
INFORMIX-CLI

Programmer’s Manual

®

Version 2.5
August 1996
Part No. 000-8984

ii INFORMIX-CLI Progra
Published by INFORMIX Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

Copyright  1981-1996 by Informix Software, Inc. or their subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

INFORMIX®; INFORMIX-Online Dynamic Server

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

FTP Software: PC/TCP

Information Builders, Inc.: API/SQL; EDA/SQL; Enterprise Data Access; Enterprise Data Access/SQL

Microsoft Corporation: Microsoft; MS-DOS; MS Windows; Windows; Windows NT; Windows 95;
Windows for Workgroups; ODBC

Sun Microsystems Inc.: Solaris®

X/Open Company Ltd.: UNIX®; X/Open®

All other marks or symbols are registered trademarks or trademarks of their respective owners.

Portions of this software product include or were based on INTERSOLV DataDirect ODBC Drivers, a product
of INTERSOLV, Inc. Portions copyright INTERSOLV, Inc., 1995. DataDirect is a trademark of INTERSOLV, Inc.,
9420 Key West Avenue, Rockville, MD, 20850.

This book incorporates text that is copyright 1994 Microsoft Corporation. This text was taken by permission
from Microsoft’s Programmer’s Reference: Microsoft Open Database Software Development Kit, Version 2.0.

Documentation Team: Twila Booth, Diana Chase, Geeta Karmarkar, Katherine Schaefer

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.
mmer’s Manual

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Organization of This Manual 4
Types of Users 5
Software Dependencies 6
Demonstration Database 6

New Features of This Product 7
Conventions . 8

Typographical Conventions 8
Icon Conventions 9
Example Code Conventions 11
Screen-Illustration Conventions 11

Additional Documentation 12
Printed Documentation 12
On-Line Documentation 13
Related Reading 14

Compliance with Industry Standards 15
Informix Welcomes Your Comments 15

Chapter 1 Overview of INFORMIX-CLI
What Is INFORMIX-CLI? 1-3
Advantages of Using INFORMIX-CLI 1-5
Overview of the Initialization Files 1-6
Understanding the odbcinst.ini File 1-6
Understanding the odbc.ini File 1-7

File Format for odbc.ini 1-8
File Examples for odbc.ini 1-11

ODBC Conformance Levels 1-12
API Conformance Level of INFORMIX-CLI 1-12
SQL Conformance Level of INFORMIX-CLI 1-14

iv INFOR
Mapping Data Types 1-15
Supported Isolation and Lock Levels 1-16

Chapter 2 INFORMIX-CLI
INFORMIX-CLI for UNIX 2-3
Setting Up INFORMIX-CLI 2-3

System Requirements 2-4
Setting Environment Variables 2-4

Adding and Modifying Data Sources 2-6
Adding a Data Source 2-6
Sample Data-Source Entry for .odbc.ini 2-10
Modifying a Data Source 2-11

Connecting to a Data Source 2-11
Using Dialog Boxes to Connect to a Data Source 2-11
Using a Connection-String to Connect to a Data Source . . . 2-13

INFORMIX-CLI for Windows 2-15
Setting Up INFORMIX-CLI 2-15

Systm Requirements 2-15
Setting the INFORMIXDIR Environment Variable 2-16

Adding and Modifying Data Sources 2-16
Adding a Data Source 2-16
Modifying a Data Source 2-24

Connecting to a Data Source 2-26
Using Dialog Boxes to Connect to a Data Source 2-26
Using a Connection-String to Connect to a Data Source . . . 2-28

Chapter 3 Guidelines for Calling INFORMIX-CLI Functions
Determining INFORMIX-CLI Conformance Levels 3-3
Using the Driver Manager 3-4
Calling Functions 3-5

Buffers . 3-5
Environment, Connection, and Statement Handles 3-7
Using Data Types. 3-8
Function Return Codes. 3-8

Chapter 4 Basic Application Steps
How an Application Uses the INFORMIX-CLI Interface 4-3
MIX-CLI Programmer’s Manual

Chapter 5 Connecting to a Data Source
Description of Data Sources 5-3
Initializing the Environment 5-4
Allocating a Connection Handle 5-5
Connecting to a Data Source 5-5

Connecting with SQLConnect 5-5
Connecting to a Data Source with SQLDriverConnect 5-6
Connection Browsing with SQLBrowseConnect 5-9
Translating Data 5-9

Related Functions 5-10

Chapter 6 Executing SQL Statements
Allocating a Statement Handle 6-5
Executing an SQL Statement 6-5

Prepared Execution 6-6
Direct Execution 6-7

Setting Parameter Values 6-7
Performing Transactions 6-9

Retrieving Information About the Data-Source Catalog 6-9
Sending Parameter Data at Execution Time 6-10
Specifying Arrays of Parameter Values. 6-11
Using ODBC Extensions to SQL 6-12
Related Functions 6-19

Chapter 7 Retrieving Results
Assigning Storage for Results (Binding) 7-4
Determining the Characteristics of a Result Set 7-4
Fetching Result Data 7-5
Using Cursors . 7-6

Retrieving Data from Unbound Columns 7-7
Assigning Storage for Rowsets (Binding) 7-7
Retrieving Rowset Data 7-9
Using Block and Scrollable Cursors 7-9
Modifying Result Set Data with Positioned Update and Delete

Statements 7-13
Processing Multiple Results 7-15
Table of Contents v

vi INFOR
Chapter 8 Retrieving Status and Error Information
Function Return Codes 8-3
Retrieving Error Messages 8-4
Error Messages 8-5

Error Text Format 8-5
Sample Error Messages 8-6

Processing Error Messages 8-8

Chapter 9 Terminating Transactions and Connections
Terminating Statement Processing 9-3
Terminating Transactions 9-4
Terminating Connections 9-4

Chapter 10 Constructing an INFORMIX-CLI Application
Static SQL Example 10-4
Interactive Ad-Hoc Query Example 10-7

Chapter 11 Designing Performance-Oriented Applications
Connecting to a Data Source 11-4
Executing Calls 11-11

SQLPrepare/SQLExecute Versus SQLExecDirect 11-11
Committing Data 11-16

Chapter 12 Function Summary
INFORMIX-CLI Function Summary 12-3

Connecting to a Data Source 12-4
Obtaining Information About a Driver and Data Source . . . 12-4
Setting and Retrieving Driver Options 12-5
Preparing SQL Requests 12-5
Submitting SQL Requests 12-6
Retrieving Results and Information about Results 12-7
Obtaining Information About Data-Source System Tables . . . 12-8
Terminating a Statement 12-9
Terminating a Connection. 12-9

Setup Shared-Library Function Summary 12-10
Translation Shared-Library Function Summary 12-10
MIX-CLI Programmer’s Manual

Chapter 13 INFORMIX-CLI Function Reference
Arguments . 13-4
INFORMIX-CLI Include Files 13-7
Diagnostics . 13-7
Tables and Views 13-7
Catalog Functions 13-8
Search Pattern Arguments 13-8
SQLColAttributes 13-52
SQLColumnPrivileges 13-60

Related Functions 13-90
SQLDriverConnect 13-93
SQLFreeConnect 13-150
SQLMoreResults 13-225
SQLParamOptions 13-239
SQLProcedures 13-255
SQLSpecialColumns 13-295
SQLTablePrivileges 13-312

Chapter 14 Setup Shared Library Function Reference
ConfigDSN . 14-3
ConfigTranslator 14-7

Chapter 15 Translation Shared Library Function Reference
SQLDataSourceToDriver 15-3
SQLDriverToDataSource 15-7

Appendix A INFORMIX-CLI Error Codes

Appendix B SQL Grammar

Appendix C Data Types

Appendix D Comparison Between INFORMIX-CLI and Embedded SQL

Index
Table of Contents vii

Introduction

Introduction
About This Manual 3
Organization of This Manual 4
Types of Users 5
Software Dependencies 6
Demonstration Database 6

New Features of This Product 7

Conventions . 8
Typographical Conventions 8
Icon Conventions 9

Comment Icons 9
Compliance Icons 10
Platform Icons 10

Example Code Conventions 11
Screen-Illustration Conventions 11

Additional Documentation 12
Printed Documentation 12
On-Line Documentation. 13

Error Message Files 13
Release Notes and Documentation Notes 14

Related Reading 14

Compliance with Industry Standards 15

Informix Welcomes Your Comments 15

2 INFOR
MIX-CLI Programmer’s Manual

This chapter introduces the INFORMIX-CLI Programmer’s Manual. Read
this chapter for an overview of the information provided in this manual and
for an understanding of the conventions used throughout this manual.

The INFORMIX-CLI application-programming interface (API) enables the C
programmer to create custom applications for relational database access, and
it uses function calls to pass dynamic SQL statements as function arguments.
It is an alternative to embedded dynamic SQL. Unlike embedded SQL, it does
not require a preprocessor.

The libraries and header files that are provided with INFORMIX-CLI enable
you to access databases, manipulate the data in your program, interact with
the database server, and check for errors.

About This Manual
The INFORMIX-CLI Programmer’s Manual is both a user guide and a reference
manual. This manual is a complete guide to the features that make up the
Informix implementation of the ODBC standards. This manual explains how
to use INFORMIX-CLI to access an Informix database server and describes the
special features that the product offers. It progresses from general topics to
more advanced programming techniques and examples.
Introduction 3

Organization of This Manual
Organization of This Manual
The INFORMIX-CLI Programmer’s Manual includes the following chapters:

■ This Introduction provides an overview of the manual and describes
the documentation conventions used.

■ Chapter 1, “Overview of INFORMIX-CLI,” introduces
INFORMIX-CLI, describes its relationship to ODBC, describes the
format of the initialization files, and lists the API and SQL grammar
conformance levels.

■ Chapter 2, “INFORMIX-CLI,”explains how to set up the
INFORMIX-CLI driver and how to configure and connect to data
sources for UNIX and Windows platforms.

■ Chapter 3, “Guidelines for Calling INFORMIX-CLI Functions,”
describes the role of the driver manager and the general character-
istics of INFORMIX-CLI functions.

■ Chapter 4, “Basic Application Steps,” describes how an application
uses the INFORMIX-CLI interface to interact with a data source.

■ Chapter 5, “Connecting to a Data Source,” describes data sources
and also describes how to establish a connection to a data source.

■ Chapter 6, “Executing SQL Statements,” describes the sequence of
function calls INFORMIX-CLI applications can use to execute SQL
statements.

■ Chapter 7, “Retrieving Results,”describes the SQL statements that
return and retrieve results.

■ Chapter 8, “Retrieving Status and Error Information,” defines the
INFORMIX-CLI return codes and error-handling protocol.

■ Chapter 9, “Terminating Transactions and Connections,” describes
how an application terminates statements and transactions. The
chapter also discusses how an application terminates the connection
when it finishes interacting with a data source.

■ Chapter 10, “Constructing an INFORMIX-CLI Application,”
provides code examples of basic applications.
4 INFORMIX-CLI Programmer’s Manual

Types of Users
■ Chapter 11, “Designing Performance-Oriented Applications,”
provides guidelines for designing and coding efficient
INFORMIX-CLI applications.

■ Chapter 12, “Function Summary,” summarizes the functions that
INFORMIX-CLI uses.

■ Chapter 13, “INFORMIX-CLI Function Reference,” describes each
INFORMIX-CLI function in detail. Each reference contains the
function’s ODBC conformance level, purpose, syntax, returns,
diagnostics, comments, SQLSTATE values, and related functions. The
chapter also includes code examples.

■ Chapter 14, “Setup Shared Library Function Reference,” describes
the syntax of the driver-setup and translator-setup shared-library
APIs.

■ Chapter 15, “Translation Shared Library Function Reference,”
describes the syntax of the translation shared-library API.

■ Appendix A provides a listing of the SQLSTATE values that can be
returned, the error message that corresponds to each numerical
value (SQLSTATE), and the functions that can return each SQLSTATE
value.

■ Appendix B describes the recommended syntax for maximum
interoperability in calls to SQLPrepare, SQLExecute, and
SQLExecDirect.

■ Appendix C provides information on ODBC SQL data types that
INFORMIX-CLI supports and ODBC C data types. This appendix also
describes conversion from one data type to the other.

■ Appendix D compares INFORMIX-CLI functions (core ODBC) with
embedded SQL statements.

Types of Users
This manual is for C programmers who want to use INFORMIX-CLI to create
custom applications for accessing Informix relational databases. The manual
assumes that you know C programming and are familiar with your computer
operating system and the structure of relational databases. Knowledge of
SQL is also useful. Three other manuals describe the Informix implemen-
tation of SQL in detail: the Informix Guide to SQL: Tutorial, the Informix Guide
to SQL: Reference, and the Informix Guide to SQL: Syntax.
Introduction 5

Software Dependencies
Software Dependencies
Depending on your Informix database configuration, you must have a
compatible Informix database server installed on your system or network.
The following list shows examples of compatible database servers:

■ INFORMIX-OnLine (Version 5.x)

■ INFORMIX-OnLine Dynamic Server (Version 7.x)

■ INFORMIX-SE (Version 5x, 7.x)

For information on these products, refer to your Informix documentation set.
For a complete listing of compatible database servers, see the release notes for
INFORMIX-CLI.

INFORMIX-CLI enables you to compose queries, send them to the database
server, and view the results that the database server returns. You can use
DB-Access to test and verify all the SQL statements described in this manual.

Demonstration Database
The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database that contains information about
a fictitious wholesale sporting-goods distributor. The sample command files
that make up a demonstration application are also included.

Most examples in this manual are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in Appendix A of the Informix Guide to SQL: Reference.

For the script and the instructions that you use to install the demonstration
database on your database server, refer to your Informix database server
documentation.
6 INFORMIX-CLI Programmer’s Manual

New Features of This Product
New Features of This Product
This section highlights the major new features implemented in Version 2.5 of
INFORMIX-CLI:

■ Support for Windows 95 and Windows NT

INFORMIX-CLI now supports application programming for both
Windows NT and Windows 95 environments.

■ Global Language Support (GLS)

The GLS feature lets Informix Version 7.2 products handle different
languages, cultural conventions, and code sets. GLS functionality
supersedes the functionality of Native Language Support (NLS) and
Asian Language Support (ALS). GLS eliminates the need to distin-
guish between internationalized versions of Informix software.

This feature is available only when you connect to an Informix
database server of Version 7.2 or later.

■ Support for additional ODBC API level 2 funtions:

SQLMoreResults

SQLColumnPrivileges

SQLTablePrivileges

SQLParamOptions

SQLProcedures
Introduction 7

Conventions
Conventions
This section describes the conventions that are used in this manual. By
becoming familiar with these conventions, you will find it easier to gather
information from this and other volumes in the documentation set.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions

■ Example-code conventions

■ Screen-illustration conventions

Typographical Conventions
This manual uses a standard set of conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth. The
following typographical conventions are used throughout this manual.

Convention Meaning

italics Within text, new terms and emphasized words are printed in
italics. Within syntax diagrams, values that you are to specify
are printed in italics. Within examples, values that you must
supply, such as a database, file, or program name are printed in
italics. A table following the diagram explains the value.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, table names, column
names, menu items, command names, and other similar terms
are printed in boldface.

monospace Information that the product displays and information that you
enter are printed in a monospace typeface.

KEYWORD All keywords appear in uppercase letters.

♦ This symbol indicates the end of product- or platform-specific
information.
8 INFORMIX-CLI Programmer’s Manual

Icon Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as described in the
following table. This information is always displayed in italics.

Icon Description

Identifies paragraphs that contain vital instructions,
cautions, or critical information.

Identifies paragraphs that contain significant information
about the feature or operation that is being described.

Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described.
Introduction 9

Icon Conventions
Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

Platform Icons

Platform icons identify paragraphs that describe product-specific or
platform-specific information. The following table describes the product and
platform icons that are used in this manual.

Icon Description

Identifies information that is specific to a database or appli-
cation that uses the Informix Global Language Support
(GLS) feature for support of a nondefault locale.

Identifies that a function supports the Core ODBC API
conformance level.

Identifies that a function supports the Level 1 ODBC API
conformance level.

Identifies that a function supports the Level 2 ODBC API
conformance level.

Icon Description

Identifies information that is specific to 32-bit support for
the UNIX environment.

Identifies information that is specific to 16-bit support for
the Windows 3.1x environment.

Identifies information that is specific to the Windows NT
environment.

Identifies information that is specific to the Windows 95
environment.

GLS

Core

Level 1

Level 2

UNIX

Windows 3.1

Windows NT

Windows 95
10 INFORMIX-CLI Programmer’s Manual

Example Code Conventions
These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the product- or platform-specific
information.

