editing
message maps,” on page 61.

Creating a submap by using the Submap transform
Create a submap by using the Graphical Data Mapping editor. Create a submap by
defining a Submap transform between an input object and an output object in a
message map.

About this task

A submap enables you to use the same piece of mapping function in multiple
message maps.

Procedure

Complete the following steps to create a submap:
1. Create a connection between global input and output elements in a message

map, and then select the Submap transform on the connection: For example:

2. In the Properties view of the Submap transform, create a submap to use an
existing submap:
v To create a submap, click New. The New Message Map wizard opens.
v Use an existing submap. Click Browse. A dialogue box will display the

submaps that are available. Then, select a submap and click OK.
3. On the Specify a new message map file pane, the type of map that you want

to create is selected as Submap called by another map. This is a message map
that can be referenced from another message map. This is known as a submap
and can contain components of a message body such as global elements and
global types. A submap does not contain Properties, message headers, or the
local environment tree. Click Next.

4. On the Select map inputs and outputs pane, the input and output objects of
the submap have been pre-selected.

Chapter 8. Creating a message map 53

5. Click Finish. The new submap is displayed in the Graphical Data Mapping
editor, and you can edit it in the same way that you would edit any graphical
data map. For information about how to edit maps, see Chapter 9, “Editing
message maps,” on page 61.

Results

The new submap is displayed in the Graphical Data Mapping editor.

What to do next

Edit the submap. For more information, see Chapter 9, “Editing message maps,” on
page 61.

Converting a local map into a submap
Use the Graphical Data Mapping editor to convert a local map into a submap by
using the Refactor to submap function.

About this task

You can convert a local map into a submap so that the transformation logic can be
reused by other graphical data maps.

To convert a local map into a submap, the following conditions must be true:
v The input and output elements to the local map must be global elements.
v There must be at least one transform configured in the local map.

If you want to convert a local map to an existing submap, you cannot use the
Refactor to submap function. You must change the transform from a Local map
transform to a Submap transform.

Note: If you have global elements defined as input and output objects to the local
map, and you have not defined any transformations between the input and output
objects, you cannot convert a local map into a submap. To create the submap, you
can change the Local map transform for the Submap transform. The following
figure shows the menu option that you can use to create a submap instead of a
local map:

Procedure

To convert a local map into a submap, complete the following steps:
1. Right-click the Local Map transform in the graphical data map, and then select

Refactor to submap.

54 Designing a message map

The following figure shows the menu that opens when you right-click the Local
map transform:

The
New Message Map wizard opens.

2. On the Specify a new message map file pane, the type of map that you want
to create is selected as Submap called by another map. This is a message map
that can be referenced from another message map. This is known as a submap
and can contain components of a message body such as global elements and
global types. A submap does not contain Properties, message headers, or the
LocalEnvironment. Click Next.

3. On the Select map inputs and outputs pane, the input and output objects of
the submap have been pre-selected.

4. Click Finish. The new submap is displayed in the Graphical Data Mapping
editor, and you can edit it in the same way that you would edit any graphical
data map. For information about how to edit maps, see Chapter 9, “Editing
message maps,” on page 61.

Results

A submap is created, containing all the mappings from the local map.

What to do next

Edit the submap. For more information, see Chapter 9, “Editing message maps,” on
page 61.

Chapter 8. Creating a message map 55

Creating a message map programmatically
Use the Graphical Data Map Specification Language to create a message map
programmatically.

About this task

The file msl.xsd provides the XML schema that describes the Graphical Data Map
Specification Language, also known as MSL. This file is available in the Graphical
Data Mapping component Version 1040, and later versions.

You can find the msl.xsd file inside the com.ibm.msl.mapping.api_7.5.0.jar jar
file.

In IBM Integration Bus, you can find the jar file in any of the following directories:
v In a Windows platform installation: C:\Program Files\IBM\IIB\10.0.n.0\

server\ct\lib\

v In a Linux platform installation: install_dir/iib-10.0.n.0/server/ct/lib/

Procedure

You must perform the following steps to programmatically generate a map file:
1. Create a template map in the Graphical Data Mapping editor.

Deploy and test your template map in the run time to confirm that the message
transformation is correct.

2. Inspect the MSL XML content in the template map.
Use the MSL schema to identify the mapping constructs and the definition of
the points of variation for the template map.

3. Develop the scripts and programs to generate the MSL XML for the new maps
that you plan to generate programmatically.
When you use a development approach based on JAXB, the bindings file
msl_jaxb_bindings.xml available in the com.ibm.msl.mapping.api_7.5.0.jar
file provides the minimal required bindings.

4. Validate the syntax of each generated map file (.map) against the provided
MSL schema msl.xsd.

5. Import each generated map file into your development environment. Then,
check that all the referenced resources, such as xsd files, are imported into the
relevant project types. Ensure the relevant builder is invoked to semantically
validate each generated map file. Also, check using the Graphical Data
Mapping editor that the transforms in your generated map are correct and free
of error and warnings.

6. Package and deploy into the run time your programmatically generated maps.
Then, test your application to confirm that the message transformation is
correct.
Check that each generated map file is built into the relevant deployment
artifact.

What to do next

Deploy and test the message map. For more information, see Chapter 25,
“Deploying message maps,” on page 191 and Chapter 24, “Troubleshooting
graphical data maps,” on page 189.

56 Designing a message map

Creating a local map by using the Local map transform
Create a local map by using the Graphical Data Mapping editor. Create a local
map by defining a Local map transform between an input object and an output
object in a message map.

About this task

You can use a local map to break up a large map into nested groups of mapping
elements and process the complex elements of the whole data object.

Local maps are a partial view of a larger map, rather than separate files.

A local map has only one element as input (either a simple type or a complex
type), which can contain nested elements. The output can be either a single
element or an array element, but it must be a complex type.

Procedure

Complete the following step to create a local map:

Create a connection between one input element and one output element in a
message map, and then select the Local map transform on the connection: For
example:

Results

The local map opens within the main map in the Graphical Data Mapping editor.

What to do next

Edit the local map. For more information, see Chapter 9, “Editing message maps,”
on page 61.

Converting a submap into a local map
You can use the Graphical Data Mapping editor to change a submap into a local
map by using the Refactor from submap function.

About this task

You can customize the logic of a submap in a graphical data map, without altering
the submap logic, by converting the submap into a local map.

For example, you have a submap that contains common transformation logic that
cannot be deleted. The submap is used by multiple graphical data maps. For one
application, you need to specialize the submap, so rather than starting from scratch
and creating a graphical data map, you can pull the submap logic into a main map
by converting the submap to a local map. The action leaves the submap in place
for ongoing use in other maps.

Chapter 8. Creating a message map 57

Procedure

To change a submap into local map, complete the following steps:
1. Right-click the Submap transform in the graphical data map, and then select

Refactor from submap.
The following figure shows the menu that opens when you right-click the
Submap transform:

2. Optional: Delete the map file corresponding to the submap that you have
converted to a local map if the submap is not being used anywhere else in your
solutions. For more information, see “Deleting objects and transforms” on page
94.

Results

A local map is created, containing all the mappings that were included in the
original submap.

What to do next

Continue editing the graphical data map. For more information, see Chapter 9,
“Editing message maps,” on page 61.

58 Designing a message map

Creating a graphical data map in the Eclipse editor
Create a graphical data map in the Eclipse editor to transform data graphically so
that you can reuse it in other products that support graphical data maps.

Before you begin

Before you create a reusable message map, you must complete the following tasks:
1. Create an application, a library, an integration service, or an Integration

project, as described in the following topics:
v Creating an application
v Creating a library
v Creating an integration service based on a WSDL file or Creating an

integration service from scratch
v Creating an integration project

2. Create a message flow. For more information, see Creating a message flow.
3. Define the message flow content that includes a Mapping node. For more

information, see Defining message flow content.

If you plan to reuse the graphical data map in other products, read “Guidelines for
developing reusable graphical data mapping assets” on page 13.

About this task

In IBM Integration Bus, you can create a graphical data map as a reusable message
map. You handle a graphical data map as a submap.

Procedure

To create a graphical data map in the Eclipse editor, complete the following steps:
1. Create a new graphical data map, by selecting File > New > Other > XML >

XML Mapping. Click Next.
The New XML Mapping wizard opens.

2. Select the parent folder for the new graphical data map and specify a file name.
By default the new file is called NewMAP.map. Click Next.
The Input and Output Roots pane is displayed.

3. Select the input and output root files by clicking Add and then browsing to the
required schema files.

Note: If you choose not to select the input and output schemas at this point,
you can select Next, and the Graphical Data Mapping editor is displayed with
no input or output objects. You can then select your input and output objects in
the Graphical Data Mapping editor by using the Add an input object and Add
an output object icons.
When you have specified your input and output objects, they are shown in the
Graphical Data Mapping editor with the input object on the left side of the
canvas, and the output object on the right side:

4. Click Next.
5. Click Finish.

Chapter 8. Creating a message map 59

What to do next

Edit the graphical data map, and define transformations between the input
message and the output message. For more information, see Chapter 9, “Editing
message maps,” on page 61.

60 Designing a message map

Chapter 9. Editing message maps

You edit a message map in the Graphical Data Mapping editor.

Before you begin

Create a message map using the Graphical Data Mapping editor. For information
about how to do this, see “Creating a message map” on page 47.

About this task

In the Graphical Data Mapping editor, you create a map, you define the input and
output message models to the map, and the transformations that must be applied
to create the output message with values from the input elements. When your
input or output message model includes an xsd:any element, you must qualify this
extension point by using the Cast function prior to defining transforms.

You use the Graphical Data Mapping editor to map (or connect) elements of input
objects to elements of output objects. Then, for each mapping, you can create a
transform, which performs an action on the data of the input element and puts the
result in the output element. The input objects are on the left side in the Graphical
Data Mapping editor, and the output objects are on the right.

You can define XPath conditional expressions on a transform. This expression
determines whether the transform is applied. Use content assist to set the required
parameters of the expression. For more information, see “Using content assist
(Mapping syntax)” on page 93.

Procedure

You can do any of the following editing tasks in the Graphical Data Mapping
editor:
1. Optional: Configure the general properties of a message map to define the Java,

ESQL, and XSD resources that the map can refer to; to define your solution
XML namespaces, and and to add any documentation. For more information,
see “Configuring the general properties of a message map” on page 62.

2. Redefine xsd:any elements in your message.
a. Use the Cast function to redefine parts of the input or output model in a

graphical data map by using a schema model. For more information, see
“Mapping xsd:any on an input or output message” on page 64. For more
information, see “Mapping xsd:any on an input or output message” on
page 64.

3. Map the input and output elements in any of the following ways:
a. Map elements manually. For more information, see “Mapping input to

output elements manually” on page 70.
Use this method to select the input and output elements, create connections
between them, and specify the required transforms.

b. Map elements automatically. For more information, see “Mapping input to
output elements automatically” on page 73.
Use the Auto map wizard to map elements by examining the names of
input and output elements to create the mappings.

© Copyright IBM Corp. 2014 61

4. Specify a transform, also known as a mapping operation. For more information,
see “Specifying a transform (mapping operation)” on page 82.

5. Configure the properties of a transform. For more information, see
“Configuring the properties of a transform” on page 84.

6. Delete objects and transforms. For more information, see “Deleting objects and
transforms” on page 94.

What to do next

Configure the input and output message assembly in a message map by using the
Graphical Data Mapping editor. For more information, see Chapter 10, “Advanced
editing in a message map,” on page 95.

Configuring the general properties of a message map
You can configure the general properties of a message map in the Graphical Data
Mapping editor.

About this task

You can optionally configure the general properties of a message map:
v You can add documentation.
v You can configure prefixes for your XML namespaces.
v You can explicitly define references to Java, ESQL, and XSD resources that the

map can refer. Note the Graphical Data Mapping editor will normally add these
automatically while editing.

Procedure

Complete the following steps to configure the general properties of a map:
v Open the Properties tab of a map by using any of the following methods:

– Select a map by focusing on the map canvas, rather than on an individual
item in the map. Then, select the Properties tab.

– Right-click the map canvas, and then select Show in > Properties view.

– Use the appropriate keyboard combination, which, by default, is Alt+Enter.

62 Designing a message map

You can configure these shortcut keys by selecting Window > Preferences >
General > Keys.

v In the Properties tab, add, modify, or remove resources:
1. Select the General tab to view the namespace where the map is available.
2. Select Java Imports to add or remove Java classes that Custom Java

transforms can refer to in the message map.
When you include a Custom Java transform, an import is added to refer to
the package qualified Java class, defining a prefix based on the class name. If
you need to use custom Java only in condition or filter expressions, you can
add Java imports to your Java class so that the class public static methods
are available through content assist when you are composing an expression.

3. Optional: Select ESQL Imports to add or remove ESQL files that Custom
ESQL transforms can refer to in the message map.
When you include a Custom ESQL transform, an import is added to refer to
the ESQL file, defining a prefix based on the file name. If you need to use
custom ESQL only in condition or filter expressions, you can add ESQL
imports to your ESQL file so that the applicable modules are available
through content assist when you are composing an expression.

4. Select Scope to add or remove XSD files that you can refer to in the message
map.

5. Select Cast to obtain the list of input and output wildcard elements that are
cast to a specific type or global element in the message map. You can remove
any entry that is not required anymore.

6. Select Namespaces to add, edit, or remove user-defined namespaces in the
message map.

7. Select Documentation to provide a description of the message map, or other
relevant usage notes.

What to do next

Continue editing the map, and define transformations between the input message
and the output message. For more information, see Chapter 9, “Editing message
maps,” on page 61.

Adding input and output messages
Use the Graphical Data Mapping editor to add input and output messages to your
message map.

Before you begin

Create a message map by using the Graphical Data Mapping editor. For more
information, see “Creating a message map” on page 47.

About this task

You can add an input object to your message map by using the Add an input
object icon in the toolbar of the Graphical Data Mapping editor:

Chapter 9. Editing message maps 63

Note: In IBM Integration Bus, you can only add one input object to a message
map.

You can add an output object to your message map by using the Add an output
object icon in the toolbar:

Note: In IBM Integration Bus, you can only add one output object to a message
map.

What to do next

When your message map contains all of the required input and output objects,
create the connections between them, as described in “Adding connections
between input and output elements” on page 70.

Mapping xsd:any on an input or output message
You can use the Cast function to redefine parts of the input or output model in a
graphical data map.

In your integration solution, you can create a generic message model, which you
can later redefine to a specific model, by using a wildcard, defined as xsd:any.

You can redefine an xsd:any element in any of the following ways:
v Using the Cast function. You can redefine an xsd:any element by specifying the

specific complex or global type defined in a particular schema file.
v Using a transform. You can define a transform, such as the Submap transform,

and define the input and output xsd:any elements within the nested map of the
transform.

Note: It is recommended to qualify an xsd:any element before you define any
transforms in a main map. Alternatively, you can define a Submap between the
xsd:any element and the output element, and then define the transforms within the
nested map associated to the Submap.

For example, in IBM Integration Bus, a SOAP message is a common example of a
generic model in which you are required to define the business data being
exchanged through the SOAP protocol. The predefined SOAP message format
defines only the structure of the SOAP envelope and allows you to redefine the
Header and Body content.

Note: The xsd:any input element cannot be involved in a transformation when it
is contained within a cast item group. You can either create transformations on the
cast elements or remove all associated cast elements to directly transform the
xsd:any.

Qualify xsd:any parts of a schema-based message model by
using the Cast function

You can define a wildcard in a schema-based message model as an xsd:any
element to create a flexible message model that can be redefined later.

64 Designing a message map

You use the Cast function to redefine parts of the input or output model in a
message map.

For example, you might have a base type of AddressType, and two derived types of
USAddressType and CanadianAddressType. Using the Cast function in the Graphical
Data Mapping editor, you can cast AddressType to CanadianAddressType.

For more information, see “Casting wildcards in a map.”

Qualify xsd:any parts by using a Submap transform

You can use the Submap transform to qualify an xsd:any element defined on the
input message assembly, the output message assembly, or both.

You must specify the input element type and the output element type using a
global type in the referenced submap of the Submap transform.

You qualify the xsd:any elements in the nested map by defining the input and
output elements.

Casting wildcards in a map
Use the Cast function to redefine parts of the input or output model in a graphical
data map.

About this task

Your message model schemas might contain one or more wildcards, defined as
xsd:any. Wildcards can be used to create a flexible message model that can be
redefined when a more detailed definition is required. The process of redefining is
called a cast.

To cast a wildcard element by using the Graphical Data Mapping editor, complete
the following steps:

Procedure
1. With a graphical data map (.map) file open in the Graphical Data Mapping

editor, right-click the base element or wildcard (xsd:any) element that you want
to cast, then select Cast. The Type Selection dialog opens.

2. In the Type Selection dialog, select the type that you want to cast to, and then
click OK. The Type Selection dialog lists only those elements and types that are
appropriate for the element that you want to cast, and that are contained in a
referenced application or library. When casting a base element, the Type
Selection dialog lists only derived types.

Results

Your element is cast to the type that you selected, and is displayed in the
Graphical Data Mapping editor.

Casting a wildcard defined as xsd:any into a specific type for a
SOAP message

You can use the Cast function to redefine a wildcard element, that is, an element
with type xsd:any, into a specific type. Each type is described by a schema.

Chapter 9. Editing message maps 65

About this task

You can transform a SOAP message that is defined by using the predefined format
SOAP_Domain_Msg. This message type contains a Header, a Body, and an
Attachment part. Each part contains an element that is named any to represent a
wildcard, that is, an element of type xsd:any. The Header and Body sections also
include an element that is named AnyAttribute. You can cast elements and
attributes included in any of these SOAP sections by using the Cast function.

Note: When you transform a SOAP message, you cast the Body wildcard on the
input side to the type of the request message for the SOAP operation. On the
output side, you cast the Body wildcard to the type of the response message for
the SOAP operation.

The following figure shows the message map in the Graphical Mapping Data
editor after you create a message map to transform a SOAP message:

Procedure

To cast an element that is described as any or as anyAttribute in the message map,
complete the following steps:
1. Right-click the element any or anyAttribute located in the section of your

SOAP_Domain_Msg where you want to specify a type, and then select Cast.
v To cast a SOAP header wildcard element, right-click Header, and then select

Cast.
v To cast a SOAP body wildcard element, right-click Body, and then select

Cast.
v To cast a SOAP attachment wildcard element, right-click Attachment, and

then select Cast.
For example, to cast the Body section, right-click Body, and then select Cast.

66 Designing a message map

2. In the Type Selection window, select a type.
The Type Selection window displays all the specific types that are available for
selection. These types include the input and output elements that are defined in
the WSDL file that describes your SOAP message.
In the example, the element any of the SOAP_Domain_Msg Body is redefined
to the complex element SaveAddress.

Chapter 9. Editing message maps 67

Results

A wildcard element is redefined to a specific type.

What to do next

Define transformations between the input message assembly and the output
message assembly. For more information, see “Specifying a transform (mapping
operation)” on page 82.

Casting a base type to a derived type or extension type
In a message map, you can cast a base type to a derived type or extension type so
that you can define transformations between subtypes of a data type.

Before you begin
v Model the schemas that correspond to the base type and the derive type.
v Cast an xsd:any element in your message map to a base type.

About this task

A derived type is a data type that is related to another data type known as the base
type or super type.

For example, Address is the base type, and USAddress, CanadianAddress, and
UKAddress are derived types of Address.

Procedure

To cast a base type to a derived type, complete the following steps:
1. Select the base type.

For example, you can cast an xsd:any element to the Address base type.
2. Right-click the base type (Address), and then select Cast.

3. In the Type Selection window, choose a matching type, and then select OK.

68 Designing a message map

The options available correspond to specific address types in the schema model
that are modeled by using Address as the base type.
The following figure shows the Type Selection window that you get:

Results

The message map contains two entries, one for the base type and a second one for
the derived type.

In the example, one entry corresponds to the base type Address. The other entry
corresponds to an Address with the derived type CanadianAddress.

Chapter 9. Editing message maps 69

What to do next

Define additional transformations between elements in the message map. For more
information, see Chapter 26, “Transform types in the Graphical Data Mapping
editor,” on page 193.

Mapping input to output elements manually
Use the Graphical Data Mapping editor to map from input to output elements.

Before you begin
v Create a message map by using the Graphical Data Mapping editor. For more

information, see “Creating a message map” on page 47.
v Add input and output objects to a message map. For more information, see

“Adding input and output messages” on page 63.

About this task

Note: You can also use the Graphical Data Mapping editor to map automatically
from input to output elements. For more information, see “Mapping input to
output elements automatically” on page 73.

Procedure

To create manually the mappings between elements in a message map, complete
the following tasks:
1. Add connections between the input and output objects. For more information,

see “Adding connections between input and output elements.”
2. Optional: Connect multiple input elements to a transform. For more

information, see “Connecting multiple input elements to a transform” on page
71.

3. Create the transforms. If the transform that you have selected is a type that is
part of a nested transform (for example, Local map, Join, If), you must enter
into that nested map and complete the transformation in it. For more
information, see “Specifying a transform (mapping operation)” on page 82.

4. Set the properties for the transforms (for example, Condition, Cardinality, or
Order).

What to do next

When you have added your input and output objects, created the connections
between them, and specified your transforms, you can test your message map. For
more information, see Chapter 24, “Troubleshooting graphical data maps,” on page
189.

Adding connections between input and output elements
Use the Graphical Data Mapping editor to create connections between the input
and output objects in your message map.

Before you begin
v Read the following concept topics:

– Chapter 2, “Graphical Mapping overview,” on page 3

70 Designing a message map

v Create a message map by using the Graphical Data Mapping editor. For more
information, see “Creating a message map” on page 47.

v Add input and output objects to your message map. For more information, see
“Adding input and output messages” on page 63.

Procedure

You can create a connection in a message map by using one of the following
methods:
v Move the cursor anywhere over the required element in the input object, then

click and drag the connection over the required output element and drop. You
can also create the connection from the opposite direction, by dragging the
connection from the output element to the input element. You can also use the
grab handle that appears when you hover over an element to click and drag the
connection.

v Select the appropriate input or output object and right-click to display the
context menu, then select Quick Link. An outline view of the opposite data
structure is displayed; if the Quick Link action is invoked on an input object, a
quick outline view of the output data structure is shown, and if the action is
invoked on an output object, a quick outline view of the input data structure is
shown. You can then use the quick outline view and its built-in filter to find and
select the required element. When you have selected the required element, a
transform is created in the Graphical Data Mapping editor.

v Select the required input element and right-click to display the context menu,
then select Create connection. This method allows you to carry out other actions
in the editor that require the use of mouse clicks (such as expanding output
elements, or using the scroll bars) while a transform is being created.

v Some transformations, such as the Assign transform, require a connection to an
output object, but not to an input object. You can create these transformations
either by invoking the Create Connection action, or by clicking anywhere on the
output object or on its grab handle icon and then dragging the connection onto
the empty space between the input and output objects.

What to do next

When you have created the connection between your input and output objects,
select the required transform as described in “Specifying a transform (mapping
operation)” on page 82.

Connecting multiple input elements to a transform
To make additional input data available to the transform, you can specify a
secondary connection to a transform. You must define the connection type as
supplement connection for additional connections to a Join transform or to a For
each transform. You must define the connection type as primary connection for
additional connections to any of the other transforms.

Before you begin
v Read the following concept topics:

– Chapter 2, “Graphical Mapping overview,” on page 3
v Create a message map by using the Graphical Data Mapping editor. For more

information, see “Creating a message map” on page 47.
v Add input and output objects to your message map. For more information, see

“Adding input and output messages” on page 63.

Chapter 9. Editing message maps 71

About this task

When you create additional input connections to a transform, you must choose the
connection type.
v Primary connection: You define a primary connection when you require multiple

inputs to a transform.
v Supplement connection: You define a supplement connection to make additional

sources of data available to a Join transform and to a For Each transform only.

You can also change the preferences of the Graphical Data Mapping editor. You can
set the Let optional connection be primary for transforms that do not accept
anymore primary connections preference.

Procedure

The following steps show how to connect multiple input elements to a transform
by using the drag and drop method:
1. Move your cursor to the element of the input object that you want to map:

2. Click anywhere in the input element, or on its grab handle icon , and
drag the connection to the output element. A connection is created between the
two elements, and a transform is assigned, based on the number and type of
input elements.

3. Create a new connection between a second input element and the transform.

72 Designing a message map

When you define an additional connection between a second input element to
an existing transform in your message map, you are prompted to specify if the
connection is a primary connection or if it is a secondary connection (also
known as a supplement connection).

4. Specify the type of the new connection as either a primary connection or a
secondary connection (Supplement). If you specify a primary connection, the
default transform changes to one that allows multiple primary inputs, such as
Local Map, Concat, or Join.
For example:

You must choose supplement connection for additional connections to a Join
transform, or to a For Each transform.

What to do next

When you have created the connection between your input and output objects,
select the required transform as described in “Specifying a transform (mapping
operation)” on page 82.

Mapping input to output elements automatically
Use the Auto map wizard to automatically create Move transforms from input to
output elements based on some correlation of the names of input and output
elements to create mappings.

About this task

You can use Auto map as a quick fix when you create a Local map or another
nested mapping, and a warning or error marker is displayed to prompt you to
complete the nested mapping.

Procedure

The following steps describe how to map from input to output elements by using
the Auto map wizard:
1. In theGraphical Data Mapping editor, select the input and output elements that

you want to map.
v If you make no selections, the entire input and output objects in the current

mapping level are processed by the Auto map wizard.
v You can select groups of simple elements or complex elements. For complex

elements, the descendants of the selected complex element can be mapped.
2. Click the Auto map icon. The Auto map wizard opens.
3. Choose the appropriate Mapping scope option:

v Map all simple descendants of the selected elements. This option maps the
descendants of the input element to the descendants of the output element
that match each other; this option is selected by default. Optionally, select

Chapter 9. Editing message maps 73

Group transforms into nested maps. For more information about using
nested maps, see “Grouping transforms into nested maps” on page 92.

v Map the immediate children of the selected elements. This option maps
only the immediate child elements of the input element to the immediate
child elements of the output element that match each other.

4. Specify how names are matched in the Name Matching Options section.
a. Select the Case sensitive option to set whether you want to match the case

sensitivity of the name. This option is not selected by default.
b. Select the Alphanumeric characters (Letters and digits only) option to

exclude special characters (for example & and -) from the name. This
option is selected by default.

These two options are independent of each other, and you can select their
values separately.

5. In the Mapping Criteria section, specify the mapping criteria for the matches
between the input and output element names:
v Create transforms when the names of inputs and outputs are the same.

This option matches items of the same name, and is selected by default.
Whether the two names are considered to be the same, depends on your
selections for Case sensitive and Alphanumeric characters (Letters and
digits only). For example, if you use the default options for Case sensitive
and Alphanumeric characters (Letters and digits only), GIVEN_NAME and
GivenName are considered to be a match. However, if you select Case
sensitive and Alphanumeric characters (Letters and digits only), the two
names are considered to be identical only if they contain the same
alphanumeric characters in the same order, and the characters are of the
same case.
For more information, see “Mapping by same name” on page 75.

v Create transforms when the names of inputs and outputs are more similar
than. With this option, you can specify how similar two names must be to
create a mapping between them by varying the result from zero to 100
percent. The result is displayed and the default value is 60; see “Examples of
similarity values” on page 77 for some examples of how similar words are
matched to one another.
For more information, see “Mapping by similar name” on page 76.

v Create transforms when the input and output names are matched to
synonyms defined in a file. With this option, you can create mappings for
word pairs that are defined in a synonym file. A synonym file is a flat text
file with file extension .txt or .csv. For further information about creating a
synonym file from a Microsoft Excel spreadsheet, see “Creating and using a
synonym file” on page 81.
For more information about the synonym file, see “Format of the synonym
file” on page 77. For information about the methods that are used to match
synonyms in a synonym file, see “Algorithm used to match synonyms” on
page 80.

If the input and output names that you are using satisfy more than one of the
following options, the order in which names are matched is:
a. Same
b. Synonym
c. Similar

Any output that is matched during an earlier step is excluded from name
matching in a later step.

74 Designing a message map

6. Click Finish to start the auto mapping, or click Next to view a summary of the
transforms that were found and to choose the transforms that you want to
create. You can clear matches that are defined on the summary page.
Sometimes an input might match to more than one output; use the summary
page to review and choose which mappings to create. The auto mapping is
performed, and the selected matched input and output elements are mapped
through Move transforms. Each auto mapped Move transform is annotated to
indicate that it was created as a result of auto mapping. Hover the mouse or
right-click the annotated transform to accept or reject the automatically created
transforms.

Mapping by same name
Learn about the rules that apply when you select in Auto map the Create
transforms when the names of inputs and outputs are the same option.

About this task

When you select Create transforms when the names of inputs and outputs are
the same, the following rules apply:
1. Any output field that has a fixed value is excluded in name matching. Any

output that is already mapped, or under a container that is already mapped, is
excluded from name matching.

2. If an input and an output have the same name, it is a match, regardless of the
kind of, and XSD type of, the input and output. An element, an attribute, and a
database column can all form a match if their names are the same.

3. XML namespaces are excluded from name matching. Therefore, abc:something
and xyz:something are considered the same, as are {http://
www.abc.com}:something and {http://www.xyz.com}:something.

4. When multiple inputs have the same name as one output, one mapping is
created.
However, if you have multiple inputs with the same name as one output and
you choose to map by the same name (or similar name) and to match
descendants, an attempt is made first to match by path and name. If a match is
found, one transform is made, and no further matches are considered.

5. When a single input has the same name as multiple outputs, multiple
mappings are created, each for one input and one output.
However, if you have a single input with the same name as multiple outputs
and you choose to map by the same name (or similar name) and to match
descendants, an attempt is made first to match by path and name. If a match is
found, one transform is made, and no further matches are considered.

6. When you select the Map all simple descendants of the selected elements
option, the following steps are taken to match names:
a. Compare the relative path and item name of the selected input and output
b. Compare the item name without relative path
For example, assume you have the following input and output items:
v Input:

OldPurchaseOrder
items
item
partNum

partNum

v Output:

Chapter 9. Editing message maps 75

NewPurchaseOrder
items
item
partNum

resource
partNum

If you select Create transforms when the names of inputs and outputs are the
same when you have the inputs and outputs shown above, the relative paths of
all the items are:
v Relative paths of the input items:

items/item/partNum
partNum

v Relative paths of the output items:
items/item/partNum
resources/partNum

During step a) items/item/partNum and items/item/partNum are matched.
During step b) partNum and resources/partNum are matched.
Inputs and outputs matched in a previous step are ignored in later steps.
When you select the Map the immediate children of the selected elements
option, the only step taken to match names is to compare the item name
without the relative path.

Mapping by similar name
Learn about the rules that apply when you select in Auto map the Create
transforms when the names of inputs and outputs are more similar than option.

About this task

When you select Create transforms when the names of inputs and outputs are
more similar than, the following rules apply:
1. Fixed value outputs and mapped outputs are excluded in name matching.
2. The similarity test is done using the name of an element, an attribute, or a

database column regardless of its type. If an input and an output have the
same name, it is a match, regardless of the kind of, and XSD type of, the input
and output. An element, an attribute, and a database column can all form a
match if their names are the same.

3. The similarity test applies in the same way to case sensitivity and alphanumeric
characters as for Mapping by same name.

4. Namespace or namespace prefixes do not participate in the similarity test. XML
namespaces are excluded from name matching. Therefore, abc:something and
xyz:something are considered the same, as are {http://
www.abc.com}:something and {http://www.xyz.com}:something.

5. When multiple inputs have the same name as one output, one mapping is
created. However, if you have multiple inputs with the same name as one
output and you choose to map by the same name (or similar name) and to
match descendants, an attempt is made first to match by path and name. If a
match is found, one transform is made, and no further matches are considered.

6. When you select Map all simple descendants of the selected elements, the
following steps are taken to match names.
Inputs and outputs matched in a previous step are ignored in later steps:
a. Compare the relative path and item name of the selected input and output
b. Compare the item names without relative path

76 Designing a message map

c. Compare similar item names without relative path
When you select the Map the immediate children of the selected elements
option, the only step taken to match names is to compare similar item names
without the relative path.

7. You can select the similarity threshold for two words to be considered similar.
8. You cannot use any other similarity algorithm.

Examples of similarity values
The following table lists words that are similar to one another, together with their
similarity value, as a percentage:

Word1 Word2 Similarity value %

catalog catalogue 85

anasthesia anaesthesia 84

recognize recognise 75

color colour 66

theater theatre 66

tire tyre 33

intro introduction 53

abbr abbreviation 42

name fullname 60

firstname fullname 40

id identification 14

NCName Non colonized name 40

USA United States of America 0

faq frequently asked questions 0

Format of the synonym file
The Auto map facility allows you to create mappings between specific inputs and
outputs by putting the names of the inputs and outputs in a file called the
synonym file.

Synonyms, in the context of the synonym file, are groups of words that represent
mappings that you want to create.

File type
A synonym file can reside anywhere in your file system, only if the encoding used
in the synonym file is the same as that used by the Eclipse Toolkit system.

However, if the synonym file uses a specific encoding that is, or might be, different
from the encoding of the Eclipse Toolkit, the file must reside in a project in the
IBM Integration Studio.

If the synonym file is created outside the IBM Integration Studio, and uses a
specific encoding, save the file under an IBM Integration Studio project and click
Refresh to make the file visible in the navigator.

Chapter 9. Editing message maps 77

The synonym file uses Tab-separated or comma-separated files only. If you have
written your mapping requirement in any external application, for example,
Microsoft Word or Microsoft Excel, you must export the relevant data in a format
that the synonym file supports.

Item names in the file
A synonym file contains the names of items to be mapped, without the path to the
item or the namespace of the item.

For example, if you want to map partNum to partNumber in the following XML, you
must put partNum in the synonym file, not item/partNum, items/item/partNum, or
purchaseOrder/items/item/partNum.
<po:purchaseOrder xmlns:po="http://www.ibm.com">
<items>

<item>
<partnum>100-abc</partnum>
<productName>Acme Integrator</productName>
<quantity>22</quantity>
<USPrice>100.99</USPrice>
<po:comment>Acme Integrator</po:comment>
<shipDate>2008-12-01</shipDate>

</item>
</items>
</po:purchaseOrder>

Synonyms in the file can:
v Be case sensitive or not case sensitive
v Contain the entire mapping item name
v Have non-alphanumeric characters removed

Rows in the synonym file
In the synonym file, each row represents one group of names to be mapped
between each other and each row must contain at least two names. Names within
a row are separated by commas in .csv files, and by Tab characters in .txt files.

A synonym file can contain an optional special row at the top. This top row
contains key words Input, Output, or Input_Output, separated by the same
delimiter used in the remainder of the file. The top row is used to indicate whether
the synonyms are to be used to match names in mapping the input or the output:
v If the first word in the top row is Output, the first name only, in each

subsequent row is searched in the mapping output for name matching.
v If the second word in the top row is Input, the second name only, in each

subsequent row is searched in the mapping input for name matching.
v If the third word in the top row is Input_Output, the third name only, in each

subsequent row is searched in both the mapping input and mapping output for
name matching.

The top row must not contain fewer key words than the maximum number of
names in any row in the file.

If the top row contains any word other than Input, Output, or Input_Output, the
top row is ignored and it is assumed that the top row is missing. If you omit the
optional top row, every name in the synonym file is considered to be
Input_Output; that is, any name found either in the mapping input or in the
mapping output is matched.

If a synonym file contains two rows:

78 Designing a message map

car automobile
automobile vehicle

car and vehicle are not considered to be synonyms.

In order to make all three words synonyms, your synonym file can have either of
the following structures:
v One row with all three words -

car automobile vehicle

v Three rows -
car autombile
automobile vehicle
car vehicle

Special characters
You can write synonym files manually, or export them from another application;
for example, Microsoft Excel.

Item names in synonym files reflect the application domain and do not have to
match exactly the names in the XML schema or the relational database column.

For example, a synonym file might contain the row:
summer l’été

As l’été does not conform to the XML NCName format, you could name the
element l_été. If all the alphanumeric characters in the synonym file match those
in the schema, you can use the file with the option Alphanumeric characters
(Letters and digits only).

Many mapping requirements are written in Microsoft Excel, and cells in a
Microsoft Excel file might contain specific characters like double quotation marks,
space, new line, comma, and so on. When such a Microsoft Excel file is saved as a
Tab-separated or comma-separated file, they contain additional double quotation
marks.

Two groups of synonyms in a synonym file are delimited either by a Line Feed
(LF) character, or Line Feed followed by a Carriage Return (LFCR). A Carriage
Return (CR) character by itself does not end a group of synonyms.

Leading and trailing space characters adjacent to the delimiter (comma or Tab
character) are ignored. Blank rows, or rows that contain only space characters, are
permitted and ignored in a synonym file.

Different editors might inject different space characters into a synonym file; spaces
are not used to delimit synonyms, and spaces are ignored unless they are inside
double quotation marks.

If a synonym contains a comma, a double quotation mark, a carriage return, or a
leading or trailing space that is significant, the synonym must be enclosed in
double quotation marks. A double quotation mark within a synonym is escaped
with another double quotation mark. For example:

"comma,separated"
"double""quote"

"with<CR>
newline"
" spaces "

Chapter 9. Editing message maps 79

When the synonym file is read by the Graphical Data Mapping editor, the double
quotation marks at the beginning and end of the synonym are removed and the
following data is stored in the synonym table:

comma,separated
double"quote

with<CR>newline
spaces

The Graphical Data Mapping editor reads a synonym file containing these special
characters correctly, and you should select the Alphanumeric characters (Letters
and digits only) option when using the synonym file.

Algorithm used to match synonyms
The way in which synonyms are matched by the Auto map function, to create
mappings between specific inputs and outputs, follows a set of rules.
1. Fixed value outputs and mapped outputs are excluded in name matching. Any

output field that has a fixed value is excluded in name matching. Any output
that is already mapped, or under a container that is already mapped, is
excluded from name matching.

2. The synonym matching is done by using the name of an element, an attribute,
or a database column regardless of its type. If an input and an output have the
same name, it is a match, regardless of the kind of, and XSD type of, the input
and output. An element, an attribute, and a database column can all form a
match if their names are the same.

3. The synonym matching of alphanumeric characters is not case-sensitive, and is
identical to that used in “Mapping input to output elements automatically” on
page 73.

4. Namespace or namespace prefixes do not participate in synonym matching.
XML namespaces are excluded from name matching. Therefore, abc:something
and xyz:something are considered the same, as are {http://
www.abc.com}:something and {http://www.xyz.com}:something.

5. When multiple inputs have the same name as one output, one mapping is
created. However, if you have multiple inputs with the same name as one
output and you choose to map by the same name (or similar name) and to
match descendants, an attempt is made first to match by path and name. If a
match is found, one transform is made, and no further matches are considered.

6. If an input and an output have the same name, they are not considered a match
under the option for synonyms. If you require a mapping for same-name
inputs and outputs, you must also select the Create transforms when the
names of inputs and outputs are the same option.

7. In addition to mapping synonyms, you might want to create mappings for
some, but not all, same-name inputs and outputs. In this case, you have two
options:
v Clear Create transforms when the names of inputs and outputs are the

same, and include the same-name inputs and outputs in the synonym file
v Select Create transforms when the names of inputs and outputs are the

same, and clear the unwanted mappings on the second page of the wizard.
8. When you select the Map all simple descendants of the selected elements

option together with both same name and synonym mapping options, the
following steps are taken to match names:
v Compare the relative path and item name of the selected input and output
v Compare the item name without relative path
v Compare the item name without relative path to synonym

80 Designing a message map

Inputs and outputs matched in a previous step do not participate in later steps.
9. When you select the Map the immediate children of the selected elements

option together with both same name and synonym mapping options, the
following steps are taken to match names:
a. Compare the item name without relative path
b. Compare the item name without relative path to synonym
Inputs and outputs matched in a previous step do not participate in later steps.

Creating and using a synonym file
You can use a synonym file to configure automatic mapping of input to output
elements in the Auto map wizard. You can use either a Tab delimited .txt file or a
comma delimited .csv synonym file. You can create a synonym file manually or
generate a synonym file from the information that is contained in a Microsoft Excel
spreadsheet.

Procedure

Complete the following steps to configure Auto map to use a synonym file that is
created from the information that is contained in a Microsoft Excel spreadsheet:
1. Optional: Create a synonym file where the original mapping requirement is

written in Microsoft Excel. The following set of instructions describe how to
create a synonym file where the original mapping requirement is written in
Microsoft Excel. If your original requirement is written in a table in Word, you
must copy and paste the table into Microsoft Excel before you begin.
a. Select the section of the Microsoft Excel spreadsheet that you require. For

example, if you have a Product that you want to map to a Part number,
select that section of the spreadsheet.

b. Remove all columns from the spreadsheet, except the ones that contain the
input field name and the output field name. You might have to edit some of
the cells. For example, if your mapping instruction includes the phrase
based on, remove this phrase.

c. If the input or output fields contain paths, remove the paths to leave only
the short names of the item. However, it is helpful to sort the column before
you remove the paths. Sorted path names can indicate which is the best
input or output to select when you start the action. If all the interested
inputs or outputs start with the same path prefix, you might consider
selecting the lowest input (or output) node in the tree, which has that
common path prefix.

d. Remove all rows that do not have an input field name and an output field
name. For example, if you have an obsolete product that no longer has a
part number and you have n/a in the input, remove that row.

e. Select the Save As function in Microsoft Excel to save the spreadsheet into a
format that is supported by IBM Integration Studio. You can use either a
Tab delimited .txt file or a comma delimited .csv file. A comma delimited
file can be opened with Microsoft Excel. The file can also be opened in a
text editor.

2. Create the mappings by using the synonym file. Select the options in the Auto
map wizard that match your requirements. For example, select the default
options of Map all simple descendants of the selected elements and
Alphanumeric characters (Letters and digits only).
When you choose these options, select Create transforms when the input and
output names are matched to synonyms defined in a file.

Chapter 9. Editing message maps 81

If you want to map same-name inputs to outputs, and the synonym file does
not contain rows with those names (for example a row with car,car), select the
Create transforms when the names of inputs and outputs are the same
option, in addition to the Create transforms when the input and output names
are matched to synonyms defined in a file option.
You can select both Create transforms when the names of inputs and outputs
are the same and Create transforms when the names of inputs and outputs
are more similar than, in addition to Create transforms when the input and
output names are matched to synonyms defined in a file, if your synonym file
does not contain a row color,color and you want to map between them.

3. Click Finish.

Selecting matches
Use the Auto map wizard to select the mappings that you want to create.

About this task

When you have specified how you require the names to be matched on the initial
panel of the Auto map wizard, and have selected Next, you see a panel that
displays all the matches found.

You can now select the options that you require:

Procedure
1. Select a row in the Transform Outputs column that you want to change.

Selecting a folder tree node results in the entire tree branch being selected or
not selected.

2. Click Edit to start the Select Transform Input dialog.
3. To select a transform output, select the appropriate tree node check box.

Conversely, to remove a mapping output, clear the appropriate tree node check
box.

4. Ensure that you have selected only the number of matches that you require.
The third column displays the number of transform inputs selected for each
transform output. The cell has a value greater than one when the input of a
transform contains several elements of certain names under various containers,
and the input names match to the same output name.

5. Click Finish to complete the mapping process, or click Back to change the
matches that you have set up. When you click Finish, you obtain a warning
message if either, or both, of the following conditions apply:
a. More than a few inputs to map to the same output.
b. Many outputs for which you want to create mappings.

Specifying a transform (mapping operation)
Specify a transform, a cast function, or an XPath function between two or more
elements by selecting from the list of available mapping operations that are shown
on the connection.

Before you begin

Learn about the different mapping operations. For more information, see
Chapter 4, “Transforms (Mapping operations),” on page 21.

82 Designing a message map

About this task

In the Graphical Data Mapping editor, you can use transforms, cast functions, and
XPath 2.0 functions to run different actions on input data and move the result to
the output element. You choose the appropriate mapping operation that is based
on the result that you want to achieve.

When you create a connection between two or more elements, a transform is
assigned, based on the number and type of input elements. You can then change
the transform by choosing from a list of available transforms. If a particular
transform type is not shown in the list, that transform is not valid for your input
and output elements.

For example:

Note: Transforms that require multiple inputs such as ForEach, Join, or Append
are not available in the list of available transforms until you wire two inputs to the
transform.