Example Code Conventions
Examples of C and SQL code occur throughout this manual. The code is not
specific to any single Informix application development tool, except where it
is noted otherwise.

Note that an ellipsis (...) in example code indicates that arguments can be
repeated several times. Also note that a column of three dots in an example
indicates that additional code would be added in a full application, but it is
not necessary to show more code to describe the concept being discussed.

Screen-Illustration Conventions
The illustrations in this manual represent a generic rendition of various
windowing environments. The details of dialog boxes, controls, and
windows were deleted or redesigned to provide this generic look. Therefore,
the illustrations in this manual depict the windowing environment a little
differently than the way it appears on your screen.
Introduction 11

Additional Documentation
Additional Documentation
This section describes the following pieces of the documentation set:

■ Printed documentation

■ On-line documentation

■ Related reading

Printed Documentation
The following related Informix documents complement the information
in this manual:

■ You, or whoever installs your Informix products, should refer to the
INFORMIX-CLI Installation Guideto ensure that your Informix
product is properly set up before you begin to work with it.

■ If you have never used Structured Query Language (SQL), read the
Informix Guide to SQL: Tutorial. It provides a tutorial on Informix SQL.
It also describes the fundamental ideas and terminology for
planning, implementing, and using a relational database.

■ A companion volume to the Tutorial, the Informix Guide to SQL:
Reference, includes details of the Informix system catalog tables,
describes Informix environment variables and UNIX environment
variables that you should set, and describes the column data types
that Informix database servers support.

■ An additional companion volume to the Reference, the Informix
Guide to SQL: Syntax, provides a detailed description of all the SQL
statements supported by Informix products. This guide also
provides a detailed description of Stored Procedure Language (SPL)
statements.

■ The SQL Quick Syntax Guide contains syntax diagrams for all state-
ments and segments described in this manual.

■ Depending on the database server you are using, you or your system
administrator need either the INFORMIX-SE Administrator’s Guide or
the INFORMIX-OnLine Dynamic Server Administrator’s Guide.
12 INFORMIX-CLI Programmer’s Manual

On-Line Documentation
■ The Guide to GLS Functionality describes how to use nondefault
locales with Informix products. A locale contains language- and
culture-specific information that Informix products use when they
format and interpret data.

■ The DB-Access User Manual describes how to invoke the DB-Access
utility to access, modify, and retrieve information from Informix
database servers.

■ When errors occur, you can look them up by number and learn their
cause and solution in the Informix Error Messages manual. If you
prefer, you can look up the error messages in the on-line message file
that is described in “Error Message Files” later in this Introduction
and in the Introduction to the Informix Error Messages manual.

On-Line Documentation
Several different types of on-line documentation are available:

■ On-line error messages

■ Release notes and documentation notes

Error Message Files

Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions. To read the error
messages in the ASCII file, Informix provides scripts that let you display error
messages on the screen (finderr) or print formatted error messages (rofferr).
See the Introduction to the Informix Error Messages manual for a detailed
description of these scripts.
Introduction 13

Related Reading
Release Notes and Documentation Notes

In addition to the Informix set of manuals, the following on-line files, located
in the $INFORMIXDIR/release/en_us/0333 directory, might supplement the
information in this manual.

Please examine these files because they contain vital information about
application and performance issues.

Related Reading
For additional information on ODBC, refer to the Microsoft ODBC
Programmer’s Reference and SDK Guide, Version 2.0 (Microsoft Press, 1994).

For additional technical information on database management, consult the
following books.

■ An Introduction to Database Systems by C. J. Date (Addison-Wesley
Publishing, 1994)

■ Transaction Processing: Concepts and Techniques by Jim Gray and
Andreas Reuter (Morgan Kaufmann Publishers, Inc., 1993)

On-Line File Purpose

Documentation
notes

Describes features that are not covered in the manuals or that
have been modified since publication. The file that contains the
documentation notes for INFORMIX-CLI, Version 2.5 for UNIX
is called CLIDOC_2.5. The file that contains the documentation
notes for INFORMIX-CLI, Version 2.5 for Windows is called
doccli.250.

Release notes Describes feature differences from earlier versions of Informix
products and how these differences might affect current
products. This file also contains information about any known
problems and their workarounds.The file that contains the
release notes for INFORMIX-CLI, Version 2.5 for UNIX is called
CLI_2.5. The file that contains the release notes for
INFORMIX-CLI, Version 2.5 for Windows is called cli.250.
14 INFORMIX-CLI Programmer’s Manual

Compliance with Industry Standards
To learn more about the SQL language, consider the following books:

■ A Guide to the SQL Standard by C. J. Date with H. Darwen (Addison-
Wesley Publishing, 1993)

■ Understanding the New SQL: A Complete Guide by J. Melton and
A. Simon (Morgan Kaufmann Publishers, 1993)

■ Using SQL by J. Groff and P. Weinberg (Osborne McGraw-Hill, 1990)

Compliance with Industry Standards
INFORMIX-CLI is based on the Microsoft Open Database Connectivity
(ODBC) Specification, which in turn is based on the X/Open and SQL Access
Group Call Level Interface (CLI) Specification. The ODBC and CLI specifica-
tions provide a common and open interface through which ANSI-compliant
SQL is passed.

Informix Welcomes Your Comments
Please let us know what you like or dislike about our manuals. To help us
with future versions of our manuals, please tell us about any corrections or
clarifications that you would find useful. Please include the following
information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025
Introduction 15

Informix Welcomes Your Comments
If you prefer to send electronic mail, our address is:

doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at:

415-926-6571

We appreciate your feedback.
16 INFORMIX-CLI Programmer’s Manual

1
Chapter
Overview of INFORMIX-CLI
What Is INFORMIX-CLI?. 1-3

Advantages of Using INFORMIX-CLI 1-5

Overview of the Initialization Files 1-6

Understanding the odbcinst.ini File 1-6

Understanding the odbc.ini File 1-7
File Format for odbc.ini 1-8

ODBC Data Sources 1-8
Data-Source Specification 1-9
Default Data Source Specification 1-10
ODBC Options 1-10

File Examples for odbc.ini 1-11

ODBC Conformance Levels 1-12
API Conformance Level of INFORMIX-CLI 1-12
SQL Conformance Level of INFORMIX-CLI 1-14

Mapping Data Types 1-15

Supported Isolation and Lock Levels. 1-16

1-2 INFO
RMIX-CLI Programmer’s Manual

This chapter introduces INFORMIX-CLI and describes its relationship
to ODBC, describes the format of the initialization files, lists the API and SQL
grammar conformance levels, and describes the error message format.

What Is INFORMIX-CLI?
INFORMIX-CLI is a call-level interface (CLI) for SQL that provides a library of
C-language function calls that support SQL statements. INFORMIX-CLI is
based on the Microsoft Open Database Connectivity (ODBC) 2.5 Specification.
INFORMIX-CLI applications enable ODBC functionality through the use of the
INFORMIX-CLI library.

The member functions and constants definedin the INFORMIX-CLI library
correspond to specific ODBC functions and constants, except where noted
otherwise in this manual.

The INFORMIX-CLI library includes two components: the driver manager and
the driver. The driver manager provides information to an application, loads
drivers dynamically, and provides argument and transition checking. The
driver is either a shared library (for UNIX drivers) or a dynamic link library
(for Windows drivers) that implements function calls and manages
exchanges between an application and an Informix database.

Figure 1-1 shows the relationship of the components in an INFORMIX-CLI
application and ODBC configuration. The driver manager and driver appear
to an application as one unit that processes INFORMIX-CLI function calls.
Overview of INFORMIX-CLI 1-3

What Is INFORMIX-CLI?
The data source consists of the database a user wants to access, its associated
DBMS, the platform on which the DBMS resides, and the network used to
access that platform.

When you compile and link an INFORMIX-CLI application, it is automatically
equipped to communicate with an Informix database server that resides
either on the same computer (local) or on a network on other computers
(remote).

INFORMIX-CLI enables the development of applications that issue SQL state-
ments to Informix database servers and process resulting data dynamically.
INFORMIX-CLI provides functions that allow your applications to perform
the following set of operations:

■ Initiate and terminate connections to database servers

■ Obtain information about the server and CLI

■ Set and retrieve CLI options

■ Prepare and submit SQL requests

■ Retrieve results and information about results

■ Obtain information about server system tables

Figure 1-1
INFORMIX-CLI

Architecture

Application

I-CLI
I-CLI

interface

Driver manager Driver

Informix data source
I-CLI Library

ODBC 2.0 specification
1-4 INFORMIX-CLI Programmer’s Manual

Advantages of Using INFORMIX-CLI
Advantages of Using INFORMIX-CLI
Based on the Microsoft Open Database Connectivity (ODBC) Specification, a
call level interface such as INFORMIX-CLI is typically used for dynamic
access. INFORMIX-CLI is similar to the dynamic embedded version of SQL
described in the X/Open and SQL Access Group CAE specification (1992).

Applications written with INFORMIX-CLI do not need embedded Structured
Query Language (SQL) statements. Instead, they pass SQL statement strings
to INFORMIX-CLI functions as arguments.

For a comparison between embedded SQL statements and the ODBC call-
level interface on which INFORMIX-CLI is based, see Appendix D.

INFORMIX-CLI is very straightforward to application developers who are
familiar with function libraries. The function-call interface does not require
host variables or other embedded SQL concepts.

INFORMIX-CLI does not require a preprocessor. To submit an SQL request,
you place an SQL command into a text buffer and pass the buffer as a
parameter in a function call. INFORMIX-CLI functions provide declarative
capabilities and request management. You obtain error information as you
do for any function call , by return code or error function call, depending on
the application.

INFORMIX-CLI allows for specification of result storage before or after the
results are available. Results can be determined and appropriate action taken
without being limited to a specific set of data structures that were defined
prior to the request. Deferral of storage specification is called late binding of
variables.
Overview of INFORMIX-CLI 1-5

Overview of the Initialization Files
Overview of the Initialization Files
The odbcinst.ini and odbc.ini initialization files are created when you install
INFORMIX-CLI. The driver manager uses the odbcinst.ini file to determine
which drivers and translators are currently installed. The odbc.ini file is a
template file that contains your data-source configuration information. The
following sections describe the format and structure of these initialization
files.

Understanding the odbcinst.ini File
The odbcinst.ini file contains the following sections:

ODBC Drivers This section lists the description the Informix
driver.

Driver Specification This section lists the driver shared library and
attribute keywords of the Informix driver.

Default Driver
Specification

This section specifies the default driver to be used
when none is specified. The default driver is the
Informix driver.

ODBC Translators This section lists the description of each available
translator.

Translator Specification Each translator described in the ODBC Translators
section has a section that lists the translator
shared library
1-6 INFORMIX-CLI Programmer’s Manual

Understanding the odbc.ini File
Understanding the odbc.ini File
The INFORMIX-CLI driver and driver manager use the odbc.ini initialization
file. Although this file has a slightly different name depending upon whether
you use a UNIX or Windows client application, the format and structure of the
file are the same.

For UNIX users, odbc.ini is a text file called .odbc.ini. The file is located in
your home directory. Initially, a template file called .odbc.ini resides in the
$INFORMIXDIR/cli directory where your INFORMIX-CLI software is
installed. For information on setting up your .odbc.ini file, see “Adding and
Modifying Data Sources” on page 2-6. ♦

For Windows 3.1, odbc.ini is a text file called ODBC.INI. The file is located in
the WINDOWS directory. Before you can connect to a data source, you must
use the ODBC Administrator to add the connection information for the data
source to this file.

Warning: Windows 3.1 users should never modify the ODBC.INI file. The contents
of this file are changed based on the data source setup and modification you make
using the ODBC Administrator. Modifying the ODBC.INI file directly might result
in data-source configuration errors. ♦

For Windows NT and Windows 95, ODBC.INI is a subkey of the
HKEY_CURRENT_USER key within the registry. When you access the registry
using this subkey, the ODBC structure is the same as described in “File Format
for odbc.ini” on page 1-8 Before you can connect to a data source, you must
use the ODBC Administrator to add the connection information for the data
source to the ODBC.INI subkey. ♦

UNIX

Windows 3.1

WindowsWindows NT

Windows 95
Overview of INFORMIX-CLI 1-7

File Format for odbc.ini
File Format for odbc.ini
The odbc.ini file includes the following sections:

ODBC Data Sources

Each entry in the ODBC Data Sources section lists a data source and a
description of the driver it uses. This section has the following format:

[ODBC Data Sources]
data_source_name1=driver_description1
data_source_name2=driver_description2
.
.
.

For example, to define an Agencies data source that uses the INFORMIX-CLI
driver, the odbc.ini entry might look like the following example:

[ODBC Data Sources]
Agencies=Informix Driver

ODBC DataSources This section lists the name of each data source and
describes its associated driver.

Data Source
Specification

Each data source listed in the ODBC Data Sources
section has a section that contains additional infor-
mation about that data source.

Default Data Source
Specification

This section is optional and specifies the default data
source to use when none is specified.

ODBC Options This section specifies the ODBC installation directory
and the ODBC options that can be enabled or
disabled.

data_source_name identifies the data source that the driver accesses.
You choose the data-source name.

driver_description describes the database driver that accesses the data
source. This field is optional.
1-8 INFORMIX-CLI Programmer’s Manual

File Format for odbc.ini
Data-Source Specification

Each data source listed in the ODBC Data Sources section has its own Data
Source Specification section. This section has the following format:

[data_source_name]
Driver=driver_path
Description=data_source_description
TranslationDLL=translation_path
TranslationName=translator_name
TranslationOption=translation_option
keyword=attribute

.

.

.

For example, the data source called Agencies connects to an INFORMIX-CLI
driver for Solaris called libifmx07.so.1. The database that Agencies accesses
is called agencies, and it resides on the database server. The Data Source
Specification entry for the Agencies data source might look like the following
example:

[Agencies]
Driver=/usr/informix/cli/dlls/qeinf708.so
Database=agencies
LogonID=marvin

data_source_name is the name of the data source, as specified in the
ODBC Data Sources section of this file.

driver_path is the full path to the driver shared library (UNIX) or
dynamic link library (Windows).

translation_path is the full path of the translation shared library (UNIX)
or dynamic link library (Windows). This field is
optional.

translation_option shows the ASCII representation of the 32-bit integer
translation option. This field is optional.

attribute specifies the value for the keyword. Each
INFORMIX-CLI driver has its own set of keywords. For
UNIX-specific keywords and attributes, refer to
“Adding a Data Source” on page 2-6. For Windows-
specific keywords and attributes, refer to “Adding a
Data Source” on page 2-16. This field is optional.
Overview of INFORMIX-CLI 1-9

File Format for odbc.ini
Default Data Source Specification

This section (for both UNIX and Windows) is optional. The Default Data
Source Specification contains information about the default data source. This
data source is called Default and has the same format as any other Data
Source Specification section; however, the Default data source is not listed in
the ODBC Data Sources section.

The following example shows a Default Data Source Specification entry for
an Informix database:

[Default]
Driver=/usr/informix/cli/dlls/qeinf708.so
Database=Stores7
LogonID=marvin

ODBC Options

The ODBC Options section indicates whether tracing is enabled or disabled.
With tracing, all ODBC function calls made from an application can be logged
to the specified trace file. This section has the following format:

[ODBC]
Trace=0|1
TraceFile=tracefile_path
TraceAutoStop=0|1

This section lists the following information:

Trace indicates whether tracing is enabled. If the Trace keyword
is set to 0, tracing is disabled. If the Trace keyword is set
to 1, tracing is enabled.

TraceFile is the name of the specified trace file that is logging the
ODBC function calls.
1-10 INFORMIX-CLI Programmer’s Manual

File Examples for odbc.ini
File Examples for odbc.ini
The following example shows a Windows 3.1 ODBC.INI file:

[ODBC Data Sources]
Stores7=Informix Driver

[Default]
Driver=C:\WINDOWS\SYSTEM\QEINF509.DLL
Database=vendors
LogonID=mary

[Stores7]
Driver=C:\WINDOWS\SYSTEM\QEINF509.DLL
HostName=odin
Service=sqlexec
Database=stores7
LogonID=mary

[ODBC]
Trace=1
TraceFile=C:\WINDOWS\LOG\TRACE.LOG
TraceAutoStop=0
♦

tracefile_path specifies the full path to the trace file. If a trace file is not
specified and tracing is enabled, logging information is
written to the sql.log file, which is located in your current
directory.

TraceAutoStop indicates whether tracing is enabled or disabled when an
application calls the SQLFreeEnv function. If the
TraceAutoStop keyword is set to 0, tracing is not automat-
ically disabled. If the TraceAutoStop keyword is set to 1,
the Trace keyword in the odbc.ini file is set to 0.
Additionally, all other concurrent Windows ODBC appli-
cations will have tracing disabled. The default is 1.

Windows
Overview of INFORMIX-CLI 1-11

ODBC Conformance Levels
The following example shows a UNIX .odbc.ini file:

[ODBC Data Sources]
Stores7=Informix Driver

[Default]
Driver=/usr/informix/cli/dlls/qeinf708.so
Database=stores7
LogonID=marvin

[ODBC]
InstallDir=/usr/informix/cli
Trace=1
TraceFile=~/trace.log
TraceAutoStop=0
♦

ODBC Conformance Levels
ODBC defines two conformance standards for drivers: the API conformance
standard and the SQL conformance standard. API conformance refers to the
functions that a driver supports. SQL conformance refers to the SQL grammar
that the driver supports.

API Conformance Level of INFORMIX-CLI
The ODBC API conformance standard includes three levels: Core, Level 1, and
Level 2. The Core level includes functions that correspond to the functions in
the X/Open and SQL Access Group Call Level Interface (CLI) specification.
Level 1 and Level 2 functions extend the core functionality.

UNIX
1-12 INFORMIX-CLI Programmer’s Manual

API Conformance Level of INFORMIX-CLI
The following table lists all Core, Level 1, and Level 2 API functions that are
defined by the ODBC specification. INFORMIX-CLI supports all of the Core
and Level 1 API functions. In addition, INFORMIX-CLI supports all Level 2
functions except those marked with an asterisk (*).

Core Level Functions Level 1 Functions Level 2 Functions

SQLAllocConnect SQLBindParameter SQLBrowseConnect

SQLAllocEnv SQLColumns SQLColumnPrivileges

SQLAllocStmt SQLDriverConnect SQLDataSources

SQLBindCol SQLGetConnectOption SQLDescribeParam*

SQLCancel SQLGetData SQLDrivers

SQLColAttributes SQLGetInfo SQLExtendedFetch

SQLConnect SQLGetFunctions SQLForeignKeys*

SQLDescribeCol SQLGetStmtOption SQLMoreResults

SQLDisconnect SQLGetTypeInfo SQLNativeSql

SQLError SQLParamData SQLNumParams

SQLExecDirect SQLPutData SQLParamOptions

SQLExecute SQLSetConnectOption SQLPrimaryKeys

SQLFetch SQLSetStmtOption SQLProcedureColumns*

SQLFreeConnect SQLSpecialColumns SQLProcedures

SQLFreeEnv SQLStatistics SQLSetPos*

SQLFreeStmt SQLTables SQLSetScrollOptions

SQLGetCursorName SQLTablePrivileges

SQLNumResultCols

SQLPrepare

 (1 of 2)
Overview of INFORMIX-CLI 1-13

SQL Conformance Level of INFORMIX-CLI
SQL Conformance Level of INFORMIX-CLI
The ODBC SQL conformance standard includes three levels: Minimum, Core,
and Extended. INFORMIX-CLI supports all Minimum and Core SQL grammar,
which includes the following statements, expressions, and data types:

■ Data Definition Language (DDL) statements: CREATE TABLE, DROP
TABLE, ALTER TABLE, CREATE INDEX, DROP INDEX, CREATE VIEW,
DROP VIEW, GRANT, and REVOKE

■ Data Manipulation Language (DML) statements: full SELECT, INSERT,
UPDATE, SEARCHED, and DELETE SEARCHED

■ Expressions: simple (such as A>B+C), subquery, set functions such
as SUM and MIN

■ Data types: CHAR, VARCHAR, LONG VARCHAR, DECIMAL,
NUMERIC, SMALLINT, INTEGER, REAL, DOUBLE PRECISION

In addition, INFORMIX-CLI supports the following ODBC extensions to SQL
grammar:

■ DML statements: outer joins, positioned UPDATE, positioned
DELETE, SELECT FOR UPDATE, and UNIONS

■ Date and time-stamp data

■ The following numeric functions:

SQLRowCount

SQLSetCursorName

SQLTransact

abs acos asin atan
atan2 cos cot exp
log log10 mod power
round sin sqrt tan
truncate

Core Level Functions Level 1 Functions Level 2 Functions

 (2 of 2)
1-14 INFORMIX-CLI Programmer’s Manual

Mapping Data Types
■ The following date functions:

■ The following string functions:

■ The user system function

■ Data types: LONG VARBINARY, DATE, and TIMESTAMP

■ Procedure calls

For more information on the numeric, date, string, and system functions,
refer to Informix Guide to SQL: Syntax.

Mapping Data Types
INFORMIX-CLI maps Informix data types to their appropriate ODBC SQL data
types. The following table lists the Informix data type and its corresponding
ODBC SQL data type.

curdate dayofweek now
dayofmonth month year

concat LTRIM
length RTRIM

Informix Data Type ODBC SQL Data Type

BYTE* SQL_LONGVARBINARY

CHAR, CHARACTER SQL_CHAR

DATE SQL_DATE

DATETIME year to fraction(5) SQL_TIMESTAMP

DECIMAL, DEC, NUMERIC SQL_DECIMAL

FLOAT SQL_DOUBLE

INTEGER, INT SQL_INTEGER

INTERVAL SQL_CHAR

MONEY SQL_DECIMAL

 (1 of 2)
Overview of INFORMIX-CLI 1-15

Supported Isolation and Lock Levels
* Not supported for INFORMIX-SE databases

For more information on data types, see Appendix C.

Supported Isolation and Lock Levels
If connected to an OnLine database server, the INFORMIX driver supports
isolation levels 0 (Read Uncommitted), 1 (Read Committed), and 3 (Serial-
izable). The default setting is 1. INFORMIX-SE supports isolation level 0 (Read
Uncommitted) only.

The Informix driver also supports an alternative isolation level 1, called
cursor stability. Your INFORMIX-CLI application can use this isolation level by
calling SQLSetConnectOption (1040,1).

Additionally, if transaction logging has not been enabled for your database,
then transactions are not supported by the driver (the driver is always in
auto-commit mode). Each statement is treated as if it is a single transaction.

The Informix driver also supports page-level locking. For more information
on isolation and lock levels, see the Informix Guide to SQL: Tutorial.

SERIAL SQL_INTEGER

SMALLFLOAT, REAL SQL_REAL

SMALLINT SQL_SMALLINT

TEXT* SQL_LONGVARCHAR

VARCHAR,* CHARACTER VARYING* SQL_VARCHAR

Informix Data Type ODBC SQL Data Type

 (2 of 2)
1-16 INFORMIX-CLI Programmer’s Manual

2
Chapter
INFORMIX-CLI
INFORMIX-CLI for UNIX 2-3

Setting Up INFORMIX-CLI 2-3
System Requirements 2-4
Setting Environment Variables 2-4

Adding and Modifying Data Sources 2-6
Adding a Data Source 2-6

Required Data-Source Configuration Information 2-6
Optional Data-Source Configuration Information 2-6

Sample Data-Source Entry for .odbc.ini 2-10
Modifying a Data Source 2-11

Connecting to a Data Source 2-11
Using Dialog Boxes to Connect to a Data Source 2-11
Using a Connection-String to Connect to a Data Source 2-13

INFORMIX-CLI for Windows 2-15

Setting Up INFORMIX-CLI 2-15
Systm Requirements 2-15
Setting the INFORMIXDIR Environment Variable 2-16

Adding and Modifying Data Sources 2-16
Adding a Data Source 2-16

Required Data-Source Configuration Information 2-17
Optional Data-Source Configuration Information 2-17

Modifying a Data Source 2-24

Connecting to a Data Source 2-26
Using Dialog Boxes to Connect to a Data Source 2-26
Using a Connection-String to Connect to a Data Source 2-28

2-2 INFO
RMIX-CLI Programmer’s Manual

his chapter explains how to set up INFORMIX-CLI and how to
configure and connect to data sources for UNIX and Windows platforms.

INFORMIX-CLI for UNIX
INFORMIX-CLI for UNIX conforms to the Microsoft ODBC Specification (Version
2.5). INFORMIX-CLI supports multiple connections to an Informix database.
The INFORMIX-CLI library is named qeinf708. Some libraries might have a
platform-specific extension; for example, the library for Solaris is called
qeinf708.so.

The following sections describe how to set up and configure INFORMIX-CLI
so that you can connect your UNIX client application to a data source.

Setting Up INFORMIX-CLI
Perform the following setup activities before you use INFORMIX-CLI:

■ Confirm that your system has the appropriate software installed.

■ Set the INFORMIXDIR and PATH environment variables to reflect the
appropriate directory paths.

■ Set the INFORMIXSERVER environment variable to the default
database server name

T

INFORMIX-CLI 2-3

System Requirements
System Requirements
Depending on your Informix database configuration, you must have a
compatible Informix database server installed on your system or network.
The following list shows examples of compatible database servers:

■ INFORMIX-OnLine (Version 5.x)

■ INFORMIX-OnLine Dynamic Server (Version 7.x)

■ INFORMIX-SE (Version 5x, 7.x)

For information on these products, refer to your Informix documentation set.
For a complete listing of compatible database servers, see the release notes for
INFORMIX-CLI.

To take advantage of the GLS feature, you must have an Informix database
server of Version 7.2 or greater. For more information, see the Guide to GLS
Functionality. ♦

Setting Environment Variables
Set the INFORMIXDIR environment variable to the full path of the directory
where your Informix product is installed. The INFORMIXSERVER
environment variable must specify the default database server for the user.
This value must correspond to a valid dbservername entry in the sqlhosts
file. The UNIX environment variable, PATH, indicates the directories that are
searched for executable programs. Your PATH setting must include the path
to your $INFORMIXDIR/bin directory. In the C shell, you can set these
variables using the setenv command at the command line or in your .login
or .cshrc files. In the Bourne or Korn shells, you can set this variable using the
export command at the command line or in your .login or .profile files. If you
set these variables at the command line, you must reset them whenever you
log on to your system. If you set these variables in a file, they are set automat-
ically when you log on to your system.

GLS
2-4 INFORMIX-CLI Programmer’s Manual

Setting Environment Variables
For example, if your Informix directory path is /usr/informix and the name
of your default database server is online_one, in the C shell you could add
the following lines to your .cshrc file to set the INFORMIXDIR, INFORMIX-
SERVER, and PATH environment variables:

setenv INFORMIXDIR /usr/informix
setenv INFORMIXSERVER online_one
setenv PATH ${PATH}:${INFORMIXDIR}/bin

In the Bourne or Korn shells, you could add the following lines to your .login
or .profile file:

INFORMIXDIR=/usr/informix; export INFORMIXDIR
INFORMIXSERVER=online_one; export INFORMIXSERVER
PATH=${PATH}:$INFORMIXDIR/bin; export PATH

When you installed INFORMIX-CLI, the following environment variables got
set:

■ IV_GLS_LCDIR

■ IV_GLS_REGISTRY

■ GL_PATH

Look in your .cli.sh file (Bourne shell) or .cli.csh (C Shell) to see the settings.
For information about additional GLS environment variables that you can set,
see the Guide to GLS Functionality. ♦

GLS
INFORMIX-CLI 2-5

Adding and Modifying Data Sources
Adding and Modifying Data Sources
A data source is a database or file that INFORMIX-CLI accesses. INFORMIX-CLI
uses the .odbc.ini file for initialization. To connect to a data source, the driver
manager looks at your .odbc.ini file for specific connection information. This
file contains information about each data source. UNIX users are responsible
for modifying their .odbc.ini file using a text editor.

Adding a Data Source
Before you can connect to a data source, you must add an entry for that data
source in your .odbc.ini file. For complete information on the format and
contents of the .odbc.ini file, refer to “Understanding the odbc.ini File” on
page 1-7.

Required Data-Source Configuration Information

When you add a data source, you must provide two pieces of information in
the Data Source Specification section: the name of the data source and the full
path to your driver shared library. All other connection information is
optional.

Optional Data-Source Configuration Information

When you add a data source, you can choose to define new connection
defaults. You can specify two types of connection options in the Data-Source
Specification section:

■ Options that define names

■ Options that define cursor behavior
2-6 INFORMIX-CLI Programmer’s Manual

Adding a Data Source
Options That Define Names

The following table lists the names that you can set as default connection
options for a data source.

Keyword Attribute

Description A longname that you choose to identify the data source.

Database The name of the OnLine or SE database that the data source
accesses. The name can include the database server qualifier.

LogonID Your user name as specified on the INFORMIX-OnLine Dynamic
Server, or the INFORMIX-SE database server.

Password A password.

HostName The name of the computer on which the INFORMIX-OnLine
Dynamic Server or the INFORMIX-SE database server resides.

Service The name assigned to the Informix database server process
running on your UNIX computer. Commonly, the service is
sqlexec. Confirm the service name with your system
administrator.

ServerName The name of the database server on which the database that you
want to access resides.
INFORMIX-CLI 2-7

Adding a Data Source
Options That Define Cursor Behavior

The following table lists the types of cursor behavior you can set as default
connection options for a data source. The following table lists the initial
default that applies if you do not specify a value in the Data-Source Specifi-
cation section of your .odbc.ini file.

Tip: You can also add data sources when you install INFORMIX-CLI. In either case,
the steps that you follow are the same.

To add a data source

1. Edit your .odbc.ini file using a text editor such as vi.

If you do not have this file in your home directory, copy the default
odbc.ini file from the $INFORMIXDIR/odbc directory and change the
name to .odbc.ini.

2. Under the ODBC Data Sources section, add an entry for your data
source.

Each entry in this section lists the data source and a description of the
driver that the data source uses. Use the following format for data-
source entries:

[ODBC Data Sources]
data_source_name=driver_description
.
.
.

Keyword Attribute

CursorBehavior A value that determines the type of behavior of the cursors after
the transaction ends:

■ 0 = Closed. This is the default setting.

■ 1 = Preserve. Choose this setting to hold the cursors at the
current position when the transaction ends. This setting
might affect the performance of your database operations.

EnableScrollable-
Cursors

A value that determines if the driver provides scrollable cursors.

■ 0 = No scrollable cursors. This is the default setting.

■ 1 = Enable scrollable cursors. If this value is set, SELECT lists
must not include long columns, such as SQL_LONGVARCHAR
or SQL_LONGVARBINARY.
2-8 INFORMIX-CLI Programmer’s Manual

Adding a Data Source
For example, to associate the stores7 data source with an
INFORMIX-CLI driver, you might make the following entry in the
Data Sources section of your .odbc.ini file:

[ODBC Data Sources]
Stores7=Informix Driver

3. After the ODBC Data Sources section, add an entry for each specified
data source.

Each data source listed in the ODBC Data Sources section of your
.odbc.ini file requires a Data Source Specification section. Use the
following format for Data Source Specification entries:

[data_source_name]
Driver=driver_path
Database=database_name
keyword=attribute
.
.
.

data_source_name identifies the data source that INFORMIX-CLI
accesses. You choose the data-source name.

driver_description describes the driver that the data source accesses.
This field is optional. Set this field to Informix
Driver.

data_source_name is the name of the data source, as specified in the ODBC
Data Sources section of your .odbc.ini file.

driver_path is the full path to your driver.

database_name is the name of the OnLine or SE database that the data
source accesses.

The name can include the Informix database server
qualifier.

attribute specifies the value for the keyword.

For a list of the keywords that the INFORMIX-CLI driver
for UNIX supports, see “Optional Data-Source Config-
uration Information” on page 2-6.
INFORMIX-CLI 2-9

Sample Data-Source Entry for .odbc.ini
The required fields in this section are data_source_name and
driver_path.

“Database” is a keyword that is used to define optional connection
information. The database_name that you enter becomes the default
data-source connection. When the database attribute is available on
a database server different from the database server identified by the
INFORMIXSERVER environment variable, the database attribute can
be specified as follows:

Database=database_name@server_name

Important: The section name for the Data Source Specification must match the data-
source name listed in the ODBC Data Sources section of your .odbc.ini file.

For example, the entry for INFORMIX-OnLine Dynamic Server,
Version 7.x, for the stores7 database might look like the following
example:

[Stores7]
Driver=/usr/informix/cli/dlls/qeinf708.so
Database=stores7
LogonID=Mary

In this example, the data source and database are both called stores7,
and the user ID is Mary. You might want the database and data-
source names to be the same so that when you connect to a data
source, you know the specific database to which you are connecting.

Tip: Data-source names are case insensitive. That is, stores7 and Stores7 refer to
the same data source.