When you have a list of valid transform types, choose the appropriate transform:
v If you have a single array as input, with the same array type as output, and you

want to move all elements to the output, use Move.
v If you have a single array as input, and you want to iterate over each element in

the array (for example, you might want to remove some elements) use the
ForEach transform and set the cardinality options.

v If you have multiple input elements, you can use the Append or the Join
transforms. If you use the Append transform, the number of output elements is
the total of the input elements. If you use Join transform, the number of output
elements depends on the user expression added to specify the matching criteria
for joining or filtering input items.

The following steps show how to change the transform that is selected, and also
how to add more elements:

Procedure
1. Change the transform by clicking the arrow in the transform box, and selecting

from the list of available transforms. For example:

Chapter 9. Editing message maps 83

2. If you create more primary connections between an input element and the
transform, the transform type changes to one that allows multiple primary
inputs, such as Local Map, Concat, or Join. For example:

What to do next

Configure the properties of the transform. For more information, see “Configuring
the properties of a transform.”

Configuring the properties of a transform
Configure the properties of a transform to set the value of an output element;
define a conditional expression that determines whether the transform is applied;
define the indexes to use when the input element is a repeating structure; or
reorder the way in which inputs to a transform are handled by the Graphical Data
Mapping editor.

Procedure

Complete the following steps to configure the general properties of a transform:
v Open the Properties view of a transform by using any of the following methods:

– Select a transform. Then, select the Properties tab.
– Right-click the transform, and then select Show in > Properties view.
– When the map is in full vie, select Alt+Enter.

You can configure these keyboard shortcuts by selecting Window >
Preferences > General > Keys.

Note: You can detach the Properties view from the map. This is very useful if
you have a secondary workstation screen. In one workstation screen you can see
the map, and in the other you can see the properties map.

v In the Properties tab, add, modify, or remove resources:
– Select Cardinality to select the indexes of the input and output elements that

you want this transform to operate over. For more information, see “Selecting
the indexes of input array elements” on page 28.

84 Designing a message map

– Select Variables to list the names of the input elements that are connected to
the transform. Select Edit to change the name of a variable.

Note: When you change the name of a variable, the new name is the one you
see when you use content-assist to create your expressions.

– Select Condition to define the XPath expression that must be evaluated
against the input element before the transform is applied. If the condition
evaluates to true, the transform is applied. For more information, see
“Defining an XPath conditional expression for a transform.”

– Select Filter to define an expression that must be evaluated against each
element on a repeating input element before the transform is applied. If the
condition evaluates to true, the transform is applied for each input.

– Select Sort to sort the inputs to the transform by ascending order, descending
order, case order, or data order. Then, complete the following steps:
1. Select Sort the inputs to this transform.
2. Add elements to the Sort by column.
3. Select a sort method.

– Select Order to display the order of input connections to a transform. You can
reorder them.

– Select Documentation to provide a description of the transform, or other
relevant usage notes.

What to do next

Deploy and test the message map. For more information, see Chapter 25,
“Deploying message maps,” on page 191 and Chapter 24, “Troubleshooting
graphical data maps,” on page 189.

Defining an XPath conditional expression for a transform
You can define an XPath expression to set the conditional expression that
determines whether a transform is applied in a message map. When the XPath
expression evaluates to true, the transform is applied.

About this task

In the XPath expressions that you can use in a message map, the value obtained
from a input element, by using the variable name, has an effective Boolean value.

The effective Boolean value is false for the following input elements:
v The input element is Boolean and its value is false.
v The input element is a sequence, and the sequence is empty.
v The input element is string and its value is the empty string "".
v The input element is a float or a decimal and the value is NaN (not a number).
v The input element is of a numeric type and its value is 0.

In any of these cases, the XPath expression can be formed from just the variable
name that represents the input element.

You can also get a Boolean result from defining expressions that use variable
names that represent inputs and constant values and any of the following
operators :
v Logical operators such as and, or, not.

Chapter 9. Editing message maps 85

v Comparison operators such as =, !=, <, >, <=, >=.

Note: Always use content assist to select the variable name of the input elements
that you use to define the XPath expressions. If you do not use content assist, you
may be using an incorrect element name and your map will fail at run time.

Note: XPath 1.0 functions are valid XPath 2.0 expressions. You can use the XPath
Expression Builder to generate simple XPath 1.0 expressions.

Procedure

Complete any of the following steps to set a conditional expression in a transform:
v For non-repeating elements, select the Condition property in the Properties tab,

and enter an XPath expression.
v For repeating elements, select the Filter Inputs property in the Properties tab,

and enter an XPath expression that will be applied to each instance of the
repeating element.
For more information, see “Defining an XPath conditional expression for a
structural transform (ForEach)” on page 89.

Results

The input element is evaluated against the condition. If the condition evaluates to
true, the transform is applied to the input element.

Example

The following examples show how to define simple XPath conditional expression
for a transform when you have non-repeating elements:

Example: XPath expression to check a Boolean input element

This example shows how to define the XPath expression for a Boolean element so
that it evaluates to true. The expression depends on the value of the Boolean
element.

The XML schema for the element is the following:

<element name="IsEmployee" type="boolean"></element>

When the value of a Boolean element is set to false, the XPath expression that you
define is the following:

fn:not($IsEmployee)

When the value of the Boolean element is set to true, the XPath expression that
you define is the following:

$IsEmployee

Example: XPath expression to check if the value of a numerical input element is
greater than a constant value

This example shows how to define an XPath expression that evaluates to true
when the value of a numerical element is greater than 200.

86 Designing a message map

The XML schema for the element is the following:

<element name="BusinessUnit" type="int" ></element>

The XPath expression that you define is the following:

$BusinessUnit > 200

Example: XPath expression to check if a numerical input element has a specific
value

This example shows how to define an XPath expression that evaluates to true
when the numerical input element has a value of 0.

The XML schema for the element is the following:

<element name="QtyBooks" type="int" ></element>

The XPath expression that you define is the following:

$QtyBooks = 0

Example: XPath expression to check the string length of an input element

This example shows how to define an XPath expression that evaluates to true
when the length of a string is 10.
v The Move transform has a primary connection wired from the element Name.
v The Move transform has a secondary connection wired from the element

BusinessUnit. This connection is supplementary because this element is not
used to calculate the value of the output element.

v The Move transform should only execute if the length of the element
BusinessUnit is 10.

The XML schema for the elements are the following:

<element name="Name" type="string" ></element>

<element name="BusinessUnit" type="string" ></element>

The XPath expression that you define is the following:

fn:string-length($BusinessUnit) = 10

Chapter 9. Editing message maps 87

Example: XPath expression to check if a string input element is set to the empty
string

This example shows how to define an XPath expression that evaluates to true
when a string element is empty.

To define an XPath expression that checks if a string element is empty, you must
use the operator !=.

The XML schema for the element is the following:

<element name="Name" type="string" ></element>

The XPath expression that you define is the following:

$Name != ’’

Example: XPath expression to check if a repeating element is empty

This example shows how to define an XPath expression that evaluates to true
when a repeating element, which is referred to as a sequence, is empty.

The effective Boolean value of an empty sequence is false. You could use
fn:not($Address), but it is more readable to use fn:empty() explicitly.

The XPath function fn:empty() evaluates to true if a sequence is empty.

The XML schema for the element is the following:

<xsd:element form="qualified" name="Address" type="mqsistr:Address"
maxOccurs="unbounded" minOccurs="0" />

The XPath expression that you define is the following:

fn:empty($Address)

Example: XPath expression to check if an optional input element is present

This example shows how to define an XPath expression that evaluates to true
when an optional element is present.

Use the fn:exists XPath function if the input element is a boolean. Otherwise, you
can use the effective Boolean value.

The XML schema for the element is the following:

<element name="BookName" type="string" maxOccurs="unbounded"
minOccurs="0" ></element>

The XPath expression that you define is the following:

$BookName

Example: XPath expression to check if a complex input element has no content,
that is, it is empty

88 Designing a message map

To determine whether a complex element is empty, you must check for the
presence of child elements or attributes.

Testing the effective Boolean value of elements or attributes that are present in a
complex type will yield true. You can use the fn:not XPath function to invert a
boolean.

The fn:not function accepts a sequence of items. The value that this function
returns is true if any of the arguments is either a single Boolean value false, a
zero-length string, the number 0 or NaN, or the empty sequence. Otherwise, it
returns false.

This example shows how to define an XPath expression that evaluates to true
when the complex input element has no children.

The XML schema for the elements are the following:
<complexType name="Address">

<sequence>
<element name="Type" type="string"/>
<element name="Number" type="integer"/>
<element name="Street" type="string"/>
<element name="Postcode" type="string"/>
<element name="City" type="string" />
<element name="Country" type="string"/>
<element name="AdditionalInfo" type="string"/>

</sequence>
</complexType>

The XPath expression that you define to check for child elements being present in
a complex element is the following:

fn:not($Address/*)

The XPath expression that you define to check for attributes being present in a
complex element is the following:

fn:not($Address/@*)

The XPath expression that you define to check for elements and attributes being
present in a complex element is the following:

fn:not($Address/*) and fn:not($Address/@*)

What to do next

Deploy and test the message map. For more information, see Chapter 25,
“Deploying message maps,” on page 191 and Chapter 24, “Troubleshooting
graphical data maps,” on page 189.

Defining an XPath conditional expression for a structural
transform (ForEach)

Configure the Filter Inputs section in the Properties view of the ForEach transform
to define the conditional expression that determines whether the transform is
applied in a message map.

Chapter 9. Editing message maps 89

About this task

The ForEach transform can only have one primary input connection. Additional
connections to the ForEach transform must be of type Supplement.

Procedure

Complete the following steps to define a conditional expression on a ForEach
transform:
v Select Allow empty input if you want the ForEach transform to execute at least

one.
If you select this option, the transformations that you define in the ForEach
transform nested map will execute once regardless of the conditional expression.

v Define the XPath expression that determines whether the ForEach transform is
applied in the map.

Note: Always use content assist to select the name of the input elements that
you use to define the XPath expressions.
The conditional expression applies to all the indexes that you configure in the
Cardinality tab of the ForEach transform properties view.

Results

The input element is evaluated against the condition. If the condition evaluates to
true, the transform is applied to the input element.

Example

This example shows how to define an XPath expression that checks the value of a
string element:
v The ForEach transform has a primary connection wired from the repeating

element Address.
v The ForEach transform has a secondary connection wired from the mandatory

element BusinessUnit. This element can be set to nil. This element is not used to
calculate the value of the output element.

v The ForEach transform should only execute if the BusinessUnit element is not
empty.

The XML schema for the mandatory element is the following:

<element name="BusinessUnit" type="string" nillable="true"></
element>

The XML schema for the repeating element is the following:

<xsd:element form="qualified" name="Address" type="mqsistr:Address"
maxOccurs="unbounded" minOccurs="0" />

90 Designing a message map

The XPath expression that you define is the following:

$BusinessUnit != ’’

What to do next

Deploy and test the message map. For more information, see Chapter 25,
“Deploying message maps,” on page 191 and Chapter 24, “Troubleshooting
graphical data maps,” on page 189.

Choosing an XPath conditional expression that tests for a nil
value in a transform

Use the XPath functions fn:empty, fn:nilled, or fn:exists to test if an output
element is set to nil. You can use these functions to define conditional expressions
in a transform.

About this task

For example, you can use fn:empty, fn:nilled, or fn:exists as part of conditional
expression that determines if a transform is applied. You can also use these
transforms as part of the conditional expressions that you set in an IF transform.

Procedure

Choose any of the following XPath functions to determine the state of a source
element:

XPath function Usage Source element Output

fn:empty Tests whether a set of
elements is empty

A single XML or
non-XML element
that is present and
nilled

false

fn:empty Tests whether a set of
elements is empty

A NULL value in a
logical tree

false

fn:empty Tests whether a set of
elements is empty

A missing element,
not present in the
logical tree

true

fn:nilled Tests whether an
element is nilled

A nillable XML
element

true only if the xsi:nil
attribute is present
and set to 'true' in
the logical tree

fn:nilled Tests whether an
element is nilled

A nillable non-XML
element

true only if the value
in the logical tree is
NULL

Chapter 9. Editing message maps 91

XPath function Usage Source element Output

fn:exists Tests whether an
element exists

A single XML or
non-XML element

true if the element is
present in the logical
tree, regardless of the
nillable and nilled
state

fn:exists Tests whether an
element exists

A NULL value in a
logical tree

true

fn:exists Tests whether an
element exists

A missing element,
not present in the
logical tree

false

Example

This example shows an XPath expression that checks if an input element is nilled.

The XPath expression evaluates to true when an input element is not set to nil.

Use the fn:nilled XPath function to test whether the value of an input element
has the xsi:nil attribute set.

Note: An XML element that has the xsi:nil attribute set is considered to be
present.

The XML schema for the element is the following:

<element name="BookName" type="string" nillable="true" ></element>

The XPath expression that you define is the following:

fn:nilled($BookName)

Grouping transforms into nested maps
Use the Group transforms into nested maps property to nest the transforms in a
new Local map transform. The local map provides a way of displaying parts of a
larger message map, enabling you to view the message map elements in a
hierarchical way.

About this task

When the Group transforms into nested maps property is selected, the Auto map
wizard attempts to place new transforms inside new message map transforms.

The Auto map wizard recursively analyzes the input and output elements of the
new transforms, searching for a common input ancestor and a common output
ancestor. If a common input ancestor is found for the input elements, and a
common output ancestor is found for the output elements, a new Local map
transform is created between them. Inside the new local map, when no more
common ancestors can be found, the new transforms are created at this level. If
there are still some common ancestors at a given level, the process is repeated.

For example, a map might contain the following input:

92 Designing a message map

SomeInput
--Resources
---field1
---field2
---field3
---field4

and the following output:
SomeOutput
---Items
----field1
----field2
----field3
----field4

If the Group transforms into nested maps property is not selected, the Auto map
wizard creates transforms between the input and output elements field1, field2,
field3, and field4 at the current level of the map.

However, if the Group transforms into nested maps property is selected, the Auto
map wizard creates a Local map transform between SomeInput/Resources and
SomeOutput/Items at the current level of the map, and then creates transforms
between the input and output elements field1, field2, field3, and field4 inside
the local map.

Using content assist (Mapping syntax)
Use content assist to find the variable names for input and output objects, paths,
and database elements.

Press Ctrl+Spacebar to display content assist, and use it to help you build your
XPath statements and mapping expressions. Content assist provides the variable
names that you need to use to reference elements in your XPath statements and
expressions. The variable name assigned for the same element can vary between
uses in different transforms, so always use content assist to obtain the correct
variable name. Avoid copying and pasting expressions that include variable names.

You can use content assist for the following tasks:
v Making comparisons
v Performing arithmetic
v Creating complex conditions

The comparison operators are:
= (equals)
!= (not equals)
> (greater than)
>= (greater than or equal)
< (less than)
<= (less than or equals)

The arithmetic operators are:
+ (plus)
- (minus)
* (multiply)
div (divide)

Chapter 9. Editing message maps 93

For information about XPath syntax, see W3C XML Path Language (XPath) 2.0.

Conditional operators (or and and) are supported; these are case-sensitive.

The following objects can be mapped:
v Message elements (defined in the schema for the input and output)
v Message assembly, comprising the properties tree and optionally the

LocalEnvironment and transport headers
v Data from database tables

Database objects with names that do not conform to the XML
NCName format

Some database objects have names that do not conform to the XML NCName
format (for example, the name contains characters like #, or $). If the database
object name is used in SQL (for example, in the where clause of the Select
transform), no action is required. If the database object is used in XPath (for
example, in a Custom transform or a condition), use content assist, which adds the
appropriate XPath-compliant expression.

Deleting objects and transforms
You can delete input objects, output objects, and transforms from a message map
by using the Graphical Data Mapping editor.

Procedure
v To delete an input object or an output object from a message map, choose any of

the following methods:
– Select the appropriate object in the Graphical Data Mapping editor, and then

click the Delete selected elements icon in the toolbar.
– Select the object and then either press the delete key Del, or right-click and

select Delete from the context menu.
You can delete multiple elements at the same time by marking them by using
Ctrl + click, and then clicking the Delete selected elements icon.

v To delete a transform from a graphical data map, choose any of the following
methods:
– Select the transform and press the delete key (Del).
– Select the transform, right-click on the transform, and then select Delete from

the context menu.

What to do next

Continue editing the map, and define transformations between the input message
and the output message. For more information, see Chapter 9, “Editing message
maps,” on page 61.

94 Designing a message map

http://www.w3.org/TR/xpath20

Chapter 10. Advanced editing in a message map

You can configure the input and output message assembly in a message map by
using the Graphical Data Mapping editor.

Procedure
1. Configure the general properties of the input and output message assembly by

using the Graphical Data Mapping editor. For more information, see
“Configuring the properties of the input and the output message assembly to a
message map” on page 108.

2. Optional: Configure the message assembly to include any of the following
components: the Properties tree, one or more message tree headers, the
message tree body, and the local environment tree. For more information, see
“Configuring the message map to include message assembly components.”
In IBM Integration Bus, the message assembly is the internal representation of a
message. When you transform a message, you might need access to elements in
a message assembly component or you might need to modify some of these
elements in your message map.

3. Map graphically data available in the transport headers. For more information,
see “Mapping transport headers” on page 109.

4. Map graphically data available in the local environment tree. For more
information, see “Mapping data in the local environment tree” on page 111.

5. Configure a database to map or modify database content. For more
information, see “Adding database definitions to the IBM Integration Studio”
on page 116.

What to do next

Configure mapping transforms in your message map. For more information, see
“Choosing a transform to set the value of a simple type output element” on page
23.

Configuring the message map to include message assembly
components

In IBM Integration Bus, the message assembly is the internal representation of a
message. When you transform a message, you might need access to elements in a
message assembly component or you might need to modify some of these
elements in your message map. You can configure a message map to include the
following message assembly components: the message tree Properties tree, message
tree headers, the message tree body, and the local environment tree.

About this task

When a message arrives to an application or to an integration service, it is received
by an input node that you have configured in a message flow. Before the message
can be processed by the message flow, the message must be interpreted by one or
more parsers that create a logical tree representation from the bit stream of the
message data. The logical tree is also known as the message assembly. The tree
format contains identical content to the bit stream from which it is created, but it is
easier to manipulate in the message flow.

© Copyright IBM Corp. 2014 95

Procedure

To include message assembly components into your message map, complete the
following steps:
1. Identify the message assembly components that you need to add to your

message map. For more information, see “Choosing message assembly
components to include in a message map.”
You may need to include the local environment tree to use information
provided in a variable or you may need to add a header to access transport
specific information.

2. Identify whether you need to initialize, delete, or transform elements in
components of the message tree or in the local environment tree. For more
information, see “Choosing a mapping action” on page 98.
You can add different parts of the message tree to the map input, to the map
output, or to both. You can also add the local environment tree. Depending on
how you add a message assembly component, this component can be deleted,
initialized, or transformed.

3. Configure the message map to include a message assembly component. For
more information, see “Customizing a message map to include a message
assembly component” on page 105.
To customize your message map to include more message assembly
components, you must add message assembly components to the input
message and to the output message, and then define transforms between them.

Results

You now have a message map that includes the message assembly components
that you need to complete your message transformation.

What to do next

Define transforms between other message assembly components that you have
included. For more information, see “Specifying a transform (mapping operation)”
on page 82.

Choosing message assembly components to include in a
message map

You can add the message tree components, that is, the Properties tree, the headers,
and the message body into a message map. You can also add the local
environment tree into a message map.

About this task

In IBM Integration Bus, the logical tree structure is the internal representation of a
message. The logical tree structure is created by the parser when the message is
received by an input node. It is also known as the Message tree and makes up part
of the message assembly. The message assembly consists of four trees:
v Message tree: This tree includes the Properties folder, the message body, and

headers.
v Environment tree
v Local environment tree: This tree includes multiple destination folders, and a

variables folder.
v Exception list tree

96 Designing a message map

When you create a message map, the Properties folder and the message body are
automatically included in your Graphical Data Mapping editor.

Note: You can remove the properties folder and the message body in the message
map if you only want to modify the local environment tree. This will accelerate
your message transformation since the message properties and the message body
will be copied over without the need to bring them into the transformation engine.

You cannot add the exception list tree to the message map. The exception list is
included automatically, and the entire contents of the input exception list is
retained in the output.

Procedure

Choose one or more message assembly components to include in a message map:
v Header folders: You can add one or more headers to a message map, in addition

to the Properties folder and the message body.
When an input message is received by an input node, the input node invokes
the correct parser for each header, and includes in the message tree the
corresponding headers. You can then access these headers by using message
maps.
The message tree always includes the following components:
– All the headers that are present in the message.
– The message body.
– The Properties folder. The Properties folder (sometimes referred as the

Properties tree) is the first element of the message tree and holds information
about the characteristics of the message. When the input node receives the
input message, it creates and completes the Properties folder.

If you need to access information available in an element of a header or if you
need to modify it, then you must add the header to the message map. For more
information, see “Mapping transport headers” on page 109.

v Local environment tree: You can add the local environment tree to the message
map. The local environment is divided into two parts:
– Standard folders that are automatically defined for each of the destination

folders available in IBM Integration Bus.
– A variables folder that is added automatically. You can use the Cast function

to include a variable into your message map.
The local environment tree stores variables that can be referred to and updated
by message processing nodes that occur later in the message flow.
You can also use the local environment tree to define where a message is sent.
The destination can be internal or external to the message flow.
IBM Integration Bus also stores information in the local environment tree in
some circumstances, and references it to access destination values that you might
have set.
If you need to access information available in an element of the variables folder
or if you need to modify a variable, then you must add each individual variable
to the message map. For more information, see “Configuring the local
environment tree Variables folder by using the Cast function” on page 113.

Chapter 10. Advanced editing in a message map 97

Results

The following table summarizes the message assembly tree folders that you can
include into your message map:

Table 7. Message assembly trees that can be included in a message map

Message assembly
trees

Folders in a message
assembly tree

Can be configured
in a message map as
an input to the map
and as an output to

the map?
Status in a message

map

Message tree Properties folder Yes Required

Message tree Header folders Yes Optional

Message tree Message body Yes
Note: You must cast

parts of the SOAP
message body to be

able to define
transforms between
its input and output

elements.

Required

Local environment
tree

Variables folder Yes (You must cast a
variable to define

transforms between
its input and output

elements.)

Optional

Local environment
tree

Destination folders Yes Optional

Environment tree No

Exception list tree No

What to do next

Identify the configuration of the different message assembly components. For more
information, see “Choosing a mapping action.”

Choosing a mapping action
You can add different parts of the message tree to the map input, to the map
output, or to both. You can also add the local environment tree. Depending on
how you add a message assembly component, this component can be deleted,
initialized, or transformed.

Procedure

Identify the action that you want to achieve in your message map to find out how
to add a message assembly component into the message map:
v To copy a message assembly component unchanged, do not include the

component in the message map.
The mapping engine copies the local environment tree and any other headers
and folders from input to output, unchanged, when they are not included in the
message map.
The mapping engine handles the following components as independent units of
transformation:

98 Designing a message map

– The properties tree in the message tree
– The message body in the message tree
– Each header structure in the message tree. For example, the MQMD is treated

as one unit, the MQRFH2 header is considered an independent unit, and so
on.

– The local environment tree

If any of these units is not included in the message map, the mapping engine
copies their contents unchanged.

Note: If the only transform that you define between an input map component
and an output map component is the Move transform so that the component is
copied over without any modification, you are recommended to remove the
component from the message map. The map transformation will be more
efficient since the mapping engine will only focus on the structures that do
require change.

v To read elements of a message assembly component, add the component to the
input message assembly only. The Mapping node passes it through unchanged

v To modify all the elements of a message assembly component, add the
component such as the local environment tree to the input message assembly
and to the output message assembly. Then, define transforms between each of its
elements.

v To modify some elements of a message assembly component, add the
component such as the local environment tree to the input message assembly
and to the output message assembly. Define a Move transform for the entire
component, that is, at folder level, and then specific transforms for each of the
elements that you want to transform within an Override function. For more
information, see “Transforming some elements of a message assembly
component by using the Override function” on page 102.

v To initialize a message assembly component, that is, to create a new message
assembly component in your output message, add the message assembly
component only to the output message assembly. For more information, see
“Initializing a message assembly component in the output message” on page
105.

v To add a message assembly component, add the message assembly component
to the output message assembly and populate at least one field. The Mapping
node creates a new output structure containing the results of your
transformations.

v To delete a message assembly component from the input message, add the
message assembly component to the output message assembly and do not set
any field. For more information, see “Deleting a message assembly component
from the output message” on page 104.

Results

The following table summarizes the mapping engine behavior when you add the
local environment tree to your message map. The same behavior applies when you
add any of the header folders, such as the MQ headers > MQMD folder, to your
message map.

Chapter 10. Advanced editing in a message map 99

Table 8. Mapping engine behavior when adding the local environment to a message map for
transformation

Input element
Output
element

Transform defined
between the input
element and the output
element Mapper behavior

Local environment
tree

Local
environment
tree

A transform operation
such as Move is defined
between the input local
environment tree and
the output local
environment tree.
Additional transforms
are defined between
some elements of the
local environment tree
within an Override
function to change the
value of those elements.

The input local
environment tree is
copied into the output
local environment tree.
The elements whose
transforms are defined
within the Override
function have output
values different from the
input values based on
the transformation. The
elements outside the
Override function
maintain the same
values in the output
local environment tree.

Elements from other
message assembly
components,
database elements
whose values are
obtained by doing a
database read, or a
combination of both

Local
environment
tree

A Move transform is
defined between each
parent input message
assembly structure and
its corresponding output
message assembly
structure. Additional
transforms are defined
between input elements
and the output local
environment tree.

Note: If you do not
define the Move
transform between an
input and an output
message assembly
structure from which
you use values to set the
local environment
output elements, then
you will lose the
message assembly
structure in the output
message, although your
map will perform the
transformation correctly.

Each input message
assembly structure is
copied into its
corresponding output
message assembly
structure. The output
local environment
variables are defined as
per the additional
transforms using values
from the input elements.

Local environment
tree

Local
environment
tree

None Delete the original local
environment tree. An
empty local
environment tree is
created for the output
message.

100 Designing a message map

Table 8. Mapping engine behavior when adding the local environment to a message map for
transformation (continued)

Input element
Output
element

Transform defined
between the input
element and the output
element Mapper behavior

Local environment
tree

None None Delete the original local
environment tree. An
empty local
environment tree is
created for the output
message.

None Local
environment
tree

None Delete the original local
environment tree. An
empty local
environment tree is
created for the output
message. You might
populate some of the
fields by using
transforms between
other input map
components such as the
message body and the
new local environment
structure.

Local environment
tree

Local
environment
tree

A transform operation
such as Move can be
defined between one
element from the input
local environment tree
and one element from
the output local
environment tree. The
rest of the local
environment elements
do not have transforms
defined that specify how
to move the input value
to the output value.

The output local
environment tree is
initialized and only the
element that has the
transform defined has a
non default value set.

Local environment
tree

Local
environment
tree

A transform operation
such as Move is defined
between the input local
environment tree and
the output local
environment tree.

The input local
environment tree is
copied into the output
local environment tree.

What to do next

Configure the message map to include the local environment tree or a message
header. For more information, see “Customizing a message map to include a
message assembly component” on page 105.

Chapter 10. Advanced editing in a message map 101

Transforming some elements of a message assembly component
by using the Override function
You can use the Move transform to copy a complex type from the input message
to the output message, while updating some of the child elements in the complex
type by using the Override function. A message assembly component is described
by a complex data structure.

About this task

Note: You can only use the Override function to include Move transforms and
Assign transforms.

Procedure

When you want to modify only some fields of a message assembly component,
complete the following steps to transform the message assembly component:
1. Required: Define a Move transform to copy the input message component into

the output message component, that is, to copy an input complex data
structure into an output complex data structure.
For example, the Properties tree has a Move transform defined automatically
when you create a message map so that all elements in the Properties tree are
copied to the output Properties tree structure. If you transform elements in the
Local Environment tree, you must manually define the Move transform.

2. Add additional transforms between the input and output elements in the
message assembly component.
For example, you need to change the encoding for the output message. You
assign a different value to the Encoding element in the properties tree.
Right-click the Encoding element, and then select the menu option Create
Assign.

The Assign transform is defined and connected to the Encoding element in the
output Properties tree.

102 Designing a message map

You get the following icons on the top left hand side of the transform:
v An Error icon represented with a red exclamation mark. You can ignore this

error and continue. You get the error because you have defined two
transformations on an element and this is not allowed. By using the
Override function, you fix the problem.

v A suggestion icon represented by a yellow light bulb.
When you hover over the icon, you get the following pop-up window:

3. When you hover over the yellow light bulb, choose Group the conflicting
transforms in an override group. This option is the recommended approach
and allows you to maintain visibility of the transforms you have defined in the
main transformation map.

Results

You have transformed elements of a message assembly component by using the
Override function.

Note: If you choose Nest transforms within the parent map, a Local map
transform is defined between the input Properties tree and the output Properties
tree.

Chapter 10. Advanced editing in a message map 103

The local map that is created contains a Move transform per element, with the
exception of the Encoding element that has an Assign transform.

What to do next

Configure the message map body parts. For more information, see “Mapping input
to output elements manually” on page 70 or “Mapping input to output elements
automatically” on page 73.

Deleting a message assembly component from the output
message
To delete a message assembly component from the output message, add the
message assembly component to the output message and ensure that there are no
mappings to it.

Procedure

To delete a message assembly component from the output message, complete any
of the following steps:
v To delete the local environment tree, add the local environment tree to the

output message, and do not set any fields.
v To delete the Properties tree, delete the Move transform between the input

properties tree and the output properties tree.
v To delete a header, add the transport header folder to the output message, and

do not set any fields.
v To delete a message body from the output message, add the message body to

the output message, and do not set any fields.

104 Designing a message map

What to do next

Configure the message map body parts. For more information, see “Mapping input
to output elements manually” on page 70 or “Mapping input to output elements
automatically” on page 73.

Initializing a message assembly component in the output
message
To initialize a message assembly component in the output message, you add the
message assembly component to the output message only. The input values are
ignored. You define new values for the elements in the output message assembly
structure.

About this task

When you initialize a message assembly structure, you ignore the incoming values
and define new values on the output message assembly.

Procedure

To initialize different message assembly components, complete the following steps:
v Add the message assembly component to the output message assembly only.

– To initialize the local environment tree, add the local environment tree to the
output message only.

– To initialize the Properties tree, delete the Move transform between the input
properties tree and the output properties tree.

– To initialize a header, add the transport header folder to the output message
only.

For more information, see “Customizing a message map to include a message
assembly component.”

v Use mapping transforms to set values for the elements in the new structure.

What to do next

Configure the message map body parts. For more information, see “Mapping input
to output elements manually” on page 70 or “Mapping input to output elements
automatically” on page 73.

Customizing a message map to include a message assembly
component

To customize your message map to include more message assembly components,
you must add message assembly components to the input message and to the
output message, and then define transforms between them.

Before you begin

Check whether you need additional message assembly components to transform
your input message. For more information, see “Choosing a mapping action” on
page 98.

Chapter 10. Advanced editing in a message map 105

About this task

You configure additional message assembly components for a message map in the
Graphical Data Mapping editor.

By default, when a message map is created, the only message assembly component
that is configured automatically is the Properties tree. The input Properties tree is
connected to the output Properties tree with a Move transform.

Procedure

To add a message assembly component in a message map, complete the following
steps:
1. Open the message map in the Graphical Data Mapping editor.
2. Add a message assembly component such as the local environment tree to the

input message.
v Method 1:

a. Select Message Assembly .

b. In the Properties view, select the General tab.

c. Click Properties.

Note: If you have other structures included in your message assembly,
the option that you can click includes all the different message assembly
components that you have currently selected. For example, if you had the
Properties tree and the local environment tree selected, you click
LocalEnvironment, Properties.

v Method 2:

a. Select the information icon located by the input message body type.

106 Designing a message map

b. Select Header: Properties.

3. In the Add or Remove Headers and Folders window, select one or more
message assembly components, and then click OK.

Chapter 10. Advanced editing in a message map 107

What to do next

Define transforms between the input message assembly and the output message
assembly. For more information, see “Specifying a transform (mapping operation)”
on page 82.

Configuring the properties of the input and the output message
assembly to a message map

You can configure the general properties of the input and output message
assembly in a message map by using the Graphical Data Mapping editor.

About this task

The input and output message assembly properties are located within the General
tab. They provide information that is displayed for information only, and cannot be
modified. In addition, you can configure the message assembly components that
you might require to define your data transformations, and the message domain
that defines the serializer to convert the logical tree structure into a bit stream.

Procedure

Complete the following steps to configure the general properties of the input and
output message assembly to a message map:
v Configure the source message assembly components:

1. Select the input message assembly in the map, and then select the Properties
tab.
You can see the Source - Message Assembly properties:

2. Add or remove message assembly components to the message map source
message assembly.
For more information, see “Customizing a message map to include a
message assembly component” on page 105.

v Configure the target message assembly components:
1. Select an output message assembly in the map, and then select the Properties

tab.
You can see the Target - Message Assembly properties:

108 Designing a message map

2. Specify the Output domain. This property defined the parser used to create
the output message.

3. Add or remove message assembly components to the message map target
message assembly.
For more information, see “Customizing a message map to include a
message assembly component” on page 105.

What to do next

Define the map transformations, For more information, see “Specifying a transform
(mapping operation)” on page 82.

Mapping transport headers
Use the Graphical Data Mapping editor to transform transport headers.

About this task

When you create a top level message map, only the Properties folder is initially
included in the map, and a default transformation from input to output properties
is created in a local map. You can then use the Message Assembly properties page
in the Graphical Data Mapping editor to modify the transport headers that you
might include in the map.

Depending on how you add a transport header to a message map, the component
can be deleted, initialized, or transformed:
v To pass unchanged a transport header, do not add it to the message map.
v To read elements from a transport header, add it only to the input message

assembly of the message map. The Mapping node passes it through unchanged.
v To modify elements in a transport header, add it to input message assembly and

to the output message assembly, and provide transforms to copy and modify the
header. The Mapping node deletes the input transport header, and creates a new
output transport header containing the result of your transformations.

v To add a transport header to your message, add the header to the output
message assembly and populate at least one field. The Mapping node creates a
new output transport header containing the results of your transformations.

v To delete a transport header, add it to the output message assembly and do not
set any field at all. The Mapping node deletes the transport header from the
output message.

v MQ Headers
MQMD
MQCFH header with root element MQPCF
MQCIH

Chapter 10. Advanced editing in a message map 109

MQDLH
MQIIH
MQMDE
MQRFH
MQRFH header with MQRFH2 or MQRFH2C parser
MQRMH
MQSAPH
MQWIH
SMQ_BMH

v Email Headers
EmailOutputHeader

v HTTP Headers
HTTPInputHeader
HTTPReplyHeader
HTTPRequestHeader
HTTPResponseHeader

v JMSTransport

Procedure

Complete the following steps to transform data in a transport header by using a
message map:
1. Decide whether you need a transport header in the input message assembly,

the output message assembly, or both. You may want to copy, initialize, or
modify elements of a transport header. For more information, see “Choosing a
mapping action” on page 98.

Note: The Mapping node copies the transport headers from input to output,
unchanged, when they are not included in the message map.

2. Add a transport header to the input message assembly, the output message
assembly, or both. For more information, see “Customizing a message map to
include a message assembly component” on page 105.
For example, select MQMD to include MQMD headers in the input message
assembly of the message map:

110 Designing a message map

3. Optional: Define a Move transform between the input transport header and the
output transport header to copy all the input values onto the output values.

Note: If you need to modify only some fields in a transport header, you can
use a Move transform to copy the transport header unchanged, and then use
the Override function to modify the elements you must update. For more
information, see Chapter 18, “Applying mapping overrides,” on page 157.
You can do this in any of the following ways:
v In the message map, right-click a transport header on the input message

assembly, and select Create Connection. Move the mouse to the output local
transport header, and click the transport header to define the Move
transform.

v In the message map, right-click a transport header on the input message
assembly, and select Quick Link. A new window appears where you can
select a transport header as the output element. Use this option when you
have a long list of output elements. You can filter the list in Quick link too.

4. Define transforms between the input transport header and the output transport
header. For more information, see “Specifying a transform (mapping
operation)” on page 82 and Chapter 26, “Transform types in the Graphical Data
Mapping editor,” on page 193.

What to do next

Define additional transformations between other elements in the message map. For
more information about the available transforms, see Chapter 26, “Transform types
in the Graphical Data Mapping editor,” on page 193.

Mapping data in the local environment tree
Use the Graphical Data Mapping editor to transform data graphically in the local
environment tree.

Before you begin

Create a message map. For more information, see “Creating a message map” on
page 47.

About this task

The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message. You use the local
environment tree to store variables that can be referred to and updated by message
processing nodes that occur later in the message flow. You can also use the local
environment tree to define destinations (that are internal or external to the message
flow) to which a message is sent.

When you add the local environment tree to a message map, you must provide
transforms for all of its elements so that the input values of each element are not
lost. You can copy the input field unchanged or modified by a transform. Many
IBM Integration Bus nodes depend on information in the local environment tree
being copied along the message flow.

Chapter 10. Advanced editing in a message map 111

The variables folder in the local environment tree is defined as xsd:any. When you
add the local environment tree, you can see the structure of the destination folders
with all its elements, and a Variables folder with a single element defined with a
generic type.

You manually define the elements that are included in the Variables folder. There
is no predefined structure for the Variables folder. Each message flow node has an
input and an output local environment tree. There is a Variables folder in the
input local environment tree and a Variables folder in the output local
environment tree.

When you create a top level message map, only the Properties folder is initially
included in the map, and a default transformation from input to output properties
is created in a local map.

You can then use the Message Assembly properties page in the Graphical Data
Mapping editor to modify the message assembly components transformed in the
map and include the local environment folders in the mapping. For more
information, see “Customizing a message map to include a message assembly
component” on page 105.

Procedure

Complete the following steps to transform data in the local environment tree by
using a message map:
1. Decide whether you need the local environment tree in the input message

assembly, the output message assembly, or both. You may want to copy,
initialize, or modify LocalEnvironment elements. For more information, see
“Choosing a mapping action” on page 98.

Note: The Mapping node copies the LocalEnvironment tree from input to
output, unchanged, when they are not included in the message map.

2. Add the local environment to the input message assembly, the output message
assembly, or both. For more information, see “Customizing a message map to
include a message assembly component” on page 105.

3. Optional: Define a Move transform between the input local environment tree
and the output local environment tree to copy all the input values onto the
output values. Create a connection between the input local environment tree
and the output local environment tree.

Note: If you need to modify only some fields in the local environment tree,
you can use a Move transform to copy the local environment tree unchanged,
and then use the Override function to modify the elements you must update.
For more information, see Chapter 18, “Applying mapping overrides,” on page
157.
You can do this in any of the following ways:
v In the message map, right-click LocalEnvironment on the input message

assembly, and select Create Connection. Move the mouse to the output local
environment tree, and click LocalEnvironment to define the Move transform.

112 Designing a message map

v In the message map, right-click LocalEnvironment on the input message
assembly, and select Quick Link. A new window appears where you can
select the output element LocalEnvironment. Use this option when you have
a long list of output elements. You can filter the list in Quick link too.

The following figure shows graphically how the Move transform is defined
between the input local environment tree and the output local environment
tree.

4. Optional: Define the Variables folder in the local environment tree. The
Variables folder contains an xsd:any element, that you can redefine by using a
Cast function and a schema file describing the variables.
v Define the Variables folder in the local environment tree by using the Cast

function. For more information, see “Configuring the local environment tree
Variables folder by using the Cast function.”

5. Define transforms between the input local environment tree and the output
local environment tree. For more information, see “Specifying a transform
(mapping operation)” on page 82 and Chapter 26, “Transform types in the
Graphical Data Mapping editor,” on page 193.
You must provide transforms to copy or modify all fields that are required on
the output. Many message flow nodes depend on information in
LocalEnvironment being copied along the message flow. If you need to modify
only some fields, use a Move transform to copy LocalEnvironment and then use
the Override function to modify the elements you must update. For more
information, see Chapter 18, “Applying mapping overrides,” on page 157.

Configuring the local environment tree Variables folder by
using the Cast function

You can use the Cast function to define variables in a message map that are
defined in the local environment tree Variables folder.

Procedure

Sometimes you need to use information passed in a variable in the local
environment tree. In other instances, you might need to calculate the output value
of a different element in the message body based on one of the local environment
variables. You can also set variables in the output local environment, and use them
for routing later in the message flow. To configure the local environment tree
Variables folder so you can use its elements as part of your transformations,
complete the following steps:
1. Create a schema file in your application, integration service, or library to define

the elements of the local environment tree Variables folder and their type:
v In the Application Development view, select New > Message Model > Other

XML. Click Next.
v Select Create an empty XML schema file, I will model my data using the

XML schema editor, and then click Next.

Chapter 10. Advanced editing in a message map 113

v Create an XSD file YourLExsdFileName.xsd, where YourLExsdFileName is the
name of the file that contains the local environment variables folder message
model. Then, click Finish.

v The XSD file opens in a new tab where you use the XML Schema editor to
define your variables and their types.
For example, you can define the following schema:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Country" type="xsd:string"/>
<xsd:element name="CountryCode" type="xsd:integer"/>

</xsd:schema>

Note: You can define the local environment variables in a message flow
node by using ESQL or Java. Namespaces is not defined. For this reason, the
schema is also defined without a namespace declaration.

2. Use the Cast function to define the local environment variables in the message
map so they are visible under the Variables folder in the map. Complete the
following steps to cast the any element to a variable and its type in the output
local environment tree:
v Right-click the any element, and then select Cast.

114 Designing a message map

v In the Type Selection window, select a type, for example Country, and then
click OK.

Results

You have defined one local environment variable that can be used by other
message flow nodes in your message flow for routing or filtering.

You can see the element Country under the local environment Variables folder in
the message map.

Chapter 10. Advanced editing in a message map 115

Example

Another example:

If you set in an ESQL compute node two simple fields within the Variables folder
of the Local Environment tree by using the following code:
SET Outputlocal environment.Variables.dec = 10.1;
SET Outputlocal environment.Variables.str = ’Some text’;

To access these fields in a Mapping node by using the Cast function, you must
create a schema file in your integration solution to define the elements and their
type. Note that since the ESQL is not using any namespace to qualify these
elements, the schema is also defined without a namespace declaration:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="dec" type="xsd:decimal"/>
<xsd:element name="str" type="xsd:string"/>

</xsd:schema>

Once the schema file is saved, you can then select the any element under the
Variables section in the Local Environment tree, and use the context menu action
Cast to add a Mapping cast for each of the elements "dec" and "str" that are
required in the message map. For more information, see “Mapping xsd:any on an
input or output message” on page 64.

What to do next

Define transforms between the input local environment tree and the output local
environment tree. For more information, see “Specifying a transform (mapping
operation)” on page 82 and Chapter 26, “Transform types in the Graphical Data
Mapping editor,” on page 193.

Adding database definitions to the IBM Integration Studio
You must have a database definition (.dbm file), contained in a data design project,
to create database mappings by using the Mapping node.

About this task

A database definition file holds the physical data model that details all the
database resources, such as the schema, the tables, and other resources, that you
need access to.

If you can connect to your database server by using the IBM Integration Studio,
you can create a database definition when you create your database mapping. For
more information, see Chapter 19, “Mapping database content,” on page 159.

If you cannot connect to your database server by using the IBM Integration Studio,
you must create a database definition file from scratch before you can create your
database mapping. For more information, see “Creating a database definition from
scratch” on page 120.

116 Designing a message map

You can also use database definitions in other nodes, such as the Compute node, to
validate references to database sources and tables. You must include a data design
project in an application, or reference it from an Integration project, before you can
use the database definitions that the data design project contains.

Database definition files in the IBM Integration Studio are not automatically
updated. If you modify your database, you must re-create the database definition
files.

The following topics describe how to add a database definition to the IBM
Integration Studio:
v “Creating a data design project”
v Creating a database definition by using the New Database Definition File wizard

to connect to a database server.
v Create a database definition from scratch when it is not possible to connect to

the database server by using the IBM Integration Studio.
v “Creating a database definition (.dbm file) by using the New Database Definition

File wizard” on page 118
v “Creating a database definition from scratch” on page 120

Creating a data design project
Create a data design project to contain your database definition files.