Sample Data-Source Entry for .odbc.ini
A complete .odbc.ini data-source entry for the stores7 data source that is
described in the procedure for adding a data source on page 2-8 might look
like the following example:

[ODBC Data Sources]
Stores7=Informix Driver

[Stores7]
Driver=/usr/informix/cli/dlls/qeinf708.so
Database=stores7
LogonID=Mary
2-10 INFORMIX-CLI Programmer’s Manual

Modifying a Data Source
Modifying a Data Source
To edit a data source, use a text editor such as the vi editor. Open your
.odbc.ini file and modify the appropriate lines in that file. The sections that
make up this file are described in “Adding a Data Source” on page 2-6.

Connecting to a Data Source
An INFORMIX-CLI application can pass connection information in several
ways. For example, the application might have the driver prompt the user for
connection information, or the application might expect a connection string
that specifies the data-source connection. How you connect to a data source
depends on the connection method that your INFORMIX-CLI application
uses.

Using Dialog Boxes to Connect to a Data Source
One common way of connecting to a data source is through the Data Source
dialog box, as Figure 2-1 illustrates. If your INFORMIX-CLI application is set
up to use a dialog box, the Data Sources dialog box appears and prompts you
for the appropriate data-source connection information.

Figure 2-1
The Data Sources

Dialog Box

Options Drivers

User Data Sources (Driver)

Stores7 (Informix)

Add...

System DSN

Data Sources

Close

Help

Setup

Delete
INFORMIX-CLI 2-11

Using Dialog Boxes to Connect to a Data Source
To connect to a data source using a dialog box

1. In the Data Sources dialog box, select a data source.

2. Click OK.

The Informix ODBC Connect dialog box appears, as Figure 2-6 illus-
trates. The connection information that appears is the default
information listed in your .odbc.ini file.

3. To accept the default values and connect to the data source, click OK.
or
To modify the default values for this data source, continue to step 4.

4. In the Database Name text box, type the name of the OnLine or SE
database that contains the tables that you want to access.

You can also click the down arrow to choose a name from a drop-
down list.

5. In the Host Name text box, type the name of the computer on which
your Informix database server resides.

6. In the User Name text box, type your user name as specified on the
database server.

7. In the Password text box, type your password for the UNIX server to
which you want to connect.

Figure 2-2
The Logon to

INFORMIX Dialog
BoxOK

Cancel

Options...

Logon to INFORMIX

Help

Database Name:

Host Name:

User Name:

Password:

Stores7

mickey

mjones
2-12 INFORMIX-CLI Programmer’s Manual

Using a Connection-String to Connect to a Data Source
8. To display the INFORMIX Server Options dialog box, click Options.

This dialog box lets you specify options that are described in
“Optional Data-Source Configuration Information” on page 2-6.

9. Click OK to accept any changes you make and return to the Informix
ODBC Connect dialog box.

10. Click OK to complete the logon and to update these values in the
.odbc.ini file.

11. Once the connection information is verified, your application can use
the INFORMIX-CLI driver to access the information that the data
source contains.

Using a Connection-String to Connect to a Data Source
Some applications require that you connect to a data source by typing a
connection string.The connection string includes several attributes that
specify how a driver connects to a data source for a particular session. An
attribute identifies a specific piece of information that the driver needs to
know before it can make the appropriate data-source connection.

A connection string has the following format:

"DSN=data_source_name[;attribute=value[;attribute=value]...]"

You must specify data_source_name; however, all other attributes are optional.
If you do not specify an attribute, it defaults to the one that is specified in the
Data Source Specification section (for the data source specified in the
connection string) of your .odbc.ini file.

Figure 2-3
The INFORMIX
Server Options

Dialog BoxOK

Help

INFORMIX Server Options

Service Name:

Cancel

Protocol Type

Server Name:
INFORMIX-CLI 2-13

Using a Connection-String to Connect to a Data Source
The following table lists the long and short names of the attributes that you
can include in the INFORMIX driver connection string. With the exception of
the data-source name (which must be specified by DSN), you can use either
the long or short names in the connection string. For a description of these
attributes, see “Optional Data-Source Configuration Information” on
page 2-6

The following example shows a valid connection string for connecting to the
stores7 data source. The string specifically requests a connection to the
stores7 database that resides on a computer named rainbow. The user ID is
mary.

"DSN=Stores7;DB=stores7;HOST=rainbow;SERV=sqlexec;
UID=mary;PWD=secret"

In this example, the service and password are also specified.

Attribute Long Name Short Name

DataSourceName DSN

Database DB

HostName HOST

LogonID UID

Password PWD

Service SERV

CursorBehavior CB

EnableScrollableCursors ESC
2-14 INFORMIX-CLI Programmer’s Manual

INFORMIX-CLI for Windows
INFORMIX-CLI for Windows
INFORMIX-CLI for Windows conforms to the Microsoft ODBC Specification
(Version 2.5). INFORMIX-CLI supports multiple connections to an OnLine or
an SE database. For Windows 3.1, the driver is called QEINF509.DLL. For
Windows NT and Windows 95, the driver is called IVINF709.DLL.

The following sections describe how to set up and configure INFORMIX-CLI
so that you can connect your Windows, Windows 95, or Windows NT client
application to a data source.

Setting Up INFORMIX-CLI
Perform the following setup activities before you use INFORMIX-CLI:

■ Confirm that your system has the appropriate software installed.

■ Confirm that the INFORMIXDIR environment variable setting
reflects the appropriate directory path.

Systm Requirements
Depending on your Informix database configuration, you must have a
compatible Informix database server installed on your system or network.
The following list shows examples of compatible database servers:

■ INFORMIX-OnLine (Version 5.x)

■ INFORMIX-OnLine Dynamic Server (Version 7.x)

■ INFORMIX-SE (Version 5x, 7.x)

For information on these products, refer to your Informix documentation set.
For a complete listing of compatible database servers, see the release notes for
INFORMIX-CLI.

To take advantage of the GLS feature, you must connect to an Informix
database server of Version 7.2 or later. For more information, see the Guide to
GLS Functionality. ♦

GLS
INFORMIX-CLI 2-15

Setting the INFORMIXDIR Environment Variable
Setting the INFORMIXDIR Environment Variable
Before you can use INFORMIX-CLI, make sure that the INFORMIXDIR
environment variable is set to the full path of the directory where your
Informix product is installed.

SET INFORMIXDIR=C:\INFORMIX

For Windows 3.1 and Windows 95, set this information in the
AUTOEXEC.BAT file. For Windows NT, set this information in the Registry.

Adding and Modifying Data Sources
A data source is a database or file that INFORMIX-CLI accesses. To add and
configure data sources, use the ODBC Administrator. The ODBC Adminis-
trator then updates your ODBC.INI file in Windows 3.1 or your Registry in
Windows 95 and Windows NT to reflect your data-source connection
information.

Adding a Data Source
In Windows 3.1, the ODBC.INI file is an initialization file used by the
INFORMIX-CLI and is located in the WINDOWS directory. This file contains
information about each data source. Before you can connect to a data source,
you must use the ODBC Administrator to add the connection information for
the data source to the ODBC.INI file. For complete information on the format
and contents of this file, refer to “Understanding the odbc.ini File” on
page 1-7.

Warning: Windows 3.1 users should never modify the ODBC.INI file directly. The
contents of this file are changed based on the data-source setup and modification you
make using the ODBC Administrator. Modifying the ODBC.INI file directly might
result in data-source configuration errors. ♦

Windows 3.1
2-16 INFORMIX-CLI Programmer’s Manual

Adding a Data Source
In Windows NT, ODBC.INI is a subkey of the HKEY_CURRENT_USER key
within the Registry. When you access the Registry using this subkey, the
ODBC structure is the same as described in the “File Format for odbc.ini” on
page 1-8. Before you can connect to a data source, you must use the ODBC
Administrator to add the connection information for the data source to the
Registry. ♦

Required Data-Source Configuration Information

When you add a data source, you must provide the name of the data source
and the name of the database to which you want to connect to by default. All
other connection information is optional.

Optional Data-Source Configuration Information

When you add a data source, you can choose to define new connection infor-
mation defaults. You can specify three types of options in your data-source
setup:

■ Options that define name or location

■ Options that define cursor behavior

■ Options that define operation handling

Options That Define Name or Location

The following table lists the types of names and locations you can set as
default connection options for a data source. If you do not set a new default,
the default value that is listed in the table will apply.

Attribute Description

Description A long description that identifies the data source

Default User
Name

The host user ID

Host Name The name of the computer on which the INFORMIX-OnLine
Dynamic Server, INFORMIX-OnLine, or INFORMIX-SE database
server resides

 (1 of 2)

Windows NT

Windows 95
INFORMIX-CLI 2-17

Adding a Data Source
Service Name The name assigned to the Informix database server process
running on your UNIX computer. Commonly, the service is
sqlexec. Confirm the service name with your system
administrator.

Server Name The name of the OnLine or SE database server on which the
database that you want to access resides (available only for
Windows 95 and Windows NT)

Get DB List from
Informix

A value of0 or1 that determines from where the driver requests
the database list to be returned:

■ 1= Request the database list from the database server. This is
the default setting.

■ 0 = Use the database list that is specified by the user at driver
setup.

Database List The list of databases that will be displayed in the logon dialog
box (that is, the databases to which you will be able to connect)
if Get DB List From Informix is set to 0. If more than one name is
specified, the names must be separated by commas.

Attribute Description

 (2 of 2)
2-18 INFORMIX-CLI Programmer’s Manual

Adding a Data Source
Options That Define Cursor Behavior

The following table lists the types of cursor behavior you can set as default
connection options for a data source. If you do not set a new default, the
default setting that is listed in the table will apply.

Attribute Description

Cursor Behavior A value that determines the type of behavior of the cursors after
the transaction ends:

■ 0 = Closed. This is the default setting.

■ 1 = Preserve. Choose this setting to hold the cursors at the
current position when the transaction ends. This setting
might impact the performance of your database operations.

Enable
Scrollable
Cursors

A value that determines if the driver provides scrollable cursors.

■ 0 = No scrollable cursors. This is the default setting.

■ 1 = Enable scrollable cursors. If this value is set, SELECT lists
must not include long columns, such as SQL_LONGVARCHAR
or SQL_LONGVARBINARY.
INFORMIX-CLI 2-19

Adding a Data Source
Options That Define Operation Behavior

The following table lists the types of operation behavior you can set as
default connection options for a data source. If you do not set a new default,
tIhe default setting that is listed in the table will apply.

Tip: You can also add data sources when you install INFORMIX-CLI. In either case,
the steps that you follow are the same.

Attribute Description

Protocol Type The protocol used to communicate with the database server.
Values can be IPX, TCP/IP, or PIPE for Windows 3.1. For
Windows NT and Windows 95, values can be xxSOCTCP,
xxSOCSPX, or SEIPCPIP where xx represents an abbreviation for
the type of database server to which you are connecting. For
example, SESOCSPX indicates that you are using an
INFORMIX-SE with sockets and IPX.

Yield Proc A value of 0, 1, 2, or 3 that determines whether you can work in
other Windows applications when the INFORMIX-CLI driver is
busy.

■ 0 = Peek and dispatch. This setting causes the Informix driver
to check the Windows message queue and send any messages
to the appropriate Windows application.

■ 1 = No yielding. This setting does not let you work in other
applications. This is the default setting.

■ 2 = Informix yield procedure. This is the default setting. For
more information, refer to the section on the TMBLOCKMODE
environment variable in the INFORMIX-DCE/NET User’s
Guide.

■ 3 = Dispatch via Windows Yield function. This setting turns
control over to the Windows kernel. The Windows kernel
checks the message queue and sends any messages to the
appropriate application window.

The recommended value is 1.♦

Windows 3.1
2-20 INFORMIX-CLI Programmer’s Manual

Adding a Data Source
To add a data source

1. Invoke the ODBC Administrator.

The Data Sources dialog box appears, as Figure 2-4 illustrates.

2. Click Add.

The Add Data Source dialog box appears, Figure 2-5 illustrates.

Figure 2-4
The Data Sources

Dialog Box

Figure 2-5
The Add Data

Source Dialog Box

Options Drivers

User Data Sources (Driver)

Add...

System DSN

Data Sources

Close

Help

Setup

Delete

Select which ODBC driver you want to

Informix

Add Data Source

OK

Cancel

Help

use from the list, then click OK.
INFORMIX-CLI 2-21

Adding a Data Source
3. Select the Informix driver from the Installed ODBC Drivers list.

4. Click Add.

The ODBC INFORMIX Driver Setup dialog box appears, as Figure 2-6
illustrates.

In the Data Source Name text box, enter the name of the data source
you want to access.

You define the data-source name; that is, it can be any name that you
choose.

5. In the Description text box, type a long description of your data
source. This section is optional.

6. In the Database Name text box, enter the name of the database to
which you want to connect by default.

You now have entered enough information to be able to connect to
the data source:

❑ To enter the data source, click OK.
The Data Sources dialog box appears, as Figure 2-4 illustrates.
You can then click Add to add another data source or click Close
to exit the Data Sources dialog box.

❑ To add optional connection information about the data source,
click Advanced.
The ODBC INFORMIX 7.2 Advanced Driver Setup Window
appears, as Figure 2-7 illustrates.

Figure 2-6
The ODBC

INFORMIX Driver
Setup Dialog BoxOK

Cancel

ODBC INFORMIX 7.2 Driver Setup

Help

Data Source Name:

Description:

Database Name:
Advanced...
2-22 INFORMIX-CLI Programmer’s Manual

Adding a Data Source
7. Type the information you want to specify about this data source.
You can also choose options from the drop-down lists. For a
description of the advanced connection options that are available,
see “Optional Data-Source Configuration Information” on page 2-17.

8. To specify a translator, click Translate.

The Translator dialog box appears, as Figure 2-8 illustrates.

Figure 2-7
The ODBC
INFORMIX

Advanced Driver
Setup Dialog BoxHelp

Database List:

Default User Name:

Host Name:

Service Name:

Cursor Behavior:

Enable Scrollable Cursors:

Get DB List From Informix:

Yield Proc:

0 - Disable

1 - Yes

1 - None

Protocol Type:

0 - Close

Close

ODBC INFORMIX 7.2 Advanced Driver Setup

Translate...

Server Name:

Enable Insert Cursors

Figure 2-8
The Translator

Dialog Box
Select which ODBC translator you want to

<No Translator>

Select Translator

OK

Cancel

Help

use from the list, then click OK.

MS Code Page Translator
OEM to ANSI
INFORMIX-CLI 2-23

Modifying a Data Source
9. Select the translator you want from the list.

10. Click OK to return to the ODBC INFORMIX Advanced Driver Setup
dialog box.

11. To accept your specifications for this data source, click OK.

When you click OK in the ODBC INFORMIX Advanced Driver Setup
dialog box, the Data Sources dialog box appears, as shown in
Figure 2-4.

12. To add another data source, click Add. To exit the Data Sources
dialog box, click Close.

After you click OK in the ODBC INFORMIX Driver Setup dialog box, the ODBC
Administrator updates your ODBC.INI file (or Registry). The information
that you entered in any of the setup dialog boxes becomes the new default
data-source connection information for this data source.

Modifying a Data Source
Use the ODBC Administrator to make all modifications to your data source.
To make basic modifications to the defaults for a data source, see “Using
Dialog Boxes to Connect to a Data Source” on page 25. To make more detailed
modifications to a data source, complete the following steps.

To modify a data source

1. Start the ODBC Administrator.

The Data Sources dialog box appears, as Figure 2-9 illustrates.

Figure 2-9
The Data Sources

Dialog Box

Options Drivers

User Data Sources (Driver)

Stores7 (Informix)

Add...

System DSN

Data Sources

Close

Help

Setup

Delete
2-24 INFORMIX-CLI Programmer’s Manual

Modifying a Data Source
2. In the Data Sources dialog box, select the Informix data source that
you want to modify and then click Setup.

The ODBC INFORMIX Driver Setup dialog box appears, as
Figure 2-10 illustrates. The values that appears the default entries
specified for this data-source connection.

3. Modify the applicable data-source text boxes. For more information
regarding available options, see “Adding a Data Source” on
page 2-16.

4. When you are finished, click OK in the ODBC INFORMIX Driver Setup
dialog box.

The ODBC Administrator updates your ODBC.INI file.

When you connect to this data source using either a dialog box or
connection string, the values that you entered appear as the new
default entries for the data-source connection.

Figure 2-10
A Completed ODBC

INFORMIX Driver
Setup Dialog BoxOK

Cancel

ODBC INFORMIX 7.2 Driver Setup

Help

Data Source Name:

Description:

Database Name:
Advanced...

Stores7

Informix demonstration database

Stores7
INFORMIX-CLI 2-25

Connecting to a Data Source
Connecting to a Data Source
An INFORMIX-CLI application can pass connection information in several
ways. For example, the application might have the driver always prompt the
user for connection information, or the application might expect a connection
string that specifies the data-source connection. How you connect to a data
source depends on the connection method that your INFORMIX-CLI
application uses.

Using Dialog Boxes to Connect to a Data Source
One common way of connecting to a data source is through the Data Sources
dialog box, as Figure 2-11 illustrates. If your INFORMIX-CLI application is set
up to use a dialog box, the Data Sources dialog box appears and prompts you
for the appropriate data-source connection information.

Figure 2-11
The Data Sources

Dialog Box

Options Drivers

User Data Sources (Driver)

Stores7 (Informix)

Add...

System DSN

Data Sources

Close

Help

Setup

Delete
2-26 INFORMIX-CLI Programmer’s Manual

Using Dialog Boxes to Connect to a Data Source
To connect to a data source using a dialog box

1. In the Data Sources dialog box, select a data source.

2. Click OK.

The Logon to Informix dialog box appears, as Figure 2-12 illustrates.
The connection information that appears is the default information
listed in your ODBC.INI.

3. To accept the default values and connect to the data source, click OK.
or
To modify the default values for this data source, continue to step 4.

4. In the Database Name text box, type the name of the OnLine or SE
database that contains the tables that you want to access.

You can also click the down arrow to choose a name from a drop-
down list.

5. In the Host Name text box, type the name of the computer on which
your Informix database server resides.

6. In the User Name text box, type your user name as specified on the
database server.

7. In the Password text box, type your password for the UNIX server to
which you want to connect.

8. To display the INFORMIX Server Options dialog box, click Options.

This dialog box lets you specify options that are described in
“Optional Data-Source Configuration Information” on page 2-17.

Figure 2-12
The Logon to

INFORMIX Dialog
BoxOK

Cancel

Options...

Logon to INFORMIX

Help

Database Name:

Host Name:

User Name:

Password:

Stores7

mickey

mjones
INFORMIX-CLI 2-27

Using a Connection-String to Connect to a Data Source
9. Click OK to accept any changes you make and return to the Logon to
Informix dialog box.

10. Click OK to complete the logon and to update these values in
ODBC.INI.

Once the connection information is verified, your application can use
the INFORMIX-CLI driver to access the information that the data
source contains.

Using a Connection-String to Connect to a Data Source
Some applications require that you connect to a data source by typing a
connection string.The connection string includes several attributes that
specify how a driver connects to a data source for a particular session. An
attribute identifies a specific piece of information that the driver needs to
know before it can make the appropriate data-source connection.

A connection string has the following format:

"DSN=data_source_name[;attribute=value[;attribute=value]...]"

You must specify data_source_name; however, all other attributes are optional.
If you do not specify an attribute, it defaults to the one that is specified in the
Data Source Specification section (for the data source specified in the
connection string) of your ODBC.INI file in Windows 3.1 or your Registry in
Windows NT and Windows 95.

Figure 2-13
The INFORMIX
Server Options

Dialog BoxOK

Help

INFORMIX Server Options

Service Name:

Cancel

Protocol Type

Server Name:
2-28 INFORMIX-CLI Programmer’s Manual

Using a Connection-String to Connect to a Data Source
The following table lists the long and short names of the attributes that you
can include in the INFORMIX driver connection string. With the exception of
the data source name (which must be specified by DSN), you can use either the
long or short names in the connection string. For a description of these
attributes, see “Required Data-Source Configuration Information” and
“Optional Data-Source Configuration Information” on page 2-17.

The following example shows a valid connection string for connecting to the
stores7 data source. The string specifically requests a connection to the
stores7 database that resides on a computer named rainbow. The user ID is
mary.

"DSN=Stores7;DB=stores7;HOST=rainbow;SERV=sqlexec;
UID=mary;PWD=secret"

In this example, the service and password are also specified.

Attribute Short Name

DataSourceName DSN

Database DB

HostName HOST

LogonID UID

Password PWD

Service SERV

Server SERVER

GetDBListFrom Informix GDBLFI

CursorBehavior CB

EnableScrollableCursors ESC

Protocol PRO (Windows 3.1 and Windows NT only)

YieldProc YLD (Windows 3.1 only)
INFORMIX-CLI 2-29

3
Chapter
Guidelines for Calling
INFORMIX-CLI Functions
Determining INFORMIX-CLI Conformance Levels 3-3

Using the Driver Manager 3-4

Calling Functions 3-5
Buffers . 3-5

Input Buffers 3-5
Output Buffers 3-6

Environment, Connection, and Statement Handles 3-7
Using Data Types 3-8
Function Return Codes 3-8

3-2 INFO
RMIX-CLI Programmer’s Manual

This chapter describes the general characteristics of INFORMIX-CLI
functions, determining driver conformance levels, the role of the driver
manager, passing function arguments to a driver, and the values that
functions return.

Each INFORMIX-CLI function name starts with the prefix SQL. Each function
accepts one or more arguments. Arguments are defined as input (to the
driver) or output (from the driver).

C programs that call INFORMIX-CLI functions must include the sql.h and
sqlext.h header files. These files define INFORMIX-CLI constants and types
and provide function prototypes for all INFORMIX-CLI functions.

Determining INFORMIX-CLI Conformance Levels
ODBC defines conformance levels for drivers in two areas: the ODBC API and
the ODBC SQL grammar, which includes the ODBC SQL data types. These
levels establish standard sets of functionality. By verifying the conformance
levels supported by a driver, an application can determine if the driver
provides the necessary functionality.

To determine the function conformance level of a driver, an application calls
SQLGetInfo with the SQL_ODBC_SAG_CLI_CONFORMANCE and
SQL_ODBC_API_CONFORMANCE flags.

To determine the SQL conformance level of a driver, an application calls
SQLGetInfo with the SQL_ODBC_SQL_CONFORMANCE flag. To determine
whether a driver supports a specific SQL extension, an application calls
SQLGetInfo with a flag for that extension. To determine whether a driver
supports a specific SQL data type, an application calls SQLGetTypeInfo.
Guidelines for Calling INFORMIX-CLI Functions 3-3

Using the Driver Manager
Using the Driver Manager
The driver manager is a shared library that provides access to the Informix
driver. An INFORMIX-CLI application typically links with the driver manager
import library to gain access to the driver manager. For UNIX, this file is
named libodbc with platform-specific extensions. For Windows 3.1, this file
is named ODBC.DLL and for Windows 95 and Windows NT, this file is
named ODBC32.DLL.

Whenever an INFORMIX-CLI application calls a function, the driver manager
performs one of the following actions:

■ For SQLDataSources and SQLDrivers, the driver manager processes
the call. It does not pass the call to the driver.

■ For SQLGetFunctions, the driver manager passes the call to the
driver associated with the connection.

■ For SQLAllocEnv, SQLAllocConnect, SQLSetConnectOption,
SQLFreeConnect, and SQLFreeEnv, the driver manager processes the
call. The driver manager calls SQLAllocEnv, SQLAllocConnect, and
SQLSetConnectOption in the driver when the application calls a
function to connect to the data source (SQLConnect,
SQLDriverConnect, or SQLBrowseConnect). The driver manager
calls SQLFreeConnect and SQLFreeEnv in the driver when the appli-
cation calls SQLDisconnect.

■ For SQLConnect, SQLDriverConnect, SQLBrowseConnect, and
SQLError, the driver manager performs initial processing and then
passes the call to the driver associated with the connection.

For any other function, the driver manager passes the call to the driver.

If requested, the driver manager records each called function in a trace file.
The name of each function is recorded, along with the values of the input
arguments and the names of the output arguments (as listed in the function
definitions).1
3-4 INFORMIX-CLI Programmer’s Manual

Calling Functions
Calling Functions
The following paragraphs describe general characteristics of INFORMIX-CLI
functions.

Buffers
An application passes data to the driver in an input buffer. The driver returns
data to the application in an output buffer. The application must allocate
memory for both input and output buffers. (If the application uses the buffer
to retrieve string data, the buffer must contain space for the null termination
byte.)

Some functions accept pointers to buffers that are used later by other
functions. The application must ensure that these pointers remain valid until
all applicable functions have used them. For example, the argument rgbValue
in SQLBindCol points to an output buffer where SQLFetch returns the data
for a column.

Input Buffers

An application passes the address and length of an input buffer to the driver.
The length of the buffer must be one of the following values:

■ A length greater than or equal to zero

This value is the actual length of the data in the input buffer. For
character data, a length of zero indicates that the data is an empty
(zero length) string. A length of zero is different from a null pointer.
If the application specifies the length of character data, the character
data does not need to be null-terminated.

■ SQL_NTS

This value specifies that a character data value is null terminated.

■ SQL_NULL_DATA

This value tells the driver to ignore the value in the input buffer and
use a NULL data value instead. It is valid only when the input buffer
provides the value of a parameter in an SQL statement.
Guidelines for Calling INFORMIX-CLI Functions 3-5

Buffers
The operation of INFORMIX-CLI functions on character data that contains
embedded null characters is undefined and is not recommended for
maximum interoperability.

Unless it is specifically prohibited in a function description, the address of an
input buffer can be a null pointer. In this case, the value of the corresponding
buffer-length argument is ignored.

For more information about input buffers, see “Converting Data from C to
SQL Data Types” on page C-24.

Output Buffers

An application passes the following arguments to the driver, so that the
driver can return data in an output buffer:

■ The address of the buffer in which the driver returns the data (the
output buffer)

Unless it is specifically prohibited in a function description, the
address of an output buffer can be a null pointer. In this case, the
driver does not return anything in the buffer and, in the absence of
other errors, returns SQL_SUCCESS.

If necessary, the driver converts data before returning it. The driver
always null-terminates character data before returning it.

■ The length of the buffer

This value is ignored by the driver if the returned data has a fixed
length in C, such as an integer, real number, or date structure.

■ The address of a variable in which the driver returns the length of the
data (the length buffer)

The returned length of the data is SQL_NULL_DATA if the data is a
NULL value in a result set. Otherwise, it is the number of bytes of
data that are available to return. If the driver converts the data, it is
the number of bytes that remain after the conversion. For character
data, it does not include the null-termination byte added by the
driver.
3-6 INFORMIX-CLI Programmer’s Manual

Environment, Connection, and Statement Handles
If the output buffer is too small, the driver attempts to truncate the data. If the
truncation does not cause a loss of significant data, the driver returns the
truncated data in the output buffer, returns the length of the available data
(as opposed to the length of the truncated data) in the length buffer, and
returns SQL_SUCCESS_WITH_INFO. If the truncation causes a loss of signif-
icant data, the driver leaves the output and length buffers untouched and
returns SQL_ERROR. The application calls SQLError to retrieve information
about the truncation or the error.

For more information about output buffers, see “Converting Data from SQL
to C Data Types” on page C-13.

Environment, Connection, and Statement Handles
The driver manager and the driver allocate storage for information about the
environment, each connection, and each SQL statement when an application
requests. The handles to these storage areas are returned to the application,
which uses one or more handles in each call to a function.

The INFORMIX-CLI interface uses the following types of handles that are
defined by the ODBC specification:

■ The environment handle identifies memory storage for global infor-
mation, including the valid connection handles and the current
active connection handle. The environment handle is an HENV
variable type. An application uses a single environment handle; it
must request this handle before it connects to a data source.

■ Connection handles identify memory storage for information about
particular connections. A connection handle is an HDBC variable
type. An application must request a connection handle before it
connects to a data source. Each connection handle is associated with
the environment handle. However, the environment handle can have
multiple connection handles associated with it.

■ Statement handles identify memory storage for information about SQL
statements. A statement handle is an HSTMT variable type. An appli-
cation must request a statement handle before it submits SQL
requests. Each statement handle is associated with exactly one
connection handle. However, each connection handle can have
multiple statement handles associated with it.
Guidelines for Calling INFORMIX-CLI Functions 3-7

Using Data Types
For more information about requesting a connection handle, see “Connecting
to a Data Source” on page 5-5. For more information about requesting a
statement handle, see “Executing an SQL Statement” on page 6-5.

Using Data Types
Data stored on a data source has an SQL data type. The INFORMIX-CLI driver
maps Informix-specific SQL data types to ODBC SQL data types, which are
defined in the ODBC SQL grammar. (The driver returns these mappings
through SQLGetTypeInfo. It also uses the ODBC SQL data types to describe
the data types of columns and parameters in SQLColAttributes and
SQLDescribeCol.)

Each SQL data type corresponds to an ODBC C data type. By default, the
driver assumes that the C data type of a storage location corresponds to the
SQL data type of the column or parameter to which the location is bound. If
the C data type of a storage location is not the default C data type, the appli-
cation can specify the correct C data type with the fCType argument in
SQLBindCol, SQLGetData, or SQLBindParameter. Before the driver returns
data from the data source, it converts the data to the specified C data type.
Before the driver sends data to the data source, it converts the data from the
specified C data type.

For more information about data types, see Appendix C. The C data types are
defined in the sql.h and sqlext.h header files.

Function Return Codes
When an INFORMIX-CLI application calls a function, the driver executes the
function and returns a predefined code. The following return codes indicate
success, warning, or failure status:

■ SQL_SUCCESS

■ SQL_SUCCESS_WITH_INFO

■ SQL_NO_DATA_FOUND

■ SQL_ERROR

■ SQL_INVALID_HANDLE

■ SQL_STILL_EXECUTING

■ SQL_NEED_DATA
3-8 INFORMIX-CLI Programmer’s Manual

Function Return Codes
When the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, the
application can call SQLError to retrieve additional information about the
error. For a complete description of return codes and error handling, see
Chapter 8, “Retrieving Status and Error Information.”
Guidelines for Calling INFORMIX-CLI Functions 3-9

4
Chapter
Basic Application Steps
How an Application Uses the INFORMIX-CLI Interface 4-3

4-2 INFO
RMIX-CLI Programmer’s Manual

his chapter describes how an application uses the INFORMIX-CLI
interface to interact with a data source. Chapters 5 through 9 discuss the
individual actions that an application performs as it interacts with a data
source and Chapter 10, “Constructing an INFORMIX-CLI Application,”
provides code examples of such basic applications. Chapter 11, “Designing
Performance-Oriented Applications,” offers design and coding suggestions
that can enhance application perfomance.

How an Application Uses the INFORMIX-CLI
Interface
An application uses the INFORMIX-CLI interface to make a connection to a
data source, issue SQL statements to a data source, process result data
dynamically, and terminate a connection.

To interact with a data source

1. Connect to the data source, specifying the data-source name and any
additional information needed to complete the connection.

T

Basic Application Steps 4-3

How an Application Uses the INFORMIX-CLI Interface
2. Process one or more SQL statements:

■ The application places the SQL text string in a buffer. If the
statement includes parameter markers, it sets the parameter
values.

■ If the statement returns a result set, the application assigns a
cursor name for the statement or allows the driver to assign one.

■ The application submits the statement for prepared or
immediate execution.

■ If the statement creates a result set, the application can inquire
about the attributes of the result set, such as the number of
columns and the name and type of a specific column. It assigns
storage for each column in the result set and fetches the results.

■ If the statement causes an error, the application retrieves error
information from the driver and takes appropriate action.

3. End each transaction by committing it or rolling it back.

4. Terminate the connection when it finishes interacting with the data
source.

Figure 4-1 shows the function calls that a basic application makes to connect
to a data source, process SQL statements, and disconnect from the data
source. Depending on your needs, your application can call other functions.
4-4 INFORMIX-CLI Programmer’s Manual

How an Application Uses the INFORMIX-CLI Interface
Figure 4-1
A Sample Listing of
Function Calls Made

by an INFORMIX-
CLI Application

Process SQL Statements

Receive Results

CLOSE option

DROP option

SQLAllocEnv

SQLAllocConnect

SQLConnect

SQLAllocStmt

SQLFreeStmt

SQLDisconnect

SQLFreeConnect

SQLFreeEnv
Basic Application Steps 4-5

5
Chapter
Connecting to a Data Source
Description of Data Sources 5-3

Initializing the Environment 5-4

Allocating a Connection Handle 5-5

Connecting to a Data Source 5-5
Connecting with SQLConnect 5-5
Connecting to a Data Source with SQLDriverConnect 5-6
Connection Browsing with SQLBrowseConnect 5-9
Translating Data 5-9

Related Functions 5-10

5-2 INFO
RMIX-CLI Programmer’s Manual

This chapter describes how to establish a connection to a data source.

Description of Data Sources
A data source consists of the data that a user wants to access, its associated
DBMS, the platform on which the DBMS resides, and the network (if any) used
to access that platform. Each data source requires that the driver provide
connection information. For a description of the connection information that
the INFORMIX-CLI driver provides, see “Adding a Data Source” on page 2-6
for UNIX platforms or “Adding a Data Source” on page 2-16 for Windows
environments.