About this task

A data design project is a specialized type of project where you store database
definition files that hold information about database resources.

To create a data design project in the Integration Development perspective,
complete the following steps:

Procedure
1. Click File > New > Other. A window opens in which you can select a wizard.
2. Expand Data, select Data Design Project, and click Next. The New Data

Design Project wizard opens.
3. Enter a name for your data design project, and then click Finish. The Open

associated perspective dialog is displayed.
4. Click No. Your data design project is created, and is displayed in the

Application Development view, under Independent resources.

What to do next

After you create a data design project, you can complete the following tasks:
v Create a database definition by using the New Database Definition File wizard

to connect to a database server; see “Creating a database definition (.dbm file) by
using the New Database Definition File wizard” on page 118.

v Create a database definition from scratch when it is not possible to connect to
the database server by using the IBM Integration Studio; see “Creating a
database definition from scratch” on page 120.

v Include your data design project in an application; see Adding a project to an
application, integration service, or library.

Chapter 10. Advanced editing in a message map 117

v Reference your data design project from an Integration project; see Referencing
resources in other libraries.

Creating a database definition (.dbm file) by using the New
Database Definition File wizard

Use the New Database Definition File wizard to add database definitions to the
IBM Integration Studio.

Before you begin

Note: Your database server must be configured to listen on a static port; dynamic
ports are not supported with the New Database Definition File wizard. Contact
your database administrator for information on how to verify port configuration.

About this task

A database definition file holds the physical data model that details all the
database resources, such as the schema, the tables, and other resources, that you
need access to.

If you can connect to your database server by using the IBM Integration Studio,
you can create a database definition (.dbm file) when you create your database
mapping. For more information, see Chapter 19, “Mapping database content,” on
page 159.

If you cannot connect to your database server by using the IBM Integration Studio,
you must create a database definition file from scratch before you can create your
database mapping. For more information, see “Creating a database definition from
scratch” on page 120.

You can also use database definitions in other nodes, such as the Compute node, to
validate references to database sources and tables. You must include a data design
project in an application, or reference it from an Integration project, before you can
use the database definitions that your data design project contains.

Database definition files in the IBM Integration Studio are not automatically
updated. If you modify your database, you must re-create the database definition
files.

Complete the following steps to create a database definition (.dbm file) by using the
New Database Definition File wizard:

Procedure
1. Click File > New > Database Definition. The New Database Definition File

wizard is displayed.
2. Select an existing data design project, or click New to create a data design

project.
3. From the Database drop-down list, select the type of database that you want

to model and, if applicable, select the Version. Click Next.

Important: Ensure that you select a database from the list that is supported by
IBM Integration Bus; you can use this wizard in a shell-share environment with

118 Designing a message map

other Rational® products that support other databases or versions. For a list of
databases supported by IBM Integration Bus, see IBM Integration Bus
requirements.

If your database is supported by IBM Integration Bus, but is not included in
the list of selectable databases, you might need to create a database definition
from scratch; see “Creating a database definition from scratch” on page 120.
When using specific database servers, you might need to set the paths of your
JDBC JAR files before you can use them with the New Database Definition File
wizard. To set the paths of your JDBC JAR files:
a. Click Window > Preferences. The Preferences window opens.
b. Expand Data ManagementConnectivityDriver Definitions.
c. In the Driver Definitions pane, select the database server that you want to

connect to, and click Edit.... The Edit Driver Definition window opens.
d. Select the JAR List tab, and click Add JAR/Zip....
e. Browse to the JDBC JAR file that was supplied with your database product,

select the JAR file, and then click Open. The Edit Driver Definition window
closes.

f. In the Preferences window, click OK to close the window, and return to the
New Database Definition File wizard.

4. Select a connection to use from the list of existing connections, or click New to
create a database connection. If you select to use an existing connection, the
existing database definition is overwritten.

5. If you selected to create a connection:
a. Optional: If you want to enter a custom value for the Connection Name, clear

Use default naming convention.
b. Enter values for the Connection to the database, for example, Database name,

Host name and Port number.
c. Enter values for the User ID and Password to connect to the database. Click

Test Connection to verify the settings that you selected for your database.
The default Port number for a DB2 database is 50000.

d. Click Next. If your data design project already contains a database
definition for the database that you selected, and you want to overwrite this
database definition, click Yes in the Confirm file overwrite window.

Tip: If you cannot connect to your database by using the New Database
Definition File, you might need to create you database definition from
scratch; see “Creating a database definition from scratch” on page 120.

6. Alternatively, if you selected to use an existing connection:
a. To overwrite the existing database definition, click Yes in the Confirm file

overwrite dialog.
b. Enter values for the User ID and Password to connect to the database, and

then click Next.
7. Select one or more database schemas from the list and click Next. When you

create a database definition for use in a graphical data map called from a
Mapping node, the database schema name that is displayed in the map is the
one that you select here, but might be overridden by the corresponding
JDBCProvider configurable service.

8. Select the elements that you require on the Database Elements page. You can
select any option, in addition to Tables, on the Database Elements page.
a. Select Views to see all the database views in the Data Project Explorer

Chapter 10. Advanced editing in a message map 119

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

b. Select Routines to add stored procedures and user-defined functions to the
database definition file.

If you select additional options, the database definition files that you create
contain more information than the Compute, Database, or Mapping nodes
require.

9. Click Finish.

Results

A new database definition (.dbm file) is added to your data design project. If you
opened the New Database Definition File wizard while creating a database
transform in the graphical data mapping editor, you are returned to the database
transform wizard.

What to do next

Before you can use your database definition in a messaging solution, you must
complete one of the following tasks:
v Include your data design project in an application; see Adding a project to an

application, integration service, or library.
v Reference your data design project from an Integration project; see Referencing

resources in other libraries.
v Create a corresponding JDBCProvider configurable service; see Configurable

services properties.

Creating a database definition from scratch
You can create a database definition (.dbm file) from scratch. A database definition
is required to create database mappings.

Before you begin
v You must have created a data design project; see “Creating a data design

project” on page 117

About this task

A database definition file holds the physical data model that details all the
database resources, such as the schema, the tables, and other resources, that you
need access to.

You must have a database definition (.dbm file) contained in a data design project
before you can create database mappings. You can also use database definitions in
other nodes, such as the Compute node, to validate references to database sources
and tables. You must include a data design project in an application, or reference it
from an Integration project, before you can use the database definitions that your
data design project contains.

Database definition files in the IBM Integration Studio are not automatically
updated. If you modify your database, you must re-create the database definition
files.

Complete the following steps to create a database definition (.dbm file) from
scratch:

120 Designing a message map

Procedure
1. Click File > New > Other. A window opens in which you can select a wizard.
2. Expand Data, select Physical Data Model, and click Next. The New Physical

Data Model wizard opens.
3. Next to the Destination folder field, click Browse.... A window opens in which

you can select a parent folder for your database definition.
4. Select a data design project from the list, and then click OK.

Important: Ensure that you select a data design project as the parent folder
for your database definition. Database definitions must be contained in a data
design project before you can use them in your IBM Integration Bus
messaging solutions.

5. In the File name field, enter a name to represent the database that you want to
model. You do not need to select the Database or Version.

Important: Create a database definition only if your database is supported by
IBM Integration Bus.

For a list of databases supported by IBM Integration Bus, see IBM Integration
Bus requirements.

6. Select Create from template, then click Next.
7. In the Templates pane, select Empty Physical Data Model, then click Finish.

Your empty database definition is created, is displayed in the Data Project
Explorer view, and is opened in the Physical Data Model editor.

8. If the Data Project Explorer view is not open in your IBM Integration Studio,
open it:
a. Click Window > Show View > Other. A window opens in which you can

select a view.
b. Expand Data Management, select Data Project Explorer, and click OK.

The Data Project Explorer view opens.
9. In the Data Project Explorer view, expand your database definition and select

Database. The database properties are displayed in the Properties view.
10. In the Properties view, select the General tab. In the Name field, enter the

name of your database. If you use this database definition with the Graphical
Data Mapping editor, the Name is displayed as the name of the data source,
and is used when creating the JDBC configurable service for the IBM
Integration Bus runtime connection.

11. In the Data Project Explorer view, select Schema. The database schema
properties are displayed in the Properties view.

12. In the Properties view, select the General tab. In the Name field, enter the
name of your database schema. Database schemas are used only by the
Mapping node, and only when calling a graphical data map that contains a
database transform. For more information about mapping database content,
see Chapter 19, “Mapping database content,” on page 159.

13. In the Data Project Explorer view, right-click Schema and select Add Data
Object > Table. A Table is created, and is displayed under your Schema in
the Data Project Explorer view.

14. Define the columns in your Table:
a. In the Data Project Explorer view, right-click your Table, and select Add

Data Object > Column. A Column is created, and is displayed under your
Table in the Data Project Explorer view.

Chapter 10. Advanced editing in a message map 121

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

b. Enter a name for your Column.
c. In the Properties view, select the Type tab to define the attributes of your

column.
15. Repeat steps 13 on page 121 through 14 on page 121 for each table in your

database, and then save your database definition.
16. Save your database definition, and close the Physical Data Model editor.

What to do next

Before you can use your database definition in a messaging solution, you must
complete one of the following tasks:
v Include your data design project in an application; see Adding a project to an

application, integration service, or library.
v Reference your data design project from an Integration project; see Referencing

resources in other libraries.

Accessing integration node properties from a Mapping node
To obtain the value of an integration node property, call the appropriate function
from a Custom XPath transform. These functions return a string with the value of
the integration node property.

About this task

Procedure

To access integration node properties from a Mapping node, choose one of the
following functions:
v Call mb:getBrokerName() to get the name of the integration node where the

Mapping node that is executing the message map is running.
v Call mb:getQueueManagerName() to get the name of the default queue

manager of the integration node where the Mapping node that is executing the
message map is running.

v Call mb:getNodeName() to get the name of the Mapping node from the Node
name property of the node in the message flow.

v Call mb:getMessageFlowName() to get the name of the message flow where the
Mapping node that is executing the message map is running.

v Call mb:getApplicationName() to get the name of the application where the
message flow that contains the Mapping node that is executing the message map
is running.

v Call mb:getLibraryName() to get the name of the library where the message
flow that contains the Mapping node that is executing the message map is
running.

Accessing user-defined properties from a Mapping node
A Mapping node can access properties that you have associated with the message
flow that contains the node.

About this task

To access these properties from a Mapping node, call the function
mb:getUserDefinedProperty("propertyname") from a custom XPath mapping. The

122 Designing a message map

function returns a string that contains the property value, regardless of the original
type of the property.

Chapter 10. Advanced editing in a message map 123

124 Designing a message map

Chapter 11. Setting the value of an output element by using a
transform or a function

Use the Graphical Data Mapping editor to set the value of an output element by
using an expression, a transform, or a function.

About this task

You can use a function or a transform to set the value of an output element, either
by connecting the output element with an input element and then specifying a
transform on the connection between them, or by specifying a transform directly
on the output element. For information about creating connections and specifying
transforms, see Chapter 9, “Editing message maps,” on page 61.

For information about all the functions and transforms that are available, see
Chapter 26, “Transform types in the Graphical Data Mapping editor,” on page 193.

Transforms that support conditional control such as the If transform can use XPath
2.0 expressions, or invoke Java or ESQL functions.

Procedure

You can use any of the following mapping operations to map graphically your
data in the Graphical Data Mapping editor
v Core mapping transforms: You can use built-in structural and functional

mapping operations, which enable you to graphically construct the required
message transformations to build the output message. For more information, see
Chapter 26, “Transform types in the Graphical Data Mapping editor,” on page
193.

v Custom transforms: You can use custom transformations to build your own
XPath 2.0, Java, or ESQL functions, which can be invoked to perform specialized
transformations within the message map. For more information, see Chapter 26,
“Transform types in the Graphical Data Mapping editor,” on page 193.
– Custom Java transform. For more information, see “Custom Java” on page

212.
– Custom XPath transform. For more information, see “Custom XPath” on page

214.
– Custom ESQL transform. For more information, see “Custom ESQL” on page

208.
v XPath functions (fn:functionName): You can use XPath 1.0 and XPath 2.0

functions to transform data in a message map. For more information about
XPath, see the online document W3C XML Path Language (XPath) 2.0.

Note: XPath 1.0 functions are valid XPath 2.0 expressions. You can use the
XPath Expression Builder to generate simple XPath 1.0 expressions.

v Database transforms:
– You can use the Select transform to query one or more database tables, and

retrieve data that you can use in the message map to set output element
values, define conditions, or use as input to build other transforms conditions.

© Copyright IBM Corp. 2014 125

http://www.w3.org/TR/xpath20

Database tables can be set as additional outputs of a message map. For more
information, see “Selecting data from a table” on page 159.

– You can use a database routine transform to call a stored procedure or
user-defined function from a database, and retrieve data that you can use in
the message map to set output element values, define conditions, or use as
input to build other transforms conditions.

Note: Only IBM DB2 stored procedures are supported in IBM Integration
Bus. For more information, see “Calling a stored procedure from a map” on
page 168.

What to do next

Define transformations to set the value of output elements in your output message:
v Use the Assign transform to set the value of an output element to a constant.

For more information, see “Setting the value of an output element to a simple
data type.”

v Use any of the xs:type transforms to cast the value of a simple type input
element and set the value of a simple type output element. For more
information, see “Setting the value of an output element with a explicit data
type” on page 128.

v Use the Create transform to set the value of an output element that is defined as
a simple type or as part of a complex data type. You use the default or the fixed
value defined in the schema for that element. For more information, see “Setting
the value of a simple output element to a default or fixed value” on page 130.

v Use the Assign transform or the Create transform to create an empty output
element defined as a string or as a hexBinary element. For more information, see
“Creating an empty output element” on page 134.

v Use the Create transform, the Move transform, the Custom Java transform, the
Custom ESQL transform, or the return value of a database to create a null
output element. For more information, see “Creating a nil output element” on
page 132.

v Use the fn:nilled XPath function, and the fn:exists XPath function to define
conditional expressions that determine whether an input element is nilled, or is
present. For more information, see “Choosing an XPath conditional expression
that tests for a nil value in a transform” on page 91.

v Use the fn:empty XPath function to define conditional expressions that
determine whether an input element is empty. For more information, see
“Creating an empty output element” on page 134.

Setting the value of an output element to a simple data type
In the Graphical Data Mapping editor, use the Assign transform to set the value of
an output element to a constant.

About this task

You cannot use the value of an input element to set the value of an output element
in an Assign transform.

However, you can define supplement connections between input elements and the
Assign transform. You can then use these input elements in a conditional
expression that defines the condition under which the transform should be
applied.

126 Designing a message map

The output element is set to a constant value.

Procedure

Complete the following steps to set the value of an output element to a constant:
1. Create an Assign transform for the output element, by using either of the

following methods:
v Click the output element and drag the connector towards the input elements,

releasing the connector onto a blank part of the canvas. When you release the
connector, an Assign transform is created.

v Right-click the output element and then select Create Assign.

2. Enter the required constant into the Value field in the Properties panel for the
Assign.
The constant value can be any simple data type value.

Note: Do not enclose string literals in single or double quotes; enter the
required text in the entry field without quotes.
The following figure shows the Properties view of the Assign transform:

Results

If you do not specify a value, an empty element is created.

By default, the following values are set for an output element when you use the
Assign transform:

Table 9. Default values set by using the Assign transform

Type Default value

string Empty string

dateTime 2002-01-01T11:00:00

Chapter 11. Setting the value of an output element by using a transform or a function 127

Table 9. Default values set by using the Assign transform (continued)

Type Default value

boolean false

decimal 0.0

double 0.0

hexBinary 00

long 0

duration P1Y

time 00:00:00

date 2002-01-01

Setting the value of an output element with a explicit data type
In the Graphical Data Mapping editor, you can use any of the xs:type transforms
to cast the value of a simple type input element and set the value of a simple type
output element.

About this task

For example, you want to assign a value with a specific data type to a target
element that is defined as xs:anySimpleType. You can use the xs:type transform.

You can have zero or more input elements to an xs:type transform. However, you
can only cast one of the input elements to set the value of an output element by
using an xs:type transform.

You can use the input elements to build a conditional expression that determines if
the xs:type transform is applied or not.

You must choose the xs:type transform according to the output element data type.
For example, if you have an output element with a boolean data type, you must
choose xs:boolean transform.

You can use any of the following xs:any transforms:
v xs:NOTATION: This function takes a primitive and casts it as notation.
v xs:Qname: This function takes a primitive and casts it as Qname.
v xs:anyURI: This function takes a primitive and casts it as anyURI.
v xs:base64Binary: This function takes a primitive and casts it as base64Binary.
v xs:boolean: This function takes a primitive and casts it as boolean.

You can use any of the following values: true or false.
v xs:dateTime: This function takes a primitive and casts it as dateTime.
v xs:date: This function takes a primitive and casts it as date.
v xs:dayTimeDuration: This function takes a primitive and casts it as

dayTimeduration.
v xs:decimal: This function takes a primitive and casts it as decimal.
v xs:double: This function takes a primitive and casts it as double.
v xs:float: This function takes a primitive and casts it as float.
v xs:gDay: This function takes a primitive and casts it as gDay.

128 Designing a message map

v xs:gMonthDay: This function takes a primitive and casts it as gMonthDay.
v xs:gMonth: This function takes a primitive and casts it as gMonth.
v xs:gYearMonth: This function takes a primitive and casts it as gYearMonth.
v xs:gYear: This function takes a primitive and casts it as gYear.
v xs:hexBinary: This function takes a primitive and casts it as hexBinary.
v xs:integer: This function takes a primitive and casts it as integer.
v xs:int: This function takes a primitive and casts it as signed 32-bit integer.
v xs:string: This function takes a primitive and casts it as string.
v xs:time: This function takes a primitive and casts it as time.
v xs:yearMonthDuration: This function takes a primitive and casts it as

yearMonthDuration.

Procedure

Complete the following steps to set the value of a output element by using an
xs:type transform:
1. Add an xs:type transform, for example, an xs:boolean transform, to set the

value of the output element, by using either of the following methods:
a. Create an Assign transform by using either of the following methods:

v Click the output element and drag the connector towards the input
elements, releasing the connector onto a blank part of the canvas. When
you release the connector, an Assign transform is created.

v Right-click the output element and then select Create Assign.
b. Use the drop-down, and select Cast Function > xs:boolean.

2. Enter true into the Value field in the Properties panel for the xs:boolean
transform.
You can set the value to true or false.

3. Optional: Define a conditional expression to control when the transform should
be applied .
You define a conditional expression by using an XPath expression.
For example, to evaluate the transform, the current date has to be a date after
the date specified in the element CurrentDate.

Chapter 11. Setting the value of an output element by using a transform or a function 129

Setting the value of a simple output element to a default or fixed value
In the Graphical Data Mapping editor, use the Create transform to set the value of
a simple output element. You use the default or the fixed value defined in the
schema for that element.

About this task

The Create transform creates an output element without the use of input data.

Note: You can only set the value of a simple output element to its default or fixed
value when the schema includes a default value or a fixed value for the element.

Procedure

Complete the following steps to create a simple output element with its default or
fixed value:
v Create an Assign transform by using either of the following methods:

1. Click the output element and drag the connector towards the input elements,
releasing the connector onto a blank part of the canvas. When you release the
connector, an Assign transform is created.

2. Right-click the output element and then select Create Assign.
v Use the drop-down, and select Core transforms > Create.
v In the Properties panel, select the General tab. Then, select Create using default

or fixed value defined by schema for target type.

Setting the value of a simple type element included in a complex type
output structure to a default or fixed value

In the Graphical Data Mapping editor, use the Create transform to set the value of
an output element that is defined as part of a complex data type. You use the
default or the fixed value defined in the schema for that element.

About this task

The Create transform creates an output element without the use of input data.

Note: You can only set the value of a simple output element to its default or fixed
value when the schema includes a default value or a fixed value for the element.

Procedure

Complete the following steps to create a simple type element included in a
complex type output structure with its default or fixed value:

130 Designing a message map

v Click the output element and drag the connector towards the input elements,
releasing the connector onto a blank part of the canvas. When you release the
connector, a Create transform is created.

v Open the nested map associated to the Create transform. You can define how
each target element or attribute will be created within the complex element. For
more information, see “Setting the value of a simple output element to a default
or fixed value” on page 130.
You can use in the Create transform nested map more Create transforms, Assign
transforms, or any other mapping transforms that do not require an input. You
can use this method to populate as many fields as required in the complex
output structure.

Chapter 11. Setting the value of an output element by using a transform or a function 131

Creating a nil output element
In the Graphical Data Mapping editor, you can use the Create transform, the Move
transform, the Custom Java transform, the Custom ESQL transform, or the return
value of a database to create a nil output element.

Before you begin

When you map null values, consider the Graphical Data Mapping editor behavior.
For more information, see Chapter 5, “Handling nulls in message maps,” on page
35.

Procedure

Choose any of the following methods to create a nil output element:
v Use the Create transform. Create a nil element without the use of input data.
v Use the Move transform. Copy an input element that is nil to an output nil

element.
v Use the Custom Java transform. The Java method that you implement must

return an MbElement that is nil.
v Use the Custom ESQL transform. Your ESQL code must return a NULL value.
v Use the database transform, and Move a nullable column to an output nillable

element.
v Use the XPath function iib:nullValue() to set an XMLNSC element to nil, a

JSON object to NULL and a JSON array to NULL.

Example

Example: Use the Create transform to create a simple type output element as nil

This example shows how to use the Create transform to create a simple type
output element as nil in the Graphical Data Mapping editor.

You can use the Create transform to create an output element with
xsi:nil="true", also called a nil element, without the use of input data.

Note: The option to create a nil element is available only when the output element
is nillable.

Complete the following steps to create a simple nil output element:
1. Add a Create transform to set the value of the output element.

a. Click the output element and drag the connector towards the input
elements, releasing the connector onto a blank part of the canvas. When you
release the connector, an Assign transform is created.

b. Select the drop-down, and select Core transforms > Create.
2. In the Properties panel, select the General tab. Then, select Create nil.

132 Designing a message map

Example: Use the Create transform to create a complex type output element as
nil

This example shows how to use the Create transform to create a complex type
output element as nil in the Graphical Data Mapping editor.

Note: The option to create a nil element is available only when the output element
is nillable.

Note: The Create transform has a nested map, however, you cannot create or
assign fields within a complex nil output element. You will get the following error:
Cannot create or assign fields within nil target. To allow mapping, change
parent Create transform to create empty instead of nil.

1. Click the output element and drag the connector towards the input elements,
releasing the connector onto a blank part of the canvas. When you release the
connector, a Create transform is created.

2. In the Properties panel, select the General tab. Then, select Create nil.

Chapter 11. Setting the value of an output element by using a transform or a function 133

Creating an empty output element
In the Graphical Data Mapping editor, you can use the Assign transform or the
Create transform to create an empty output element defined as a string or as a
hexBinary element when you have no source to copy from.

About this task

You can define an empty output element when the following conditions are met:
v The data type of the element is string or hexBinary.
v The element is not nillable.

Procedure

Choose any of the following methods to create an empty output element:
1. Use the Assign transform to create an empty output element. For more

information, see “Initializing an output element by using the Assign
transform.”

2. Use the Create transform to create a simple or complex empty output element.
For more information, see “Initializing a simple or complex output element by
using the Create transform” on page 135.

Results

The following table lists the data types and the transforms that you can use to
create an output element:

Table 10. List of transform types that you can use to create an empty element

Data type Valid transforms

Simple data types: string, hexBinary Assign, Create

Complex data types Create

Initializing an output element by using the Assign transform
In the Graphical Data Mapping editor, use the Assign transform to create an
empty output element.

About this task

There is no input element to an Assign transform.

You can only create an empty output element for the following output element
data types:
v string
v hexBinary

Procedure

Complete the following steps create an empty output element:
1. Create an Assign transform for the output element, by using either of the

following methods:

134 Designing a message map

v Click the output element and drag the connector towards the input elements,
releasing the connector onto a blank part of the canvas. When you release the
connector, an Assign transform is created.

v Right-click the output element and then select Create Assign.

2. Do not specify a value in the Value field in the Properties panel for the Assign
transform.

Initializing a simple or complex output element by using the
Create transform

In the Graphical Data Mapping editor, use the Create transform to create a simple
or complex empty output element.

About this task

The Create transform creates an output element without the use of input data. You
can create either simple or complex type output elements.

You can create a simple empty output element for elements defined as string or
hexBinary.

Procedure

Complete the following steps to create a simple or complex empty output element:
v For simple type output elements, complete the following steps:

1. Add a Create transform to set the value of the output element, by using
either of the following methods:
– Create an Assign transform by using either of the following methods:

- Click the output element and drag the connector towards the input
elements, releasing the connector onto a blank part of the canvas. When
you release the connector, an Assign transform is created.

- Right-click the output element and then select Create Assign.
– Use the drop-down, and select Core transforms > Create.

2. In the Properties panel, select the General tab. Then, select Create empty.

Chapter 11. Setting the value of an output element by using a transform or a function 135

v For complex type output elements, complete the following steps:
1. Click the output element and drag the connector towards the input elements,

releasing the connector onto a blank part of the canvas. When you release the
connector, a Create transform is created.

2. In the Properties panel, select the General tab. Then, select Create empty.

3. Optional: Open the nested map associated to the Create transform. You can
define how each target element or attribute will be created in a complex
element.
You can use the Create transform to create an empty complex output
element. then, you can enter the Create transform nested map and use more
Create transforms, Assign transforms, or any other mapping transforms that
do not require an input. You can use this method to populate as many fields
as required in the complex output structure.

136 Designing a message map

Chapter 11. Setting the value of an output element by using a transform or a function 137

138 Designing a message map

Chapter 12. Copying a selected element of a repeating
structure to a single output

In the Graphical Data Mapping editor, to copy one element from the input
repeating element (array) to an output simple element, use the Move transform.

Procedure
1. Define a Move transform between the input and the output elements.

The following figure shows the input and output elements connected by a
Move transform:

2. Specify the index of the repeating structure that you must copy to the output.
a. Click the Move transform
b. Switch to the Properties view.
c. In the Cardinality properties page, enter a value in the Input array indices

field.
You can configure the Input array indexes section to select specific instances
of the input array. For more information, see “Selecting the indexes of input
array elements” on page 28.
For example, enter 3 to copy the third element in the repeating structure
(array).

There is no option to set the cardinality of the output element, because it is
a single element.

© Copyright IBM Corp. 2014 139

140 Designing a message map

Chapter 13. Copying some values of a repeating element
when the input and output structures are the same

In the Graphical Data Mapping editor, to move selected elements of the input
repeating element (array) to an output repeating element of the same type, select a
Move transform between the elements, and then select the required elements in the
Cardinality properties page.

Procedure

Complete the following steps to copy some elements of an input array to an
output array when both repeating structures are identical:
1. Define a Move transform between the input and the output repeating

structures.
The following figure shows the input and output repeating structures of type
Client connected by a Move transform:

2. Specify the indexes that should be copied to the output repeating structure.
a. Click the Move transform
b. Switch to the Properties view.
c. In the Cardinality properties page, enter a value in the Input array indices

field.
You can configure the Input array indexes section to select specific instances
of the input array. For more information, see “Selecting the indexes of input
array elements” on page 28.
For example, to select elements 2, 3, and 4 of the array, set the cardinality to
2:4.
The first index element has a cardinality of 1.

© Copyright IBM Corp. 2014 141

142 Designing a message map

Chapter 14. Copying some values of a repeating element
when the input and output structures are different

In the Graphical Data Mapping editor, use the For Each transform to iterate over
an input repeating element. Then, to determine the value of the output elements,
define transforms in the nested map associated with a For Each transform.

About this task

Use the For Each transform to move each element of an input array into an output
array. The input and output arrays can be of the same type or of different types.
For more information, see “For Each” on page 218.

Iteration is performed over the input array.

The nested map associated to a For Each transform defines the type of
transformations that will be performed for each iteration.

Procedure

Complete the following steps to copy some elements of an input array to an
output array when the input and the output repeating elements have different
types:
1. Define a For Each transform between the input and the output repeating

structures.

2. Optional: Specify the indexes of the input repeating structure over which to
iterate.
a. Click the For Each transform
b. Switch to the Properties view.
c. In the Cardinality properties page, enter a value in the Input array indices

field.
You can configure the Input array indexes section to select specific instances
of the input array. For more information, see “Selecting the indexes of input
array elements” on page 28.

3. Edit the nested map by clicking the For each transform.
4. Define the transformations required to set the value of the output elements.

For more information, see Chapter 4, “Transforms (Mapping operations),” on
page 21.

© Copyright IBM Corp. 2014 143

144 Designing a message map

Chapter 15. Splitting an input message into multiple identical
output messages

You can use a For Each transform or a Join transform wired to the head of the
output message assembly to create a map that takes a single input message and
produces multiple instances of an output message model. A typical use of this
function is message splitting, in which an input batch message is divided into
individual record messages.

About this task

When the map runs, a new message is propagated for each iteration of the For
Each or Join transform.

Procedure

Complete the following steps to split a message into multiple output messages by
using the For Each transform:
1. Create a map, and add one input element to your input message assembly, and

one output element to your output message assembly.
The input message assembly must contain a repeating element. The values of
the elements for each index are used to populate each output message instance.

2. Define a For Each transform between the input element and the head of the
output message assembly.

The Move transform between the input and the output Properties tree will
display an error. Continue with the steps to remove the error.

3. Delete the Move transform, and then connect with a supplement connection the
input Properties tree to the For Each transform.

© Copyright IBM Corp. 2014 145

4. Select the For Each transform to open the nested map. Then, define a Move
transform between the input and the output Properties tree.

5. Optional: Return to the For Each transform, and configure the indexes of the
For Each transform for which you want to generate an output message.
If you need to create an output message for each index of the repeating
structure, then continue with the next step.
You can configure the Input array indexes section to select specific instances of
the input array. For more information, see “Selecting the indexes of input array
elements” on page 28.

6. Optional: If you need additional information from the input message to
populate output elements, define a supplement connection between each input
element to the For Each transform.

146 Designing a message map

When you connect additional input elements with supplement connections to a
For Each transform, you can use these elements as part of your mapping
operations within the nested map.

7. Select the For Each transform to open the nested map. Then, define the
transformation logic inside the For Each nested map.
For more information, see Chapter 26, “Transform types in the Graphical Data
Mapping editor,” on page 193.

Example

The following example shows how to define the mapping logic in a For Each
transform after you complete steps 1 to 6:
v Each instance of the For Each transform produces an output message.
v The repeating element H has three elements that are used to set the values of

the output message, which only has two elements.
v An additional input element is needed as part of the transformation. This

element is used as part of the conditional expression that determines when a set
of transformations is applied.

v An If transform is used to model the conditional mapping requirements
required to set the value of the output message elements for each index of the
For Each transform.

v When the value of the input element A is equal to the value of the input
element H1, then the If transform is applied. Otherwise, the transformation logic
in an Else transform is applied.

.

Complete the following steps to define the transformation logic:

Open the For Each transform nested map.

Define an If transform between H and a.
v Define a primary connection between H and the If transform.
v Define a supplement connection between A and the If transform.
v Define a connection between the If transform and the output element a.

Chapter 15. Splitting an input message into multiple identical output messages 147

Define a Move transform between H1 and a. This operation defines the
transformation logic that the If transform performs.

Add the Else transform:
v Define a primary connection between H and the Else transform.
v Define a supplement connection between A and the Else transform.
v Define a connection between the Else transform and the output element a.

Define a Move transform between H2 and a. This operation defines the
transformation logic that the Else transform performs.

148 Designing a message map

The following figure shows the For Each transform nested map after all the
transformation logic has been implemented:

Chapter 15. Splitting an input message into multiple identical output messages 149

150 Designing a message map

Chapter 16. Mapping an input message into different output
messages

You can use the If transform to create a map that takes a single input message and
produces a different output message based on the conditional expression that you
define.

About this task

When you configure multiple output message assemblies, each output message
assembly has its own properties.

You can configure each output message assembly independently of the others.

Procedure

Complete the following steps to split a message into different output messages by
using the If transform:
1. Create a map, and add one input element to your input message assembly,

and two or more output message assemblies.

2. Define an If transform between the input element and one of the output
message assemblies.

The Move transform between the input and the output Properties tree of the
first message assembly will display an error. Continue with the steps to
remove the error.

3. Delete the Move transform marked with an error, and then connect the input
Properties tree to the If transform.

© Copyright IBM Corp. 2014 151

4. Optional: Add the ElseIf transform and complete the following steps to
connect it to a different output message assembly:
a. Delete the Move transform that connects the Properties tree and the

second output message assembly.
b. Define a connection between the Properties tree and the ElseIf transform.
c. Define a connection between the input message and the ElseIf transform.
d. Define a connection between the ElseIf transform and the second output

message assembly.

5. Add the Else transform and complete the following steps to connect it to a
different output message assembly:
a. Delete the Move transform that connects the Properties tree and the third

output message assembly.
b. Define a connection between the Properties tree and the Else transform.
c. Define a connection between the input message and the Else transform.
d. Define a connection between the Else transform and the second output

message assembly.

152 Designing a message map

6. Define the conditional expression that determines when the If transform is
applied and a message based on the first output message assembly is created.
a. Open the Properties view of the If transform.
b. Define an XPath expression in the Condition tab. Use content-assist. For

more information, see “Defining an XPath conditional expression for a
transform” on page 85.

7. Define the conditional expression that determines when the ElseIf transform
is applied and a message based on the second output message assembly is
created.
a. Open the Properties view of the If transform.

Chapter 16. Mapping an input message into different output messages 153

b. Define an XPath expression in the Condition tab. Use content-assist. For
more information, see “Defining an XPath conditional expression for a
transform” on page 85.

Note: When the conditional expression of the If transform and the ElseIf
transform evaluate to false, the transformation logic defined for the Else
transform is applied.

8. Select the If transform to open the associated nested map. Then, define
transforms between the input and the output elements. Remember to connect
the input Properties to the output properties tree with a Move transform.
By default, a Submap transform is defined. You can choose to create a
submap with your transformation logic, or delete the Submap transform and
define locally your transformation logic.

For more information, see Chapter 26, “Transform types in the Graphical Data
Mapping editor,” on page 193.

9. Select the ElseIf transform to open the associated nested map. Then, define
transforms between the input and the output elements.

10. Select the Else transform to open the associated nested map. Then, define
transforms between the input and the output elements.

154 Designing a message map

Chapter 17. Using Java API classes for Custom Java mapping
transforms

You can use the Java MbElement class for mapping inputs and outputs that are not
simple types with a Custom Java transform.

To use the MbElement class, you must add the plugin2.jar file that includes the
MbElement class in the Java imports property tab of the Custom Java transform.
The plugin2.jar is available in the classes directory of the installation.

Alter the properties of your java project, and add the plugin2.jar to the java build
path. Now you can import the MbElement class into your java source.

If your Java code is likely to be used by multiple solutions, store it in a shared
library. You can store the Java code in the same shared library as a message map.
Alternatively, you can store the Java code separately in a referenced shared library.

Mapping a single non-repeating element

When you map a single non-repeating element input to a single non-repeating
element output, you can use a Java method with the following signature:
public static MbElement mbElMove(MbElement inEl) {
For example a Java method that simply copies a sub tree:
public static MbElement mbElMove(MbElement inEl) {

MbElement outEl = null;
try {
outEl = inEl.copy();
outEl.copyElementTree(inEl);
} catch (MbException e) {
throw (new RuntimeException(e));
}
return outEl;
}

Mapping a single repeating element

When you map a single repeating element input to an output repeating element,
you can use a Java method with the following signature:
public static List<MbElement>; customCompleTypeMove(List<MbElement>; inEls)

For example:
public static List<MbElement> customCompleTypeMove(List<MbElement> inEls)

{
List<MbElement> outEls = new ArrayList<MbElement>();
try {
Iterator<MbElement> i = inEls.iterator();
while (i.hasNext()) {
MbElement inEl = i.next();
MbElement outEl = inEl.copy();
// Do some processing of outEl
outEls.add(outEl);
}
} catch (MbException e) {

© Copyright IBM Corp. 2014 155

throw (new RuntimeException(e));
}
return outEls;
}

156 Designing a message map

Chapter 18. Applying mapping overrides

Transforms contained in a mapping overrides group are applied after a parent
transform is applied. This function enables you to copy a complex type from the
input to the output object, while updating some of the child elements in the
complex type.

About this task

You can create a graphical data map that performs a simple copy of a complex
type, by wiring a Move transform from the input to the output object. You can also
add additional transforms that have an output element that is a simple type within
the complex type. As the parent is already mapped, the Graphical Data Mapping
editor provides you will the option of creating a quick fix to create an overrides
group:

The transforms contained in the overrides group are applied after the parent
transform is applied:

© Copyright IBM Corp. 2014 157

158 Designing a message map

Chapter 19. Mapping database content

Use a graphical data map to map or modify database content.

About this task

You can use database content as input data for a graphical data map transform.
You can use graphical data map transforms to modify database content , or call a
stored procedure from a database to map the returned data. For each database
transform in your graphical data map, the Graphical Data Mapping editor uses a
database definition file (.dbm file) to determine the name and structure of the
database that you want to access. When your graphical data map has been
deployed, the IBM Integration Bus runtime component connects to the database
used in each database transform by using a JDBCProvider service that you
configured with the same name as the database.

The following topics guide you through the steps that are involved in mapping
database content:
v “Creating a database definition (.dbm file) by using the New Database Definition

File wizard” on page 118
v “Selecting data from a table”
v “Modifying data in a database by using mapping” on page 161
v “Calling a stored procedure from a map” on page 168
v Enabling JDBC connections to the databases

Optionally, you can use JDBC connection pooling with your JDBCProvider service
to manage your database resources. For more information about JDBC connection
pooling, see Using a JDBC connection pool to manage database resources used by
an integration server.

To learn more about mapping database content, see the following samples:
v Graphical Data Mapping Retail
v Graphical Data Mapping Loyalty Data Warehousing

Note: You can view information about samples only when you use the information
center that is integrated with the IBM Integration Studio or the online information
center. You can run samples only when you use the information center that is
integrated with the IBM Integration Studio.

Selecting data from a table
To map an output element from a database table, use the Graphical Data Mapping
editor to retrieve the relevant rows from the database and then populate the
output elements with values from the database.

Before you begin

You must complete the following tasks:
v Create a graphical data map by using the Graphical Data Mapping editor. For

information, see “Creating a message map” on page 47.

© Copyright IBM Corp. 2014 159

Procedure
1. With a graphical data map (.map) file open in the Graphical Data Mapping

editor, click the Select rows from a database icon. .If you include a Select
transform within a ForEach nested transform, the IBM Integration Bus runtime
component issues one SQL select to the database for each iteration of the
ForEach transform.

2. In the "New database select" wizard, select the database, table, and column
from which you want to select data. To add a database definition file, or to
discover a new database by connecting to a database server, click Add
database.... For more information, see “Creating a database definition (.dbm file)
by using the New Database Definition File wizard” on page 118.

3. In the SQL where clause field, use supported SQL to specify the criteria for
selecting the rows from the selected column of your database table.
Build a supported SQL statement by dragging items from the Table columns
and Operators panes to the SQL where clause field.
To include values in your SQL statement, drag items from the Available inputs
for column values pane to the SQL where clause to add them as parameters,
or type literal values such as ’abc’ or 123 directly in the SQL where clause.
Parameters from the SQL where clause are listed in the XPath expression table.
You can edit the XPath expressions to refine the input, for example to add a
specific array index for a dragged repeating field. A default SQL where clause
is created for you, which selects all rows in your selected database table.

Note: If you edit the text of the SQL where clause directly, take care to:
v ensure the case of your table and column names match that of your database.
v avoid the use of double-quotes around table and column names.
v only use the supported SQL keywords that are presented in the Operators

pane.
4. Optional: Select Treat warning as error. If this option is selected, the first SQL

operation that results in a warning from the selected database raises an
exception.

Important: Database warnings are vendor-specific. For more information about
database warnings, see the documentation for your database product.

5. Click OK. A Select transform, is created, and the data that you selected is
displayed in the graphical data map.

6. Connect the Select transform to the required output object in the map. The
ResultSet input to the Select transform is a repeating structure that contains
one instance for each row that is selected by your configured SQL where
clause.

7. Click the Select transform to further define the transform. A nested map is
created, in which you can select the specific transforms that are required for the
input and output elements.

What to do next
v If you want exceptions that are returned from the database server when the SQL

operation is run to be handled by the map, instead of having such exceptions
stop the map and being reported, you can add a Failure transform into the
transform group; see “Handling database exceptions in a graphical data map”
on page 171.

v Set up a JDBC connection to the database that you want to access; see
../com.ibm.etools.mft.doc/ah61300_.dita.

160 Designing a message map

Modifying data in a database by using mapping
Use the Graphical Data Mapping editor to insert, update, or delete rows of data in
a database table.

About this task

You can use database transforms in your graphical data maps to insert new rows
of data, or to update or delete existing rows of data, in your database tables. For
each database transform in your graphical data map, the Graphical Data Mapping
editor uses a database definition file (.dbm file) to determine the name and
structure of the database that you want to access. You can start the wizard to
create a database definition file when you create a database transform in a
graphical data map.

If you connect elements from an input object to database columns within a
database transform in your graphical data map, every input message that is
processed by your map at run time must include those elements. If a message is
either missing an element that is connected to a database column, or does not
provide a valid value for that database column, an exception is raised when the
message is processed by the map. Input elements that you connect to nullable
database columns must provide either a valid value, or the NULL value. For more
information about null values, see XMLNSC empty elements and null values.

When you add a database Insert, Update or Delete transform to a graphical data
map, the transform is displayed as an additional output target to which you can
connect input objects. When your map is run, a database transform calls a single
operation on the configured database server. If you connect a repeating input
element to the database transform, the Graphical Data Mapping editor moves the
database transform inside a nested "For Each" transform from the repeating input.

A database Insert, Update, or Delete transform are created as a transform group,
comprising the database operation and a Return transform. The database operation
transform for Insert and Update are nested transforms in which the individual
mapping to the database table columns are made. The Return transform is an
optional transform that allows a nested mapping to be entered if the database
operation is successful. If you do not want to use the Return transform, you can
delete it from the transform group. If you must provide some mapping for when a
failure is returned from the database operation, you can add a Failure transform
into the transform group. The Failure transform provides a nested transform that is
entered if the database system returns a failure.

If the insert, update, or delete is conditional on a test result, you can change the
Insert, Update, or Delete transform to an If transform. Before you change the
transform, ensure that the Insert, Update, or Delete transform is not part of a
transform group. Remove any Return or Failure transform then select an If
transform in place of the Insert Update or Delete. The Insert, Update, or Delete
transform is moved into the nested mapping of the If transform. You can then add
any required Return and Failure transforms.

The following topics describe how to modify data in a database table:
v “Inserting data into a table” on page 162
v “Updating data in a table” on page 163
v “Deleting data from a table” on page 165

Chapter 19. Mapping database content 161

Inserting data into a table
Use the Graphical Data Mapping editor to insert data into a database table.

Before you begin

You must complete the following task:
v Create a graphical data map by using the Graphical Data Mapping editor. For

information, see “Creating a message map” on page 47.

About this task

To insert a row, or multiple rows, into a database table by using the Graphical
Data Mapping editor, complete the following steps:

Procedure
1. With a graphical data map (.map) file open in the Graphical Data Mapping

editor, right-click the canvas, and select Database > Insert into table.
Alternatively, select a schema element as an input object, and then click the

Insert a row into a database table icon. The Insert wizard is displayed.
2. In the Database field, select the database that you want to modify. To add a

database definition file, or to discover a new database by connecting to a
database server, click Add database.... For more information, see “Creating a
database definition (.dbm file) by using the New Database Definition File
wizard” on page 118. To use a different database name at run time, you can
override this value by setting the databaseName property of the
JDBCProvider configurable service that connects to your database; see Setting
up a JDBC provider for type 4 connections.

3. In the Schema field, select the database schema that you want to use to build
the transform. To use a different database schema at run time, you can
override this value by setting the databaseSchemaNames property of the
JDBCProvider configurable service that connects to your database; see Setting
up a JDBC provider for type 4 connections.

4. In the Table field, select the table that you want to modify.
5. Optional: Select Treat warning as error. If this option is selected, the first SQL

operation that results in a warning from the selected database raises an
exception.

Important: Database warnings are vendor-specific. For more information
about database warnings, see the documentation for your database product.