The connection information for each data source is stored in the odbc.ini file,
which is created during installation and maintained with a text editor or an
administration program. A section in this file lists the available data sources.
Additional sections describe each data source in detail, specifying the driver
name, a description, and any additional information the driver needs to
connect to the data source.

For example, suppose a user has two data sources: Personnel, which uses an
INFORMIX-SE database server, and Payroll, which uses an INFORMIX-OnLine
Dynamic Server database server. The section that lists the data sources might
appear as follows:

[ODBC Data Sources]
Personnel=Informix SE
Payroll=Informix OnLine

The section that describes the Personnel data source might appear as follows:

[Personnel]
Driver=/usr/informix/cli/dlls/qeinf708.so
Description=Personnel database
Database=personnel
Connecting to a Data Source 5-3

Initializing the Environment
For more information about the odbc.ini file, see “Understanding the
odbc.ini File” on page 1-7.

Initializing the Environment
Before an application can use any other function, it must initialize the
INFORMIX-CLI interface and associate an environment handle with the
environment. To initialize the interface and allocate an environment handle,
an application performs the following operations:

1. Declares a variable of type HENV.

For example, your application could use the following declaration:
HENV henv1;

2. Calls SQLAllocEnv and passes it the address of the variable.

The driver initializes the environment, allocates memory to store
information about the environment, and returns the environment
handle in the variable.

These steps should be performed only once by your application;
SQLAllocEnv supports one or more connections to data sources.
5-4 INFORMIX-CLI Programmer’s Manual

Allocating a Connection Handle
Allocating a Connection Handle
Before your INFORMIX-CLI application can connect to the driver, you must
allocate a connection handle for the connection. To allocate a connection
handle, an application performs the following operations:

1. Declares a variable of type HDBC.

For example, the application could use the following declaration:
HDBC hdbc1;

2. Calls SQLAllocConnect and passes it the address of the variable.

The driver allocates memory to store information about the
connection and returns the connection handle in the variable.

Connecting to a Data Source
After allocating a connection handle, you must specify a specific driver (the
Informix driver) and data source. INFORMIX-CLI provides functions that
allow different methods for connecting to a data source.

Connecting with SQLConnect
Your INFORMIX-CLI application passes the following information to the
driver in a call to SQLConnect:

■ Data-source name is the name of the data source being requested by
the application.

■ UserID is the login ID or account name for access to the data source,
if appropriate (optional).

■ Passwords is a character string associated with the user ID that
allows access to the data source (optional).
Connecting to a Data Source 5-5

Connecting to a Data Source with SQLDriverConnect
When your application calls SQLConnect, the driver manager uses the data-
source name to read the name of the driver shared library from the appro-
priate section of the odbc.ini file. It then loads the driver shared library and
passes the SQLConnect arguments to it. If the driver needs additional infor-
mation to connect to the data-source, it reads this information from the same
section of the odbc.ini file.

If the application specifies a data-source name that is not in the odbc.ini file,
or if the application does not specify a data-source name, the driver manager
searches for the default data-source specification. If it finds the default data-
source, it loads the default driver shared library and passes the application-
specified data source name to it. If no default data source exists, the driver
manager returns an error.

Connecting to a Data Source with SQLDriverConnect
Your application can connect to a data source by calling SQLDriverConnect.

SQLDriverConnect supports the following:

■ Data sources that require more connection information than the three
arguments in SQLConnect

■ Dialog boxes to prompt the user for all connection information

■ Data sources that are not defined in the odbc.ini file

SQLDriverConnect uses a connection string to specify the information
needed to connect to a driver and data source.

The connection string contains the following information:

■ Data-source name or driver description

■ Zero or more user IDs

■ Zero or more passwords

■ Zero or more data-source-specific parameter values

The connection string is a more flexible interface than the data-source name,
user ID, and password used by SQLConnect. The application can use the
connection string for multiple levels of login authorization or to convey other
data source-specific connection information.
5-6 INFORMIX-CLI Programmer’s Manual

Connecting to a Data Source with SQLDriverConnect
An application calls SQLDriverConnect in one of the following ways:

■ Specifies a connection string that contains a data-source name

The driver manager retrieves the full path of the driver shared
library associated with the data-source from the odbc.ini file. To
retrieve a list of data-source names, an application calls
SQLDataSources.

■ Specifies a connection string that contains a driver description

The driver manager retrieves the full path of the driver shared
library. To retrieve a list of driver descriptions, an application calls
SQLDrivers.

■ Specifies a connection string that does not contain a data-source
name or a driver description

The driver manager displays a dialog box from which the user
selects a data-source name. The driver manager then retrieves the
full path of the driver shared library associated with the data-source.

The driver manager then loads the driver shared library and passes the
SQLDriverConnect arguments to it.

After the driver connects to the data source, it returns the connection infor-
mation to the application. The application might store this information for
future use.

If the application specifies a data-source name that is not in the odbc.ini, the
driver manager searches for the default data-source specification. If it finds
the default data source, it loads the default driver shared library and passes
the application-specified data-source name to it. If no default data source
exists, the driver manager returns an error.
Connecting to a Data Source 5-7

Connecting to a Data Source with SQLDriverConnect
When the application calls SQLDriverConnect and requests that the user be
prompted for information, the driver manager displays the SQL Data Sources
dialog box, as Figure 5-1 illustrates.

When an application requests it, the driver displays the Logon to
INFORMIX dialog box to retrieve login information, as Figure 5-2
illustrates.

Figure 5-1
The SQL Data

Sources Dialog Box

Options Drivers

User Data Sources (Driver)

Stores7 (Informix)

Add...

System DSN

Data Sources

Close

Help

Setup

Delete

Accounting (informix)
Documentation (Informix)
Inventory (Informix)

Figure 5-2
The Logon to

INFORMIX Dialog
BoxOK

Cancel

Options...

Logon to INFORMIX

Help

Database Name:

Host Name:

User Name:

Password:

Stores7

mickey

mjones
5-8 INFORMIX-CLI Programmer’s Manual

Connection Browsing with SQLBrowseConnect
Connection Browsing with SQLBrowseConnect
SQLBrowseConnect supports an iterative method of listing and specifying
the attributes and attribute values required to connect to a data source. For
each level of a connection, an application calls SQLBrowseConnect and
specifies the connection attributes and attribute values for that level. First
level connection attributes always include the data-source name or driver
description; the connection attributes for later levels are data-source
dependent but might include the host, user name, and database.

Each time an application calls SQLBrowseConnect, it validates the current
attributes, returns the next level of attributes, and returns a user-friendly
name for each attribute. It might also return a list of valid values for those
attributes: After an application has specified each level of attributes and
values, SQLBrowseConnect connects to the data source and returns a
complete connection string. This string can be used with SQLDriverConnect
to connect to the data source at a later time.

Translating Data
An INFORMIX-CLI application and a data source can store data in different
formats. For example, the application might use a different character set than
the one the data source uses. The driver can translate all data (data values,
SQL statements, table names, row counts, and so on) that passes between the
driver and the data source.

The driver translates data by calling functions in a translation shared library.
A default translation shared library can be specified for the data source in the
odbc.ini file; the application can override this by calling
SQLSetConnectOption. When the driver connects to the data source, it loads
the translation shared library if one has been specified. After the driver has
connected to the data source, the application might specify a new translation
shared library by calling SQLSetConnectOption. For more information about
specifying a default translation shared library, see “ODBC Options” on
page 1-10.

Translation functions might support several types of translation. For
example, a function that translates data from one character set to another
might support a variety of character sets. To specify a particular type of trans-
lation, an application can pass an option flag to the translation functions with
SQLSetConnectOption.
Connecting to a Data Source 5-9

Related Functions
Related Functions
The following functions are related to connections, drivers, and data sources.
For more information about these functions, see Chapter 13, “INFORMIX-
CLI Function Reference.”

Function Description

SQLDataSources Retrieves a list of available data sources. The driver
manager retrieves this information from the odbc.ini
file. An application can present this information to a
user or automatically select a data source.

SQLDrivers Retrieves a list of installed drivers and their attributes.
The driver manager retrieves this information from the
odbcinst.ini file. An application can present this infor-
mation to a user or automatically select a driver.

SQLGetFunctions Retrieves functions supported by a driver. This
function allows an application to determine at runtime
whether a particular function is supported by a driver.

SQLGetInfo Retrieves general information about a driver and data
source, including filenames, versions, conformance
levels, and capabilities.

SQLGetTypeInfo Retrieves the SQL data types supported by a driver and
data source.

SQLSetConnectOption

SQLGetConnectOption

Sets or retrieves connection options, such as the data-
source access mode, automatic transaction
commitment, time-out values, function tracing, data-
translation options, and transaction isolation.
5-10 INFORMIX-CLI Programmer’s Manual

6
Chapter
Executing SQL Statements
Allocating a Statement Handle 6-5

Executing an SQL Statement 6-5
Prepared Execution 6-6
Direct Execution 6-7

Setting Parameter Values 6-7

Performing Transactions 6-9
Retrieving Information About the Data-Source Catalog 6-9
Sending Parameter Data at Execution Time 6-10
Specifying Arrays of Parameter Values 6-11
Using ODBC Extensions to SQL 6-12

Date, Time, and Time-Stamp Data 6-13
Scalar Functions 6-14
LIKE Predicate Escape Characters 6-15
Outer Joins 6-16
Procedures 6-17

Related Functions 6-19

6-2 INFO
RMIX-CLI Programmer’s Manual

An application can submit any SQL statement that is supported by
a data source. ODBC defines a standard syntax for SQL statements (see
Appendix B). For maximum interoperability, an application should submit
only SQL statements that use this syntax; the driver translates these state-
ments to the syntax used by the data source. If an application submits an SQL
statement that does not use the ODBC syntax, the driver passes it directly to
the data source.

Important: For CREATE TABLE and ALTER TABLE statements, applications should
use the data type name returned by SQLGetTypeInfo in the TYPE_NAME column,
rather than the data type name defined in the SQL grammar.

Statements can be executed a single time with SQLExecDirect or prepared
with SQLPrepare and executed multiple times with SQLExecute. An appli-
cation calls SQLTransact to commit or roll back a transaction.

Figure 6-1 illustrates a simple sequence of function calls to execute SQL
statements.
Executing SQL Statements 6-3

Figure 6-1
A Sequence of

Function Calls to
Execute SQL

Statements
Repeatable Execution

SQLBindtParameter

SQLExecDirect

SQLPrepare
SQLBindtParameter

SQLExecute

YesNo

UPDATE, DELETE,
or INSERT statement

SELECT
statement

SQLNumResultsCol
SQLDescribeCol

SQLBindCol

SQLFreeStmt

No

Yes SQLRowCount

if repeat

if more processing

SQLTransact

Terminate

Kind of Statement?

More Rows?

SQLFetch

Initialize
6-4 INFORMIX-CLI Programmer’s Manual

Allocating a Statement Handle
Allocating a Statement Handle
Before your application can submit an SQL statement, you must allocate a
statement handle for the statement. To allocate a statement handle, an appli-
cation performs the following operations:

1. Declares a variable of type HSTMT.

For example, the application could use the following declaration:
HSTMT hstmt1;

2. Calls SQLAllocStmt and passes it the address of the variable and the
connected hdbc with which to associate the statement.

The driver allocates memory to store information about the
statement, associates the statement handle with the hdbc, and returns
the statement handle in the variable.

Executing an SQL Statement
Your application can submit an SQL statement for execution in the following
ways:

■ Prepared statements call SQLPrepare and then call SQLExecute.

■ Direct statements call SQLExecDirect.

These options are similar, but not identical to, the prepared and immediate
options in embedded SQL. For a comparison of the ODBC functions and
embedded SQL, see Appendix D.
Executing SQL Statements 6-5

Prepared Execution
Prepared Execution
Prepare a statement before you execute it if either of the following situations
is true:

■ The application can execute the statement more than once, possibly
with intermediate changes to parameter values.

■ The application needs information about the result set prior to
execution.

A prepared statement executes faster than an unprepared statement because
the data source compiles the statement, produces an access plan, and returns
an access plan identifier to the driver. The data source minimizes processing
time because it does not have to produce an access plan each time it executes
the statement. Network traffic is minimized because the driver sends the
access plan identifier, instead of the entire statement, to the data source.o

Important: Committing or rolling back a transaction, either by calling SQLTransact
or by using the SQL_AUTOCOMMIT connection option, can cause the data source to
delete the access plans for all hstmts on an hdbc. For more information, see
“SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 13-192.

To prepare and execute an SQL statement, an application performs the
following operations:

1. Calls SQLPrepare to prepare the statement.

2. Sets the values of any statement parameters.

For more information, see “Setting Parameter Values” on page 6-7.

3. Retrieves information about the result set, if necessary.

For more information, see “Determining the Characteristics of a
Result Set” on page 7-4.

4. Calls SQLExecute to execute the statement.

5. Repeats steps 2 through 4 as necessary.
6-6 INFORMIX-CLI Programmer’s Manual

Direct Execution
Direct Execution
Execute a statement directly if both of the following situations are true:

■ The application executes the statement only once.

■ The application does not need information about the result set prior
to execution.

To execute an SQL statement directly, an application performs the following
operations:

1. Sets the values of any statement parameters.

For more information, see “Setting Parameter Values.”

2. Calls SQLExecDirect to execute the statement.

Setting Parameter Values
An SQL statement can contain parameter markers that indicate values that
the driver retrieves from the application at execution time. For example, an
application might use the following statement to insert a row of data into the
EMPLOYEE table:

INSERT INTO EMPLOYEE (NAME, AGE, HIREDATE) VALUES (?, ?, ?)

An application uses parameter markers instead of literal values when one of
the following situations occurs:

■ It needs to execute the same prepared statement several times with
different parameter values.

■ The parameter values are not known when the statement is
prepared.

■ The parameter values need to be converted from one data type to
another.
Executing SQL Statements 6-7

Setting Parameter Values
To set a parameter value, an application performs the following operations:

1. Calls SQLBindParameter to bind a storage location to a parameter
marker and to specify the data types of the storage location and the
column associated with the parameter as well as the precision and
scale of the parameter

2. Places the value of the parameter in the storage location

These steps can be performed before or after a statement is prepared but must
be performed before a statement executes.

Parameter values must be placed in storage locations in the C data types
specified in SQLBindParameter, shown in the following table.

Storage locations remain bound to parameter markers until the application
calls SQLFreeStmt with the SQL_RESET_PARAMS option or the SQL_DROP
option. An application can bind a different storage area to a parameter
marker at any time by calling SQLBindParameter. An application can also
change the value in a storage location at any time. When a statement is
executed, the driver uses the current values in the most recently defined
storage locations.

Parameter Value SQL Data Type C Data Type Stored Value

ABC SQL_CHAR SQL_C_CHAR ABC\0 a

10 SQL_INTEGER SQL_C_SLONG 10

10 SQL_INTEGER SQL_C_CHAR 10\0 a

1 P.M. SQL_TIME SQL_C_TIME 13,0,0 b

1 P.M. SQL_TIME SQL_C_CHAR {t '13:00:00'}\0a,c

a \0 represents a null-termination byte; the null-termination byte is required only if
the parameter length is SQL_NTS.

b The numbers in this list are the numbers stored in the fields of the TIME_STRUCT
structure.

c The string uses the ODBC date escape clause. For more information, see “Date,
Time, and Time-Stamp Data” on page 6-13.
6-8 INFORMIX-CLI Programmer’s Manual

Performing Transactions
Performing Transactions
In auto-commit mode, every SQL statement is a complete transaction that is
automatically committed. In manual-commit mode, a transaction consists of
one or more statements. In manual-commit mode, when an application
submits an SQL statement and no transaction is open, the driver implicitly
begins a transaction. The transaction remains open until the application
commits or rolls back the transaction with SQLTransact.

For the Informix driver, the default transaction mode is auto-commit. An
application calls SQLSetConnectOption to switch between manual-commit
and auto-commit mode. If an application switches from manual-commit to
auto-commit mode, the driver commits any open transactions on the
connection.

Applications should call SQLTransact to commit or rollback a transaction,
rather than submitting a COMMIT or ROLLBACK statement. The result of a
COMMIT or ROLLBACK statement depends on the driver and its associated
data source._

Important: Committing or rolling back a transaction, either by calling SQLTransact
or by using the SQL_AUTOCOMMIT connection option, can cause the data source to
close the cursors and delete the access plans for all hstmts on an hdbc. For more infor-
mation, see “SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 13-192.

Retrieving Information About the Data-Source Catalog
The following functions, known as catalog functions, return information
about a data-source catalog:

■ SQLTables returns the names of tables stored in a data source.

■ SQLTablePrivileges returns the privileges associated with one or
more tables.

■ SQLColumns returns the names of columns in one or more tables.

■ SQLColumnPrivileges returns the privileges associated with each
column in a single table.

■ SQLPrimaryKeys returns the names of columns that comprise the
primary key of a single table.
Executing SQL Statements 6-9

Sending Parameter Data at Execution Time
■ SQLSpecialColumns returns information about the optimal set of
columns that uniquely identify a row in a single table or the columns
in the table that are automatically updated when any value in the
row is updated by a transaction.

■ SQLStatistics returns statistics about a single table and the indexes
associated with the table.

■ SQLProcedures returns the names of procedures stored in a data
source.

Each function returns the information as a result set. Use SQLBindCol and
SQLFetch to retrieves these results.

Sending Parameter Data at Execution Time
To send parameter data, such as for parameters of the SQL_LONGVARCHAR
or SQL_LONGVARBINARY types when a statement executes, use the
following functions:

■ SQLBindParameter

■ SQLParamData

■ SQLPutData

To indicate that your application plans to send parameter data when the
statement executes, call SQLBindParameter and set the pcbValue buffer for
the parameter to the result of the SQL_LEN_DATA_AT_EXEC(length) macro. If
the fSqlType argument is SQL_LONGVARBINARY or SQL_LONGVARCHAR and
the driver returns “Y” for the SQL_NEED_LONG_DATA_LEN information type
in SQLGetInfo, length is the total number of bytes of data to be sent for the
parameter; otherwise, it is ignored.

Set the rgbValue argument to a value that, at ru time, can be used to retrieve
the data. For example, rgbValue might point to a storage location that contains
the data when the statement executes or to a file that contains the data. The
driver returns the value to the application when the statement executes.

When the driver processes a call to SQLExecute or SQLExecDirect and the
executing statement includes a data-at-execution parameter, the driver
returns SQL_NEED_DATA.
6-10 INFORMIX-CLI Programmer’s Manual

Specifying Arrays of Parameter Values
To send the parameter data, an application performs the following
operations:

1. Calls SQLParamData, which returns rgbValue (as set with SQLBind-
Parameter) for the first data-at-execution parameter.

2. Calls SQLPutData one or more times to send data for the parameter.

More than one call is needed if the data value is larger than the
buffer; multiple calls are allowed only if the C data type is character
or binary and the SQL data type is character, binary, or data-source
specific.

3. Calls SQLParamData again to indicate that all the data has been sent
for the parameter

If another data-at-execution parameter remains, the driver returns
rgbValue for that parameter and SQL_NEED_DATA for the function
return code. Otherwise, it returns SQL_SUCCESS for the function
return code.

4. Repeats steps 2 and 3 for the remaining data-at-execution
parameters.

For additional information, see “SQLBindParameter” on page 13-23.

Specifying Arrays of Parameter Values
To specify multiple sets of parameter values for a single SQL statement, an
application calls SQLParamOptions. For example, if there are ten sets of
column values to insert into a table, and the same SQL statement can be used
for all ten operations, the application can set up an array of values, then
submit a single INSERT statement.

If an application uses SQLParamOptions, it must allocate enough memory to
handle the arrays of values.
Executing SQL Statements 6-11

Using ODBC Extensions to SQL
Using ODBC Extensions to SQL
INFORMIX-CLI supports ODBC extensions to SQL as well as Informix-specific
extensions. The following section describes the general format of the exten-
sions as defined by the ODBC specification. ODBC defines the following
extensions to SQL, which are common to most DBMSs:

■ Date, time, and time-stamp data

■ Scalar functions, such as numeric and string functions

■ Outer joins

The syntax defined by ODBC for these extensions uses the escape clause
provided by the X/Open and SQL Access Group SQL CAE specification (1992)
to cover vendor-specific extensions to SQL. Its format is as follows:

--(*vendor(vendor-name), product(product-name) extension *)--

For the ODBC extensions to SQL, product-name is always ODBC because the
product that defines them is ODBC. Vendor-name is always Microsoft because
ODBC is a Microsoft product. ODBC also defines a shorthand syntax for these
extensions, as follows:

{extension}

Most DBMSs provide the same extensions to SQL as ODBC does. For this
reason, an application might be able to submit an SQL statement using one of
these extensions in either of the following ways:

■ Use the syntax defined by ODBC

An application that uses the ODBC syntax is interoperable among
DBMSs.

■ Use the syntax defined by the DBMS

An application that uses DBMS-specific syntax is not interoperable
among DBMSs.

To determine whether the driver and data source support all the ODBC exten-
sions to SQL, an application calls SQLGetInfo with the
SQL_ODBC_SQL_CONFORMANCE flag. For information about how an appli-
cation determines whether a specific extension is supported, see “Supported
SQL” on page 13-188 and “SQL Limits” on page 13-189.
6-12 INFORMIX-CLI Programmer’s Manual

Using ODBC Extensions to SQL
Important: Informix database servers provide extensions to SQL other than those
defined by ODBC. To use one of these extensions, refer to Informix Guide to SQL:
Syntax. If your application uses the Informix-specific syntax, it is not interoperable
among DBMSs.

Date, Time, and Time-Stamp Data

The escape clauses that ODBC uses for date, time, and time-stamp data are
shown in the following example:

--(*vendor(Microsoft),product(ODBC) d 'value' *)--
--(*vendor(Microsoft),product(ODBC) t 'value' *)--
--(*vendor(Microsoft),product(ODBC) ts 'value' *)--

The shorthand syntax for date, time, and time-stamp data is as follows:

{d 'value'}
{t 'value'}
{ts 'value'}

For example, each of the following statements updates the birthday of Walter
Jacobs in the EMPLOYEE table. The first statement uses the escape-clause
syntax. The second statement uses the shorthand syntax. The third statement
uses the native syntax for Informix for a DATE column and is not interop-
erable among DBMSs.

UPDATE EMPLOYEE
SET BIRTHDAY=--(*vendor(Microsoft),product(ODBC) d
'1938-01-15' *)--
WHERE NAME='Jacobs, Walter'

UPDATE EMPLOYEE
SET BIRTHDAY={d '1938-01-15'}
WHERE NAME='Jacobs, Walter'

UPDATE EMPLOYEE
SET BIRTHDAY='01/15/1938'
WHERE NAME='Jacobs, Walter'

d indicates value is a date in the “yyyy-mm-dd” format

t indicates value is a time in the “hh:mm:ss” format

ts indicates value is a time stamp in the “yyyy-mm-dd
hh:mm:ss[.f...]” format
Executing SQL Statements 6-13

Using ODBC Extensions to SQL
The ODBC escape clauses for date, time, and timestamp literals can be used
in parameters with a C data type of SQL_C_CHAR. For example, the following
statement uses a parameter to update the birthday of Jane Smith in the
EMPLOYEE table:

UPDATE EMPLOYEE SET BIRTHDAY=? WHERE NAME='Smith, Jane'

A storage location of type SQL_C_CHAR bound to the parameter might
contain any of the following values. The first value uses the escape clause
syntax. The second value uses the shorthand syntax. The third value uses the
native syntax for Informix for a DATE column and is not interoperable among
DBMSs.

"--(*vendor(Microsoft),product(ODBC) d '1938-01-15' *)--"
"{d '1938-01-15'}"
"'01-15-1938'"

An application can also send date, time, or time-stamp values as parameters
using the C structures defined by the C data types SQL_C_DATE,
SQL_C_TIME, and SQL_C_TIMESTAMP.

To determine if a data source supports date, time, or time-stamp data, an
application calls SQLGetTypeInfo.

Scalar Functions

Scalar functions, such as string length, absolute value, or current date, can be
used on columns of a result set and on columns that restrict rows of a result
set. The escape clause that ODBC uses for scalar functions is shown in the
following example:

--(*vendor(Microsoft),product(ODBC) fn scalar-function *)--

The shorthand syntax for scalar functions is as follows:

{fn scalar-function}
6-14 INFORMIX-CLI Programmer’s Manual

Using ODBC Extensions to SQL
For example, each of the following statements creates the same result set of
uppercase employee names. The first statement uses the escape-clause
syntax. The second statement uses the shorthand syntax. The third statement
uses the native syntax for Informix (for UNIX) and is not interoperable among
DBMSs.

SELECT --(*vendor(Microsoft),product(ODBC) fn
LENGTH(NAME)*)--

FROM EMPLOYEE

SELECT {fn LENGTH(NAME)} FROM EMPLOYEE

SELECT length(NAME) FROM EMPLOYEE

To determine which scalar functions are supported by a data source, an appli-
cation calls SQLGetInfo with the SQL_NUMERIC_FUNCTIONS,
SQL_STRING_FUNCTIONS, SQL_SYSTEM_FUNCTIONS, and
SQL_TIMEDATE_FUNCTIONS flags. For more information on scalar functions
that Informix database servers support, refer to Informix Guide to SQL: Syntax.

LIKE Predicate Escape Characters

In a LIKE predicate, the percent sign (%) matches zero or more of any
character and the underscore character (_) matches any character. The
percent and underscore characters can be used as literals in a LIKE predicate
by preceding them with an escape character. The escape clause that ODBC
uses to define the LIKE predicate escape character is shown in the following
example:

--(*vendor (Microsoft), product (ODBC) escape 'escape-
character' *)--

In this example, escape-character is any character supported by the data
source. The shorthand syntax for the LIKE predicate escape character is as
follows:

{escape 'escape-character'}
Executing SQL Statements 6-15

Using ODBC Extensions to SQL
For example, each of the following statements creates the same result set of
department names that start with the characters '%AAA.' The first statement
uses the escape clause syntax. The second statement uses the shorthand
syntax. The third statement uses the native syntax for Informix (for UNIX)
and is not interoperable among DBMSs. The second percent character (%) in
each LIKE predicate is a wild-card character that matches zero or more of any
character.

SELECT NAME FROM DEPT WHERE NAME LIKE '\%AAA%' --
(*vendor(Microsoft),product(ODBC) escape '\'*)--

SELECT NAME FROM DEPT WHERE NAME LIKE '\%AAA%' {escape '\'}

SELECT NAME FROM DEPT WHERE NAME LIKE '\%AAA%' ESCAPE '\'

To determine whether a data source supports LIKE predicate escape
characters, an application calls SQLGetInfo with the information type
SQL_LIKE_ESCAPE_CLAUSE.

Outer Joins

ODBC supports the ANSI SQL-92 LEFT OUTER JOIN syntax. The escape clause
that ODBC uses for outer joins is shown in the following example:

--(*vendor(Microsoft),product(ODBC) oj outer-join *)--

Outer-join is used as follows:

table-reference LEFT OUTER JOIN {table-reference | outer-join}
ON search-condition

Also, in the previous example, table-reference specifies a table name, and
search-condition specifies the join condition between the table references. The
shorthand syntax for outer joins is as follows:

{oj outer-join}

An outer-join request must appear after the FROM keyword and before the
WHERE clause if one exists. For complete syntax information, see
Appendix B.
6-16 INFORMIX-CLI Programmer’s Manual

Using ODBC Extensions to SQL
For example, each of the following statements creates the same result set of
the names and departments of employees working on project 544. The first
statement uses the escape clause syntax. The second statement uses the
shorthand syntax. The third statement uses the native syntax for Informix
(for UNIX) and is not interoperable among DBMSs.

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME
FROM --(*vendor(Microsoft),product(ODBC) oj
EMPLOYEE LEFT OUTER JOIN DEPT ON EMPLOYEE.DEPTID=DEPT.DEPTID*)--
WHERE EMPLOYEE.PROJID=544

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME
FROM {oj EMPLOYEE LEFT OUTER JOIN DEPT
ON EMPLOYEE.DEPTID=DEPT.DEPTID}
WHERE EMPLOYEE.PROJID=544

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME
FROM EMPLOYEE, OUTER DEPT
WHERE (EMPLOYEE.PROJID=544) AND (EMPLOYEE.DEPTID = DEPT.DEPTID)

To determine the level of outer joins that a data-source supports, an appli-
cation calls SQLGetInfo with the SQL_OUTER_JOINS flag. Data sources can
support two-table outer joins, partially support multitable outer joins, fully
support multitable outer joins, or not support outer joins.

Procedures

An application can call a procedure in place of an SQL statement. The escape
clause that ODBC uses for calling a procedure is as follows:

--(*vendor(Microsoft),product(ODBC)

[?=] call procedure-name[([parameter][,[parameter]]...)] *)--

In the example, procedure-name specifies the name of a procedure stored on
the data source and parameter specifies a procedure parameter. A procedure
can have zero or more parameters and can return a value. The shorthand
syntax for procedure invocation is as follows:

{[?=]call procedure-name[([parameter][,[parameter]]...)]}
Executing SQL Statements 6-17

Using ODBC Extensions to SQL
For output parameters, parameter must be a parameter marker. For input and
input/output parameters, parameter can be a literal, a parameter marker, or
not specified. If parameter is a literal or is not specified for an input/output
parameter, the driver discards the output value. If parameter is not specified
for an input or input/output parameter, the procedure uses the default value
of the parameter as the input value; the procedure also uses the default value
if parameter is a parameter marker and the pcbValue argument in SQLBind-
Parameter is SQL_DEFAULT_PARAM. If a procedure call includes parameter
markers (including the “?=” parameter marker for the return value), the
application must bind each marker by calling SQLBindParameter prior to
calling the procedure._C

Important: For some data sources, parameter cannot be a literal value. For all data
sources, it can be a parameter marker. For maximum interoperability, applications
should always use a parameter marker for parameter.

If an application specifies a return value parameter for a procedure that does
not return a value, the driver sets the pcbValue buffer specified in SQLBind-
Parameter for the parameter to SQL_NULL_DATA. If the application omits the
return value parameter for a procedure which returns a value, the driver
ignores the value returned by the procedure.

If a procedure returns a result set, the application retrieves the data in the
result set in the same manner as it retrieves data from any other result set.

For example, each of the following statements uses the procedure
EMPS_IN_PROJ to create the same result set of names of employees working
on a project. The first statement uses the escape-clause syntax. The second
statement uses the shorthand syntax.

--(*vendor(Microsoft),product(ODBC) call EMPS_IN_PROJ(?)*)--
{call EMPS_IN_PROJ(?)}

To determine if a data source supports procedures, an application calls
SQLGetInfo with the SQL_PROCEDURES information type. To retrieve a list
of the procedures stored in a data source, an application calls
SQLProcedures.
6-18 INFORMIX-CLI Programmer’s Manual

Related Functions
Related Functions
INFORMIX-CLI also provides the following functions related to SQL state-
ments. For more information about these functions, see Chapter 13,
“INFORMIX-CLI Function Reference.”

Function Description

SQLNativeSql Retrieves the SQL statement as processed by the data
source, with escape sequences translated to SQL code
used by the data source.

SQLNumParams Retrieves the number of parameters in an SQL
statement.

SQLSetStmtOption
SQLSetConnectOption
SQLGetStmtOption

Sets or retrieves statement options, such as orientation
for binding rowsets, maximum amount of variable-
length data to return, maximum number of result set
rows to return, and query time-out value. SQLSet-
ConnectOption sets options for all the statements in a
connection.
Executing SQL Statements 6-19

7
Chapter
Retrieving Results
Assigning Storage for Results (Binding). 7-4

Determining the Characteristics of a Result Set 7-4

Fetching Result Data 7-5

Using Cursors . 7-6
Retrieving Data from Unbound Columns 7-7
Assigning Storage for Rowsets (Binding) 7-7

Column-Wise and Row-Wise Binding. 7-7
Retrieving Rowset Data 7-9
Using Block and Scrollable Cursors 7-9

Block Cursors 7-9
Scrollable Cursors 7-10
Specifying the Cursor Type 7-12
Specifying Cursor Concurrency 7-12

Modifying Result Set Data with Positioned Update and Delete
Statements 7-13

Processing Multiple Results 7-15

7-2 INFO
RMIX-CLI Programmer’s Manual

A SELECT statement is used to retrieve data that meets a given set
of specifications. In the following example, a SELECT statement retrieves all
columns for employees named Jones from all the rows in the EMPLOYEE
table.

SELECT * FROM EMPLOYEE WHERE EMPNAME = "Jones"

INFORMIX-CLI functions can also retrieve data. For example, SQLColumns
retrieves data about columns in the data source. These sets of data, called
result sets, can contain zero or more rows.