6. Click OK. An Insert transform and a Return transform are created as a
transform group, and are displayed in your graphical data map. The Return
transform is an optional transform type. If you do not need to use the Return
transform, you can delete it from your graphical data map.

7. Optional: To replace a Return transform that you deleted from your graphical
data map, right-click your Insert transform and select Database > Utilize
return.

8. In the Graphical Data Mapping editor, connect input objects to the Insert
transform to define the content of your inserted row.
v Connect a non-repeating element to the Insert transform to insert a single

row into the selected database table.
v Connect one or more repeating elements to the Insert transform to insert

multiple rows into the selected database table. To connect multiple

162 Designing a message map

repeating elements, select your repeating elements, then right-click the
Insert transform and select Create Connection.

If you connect a single repeating element, the Insert transform is nested inside
a For Each transform. If you connect multiple repeating elements, the Insert
transform is nested inside a Join transform. In either case, the nested
transform opens so you can continue to edit your Insert transform.

9. Click the Insert transform to create connections to the columns in your
inserted row, and to further define the transform.

10. Optional: If you need to provide handling for the connected source element
being Missing, Empty or Nil, you can set a Database Policy. See “Behavior
when modifying database column values from optional source elements” on
page 172.

11. Optional: Connect the Return transform to implement a nested mapping that
is called if the Insert operation was completed successfully.

12. Optional: Click the Return transform to further define the transform. A nested
map is created, in which you can select the specific transforms that are
required for the input and output elements.

What to do next
v If you want exceptions that are returned from the database server when the SQL

operation is run to be handled by the map, instead of having such exceptions
stop the map and being reported, you can add a Failure transform into the
transform group; see “Handling database exceptions in a graphical data map”
on page 171.

v Set up a JDBC connection to the database that you want to access; see
../com.ibm.etools.mft.doc/ah61300_.dita.

Updating data in a table
Use the Graphical Data Mapping editor to update data in a database table.

Before you begin

You must complete the following task:
v Create a graphical data map by using the Graphical Data Mapping editor. For

information, see “Graphical Data Mapping editor” on page 5.

About this task

To update a row of data, or multiple rows of data, in a database table by using the
Graphical Data Mapping editor, complete the following steps:

Procedure
1. With a graphical data map (.map) file open in the Graphical Data Mapping

editor, right-click the canvas, and select Database > Update Table.

Alternatively, click the Update a row in a database table icon. The New
Database Table Update wizard is displayed.

2. In the Database field, select the database that you want to modify. To add a
database definition file, or to discover a new database by connecting to a
database server, click Add database.... For more information, see “Creating a
database definition (.dbm file) by using the New Database Definition File
wizard” on page 118. To use a different database name at run time, you can
override this value by setting the databaseName property of the

Chapter 19. Mapping database content 163

JDBCProvider configurable service that connects to your database; see Setting
up a JDBC provider for type 4 connections.

3. In the Schema field, select the database schema that you want to use to build
the transform. To use a different database schema at run time, you can
override this value by setting the databaseSchemaNames property of the
JDBCProvider configurable service that connects to your database; see Setting
up a JDBC provider for type 4 connections.

4. In the Table field, select the database table that you want to modify.
5. Optional: Select Treat warning as error. If this option is selected, the first SQL

operation that results in a warning from the selected database raises an
exception.

Important: Database warnings are vendor-specific. For more information
about database warnings, see the documentation for your database product.

6. In the SQL where clause field, use supported SQL to specify the criteria for
selecting rows from your database table.
Build a supported SQL statement by dragging items from the Table columns
and Operators panes to the SQL where clause field.
To include values in your SQL statement, drag items from the Available
inputs for column values pane to the SQL where clause to add them as
parameters, or type literal values such as ’abc’ or 123 directly in the SQL
where clause.
Parameters from the SQL where clause are listed in the XPath expression
table. You can edit the XPath expressions to refine the input, for example to
add a specific array index for a dragged repeating field. A default SQL where
clause is created for you, which selects all rows in your selected database
table.

Note: If you edit the text of the SQL where clause directly, take care to:
v ensure the case of your table and column names match that of your

database.
v avoid the use of double-quotes around table and column names.
v only use the supported SQL keywords that are presented in the Operators

pane.
7. Optional: Select Insert when a row does not exist if you want to insert a new

row in your database table when no existing row meets the criteria of your
SQL where clause. If this option is selected, the map checks the "number of
rows updated" return from the database server for the Update SQL operation.
If the "number of rows updated" is zero, the map issues an insert SQL
operation. For the insert operation to succeed, your Update transform must
explicitly provide valid values for all mandatory database columns. If you
want a row that is inserted in this way to use different values to those that are
provided by your Update transform, consider adding a conditional Insert
transform inside the Return transform.

8. Click OK. An Update transform and a Return transform are created as a
transform group, and are displayed in your graphical data map. The Return
transform is an optional transform type that provides a nested mapping that
is entered only if the associated Update was successful. If you do not need to
use the Return you can delete it from your graphical data map.

9. Optional: To replace a Return transform that you deleted from your graphical
data map, right-click your Update transform and select Database > Utilize
return.

164 Designing a message map

10. In the Graphical Data Mapping editor, connect input objects to the Update
transform to define the content of your updated row. If you connect a
repeating element, the Update transform is nested inside a For Each
transform, and this nested transform is opened so that you can continue to
edit your Update transform.

11. Click the Update transform to create connections to the columns in your
updated row, and to further define the transform.

12. Optional: If you need to provide handling for the connected source element
being Missing, Empty or Nil, you can set a Database Policy. See “Behavior
when modifying database column values from optional source elements” on
page 172.

13. Optional: Connect the Return transform to implement a nested mapping that
is called if the Update operation was completed successfully. The nested
Return transform provides a built-in input, "NumberOfRowsUpdated", and
additional inputs can be connected.

14. Optional: Click the Return transform to further define the transform. A nested
map is created, in which you can select the specific transforms that are
required for the input and output elements.

What to do next
v If you want exceptions that are returned from the database server when the SQL

operation is run to be handled by the map, instead of having such exceptions
stop the map and being reported, you can add a Failure transform into the
transform group; see “Handling database exceptions in a graphical data map”
on page 171.

v Set up a JDBC connection to the database that you want to access; see
../com.ibm.etools.mft.doc/ah61300_.dita.

Deleting data from a table
Use the Graphical Data Mapping editor to delete data from a database table.

Before you begin

You must complete the following task:
v Create a graphical data map by using the Graphical Data Mapping editor. For

information, see “Creating a message map” on page 47.

About this task

To delete a row of data, or multiple rows of data, from a database table by using
the Graphical Data Mapping editor, complete the following steps:

Procedure
1. With a graphical data map (.map) file open in the Graphical Data Mapping

editor, right-click the canvas, and select Database > Delete from Table.

Alternatively, click the Delete a row from a database table icon. The
New Database Table Delete From wizard is displayed.

2. In the Database field, select the database that you want to modify. To add a
database definition file, or to discover a new database by connecting to a
database server, click Add database.... For more information, see “Creating a
database definition (.dbm file) by using the New Database Definition File
wizard” on page 118. To use a different database name at run time, you can
override this value by setting the databaseName property of the

Chapter 19. Mapping database content 165

JDBCProvider configurable service that connects to your database; see Setting
up a JDBC provider for type 4 connections.

3. In the Schema field, select the database schema that you want to use to build
the transform. To use a different database schema at run time, you can
override this value by setting the databaseSchemaNames property of the
JDBCProvider configurable service that connects to your database; see Setting
up a JDBC provider for type 4 connections.

4. In the Table field, select the database table that you want to modify.
5. Optional: Select Treat warning as error. If this option is selected, the first SQL

operation that results in a warning from the selected database raises an
exception.

Important: Database warnings are vendor-specific. For more information
about database warnings, see the documentation for your database product.

6. In the SQL where clause field, use supported SQL to specify the criteria for
selecting the rows that you want to delete from your database table.
Build a supported SQL statement by dragging items from the Table columns
and Operators panes to the SQL where clause field.
To include values in your SQL statement, drag items from the Available
inputs for column values pane to the SQL where clause to add them as
parameters, or type literal values such as ’abc’ or 123 directly in the SQL
where clause.
Parameters from the SQL where clause are listed in the XPath expression
table. You can edit the XPath expressions to refine the input, for example to
add a specific array index for a dragged repeating field. A default SQL where
clause is created for you, which selects all rows in your selected database
table.

Note: If you edit the text of the SQL where clause directly, take care to:
v ensure the case of your table and column names match that of your

database.
v avoid the use of double-quotes around table and column names.
v only use the supported SQL keywords that are presented in the Operators

pane.
7. Click OK. A Delete transform and a Return transform are created as a

transform group, and are displayed in your graphical data map. The Return
transform is an optional transform that provides a nested mapping. It is
entered only if the associated Delete was successful. If you do not need to use
the Return transform, you can delete it from your graphical data map.

8. Optional: To replace a Return transform that you deleted from your graphical
data map, right-click your Insert transform and select Database > Utilize
return.

9. Optional: Connect the Return transform to implement a nested mapping that
is called if the Delete operation was completed successfully.

10. Optional: Click the Return transform to further define the transform. A nested
map is created, in which you can select the specific transforms that are
required for the input and output elements.

What to do next
v If you want exceptions that are returned from the database server when the SQL

operation is run to be handled by the map, instead of having such exceptions

166 Designing a message map

stop the map and being reported, you can add a Failure transform into the
transform group; see “Handling database exceptions in a graphical data map”
on page 171.

v Set up a JDBC connection to the database that you want to access; see
../com.ibm.etools.mft.doc/ah61300_.dita.

Data type considerations for mapping database content
Data type handling using the Graphical Data Mapping editor to read or modify
data in a database table requires consideration of the type of Database server that
will be connected to from the runtime. The map may require to make explicit type
casts, in order to avoid mapping node exceptions or database server exceptions
being thrown.

The data types of the database columns, shown at map design time in the
Graphical Data Mapping editor, are provided by the database definition file. You
can use Cast transform or custom transforms, such as XPath, to ensure that data
from elements mapped to the database columns are of the correct type.

When the map is executed in the IBM Integration Bus runtime, the JDBC Providers
configurable service determines the database to connect to. This must be defined in
the runtime. See ../com.ibm.etools.mft.doc/ah61300_.dita.

The broker runtime attempts to query the connected database system, in order to
obtain the data type of the target columns. This is so that required type casts take
place before passing data in SQL statements. If there is no valid typecast between
the type of the presented value and the type defined by the Database metadata in
the IBM Integration Bus runtime, an IBM Integration Bus runtime exception is
thrown by the Mapping node that is executing the map.

Note: Not all database servers supported by IBM Integration Bus provide querying
of table meta data in a way IBM Integration Bus can currently process. IBM
Integration Bus cannot currently obtain table metadata when connected to the
following database server types:
v Microsoft_SQL_Server
v Oracle
v Sybase_JConnect6_05
v solidDB®

When using these types of database systems, the IBM Integration Bus runtime
cannot perform casting. The data element values are passed to the database server
in the type they are presented, without any casting being performed. This can
result in the Database System rejecting the value and throwing a Database
Exception. This is in contrast to an IBM Integration Bus runtime exception, where
it is thrown as a Mapping node exception.

The resulting types are determined depending on how the input element is wired
to the database transform:
v Column values set via Move transforms from an message tree element are

passed as its given type when it is a base SQL type. For example: Integer,
otherwise as character string formatted as per the IBM Integration Bus
getValueAsString() MbElement method.

v Column values set via custom Xpath, Java or ESQL functions are passed as the
type returned by the function.

v Column values set via Assign transform will always be passed as character
string. If you require a specific type to be assigned, you must use a Cast

Chapter 19. Mapping database content 167

transform of the appropriate xs type constructor. For example, to assign the
value 1 to an Integer type column, use the xs:int() Cast transform and set a
value of '1' instead of an Assign transform.

When using values in Where clauses for Select, Update and Delete, the types are
determined by:
v Literal values are typed according to standard SQL syntax, such as quote

character strings, unquoted numbers and so on.
v Values set via XPath path reference to a message tree element are passed as its

given type when it is a base SQL type. For example: Integer, otherwise as
character string formatted as per the IBM Integration Bus getValueAsString()
MbElement method.

Calling a stored procedure from a map
Use the Graphical Data Mapping editor to call a stored procedure by using the
Database Routine transform.

Before you begin

Before you start:

You must complete the following task:
v Create a graphical data map by using the Graphical Data Mapping editor. For

information, see “Creating a message map” on page 47.

About this task

You can use the Database Routine transform to call a stored procedure from a
database.

Note: Only IBM DB2 stored procedures are supported in IBM Integration Bus
v9.0.

The Database Routine transform acts as a nested mapping, into which you can
wire inputs to construct mappings to set the input parameter values for the stored
procedure call. The routine input parameters are displayed as outputs of the
Database Routine nested mapping. You cannot wire any output from the Database
Routine transform.

Use the Return transform within the Transform group of the Database Routine to
map any output parameters, return values, or ResultSets produced by calling the
Database Routine. You can wire any additional inputs that you want to map when
the Database Routine call completes successfully. The output parameters, any
return value, and any returned Result sets you defined for the Database Routine
are provided as inputs in the nested Return mapping. You can wire the Return to a
single or multiple sibling output elements to enable the returned data to be
mapped to the map output.

Stored procedure parameters of type Array are not supported in database calls
from a graphical data map.

Procedure

Using the Graphical Data Mapping editor, complete the following steps:

168 Designing a message map

1. With a graphical data map (.map) file open in the Graphical Data Mapping
editor, right-click the canvas, and select Database > Call Database Routine.
v Alternatively, select a schema element (or elements) as an input parameter

value. Optionally, select a schema element (or elements) as an output value.
v You can also use drag-and-drop to create the Database Routine transform.

Connect the input object to the output object, and a transform is
automatically created. Select the transform, and choose Database Routine
from the Transforms list.

v You can also click the Call a stored procedure in a database icon.

The Database Routine wizard is displayed.
2. In the Database field, select the database that you want to call the routine

from. To add a database definition file, or to discover a new database by
connecting the IBM Integration Studio using JDBC to a database server, click
Add database.... For more information, see “Creating a database definition
(.dbm file) by using the New Database Definition File wizard” on page 118. You
must select the Routines option during the discovery process. To use a different
database name at run time than the name used in the IBM Integration Studio,
you can override this value by setting the databaseName property of the
JDBCProvider configurable service that defines how to connect to your
database; see Setting up a JDBC provider for type 4 connections.

3. In the Schema field, select the database schema that defines the stored
procedure that you want to call from the map. To call the stored procedure
from a different database schema at run time, you can override this value by
setting the databaseSchemaNames property of the JDBCProvider configurable
service that defines how to connect to your database; see Setting up a JDBC
provider for type 4 connections.

4. In the Routine field, select the stored procedure that you want to call into the
Database Routine transform in the map.
a. Optional: If the selected routine can return a value, a Return value check

box is displayed. If you want to make the return value available for
mapping in the Return transform, check this box.

Note: The selected Routine then populates the following locked fields:
v Type: states whether the type of the selected Routine is a stored procedure .
v Parameters: details of the parameter names, mode, and type for the selected

Routine.
v Max ResultSets: if the Database definition file for the Routine provides this

information, states the maximum Result sets. Otherwise, it is blank.

These fields can be displayed by clicking Display Routine parameter details...

5. Optional: Select Treat warning as error. If this option is selected, and calling
the Database Routine in the configured runtime database returns an SQL
warning, it is handled as if the database is raising an exception. If the Failure
transform is present, then it enters its nested mapping. Otherwise, the map
execution stops, and an exception is raised from the Mapping node that is
running the map.

Important: Database warnings are vendor-specific. For more information about
database warnings, see the documentation for your database product.

6. Optional: If the selected Routine can return Result sets, and you want to map
values from them, you must define their order and column contents.

Chapter 19. Mapping database content 169

a. If your Database definition file defined the number of Result sets, then
Result sets list is pre-populated with one ResultSet, and displays the
maximum number that can be returned. Use the Add and Delete buttons to
populate the Result sets list, up to any maximum number defined in the
database definition file. You must order the Result sets as they are defined
in the Database Routine code. If you only want to map data from, for
example, the second result set, you must still include the first result set in
the table because they are accessed by their positional order.

b. Select each Result set, and use the check boxes in Available table columns
to add column definitions to the Result set to match what the Database
Routine returns. You only need to define the Result set columns that you
want to be available for mapping.

7. Click OK. The Database Routine, and its grouped Return transform are
displayed in your graphical data map. If you made any selections in the
mapping input/output, all selected inputs are wired into the Database Routine,
and outputs are wired to the Return transform. If you made no selections, then
the new transform appears in the map unconnected.

8. Provide any required values for IN and INOUT mode parameters for the
Database Routine. The input parameters for the selected stored procedure are
displayed as outputs in the nested Database Routine transform.
a. Connect the required input elements to the Database Routine, and within

the nested map provide transforms to set a value for each parameter. The
Database Routine is entered only once, making one call to the database
system. You must set cardinality for any repeating elements that are
connected into the Database Routine transform, or use a function transform
to provide a single value to the parameter.

Note: If any parameter is not given a value, the database server might
return an exception if it cannot provide a default value. If the resulting
output value of the transforms setting the parameters is not the correct type
for the Database Routine, or the content is invalid, for example, exceeding a
maximum length, a database exception might occur.

9. Provide any required mapping for the output elements from data that is
returned from the Database Routine. This data can include OUT and INOUT mode
parameters, optional Routine return values, and one or more Result sets. The
Routine outputs are displayed as inputs in the nested Return transform.
a. Optional: Connect any additional input elements that you might require

merged with the Database Routine data to the Return transform. Connect
the Return transform to one or more output elements of the map. Provide
transforms within the nested Return map to set the connected outputs from
the provided Database Routine output values.

What to do next

Next:

v If you want exceptions that are returned from the database server when the
Database Routine is called to be handled by the map, instead of having such
exceptions stop the map and being reported, you can add a Failure transform
into the transform group; see “Handling database exceptions in a graphical data
map” on page 171.

v Set up a JDBC connection to the database that you want the run time to call the
Database Routine into; see ../com.ibm.etools.mft.doc/ah61300_.dita.

170 Designing a message map

v If you want to modify the available columns in the Result sets for mapping, use
the Properties view of the Database Routine transform, and then update the
Return nested mapping.

Handling database exceptions in a graphical data map
Add a Failure transform to your graphical data map to handle exceptions that
might be raised as a result of a database transform.

About this task

If you want the map to handle exceptions that are returned from the database
server when the SQL operation is run, instead of such exceptions stopping the map
and being reported, you can add a Failure transform to the transform group. The
Failure transform is an optional transform in each of the database transform
groups, and can be added or removed as required. If an exception is raised by the
configured database server, and you have not configured a corresponding Failure
transform, the map operation is stopped.

To add a Failure transform to a graphical data map by using the Graphical Data
Mapping editor, complete the following steps:

Procedure
1. With a graphical data map (.map) file open in the Graphical Data Mapping

editor, right-click a Select, Insert, Update, Delete, or Database Routine
transform, and then select Database > Handle Failure. A Failure transform is
created, and is displayed in your graphical data map.

2. Connect the Failure transform to specify how any exceptions from the database
transform are processed when the map is run. If the Failure transform is
present in the graphical data map, and is connected to one or more output
objects, then the exception is caught and processed by the Failure transform.
Database transforms additionally have a Treat warnings as exceptions option.
v

Important: If the Failure transform is present in the graphical data map, but
is not connected, then the exception is caught by the Failure transform, and
is ignored.

v If the Failure transform has been deleted from the graphical data map, then
the exception is handled by the Mapping node in your message flow, and is
handled in the same way as other message flow exceptions.

3. Click the Failure transform to open the nested map and further define the
transform.

Results

You have added and configured a Failure transform into your graphical data map.
If you want the failure to cause the execution of the map to stop when the
database transform receives an SQL exception, remove the Failure from the
transform.

What to do next

Before you deploy a graphical data map that contains database transforms, you
must complete the following task:

Chapter 19. Mapping database content 171

v Set up a JDBC connection to the database that you want to access. For more
information, see ../com.ibm.etools.mft.doc/ah61300_.dita.

Behavior when modifying database column values from optional
source elements

When updating or inserting database columns, you can define different behaviors
for a missing, empty, or nil source.

Behavior with no Database Policy

When Inserting or Updating data into a database column by connecting a
transform which is defined as optional in the schema model, you might want to
consider the behavior for the possible source input states: Missing, Empty, or Nil.
The behavior can be default or customized by enabling a Database Policy.

Table 1 defines the source states and the behavior without a Database Policy
enabled.

Tables 2 and 3 define the behavior of enabling a Database Policy to check the
source state and to then take a specific configured action.

Table 11. Behavior with no Database Policy on transforms linked to a column in an Insert or
Update operation.

Source
state Definition Behavior

Missing
Source

The input document does
not contain the source
element.

The column will not be passed in the SQL
statement sent to the database server. The
outcome is determined by the definition of the
target column in the database:

v If the column is defined with a default
value, this value is set by the database
system.

v If the column is defined as nullable, and no
default is defined, the column is set to null
by the database system.

v If the column is defined as not nullable, and
no default is defined, the database will
return a SQL exception.

Empty
Source

The input document
contains the source element,
but that source is empty.

IBM Integration Bus passes the value returned
by "getValue" for the source element as the
parameter value for the column in the SQL
statement sent to the database. For example,
an element of the String type will return the
empty String value, so the target database
column would be set with an empty string, "".

Nil Source The input document
contains the expected source,
and it is nil.

The value returned by "getValue" is set to
NULL.

172 Designing a message map

Behavior for Insert with an enabled Database Policy

When Inserting data into a database column, you can enable a database policy on
each transform mapping a single value from a source element. This allows you to
choose one of the following actions for each of the input source states: Missing,
Empty, or Nil.

Table 12. Behavior with a Database Policy enabled on transforms linked to a column in an
Insert operation.

Actions for
source state Behavior

Exclude
column
from
database
operation

Insert the database default value for the column. The column is excluded
from the SQL statement sent to the database. This option is only enabled if
the target database column has a default value defined in the database model
from the associated .dbm file.

Insert the
empty
String value
""

This option is only enabled if the target database column is defined as any
character string type in the database model from the associated .dbm file.

Set to
NULL

This option is only enabled if the target database column is defined as
nullable in the database model from the associated .dbm file.

Throw a
map error

Produces a map error:

v Missing: BIP3970

v Empty: BIP3971

v Nil: BIP3972

For more information, see: BIP3000-3999: Built-in nodes.

Behavior for Update with an enabled Database Policy

When Updating data in a database column, you can enable a database policy on
each transform mapping a single value from a source element. This allows you to
choose one of the following actions for each of the input source states: Missing,
Empty, or Nil.

Table 13. Behavior with a Database Policy enabled on transforms linked to a column in an
Update operation.

Actions for
source state Behavior

Exclude
column
from
database
operation

The column is excluded from the SQL statement sent to the database. The
value of the column currently in the database is not changed.

Set to the
empty
String value
""

This option is only enabled if the target database column is defined as a
character string type in the database model from the associated .dbm file.

Set to
NULL

This option is only enabled if the target database column is defined as
nullable in the database model from the associated .dbm file.

Chapter 19. Mapping database content 173

Table 13. Behavior with a Database Policy enabled on transforms linked to a column in an
Update operation (continued).

Actions for
source state Behavior

Throw a
map error

Produces a map error:

v Missing: BIP3970

v Empty: BIP3971

v Nil: BIP3972

For more information, see: BIP3000-3999: Built-in nodes.

174 Designing a message map

Chapter 20. Referencing message maps in your solution

You can reference a message map and a submap during the development phase.
You can also reference a message map dynamically at runtime.

About this task

Message maps and submaps are resources that can be used more than once in your
solutions. For example, a message map can be used by one or more Mapping
nodes in a message flow.

Procedure

Choose any of the following options to reference a message map or a submap in
your solution:
v Reference a message map: You can reference a message map by configuring the

Mapping routine property in a Mapping node. For more information, see
“Referencing an existing message map from a Mapping node.”

v Dynamically reference a message map at runtime: You can define a message
map dynamically at runtime by setting the local environment MappingRoutine
element in your message flow before the message reaches the Mapping node
where the message map needs to be used. For more information, see
“Dynamically selecting a message map” on page 176.

v Reference a submap: You can call a submap from a graphical data map in the
Graphical Data Mapping editor by using the Submap transform. For more
information, see “Calling a submap” on page 177.

Referencing an existing message map from a Mapping node
A message map can be used by one or more Mapping nodes in a message flow.
You can reference a message map by configuring the Mapping routine in a
Mapping node.

About this task

The Mapping node invokes a map-based transform.

The input to the Mapping node is the input message assembly that is propagated
from the upstream node.

The output of the Mapping node is the new message assembly that is created by
the mapping operations and propagated from the output terminal of the Mapping
node.

Procedure

To reference an existing message map from a Mapping node, complete the
following steps:
1. In the Application Development view, double-click the message flow that

contains the Mapping node that you want to modify.
The message flow opens in the Message Flow editor.

© Copyright IBM Corp. 2014 175

2. In the Message Flow editor, click the Mapping node that you want to modify.
The Mapping node properties are displayed in the Properties view.

3. In the Properties view, select the Basic tab.
4. Next to the Mapping routine field, click Browse. The Data Transformation Map

Selection window opens.
5. From the list in the Data Transformation Map Selection window, select the

message map that you want to reference from your selected Mapping node,
and click OK.
Message maps are listed in the format {BrokerSchemaName}:MapName.
{default} indicates that no broker schema is used by the message map.

6. Save and close your message flow.

Results

Your Mapping node references the message map that you selected.

Dynamically selecting a message map
To dynamically assign a message map to a Mapping node at runtime, you must
pass the new map name in the local environment tree. You must define the new
map name in the MappingRoutine element. The value you set in the
MappingRoutine element overrides the map name that is set in the Mapping
routine property of the Mapping node.

About this task

You can create, deploy, and run a message flow that invokes a different message
map at a Mapping node.

You can override the mapping routine that is used to transform a message instance
by specifying a new mapping routine in the local environment MappingRoutine
element. You must specify the new mapping routine in the local environment tree
that is upstream of the Mapping node that you need to modify.

The mapping routine qualified name that is provided in the MappingRoutine
element must be defined in a map file that has to be deployed to the integration
node in a BAR file where the message flow is deployed.

You can use any of the following message flow nodes to set the value of the local
environment MappingRoutine element:
v Mapping node
v Compute node
v JavaCompute node

Procedure

To override at runtime the message map configured during development in a
Mapping node, you must complete the following steps:
1. Required: Reference a message map in the Mapping node. This is the default

message map executed by the Mapping node. For more information, see
“Referencing an existing message map from a Mapping node” on page 175.
You must configure the name of the mapping routine that contains the
statements to execute against the database or the message tree in the Mapping

176 Designing a message map

node property Mapping Routine. By default, the name that is assigned to the
mapping routine is:
{default_broker_schema}:DefaultMsgFlowName_MappingNodeName, where
default_broker_schema is the broker schema where the message flow is located,
and DefaultMsgFlowName_MappingNodeName is the name of the message flow
concatenated with the name of the Mapping node.

2. In your message flow, add a new Mapping node located before the Mapping
node where you want to assign dynamically a message map. Then complete
the following configuration steps in the new Mapping node:
a. Add the local environment tree to the input message assembly.
b. Add the local environment tree to the output message assembly.
c. Optional: Add database tables if you require information available in an

external database.
d. Configure a Move transform between the input local environment tree and

the output local environment tree.
e. Configure a transform to set the output local environment tree

MappingRoutine element. You can also add a condition to the transform.
You must define the value for LocalEnvironment > Mapping >
MappingRoutine.

A light bulb will appear on the left hand side of the transform.
f. Click the yellow light bulb, and then select Group the conflicting

transforms in an override group.

Results

You have configured your message flow to dynamically assign a message map to a
Mapping node. In the first Mapping node, you have defined the logic to set the
local environment MappingRoutine value. In the Mapping node where you want
to dynamically assign a message map, you have defined a message map.

Calling a submap
You can call a submap from a graphical data map in the Graphical Data Mapping
editor by using the Submap transform.

Chapter 20. Referencing message maps in your solution 177

Procedure

Complete the following steps to call a submap from another graphical data map:
1. Create a connection between global input and output elements in a graphical

data map, and then select the Submap transform on the connection: For
example:

2. Click Browse in the Properties view of the Submap transform. The Submap
Selection wizard is displayed where the dialogue box will display the submaps
that are available.

3. Select a submap, and click OK.
You can choose to display only the valid maps that can be selected, by clicking
Show only applicable maps.

Results

The submap is displayed in the Graphical Data Mapping editor, and you can edit
it in the same way that you would edit any graphical data map. For information
about how to edit maps, see Chapter 9, “Editing message maps,” on page 61.

178 Designing a message map

Chapter 21. Transforming a SOAP message in a message map

In IBM Integration Bus, a SOAP message is described by a generic model that
includes the SOAP Envelope and optionally Attachments. You define your SOAP
message parts in a message map by using the Cast function.

About this task

A SOAP message consists of an Envelope and optionally Attachments. The envelope
contains a SOAP header and a SOAP body. A SOAP body can include SOAP faults.

In IBM Integration Bus, when you use SOAP nodes, a SOAP message is described
by a generic model.

In addition to the standard SOAP parts, the SOAP message generic model includes
a Context part that includes contextual information about the current SOAP
message that is processed. This part is the only one in a message map whose
structure is included automatically. You must define the other SOAP message parts
manually by using the Cast function.

The following table compares the SOAP message structure with the IBM
Integration Bus SOAP message generic model:

Table 14. Comparison between the SOAP message structure and the IBM Integration Bus
SOAP message representation

Standard SOAP
message parts Status

IBM Integration Bus
SOAP message parts

IBM Integration Bus
Status

Context Required

SOAP header (part of
the SOAP envelope)

Optional Header (part of the
SOAP_Domain_Msg)

Optional

SOAP body (part of the
SOAP envelope)

Required Body (part of the
SOAP_Domain_Msg)

Required

SOAP faults (part of the
SOAP body)

Optional Fault (part of the Body) Optional

SOAP Attachments Optional Attachment (part of the
SOAP_Domain_Msg)

Optional

Procedure

Complete the following steps to configure the SOAP_Domain_Msg when the
Mapping node is connected directly from a SOAPInput node with no SOAPExtract
node:
1. Define the transformation for the Context object by using one of the following

approaches:
v Copy the Context object by using the Move transform.
v Copy the Context object by using the Move transform, and then use the

Override function if you want to modify a few elements with an Assign
transform or a Move transform.

v Define transforms for all the Context elements that you want to maintain in
the output object.

© Copyright IBM Corp. 2014 179

2. Define the transformation for the Header object by using one of the following
approaches:
v Copy the Header object by using the Move transform.

v Copy the Header object by using the Move transform, and then use the
Override function if you want to modify a few elements with an Assign
transform or a Move transform.

v Define transforms for all the Header elements that you want to maintain in
the output object.

You define SOAP header parts by using the Cast function. You can cast
attributes and other header parts. Then, define transforms between the input
elements and the output elements in each header part.
The SOAP Header element contains application-specific information, including
attributes that define how you process the SOAP message.

3. Define the transformation for the Body object.
You define SOAP body parts by using the Cast function. You can cast attributes
and other body parts. Then, define transforms between the input elements and
the output elements in each body part.
Complete the following steps to define the SOAP body parts and their
transformations:
a. Cast attributes that are defined as xsd:any into a specific type. Then, define a

transform between the input attribute and the output attribute.
b. Cast wildcard elements that are defined as xsd:any into a specific type.
c. Cast a base type element to a derive type element. A derive type element is

also known as an extension type element.
In a message map, you cast a base type to a derive type or extension type
so that you can define transformations between subtypes of a data type. For
example, addresses are represented differently for different countries. You
might want to map addresses from different countries into a common
complex structure for addresses.

d. Define transforms between the input and output body elements.
4. Define the transformation for the Attachment object by using one of the

following approaches:
v Copy the Attachment object by using the Move transform.
v Copy the Attachment object by using the Move transform, and then use the

Override function if you want to modify a few elements with an Assign
transform or a Move transform.

You define SOAP attachment parts by using the Cast function.

Example

Complete the steps in any of the following use cases to learn how to configure the
SOAP_Domain_Msg when the Mapping node is wired directly from a SOAPInput
node with no SOAPExtract node:
v Configure a SOAP message when you use a conditional transform to map an

input element to an output element. For example, you create and configure the
If, Else if, and Else transform to control the flow of the mapping between
elements that are defined as a specific or a derive type in the input and output

180 Designing a message map

message assembly by setting conditions. For more information, see “Mapping a
SOAP message by using a conditional transform.”

v Configure a SOAP message to transform some input elements to output
elements. Use the Override function, Assign transform, and Move transform.
For more information, see “Mapping a SOAP message by using the Override
function” on page 183.

What to do next

Define more transforms between the input SOAP_Domain_Msg and the output
SOAP_Domain_Msg. For more information, see “Specifying a transform (mapping
operation)” on page 82.

Mapping a SOAP message by using a conditional transform
You define SOAP message parts in a message map by using the Cast function and
then you define transforms between its elements. To map between elements that
are defined as specific or derived types, you might want to define some
conditional transforms. You can configure the If, Else if, and Else transform to
control the flow of the mapping between elements.

About this task

When you use an If, Else if, and Else transform between your
SOAP_Domain_Msg input object and SOAP_Domain_Msg output object, you
must manually configure each element in the SOAP_Domain_Msg. You must map
each element in the SOAP_Domain_Msg input object to the corresponding output
object so that you do not lose the information of the element.

Note: Elements that are part of the input object and do not have a transform that
is defined to an output object are deleted from the output structure and their value
is lost.

Procedure

Complete the following steps to configure the SOAP_Domain_Msg when the
Mapping node is wired directly from a SOAPInput node with no SOAPExtract
node:
1. Define the transformation for the Context object.

Copy the Context object by using the Move transform. For more information,
see “Specifying a transform (mapping operation)” on page 82.

2. Define the transformation for the Header object.
You can define a Move transform between the input Header object and the
output Header object to copy the structure and all its elements.
Copy the Header object by using the Move transform.

Chapter 21. Transforming a SOAP message in a message map 181

3. Define the transformation for the Body object. Define SOAP Body parts by
using the Cast function. You can cast attributes and other body parts. Then,
define transforms between the input elements and the output elements in each
body part. For more information, see “Casting wildcards in a map” on page 65.
a. Cast attributes that are defined as xsd:any into a specific type. Then, define a

transform between the input attribute and the output attribute.
b. Cast wildcard elements that are defined as xsd:any into a specific type.
c. Cast a base type element to a derive type element. A derive type element is

also known as an extension type element.
In a message map, you cast a base type to a derive type or extension type
so that you can define transformations between subtypes of a data type. For
example, addresses are represented differently for different countries. You
might want to map addresses from different countries into a common
complex structure for addresses.

d. Create and configure the If, Else if, and Else transform to control the flow
of the mapping between elements that are defined as a specific or a derive
type in the input and output message assembly by setting conditions.

4. Optional: Define the transformation for the Attachment object. Copy the
Attachment object by using the Move transform.
You define SOAP attachment parts by using the Cast function.

Results

You have a message map that transforms a SOAP message. The message map
contains a nested map that uses the If, Else if, and Else transform.

Example

The following figure shows a message map after you complete the previous steps
to transform a SOAP message:

182 Designing a message map

What to do next

Define more transforms between the input SOAP_Domain_Msg and the output
SOAP_Domain_Msg. For more information, see “Specifying a transform (mapping
operation)” on page 82.

Mapping a SOAP message by using the Override function
In a SOAP message, you can use the Override function to copy a complex type
from the input message to the output message, while you update some of the child
elements in the complex type with an Assign transform, and a Move transform.

Before you begin

You define your SOAP message parts in a message map by using the Cast
function. For more information, see “Casting wildcards in a map” on page 65.

About this task

Note: You can include Move transforms and Assign transforms within an
Override.

Procedure

Complete the following steps to configure the SOAP_Domain_Msg when the
Mapping node is wired directly from a SOAPInput node with no SOAPExtract
node:
1. Define a Move transform to copy all the elements in the input

SOAP_Domain_Msg message unchanged.
2. Change the value of at least one element by using an Assign transform or a

Move transform.
3. Apply a quick fix to configure the Override function. Select the option Group

the conflicting transforms in an override group.

Results

You transformed the SOAP message by using the Override function.

What to do next

Define more transforms between the input SOAP_Domain_Msg and the output
SOAP_Domain_Msg. For more information, see “Specifying a transform (mapping
operation)” on page 82.

Chapter 21. Transforming a SOAP message in a message map 183

184 Designing a message map

Chapter 22. Creating or transforming a BLOB output message
by using a graphical data map

Use the Graphical Data Mapping editor to create or transform a message using the
BLOB message domain.

About this task

When you create a new map, the BLOB message is available under the "IBM
supplied message models" category in the map input and output selection tree. If
you select a BLOB message as the map output, the output domain in the output
message assembly is automatically set to BLOB. For more information about creating
a new map, see “Creating a message map from a Mapping node” on page 49.

The BLOB message provides a single element value of type xsd:hexBinary. When
you create a BLOB message output, you must wire a transform to the value
element in the BLOB message, which sets the hexBinary data that you require in
the BLOB message.

When you transform a BLOB message, you must wire the value element of the
input BLOB message into a transform that accepts an xsd:hexBinary type. For
example, you could use a Move transform to set the BLOB binary data into an
XML output message element that has either an xsd:hexBinary or
xsd:base64Binary type.

If you are transforming only the Message Assembly headers and folders (for
example, Properties and Transport headers), you can pass the message body data
through unmodified by using the BLOB domain and a Move transform from the
BLOB input message to the BLOB output message.

© Copyright IBM Corp. 2014 185

186 Designing a message map

Chapter 23. Mapping from a BLOB message to an output
message using a graphical data map

You can use the Graphical Data Mapping editor to transform a message in the
BLOB message domain.

About this task

When you create a new map, the BLOB message is available under the "IBM
supplied message models" category in the map input and output selection tree.
Select the BLOB message as the map input, and then select your required output
message and set its domain in the output message assembly (for example, XMLNSC).

For more information about creating a new map, see “Creating a message map
from a Mapping node” on page 49.

The BLOB message provides a single element value of type xsd:hexBinary. When
you transform a BLOB message, you must wire the value element of the input
BLOB message into a transform that accepts an xsd:hexBinary type. For example,
you could use a Move transform to set the BLOB binary data into an XML output
message element with either an xsd:hexBinary or xsd:base64Binary type.

© Copyright IBM Corp. 2014 187

188 Designing a message map

Chapter 24. Troubleshooting graphical data maps

Diagnose and solve problems that you encounter when using your graphical data
maps.

About this task

The Mapping node reports the running of graphical data map scripts as detailed
user trace events.

The user trace events report the entry and completion of each transform in a map,
and the setting of values in the map output.

The collection and review of IBM Integration Bus user trace enables you to
troubleshoot transformation logic that you build in your graphical data maps.

user trace enables you to troubleshoot transformation logic that you build in your
graphical data maps.

The following topics describe how to diagnose problems by using user trace:
v Debugging with user trace
v Starting user trace
v Checking user trace options
v Changing user trace options
v Stopping user trace
v Retrieving user trace

© Copyright IBM Corp. 2014 189

190 Designing a message map

Chapter 25. Deploying message maps

By default, message map files are deployed in BAR files as a part of an
application, integration service, or library providing an integration solution. You
can also deploy a map as an independent resource if you are managing your
message flows that way. If you change a message map, you must redeploy your
integration solution, or independent message flows.

About this task

IBM Integration Bus prepares message maps for execution on deployment instead
of when the first message is flowed through the Mapping node.

This behavior has the following advantages:
v There is no drop in performance from initializing a message map when the first

message is flowed through the node.
v The message map and its dependencies, such as any referenced message models,

are resolved and validated during deployment to ensure that the message map
runs successfully on first message.

v The message map syntax is validated during deployment to ensure that the
message map runs successfully on first message.

v When IBM Integration Bus is restarted, the message map syntax and its
dependencies are validated before the message flow can be restored.

Note: To avoid a deployment failure, you must include all the message map
dependencies, referenced schemas, ESQL modules, Java classes, and other
resources in your BAR file. You must resolve any message map static errors such
as an invalid XPath expression. If these requirements are not met, you receive a
BIP message that reports the map generation failure.

Procedure

When you deploy message maps, the behavior of IBM Integration Bus is as
follows:
v Behavior when you deploy or redeploy a BAR file:

1. All message maps are validated to ensure that all the map dependencies can
be resolved at run time. This validation step checks that the referenced
message models such as XML schema files, DFDL schema files, and message
set files, and the referenced submaps can be resolved.

2. The message maps and their dependencies are generated to an executable
form. This step also checks that the contents of the map and submaps are
valid, and that they have no errors such as an invalid XPath expression.

3. If the message maps and their dependencies are valid and can be
successfully generated, they are persisted in both the deployed and
generated forms to the configuration store. Otherwise the deployment is
aborted and you receive a BIP message that reports the map generation
failure.

v Behavior after deployment:

© Copyright IBM Corp. 2014 191

1. Background processing is started to compile the generated message maps to
Java byte code so that they can benefit from JIT optimization. The Java byte
code for each map is persisted on completion of the compilation.

v Behavior when the first message flows runs after deployment or redeployment:
1. If the background compilation processing is complete, the Mapping node

executes the java byte code and the JIT optimization starts.
2. If the background compilation processing is not complete, the Mapping node

runs the map initially in the generated form until the compilation is
complete. Then, JIT optimization starts.

v Behavior for any subsequent messages that flow after deployment or
redeployment:
1. The prepared message map runs. If the background processing is completed,

the JIT optimization starts.
v Behavior when you restart IBM Integration Bus, that is, when you restart an

integration node, an integration server, an integration solution, or a message
flow:
1. If the compiled Java byte code for the map is available, it is loaded and the

Mapping node will run this code as soon as the first message is processed.
Then, JIT optimization will start.

2. If the generated form for the map is available and loaded, background
processing is started to compile the generated map to Java byte code so that
they can benefit from JIT optimization. The Java byte code for each map is
persisted on completion of the compilation.

3. If neither the generated or the compiled map code are available, the map is
processed in the same way as when you deploy or redeploy a BAR file.

192 Designing a message map

Chapter 26. Transform types in the Graphical Data Mapping
editor

In the Graphical Data Mapping editor, you can map elements and attributes
between the input and output objects. You can apply a transform to the mapping
that specifies the action to be performed on the input data. The result of the
transform is stored in the output element.

The following table shows the standard mapping transforms that are provided by
the Graphical Data Mapping editor:

Table 15. Core mapping transforms in the Graphical Data Mapping editor:

Transform Description

“Assign” on
page 198

Sets a value in the output element. There is no input element. Column
values set via Assign transform will always be passed as character string.

“Setting the
value of a
simple output
element to a
default or
fixed value”
on page 130

Sets a specific value type in the output element. Cast can also move and
convert an input element to become a specific value type in the output
element.

“Concat” on
page 201

Creates a string concatenation that allows you to retrieve data from two or
more entities and link them into a single result.

“Convert” on
page 204

Copies the input element to the output element and changes the type. The
transform takes a single simple input and creates a single simple output
with a different type.

“Create” on
page 204

Creates an empty element, a nil element, or a simple type element by using
a default value that is based on the element's type.

“Custom
ESQL” on
page 208

Enables you to enter your own ESQL code to be used in the transform.

“Custom
Java” on page
212

Enables you to enter your own Java code to be used in the transform.

“Custom
XPath” on
page 214

Enables you to enter your own XPath expressions to be used in the
transform..

“Move” on
page 225

Copies data from the input element to the output element.

“Normalize”
on page 226

Normalizes the input string by removing white space such as spaces, tabs,
and returns, and moves the resulting normalized string to the output
element.

“Substring”
on page 227

Extracts information as required, and moves the extracted string to the
output element.

Task Describes a manual task or point of concern that might need to be
reviewed or resolved before a message map can be used in your solution.

© Copyright IBM Corp. 2014 193

Table 15. Core mapping transforms in the Graphical Data Mapping editor: (continued)

Transform Description

“Built-in
XPath
transforms”
on page 229

All XPath 2.0 functions are supported, in the form fn:<function_name>.

The following table shows the database transforms that are provided by the
Graphical Data Mapping editor:

Table 16. Database transforms in the Graphical Data Mapping editor:

Transform Description

“Database
Routine” on
page 216

Calls a stored procedure or user-defined function from a database.

“Delete” on
page 216

Deletes one or more rows in a database table that is matched by a Where
clause.

“Failure” on
page 217

Enables the map to take-on error handling for any exceptions that are
raised by the database server in a database transform, instead of having
such exceptions stop the map and be reported.

“Insert” on
page 223

Inserts a row into a database table.

“Return” on
page 226

Enables extra processing after a successful Insert, Update, or Delete
database operation, or Database Routine call. Provides the results from the
database operation or call as inputs.

“Select” on
page 227

Retrieves data from rows in a database table, so that the data can be used
as input in a message map.

“Update” on
page 228

Updates one or more rows in a database table that is matched by a Where
clause with a single set of data values.

In addition to the core mapping transforms, several structural transforms are
provided. The structural transforms control how nested elements are displayed in
the Graphical Data Mapping editor, but they have no effect on the data itself. The
structural transforms are described in the following table:

Table 17. Structural mapping transforms in the Graphical Data Mapping editor:

Transform Description

“Append” on
page 195

Appends occurrences of an output array in the order of the inputs.

“For Each” on
page 218

Iterates over an input array element (either a simple type or a complex
type).

“Group” on
page 222

Takes a single input array and produces a set of nested output arrays that
collate elements of the input array.

“If, Else if,
and Else” on
page 222

Enables you to control the flow of the mapping by setting conditions.

“Join” on
page 223

Joins elements from two or more inputs.

“Local map”
on page 225

Provides a hierarchical view of element transforms in the message map.

194 Designing a message map

Table 17. Structural mapping transforms in the Graphical Data Mapping editor: (continued)

Transform Description

“Submap” on
page 227

References another map. It calls a map from this or another map file,
which can be stored in a library, an application, an integration service, or
an Integration project.

Append
You can use the Append transform to create an output array in the order of the
inputs.

Overview

The Append transform is not available in the list of available transforms until you
wire at least two inputs to a transform.

To build an output array of N elements where you have N inputs available in a
flat structure, you wire each input to the Append transform.

For example, the following figure shows two flat structures, HomeAddress and
OfficeAddress wired into an Append transform to create the Address array.

To build an output array of N elements where you have less than N unique inputs
to wire into the Append transform, you can wire the same input multiple times.

Inputs to the Append transform

The Append transform takes multiple inputs of either simple type or complex
type.

You wire inputs to the Append transform as primary connections.

You can wire the same input into an Append transform more than once if you
need to produce more than one array instance from a single input.

The Append transform iterates over multiple inputs in the specified order to
append data. The order of inputs into the transform is recognized, and is set in the
Order property page.

When you connect a repeating input, each instance adds an extra occurrence to the
output array. You can use the Cardinality property page on the transform to
specify a subset of indexes the transform should process. The first index element is
1.

Inputs of single, non-repeating elements are also allowed. Each single input
element adds an extra occurrence to the output array.

The Append transform provides a nested transform for each input in the output
array.

Chapter 26. Transform types in the Graphical Data Mapping editor 195

The nested transforms are performed for each input sequentially, producing
occurrences of the output array. First over all elements in the first input, then over
all elements in the second input.

Output of the Append transform

The output of an Append transform can be a simple type array or a complex type
array.

The output array size is the sum of the input elements wired to the Append
transform.

Note: You can define any number of inputs to the Append transform. The
Graphical Data Mapping editor does not validate the number of inputs. You must
ensure that the number of wired inputs to the Append transform correspond to
the value configured in the Maximum occurrence property of the output array.

Order of the inputs

By default, the order of the inputs to the Append transform is the order in which
you wire the inputs.

You can modify the order by reordering the inputs in the Order tab of the
transform properties.

Define a conditional expression

You can define supplement connections between input elements and the Append
transform. You can then use these input elements in a conditional expression that
defines the condition under which the transform is applied. If the condition
evaluates to true, the transform is applied.

For more information, see “Configuring the properties of a transform” on page 84.

Example

This example shows how to create an output array with two indexes by using the
Append transform.

196 Designing a message map

You connect two input elements (HomeNumber and Mobile) to the Append
transform. These inputs will be used to set the value of multiple indexes in the
output repeating element Phonedetails.

You also define a connection from the Append transform to the repeating element
Phonedetails.

When you open the nested map associated to the Append transform, you get two
Local Map transforms, one per input element.

Inside each Local Map transform, you define the transformation logic that sets the
output values for one index of the output repeating structure Phonedetails.

The following figure shows the nested map associated with the Local Map
transform for the input element Mobile:

The following figure shows the nested map associated with the Local Map
transform for the input element HomeNumber:

Chapter 26. Transform types in the Graphical Data Mapping editor 197

You can configure the order in which the indexes are created. You set the order in
which indexes are created in the Order tab of the Properties view of the Append
transform.

In this example, the first index contains the information of the home number. The
second index contains the information of the mobile number.

Assign
You can use the Assign transform to set the value of an output element to a
constant or fixed value.

Overview

The Assign transform sets a value that can be a fixed value or it can be the result
of a function that has no input; for example, a current date function.

You cannot use the value of an input element to set the value of an output element
with the Assign transform.

The output element is set to a constant value.

The output element must be a simple type element.

For more information about assigning a value to an output element, see “Setting
the value of an output element to a simple data type” on page 126.

Assign a value

You must assign a value in the Value field that is located in the General tab of the
Assign transform properties view.

If you do not specify a value, an empty element is created.

198 Designing a message map

Define a conditional expression

You can define supplement connections between input elements and the Assign
transform. You can then use these input elements in a conditional expression that
defines the condition under which the transform is applied. If the condition
evaluates to true, the transform is applied.

When you define supplement connections, you can configure the following
properties to define how those inputs are displayed in the message map:
v Sort: You can sort the inputs to the transform by ascending order, descending

order, case order, or data order.
v Order: You can display the order of input connections to a transform. You can

reorder them.

For more information, see “Configuring the properties of a transform” on page 84.

Default values

The following table lists the default values set when you use the Assign transform:

Table 18. Default values set by using the Assign transform

Type Default value

string Empty string

dateTime 2002-01-01T11:00:00

Boolean false

decimal 0.0

double 0.0

hexBinary 00

long 0

duration P1Y

time 00:00:00

date 2002-01-01

Cast type (xs:type)
You can use an xs:type transform to cast the value of a simple element to a specific
data type.

Chapter 26. Transform types in the Graphical Data Mapping editor 199

Overview

For example, you might want to assign a value with a specific data type to a target
element that is defined as xs:anySimpleType.

When you use an xs:type transform, you can have zero or more input elements.
v You cast one of the input elements to set the value of an output element.
v You can use any of the input elements to build an XPath conditional expression

that determines whether the xs:type transform is applied or not.

You must choose the xs:type transform according to the output element data type.
For example, if you have an output element with a Boolean data type, you must
choose xs:boolean transform.

For more information about casting a specific value type to an output element, see
“Setting the value of an output element with a explicit data type” on page 128.

Assign a value

You can set a fixed value or define an XPath expression in the Value field that is
located in the General tab of a xs:type transform properties view.

To define an XPath expression, you click Edit. Then, you can use content-assist to
enter the expression. As part of the expression, you can use any input elements for
which you define connections to the transform.

Define a conditional expression

You can define multiple connections between input elements and an xs:type
transform. You can then use these input elements in a conditional expression that
defines the condition under which the transform is applied. If the condition
evaluates to true, the transform is applied.

When you define multiple input connections, you can configure the following
properties to define how those inputs are displayed in the message map:
v Sort: You can sort the inputs to the transform by ascending order, descending

order, case order, or data order.
v Order: You can display the order of input connections to a transform. You can

reorder them.

For more information, see “Configuring the properties of a transform” on page 84.

200 Designing a message map

xs:type transforms

You can use any of the following xs:any transforms:
v xs:NOTATION: This function takes a primitive and casts it as notation.
v xs:Qname: This function takes a primitive and casts it as a qualified name.
v xs:anyURI: This function takes a primitive and casts it as anyURI.
v xs:base64Binary: This function takes a primitive and casts it as base64Binary.
v xs:boolean: This function takes a primitive and casts it as boolean.

You can use any of the following values: true Or false.
v xs:dateTime: This function takes a primitive and casts it as dateTime.
v xs:date: This function takes a primitive and casts it as date.
v xs:dayTimeDuration: This function takes a primitive and casts it as

dayTimeduration.
v xs:decimal: This function takes a primitive and casts it as decimal.
v xs:double: This function takes a primitive and casts it as double.
v xs:float: This function takes a primitive and casts it as float.
v xs:gDay: This function takes a primitive and casts it as gDay.
v xs:gMonthDay: This function takes a primitive and casts it as gMonthDay.
v xs:gMonth: This function takes a primitive and casts it as gMonth.
v xs:gYearMonth: This function takes a primitive and casts it as gYearMonth.
v xs:gYear: This function takes a primitive and casts it as gYear.
v xs:hexBinary: This function takes a primitive and casts it as hexBinary.
v xs:integer: This function takes a primitive and casts it as integer.
v xs:int: This function takes a primitive and casts it as signed 32-bit integer.
v xs:string: This function takes a primitive and casts it as string.
v xs:time: This function takes a primitive and casts it as time.
v xs:yearMonthDuration: This function takes a primitive and casts it as

yearMonthDuration.

Concat
You can use a Concat transform to concatenate data from two or more simple
elements into a string output element.

Overview

The Concat transform concatenates two or more simple inputs into a string output
element.

When you configure the Concat transform, you can specify a prefix, a suffix, and a
delimiter through the Properties page:

You can specify an alphanumeric character to be the delimiter between the strings,.
You can also use a string prefix and a string suffix.

Chapter 26. Transform types in the Graphical Data Mapping editor 201

For example, you can concatenate the strings from the elements firstname and
lastname, and specify a space as the delimiter, a prefix of Mr. , and a comma as
the suffix, with the following result: Mr. firstname lastname,

When can you use the Concat transform?

You can use the Concat transform when the following premises apply:
v You want to concatenate data from two or more single type inputs.
v The input types to the Concat transform can be any simple or primitive data

types.

Note: Simple type input elements that are not of type xs:string will be cast to
xs:string.

v All the inputs to the Concat transform, that are connected as primary
connections, are used to calculate the value of the output string element.

v You might need to define a prefix.
v You might need to define the same delimiter between input values.
v You might need to define a suffix.

You cannot select and use the Concat transform when any of the following criteria
on inputs applies:
v One of the inputs to the Concat transform is a complex type element.
v One of the inputs is a repeating element, that is, the input element cardinality is

set to [1..*] or [0..*].

Inputs to the Concat transform

The Concat transform takes multiple simple type elements.

You wire inputs to the Concat transform as primary connections.

You can wire the same input into a Concat transform more than once.

202 Designing a message map

The Concat transform concatenates input data in order. The order of inputs into
the transform is recognized, and is set in the Order property page.

Order of the inputs

By default, the order of the inputs to the Concat transform is the order in which
you wire the inputs.

You can modify the order by reordering the inputs in the Order tab of the
transform properties.

Define when the transform is applied at run time

You can use any of the input elements to the Concat transform to define a
conditional expression that defines the condition under which the transform is
applied. If the condition evaluates to true, the transform is applied.

For more information, see “Configuring the properties of a transform” on page 84.

Warning error

By default, you cannot connect a repeating simple element to a Concat transform.
However, if you have a map where you have defined a Concat transform, and you
change the cardinality of one of the input elements so it becomes a repeatable
simple type, the Concat transform will show a warning.

The warning message is the following:

Each input of the string concatenation function expects a single input.
Make sure {0} will not pass multiple instances to the function at run time.

The warning is displayed because at least one input is not of single type.

When a Concat transform has such a warning, the run time behavior is the
following:
v If the input XML has no more than one instance of the repeatable input, the

Concat transform produces the expected result at run time.
v If the input XML has more than one instance of the repeatable input, the Concat

transform results in a run time exception.

Example for a repeating single input element to a Concat transform:

Chapter 26. Transform types in the Graphical Data Mapping editor 203

Convert
The Convert transform implements a schema type cast on the input to match the
output. If the type cast cannot be performed on the input instance value, an
exception is thrown and the map processing stops.

Use the Convert transform to move a simple input element to an output element,
when both elements are defined in the relevant schema models with different
types. For example, you might have an input element with type xsd:int and an
output element with type xsd:decimal. The Convert transform changes the input
with an int type to an output with a decimal type.

Create
You can use the Create transform to initialize an output element, set an output
element to nil, or set an output element to fixed value defined by the schema.

Overview

For simple types, you cannot use the value of an input element to set the value of
an output element in a Create transform.

However, you can define zero or more supplement connections between input
elements and the Create transform. You can then use these input elements in a
conditional expression that defines the condition under which the transform is
applied.

You can use the Create transform to create the following types of output element:
v An empty element. For more information, see “Initializing a simple or complex

output element by using the Create transform” on page 135.
v An element with xsi:nil="true", also called a nil element. For more

information, see “Choosing an XPath conditional expression that tests for a nil
value in a transform” on page 91.

v A simple type element with a default value that is specified by the schema. For
more information, see “Setting the value of a simple output element to a default
or fixed value” on page 130.

v A complex element with child elements populated by using the Assign
transform or the Move transform from supplemental wired inputs.

Set the value of a string type output element

By default, the option Create empty is preselected. You must choose this option to
initialize a single type output element.

For example, for an element that is defined in the schema model as <element
name="Postcode" type="string" nillable="true" default="30567" />, you can
choose any of the following options:
v Create nil
v Create by using a default or a fixed value that is defined by schema for target

type

204 Designing a message map

v Create empty

The following figure shows the properties view for the Create transform defined
for that element:

For example, if the output element is defined in the schema model as <element
name="Postcode" type="string" nillable="false" />, you can choose to create
the output element as empty.

The option to create a nil element is available only when the target is nillable.

The option to create an element with the default value is only available when the
target has a default value that is defined in the schema file.

Set the value of a complex type output element

By default, the option Create empty is preselected. You must choose this option to
initialize a complex output element.

Note: You can initialize or set to nil complex output elements.

When you define a Create transform to initialize a complex type output element, a
nested map is created containing the complex structure elements. You configure
each element within the nested map individually, that is, you initialize, set to nil,
or set to a default value each individual element.

Chapter 26. Transform types in the Graphical Data Mapping editor 205

When you initialize a complex type, you can use the nested map that is associated
with the Create transform to provide values for the child element. You can define
and configure each element by using transforms that do not require an input, for
example the Assign transform, an xs:type transform, or the Create transform. You
can also wire a supplemental input to move input values to the child elements.

When you define a Create transform to set to nil a complex type output element, a
nested map is created containing the complex structure elements. You can get the
error Transform contains nested errors if you try to configure any element
within the nested map individually.

Specify how a simple data type element or attribute is created

You must specify how an output element or an attribute is created in the General
tab of the Create transform properties view.

The following table lists simple data types with their default options preselected
when you define a Create transform. It lists the options that you can choose to set
the value of an output element of that type:

206 Designing a message map

Table 19. Configuration choices available when you define a Create transform to set the
value of an output element

Data type Default option

Output element
can be set to

empty

Output element
can be set to nil
(the element is

defined as
nillable="true")

Output element
can be set to

fixed or default
value (the default

property is set
in the schema)

String Create empty valid valid valid

Integer Create nil not valid valid valid

Boolean Create nil not valid valid valid

date Create nil not valid valid valid

dateTime Create using
default or fixed

value defined by
schema for
target type

not valid not valid valid

double Create using
default or fixed

value defined by
schema for
target type

not valid not valid valid

float Create using
default or fixed

value defined by
schema for
target type

not valid not valid valid

hexBinary Create empty valid valid valid

int Create using
default or fixed

value defined by
schema for
target type

not valid not valid valid

time Create using
default or fixed

value defined by
schema for
target type

not valid not valid valid

For example, for the following schema definition of an output element:

<element name="NewAddress" type="boolean" nillable="true" />

When you define a Create transform to set the value of a Boolean element, you can
create the element as nil.

Chapter 26. Transform types in the Graphical Data Mapping editor 207

For example, for the following schema definition of an output element:

<element name="NewAddress" type="boolean" nillable="false" />

When you define a Create transform to set the value of a Boolean element, you can
specify a fixed value, and the choice is preselected.

Define a conditional expression

You can define supplement connections between input elements and the Create
transform. You can then use these input elements in a conditional expression that
defines the condition under which the transform is applied. If the condition
evaluates to true, the transform is applied.

When you define supplement connections, you can configure the following
properties to define how those inputs are displayed in the message map:
v Sort: You can sort the inputs to the transform by ascending order, descending

order, case order, or data order.
v Order: You can display the order of input connections to a transform. You can

reorder them.

For more information, see “Configuring the properties of a transform” on page 84.

Custom ESQL
You use the Custom ESQL transform to call your own ESQL code from a graphical
data map.

In the Graphical Data Mapping editor, select Custom ESQL from the Custom
Transforms list. You can then use the transform properties to select ESQL code that
is stored in your workspace. When you select the ESQL route, the Parameters table
Name and Type columns are populated. You must then select an input element or
XPath expression in the Value column for each parameter. You can use the content
assist in the Value column to help you to assign the required element, literal, or
XPath expression.

The following topics contain further information about ESQL types and functions:
v “Equivalent ESQL types and schema types” on page 209
v “Equivalent ESQL and XPath mapping functions” on page 210

The ESQL file that contains the referenced ESQL module must be visible for
mapping to be selectable. Ensure the application, library, or project references are
set to make the ESQL file accessible to the map. When you deploy the map, ensure
that the ESQL file is also deployed, and that Compile and in-line resources is not
selected.

208 Designing a message map

Requirements for ESQL modules called from a graphical data
map

The following requirements apply to ESQL modules that are called from a
graphical data map:
v The syntax of an ESQL procedure is shown in CREATE PROCEDURE statement.

The procedures that can be called from a Custom ESQL transform in a graphical
data map must conform to the following requirements:
– Only IN parameters are allowed
– A RETURN is required

v The input and return data types must be simple scalars; ESQL reference data
types are not supported.

v An ESQL module with no inputs can be used to assign to an output element.
v Each input parameter to the ESQL module can be taken from an input element

that is wired into the custom ESQL transform or specified as a constant.
v The ESQL must not include SQL calls to a data source. The Graphical Data

Mapping editor provides facilities to include database operations in the map. For
more information, see Chapter 19, “Mapping database content,” on page 159.

Equivalent ESQL types and schema types
When you need to process the data to set a target value, you can implement a
function in XPath Java or ESQL. If you choose to use ESQL functions you can
invoke them from your map in a custom ESQL transform.

The following table shows the equivalence between schema types and ESQL types:

XML Schema simple type ESQL data type in message tree

anyURI CHARACTER

base64Binary BLOB

boolean BOOLEAN

byte INTEGER

date DATE

dateTime TIMESTAMP

dayTimeDuration INTERVAL

decimal DECIMAL

double FLOAT

duration INTERVAL

ENTITIES Repeating set of elements in the tree, each of
type CHARACTER

ENTITY CHARACTER

float FLOAT

gDay DATE

gMonth DATE

gMonthDay DATE

gYear DATE

gYearMonth DATE

hexBinary BLOB

Chapter 26. Transform types in the Graphical Data Mapping editor 209

XML Schema simple type ESQL data type in message tree

ID CHARACTER

IDREF CHARACTER

IDREFS Repeating set of elements in the tree, each of
type CHARACTER

int INTEGER

integer DECIMAL

language CHARACTER

long INTEGER

Name CHARACTER

NCName CHARACTER

negativeInteger DECIMAL

NMTOKEN CHARACTER

NMTOKENS List of CHARACTER

nonNegativeInteger DECIMAL

nonPositiveInteger DECIMAL

normalizedString CHARACTER

NOTATION CHARACTER

positiveInteger DECIMAL

QName CHARACTER

short INTEGER

string CHARACTER

time TIME

token CHARACTER

unsignedByte INTEGER

unsignedInt INTEGER

unsignedLong DECIMAL

unsignedShort INTEGER

yearMonthDuration INTERVAL

Equivalent ESQL and XPath mapping functions
You can implement some data mapping functions either by using XPath functions
or by supplying equivalent ESQL functions in a Custom ESQL transform.

The following functions in the ESQL language have equivalent XPath functions
built into the Graphical Data Mapping editor. You can invoke these functions
directly without having to write ESQL modules in an ESQL file to be called from
the map:

Table 20. Equivalent ESQL and XPath functions

ESQL function XPath function

EXTRACT YEAR FROM fn:year-from-date

fn:year-from-dateTime

210 Designing a message map

Table 20. Equivalent ESQL and XPath functions (continued)

ESQL function XPath function

EXTRACT MONTH FROM fn:month-from-date

fn:month-from-dateTime

EXTRACT DAY FROM fn:day-from-date

fn:day-from-dateTime

EXTRACT HOUR FROM fn:hours-from-dateTime

fn:hours-from-duration

fn:hours-from-time

EXTRACT MINUTE FROM fn:minutes-from-dateTime

fn:minutes-from-duration

fn:minutes-from-time

EXTRACT SECOND FROM fn:seconds-from-dateTime

fn:seconds-from-duration

fn:seconds-from-time

EXTRACT DAYS FROM fn:days-from-duration

EXTRACT MONTHS FROM fn:months-from-duration

CURRENT_DATE fn:current-date

CURRENT_TIME fn:current-time

CURRENT_TIMESTAMP fn:current-dateTime

LOCAL_TIMEZONE fn:implicit-timezone

ABS (ABSVAL) fn:abs

CEIL (CEILING) fn:ceiling

FLOOR fn:floor

LEFT fn:substring

CONTAINS fn:contains

ENDSWITH fn:ends-with

LENGTH fn:string-length

LOWER (LCASE) fn:lower-case

REPLACE fn:replace

RIGHT fn:substring

STARTSWITH fn:starts-with

SUBSTRING ... FROM fn:substring

SUBSTRING ... BEFORE fn:substring-before

SUBSTRING ... AFTER fn:substring-after

SUBSTRING ... FROM ... FOR fn:substring(fn:substring(...), $for)

SUBSTRING ... BEFORE ... FOR fn:substring(fn:substring-before(...), $for)

SUBSTRING ... AFTER ... FOR fn:substring(fn:substring-after(...), $for)

TRANSLATE fn:translate

UPPER (UCASE) fn:upper-case

Chapter 26. Transform types in the Graphical Data Mapping editor 211

Table 20. Equivalent ESQL and XPath functions (continued)

ESQL function XPath function

FIELDNAME fn:local-name

FIELDNAMESPACE fn:namespace-uri

CARDINALITY fn:count

EXISTS fn:exists

Custom Java
You can use the Custom Java transform to enter Java code in a message map.

In the Graphical Data Mapping editor, you can use the Custom Java transform to
enter your own Java code. You can then use the transform properties to select a
Java class, and a Java method. The Java class must be available in a Java project in
your workspace. You can use the content assist in the Values column to help you
assign the required elements of the source schema.

Consider the Graphical Data Mapping editor behavior when you use the Custom
Java transform:
v When you include a Custom Java transform, an import is added to refer to the

package qualified Java class, defining a prefix based on the class name.
v If you need to use custom Java only in condition or filter expressions, you can

add Java imports to your Java class so that the class public static methods are
available through content assist when you are composing an expression.

v The Java class that you provide to the map must have a static method that
returns the appropriate type for the value of the output element, and takes
parameters of the appropriate type for the wired inputs.

For example, the following Java method could be used in a Custom Java transform
that had three input elements, of types a xs:string, xs:decimal and xs:boolean
and the output element being a xs:decimal:
public static BigDecimal calSomething(String memType, BigDecimal stdCost, boolean flag) {
BigDecimal actualCost = stdCost;
if (flag & memType.startsWith("gold")) {
BigDecimal discRate = new BigDecimal(0.9);
actualCost = actualCost.multiply(discRate);
}
return actualCost;
}

Mappings between the Schema type, the Java type, and the IBM
Integration Bus message assembly type

The following table shows the mappings between the Schema type, the Java type,
and the IBM Integration Bus message assembly type:

Table 21. Mapping the Schema type, Java type, and message tree element type

Schema type Java type

IBM Integration Bus
message assembly tree
element type

xs:anyURI java.lang.String CHARACTER

xs:base64Binary byte[] BLOB

212 Designing a message map

Table 21. Mapping the Schema type, Java type, and message tree element
type (continued)

Schema type Java type

IBM Integration Bus
message assembly tree
element type

xs:boolean boolean, java.lang.Boolean BOOLEAN

xs:byte byte, java.lang.Byte INTEGER

xs:date javax.xml.datatype.XMLGregorianCalendar DATE

xs:dateTime javax.xml.datatype.XMLGregorianCalendar TIMESTAMP

xs:dayTimeDuration javax.xml.datatype.Duration INTERVAL

xs:decimal java.math.BigDecimal DECIMAL

xs:double double, java.lang.Double FLOAT

xs:duration javax.xml.datatype.Duration INTERVAL

xs:float float, java.lang.Float FLOAT

xs:gDay javax.xml.datatype.XMLGregorianCalendar DATE

xs:gMonth javax.xml.datatype.XMLGregorianCalendar DATE

xs:gMonthDay javax.xml.datatype.XMLGregorianCalendar DATE

xs:gYear javax.xml.datatype.XMLGregorianCalendar DATE

xs:gYearMonth javax.xml.datatype.XMLGregorianCalendar DATE

xs:hexBinary byte[] BLOB

xs:int int, java.lang.Integer INTEGER

xs:integer java.math.BigInteger DECIMAL

xs:long long, java.lang.Long INTEGER

xs:negativeInteger java.math.BigInteger DECIMAL

xs:nonNegativeInteger java.math.BigInteger DECIMAL

xs:nonPositiveInteger java.math.BigInteger DECIMAL

xs:normalizedString java.lang.String CHARACTER

xs:positiveInteger java.math.BigInteger DECIMAL

xs:short short, java.lang.Short INTEGER

xs:string java.lang.String CHARACTER

xs:time javax.xml.datatype.XMLGregorianCalendar TIME

xs:unsignedByte Short INTEGER

xs:unsignedInt Long INTEGER

xs:unsignedLong java.math.BigInteger DECIMAL

xs:unsignedShort Int INTEGER

xs:yearMonthDuration javax.xml.datatype.Duration INTERVAL

Processing arrays and complex types

You can create Custom Java transforms to process input and outputs that are
arrays or complex types. These cannot be converted from a Schema type to a
defined Java type shown in the previous table.

Chapter 26. Transform types in the Graphical Data Mapping editor 213

In IBM Integration Bus, your Java class must use the MbElement class to reference
the input or output element. For information about using Java and the MbElement
class, see Chapter 17, “Using Java API classes for Custom Java mapping
transforms,” on page 155.

Custom XPath
You can use the Custom XPath transform to provide a data value for a simple
target element, or values for a repeating simple target element by using an XPath
expression.

Overview

You define the XPath expression in the General tab of the Properties view.

You can use context assist by pressing Ctrl+Space while constructing the XPath
expression. For more information, see “Using content assist (Mapping syntax)” on
page 93.

When to use the Custom XPath transform

You can extend built-in transformation functions by using custom XPath
expressions. For more information about XPath, see XPath tutorial or W3C XML
Path Language (XPath) 2.0.

You can use the Custom Xpath transform to perform any of the following
mappings:
v Implement an arithmetic operation, such as add, subtract, or multiply. For more

information, see “Choosing a transform to perform an arithmetic operation” on
page 31.

v Implement complex XPath expressions.
v To obtain the value of an integration node property. For more information, see

“Accessing integration node properties from a Mapping node” on page 122.
v To access user-defined properties. For more information, see “Accessing

user-defined properties from a Mapping node” on page 122.

Inputs

You can connect any input element to a Custom XPath transform.

Outputs

You can use a Custom XPath transform to set the data value of a simple target
element, or to set the values for a repeating simple target element.

Note: The Custom XPath transform returns values, not elements. For this reason,
you cannot populate a complex structure from a Custom XPath transform.

Example

The following figure shows a Custom XPath transform that performs the following
calculation:
1. Uses the fn:substring XPath function to obtain part of the information

provided in element E.

214 Designing a message map

http://www.w3schools.com/xpath/
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

2. Uses the fn:concat XPath function to concatenate the result of the fn:substring
function, with the delimiter _, and the element D.

3. Uses the fn:lower-case XPath function to put in lower case the result of the
fn:concat function.

If you input the following message:
<?xml version="1.0" encoding="UTF-8"?>
<NewElement>

<A>A1
B1
<C>Field_1</C>
<D>1000</D>
<E>CUSTOMER_AREA1</E>
<F>Optional1</F>
<G>Optional1</G>

</NewElement>

you get the following output value:
<NewElement1>
<a>area1_1000
</NewElement1>

Example: How to perform an arithmetic operation

This example shows how to perform an arithmetic operation by using a Custom
XPath transform.

The transform has 3 inputs, that are used as part of the calculation that determines
the value of the output element b.

Note: You can only use as arguments of an arithmetic operation non-repeating
simple type input elements.

The operations consists on adding the value of the input element A to the value of
calculating D times E. The value of E is of type string. The value of E is cast to an
integer.

Chapter 26. Transform types in the Graphical Data Mapping editor 215

When you transform the following message, the value of b is 120012.
<?xml version="1.0" encoding="UTF-8"?>
<NewElement>

<A>10
<C>2</C>
<C>10</C>
<D>1000</D>
<E>120</E>
<F>Optional1</F>
<G>Optional1</G>
<H>

<H1>A</H1>
<H2>10</H2>
<H3>20</H3>

</H>
</NewElement>

Database Routine
You can use the Database Routine transform to call a stored procedure in a
database, setting the parameter values by mapping input elements.

The definition of the stored procedure used during the creation of your Database
Routine transform is specified in a database definition file (.dbm file) that you
select from the Data Design project.

You create the information that is provided in the database definition file by
running discovery against your database server. For more information, see
“Creating a database definition (.dbm file) by using the New Database Definition
File wizard” on page 118. The information available varies depending on the
vendor of your database server. Some information, such as the content of any
Result Sets returned, is not provided. If you want to map data from any columns
in these Result sets, you must define them in the Database Routine setup.

For more information, see “Calling a stored procedure from a map” on page 168.

Limitations
v Only IBM DB2 stored procedures are supported database calls from a graphical

data map.
v Stored procedure parameters of type Array are not supported in database calls

from a graphical data map.

Delete
The Delete transform deletes one or more rows of data from a database table.

216 Designing a message map

Use the Delete transform to delete one or more rows of data that match a
configured Where clause from a database table. For more information, see
“Deleting data from a table” on page 165.

The database table structure needed to create your Delete transform is specified in
a database definition file (.dbm file) that you select from the Data Design project
used to create the message map. The database definition can be discovered by
connecting to a data server from the tooling.

When your message map has been deployed to an integration server, and your
message map is run, the database server that is used by the IBM Integration Bus
runtime component to process your Delete transform is specified by the
JDBCProvider configurable service. The JDBCProvider service name must have the
same name as the database name that is specified in your Delete transform during
development. For more information, see Enabling JDBC connections to the
databases.

Failure
Use the Failure transform to handle exceptions that might be raised by the
configured database server when your message map runs SQL statements to
implement the action of a database transform.

If you want the message map to handle exceptions that are returned from the
database server when the SQL operation is run, instead of such exceptions
stopping the message map and being reported, you can add a Failure transform to
the transform group.

The Failure transform is an optional transform that can be added or removed as
required.

The Failure transform does not perform any transformation. You must transform
the input and output elements within the nested map.

Handling database warnings

When you create a database transform, select Treat warnings as exceptions if you
want the database warnings to be treated as errors.

If this option is selected, the first SQL operation that results in a warning from the
selected database raises an exception.

Run time behavior

The way that database exceptions are handled is determined by the configuration
of the corresponding Failure transform in a message map:
1. If the Failure transform is present in the message map, and is connected to one

or more output objects, then the exception is caught and processed by the
Failure transform.

2. If the Failure transform is present in the message map, but is not connected,
then the exception is caught by the Failure transform, and is ignored.

3. If the Failure transform has been deleted from the message map, then the
exception is handled by the Mapping node in your message flow, and is
handled in the same way as other message flow exceptions.

Chapter 26. Transform types in the Graphical Data Mapping editor 217

4. If you want the message map to stop running when the database transform
receives an SQL exception, remove the Failure transform. For more
information, see “Handling database exceptions in a graphical data map” on
page 171.

For Each
You can use the For Each transform to iterate over one input array element, which
can be either a simple type or a complex type repeating structure, and set the
value of an output element.

Overview

The For Each transform contains a nested map. The elements in the nested map
must be mapped, otherwise no action is performed when the transform runs.

You can configure the For Each transform to execute once when the input array is
empty or there are input elements that match your input selection criteria. You
must set the Allow Empty input condition in the Filter Inputs property tab.

Inputs

You can define multiple inputs to a For Each transform.
v The For Each transform can only have one primary input connection, and the

input must be repeatable.
– The Graphical Data Mapping editor counts the indexes from 1 to N for each

processed input.
– When the input array element is empty or no inputs match a provided filter

condition, the Graphical Data Mapping editor sets the index variable to 0.
– The Graphical Data Mapping editor provides a variable that contains the

index value of each iteration of the For Each transform. The name is as
follows: $VarName-index, where VarName is the name of the repeating element.

Note: Always use content assist to get the element name assigned by the
Graphical Data Mapping editor to the repeating element.

v Additional connections to the For Each transform must be of type Supplement.
You can use these inputs in any of the following ways:
– You might want to create a conditional expression based on the value of the

input. You can use it to define the condition that determines whether the For
Each transform is applied. You can use it to determine which indexes to
apply as part of the transformation.

218 Designing a message map

– You might want to pass an additional non-repeating element into the nested
transform. This input is available in the mapping of each iteration executed
by the For Each transform.

v You can configure the Cardinality property page on the For Each transform to
indicate which index of an input array to iterate over.

v You can configure the Filter Inputs property page to specify the matching
criteria for filtering input repeating elements.

Cardinality

The Cardinality property determines the inputs participating in the For Each
operation.

The first index element is 1.

You configure the Cardinality tab in the Properties view to specify the indexes that
will be processed by the transform. For more information, see “Selecting the
indexes of input array elements” on page 28.

Chapter 26. Transform types in the Graphical Data Mapping editor 219

Filter Inputs

Configure the Filter Inputs property tab to specify an XPath expression that
determines which instances of the repeating input will be processed in the nested
mapping. Each element of the repeatable input will be tested against the condition.
The transform will run for those elements that satisfy the condition.

You can use context assist by pressing Ctrl+Space while constructing the XPath
expression. For more information, see “Using content assist (Mapping syntax)” on
page 93.

Note: To obtain the exact name of the variables associated with the inputs, use
content assist.

Enable Allow Empty input when the input array element is empty or no inputs
match a provided filter condition, so that the transform is still entered exactly once.
In this case, the primary input in the nested transform will be missing, and the
index variable will be zero.

Outputs

The output element of a For Each transform can be a simple element, or a complex
element, that can be a repeating element or a non-repeating element.

The output array size is equal to the input array size, minus any elements that are
filtered out from the cardinality property page.

Example

In this example, the For Each transform only runs for the first three elements of
the repeating element. The rest of the elements in the array are not considered. If
the first four characters of the element B in each element of the array start with

220 Designing a message map

UK01, then the transformation inside the nested map is executed. Inside the nested
map, the fn:concat transform calculates the value of element e based on the input
element index and the input element D.

When you run the following message through the For Each transform,
<?xml version="1.0" encoding="UTF-8"?>
<NewElement>

<A>A1
<C>Field_1</C>
<C>Field_2</C>
<C>Field_3</C>
<D>1000</D>
<E>CUSTOMER_AREA1</E>

</NewElement>

you get the following output:
<NewElement1>
<c>
<d/>
<e>0_1000</e>
</c>
</NewElement1>

Note: If the repeating element is empty, then the nested map is executed once
because the option Allow Empty input is selected.

When you run the following message through the For Each transform,
<?xml version="1.0" encoding="UTF-8"?>
<NewElement>

<A>A1
UK011234567
B2
UK019999999
UK01xxxxxxx

Chapter 26. Transform types in the Graphical Data Mapping editor 221

<C>Field_1</C>
<C>Field_2</C>
<C>Field_3</C>
<D>1000</D>
<E>CUSTOMER_AREA1</E>

</NewElement>

you get the following output:
<NewElement1>
<c>
<d>UK011234567</d>
<e>1_1000</e>
</c>
<c>
<d>UK019999999</d>
<e>3_1000</e>
</c>
</NewElement1>

Group
The Group transform produces a set of nested output arrays by collating the input
array.

Overview

The Group transform takes the following types of inputs and outputs:
v The input must be a single repeating complex type, such as an array or a list.
v The output must be a repeating complex type, that is formed of a nested simple

type and a complex type, such as a nested array or lists.

The General properties page of the Group transform provides the Group by
selection, from which you can select a simple type element. The value of the
simple type element is used to collate occurrences of the repeating input.

The Group transform provides a nested transform for mapping each collated input
array occurrence to the output nested array structure.

The nested transforms are performed sequentially for each collated group of input
elements that have matching values in the element that you have selected to group
by in the General Properties.

For example, you might use the Group transform to map a single list of company
employee records into a nested list of employees by department. In this case, the
input would be the repeating array input of Employee complex types. You would
then select the Department element of the Employee input complex type for the
Group by property. The output would be the repeating array input of Department
complex types. The Department complex type would contain a DepartmentName
simple type element, and a repeating nested array element of DepartmentEmployees
complex types. The nested mapping of the Group transform would allow you to
map the values of the "Employee" complex type to a "Department" complex type.

If, Else if, and Else
The If, Else if, and Else transform enables you to control the flow of the mapping
by setting conditions.

222 Designing a message map

The If, Else if and Else transform operates as a group of conditional transforms.
The condition is applied to the input element of the conditional transform. If the
condition is satisfied, the transform that is nested within the conditional transform
is run.
v For each conditional transform in the group, enter a condition in the Conditions

tab in the Properties view. The condition must be in the form of an XPath
expression.

v To change the order in which the conditions are evaluated, select the conditional
group and click the Order tab and use the up and down arrows.

v Double-click the conditional transform (for example, If) to create the mapping
that will execute for the condition.

The elements in the nested map must be mapped in order for the transform to run.

Insert
The Insert transform inserts a row to a database table.

Use the Insert transform to insert a row into a database table. For more
information, see “Inserting data into a table” on page 162.

The database server that is used during the creation of your Insert transform is
specified in a database definition file (.dbm file) that you select from the Data
Design project used to create the message map.

When your message map has been deployed to an integration server, and your
message map is run, the database server that is used by the IBM Integration Bus
runtime component to process your Insert transform is specified by the
JDBCProvider configurable service. The JDBCProvider service name must have the
same name as the database name that is specified in your Insert transform during
development. For more information, see Enabling JDBC connections to the
databases.

Join
You can use a Join transform to join elements from two or more inputs into an
output element.

Overview

You provide a Join expression to determine which data to transform.

You define the mapping from the joined instances of the input arrays to an output
target in the nested map. For more information, see Chapter 6, “Using nested
maps,” on page 37.

The Join transform implements an inner-join.

If you want to implement an outer-join, use the For Each transform with the
option Allow Empty input enabled.

Inputs

The inputs to a Join transform can be repeating simple elements or complex type
elements, which can be merged using nested transforms to create an output.

Chapter 26. Transform types in the Graphical Data Mapping editor 223

v You can configure the Cardinality property page of each input to indicate which
index of an input array to iterate over.

v You can configure the Order property page to define the order of iteration over
the input elements.

v You can define a Join expression to specify the matching criteria for joining or
filtering input repeating elements. The join expressions determines the size of
the output element.

Cardinality

The Cardinality property determines the inputs participating in the join operation.

You configure the Cardinality property tab of a Join transform to define which
indexes are used from each input array in the join operation. For more
information, see “Selecting the indexes of input array elements” on page 28.

Order of the inputs

By default, the order of the inputs to the Join transform is the order in which you
wire the inputs.

You can modify the order by reordering the inputs in the Order tab of the
transform properties.

Output

The output element can be a simple element or a complex type element that can be
repeating or not repeating.

When your output element is a repeating element, the Join expression determines
the size of the output element.

For example, if you have a repeating input element of size M, and a repeating
input element of size N to a Join transform, the output element size is calculated
as follows:
v If you click the option Create Join expression based on index, the size of the

output element is the minimum value of M and N.
v If you do not define a Join expression or you do not select the option Create

Join expression based on index, the size of the output element is MxN.
v If you define a Join expression, the size of the output element is determined by

the expression.

224 Designing a message map

Example 1: To join the first element of the first array with the first element of the
second array, you set a join condition that matches based on index. You click
Create Join expression based on index.

Example 2: If you do not specify a Join expression, the join matches the first
element of the first array with all elements of the second array, and then it matches
the second element of the first array with all elements of the second array, and so
on.

Join expression

You can define a Join expression to specify the matching criteria for joining or
filtering input array elements. This expression is an XPath expression.
v You can use content assist to create the XPath expression. For more information,

see “Using content assist (Mapping syntax)” on page 93.
v You can select the option Create Join expression based on index. This option

requires two repeatable inputs to create the Join expression.

Local map
A local map is a transform that provides a hierarchical view of element transforms
in a message map.

You can use local maps to break up a large map into nested groups of mapping
elements and process the complex elements of the whole data object.

Local maps are a partial view of a larger map, rather than separate files.

A local map has only one element as input (either a simple type or a complex
type), which can contain nested elements. The output can be either a single
element or an array element, but it must be a complex type.

The local map does not transform data; you must specify transforms for the input
and output elements in the nested map.

Move
You can use the Move transform to copy data from one input element to one
output element.

Chapter 26. Transform types in the Graphical Data Mapping editor 225

Overview

You can define the Move transform between single simple elements or between
complex type elements:

You can use the Move transform between complex type input and output elements
only if the input and output have the same type, or if the type of the input is
derived from the type of output; for example, if the input element's type is
USAddress and the output type is Address.

Normalize
The Normalize transform normalizes the input string by removing whitespace
such as spaces, tabs, and returns, and moves the resulting normalized string to the
output element.

For example, it can be used to remove multiple occurrences of white space
characters before a comparison of data is done.

The Normalize transform is functionally equivalent to the XPath 2.0
fn:normalize-space() function. For more information about XPath functions, see
the online document W3C XML Path Language (XPath) 2.0.

Return
Use the Return transform to report the number of rows that are modified by a
database transform.

The Return transform is called if the operation that is specified in the database
transform is successful.

Use the Return transform in your message map to specify a nested mapping that
is called if a database transform was completed successfully.

The Return transform provides an in-built input that provides an integer value of
the number of rows that are modified by the related database transform:

Database transform
Name of input provided by Return
transform Description

Insert NumberOfRowsInserted The Return transform is called each
time that an insert operation is
successful, and reports the number of
rows inserted as 1.

Update NumberOfRowsUpdated Number of rows updated depends on
the WHERE clause

Delete NumberOfRowsDeleted Number of rows deleted depends on
the WHERE clause

For more information, about database transforms, see Chapter 19, “Mapping
database content,” on page 159.

226 Designing a message map

http://www.w3.org/TR/xpath20

Select
Use the Select transform to retrieve data from rows in a database table, so that the
data can be used in a message map.

For more information, see “Selecting data from a table” on page 159.

When you design your message map in the IBM Integration Studio, the database
server that is used during the creation of your Select transform is specified in the
database definition file (.dbm file) that you selected from the Data Design project
used to create the message map.

When yourmessage map has been deployed to an integration server, and your
message map is run, the database server that is used by the IBM Integration Bus
runtime component to process your Select transform is specified by the
JDBCProvider configurable service. The JDBCProvider service name must be the
same name as the database name that is specified in your Select transform during
development. For more information, see Enabling JDBC connections to the
databases.

Submap
A submap enables you to use the same piece of mapping function in multiple
graphical data maps.

A submap references another map. It calls or invokes a map from the same file or
another map file, which can be stored in a library, an application, an integration
service, or an Integration project.

When using submaps, consider the following points:
v A submap can provide callable mapping between global elements or global

types from a message model.
v A submap cannot be used for local anonymous complex types. These must be

mapped within the main map, for example, by a local map.
v Submaps must be placed in the same application, library, integration service, or

project. Alternatively, submaps can be placed in a project or library that is visible
to the main map(s) that they are called from.

For more information, see “Creating a submap” on page 50.

Substring
In the Graphical Data Mapping editor, you can use the Substring transform to set
the value of an output element to a substring of the original input value. You use
this transform to extract a subset of characters that are separated by a delimiter
based on a position that you indicate with an index.

Overview

The Substring transform uses a delimiter and 0-based index to determine what
text to extract from the incoming source string.

Based on the specified delimiter, the source string is divided into sections. The
index is used to identify which section of the divided string you want to use.

Chapter 26. Transform types in the Graphical Data Mapping editor 227

For example, you can pass the following input string: '123/124/125/126'. You can
configure the Delimiter property with the value ’/’.
v If you set the Substring index property to 0, the transform returns the value

'123'.
v If you set the Substring index property to 1, the transform returns the value

'124'.
v If you set the Substring index property to 3, the transform returns the value

'126'.

By default, the Substring index has a value of 0, that indicates that the first section
will be used.

Inputs to the Substring transform

The Substring transform takes multiple input elements.

You wire one simple type input to the Substring transform as primary connection.
This input contains the input value from which you need to extract part of it.

You can wire more inputs as supplementary connections. These other inputs are
used to define the conditional expression that determines if a transform is applied.

Define when the transform is applied at run time

You can use any of the input elements to the Substring transform to define a
conditional expression that defines the condition under which the transform is
applied. If the condition evaluates to true, the transform is applied.

For more information, see “Configuring the properties of a transform” on page 84.

Update
The Update transform modifies one or more rows of data in a database table.

Use the Update transform to modify one or more rows of data that match a
configured Where clause from a database table. Optionally, if no rows of data
match your configured Where clause, the Update transform can insert a row of
data. For more information, see “Updating data in a table” on page 163.

The Update transform performs a single update SQL operation on the configured
database server, so the inputs that you connect to your Update transform must
provide a single set of data values. If you connect a repeating element to your

228 Designing a message map

Update transform, the Graphical Data Mapping editor moves the Update
transform into a nested For Each transform.

The database server that is used during the creation of your Update transform is
specified in a database definition file (.dbm file) that you select from the Data
Design project used to create the map.

When your message map has been deployed to an integration server, and your
message map is run, the database server that is used by the IBM Integration Bus
runtime component to process your Update transform is specified by a
JDBCProvider configurable service. The JDBCProvider service must have the same
name as the database that is specified in your Update transform during
development. For more information, see Enabling JDBC connections to the
databases.

Built-in XPath transforms
In the Graphical Data Mapping editor, you can use built-in XPath functions to
transform data.

Overview

The Graphical Data Mapping editor supports XPath functions that allow you to
manipulate graphically string values, numeric values, date and time comparison,
and more.

The XPath functions are grouped in the following categories:
v String functions
v Boolean functions
v Math functions
v Date and time functions
v QName functions
v Node functions
v List functions
v Diagnostic functions

For more information about XPath, see XPath tutorial or W3C XML Path Language
(XPath) 2.0.

All XPath 2.0 functions are supported in the form fn:<function_name>.

For more information on the following XPath functions, see the following topics:
v “fn:concat” on page 231
v “fn:string-join” on page 234

When you need to define complex XPath expressions, use the Custom XPath
transform. For more information, see “Custom XPath” on page 214.

Inputs versus arguments

When you use an XPath transform, you must differentiate between inputs to the
transform and arguments required to run the XPath function represented by the
XPath transform.

Chapter 26. Transform types in the Graphical Data Mapping editor 229

http://www.w3schools.com/xpath/
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

Arguments are the data elements required in the calculation of an XPath function.

An argument can be a literal expression, a constant, an input element, a custom
XPath expression, or a combination of multiple input elements.

You can have any number of inputs to an XPath transform. You use these inputs to
define the arguments of the XPath function.

In the following figure, the XPath transform has two inputs. Each input is used as
an argument of the fn:concat transform:

Define a conditional expression

You can use any of the input elements to an XPath transform to define a
conditional expression that defines the condition under which the transform is
applied. If the condition evaluates to true, the transform is applied.

For more information, see “Configuring the properties of a transform” on page 84.

Example

This example shows how to use the fn:concat transform to concatenate multiple
input elements and set the value of a string element by using the fn:concat
function.

The arguments to the XPath function include a prefix, two elements, and one
suffix. One of the arguments is defined by an XPath function that requires data
from two inputs. One of the arguments is set with data from an input. The prefix
and the suffix are literals.

230 Designing a message map

When you run the following message and transform the data with the fn:concat
transform:
<NewElement>

<A>My FieldA
B1
<C>Field_1</C>
<D>4</D>
<E>FIELD_E</E>

</NewElement>

You obtain the following result:
<NewElement1>

<a>MyPrefixFieldAFIELD_EMySuffix
</NewElement1>

Troubleshooting

BIP3946E:

BIP3946E: The map script generation for QName {1} has failed, with the
following details: {2}

You get BIP3946E when you try to deploy a map that contains an invalid XPath
expression. Check the description provided by {2} to find out which expression is
not a valid.

fn:concat
In the Graphical Data Mapping editor, you can use the fn:concat transform to
create a string output element that is the result of concatenating simple input
elements.

Overview

The XPath 2.0 function fn:concat(arg1, arg2, ,,,) takes two or more arguments,
converts them to their string representation, and concatenates them, returning a
single string.

The fn:concat transform is the representation of the fn:concat XPath function in the
Graphical Data Mapping editor.

Chapter 26. Transform types in the Graphical Data Mapping editor 231

You can have any number of inputs to the fn:concat transform. These inputs are
used to define the arguments of the fn:concat function.

For more information about XPath, see XPath tutorial or W3C XML Path Language
(XPath) 2.0.

When to use the fn:concat transform

You can use fn:concat to concatenate input elements.

You can configure the arguments to the fn:concat transform to represent a prefix, a
suffix, and delimiters.
v You can use the first argument as the prefix.
v You can use the last argument as the suffix.
v You can insert a delimiter as an argument between any two arguments you want

to delimit.

Inputs to the transform

You can connect simple elements to the fn:concat transform.

Simple input elements that are not of type xs:string will be cast to xs:string.

The following figure shows two inputs connected to the fn:concat transform:

Note: The Graphical Data Mapping editor does not display an error or a warning
on a fn:concat transform when the input to the transform is not a single type
element, or is repeatable.
v If the input XML has no more than one instance of the repeatable input, the

fn:concat transform produces the expected result at run time.
v If the input XML has more than one instance of the repeatable input, the

fn:concat transform results in a run time exception.

Arguments of the XPath function

The fn:concat function has two or more non-repeating arguments.

Note: A run time failure occurs complaining that a sequence is not valid if you do
not ensure that each argument is non-repeating.

You define the number and the order of the arguments to the fn:concat function in
the General tab of the fn:concat transform properties view.

You can use the Add button on General tab to create additional arguments:
v You can add a literal value entered in single quotes.
v You can add a Custom XPath expression.

232 Designing a message map

http://www.w3schools.com/xpath/
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

In the following figure, the fn:concat transform has two inputs. Each input is used
as an argument of the fn:concat function:

In the following figure, the fn:concat transform has three inputs, whilst the
fn:concat function only requires two arguments. Two of the inputs are used to
define one of the arguments of the fn:concat transform:

Define a conditional expression

You can use any of the input elements to the fn:concat transform to define a
conditional expression that defines the condition under which the transform is
applied. If the condition evaluates to true, the transform is applied.

For more information, see “Configuring the properties of a transform” on page 84.

Example

This example shows how to use the fn:concat transform to concatenate multiple
input elements and set the value of a string element by using the fn:concat
function.

Chapter 26. Transform types in the Graphical Data Mapping editor 233

The arguments to the XPath function include a prefix, two elements, and one
suffix. One of the arguments is set by an XPath function base on calculations from
data from two inputs. One of the arguments is set with data from an input. The
prefix and the suffix are literals.

When you run the following message and transform the data with the fn:concat
transform:
<NewElement>

<A>My FieldA
B1
<C>Field_1</C>
<D>4</D>
<E>FIELD_E</E>

</NewElement>

You obtain the following result:
<NewElement1>

<a>MyPrefixtrueFIELD_EMySuffix
</NewElement1>

fn:string-join
In the Graphical Data Mapping editor, you can use the fn:string-join transform to
create an output element that is the result of concatenating a sequence of input
elements with a delimiter as optional.

Overview

The XPath 2.0 function fn:string-join(arg1, arg2) takes two arguments, converts
them to their string representation, and concatenates them, returning a single
string.

The fn:string-join transform is the representation of the fn:string-join XPath
function in the Graphical Data Mapping editor.

You can have any number of inputs to the fn:string-join transform. These inputs
can be used to define the arguments of the fn:string-join function.

234 Designing a message map

Inputs to the transform

You can connect one or more inputs to the fn:string-join transform. These inputs
are used to define the arguments of the fn:string-join function.
v One of the primary inputs must be a repeatable simple element. This input is

used to define the first argument of the fn:string-join function. It defines the
sequence of elements that you want to concatenate.

Note: When the type of the repeating elements is different from xs:string, the
Graphical Data Mapping editor will cast the element to a xs:string type.

v One of the primary inputs can be a simple type element. This input is used to
define the second argument of the fn:string-join function. It defines the
delimiter used between the elements that you want to concatenate.

Note: If the simple type is not of type xs:string, the transform will fail at run
time with BIP3945E. Cast the element to a string if you want to use a non-string
input element as your delimiter. For more information, see “Cast type (xs:type)”
on page 199.

v More inputs can be connected to the fn:string-join transform. You can use these
inputs as additional information to the transform. For example, you can use
these inputs as arguments of the XPath expression that you can define in the
Condition tab to determine whether the transform is applied at run time.

Arguments of the XPath function

You define the arguments to the fn:string-join function in the General tab of the
fn:string-join transform properties view.
v The first argument is a sequence of elements.
v The second argument is a delimiter. The delimiter is optional. If the separator

defined for the fn:string-join function is a zero-length string, no delimiter is
used.

In the following figure, the fn:string-join transform has one input. The input is
used to define the first argument of the fn:string-join function. No delimiter is
configured.

Chapter 26. Transform types in the Graphical Data Mapping editor 235

The following figure shows the fn:string-join transform with one repeating
element as input, and a separator. To add the delimiter, you must select the
General tab in the Properties view, click Edit, and then enter the value.

Cardinality

The Cardinality property determines the elements (also known as indexes) in the
repeating input element that are processed by the fn:string-join transform.

You can configure the Input array indexes section to select specific instances of the
input array. For more information, see “Selecting the indexes of input array
elements” on page 28.

Control the instances to be concatenated

When the instances that you need to concatenate need to be calculated at run time
based on a condition, you can filter dynamically the input indexes by defining a

236 Designing a message map

custom XPath conditional expression for the first argument named strings in the
General tab. The expression determines which elements of the repeating structure
are applied at run time.

For example, to calculate the value of the output element a, you must concatenate
the elements in the repeating structure C whose length is greater than 4. You can
use the following XPath expression:

$C2[fn:string-length() > 4]

Note: Always use content-assist to build your XPath expressions. You must use the
element names used by the Graphical Data Mapping editor.

Define when the transform is applied at run time

You can use any of the input elements to the Concat transform to define a
conditional expression that defines the condition under which the transform is
applied. If the condition evaluates to true, the transform is applied.

For more information, see “Configuring the properties of a transform” on page 84.

fn:substring
In the Graphical Data Mapping editor, you can use the fn:substring transform to
set the value of an output element to a substring of the original input value. You
must define the start position, and optionally, the number of characters that you
need to extract.

Overview

The fn:substring XPath 2.0 function takes two arguments, an input string and a
1-based number, to return a part of the original string, beginning from the position
indicated. You can also specify a third optional parameter as a number, to indicate
the end position to compose the resulting string.

The following function call fn:substring("12345", 2, 3) returns "234".

The following function call fn:substring("12345", 2) returns "2345".

The fn:substring-before() and fn:substring-after() functions are variations of
the fn:substring() function.

Chapter 26. Transform types in the Graphical Data Mapping editor 237

v Use the fn:substring-before(arg1, arg2) function when you need the part of
arg1 that occurs before arg2 occurs in it. For example, substring-
before(’1234567/CustomerID’,’/’) returns 1234567.

v Use the fn:substring-after(arg1, arg2) function when you need the part of
arg1 that occurs after arg2 occurs in it. For example, substring-
before(’1234567/CustomerID’,’/’) returns CustomerID.

For more information about XPath, see XPath tutorial or W3C XML Path Language
(XPath) 2.0.

Inputs to the transform

The fn:substring transform takes as input one simple type element. This element is
used to define the first argument of the fn:substring function.

Note: If the simple type is not of type xs:string, the transform will fail at run time
with BIP3945E. Cast the element to a string if you want to use a non-string input
element. For more information, see “Cast type (xs:type)” on page 199.

Arguments of the XPath function

You define the arguments to the fn:substring function in the General tab of the
fn:substring transform properties view.
v The first argument is a string element. You can define a literal expression, a

constant, an input element, or a custom XPath expression.
v The second argument is named startLocation and specifies the a start position.
v The third argument is named length, is optional, and specifies the number of

characters that you need to select.

In the following figure, the fn:substring transform has one input. The input is
used to define the first argument of the fn:substring function.

Define when the transform is applied at run time

You can use any of the input elements to the fn:substring transform to define a
conditional expression that defines the condition under which the transform is
applied. If the condition evaluates to true, the transform is applied.

For more information, see “Configuring the properties of a transform” on page 84.

238 Designing a message map

http://www.w3schools.com/xpath/
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

fn:count
In the Graphical Data Mapping editor, you can use the fn:count transform to set
the value of an output element to the total number of elements in the input
element.

Overview

The XPath 2.0 function fn:count((arg1, arg2,arg3, ...)) takes a list of elements
and returns the total number of elements.

The fn:count transform is the representation of the fn:count XPath function in the
Graphical Data Mapping editor.

You can have any number of inputs to the fn:count transform. These inputs can be
used to define the arguments of the fn:count function.

Inputs to the transform

You can connect one or more inputs to the fn:count transform. These inputs are
used to define the argument of the fn:count function.

In the following figure, there are 4 inputs to the fn:count transform.

When you run the following message, the value of d1 is 4.
<?xml version="1.0" encoding="UTF-8"?>
<NewElement>

<A>10
<C>100</C>
<C>1000</C>
<C>10000</C>
<D>1000</D>
<E>112</E>
</NewElement>

Arguments of the XPath function

You define the argument to the fn:count function in the General tab of the
fn:count transform properties view.

You can define a literal expression, a constant, an input element, or a custom
XPath expression as the argument.

Chapter 26. Transform types in the Graphical Data Mapping editor 239

In the following figure, there are 4 inputs to the fn:count transform. A is only
considered if the string length is greater than 4. A literal expression has been
added as an additional element in the argument.

When you run the following message, the value of d1 is 5.
<?xml version="1.0" encoding="UTF-8"?>
<NewElement>

<A>10
<C>100</C>
<C>1000</C>
<C>10000</C>
<D>1000</D>
<E>112</E>

</NewElement>

Cardinality

The Cardinality property determines the elements (also known as indexes) in each
repeating input element that is processed by the fn:count transform.

You can configure the Input array indexes section to select specific instances of the
input array. For more information, see “Selecting the indexes of input array
elements” on page 28.

Define when the transform is applied at run time

You can use any of the input elements to the fn:count transform to define a
conditional expression that defines the condition under which the transform is
applied. If the condition evaluates to true, the transform is applied. You define this
expression in the Condition tab of the tranform properties.

For more information, see “Configuring the properties of a transform” on page 84.

240 Designing a message map

fn:sum
In the Graphical Data Mapping editor, you can use the fn:sum transform to set the
value of an output element to a numeric type that is the result of the sum of all the
values in a sequence. You can also use the fn:sum transform to set the value of an
output element to the sum of durations in a sequence.

Overview

You can use the XPath 2.0 function fn:sum(arg1, arg2) to sum numeric or
duration values in a sequence.

The fn:sum transform is the representation of the fn:sum XPath function in the
Graphical Data Mapping editor.

You can have any number of inputs to the fn:sum transform. These inputs can be
used to define the arguments of the fn:sum function.

Inputs to the transform

You can connect one or more inputs to the fn:sum transform. These inputs are
used to define the arguments of the fn:sum function.

Arguments of the XPath function

You define the two arguments to the fn:sum function in the General tab of the
fn:sum transform properties view.
v The first argument (arg) contains any number of numeric and untyped values,

or any number of duration values.
v The second argument (zero) contains the default value returned by fn:sum when

the sequence is empty. You can set this value to the integer 0, a duration of zero
seconds, or any other atomic value.

You must consider the following points when you define the arguments to the
fn:sum function:
v Untyped values are cast to a double type element.
v You can edit the sequence specified for arg and then add literal values, cast

untyped values, and add more values that are the result of arithmetic
operations.

v If arg is an empty sequence, and zero is set, then fn:sum returns the value
specified by zero.

Chapter 26. Transform types in the Graphical Data Mapping editor 241

v When you sum durations, you must ensure that all the elements in the sequence
have the same type, that is, all values are of type xs:yearMonthDuration or all
values are of type xs:dayTimeDuration.

Note: If an input is not of a numeric type such as xs:int, the transform will fail at
run time. Cast the input element to a numeric type. For more information, see
“Cast type (xs:type)” on page 199.

Cardinality

The Cardinality property determines the elements (also known as indexes) in the
repeating input element that are processed by the fn:sum transform.

You can configure the Input array indexes section to select specific instances of the
input array. For more information, see “Selecting the indexes of input array
elements” on page 28.

Define when the transform is applied at run time

You can use any of the input elements to the fn:sum transform to define a
conditional expression that defines the condition under which the transform is
applied. If the condition evaluates to true, the transform is applied.

For more information, see “Configuring the properties of a transform” on page 84.

Example: Calculate the value of a numeric output element

In the following figure, the fn:sum transform has four inputs and the fn:sum
function has two arguments.

The input E is of type string and is cast to an integer type.

The second argument zero is set to the value of multiplying two input elements.

The fn:sum transform returns 11147 for the following input message:
<?xml version="1.0" encoding="UTF-8"?>
<NewElement>

<A>10
<C>2</C>

242 Designing a message map

<C>10</C>
<D>1000</D>
<E>120</E>

</NewElement>

Chapter 26. Transform types in the Graphical Data Mapping editor 243

244 Designing a message map

Chapter 27. Scenario: Transforming SOAP messages by using
a message map

In IBM Integration Bus, you can use message maps to transform SOAP messages.
You can set functions in a graphical data map to transform a SOAP input message
into a required SOAP output message.

WebSphere Message Broker Version 8.0 introduces graphical data maps. These
message maps replace the previous message map format, and are created as *.map
files. You can continue to use maps that were created in versions earlier than
WebSphere Message Broker Version 8.0. However, if you need to modify any of
your legacy maps, you must convert these legacy message maps into *.map
message maps.

This scenario shows how to create a message map that transforms a SOAP
message, and how to apply transforms.

If you want to try out the scenario, you can either use your own integration
solutions, or set up a copy of the sample provided with the scenario.

Introduction to the "Transforming SOAP messages by using a
message map" scenario

You can create a message map that transforms an existing SOAP message. You can
configure the map properties and define data transformations between simple
elements, complex elements, and repeating elements. Review the topics in this
section to understand what is covered in this scenario, the situations in which a
business might want to follow the scenario, and an overview of the solution that is
proposed by the scenario.

About this task

WebSphere Message Broker Version 8.0 introduces graphical data maps. These
message maps replace the previous message map format, and are created as *.map
files. If you migrate from an earlier version of WebSphere Message Broker Version
8.0, you can continue using your legacy maps. However, if you need to modify any
of your legacy maps, you must convert these legacy message maps into *.map
message maps. For more information about converting maps, see Converting a
message map from a .msgmap file to a .map file.

Message maps are based on XML schema and XPath 2.0 standards. You can use
these maps to transform and enrich messages in your integration solution. These
maps offer the ability to achieve the transformation without the need to write code,
providing a visual image of the transformation, and simplifying its implementation
and ongoing maintenance.

IBM Integration Bus supports SOAP 1.1 and SOAP 1.2 messages. A SOAP message
is encoded as an XML document, consisting of an Envelope element, which
contains an optional Header element, and a mandatory Body element. The Fault
element, contained in the Body element, is used for reporting errors.

© Copyright IBM Corp. 2014 245

http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/br40806_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/br40806_.htm

Message maps provide a simple way to transform SOAP messages since they are
messages encoded as an XML document.

Although using message maps is very intuitive, you might need help creating a
map that transforms SOAP messages due to the multi part structure of a SOAP
message. This scenario explains how to create a message map that transforms a
SOAP message, how to configure the map properties, how to define
transformations between the different parts of a SOAP message, and how to define
transformations between simple elements, and complex elements.

Read the following topics to understand the scenario and the concepts the scenario
is intended to demonstrate:
v “Context”
v “Technical solution” on page 247
v “Implementing the solution” on page 248

Context
This scenario explains how to create a message map that transforms a SOAP
message, how to configure the map properties, and how to define transformations
between the different parts of a SOAP message.

Your company has implemented an AddressBook service that is used by different
departments in different countries in your organization. This service allows your
employees to obtain a client's mail address or to save a new client's mail address.

AddressBook
service

Department 1

Department 2

Department 3

The company uses IBM Integration Bus to develop and manage a number of
integration solutions that transform and communicate data between source and
target systems. In order to make the service reusable by multiple applications, you
design an application responsible for the transformation of the different data
formats between the requesting application and the AddressBook service. The
AddressBook service is a SOAP based service that stores a new address or returns
an address to the user. You use a message map to define how to transform the
SOAP message based on the operation that your user requests.

In IBM Integration Bus, you can transform SOAP messages by using any of the
following methods:
v Transform data by using a message map in a Mapping node.
v Transform data by using ESQL in a Compute node.
v Transform data by using an XSL transform in a XSLTransform node.
v Transform data by using Java in a JavaCompute node.
v Transform data by using the PHP scripting language.
v Transform data by using .NET applications on Windows integration nodes.

246 Designing a message map

In IBM Integration Bus, you have the following choices to implement a visual
transformation:
v You can use a Mapping node to transform the incoming message, create new

output messages, and interact with information in a database by using a
graphical data map.

v You can use the XSLTransform node to transform the incoming XML message by
using an XSL style sheet.

This scenario demonstrates how to transform SOAP messages by using a message
map that you create, configure and assign to a Mapping node.

Technical solution
To complete the scenario and successfully transform message data, you must create
a message map and customize it based on your SOAP message and transformation
requirements. In this scenario, you use the SOAP domain to parse your SOAP
message.

You configure a message domain on an input node such as a SOAPInput node to
define the parser that IBM Integration Bus uses to parse a message. IBM
Integration Bus supplies a range of parsers to parse and write messages in
different formats.

IBM Integration Bus supports SOAP 1.1 and SOAP 1.2 messages.

Depending on the message domain that you configure in your input node, you
might have to consider the differences between SOAP 1.1 and SOAP 1.2 when
transforming SOAP messages.
v If you receive a SOAP message through a SOAPInput node, the SOAP parser

handles SOAP 1.1 or SOAP 1.2 automatically. The SOAP domain uses a common
logical tree format that is independent of the exact format of the web service
message. For details of the SOAP tree format, see SOAP tree overview.

v If you receive a SOAP message through an HTTPInput node, the XMLNSC
parser handles your SOAP 1.1 or SOAP 1.2 message differently. When you create
a message map, you must be aware of the SOAP version, and configure the
correct SOAP 1.1 or SOAP 1.2 schema when you create and configure your
graphical data map.

Depending on the nodes that you use when you model your message flow or your
service operation, and the message domain you configure, you must use a different
schema model:
v If you use the SOAP nodes excluding the SOAPExtract node, you must map the

SOAP_Domain_Msg in the SOAP domain.
v If you use the SOAP nodes including the SOAPExtract node, and the Mapping

node is wired after a SOAPExtract node, you must map the schema associated
with your operation in the XMLNSC domain. You use the SOAPExtract node to
remove SOAP envelopes, allowing just the body of a SOAP message to be
processed.

v If you use HTTP nodes or MQ nodes, you must map the SOAP 1.1 or the SOAP
1.2 schema as the root model of the map in the XMLNSC domain.

The following table summarizes the different types of nodes and domains that you
can use to map a SOAP message and the schema that you must use when you use
a message map to transform a SOAP message.

Chapter 27. Transforming SOAP messages by using a message map 247

http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/ac64020_.htm

Table 22. Schemas to use when transforming a SOAP message

Message domain
Schema to configure in a
message map

SOAP SOAP nodes SOAP_Domain_Msg

XMLNSC SOAP nodes including the
SOAPExtract node where the
SOAPExtract node is
modeled before the Mapping
node

Schema associated with the
SOAP operation

XMLNSC HTTP nodes SOAP 1.1 or 1.2 schema as
the root model of the map

XMLNSC MQ nodes SOAP 1.1 or 1.2 schema as
the root model of the map

Use this scenario to learn how to create a message map that transforms a SOAP
message in a message flow where the Mapping node is connected directly from a
SOAPInput node with no SOAPExtract node. For more information, see
“Implementing the solution.”

Implementing the solution
You can transform a SOAP message by using a message map. You can use message
maps to route, transform and enrich existing messages in your integration solution.

Before you begin

To start the scenario, create the initial configuration. For more information, see
“Creating the scenario initial configuration” on page 249.

Procedure

Complete the following steps to create a message map that transforms a SOAP
message:
1. Create a message map. For more information, see “Creating a message map to

transform SOAP messages” on page 250.
2. Configure the Override function to transform some elements of the Properties

folder. For more information, see “Transforming elements in the Properties
folder by using the Override function” on page 254.

3. Customize the message map to include the local environment tree. For more
information, see “Customizing a message map to include the local environment
tree” on page 257.

4. Configure the local environment tree variables folder by using the Cast
function. For more information, see “Configuring the local environment tree
Variables folder by using the Cast function” on page 260.

5. Configure the message map to include your SOAP message. For more
information, see “Configuring the message map to include the SOAP message”
on page 264.
In IBM Integration Bus, a SOAP message is described by a generic model. For
more information, see SOAP tree overview.
In addition to the standard SOAP parts, the IBM Integration Bus SOAP
message generic model includes a Context part that includes contextual
information about the current SOAP message being processed. This is the only

248 Designing a message map

http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/ac64020_.htm

part in a message map whose structure is included automatically. You must
define the other SOAP message parts manually by using the Cast function. You
must customize the message map to include your SOAP envelope and SOAP
attachments.

Results

You have a message map that transforms your SOAP message.

Creating the scenario initial configuration
This scenario was developed by using a sample initial configuration. Follow the
instructions to set up the sample to try out the scenario in the same way as it was
originally developed.

Before you begin
v Download a copy of the AddressBookProviderInitialConfiguration.zip from

the IBM Integration Community.
v Download a copy of the AddressBookProviderFinalConfiguration.zip from the

IBM Integration Community to set up the final scenario configuration and see
the result of following the steps that are documented in the scenario.

v Make sure you have access to a IBM Integration Bus runtime environment and a
IBM Integration Studio installation with the default configuration deployed. For
more information on installing IBM Integration Bus components, see Installing in
theIBM Integration Bus information center.

Procedure

Complete the following steps to set up the sample initial configuration that was
used to develop the scenario:
1. Install IBM Integration Studio. For more information, see Installing .
2. Import the AddressBookProviderInitialConfiguration.zip file:

a. Click File > Import. The Import wizard opens.
b. Expand Other, click Project Interchange, then click Next.
c. Specify the location of AddressBookProviderInitialConfiguration.zip.
d. Specify the location of the open workspace.
e. Select the projects that you want to import into your workspace. For this

scenario, select all projects. Then, click Finish.

Results

You imported the scenario source files.

In the Application Development view, you should see the following resources:

Chapter 27. Transforming SOAP messages by using a message map 249

https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-f78bec90d2c2/resource/EBI scenarios/AddressBookProviderInitialConfiguration.zip
https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-f78bec90d2c2/resource/EBI scenarios/AddressBookProviderFinalConfiguration.zip
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/ax01445_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/ax01445_.htm

What to do next

Follow the steps for “Creating a message map to transform SOAP messages.”

Creating a message map to transform SOAP messages
Create a message map with a SOAP message as input and a SOAP message as
output.

About this task

This scenario demonstrates how to create a message map within one operation of a
service.

If you want to use your own application, you can follow the same steps. The
difference is that you create the map in a message flow or subflow within the
application or library referenced by the application.

Procedure

Complete the following steps to create a map in the IBM Integration Studio:
1. Start the New Message Map wizard.

a. Identify the SaveAddress operation.

250 Designing a message map

b. Double-click the SaveAddress operation and drag and drop a Mapping
node.

c. In the Mapping node properties, select the Description tab, and enter
Normalize_AddressBook_Transform as the Node name.

d. Connect the Normalize_AddressBook_Transform Mapping node between
the two nodes where the message transformation is required.

e. Double-click the Normalize_AddressBook_Transform Mapping node to
start the New Message Map wizard.

2. Optional: Edit the Map name field and enter your map name.
You can keep the default name provided by IBM Integration Bus.
In the scenario, the map name that you use is the default name
SaveAddress_Request_Response_Mapping.map.

3. Enter the broker schema name AddressBook in the field Schema to create a new
broker schema.
To organize your resources, and to define the scope of resource names to
ensure uniqueness, you create broker schemas. For more information on how to
create a broker schema in the IBM Integration Studio, see Creating a broker
schema.
After you enter AddressBook as the name of the broker schema, the window
looks as follows:

4. Click Next.
5. Select the map inputs and outputs.

Chapter 27. Transforming SOAP messages by using a message map 251

http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/bc23150_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/bc23150_.htm

a. Select the map input SOAP_Domain_MSG{}.
b. Select the map output SOAP_Domain_MSG{}.
In the scenario, you have a SOAPInput node that produces a
SOAP_Domain_MSG. A Mapping node is connected to the SOAPInput node,
and receives as input a SOAP_Domain_MSG message.

Note: In IBM Integration Bus, you can choose from multiple inputs and
multiple outputs in a message map. However, you can only select one input
and one output for a message map.
v If you use a SOAPInput node, you must map the SOAP_Domain_Msg in the

SOAP domain.
v If you use a SOAPInput node followed by a SOAPExtract node, you must

map the schema associated with your operation in the XMLNSC domain.
You use the SOAPExtract node to remove SOAP envelopes, allowing just the
body of a SOAP message to be processed.

v If you use HTTP nodes or MQ nodes, you must map the SOAP 1.1 or the
SOAP 1.2 schema as the root model of the map in the XMLNSC domain.

The following figure shows you the options you have as potential map inputs
and map outputs in the scenario:

The following figure shows what the Select map inputs and outputs window
looks like after you have selected your map input and map output for a SOAP
message transformation:

252 Designing a message map

6. Click Next.
7. Select the output domain SOAP.

Note: The only domain option available is the SOAP domain.
The following figure shows what the New Message Map - Select the domain to
create the output window looks like after you have selected the domain.

8. Click Finish.

Results

The message map SaveAddress_Request_Response_Mapping.map is created in
the Application Development view, within the folder Maps located under your
AddressBookProvider service project. The map is created under the AddressBook
schema.

Chapter 27. Transforming SOAP messages by using a message map 253

The map opens in the Graphical Data Map editor. The following figure shows
what the map looks like when it is first opened.

What to do next

Configure the Properties folder. For more information, see “Transforming elements
in the Properties folder by using the Override function.”

Transforming elements in the Properties folder by using the
Override function

You can use the Override function to copy a complex type from the input message
to the output message, while updating some of the child elements in the complex
type. A message assembly component is described by a complex data structure.

Before you begin

Create a message map. For more information, see “Creating a message map to
transform SOAP messages” on page 250.

About this task

The Properties folder has a Move transform defined automatically when you create
a message map so that all elements in the Properties folder are copied to the
output Properties folder structure. The following figure shows the message map
that you have created previously:

Note: You can only use the Override function to include Move transforms and
Assign transforms.

254 Designing a message map

In the scenario, you define an Assign transform to change the value of the
CodedCharSetId element in the Properties folder from UTF-16 to UTF-8. Support
for Universal Transformation Format (UTF)-16 encoding is required by the WS-I
Basic Profile 1.0. UTF-16 is a unicode encoding scheme using 16-bit values to store
Universal Character Set (UCS) characters. UTF-8 is the most common encoding
that is used on the Internet and UTF-16 encoding is typically used for Java and
Windows product applications. For more information on the values that you can
set for the CodedCharSetId element, see Supported code pages.

Procedure

Complete the following steps to modify the CodedCharSetId element of the
properties folder:
1. Right-click the CodedCharSetId element, and then select the menu option

Create Assign.
The following figure shows the message map with the options you can choose
from when you right-click the element CodedCharSetId.

The Assign transform is defined and connected to the CodedCharSetId
element in the output Properties folder.

You get the following icons on the top left hand side of the transform:
v An Error icon represented with a red exclamation mark. You can ignore this

error and continue. You get the error because you have defined two
transformations on an element and this is not allowed. By using the
Override function, you fix the problem.

Chapter 27. Transforming SOAP messages by using a message map 255

http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/https://infocenters.hursley.ibm.com/wmb80xx/internal/help/topic/com.ibm.etools.mft.doc/ac00408_.htm

v A suggestion icon represented by a yellow light bulb.
When you hover over the icon, you get the following pop-up window:

2. Set the value of the CodedCharSetId to 1208. This is the value for UTF-8.
In the Assign transform properties tab, you set the value in the General tab.
You set the element Value to 1208.

3. When you hover over the yellow light bulb, choose Group the conflicting
transforms in an override group. This option is the recommended approach
and allows you to maintain visibility of the transforms you have defined in the
main transformation map.

256 Designing a message map

Results

You have transformed elements of the Properties folder by using the Override
function.

If you choose Nest transforms within the parent map, a Local map transform is
defined between the input Properties folder and the output Properties folder.

The local map that is created contains a Move transform per element, with the
exception of the CodedCharSetId element that has an Assign transform.

What to do next

Configure the message map to include the local environment tree. For more
information, see “Customizing a message map to include the local environment
tree.”

Customizing a message map to include the local environment
tree

To customize your message map to include the local environment tree, you must
add the local environment tree to the input message and to the output message,
and then define transforms between them.

Before you begin
1. Create a message map. For more information, see “Creating a message map to

transform SOAP messages” on page 250.
2. Define transformations between elements of the Properties folder. For more

information, see “Transforming elements in the Properties folder by using the
Override function” on page 254.

Chapter 27. Transforming SOAP messages by using a message map 257

About this task

By default, when a message map is created, the only message assembly component
that is configured automatically is the Properties folder. The input Properties folder
is connected to the output Properties folder with a Move transform. It is also
possible to map other message assembly components such as transport headers
and the local environment tree.

In this scenario you configure the local environment tree as an additional
component for a message map in the Graphical Data Mapping editor.

Procedure

To configure the local environment tree in a message map, complete the following
steps:
1. Open the message map in the Graphical Data Mapping editor.
2. Add the local environment tree to the input message.

v Method 1:
a. Select Message Assembly .

b. In the Properties view, select the General tab.

c. Click Properties.

Note: If you have other structures included in your message assembly,
the option that you can click includes all the different message assembly
components that you have currently selected. For example, if you had the
Properties tree and the local environment tree selected, you click
LocalEnvironment, Properties.

v Method 2:

a. Select the information icon located by the input message body type.

b. Select Header: Properties.

258 Designing a message map

3. In the Add or Remove Headers and Folders window, select LocalEnvironment,
and then click Ok.

4. Follow the previous steps to add the local environment tree to the output
message.

5. Define a Move transform between the input local environment tree and the
output local environment tree. You can add other transforms. For more
information, see Specifying a transform and Transform types in the Graphical
Data Mapping editor.

Results

The following figure shows the message map in the Graphical Mapping Data
editor after you create a message map to transform a SOAP message and configure
the local environment tree:

Chapter 27. Transforming SOAP messages by using a message map 259

http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/bc23150_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/cm28520_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/cm28520_.htm

What to do next

Add variables defined in the local environment tree variables folder, see
“Configuring the local environment tree Variables folder by using the Cast
function.”

Configuring the local environment tree Variables folder by
using the Cast function

You can use the Cast function to define variables in a message map that are
defined in the local environment tree Variables folder.

Before you begin

Customize the message map to include the local environment tree. For more
information, see “Customizing a message map to include the local environment
tree” on page 257.

About this task

The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message. You use the local
environment tree to store variables that can be referred to and updated by message
processing nodes that occur later in the message flow. You can also use the local
environment tree to define destinations (that are internal or external to the message
flow) to which a message is sent.

When you add the local environment tree to a message map, you must provide
transforms for all of its elements so that the input values of each element are not
lost. You can copy the input field unchanged or modified by a transform. Many
IBM Integration Bus nodes depend on information in the local environment tree
being copied along the message flow.

The variables folder in the local environment tree is defined as xsd:any. When you
add the local environment tree, you can see the structure of the destination folders
with all its elements, and a Variables folder with a single element defined with a
generic type.

260 Designing a message map

You manually define the elements that are included in the Variables folder. There
is no predefined structure for the Variables folder. Each message flow has its own
local environment tree Variables folder. For this reason, if you want to access any
of these elements within your message map, you must define each element that
you want to use in the message map by using the Cast function.

Note:

v You can use the Cast function to explicitly define other elements in the message
map message assembly.

v In IBM Integration Bus, the local environment tree predefines other folders to
reflect the data created and used by IBM Integration Bus nodes.

In this scenario, you create an element called Country under the local environment
Variables folder to be used by other nodes later in the message flow for routing.

Procedure

To add the Country element to the local environment tree Variables folder
complete the following steps:
1. Define a Move transform between the input local environment tree and the

output local environment tree. Create a connection between the input local
environment tree and the output local environment tree. You can do this in any
of the following ways:
v In the message map, right-click the input local environment tree, and select

Create Connection. Move the mouse to the output local environment tree,
and click local environment to define the Move transform.

v In the message map, right-click the input local environment tree, and select
Quick Link. A new window appears where you can select the output
element local environment. Use this option when you have a long list of
output elements. You can filter the list in Quick link too.

If you need to modify only some fields in the local environment tree, you can
use a Move transform to copy the local environment tree unchanged, and then
use the Override function to modify the elements you must update.
The following figure shows graphically how the Move transform is defined
between the input local environment tree and the output local environment
tree.

All the input values are copied onto the output values.
2. Create a schema file in your application, service, or library to define the

elements of the local environment tree Variables folder and their type:
v In the Application Development view, select New... > Message Model... >

Other XML. Click Next.
v Select Create an empty XML schema file, I will model my data using the

XML schema editor, and then click Next.

Chapter 27. Transforming SOAP messages by using a message map 261

v Create the XSD file LEVariablesFolderStructure.xsd within the project
AddressBookProvider. Then, click Finish.

v The file LEVariablesFolderStructure.xsd opens in a new tab where you use
the XML Schema editor to define your variables and their types.
In our example, we define the following schema:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Country" type="xsd:string"/>
<xsd:element name="CountryCode" type="xsd:integer"/>

</xsd:schema>

Note: In our example, the nodes reading these elements require them to not
be namespaced. For this reason, the schema is also defined without a
namespace declaration.

3. Use the Cast function to define the local environment variables in the message
map so they are visible under the Variables folder in the map. Complete the
following steps to cast the any element to a variable and its type in the output
local environment tree:
v Right-click the any element, and then select Cast.

262 Designing a message map

v In the Type Selection window, select Country and then click OK.

Results

You now have defined one local environment variable that can be used by other
nodes in your message flow for routing or filtering.

You can see the element Country under the local environment Variables folder in
the message map.

Chapter 27. Transforming SOAP messages by using a message map 263

What to do next

Configure the message map to include the SOAP message. For more information,
see “Configuring the message map to include the SOAP message.”

Configuring the message map to include the SOAP message
In IBM Integration Bus, a SOAP message is described by a generic model that
includes the SOAP Envelope and optionally Attachments. You define your SOAP
message parts in a message map by using the Cast function.

About this task

A SOAP message consists of an Envelope and optionally Attachments. The envelope
contains a SOAP header and a SOAP body. A SOAP body can include SOAP faults.

In IBM Integration Bus, when you use SOAP nodes, a SOAP message is described
by a generic model. For more information, see SOAP tree overview.

In addition to the standard SOAP parts, the SOAP message generic model includes
a Context part that includes contextual information about the current SOAP
message being processed. This is the only part in a message map whose structure
is included automatically. You must define the other SOAP message parts manually
by using the Cast function.

The following table compares the SOAP message structure with the IBM
Integration Bus SOAP message generic model:

Table 23. Comparison between the SOAP message structure and the IBM Integration Bus
SOAP message representation

Standard SOAP
message parts Status

IBM Integration Bus
SOAP message parts

IBM Integration Bus
Status

Context Required

SOAP header (part of
the SOAP envelope)

Optional Header (part of the
SOAP_Domain_Msg)

Optional

SOAP body (part of the
SOAP envelope)

Required Body (part of the
SOAP_Domain_Msg)

Required

SOAP faults (part of the
SOAP body)

Optional Fault (part of the Body) Optional

SOAP Attachments Optional Attachment (part of the
SOAP_Domain_Msg)

Optional

In this scenario, you will learn how to configure your message map to map the
standard SOAP message parts which make up the SOAP_Domain_Msg.

Procedure

Complete the following steps to configure the SOAP_Domain_Msg when the
Mapping node is connected directly from a SOAPInput node with no SOAPExtract
node:
1. Define a Move transform between the input Context object and the output

Context object.
2. Define a Move transform between the input Header object and the output

Header object.

264 Designing a message map

http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/ac64020_.htm

The following figure shows the message map after you define a Move
transform to copy the Header.

The SOAP Header element contains application-specific information, including
attributes that define how you should process the SOAP message.

3. Define the transformation for the Body object.
You define SOAP body parts by using the Cast function. You can cast attributes
and other body parts. Then, define transforms between the input elements and
the output elements in each body part that you have added.
Complete the following steps to define the SOAP body parts and their
transformations:
a. Cast the SOAP body xsd:any element into a specific type. For more

information, see “Casting the SOAP body into a specific type” on page 266.
b. Cast a SOAP body base type element to a derived type element. A derived

type element is also known as an extension type element. For more
information, see “Configuring derived types in the SOAP body” on page
268.
In a message map, you cast a base type to a derived type or extension type
so that you can define transformations between subtypes of a data type. For
example, addresses are represented differently for different countries. You
might want to map addresses from different countries into a common
complex structure for addresses.

c. Create and configure the If, Else if, and Else transform to control the flow
of the mapping between elements defined as a specific or a derived type in
the input and output message assembly by setting conditions. For more
information, see “Configuring an If, Else if, and Else transform in a message
map” on page 272.

4. Define a Move transform between the input Attachment object and the output
Attachment object.

Results

Your have configured a message map that transforms a SOAP message.

When you use an If, Else if, and Else transform between your
SOAP_Domain_Msg input object and SOAP_Domain_Msg output object, you
must manually configure each element in the SOAP_Domain_Msg. You must map
each element in the SOAP_Domain_Msg input object to the corresponding output
object so that you do not loose the information of the element.

Note: Elements that are part of the input object and do not have a transform
defined to an output object are deleted from the output structure and their value is
lost.

You now have a message map that transforms address data, based on the country
of the address. The message map contains a nested map that uses the If, Else if,
and Else transform that you defined.

The following figure shows the message map after you complete the previous
steps:

Chapter 27. Transforming SOAP messages by using a message map 265

What to do next

You have successfully completed the scenario. Your map is now ready to use.

Casting the SOAP body into a specific type
You use the Cast function to redefine the Body of the input and output SOAP
body that have a type xsd:any element in the message map. These elements are also
known as wildcard elements.

Before you begin

Create a message map. For more information, see “Creating a message map to
transform SOAP messages” on page 250.

About this task

When you transform a SOAP message, you cast the Body wildcard on the input
side into the type that is defined in the WSDL for the request of the SOAP
operation. On the output side, you cast the Body wildcard to the type of the
response message for the SOAP operation.

The scenario demonstrates how to cast the Body section. You can repeat the steps
to cast SOAP Body attributes.

Procedure

To cast the SOAP body described as any in the message map, complete the
following steps:
1. Right-click the element any located in the section of your SOAP_Domain_Msg

where you want to specify a type, and then select Cast.
Right-click Body, and then select Cast.

266 Designing a message map

2. In the Type Selection window, select a type.
The Type Selection window displays all the specific types that are available for
selection. These types include the input and output elements defined in the
WSDL file that describes your SOAP message.
Select SaveAddress, and then click OK.

Results

When you cast the element any of the SOAP_Domain_Msg Body, you add the
complex element SaveAddress to the message map.

Chapter 27. Transforming SOAP messages by using a message map 267

What to do next
1. Repeat the previous steps to cast the output SOAP body as SaveAddress into

your message map.
2. Configure derived types in the SOAP body. For more information, see

“Configuring derived types in the SOAP body.”

Configuring derived types in the SOAP body
In a message map, you cast a base type to a derived type or extension type so that
you can define transformations between subtypes of a data type.

Before you begin

Cast the SOAP body element SaveAddress in your message map. Complete the
steps outlined in “Casting the SOAP body into a specific type” on page 266.

Your message map input Message Assembly should look like the one in the
following figure:

268 Designing a message map

About this task

A derived type is a datatype that is related to another datatype known as the base
type or supertype.

In the scenario, Address is the base type, and USAddress, CanadianAddress, and
UKAddress are derived types of Address.

Requests to save an address can come from Canada, the US, or the UK. Addresses
are represented differently for each country, for example, in Canada the address
includes the province. The AddressBook service stores all addresses in a single
location using a common complex structure for addresses.

Procedure

Complete the following steps to cast the Address base type to its derived types, so
that addresses from different countries can be mapped into a common complex
address type:
1. Select Address.
2. Right-click Address, and then select Cast.

Chapter 27. Transforming SOAP messages by using a message map 269

3. In the Type Selection window, choose a matching type, and then select OK.
The options available correspond to specific address types in the schema model
that have been modeled using Address as the base type.
The following figure shows the Type Selection window that you get:

a. Optional: Check the schema model in the Application Development view.
Select the AddressBook service located under Resources > Schema
definitions > http://addressbook.com.

270 Designing a message map

Results

The message map contains two entries for Address. One corresponds to the base
type Address. The other entry corresponds to an Address with the derived type
CanadianAddress.

What to do next
1. Repeat the steps to add the following derived types: UKAddress, and

USAddress. The following figure shows your message map input object after
you add all the derived addresses.

Chapter 27. Transforming SOAP messages by using a message map 271

2. Define a conditional transform between elements of the SOAP body. For more
information, see “Configuring an If, Else if, and Else transform in a message
map.”

Configuring an If, Else if, and Else transform in a message map
You use the If, Else if, and Else transform to set conditions that control the flow of
the data mapping between SOAP body elements defined as a specific or a derived
type in the input and output message assembly.

Before you begin

Complete the following steps:
1. Cast the input and output message assembly body element any to

SaveAddress. For more information, see “Casting the SOAP body into a
specific type” on page 266.

2. Cast the Address base type defined in the input and output message assembly
body to the CanadianAddress derived type, the UKAddress derived type, and
the USAddress derived type. For more information, see “Configuring derived
types in the SOAP body” on page 268.

About this task

You use an If, Else if, and Else transform to map multiple derived address types
such as the CanadianAddress to the base address type Address.

In the scenario, each address contains a country-specific element:
v In a CanadianAddress, each address includes the element Province.
v In a UKAddress, each address includes the element County.
v In a USAddress, each address includes the element State.

272 Designing a message map

The base address type Address includes an element named AdditionalInfo. You
use this element to store additional information that does not have a corresponding
element in the base address type.

Procedure

Complete the following steps to map a derived type to a base type by using an If,
Else if, and Else transform in the scenario:
1. Create and configure the If condition of the If, Else if, and Else transform. For

more information, see “Configuring the If condition in an If, Else if, and Else
transform” on page 274.

2. Optional: Create and configure the Else If condition of the If, Else if, and Else
transform. For more information, see “Configuring the Else If condition in an
If, Else if, and Else transform” on page 277.

3. Create and configure the Else condition of the If, Else if, and Else transform.
For more information, see “Configuring the Else condition in an If, Else if, and
Else transform” on page 280.

4. Optional: Change the order in which the conditions you have defined are
evaluated by the mapping engine. For more information, see “Changing the
order of the conditions in an If, Else if, and Else transform” on page 282.

5. For each condition defined in the If, Else if, and Else transform, configure the
nested map associated with the condition.
v To configure a nested map manually, see “Configuring a nested map

associated with an If, Else if, and Else transform condition manually” on
page 283.

v To configure a nested map automatically, see “Configuring a nested map
associated with an If, Else if, and Else transform condition by using
automap” on page 284.

Results

You now have a message map that transforms address data, based on the country
of the address. The message map contains a nested map that uses the If, Else if,
and Else transform that you defined.

The following figure shows the message map after you complete the previous
steps:

Chapter 27. Transforming SOAP messages by using a message map 273

What to do next

You have now completed all steps necessary to transform the sample SOAP
message by using a message map that uses an If, Else if, and Else transform.

Configuring the If condition in an If, Else if, and Else transform:

You can use an If, Else if, and Else transform to control the flow of the data
mapping between elements defined as a specific or a derived type in the input and
output message assembly by setting conditions. To configure the If condition, you
must connect an input element to an output element and select the core transform
If.

Procedure

Complete the following steps to create and configure the If condition of an If, Else
if, and Else transform:
1. Connect the element Country in the input message assembly object located

under SOAP_Domain_Msg > Body > SaveAddress > Person > Address to the
element Address in the output message assembly object located under
SOAP_Domain_Msg > Body > SaveAddress > Person.
A Local map transform is automatically created.

2. Connect the Local map condition to the output element Address.
3. Change the Local map transform to an If transform by selecting the arrow

facing down that is located on the right hand side of the Local map transform.
a. Left-click the arrow located to the right of the Local map transform.

The following figure shows graphically how to select the If transform.

b. Select the If transform located within Core Transforms.
The following figure shows graphically the list of core transforms available:

274 Designing a message map

You get an If condition with a red exclamation mark connected to two
input elements and one output element.

Note: You will resolve these errors by completing the scenario
The red exclamation mark on the left hand side of the If condition
highlights multiple validation problems. One of the errors indicates that the
If condition does not contain an expression. The second error informs you
that you must define transformations for all the elements within the nested
map associated with the If condition. This nested map is the map that you
use to define how an address with a derived type CanadianAddress is
mapped to the base address type Address.

4. Connect the address that has the CanadianAddress as its derived type to the If
transform.
The following figure shows the message map after you create the connection:

Chapter 27. Transforming SOAP messages by using a message map 275

5. Select the If condition, and then define the expression in the Condition tab
under the Transform - If properties. Complete the following steps:
a. Press Ctrl + spacebar to obtain the list of elements.

The following figure shows the elements available for selection in the
scenario:

Note: Although you can enter the XPATH expression directly, beware that
depending on the steps you take to create your integration solution, the
variable names that are generated are different from the element name in
the schema file. The element name has an ID concatenated at the end of the
name that is defined automatically by the tool.

b. Select an element and double-click on it.
c. Define the XPATH expression related to that variable.
d. Repeat the following steps if your XPATH expression includes more than

one input element.
The condition is an XPath 2.0 expression, that you can define directly, or you
can create through the XPath expression builder by clicking Edit.
In the scenario, if you authored the message flow yourself, the expression will
be similar but not exactly like $Country4 = ’Canada’.
The following figure shows the properties tab for the If transform:

276 Designing a message map

Results

You now have defined and configured the If condition.

What to do next

Define the Else If condition of the If transform. For more information, see
“Configuring the Else If condition in an If, Else if, and Else transform.”

Configuring the Else If condition in an If, Else if, and Else transform:

Create and configure an Else If condition after you define the If condition.

Before you begin

Define the If condition of the If, Else if, and Else transform. For more information,
see “Configuring the If condition in an If, Else if, and Else transform” on page 274.

Procedure

Complete the following steps to create and configure the Else If condition of an If,
Else if, and Else transform:
1. Select the diamond symbol located to the left of the If transform. The Add Else

If option and the Add Else conditions appear to the right hand side of a light
bulb in a pop up on top of the If transform.
This diamond symbol appears after you set the If condition.

2. Select Add Else If to add another address with a derived type of UKAddress.

To add an address, select the Add Else If icon .

Note: If you have more derived types, repeat this step for each additional
address that you have defined.

Chapter 27. Transforming SOAP messages by using a message map 277

When you select the Add Else If condition, the mapping engine creates a
Conditions box that includes the If condition and the Else If condition of the
If, Else if, and Else transform that you are configuring.
You get an Else If condition with a red exclamation mark.
The red exclamation mark on the left hand side of the If condition highlights
multiple validation problems which you will resolve by completing the
scenario.

3. Connect the element Country in the input message assembly object located
under SOAP_Domain_Msg > Body > SaveAddress > Person > Address to the
Else If condition.
A connection is created between the element Country and the Else If condition.
A window opens informing you that by creating this connection, the transform
type changes. Click Click here to continue.

4. Connect the element Address with a derived type of UKAddress to the Else If
condition.
A connection is created between the element Country and the Else If condition.
A window opens informing you that by creating this connection, the transform
type changes. Click Click here to continue.

278 Designing a message map

5. Connect the Else If condition to the output element Address.
When you define this connection to the Else If condition, a pop up message
displays to explain that you must transform the input and output elements
within the nested map that is created where the input object is an address of
type UKAddress, and the output object is an address of type Address. You can
click Click Here to access the nested map, or you can click anywhere on the
message map to continue configuring the Else If condition.

6. Select the Else If condition, and then define the following expression in the If
transform properties: $Country5 = ’UK’.
The condition is an XPath 2.0 expression, that you can define directly, or you
can create through the XPath expression builder by clicking Edit.
The following figure shows the properties tab for the If transform:

Chapter 27. Transforming SOAP messages by using a message map 279

Results

After you define the Else If condition, the message map contains a Conditions
container with two conditions.

What to do next

If there are other conditions, define Else If conditions for each one.

Note: To add more Else If conditions, select Conditions, and then Add Else If.

Define the Else condition of the If, Else if, and Else transform. For more
information, see “Configuring the Else condition in an If, Else if, and Else
transform.”

Configuring the Else condition in an If, Else if, and Else transform:

Create and configure an Else condition after you define the If condition and
optionally more Else If conditions. The If, Else if, and Else always finishes with an
Else condition. This is the condition that runs when none of the other conditions
are true.

Before you begin

1. Define the If condition of the If, Else if, and Else transform. For more
information, see “Configuring the If condition in an If, Else if, and Else
transform” on page 274.

2. Define the Else If conditions of the If, Else if, and Else transform. For more
information, see “Configuring the Else If condition in an If, Else if, and Else
transform” on page 277.

About this task

The Else condition is the path followed by addresses whose country is different
from Canada or UK. In the scenario, it is the path that evaluates to true when a US
address needs to be mapped.

Procedure

Complete the following steps to create and configure the Else condition of an If,
Else if, and Else transform:
1. Left-click Conditions, and the select Add Else.

280 Designing a message map

An Else condition is included within Conditions.

2. Connect the element Country in the input message assembly object located
under SOAP_Domain_Msg > Body > SaveAddress > Person > Address to the
Else condition.

3. Connect the element Address with a derived type of USAddress to the Else
condition.
When you define the connection to the Else condition, a message displays to
explain that you must transform the input and output elements within the
nested map that is created where the input object is an address of type
USAddress, and the output object is an address of type Address. You can click
Click Here to access the nested map, or you can click anywhere on the
message map to continue configuring the Else condition.

Chapter 27. Transforming SOAP messages by using a message map 281

4. Connect the Else condition to the output element Address.

Results

A message map with three conditions is defined.

What to do next

Continue configuring the SOAP body. Return to “Configuring the message map to
include the SOAP message” on page 264.

Changing the order of the conditions in an If, Else if, and Else transform:

You can change the order in which the mapping engine evaluates the conditions
defined in an If, Else if, and Else transform.

282 Designing a message map

Before you begin

Define and configure the condition expressions for an If, Else if, and Else
transform. For more information, see .“Configuring an If, Else if, and Else
transform in a message map” on page 272

Procedure

Complete the following steps:
1. Select Conditions. This is the container that includes the If condition, the Else

If conditions, and the Else condition.
2. In the Properties tab, use the Reorder arrows to change the priority of a

condition. The conditions and its expressions are updated automatically to
reflect your changes.
The following figure shows the Properties tab:

Example

For example, to change the If condition so it becomes the Else If expression
evaluated, select the row with the If condition, and then select Reorder.

Configuring a nested map associated with an If, Else if, and Else transform
condition manually:

You can configure a nested map associated with an If, Else if, and Else transform
manually by defining transforms between input and output elements.

Before you begin

Define and configure the conditional expressions for an If, Else if, and Else
transform. For more information, see .“Configuring an If, Else if, and Else
transform in a message map” on page 272

About this task

Each condition in an If, Else if, and Else transform has a nested map associated,
which is used by the mapping engine to apply the transforms between the input
object and the output object when the associated condition evaluates to true.

Procedure

For the If condition, complete the following steps to configure the nested map
associated with it:
1. In the message map, double-click the If condition.

The nested map opens. The following figure shows the nested map:

Chapter 27. Transforming SOAP messages by using a message map 283

2. Define transforms for each element in the input object that you want to
maintain in the output object.
In the scenario, we have defined a Move transform between each input element
and each output element. Note that the element province is mapped into the
output element AdditionalInfo.
You get a nested map that transforms input elements into output elements.

What to do next

Repeat the steps to configure each nested map associated with an If, Else if, and
Else transform condition.

Configuring a nested map associated with an If, Else if, and Else transform
condition by using automap:

You can configure a nested map associated with an If, Else if, and Else transform
automatically by using automap.

Before you begin

Define and configure the condition expressions for an If, Else if, and Else
transform. For more information, see .“Configuring an If, Else if, and Else
transform in a message map” on page 272

284 Designing a message map

About this task

Each condition in an If, Else if, and Else transform has a nested map associated,
which is used by the mapping engine to apply the transforms between the input
object and the output object when the associated condition evaluates to true.

Procedure

For the Else If condition, complete the following steps to configure the nested map
associated with it:
1. In the message map, click the light bulb located on the top left corner of the

Else If condition. A pop up opens. Select Invoke automap.
The following figure shows the pop up:

The Auto Map window opens.

2. Click Next. The Select transforms to create window opens.
The Select transforms to create window displays the proposed transformation
for each output element in the nested map. It also specifies the input count per
output element so that you know how many input elements are available.

Chapter 27. Transforming SOAP messages by using a message map 285

3. Optional: If you want to define your own custom transformations for any of
these elements, clear the relevant check boxes. For example, clear
AdditionalInfo.

4. For elements with an Input count greater than one, double-click the element,
and then select the option that you want to apply for the transformation of that
element.
For example, the element Country has two possible input elements that you
can use as the output value. Choose one.

The following figure shows what the Auto Map looks like after you have
reviewed and configured the proposed transformations:

286 Designing a message map

5. Click Finish. Click the icon located in the left side of any of the transforms, and
then select Accept All Auto-mapped Transforms.
Transforms are defined between the input and output elements based on the
options that you selected.
The following figure shows the proposed auto-mapped transform options:

When you select Accept All Auto-mapped Transforms, you confirm that you
the proposed transforms are correct.

What to do next

Repeat the steps to configure each nested map associated with an If, Else if, and
Else transform condition by using automap.

Chapter 27. Transforming SOAP messages by using a message map 287

288 Designing a message map

Chapter 28. Scenario: Using a message map to enrich a
message with data from a database

You can use a message map to enhance an existing message with data from one or
more database tables.

This scenario was developed using a set of sample IBM Integration Bus resources.
If you want to try the scenario, you can either use your own integration solutions,
or set up a copy of the sample resources as described in the scenario.

Introduction to the "Using a message map to enrich a message with
data from a database" scenario

This scenario shows how you can enhance a message in IBM Integration Bus by
using a message map. The data is available in a database system. The data is
stored across multiple database tables. All the tables are located within the same
database schema.

About this task

WebSphere Message Broker Version 8.0 introduces graphical data maps. These
message maps replace the previous message map format, and are created as .map
files. Message maps offer the ability to transform a message without the need to
write code, providing a visual image of the transformation, and simplifying its
implementation and ongoing maintenance.

WebSphere Message Broker Version 8.0 also introduces the Select transform that
allows you to enrich a message by accessing data located in an external database
system. This feature simplifies the programming model. It eliminates the
requirement to use a Database node, a JavaCompute node, a .NETCompute node,
or a Compute node to access data located in a database. You can design simpler
message flows by using a single Mapping node to complete graphically a message
transformation that requires data from an external database system.

Note: You can continue to use maps that were created in versions earlier than
WebSphere Message Broker Version 8.0. However, if you need to modify any of
your legacy maps, or if you want to use the Select transform, you must convert
these legacy message maps into .map message maps. For more information about
converting maps, see Converting a message map from a .msgmap file to a .map
file.

Read the following topics to understand the scenario and the concepts the scenario
is intended to demonstrate:
v “Context” on page 290
v “Technical solution” on page 291

What to do next

Implement the solution. For more information, see “Implementing the solution” on
page 292.

© Copyright IBM Corp. 2014 289

http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/br40806_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/br40806_.htm

Context
This scenario shows how you can enhance a message in IBM Integration Bus by
using a message map. In this scenario, the data is available in an external database
system. The data is stored across multiple database tables, all of which are located
within the same database schema.

Your company has implemented an AddressBook service that is used by different
departments in different countries in your organization. This service allows your
employees to obtain a client's mail address or to save a new client's mail address.

The company uses IBM Integration Bus to develop and manage a number of
integration solutions that transform and communicate data between source and
target systems. In order to make the service reusable by multiple applications, you
design an application responsible for the transformation of the different address
formats between the requesting application and the AddressBook service. The
AddressBook service is a SOAP-based service that stores a new address or returns
an address to the user. You use a message map to define how to transform the
SOAP message based on the operation that your user requests.

The company uses DB2 Version 9.7 as the external database system that hosts
client's details and addresses.

The scenario uses the following database tables:
v Person: This table contains an entry per client. The client ID element is used to

link information for this client across all tables in the database. The database
automatically assigns the ID value when a new record is created. This table
contains all clients from all countries.

v Address: This table contains an entry per client with the address details.
v Phone: This table contains an entry per client with the phone details.

In IBM Integration Bus, you have the following choices to implement a message
flow that connects to a database, and retrieves information to enrich the message:
v You can use a Mapping node to graphically connect to a database and retrieve

data to use in the node and later on in the message flow.
v You can use a Database node in a message flow to connect to a database and

retrieve data that you can use later on in the message flow.
v You can program a Compute node, JavaCompute node, or .NETCompute node

to connect to a database and retrieve data to use in the message flow.

290 Designing a message map

This scenario demonstrates how to use a Mapping node to connect to a database,
retrieve data from multiple tables, and graphically populate elements in a SOAP
message with this information in the IBM Integration Studio.

Technical solution
You can use a message map to enhance an existing message with data from one or
more database tables. Data from the database can then be used to enrich, route,
and transform messages within IBM Integration Bus.

In IBM Integration Bus, to connect to a database, you must configure the
development environment and the IBM Integration Bus runtime environment:
1. To have visibility of the database resources during the development phase, you

must connect the IBM Integration Studio to the development database.
2. To enable the deployed map to execute in the run time, you must create a JDBC

provider configurable service that defines the connection to the runtime
database. This database is normally a different database server from the one
you use for development, and the artifacts could be in a different database
schema.

To configure the IBM Integration Studio to connect to a database, you must create
a database definition file in a data design project, and configure a database
connection.
v Data design project: A specialized type of project where you store your database

resources.
v Database definition file: A configuration file where you specify the database

physical details such as database type and version, and a connection.
v Database connection: Configuration that details the database resources, that is,

the schema, the tables, the store procedures, the indexes, and other resources,
that you need access to from within your IBM Integration Bus project resources.

To access information stored in a database from resources in a IBM Integration Bus
project, you must include a reference to the data design project in your application,
service, or Message Broker project.

In IBM Integration Bus, you can use a message map to access information in a
database, and then use this information to perform transformations on the message
or to enrich a message.

During the design phase, you must complete the following steps in the IBM
Integration Studio to access graphically database information in a message map:
1. Add a reference to each database table from where you must retrieve data.
2. Use a Select transform to define how to use the database information in the

message map. The Select transform has embedded a nested map. You must
define the transforms in this nested map.

3. Use a Failure transform to handle database failures. The Failure transform has
embedded a nested map. You can define the transforms in this nested map if
you wish to provide specialized handling of any database exceptions that are
hit running the generated SQL statements when the map executes. If you take
the default of not adding a Failure transform, IBM Integration Bus will handle
the error, reporting it to the system log, and then rolling back the current
message transaction.

Chapter 28. Using a message map to enrich a message with data from a database 291

To configure the IBM Integration Bus run time to connect to a database, you must
establish a connection with the database to fulfill the operations that are performed
by the Mapping node. You must define a JDBC provider configurable service.

Use this scenario to learn how to use a Mapping node to connect to a database,
retrieve data from multiple tables, populate elements in a SOAP message with this
information, and handle a database SQL exception. use this scenario to also learn
how to configure the JDBC provider configurable service.

Implementing the solution
During the development phase, you can use a Mapping node to connect to a
database, retrieve data from multiple tables, and then populate elements of a
SOAP message. During the design of the map, you can connect the IBM
Integration Studio to a database to discover the tables. To enable the run time to
establish a connection with the database to fulfill the operations that are performed
by the Mapping node, you must create a JDBCProvider configurable service.

Before you begin
1. Create the initial configuration. For more information, see “Creating the

scenario graphical data map configuration.”
2. Create the database resources. For more information, see “Creating the scenario

database configuration” on page 294.

Procedure

Complete the following steps to implement a Mapping node that connects to a
database and enriches a message with the database information:
1. Configure the database physical model in IBM Integration Bus by running

discovery. For more information, see “Configuring a database in the IBM
Integration Studio” on page 295.

2. Configure your integration solution to include the database connection details.
For more information, see “Configuring an integration solution to access
database resources” on page 303.

3. Add the relevant database tables to your message map. For more information,
see “Adding database tables your message map” on page 305.

4. Configure the Select transform in your message map to retrieve the database
information. For more information, see “Configuring the Select transform in a
message map” on page 309.

5. Optional: Handle database failures. For more information, see “Handling
database failures in a Select transform” on page 312.

6. Configure the run time to enable it to establish a connection with the database
to fulfill the operations that are performed by the Mapping node. For more
information, see “Configuring a database to be available at run time” on page
316.

Creating the scenario graphical data map configuration
This scenario was developed by using a sample initial configuration. You can
either follow the instructions to add your own database to a message map, or set
up the sample final configuration to try out the scenario in the same way as it was
originally developed.

292 Designing a message map

Before you begin
v Download a copy of the FindAddressInitialConfiguration.zip file.
v Download a copy of the FindAddressFinalConfiguration.zip file to set up the

final scenario configuration and see the result of following the steps that are
documented in the scenario.

v Make sure you have access to an IBM Integration Bus runtime environment and
an IBM Integration Studio installation with the default configuration deployed.
For more information on installing IBM Integration Bus components, see
Installing in theIBM Integration Bus information center.

Procedure

Complete the following steps to set up the sample initial configuration that was
used to develop the scenario:
1. Install IBM Integration Studio. For more information, see Installing in theIBM

Integration Bus information center.
2. Import the AddressBookInitialConfiguration.zip file:

a. Click File > Import. The Import wizard opens.
b. Expand Other, click Project Interchange, then click Next.
c. Specify the location of the AddressBookInitialConfiguration.zip file.
d. Specify the location of the open workspace.
e. Select the projects that you want to import into your workspace. For this

scenario, select all projects. Then, click Finish.

Results

You imported the scenario source files.

In the Application Development view, you should see the following resources:
v A SaveAddress operation
v A FindAddress operation
v Multiple xsd structures such as addresses.xsd
v The AddressBook wsdl file
v The FindAddress.map file
v The SaveAddress.map file
v The SaveAddress_Request_Response_Mapping.map file
v The Catch.map file
v The Failure.map file
v The TimeOut.map file

Chapter 28. Using a message map to enrich a message with data from a database 293

https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-f78bec90d2c2/resource/EBI scenarios/FindAddressInitialConfiguration.zip
https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-f78bec90d2c2/resource/EBI scenarios/FindAddressFinalConfiguration.zip
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/ax01445_.htm
http://pic.dhe.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/com.ibm.etools.mft.doc/ax01445_.htm

In your database, you see the ADDRESS, PERSON, and PHONE tables:

What to do next

Follow the steps for “Configuring a database in the IBM Integration Studio” on
page 295.

Creating the scenario database configuration
The message flow that is used in this scenario requires an external database, which
is used in one of the message maps that enriches the message data as it runs the
transformation. DB2 must be set up in advance.

Before you begin
v Download a copy of the createdbtablesclients.zip file.

294 Designing a message map

https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-f78bec90d2c2/resource/EBI scenarios/createdbtablesclients.zip

Procedure

Complete the following steps to set up the sample DB2 database configuration that
was used to develop the scenario:
1. Create a database that is named CLIENTS.

a. Open a DB2 command prompt and create the database. Click Start > All
Programs > IBM DB2 > DatabaseInstance > Command Line Tools, and
select Command Window. DatabaseInstance is your DB2 instance name. The
default name is DB2COPY1 (default).
A DB2 - CLP window opens.

b. Create the CLIENTS database. Run the following command: DB2 CREATE DB
CLIENTS

You receive the following message: DB20000I The CREATE DATABASE command
completed successfully.

c. Test the database connection. Run the following command: DB2 CONNECT TO
CLIENTS

Note:

If you receive the error ErrorCode = -4499, SQLState = 08001, check that
the port used is correct, and try again.

2. Create the tables using the SQL createdbtablesclients.sql script that is
provided in the scenario.
a. Unzip the file createdbtablesclients.zip.
b. From the DB2 command prompt, run the following command: db2 -vf

Sqlscriptdirectory\createdbtablesclients.sql, where Sqlscriptdirectory\ is
the directory where you unzip createdbtablesclients.zip.

Results

You have a database that is named CLIENTS, and the following database tables
that are created under the ADDRESSBOOK schema:
v PERSON
v ADDRESS
v PHONE

What to do next

Follow the steps for “Configuring a database in the IBM Integration Studio.”

Configuring a database in the IBM Integration Studio
To make database information accessible from a Mapping node during the
development phase, you must define a database definition file with extension .dbm.
This file is contained in a data design project. You must define one database
definition file per database.

Before you begin

To start the scenario, create the initial configuration. For more information, see
“Creating the scenario graphical data map configuration” on page 292.

Chapter 28. Using a message map to enrich a message with data from a database 295

About this task

You can use IBM Integration Bus to access a database and manipulate your
business data.

During the development phase, you must configure the database before you can
access the data from your a message flow in the IBM Integration Studio. IBM
Integration Bus supports the databases that are listed in IBM Integration Bus
Requirements.

IBM Integration Bus can access databases that are set up on the local computer or
on a remote server, subject to restrictions. For more information, see IBM
Integration Bus Requirements.

This scenario demonstrates how to configure a local database in the IBM
Integration Studio.

Procedure

To configure the CLIENTS database, complete the following steps:
1. Create a data design project as a container for a database definition file. See

“Creating a data design project.”
2. Define your database and how it interacts with your integration node. See

“Creating the database definition file” on page 298.

Creating a data design project
Create a data design project to contain the database definition file that describes
your database.

About this task

A data design project is a specialized type of project where you store database
definition files that hold information about database resources.

In this scenario, you create the AddressBook_DD data design project.

Procedure

Create the AddressBook_DD data design project in the Application Development
view:
1. Click File > New > Other > Data Design Project. The New Data Design Project

wizard opens. If this is the first database design project you create within a
new workspace you might see the Confirm Enablement window first.

2. Enter AddressBook_DD as your Project name, and then click Finish.

296 Designing a message map

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

The Open associated perspective? window is displayed.

3. Click No.

Results

Your data design project is created, and is displayed in the Application
Development view, under Independent resources.

What to do next

After you create a data design project, you must add a database definition (.dbm)
file for your database. For more information, see “Creating the database definition
file” on page 298.

Chapter 28. Using a message map to enrich a message with data from a database 297

Creating the database definition file
To create database mappings by using the Mapping node, you must have a
database definition file (.dbm) that is contained in a data design project.

Before you begin

Create the AddressBook_DD data design project. For more information, see
“Creating a data design project” on page 296.

About this task

A database definition file holds the physical data model that details all the
database resources, such as the schema, the tables, and other resources, that you
need access to.

Note: Database definition files in the IBM Integration Studio are not automatically
updated. If you modify your database, you must recreate the database definition
file describing the connection to the database.

Procedure

Complete the following steps to create the CLIENTS.dbm database definition file
by using the New Database Definition File wizard:
1. In the Application Development view, right-click and select New > Database

Definition.

The New Database Definition File wizard is displayed.
2. From the Data design project drop-down list, select AddressBook_DD. From the

Database drop-down list, select DB2 for Linux, Unix, and Windows. From the
Version drop-down list, select V9.7. Then, click Next.

3. Create a database connection. In the New Database Definition File - Select
connection, select New.

298 Designing a message map

A New Connection window opens.
4. In the New Connection - Connection Parameters, edit the following properties

to configure the CLIENTS database connection:
a. Enter CLIENTS as the Database value.
b. Enter db2admin as the User name, and enter your database administrator

password in Password.

Note: You can use a different user name to connect to the database. This
user must have database administration permissions.

c. Click Test Connection to verify the settings that you selected for your
database.
If the connection is successful, the following window opens:

d. Select Save Password.

Chapter 28. Using a message map to enrich a message with data from a database 299

5. In the New Connection - Connection Parameters, click Finish.
The CLIENTS1 connection is created.

300 Designing a message map

6. Select the CLIENTS1 connection, and then select Next.

7. Select the schema ADDRESSBOOK, and then click Next.

Chapter 28. Using a message map to enrich a message with data from a database 301

8. In the New Database Definition File - Database Elements window, select
Tables, then click Finish.

Results

The CLIENTS.dbm database definition file is available in the Application
Development view under Independent resources. The database definition file is
created inside the AddressBook_DD data project.

The following figure shows the CLIENTS database definition file opened in the
Physical Data Model Editor.

302 Designing a message map

What to do next

After you create the database definition file CLIENTS.dbm, you must configure
your integration solution to access specific database resources. For more
information, see “Configuring an integration solution to access database resources.”

Configuring an integration solution to access database
resources

To access database tables, you must associate the data design project where your
database definition file is located with your integration solution.

Before you begin

Create the CLIENTS.dbm database definition file. For more information, see
“Creating the database definition file” on page 298.

Procedure

To associate the CLIENTS.dbm database definition file to the AddressBook
integration service, complete the following steps:
1. In the Application Development view, right-click AddressBook, and then select

Manage included projects.

Chapter 28. Using a message map to enrich a message with data from a database 303

The Manage projects included in Integration Service opens.
2. Select the AddressBook_DD data design project.

3. Select OK.

Results

The data design project AddressBook_DD is included as part of the integration
service AddressBook.

The following figure shows how the data design project AddressBook_DD is
located under Other Resources within the integration service AddressBook.

304 Designing a message map

What to do next

After you configure the AddressBook integration service to include the data
design project AddressBook_DD, you must add the database tables to your
message map. For more information, see “Adding database tables your message
map.”

Adding database tables your message map
To retrieve data from the database, you must define which database tables the
message map uses.

Before you begin

Configure the AddressBook service to include the data design project
AddressBook_DD that contains the CLIENTS.dbm database definition file. For
more information, see “Configuring an integration solution to access database
resources” on page 303.

About this task

Note: When you add database tables to your message map, you should add all the
tables under the same database schema together, that is, one resultset per set of
tables. You reduce the number of connections that IBM Integration Bus requires to
retrieve database information from those tables.

Procedure

Complete the following steps to add PERSON, ADDRESS, and PHONE database
tables under the ADDRESSBOOK schema:
1. Open the message map FindAddress by completing the following steps:

a. In the Application Development view, navigate to AddressBook >
Resources > Maps > AddressBook.

b. Double-click on FindAddress.map.
The following figure shows the navigation tree where you can find the message
map FindAddress.map:

Chapter 28. Using a message map to enrich a message with data from a database 305

The message map FindAddress.map opens in a new tab.
2. Click the Select rows from a database icon.

The following figure shows the icon that you must choose to select the option
Select rows from a database:

The New Database Select wizard opens.

3. Select the schema ADDRESSBOOK, and the database tables PERSON,
ADDRESS, and PHONE.

306 Designing a message map

4. Define the SQL where clause expression that you use to extract a single
address record from the database.
To define the expression, you can drop or double-click a column, an operation,
or an input into the SQL where clause pane, use copy and paste, or use
content assist (CTRL+Space).
You can use the following SQL where clause expression:
ADDRESSBOOK.PERSON.LASTNAME IN ? AND ADDRESSBOOK.PERSON.COUNTRY = ?1

where ? represents the XPath expression:
$MessageAssembly/SOAP_Domain_Msg/Body/{http://AddressBook}:FindAddress/
FindAddress/{http://addressbook.com}:Name

and ?1 represents the XPath expression:
$MessageAssembly/SOAP_Domain_Msg/Body/{http://AddressBook}:FindAddress/
FindAddress/{http://addressbook.com}:Country

The following figure shows the expression defined within IBM Integration Bus:

Chapter 28. Using a message map to enrich a message with data from a database 307

5. Select OK.

Results

Under Message Assembly, the Select from CLIENTS section is added. This
section contains one resultset. The resultset has three tables. To see which table an
element belongs to, select the element in the resultset, and then view the Properties
tab.

Beware that tables are included in alphabetical order.

The following figure shows the resultset that you get when you include the tables
PERSON, ADDRESS, and PHONE.

308 Designing a message map

What to do next

You must configure the Select transform in your message map. For more
information, see “Configuring the Select transform in a message map.”

Configuring the Select transform in a message map
You use the Select transform to retrieve database information and to perform
transformations between the input elements and the output elements of the
Message Assembly.

Before you begin

Add the database tables to the message map FindAddress.map. For more
information, see “Adding database tables your message map” on page 305.

About this task

You can use the Select transform in a message map to enrich a message with
database information.

The Select transform retrieves records from a database based on the SQL where
clause that you define when you add tables to a message map.

A Select transform has a nested map. This nested map is where you transform the
input and output elements of the Message Assembly.

You can set the cardinality of the Input array indexes in the Select transform
properties view to work with a particular row or set of rows, or you can leave this
field blank to choose all rows.

This section explains how to configure the Select transform when the data
available in three database tables is retrieved in one result set.

Procedure

Complete the following steps to enrich a message with the address of a client from
the CLIENTS database:
1. Open the message map FindAddress.map in the Graphical Data Mapping

editor.
2. Connect the database section ResultSet to the message assembly body section

FindAddressResponse with a Select transform.

Chapter 28. Using a message map to enrich a message with data from a database 309

3. Set the cardinality of the Input array indexes to 1 in the Select transform
properties view to indicate that you only wish to work with the first row of the
result set returned by the database.
The following figure shows the Properties tab of the Select transform:

4. Connect the message assembly element Name to the Select transform.
The following figure shows the element Name connected to the Select
transform:

5. Connect the message assembly element Country to the Select transform.
The following figure shows the element Country connected to the Select
transform:

6. Click Select.
The nested map associated to the Select transform opens.
The following figure shows the nested map with the input and output objects.

310 Designing a message map

7. Define the transforms between the database elements and the message
assembly output elements. This can be automatically completed by using the
Auto Map capability. To manually define each transform complete the
following steps:
a. Connect the input element Name to the output element Name in the

message assembly body section FindAddressResponse with a Move
transform.

b. Connect the input element Country to the output element Country in the
message assembly body section FindAddressResponse with a Move
transform.

c. Connect the element TYPE to the element Type in the message assembly
body section FindAddressResponse with a Move transform.

d. Connect the element NUMBER to the element Number in the message
assembly body section FindAddressResponse with a Move transform.

e. Connect the elements LINEADDRESS2 and LINEADDRESS1 to the
element Street in the message assembly body section FindAddressResponse
with a fn:concat transform.

f. Connect the element POSTCODE to the element Postcode in the message
assembly body section FindAddressResponse with a Move transform.

g. Connect the element CITY to the element City in the message assembly
body section FindAddressResponse with a Move transform.

h. Connect the element ADDITIONALINFO to the element AdditionalInfo in
the message assembly body section FindAddressResponse with a Move
transform.

i. Connect the element AREA to the element Area in the message assembly
body section FindAddressResponse with a Move transform.

j. Connect the element PREFIX to the element Prefix in the message assembly
body section FindAddressResponse with a Move transform.

k. Connect the element LOCAL to the element Local in the message assembly
body section FindAddressResponse with a Move transform.

Chapter 28. Using a message map to enrich a message with data from a database 311

Results

You have successfully configured the nested map of the Select transform.

The following figure shows the nested map:

What to do next

Handle failure of the Select transform in a message map. For more information,
see “Handling database failures in a Select transform.”

Handling database failures in a Select transform
You can configure a Failure transform for each Select transform that you define in
a message map to handle explicitly SQL database exceptions. By default, the
Mapping node throws database exceptions that can be handled by other nodes in
the message flow.

Before you begin

Configure the Select transform in a message map. For more information, see
“Configuring the Select transform in a message map” on page 309.

About this task

By default, the Mapping node throws database exceptions that the SOAPInput
node catches and automatically uses to build a SOAP fault to return to the client.

In the scenario, you use an optional Failure transform to process the first SQL
exception that might be thrown from the Select transform database transaction.
You build a SOAPFault to include the database exception detail and the Name and
Country elements used for the search of an address which failed.

312 Designing a message map

A Failure transform has a nested map. This nested map is where you transform
the input and output elements of the Message Assembly to define how to handle
failure.

Procedure

To configure the Failure transform in the scenario, complete the following steps:
1. Right-click Select, and then select Database > Handle Failure.

The following figure shows the graphically the path choices to add a Failure
transform to a Select transform:

A Failure transform is added to the Select transform.

2. Connect the message assembly element Name to the Failure transform.
The following figure shows the element Name connected to the Failure
transform:

3. Connect the message assembly element Country to the Failure transform.
The following figure shows the element Country connected to the Failure
transform:

Chapter 28. Using a message map to enrich a message with data from a database 313

4. Connect the Failure transform to the output element Fault.

5. Select Failure.
The Failure transform nested map opens.

314 Designing a message map

6. Define the transforms between the input elements and the message assembly
output elements inside the nested map. Complete the following steps:
a. Connect the input element Name to the output element Name in the

message assembly body section Fault with a Move transform.
b. Connect the input element Country to the output element Country in the

message assembly body section Fault with a Move transform.
c. Connect the database exception element Message to the output element

value in the message assembly body section Fault with a Move transform.

7. Set the cardinality index for the database element Message to 1 in the
Properties tab of the Move transform.
The following figure shows the Properties tab of the Move transform for the
element CITY:

Chapter 28. Using a message map to enrich a message with data from a database 315

Results

You have successfully completed the development steps of the scenario.

Configure the JDBC connection at run time. For more information, see
“Configuring a database to be available at run time.”

Configuring a database to be available at run time
To make database information accessible at run time, you must establish a
connection with the database to fulfill the operations that are performed by the
Mapping node. You must define a JDBC database connection.

About this task

The IBM Integration Studio connects to the database CLIENTS and runs discovery
so the Graphical Data Mapping editor can use the database definition to visualize
the database tables PERSON, ADDRESS, and PHONE.

At run time, the Mapping node uses a JDBC provider configurable service to
obtain the configuration parameters that will enable it to make the connection to
the runtime database that the message map will execute against.

Procedure

To configure the JDBC connection between the IBM Integration Bus run time and
the runtime database, you must complete the following steps:
1. Create a JDBC provider configurable service. For more information, see

“Configuring a JDBC provider configurable service.”
The JDBC provider configurable service provides the IBM Integration Bus run
time with the information that it needs to complete the connection to the
runtime database.

2. Set up security. For more information, see “Securing the JDBC provider
configurable service” on page 318.
Some databases require access to be associated with a known user ID and
password, for other, this association is optional. A DB2 database requires a data
source login name and password on all connections.

Configuring a JDBC provider configurable service
You can configure a JDBC provider configurable service by running the
mqsicreateconfigurableservice command.

316 Designing a message map

Before you begin

The integration node named Server1 is created and started.

About this task

The IBM Integration Studio connects to the database CLIENTS and runs discovery
so the Graphical Data Mapping editor can use the database definition to visualize
the database tables PERSON, ADDRESS, and PHONE.

At run time, the Mapping node uses a JDBC provider configurable service named
CLIENTS to obtain the configuration parameters that will enable it to make the
connection to the runtime database PCLIENTS that the message map will execute
against.

You configure the runtime database resources by defining the JDBC provider
configurable service properties. You must set the following properties:
v databaseName property: You must set its value to be the runtime database name

PCLIENTS.
v databaseSchemaNames property: You must set its value to use at run time the

database schema PADDRESSBOOK.

Note: The table names must be the same in the database development
environment and in the run time database environment.

The following table lists the database resource names in the development
environment, and in the runtime environment:

Table 24. Scenario database resource names

Development database
resource names

Runtime database resource
names

Database name CLIENTS PCLIENTS

Schema name ADDRESSBOOK PADDRESSBOOK

Tables names PERSON, ADDRESS,
PHONE

PERSON, ADDRESS,
PHONE

Procedure

To configure the JDBC provider configurable service CLIENTS, run the
mqsicreateconfigurableservice command:
mqsicreateconfigurableservice Server1 -c JDBCProviders -o CLIENTS -n
databaseName,databaseSchemaNames -v PCLIENTS,PADDRESSBOOK
where
v Server1 is the name of the runtime integration node.
v -o defines the name of the JDBC configurable service.

Set the value to the name of the development database, that is, CLIENTS.
CLIENTS is the development database name that you used to configure the data
definition file in the IBM Integration Studio.

v -n defines the list of properties that you must set to configure the JDBC
connection.
These properties are required by the Mapping node to access the database
information at run time.

Chapter 28. Using a message map to enrich a message with data from a database 317

You must define the databaseName property, and the databaseSchemaNames
property.

v -v defines the values you set for each property defined in -n.
– Set the databaseName property to be the name of your runtime database, that

is, PCLIENTS.
– Set the databaseSchemaNames property to be the name of your runtime

schema, that is, PADDRESSBOOK.

Results

A JDBC provider configurable service is available at run time.

What to do next

Secure the JDBC connection. For more information, see “Securing the JDBC
provider configurable service.”

Securing the JDBC provider configurable service
You secure the JDBC connection to a DB2 database by running the
mqsisetdbparms command, and the mqsichangeproperties command.

About this task

A DB2 database requires a data source login name and password on all
connections.

Procedure

You must secure the JDBC connection to the DB2 database by completing the
following steps:
1. Identify the user ID and password that you want to associate with the JDBC

connection.
In the scenario, db2admin is the user ID used. Request the user ID and
password of your installation from your system administrator.

2. Run the mqsisetdbparms command to associate the user ID and password with
the security identity scenario that is associated with the database.
mqsisetdbparms Server1 -n jdbc::SecurityIdentity -u userID -p password

where:
v -n is the security identity that is used to authenticate the JDBC connection.

Set the value to jdbc::scenario.

Note: In the scenario, you create a security identity whose value is scenario.
However, you can use any name for the security identity. The security
identity name that you define in this step must be used to configure the
securityIdentity property of the JDBC configurable service in the following
step.

v userID is your user ID.
v password is the password of the user ID.
Run the following command:
mqsisetdbparms Server1 -n jdbc::scenario -u db2admin -p password

Note: The security identity that you define in this step is also used to configure
the securityIdentity property of the JDBC configurable service.

318 Designing a message map

3. Update the securityIdentity property of the CLIENTS JDBC configurable
service to associate the JDBC connection with the database security identity.
Run the mqsichangeproperties command.
mqsichangeproperties Server1 -c JDBCProviders -o CLIENTS -n
securityIdentity -v scenario

where:
v Server1 is the name of the runtime integration node.
v -o defines the name of the JDBC configurable service. Set the value to

CLIENTS.
v -c defines the type of the configurable service. Set the value to

JDBCProviders.
v -n defines securityIdentity as the name of the property that you must set.
v -v defines the value of the securityIdentity property. Set the value to

scenario.

Results

You have secured the JDBC connection.

You have completed the scenario.

Chapter 28. Using a message map to enrich a message with data from a database 319

320 Designing a message map

Chapter 29. Using or converting legacy resources into
message maps

You can compile and deploy legacy message maps and legacy message flow nodes
in WebSphere Message Broker Version 8 and later versions. However, if you need
to modify any of these resources, you must convert them into message maps that
the new Mapping node consumes.

About this task

A legacy message map is a message map created as a .msgmap file in earlier
versions of WebSphere Message Broker, for example in WebSphere Message Broker
Version 7.

Note: From WebSphere Message Broker Version 8 onwards, legacy message maps
are accessible in read-only mode and cannot be modified by using the IBM
Integration Studio.

The functions provided by the following legacy message flow nodes in WebSphere
Message Broker Version 7 are replaced with the new Mapping node in WebSphere
Message Broker Version 8 and later versions:
v DataDelete node
v DataInsert node
v DataUpdate node
v Extract node
v Mapping node
v Warehouse node

Procedure

Follow these guidelines when you use legacy message maps and legacy message
flow nodes in your integration solutions:
v You can import message flows developed in earlier versions of WebSphere

Message Broker that use legacy message maps.
v You can import a message flow that contains legacy message flow nodes. You

can continue to view and deploy these nodes, but you cannot modify them.
v You can compile and deploy message flows that use legacy message maps and

legacy message flow nodes.
If you use a legacy message map as part of your integration solution, the BAR
file that you use to deploy the solution must have the option Compile and
in-line resources set. This setting might be incompatible with some other
functions, such as deployable subflows that require deploy as source mode. For
more information, see Adding files to a BAR file.

v You must convert a legacy message map to a message map before you can
modify any of its mapping operations by using the Graphical Data Mapping
editor. For more information, see “Converting a message map from a .msgmap
file to a .map file” on page 325.
You can convert your legacy message map created as a .msgmap file to a message
map created as a .map file.

© Copyright IBM Corp. 2014 321

v You must convert a legacy message flow node before you can modify any of its
transformation logic.

Note: The conversion of a legacy message flow node into a message map and a
Mapping node is a manual process. For more information, see Chapter 8,
“Creating a message map,” on page 45 and “Replacing a WebSphere Message
Broker Version 7 Mapping node” on page 339

v You must change the transformation logic in your integration solution when a
legacy message map is invoked from an ESQL CALL statement. For more
information, see “Converting a legacy message map that is called from an ESQL
statement in a Compute node” on page 337.
A message map cannot be called from a ESQL CALL statement.

Changes in behavior in message maps converted from legacy
message maps

From WebSphere Message Broker Version 8 onwards, you transform data
graphically by using a message map. These maps are managed through the
Graphical Data Mapping editor. You define your transformation logic by using
XPath 2.0 expressions. You can also call Java methods, ESQL procedures, or
complex XPath expressions by using specialized transforms such as the Custom
Java, Custom XPath, or Custom ESQL transforms.

Behavior changes during the development phase

Nulls behavior
When you convert a legacy message map that includes handling for nilled
elements, check how a message map handles NULL values. For more information,
see Chapter 5, “Handling nulls in message maps,” on page 35.
v

In ESQL, a special NULL value is defined, and is distinct from empty. When you
assign NULL to a named element, or set the element from the returned NULL
value of a called ESQL function, you delete the element from the tree.
In a message map, the ESQL NULL produces an empty element, or an empty
element with the xsi:nil attribute set when the element is defined as nillable in
the model. Consequently, in some cases the output of the map might include
unexpected empty elements that can cause processing problems, including XML
schema validation violations. Such problems typically occur when an ESQL
user-defined function that returns ESQL NULL in some conditions is called. To
avoid these problems, add a condition to the Custom Transform to prevent it
from being invoked if it would return NULL.

Assigning literal values to output elements
Use the Assign transform to set literal values in output elements. The Assign
transform uses a string representation, which is assigned to the relevant output
element and so must be formatted according to its type. The property value does
not need to be in quotation marks, as any quotation marks would be passed as
part of the string value. To provide an explicitly typed value, use the xs:<type>
Cast transform with no input wiring.

Literals in conditional expressions
You could build expressions in the legacy message mapping editor that implied a
type cast and used the underlying string value representation.

322 Designing a message map

The Graphical Data Mapping editor uses XPath expression syntax and enforces
strict typing. For example, testing a Boolean-typed element for the string literal
value true would cause a type exception.

You can use the xs:<type> functions in your expressions to avoid these incorrect
typing issues.

Complex type text values in condition expression
A legacy message map does not require the user to be explicit when accessing
mixed content text values from a complex type element in a condition expression.

The Graphical Data Mapping editor is based on standard XPath syntax, and
requires the explicit use of /text() to signify that the mixed content text value is to
be used. As a result, a converted map with a conditional expression that referenced
mixed content text values might fail until the path expression is extended to add
the missing /text().

Literals in submap calls
The legacy message map editor did not correctly validate the typing of submap
inputs. Users could edit the normal element path value of a submap input, and
instead provide an untyped literal value.

The Graphical Data Mapping editor requires that all submap inputs are wired to
an appropriately typed input element.

"For each index" counter variables
Some transformations require the use of the "For each index" counter value. The
WebSphere Message Broker Version 6.1 and WebSphere Message Broker Version 7
message map provided the msgmap:occurrence function to obtain the current loop
count. The Graphical Data Mapping editor provides a For loop counter variable
which can be used to provide equivalent function. The name of this variable is
fixed format $<For each primary input element name>-index can be obtained
using content assist ctrl-space in the relevant "ForEach transform" Filter
properties expression panel, or in the content assist in any nested transforms.

Behavior changes during the deployment phase
From WebSphere Message Broker Version 8 onwards, message maps can be
deployed only as source. You must provide any of the following resources before
deploying your solution:
v For text and binary messages, you must provide the DFDL schema file or the

message set that defines your input and output messages.
v For XML messages, you must provide the XML schema files that define your

input and output messages.

If your message is modeled in a message set, the message map requires the
message set schema (.xsdzip file) to be deployed to run your message map. If
your existing message set is used for text and binary formats only, you can deploy
your message map with only a .dictionary file in the integration node archive
(BAR). In this case, you must modify the message set to additionally set the
XMLNSC domain support option, so it is added to a BAR with both a .dictionary
file and .xsdzip file. If this option is not set, a warning is displayed in the
Problems view, along with a quick fix action.

Chapter 29. Using or converting legacy resources into message maps 323

Behavior changes at run time
v From WebSphere Message Broker Version 8 onwards, the Graphical Data

Mapping editor has a dedicated Java based run time. As a result, map execution
benefits from full support for XPath 2.0 and Java JIT optimization, which offers
increased reliability.

v A message map can be invoked only from a Mapping node.
v

A submap can be invoked only from a top level message map, that is, a map
consumed by a Mapping node.

v The message map runs in the Java virtual machine of the integration node. You
must ensure that the integration node is configured correctly. For more
information, see Setting the JVM heap size.

Planning the conversion of a legacy message map
Before you convert a legacy message map, review this section to help you plan the
migration.

About this task

You can compile and deploy legacy message maps and legacy message flow nodes
in WebSphere Message Broker Version 8 and later versions. However, if you need
to modify any of these resources, you must convert them into message maps that
the new Mapping node consumes.

Procedure

Complete the following tasks to plan the conversion of a legacy message map to a
message map:
1. Verify that all the projects that include resources used by the legacy message

map are available in your workspace, and the project dependencies are defined.
The conversion process needs access to all projects that include resources used
by the legacy message map to be able to convert automatically your map
transformations.

2. Identify the legacy message map resources used in your transformations.
a. Check the input and output structures to the legacy message map.

v Are you doing transformations that include the local environment tree?
v Are you doing transformations that include data structures with xsd:any

elements?
For more information, see “Converting a legacy message map that includes
transformations of the local environment tree or xsd:any elements” on page
332.

b. Check your transformation for any of the following type of transformations:
v Transformations that include calls to user-defined ESQL procedures. For

more information, see “Converting a legacy message map that includes
user-defined ESQL procedures” on page 333.

v Transformations that include calls to ESQL mapping functions. For more
information, see “Converting a legacy message map that includes ESQL
mapping functions” on page 334.

v Transformations that include calls to message map functions. For more
information, see “Converting a legacy message map that includes calls to
message map functions” on page 336.

324 Designing a message map

v Transformations that include calls to relational database operations. For
more information, see “Converting a legacy message map that includes
relational database operations” on page 337.

v Transformations that include calls to a message map. For more
information, see “Converting a legacy message map that is called from an
ESQL statement in a Compute node” on page 337.

What to do next
1. Define schema models for any xsd:any element in your input or output

structures.
2. Run the conversion process. For more information, see “Converting a message

map from a .msgmap file to a .map file.”
3. Review the newly created message map and complete the post-conversion

tasks. For more information, see “Managing conversion warnings on converted
legacy message maps” on page 327 and “Managing conversion errors on
converted legacy message maps” on page 330.

4. Update the message flow that includes the legacy message map to include the
new Mapping node and reference the newly created message map. For more
information, see “Replacing a WebSphere Message Broker Version 7 Mapping
node” on page 339.

5. Deploy and test your message flow. For more information, see Deploying
solutions.

Converting a message map from a .msgmap file to a .map file
You must convert a message map from a previous version of IBM Integration Bus
to a graphical data map before you can modify it by using the Graphical Data
Mapping editor.

Before you begin

Before you convert a legacy message map, complete the following steps:
1. Import your resources from WebSphere Message Broker Version 6.1 or

WebSphere Message Broker Version 7. For more information, see Importing
resources from previous versions. Alternatively, you can migrate the WebSphere
Message Broker Version 6.1 or WebSphere Message Broker Version 7 Toolkit
development resources. For more information, see Migrating development
resources to IBM Integration Studio Version 10.0.

2. Verify that all the projects that include resources used by the legacy message
map are available in your workspace, and the project dependencies are defined.

3. Review “Changes in behavior in message maps converted from legacy message
maps” on page 322 and “Considerations for mapping messages modeled in
message sets” on page 13.

About this task

In WebSphere Message Broker Version 8 and later, if you want to modify mapping
operations that are defined in a legacy message map, you must first convert your
map to a graphical data map (.map file). A graphical data map is known as a
message map in IBM Integration Bus.

Chapter 29. Using or converting legacy resources into message maps 325

Note: The conversion process is not reversible. However, you can run the
conversion of a legacy message map multiple times. You must rename the
converted legacy message map by removing _backup from the converted map
name.

To use a converted legacy message map in your message flows, you must replace
legacy Mapping nodes with new Mapping nodes. For more information, see
“Replacing a WebSphere Message Broker Version 7 Mapping node” on page 339.

Procedure

To convert a legacy message map to a message map by using the IBM Integration
Studio, complete the following steps:
1. Start the conversion process: In the Application Development view, right-click

the message map that you want to convert, and click Convert Message Map
from .msgmap to .map.
To covert multiple legacy message maps, right-click a folder, project,
application, or library that contains one or more maps, and click Convert
Message Map from .msgmap to .map.
v Your converted message map is created, and is displayed in the Application

Development view.
v Your legacy message map is renamed MessageMapName.msgmap_backup, and is

displayed in the Application Development view.
2. Open the converted map in the Graphical Data Mapping editor: In the

Application Development view, double-click your new message map.
The message map opens in the Graphical Data Mapping editor.

3. Review the transformation logic that was created by the conversion process to
ensure that it produces the correct output for your application.
a. Review and replace each Task transform. For more information, see

“Managing conversion errors on converted legacy message maps” on page
330.
If your legacy message map contains complex mapping structures that the
conversion process was not able to re-create, your message map includes
Task transforms to assist you in manually re-creating those structures.
Task transforms are listed in the Problems view.

b. Review all the conversion annotation icons () that are associated to
transforms in your map. For more information, see “Managing conversion
warnings on converted legacy message maps” on page 327.
Conversion annotation icons are displayed on the lower left of the
transform in the Graphical Data Mapping editor.

Note: You can accept or reject all the transforms in a converted map in one
single click.

Results

Your message map is converted to a message map that can be modified by using
the Graphical Data Mapping editor.

What to do next

Modify each message flow that references the legacy message map so that new
Mapping nodes reference your new message map. For more information, see

326 Designing a message map

“Replacing a WebSphere Message Broker Version 7 Mapping node” on page 339.

Managing conversion warnings on converted legacy message maps
You can accept or reject conversion actions suggested by the map conversion
process when you transform a legacy message map into a message map.

About this task

If you convert a legacy message map (.msgmap file) to a message map (.map file),
and your message map contains complex mapping structures that the conversion
process is able to recreate, your new map might include warnings on one or more
of the transforms that are created by the conversion process. These warnings are
displayed in the Graphical Data Mapping editor as conversion annotation icons (

).

Note: The conversion process creates one warning per transform that needs to be
reviewed. You must check all the warnings present on one or more of the
transforms in your converted map. Why? The output of the converted transform
might be different to the behavior in your original message map.

If a transform contains a conversion warning, it will have a small green arrow in
the bottom-left of the transform.

Procedure

In the Graphical Data Mapping editor, open your converted map, and complete the
following actions to resolve the conversion warning:
1. Select a transform with a warning.
2. Review the transform properties in the Properties view to ensure that the

transformation logic is correct.
3. Accept or reject the proposed transform. Select one of the following actions:

a. Select Accept Converted Transform to remove the conversion warning and
accept the transformation logic implemented by the conversion process.

b. Select Reject Converted Transform to remove the warning. The conversion
process replaces the converted transform with a Task transform. Then,
manually re-create the transformation logic.
1) Select the Task transform.
2) In the Task transform Properties view, check out the information

provided in the Documentation tab.

Chapter 29. Using or converting legacy resources into message maps 327

3) Edit the Condition property of the transform and manually define the
transformation logic.

In the Documentation tab of the transform, the map conversion process
includes the mapping structure from your legacy message map.

c. Select Accept Converted Transforms to remove all the conversion warnings
in your map and accept all the transformation logic implemented by the
conversion process.

d. Select Reject Converted Transforms to remove all the conversion warnings.
The conversion process replaces each transform with a Task transform.
Then, manually re-create the transformation logic.

What to do next

Check the following conversion warning descriptions and the actions you can take
to resolve them:

Conversion warning description Action to resolve it

The message map references the function {0}.
The numbers of inputs provided by the
message map and expected by the function
definition are {1} and {2}, respectively. The
extra input is:{3} Refer to {4} to resolve the
discrepancy.

Review the input connections to the
transform and remove the one that is not
needed.

For more information, see “Converting a
legacy message map that includes ESQL
mapping functions” on page 334.

The message map references the function {0}.
The numbers of inputs provided by the
message map and expected by the function
definition are {1} and {2}, respectively. Refer
to {3} and provide values for all inputs.

Review your input connections and add the
missing ones. The transform is missing at
least one input connection

For more information, see “Converting a
legacy message map that includes ESQL
mapping functions” on page 334.

The signature for Java method {0} in class {1}
is not found in the workspace within the
referenced projects and the Java build path.
Refer to {2} for the original mapping and
make sure the Java method is accessible
from the map.

Define a project reference from the project
containing the message map to the Java
project that contains the Java class and
method.

Review the definition being used as the cast
for {0}, since it is defined in the following
schemas. {1}

Check that the schema used to cast an
xsd:any element or attribute is the correct
one.

The connection to input {0} was converted
from expression {1}. There is more than one
element that can be identified as {1}. Review
the input connection, and move the
connection to another {0} if appropriate.

The transform was converted from a
mapping with an ambiguous input.

The transformation code was converted from
{0}. It is advised to review to ensure
equivalent transformation outcome. Refer to
{1} for the original function usage.

Review the transformation logic.

328 Designing a message map

Conversion warning description Action to resolve it

The function {0} was converted from {1}. It is
advised to review to ensure equivalent
transformation outcome. Refer to {2} for the
original function usage.

Review the transformation logic.

The transform was created by converting a
non-trivial mapping in an older version of
message map. User review is advised to
ensure equivalent transformation outcome.
Refer to {0} for the original mapping.

Review the transformation logic.

The transform was converted from a call to
a user-defined ESQL function. All inputs of
this transform are optional, if the
user-defined ESQL function returns NULL
when none of the inputs are present, an
unexpected empty output element could be
produced. To avoid an empty output
element, consider setting a condition on the
transform as shown below so that the
transform will only be performed when at
least one input exists: t{0} Refer to {1} for the
original mapping.

A condition might be needed on the
transform.

The transform was converted from an XPath
expression involving an XML type cast.
Before conversion, XPath functions were
implemented in the runtime using
equivalent ESQL functions. Some of these
ESQL functions have more lax value typing
than defined in the XPath specification of
the function. The Graphical Data Mapper
provides conforming XPath functions. As a
result, the transform may fail at runtime
with invalid value for type casting issues. In
particular, the ESQL equivalent function may
have provide a default value when the
parameter value was empty. To resolve these
type of issues, add conditions to detect and
prevent the values that are invalid for the
XPath function parameters being passed to
the function. For example, the following
condition will make the transform executed
only when all inputs exist: \t{0} Refer to {1}
for the original mapping.

A condition might be needed on the
transform.

For more information, see “Converting a
legacy message map that includes ESQL
mapping functions” on page 334.

The XPath expression was converted from
an expression involving a call to the
msgmap:exact-type function. It is advised to
review to ensure equivalent transformation
outcome. Refer to {0} for the original
function usage.

Review the XPath expression.

For more information, see “Converting a
legacy message map that includes calls to
message map functions” on page 336.

Chapter 29. Using or converting legacy resources into message maps 329

Conversion warning description Action to resolve it

The transform involves the following input
element which involves a text content:
Determine if the element or its text content
is the intended mapping input or output. If
necessary, modify the corresponding
connection. Refer to {0} for the original
mapping.

Review the XPath expression.

For more information, see “Changes in
behavior in message maps converted from
legacy message maps” on page 322.

The transform involves the following output
element which involves a text content:
Determine if the element or its text content
is the intended mapping input or output. If
necessary, modify the corresponding
connection. Refer to {0} for the original
mapping.

Review the XPath expression.

For more information, see “Changes in
behavior in message maps converted from
legacy message maps” on page 322.

The XPath function call was converted from
{0}. Ensure the argument number, order and
type matches the supported function
specification. Refer to {1} for the original
function usage.

Review the XPath expression against the
XPath specification.

Managing conversion errors on converted legacy message maps
The conversion process creates a Task transform with an error when it cannot
automatically convert a legacy message map transformation. You can use any of
the transforms in the Graphical Data Mapping editor to reconstruct an equivalent
transformation. Typically, you might use a Custom XPath transform, a Custom
Java transform, or a Custom ESQL transform to re-create the transformation logic.

About this task

These errors are displayed in the Graphical Data Mapping editor as Task
transforms marked with an error.

You can see the error description associated with the conversion in the Problems
view or by hovering over the red exclamation symbol associated to a Task
transform.

Procedure

In the Graphical Data Mapping editor, open your converted map, and complete the
following actions to resolve the error:
1. Select a Task transform.

The transform properties are displayed in the Properties view.
2. In the Properties view, click the Documentation tab to review details about the

mapping structure that was not re-created by the conversion process.
In the Documentation tab of the transform, the map conversion process
includes the mapping structure from your legacy message map. For example,
you can find the following description for conversion of unsupported legacy
transforms:
The expression {0} used for {1} cannot be automatically converted into a supported transform. \n\
Refer to {2} and manually create a transform with an equivalent expression.

330 Designing a message map

3. Change the Task transform to a Custom XPath transform, a Custom Java
transform, or a Custom ESQL transform.
Click the arrow in the transform box, and select a transform from the list of
available ones. For more information, see Chapter 9, “Editing message maps,”
on page 61.

4. Configure the transform properties to manually re-create the transformation
logic.

What to do next

Check the following conversion error descriptions and the actions you can take to
resolve them:

Conversion error descriptions Action to resolve it

The statement {0} cannot be automatically
converted into a supported transform. Refer
to {1} and manually create mappings to
perform the corresponding transformation.

Check the Documentation tab of the Task
transform to get details of the original
expression.

Use a Custom XPath transform, a Custom
Java transform, or a Custom ESQL
transform to re-create the transformation
logic.

The expression {0} cannot be automatically
converted into a supported transform. Refer
to {1} and manually create a transform with
an equivalent expression.

Check the Documentation tab of the Task
transform to get details of the original
expression.

Use a Custom XPath transform, a Custom
Java transform, or a Custom ESQL
transform to re-create the transformation
logic.

The XPath function call {0} for {1} is not
supported. Refer to {2} and manually create
a transform with an equivalent expression.

Check the Documentation tab of the Task
transform to get details of the original
expression.

Use a Custom XPath transform, a Custom
Java transform, or a Custom ESQL
transform to re-create the transformation
logic.

The message map contains an erroneous
expression. An attempt is made to convert
the expression. Refer to {0} and review the
converted expression.

Check the Documentation tab of the Task
transform to get details of the original
expression.

Use a Custom XPath transform, a Custom
Java transform, or a Custom ESQL
transform to re-create the transformation
logic.

Chapter 29. Using or converting legacy resources into message maps 331

Conversion error descriptions Action to resolve it

The message map references a user-defined
ESQL routine {0} which has an argument {1}
of REFERENCE type. A routine with an
argument of REFERENCE type cannot be
called from the converted map. Refer to {2}
and manually create a transform with an
equivalent result.

Check the Documentation tab of the Task
transform to get details of the original
expression.

Use a Custom XPath transform, a Custom
Java transform, or a Custom ESQL
transform to re-create the transformation
logic.

For more information, see “Converting a
legacy message map that includes
user-defined ESQL procedures” on page 333.

Converting a legacy message map that includes transformations of the
local environment tree or xsd:any elements

Before you convert a legacy message map that includes transformations of the local
environment tree or xsd:any elements, you must provide the XML schema of the
input and output data structure in a library. The library with the schemas must be
visible by the project hosting the imported legacy message map.

About this task

In a message map, the Variables folder in the local environment tree is represented
by xsd:any. In IBM Integration Bus, you must qualify the Variables folder to
provide the elements for your map. For more information, see “Mapping data in
the local environment tree” on page 111.

When you convert a legacy message map, you can encounter any of the following
conversion behaviors:
v You have an xsd:any element and the schema model associated to the message

set that you use to qualify it in your map. The conversion process casts the
xsd:any element to the schema model automatically.

v You have an xsd:any element and no schema model describing its structure. The
conversion process fails the first time. You must define the model and run again
the conversion process.

v You have a legacy message map where you edit the path expression in your
map to define the element that must be read to qualify the xsd:any element. The
conversion process fails the first time. You must define the schema model and
run again the conversion process.

Procedure

In the Application Development view, complete the following steps to convert a
legacy message map that includes transformations of the local environment tree
and of xsd:any elements:
1. If you use the local environment tree in your legacy message map

transformations, create an XML schema model in a library project. The model
must define the Variables folder data structure.

2. If your input message or your output message include xsd:any elements that
you use as part of your transformations, define the XML schema model for
each one.

332 Designing a message map

3. Start the conversion process: Right-click the message map that you want to
convert, and click Convert Message Map from .msgmap to .map.

4. Open the converted map in the Graphical Data Mapping editor: Double-click
your new message map.

5. Review the conversion errors and build the list of unresolved elements. For
more information, see “Managing conversion errors on converted legacy
message maps” on page 330.

6. Create XML schema models for each unresolved data structure in a library that
is referenced by the project hosting your converted map.
For more information, see “Mapping data in the local environment tree” on
page 111.

7. Delete the converted legacy message map.
8. Rename the converted legacy message map by removing _backup.
9. Rerun the conversion process: Right-click the message map that you want to

convert, and click Convert Message Map from .msgmap to .map.
The conversion process casts automatically your xsd:any elements. Any related
errors to unresolved elements disappear.

What to do next

Continue converting your legacy message map. For more information, see
“Converting a message map from a .msgmap file to a .map file” on page 325.

Converting a legacy message map that includes user-defined ESQL
procedures

When you convert a legacy message map that includes ESQL procedures, the
conversion process converts each ESQL procedure to an equivalent Custom ESQL
transform that invokes the ESQL. A Task transform is added to your converted
map when an ESQL procedure does not fulfill the requirements to be called from a
map on a Mapping node.

Before you begin

Read the section Requirements for ESQL modules called from a graphical data
map in the following topic: “Custom ESQL” on page 208

Procedure

Check the conversion process behavior when you convert a legacy message map to
a message map that includes ESQL procedures:
1. By default, the conversion process converts an ESQL procedure to a Custom

ESQL transform. For more information, see “Custom ESQL” on page 208.
Each converted ESQL procedure is deployed as source. If you are not using
IBM Integration Bus application and library projects to store your ESQL
procedures, the ESQL procedures must be uniquely named because they are
deployed independently to the same integration server.

2. The conversion process converts an ESQL procedure that uses the ESQL
REFERENCE data type to a Task transform.
You must replace the Task transform with a Custom XPath transform, a
Custom Java transform, or a Custom ESQL transform that provides equivalent
function.

Chapter 29. Using or converting legacy resources into message maps 333

3. The conversion process converts an ESQL procedure that has an INOUT
argument to a Custom ESQL transform where the INOUT argument is
converted as an IN argument.
You can replace the Custom ESQL transform with a Custom XPath transform,
or a Custom Java transform when the default conversion transform is not
valid.

What to do next

Continue converting your legacy message map. For more information, see
“Converting a message map from a .msgmap file to a .map file” on page 325.

Converting a legacy message map that includes ESQL mapping
functions

When you convert a legacy message map that includes ESQL mapping functions,
the conversion process converts some ESQL functions to equivalent XPath 2.0
functions (fn:functionName), or to cast type functions (xs:type). A Task transform
is added to your converted map when there is no automatic conversion for an
ESQL function.

Procedure

Check the conversion process behavior when you convert a legacy message map to
a message map that includes ESQL mapping functions:
1. When a legacy message map includes calls to predefined ESQL mapping

functions, each ESQL function call is converted to an XPath expression, cast
type function, or to a Custom XPath transform in the converted map. For each
expression, xs:type function, or Custom XPath transform in the converted
map, complete the following steps:
a. Check that the expression, xs:type function, or Custom XPath transform

re-creates the required behavior.
If your ESQL mapping function has optional input parameters, you must
implement conditions to handle this situation. By default, the conversion
process assumes that all input parameters are mandatory.

b. For each expression, xs:type function, or transform, check that the correct
number of inputs is connected.
In earlier releases of WebSphere Message Broker Version 8, the number of
inputs wired to a transform and required to implement a transformation in
a legacy message map was not enforced. When the Graphical Data Mapping
editor converts a transform that includes an ESQL mapping function, it
creates an XPath function that conforms to the XPath 2.0 specification, and
wires the input elements to the transform as defined in the legacy message
map. As a result, a converted map might have more inputs than the XPath
expression requires, or less inputs than the ones required to perform the
calculation. Consequently, the converted map will fail to run when you
deploy it.

2. If there is no XPath equivalent of an ESQL mapping function, the function is
replaced with a Task transform in your converted map. You must replace each
of these Task transforms with a Custom XPath transform, a Custom Java
transform, or a Custom ESQL transform that re-creates the required behavior.

334 Designing a message map

a. Check the Documentation properties of the transform in the converted map
for more information on how the ESQL function was implemented in your
legacy message map.

The following ESQL mapping functions that you can use in a legacy message
map have no XPath equivalent in message maps:
v Certain mathematical functions:

– ACOS
– ASIN
– ATAN
– ATAN2
– BITAND
– BITNOT
– BITOR
– BITXOR
– COS
– COSH
– COT
– DEGREES
– EXP
– LN
– LOG
– LOG10
– MOD
– POWER
– RADIANS
– RAND
– SIGN
– SIN
– SINH
– SQRT
– TAN
– TANH

v Decimal function:
– TRUNCATE

v Certain String functions:
– LTRIM
– RTRIM
– TRIM-LEADING
– TRIM-TRAILING
– REPLICATE
– SPACE
– TRIM-BOTH(Singleton FROM Source)

The simple form TRIM-BOTH (Source) is converted.
v Certain field functions:

– ABITSTREAM

Chapter 29. Using or converting legacy resources into message maps 335

– BITSTREAM
– SAMEFIELD

v Certain date time functions:
– TIMESTAMP
– CURRENT-GMTDATE
– CURRENT-GMTTIME
– CURRENT-GMTTIMESTAMP

v All INTERVAL- functions
v The ESQL LIKE function
v The ESQL FOLLOWING form of the ESQL POSITION function
v All SQL functions
v The UUIDASCHAR and UUIDASBLOB functions

What to do next

Continue converting your legacy message map. For more information, see
“Converting a message map from a .msgmap file to a .map file” on page 325.

Converting a legacy message map that includes calls to message map
functions

The conversion process converts a number of supported calls to predefined legacy
message map functions (msgmap:functionName) to an XPath expression, or a
Custom XPath transform.

About this task

If there is no XPath equivalent of a message map function, the conversion process
creates a Task transform instead.

The following legacy message map functions have no XPath equivalent:
v msgmap:element-from-bitstream
v msgmap:cdata-element
v msgmap:db-path

Procedure

Complete the following steps to convert a transformation that includes a call to a
message map function that is not converted automatically:
1. Select a Task transform.
2. In the Task transform Properties view, check out the information provided in

the Documentation tab.
3. Replace the Task transforms with any of the available transforms. Consider

using a Custom XPath transform, a Custom Java transform, or a Custom ESQL
transform.

4. Manually re-create the equivalent transformation logic of the message map
function.

336 Designing a message map

What to do next

Continue converting your legacy message map. For more information, see
“Converting a message map from a .msgmap file to a .map file” on page 325.

Converting a legacy message map that includes relational database
operations

You must convert manually a transformation that includes relational database
operations.

About this task

A legacy Mapping node connects to a database via ODBC. A database
configuration file describes the ODBC configuration to your database. You
configure the database information in your legacy message map by setting the
Data Source property in the map.

From WebSphere Message Broker Version 8 onwards, the Mapping node connects
to databases via JDBC type 4 connections. You configure the database connection
details in a JDBCProvider configurable service.

Database transforms in a message map use support for JDBC connections that are
built into IBM Integration Bus run time.

For information on constructing database transforms and configuring your JDBC
database connection, see Chapter 19, “Mapping database content,” on page 159.

Procedure

To re-create the transformation logic of a transformation that includes a relational
database operation, you can use any of the following transforms when replacing
the Task transform in the new message map:
1. “Select” on page 227
2. “Update” on page 228
3. “Delete” on page 216
4. “Database Routine” on page 216

What to do next

Continue converting your legacy message map. For more information, see
“Converting a message map from a .msgmap file to a .map file” on page 325.

Converting a legacy message map that is called from an ESQL
statement in a Compute node

To convert a legacy message map that is called from an ESQL CALL statement in a
Compute node, you must implement your ESQL logic in a Mapping node, and call
the converted legacy message map through a Submap transform.

Before you begin

Before you convert a legacy message map, you must complete one of the following
tasks:

Chapter 29. Using or converting legacy resources into message maps 337

v Import your resources from WebSphere Message Broker Version 6.1 or
WebSphere Message Broker Version 7. For more information, see Importing
resources from previous versions.

v Migrate the WebSphere Message Broker Version 6.1 or WebSphere Message
Broker Version 7 Toolkit development resources. For more information, see
Migrating development resources to IBM Integration Studio Version 10.0.

Review “Changes in behavior in message maps converted from legacy message
maps” on page 322 and “Considerations for mapping messages modeled in
message sets” on page 13.

About this task

In WebSphere Message Broker Version 8 and later versions, a message map, that is
a graphical data map, cannot be called from ESQL statements in a Compute node.
For compatibility with earlier releases of the product, you can still deploy and run
a legacy message map in a BAR file. You must include the whole message flow to
the BAR file and set the compile and in-line option.

If you need to modify the logic in your legacy message map, you must convert the
map to a message map and modify your message flow logic.

Procedure

To convert a legacy message map that is called by an ESQL CALL statement in a
Compute node, complete the instructions outlined in any of the following steps:
v Replace the Compute node and the legacy message map with a new message

map.
1. Convert the legacy message map (.msgmap) to a message map (.map). For

more information, see “Converting a message map from a .msgmap file to a
.map file” on page 325.

2. Replace each Compute node that includes a call to the legacy message map
with a Mapping node.

3. Create a new message map for each Mapping node.
In this message map, complete the following steps:
a. Create a message model that defines the overall input and output data

structure to the Mapping node.
b. Define the transforms that implement equivalent logic to the ESQL

routine.
c. Replace the CALL statement with a Submap transform. For more

information, see “Submap” on page 227.
d. Configure the converted legacy message map as the mapping routine of

the Submap transform.
v Replace the called message map with an ESQL function that provides equivalent

logic. It might be possible to use support pac "IA9Y: Map to ESQL Plug-In" to
help with the conversion of the message map to ESQL http://www.ibm.com/
support/docview.wss?uid=swg24017156.

What to do next

Deploy and test your message flow. For more information, see Deploying
solutions.

338 Designing a message map

http://www.ibm.com/support/docview.wss?uid=swg24017156
http://www.ibm.com/support/docview.wss?uid=swg24017156

Replacing a WebSphere Message Broker Version 7 Mapping node
A WebSphere Message Broker Version 7 Mapping node cannot reference a
graphical data map (.map file). If you want to reference a graphical data map, you
must replace the WebSphere Message Broker Version 7 Mapping node.

Before you begin

Before you replace a Mapping node, you must complete the following task:
v Import your resources from WebSphere Message Broker Version 7. For more

information, see Importing resources from previous versions.

You might also need to complete the following task:
v Convert a message map to a graphical data map. For more information, see

“Converting a message map from a .msgmap file to a .map file” on page 325.

About this task

If you import your integration solutions from WebSphere Message Broker Version
7, you can still compile and deploy message flows that use WebSphere Message
Broker Version 7 Mapping nodes. However, in WebSphere Message Broker Version
8 and later, Mapping nodes that were created in WebSphere Message Broker
Version 7 are accessible in read-only mode and cannot be modified.

If you want to reference a graphical data map (.map file) in a Mapping node, you
must use the Mapping node from WebSphere Message Broker Version 8 or later.

To replace a WebSphere Message Broker Version 7 Mapping node by using the IBM
Integration Studio, complete the following steps:

Procedure
1. In the Application Development view, double-click a message flow that

contains one or more WebSphere Message Broker Version 7 Mapping nodes.
The message flow opens in the Message Flow editor.

2. In the Message Flow editor, identify a WebSphere Message Broker Version 7
Mapping node that you want to replace.

3. In the Palette, expand the Transformation section, and then drag a new
Mapping node from the Palette to the canvas of the Message Flow Editor.
A new Mapping node is added to your message flow, and is assigned a default
name.
If you rename the node, the name that you choose must be unique in the
message flow.
If you do not change the default name at this time, you can change it later. For
more information, see Renaming a message flow node.

4. Select your new Mapping node.
The node properties are displayed in the Properties view.

5. In the Properties view, a default value is entered in the Mapping routine
property, and must be replaced by choosing one of the following actions:
v To reference an existing graphical data map, click Browse... to locate it, or

specify your .map file in the format {BrokerSchemaName}:MapName. {default}
indicates that no Broker schema is used by the graphical data map. For more
information, see “Referencing an existing message map from a Mapping
node” on page 175.

Chapter 29. Using or converting legacy resources into message maps 339

v To create a new graphical data map, double-click the Mapping node, or
right-click the Mapping node and click Open Map. For more information,
see “Creating a message map from a Mapping node” on page 49.

6. Move the existing connections from your WebSphere Message Broker Version 7
Mapping node to your new Mapping node. For more information, see
Connecting message flow nodes.

7. Select your WebSphere Message Broker Version 7 Mapping node, and press the
delete key (del) to remove it from your message flow. For more information,
see Removing a message flow node.

8. Repeat steps 3 on page 339 through 7 for each WebSphere Message Broker
Version 7 Mapping node that you want to replace in your message flow.

Results

You have removed your WebSphere Message Broker Version 7 Mapping nodes and
replaced them with new Mapping nodes.

What to do next

Deploy and test your message flow. For more information, see Deploying
solutions.

340 Designing a message map

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2014 341

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

342 Designing a message map

Programming interface information
Programming interface information, if provided, is intended to help you create
application software for use with this program.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at Copyright and trademark information (www.ibm.com/legal/
copytrade.shtml).

Notices 343

http://www.ibm.com/legal/copytrade.shtml

344 Designing a message map

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2014 345

mailto:idrcf@hursley.ibm.com

346 Designing a message map

����

Printed in USA

	Contents
	Chapter 1. Using message maps
	Chapter 2. Graphical Mapping overview
	Graphical Data Mapping editor
	Message maps
	Submaps
	Guidelines for developing reusable graphical data mapping assets
	Considerations for mapping messages modeled in message sets

	Chapter 3. Designing a message map
	Input and output messages to a message map
	Advanced XML schema structures valid in input and output messages
	Substitution groups
	Wildcards (xsd:any)
	Derived types
	List types (xs:list)
	Union types (xs:union)

	Chapter 4. Transforms (Mapping operations)
	Choosing a transform to set the value of a simple type output element
	Choosing a transform to set the value of a complex output element
	Choosing a transform to map repeating elements
	Selecting the indexes of input array elements

	Choosing a transform to concatenate input data
	Choosing a transform to perform an arithmetic operation
	Choosing a transform to define a conditional mapping
	Choosing a transform to map an input message to multiple output messages

	Chapter 5. Handling nulls in message maps
	Chapter 6. Using nested maps
	Chapter 7. Configuring your workspace mapping preferences
	Setting mapping preferences for your workspace
	Setting mapping keyboard preferences for your workspace

	Chapter 8. Creating a message map
	Creating a message map
	Creating a message map in the Application Development view
	Creating a message map from a Mapping node

	Creating a submap
	Creating a submap by using the Graphical Data Mapping editor
	Creating a submap in the Application Development view
	Creating a submap by using the Submap transform
	Converting a local map into a submap

	Creating a message map programmatically
	Creating a local map by using the Local map transform
	Converting a submap into a local map
	Creating a graphical data map in the Eclipse editor

	Chapter 9. Editing message maps
	Configuring the general properties of a message map
	Adding input and output messages
	Mapping xsd:any on an input or output message
	Casting wildcards in a map
	Casting a wildcard defined as xsd:any into a specific type for a SOAP message
	Casting a base type to a derived type or extension type

	Mapping input to output elements manually
	Adding connections between input and output elements
	Connecting multiple input elements to a transform

	Mapping input to output elements automatically
	Mapping by same name
	Mapping by similar name
	Examples of similarity values
	Format of the synonym file
	File type
	Item names in the file
	Rows in the synonym file
	Special characters

	Algorithm used to match synonyms
	Creating and using a synonym file
	Selecting matches

	Specifying a transform (mapping operation)
	Configuring the properties of a transform
	Defining an XPath conditional expression for a transform
	Defining an XPath conditional expression for a structural transform (ForEach)
	Choosing an XPath conditional expression that tests for a nil value in a transform

	Grouping transforms into nested maps
	Using content assist (Mapping syntax)
	Deleting objects and transforms

	Chapter 10. Advanced editing in a message map
	Configuring the message map to include message assembly components
	Choosing message assembly components to include in a message map
	Choosing a mapping action
	Transforming some elements of a message assembly component by using the Override function
	Deleting a message assembly component from the output message
	Initializing a message assembly component in the output message

	Customizing a message map to include a message assembly component

	Configuring the properties of the input and the output message assembly to a message map
	Mapping transport headers
	Mapping data in the local environment tree
	Configuring the local environment tree Variables folder by using the Cast function

	Adding database definitions to the IBM Integration Studio
	Creating a data design project
	Creating a database definition (.dbm file) by using the New Database Definition File wizard
	Creating a database definition from scratch

	Accessing integration node properties from a Mapping node
	Accessing user-defined properties from a Mapping node

	Chapter 11. Setting the value of an output element by using a transform or a function
	Setting the value of an output element to a simple data type
	Setting the value of an output element with a explicit data type
	Setting the value of a simple output element to a default or fixed value
	Setting the value of a simple type element included in a complex type output structure to a default or fixed value
	Creating a nil output element
	Creating an empty output element
	Initializing an output element by using the Assign transform
	Initializing a simple or complex output element by using the Create transform

	Chapter 12. Copying a selected element of a repeating structure to a single output
	Chapter 13. Copying some values of a repeating element when the input and output structures are the same
	Chapter 14. Copying some values of a repeating element when the input and output structures are different
	Chapter 15. Splitting an input message into multiple identical output messages
	Chapter 16. Mapping an input message into different output messages
	Chapter 17. Using Java API classes for Custom Java mapping transforms
	Chapter 18. Applying mapping overrides
	Chapter 19. Mapping database content
	Selecting data from a table
	Modifying data in a database by using mapping
	Inserting data into a table
	Updating data in a table
	Deleting data from a table
	Data type considerations for mapping database content

	Calling a stored procedure from a map
	Handling database exceptions in a graphical data map
	Behavior when modifying database column values from optional source elements

	Chapter 20. Referencing message maps in your solution
	Referencing an existing message map from a Mapping node
	Dynamically selecting a message map
	Calling a submap

	Chapter 21. Transforming a SOAP message in a message map
	Mapping a SOAP message by using a conditional transform
	Mapping a SOAP message by using the Override function

	Chapter 22. Creating or transforming a BLOB output message by using a graphical data map
	Chapter 23. Mapping from a BLOB message to an output message using a graphical data map
	Chapter 24. Troubleshooting graphical data maps
	Chapter 25. Deploying message maps
	Chapter 26. Transform types in the Graphical Data Mapping editor
	Append
	Assign
	Cast type (xs:type)
	Concat
	Convert
	Create
	Custom ESQL
	Equivalent ESQL types and schema types
	Equivalent ESQL and XPath mapping functions

	Custom Java
	Custom XPath
	Database Routine
	Delete
	Failure
	For Each
	Group
	If, Else if, and Else
	Insert
	Join
	Local map
	Move
	Normalize
	Return
	Select
	Submap
	Substring
	Update
	Built-in XPath transforms
	fn:concat
	fn:string-join
	fn:substring
	fn:count
	fn:sum

	Chapter 27. Scenario: Transforming SOAP messages by using a message map
	Introduction to the "Transforming SOAP messages by using a message map" scenario
	Context
	Technical solution

	Implementing the solution
	Creating the scenario initial configuration
	Creating a message map to transform SOAP messages
	Transforming elements in the Properties folder by using the Override function
	Customizing a message map to include the local environment tree
	Configuring the local environment tree Variables folder by using the Cast function
	Configuring the message map to include the SOAP message
	Casting the SOAP body into a specific type
	Configuring derived types in the SOAP body
	Configuring an If, Else if, and Else transform in a message map

	Chapter 28. Scenario: Using a message map to enrich a message with data from a database
	Introduction to the "Using a message map to enrich a message with data from a database" scenario
	Context
	Technical solution

	Implementing the solution
	Creating the scenario graphical data map configuration
	Creating the scenario database configuration
	Configuring a database in the IBM Integration Studio
	Creating a data design project
	Creating the database definition file

	Configuring an integration solution to access database resources
	Adding database tables your message map
	Configuring the Select transform in a message map
	Handling database failures in a Select transform
	Configuring a database to be available at run time
	Configuring a JDBC provider configurable service
	Securing the JDBC provider configurable service

	Chapter 29. Using or converting legacy resources into message maps
	Changes in behavior in message maps converted from legacy message maps
	Behavior changes during the development phase
	Nulls behavior
	Assigning literal values to output elements
	Literals in conditional expressions
	Complex type text values in condition expression
	Literals in submap calls
	"For each index" counter variables

	Behavior changes during the deployment phase
	Behavior changes at run time

	Planning the conversion of a legacy message map
	Converting a message map from a .msgmap file to a .map file
	Managing conversion warnings on converted legacy message maps
	Managing conversion errors on converted legacy message maps
	Converting a legacy message map that includes transformations of the local environment tree or xsd:any elements
	Converting a legacy message map that includes user-defined ESQL procedures
	Converting a legacy message map that includes ESQL mapping functions
	Converting a legacy message map that includes calls to message map functions
	Converting a legacy message map that includes relational database operations
	Converting a legacy message map that is called from an ESQL statement in a Compute node
	Replacing a WebSphere Message Broker Version 7 Mapping node

	Notices
	Programming interface information
	Trademarks

	Sending your comments to IBM