Other SQL statements, such as GRANT or REVOKE, do not return result sets.
For these statements, the return code from SQLExecute or SQLExecDirect is
usually the only source of information about whether the statement is
successful. For INSERT, UPDATE, and DELETE statements, an application can
call SQLRowCount to return the number of affected rows.

The steps an application takes to process a result set depends on what is
known about it. The following list defines known and unknown result sets:

Known result set The application knows the exact form of the SQL
statement, and therefore the result set, when the
statement compiles. For example, the query SELECT
EMPNO, EMPNAME FROM EMPLOYEE returns two
specific columns.

Unknown result set The application does not know the exact form of the
SQL statement, and therefore the result set, when the
statement compiles. For example, the ad hoc query
SELECT * FROM EMPLOYEE returns all the currently
defined columns in the EMPLOYEE table. The appli-
cation might not predict the format of these results
before it executes the command.
Retrieving Results 7-3

Assigning Storage for Results (Binding)
Assigning Storage for Results (Binding)
An application can assign storage for results before or after it executes an SQL
statement. If an application prepares or executes the SQL statement first, it
can inquire about the result set before it assigns storage for results. For
example, if the result set is unknown, the application must retrieve the
number of columns in the result set before it can assign storage for them.

To associate storage for a column of data, an application calls SQLBindCol
and passes it the following information:

■ The data type to which the data is to be converted

For more information, see Appendix C.

■ The address of an output buffer for the data

The application must allocate this buffer, which must be sufficient to
hold the data in its converted form.

■ The length of the output buffer

This value is ignored if the returned data has a fixed width in C, such
as an integer, real number, or date structure.

■ The address of a storage buffer in which to return the number of
bytes of available data

Determining the Characteristics of a Result Set
To determine the characteristics of a result set, an application can perform the
following actions:

■ Call SQLNumResultCols to determine how many columns a request
returned

■ Call SQLColAttributes or SQLDescribeCol to describe a column in
the result set

If the result set is unknown, an application can use the information from
these functions to bind the columns in the result set. An application can call
these functions at any time after a statement is prepared or executed.
7-4 INFORMIX-CLI Programmer’s Manual

Fetching Result Data
Important: Although SQLRowCount can sometimes return the number of rows in
a result set, it is not guaranteed to do so. Few data sources support this functionality
and interoperable applications should not rely on it.C

Tip: For optimal performance, an application should call SQLColAttributes,
SQLDescribeCol, and SQLNumResultCols after a statement executes. In data
sources that emulate statement preparation, these functions sometimes execute more
slowly before a statement executes because the information returned by them is not
readily available until after the statement has executed.

Fetching Result Data
You can perform several operations to retrieve data once the characteristics
of the result set are known. To retrieve a row of data from the result set, an
application performs the following operations:

1. Calls SQLBindCol to bind the columns of the result set to storage
locations if it has not already done so.

2. Calls SQLFetch to move to the next row in the result set and retrieve
data for all bound columns.

Figure 7-1 shows the operations an application uses to retrieve data from the
result set.
Retrieving Results 7-5

Using Cursors
Using Cursors
A driver maintains a cursor to indicate the current position in the result set,
much as the cursor on a CRT screen indicates the current position.

You can use SQLFetch or SQLExtendedFetch to retrieve data from a result set.
Each time an application calls SQLFetch, the driver moves the cursor to the
next row and returns that row. To retrieve a row of data that has already been
retrieved from the result set, the application must close the cursor by calling
SQLFreeStmt with the SQL_CLOSE option, reexecute the SELECT statement,
and fetch rows withSQLFetch until the target row is retrieved.

Important: Committing or rolling back a transaction, either by calling SQLTransact
or by using the SQL_AUTOCOMMIT connection option, can cause the data source to
close the cursors for all hstmts on an hdbc.

For more information, see “SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 13-192.

Figure 7-1
Operations That an
Application Uses to
Retrieve Data from

the Result Set

SELECT Statement

SQLNumResultCols

SQLDescribeCol

SQLBindCol

Finished

SQLFetch

More Rows?
7-6 INFORMIX-CLI Programmer’s Manual

Retrieving Data from Unbound Columns
Retrieving Data from Unbound Columns
To retrieve data from unbound columns (that is, columns for which storage
has not been assigned with SQLBindCol), an application uses SQLGetData.
The application first calls SQLFetch or SQLExtendedFetch to position the
cursor on the next row. It then calls SQLGetData to retrieve data from specific
unbound columns.

An application can retrieve data from bound and unbound columns in the
same row. It calls SQLBindCol to bind as many columns as you specify. It
calls SQLFetch or SQLExtendedFetch to position the cursor on the next row
of the result set and to retrieve all bound columns. It then calls SQLGetData
to retrieve data from unbound columns.

If the column data type is character, binary, or data-source specific and the
column contains more data than can be retrieved in a single call, an appli-
cation might call SQLGetData more than once for that column, as long as the
data is being transferred to a buffer of type SQL_C_CHAR or SQL_C_BINARY.
For example, data of the SQL_LONGVARBINARY and SQL_LONGVARCHAR
types might need to be retrieved in several parts.

The Informix driver can return data with SQLGetData for both bound and
unbound columns in any order. For maximum interoperability, however,
your application should call SQLGetData only for columns to the right of the
rightmost bound column and then only in left-to-right order.

Assigning Storage for Rowsets (Binding)
In addition to binding individual rows of data, an application can call
SQLBindCol to assign storage for a rowset (one or more rows of data).

To specify how many rows of data are in a rowset, an application calls
SQLSetStmtOption with the SQL_ROWSET_SIZE option.

Column-Wise and Row-Wise Binding

By default, rowsets are bound in column-wise fashion. They can also be
bound in row-wise fashion.
Retrieving Results 7-7

Assigning Storage for Rowsets (Binding)
To assign storage for column-Cwise bound results, an application performs
the following operations:

1. Allocates an array of data storage buffers

The array has as many elements as there are rows in the rowset.

2. Allocates an array of storage buffers to hold the number of bytes that
are available to return for each data value

The array has as many elements as there are rows in the rowset.

3. Calls SQLBindCol and specifies the address of the data array, the size
of one element of the data array, the address of the number-of-bytes
array, and the type to which the data will be converted

When data is retrieved, the driver will use the array element size to
determine where to store successive rows of data in the array.

To assign storage for row-wise bound results, an application performs the
following operations:

1. Declares a structure that can hold a single row of retrieved data and
the associated data lengths

To bind each column, the structure contains one field to contain data
and one field to contain the number of bytes of data that are available
to return.

2. Allocates an array of these structures

This array has as many elements as there are rows in the rowset.

3. Calls SQLBindCol for each column to be bound.

4. In each call, the application specifies the address of the column data
field in the first array element, the size of the data field, the address
of the column number-of-bytes field in the first array element, and
the type to which the data will be converted.

5. Calls SQLSetStmtOption with the SQL_BIND_TYPE option and
specifies the size of the structure

When the data is retrieved, the driver uses the structure size to
determine where to store successive rows of data in the array.
7-8 INFORMIX-CLI Programmer’s Manual

Retrieving Rowset Data
Retrieving Rowset Data
Before it retrieves rowset data, an application calls SQLSetStmtOption with
the SQL_ROWSET_SIZE option to specify the number of rows in the rowset. It
then binds columns in the rowset with SQLBindCol. The rowset is bound
using a column- or row-wise method. For more information, see “Assigning
Storage for Rowsets (Binding)” on page 7-7.

To retrieve rowset data, an application calls SQLExtendedFetch.

For maximum interoperability, an application should not use SQLGetData to
retrieve data from unbound columns in a block of data (more than one row)
that has been retrieved with SQLExtendedFetch. To determine if a driver can
return data with SQLGetData from a block of data, an application calls
SQLGetInfo with the SQL_GETDATA_EXTENSIONS option.

Using Block and Scrollable Cursors
Cursors in SQL scroll forward through a result set, returning one row at a
time. However, interactive applications often require forward and backward
scrolling, absolute or relative positioning within the result set, and the ability
to retrieve and update blocks of data, or rowsets.

A block cursor attribute allows an application to retrieve and update rowset
data. A scrollable cursor attribute allows an application to scroll forward or
backward through the result set or move to an absolute or relative position in
the result set. Cursors can have one or both attributes.

Block Cursors

An application calls SQLSetStmtOption with the SQL_ROWSET_SIZE option
to specify the rowset size. The application can call SQLSetStmtOption to
change the rowset size at any time. Each time the application calls
SQLExtendedFetch, the driver returns the next rowset-size rows of data. After
the data is returned, the cursor points to the first row in the rowset; by
default, the rowset size is one.
Retrieving Results 7-9

Using Block and Scrollable Cursors
Scrollable Cursors

Applications have different needs to sense changes in the tables underlying
a result set. For example, when balancing financial data, an accountant needs
data that appears static; it is impossible to balance books when the data is
continually changing. When selling concert tickets, a clerk needs up-to-the
minute, or dynamic, data on which tickets are still available. Various cursor
models are designed to meet these needs, each requiring different sensitiv-
ities to changes in the tables that underlie the result set.

Static Cursors

In static cursors, the data in the underlying tables appears to be static. The
membership, order, and values in the result set used by a static cursor are
generally fixed when the cursor is opened. Rows updated, deleted, or
inserted by other users, including other cursors in the same application, are
not detected by the cursor until it closes and then reopens; the
SQL_STATIC_SENSITIVITY information type returns whether the cursor can
detect rows it has updated, deleted, or inserted.

Static cursors are commonly implemented by taking a snapshot of the data or
locking the result set. In the former case, the cursor diverges from the under-
lying tables as other users make changes; in the latter case, other applications
and cursors in the same application cannot change the data.

Dynamic Cursors

In dynamic cursors, the data appears to be dynamic. The membership, order,
and values in the result set used by a dynamic cursor are always changing.
Rows updated, deleted, or inserted by all users (the cursor, other cursors in
the same application, and other applications) are detected by the cursor
when data is fetched. Although dynamic cursors are ideal for many situa-
tions, they are difficult to implement.

Keyset-Driven Cursors

Keyset-driven cursors possess some attributes of static and dynamic cursors.
Like static cursors, the membership and ordering of the result set of a keyset-
driven cursor is generally fixed when the cursor opens. As with dynamic
cursors, most changes to the values in the underlying result set are visible to
the cursor when data is fetched.
7-10 INFORMIX-CLI Programmer’s Manual

Using Block and Scrollable Cursors
When a keyset-driven cursor opens, the driver saves the keys for the entire
result set, which fixes the membership and order of the result set. As the
cursor scrolls through the result set, the driver uses the keys in this keyset to
retrieve the current data values for each row in the rowset. Because data
values are retrieved only when the cursor scrolls to a given row, updates to
that row by other users (including other cursors in the same application) after
the cursor was opened are visible to the cursor.

If the cursor scrolls to a row of data that has been deleted by other users
(including other cursors in the same application), the row appears as a hole in
the result set because the key is still in the keyset, but the row is no longer in
the result set. Updating the key values in a row is considered to be deleting
the existing row and inserting a new row; therefore, rows of data for which
the key values have been changed also appear as holes. When the driver
encounters a hole in the result set, it returns a status code for the row of
SQL_ROW_DELETED.

Rows of data inserted into the result set by other users (including other
cursors in the same application) after the cursor was opened are not visible
to the cursor because the keys for those rows are not in the keyset.

The SQL_STATIC_SENSITIVITY information type returns whether the cursor
can detect rows it has deleted or inserted. Because updating key values in a
keyset-driven cursor is considered to be deleting the existing row and
inserting a new row, keyset-driven cursors can always detect rows that they
have updated.

Mixed (Keyset/Dynamic) Cursors

If a result set is large, it might be impractical for the driver to save the keys
for the entire result set. Instead, the application can use a mixed cursor. In a
mixed cursor, the keyset is smaller than the result set, but larger than the
rowset.

Within the boundaries of the keyset, a mixed cursor is keyset driven; that is,
the driver uses keys to retrieve the current data values for each row in the
rowset. When a mixed cursor scrolls beyond the boundaries of the keyset, it
becomes dynamic, so the driver simply retrieves the next rowset-size rows of
data. The driver then constructs a new keyset, which contains the new
rowset.
Retrieving Results 7-11

Using Block and Scrollable Cursors
For example, assume a result set has 1000 rows and uses a mixed cursor with
a keyset size of 100 and a rowset size of 10. When the cursor opens, the driver
(depending on the implementation) saves keys for the first 100 rows and
retrieves data for the first 10 rows. If another user deletes row 11 and the
cursor then scrolls to row 11, the cursor detects a hole in the result set; the key
for row 11 is in the keyset, but the data is no longer in the result set. A keyset-
driven cursor behaves the same way. However, if another user deletes row
101 and the cursor then scrolls to row 101, the cursor does not detect a hole;
the key for the row 101 is not in the keyset. Instead, the cursor retrieves the
data for the row that was originally row 102. A dynamic cursor behaves the
same way.

Specifying the Cursor Type

To specify the cursor type, an application calls SQLSetStmtOption with the
SQL_CURSOR_TYPE option. The application can specify a cursor that scrolls
forward, a static cursor, a dynamic cursor, a keyset-driven cursor, or a mixed
cursor. If the application specifies a mixed cursor, it also specifies the size of
the keyset that the cursor uses.-1149

To use the ODBC cursor library, an application calls SQLSetConnectOption
with the SQL_ODBC_CURSORS option before it connects to the data source.
For more information on the ODBC cursor library, see the Microsoft ODBC
Programmer’s Reference and SDK Guide, Version 2.0.

An application calls SQLExtendedFetch to scroll the cursor backward,
forward, or to an absolute or relative position in the result set.

Specifying Cursor Concurrency

Concurrency is the ability of more than one user to use the same data at the
same time. A transaction is serializable if it is performed in a manner in which
it appears as if no other transactions operate on the same data at the same
time. For example, assume one transaction doubles data values and another
adds 1 to data values. If the transactions are serializable and both attempt to
operate on the values 0 and 10 at the same time, the final values are 1 and 21
or 2 and 22, depending on which transaction occurs first. If the transactions
are not serializable, the final values are 1 and 21, 2 and 22, 1 and 22, or 2 and
21; the sets of values 1 and 22, and 2 and 21 are the result of the transactions
acting on each value in a different order.
7-12 INFORMIX-CLI Programmer’s Manual

Modifying Result Set Data with Positioned Update and Delete Statements
Serializability is necessary to maintain database integrity. For cursors, it is
implemented at the expense of concurrency by locking the result set. A
compromise between serializability and concurrency is optimistic concurrency
control. In a cursor that uses optimistic concurrency control, the driver does
not lock rows when it retrieves them. When the application requests an
update or delete operation, the driver or data source checks if the row has
changed. If the row is unchanged, the driver or data source prevents other
transactions from changing the row until the operation is complete. If the row
has changed, the transaction that contains the update or delete operation
fails.

To specify the concurrency used by a cursor, an application calls
SQLSetStmtOption with the SQL_CONCURRENCY option. The application
can specify that the cursor is read-only, locks the result set, uses optimistic
concurrency control and compares row versions to determine if a row has
changed, or uses optimistic concurrency control and compares data values to
determine if a row has changed.

Modifying Result Set Data with Positioned Update and
Delete Statements
To modify data in the result set, an application can update or delete the row
to which the cursor currently points. This is known as a positioned update or
delete statement

INFORMIX-CLI positioned update and delete statements are similar to such
statements in embedded SQL. After executing a SELECT statement to create a
result set, an application calls SQLFetch one or more times to position the
cursor on the row to be updated or deleted. To update or delete the row, the
application then executes an SQL statement with the following syntax on a
different hstmt:

UPDATE table-name
SET column-identifier = {expression | NULL}
[, column-identifier = {expression | NULL}]...
WHERE CURRENT OF cursor-name
DELETE FROM table-name WHERE CURRENT OF cursor-name
Retrieving Results 7-13

Modifying Result Set Data with Positioned Update and Delete Statements
Positioned update and delete statements require cursor names. An appli-
cation can name a cursor with SQLSetCursorName. If the application has not
named the cursor by the time the driver executes a SELECT statement, the
driver generates a cursor name. To retrieve the cursor name for an hstmt, an
application calls SQLGetCursorName.

To execute a positioned update or delete statement, an application must
follow these guidelines:

■ The SELECT statement that creates the result set must use a FOR
UPDATE clause.

■ The cursor name used in the UPDATE or DELETE statement must be
the same as the cursor name associated with the SELECT statement.

■ The application must use different hstmts for the SELECT statement
and the UPDATE or DELETE statement.

■ The hstmts for the SELECT statement and the UPDATE or DELETE
statement must be on the same connection.

To determine if a data source supports positioned update and delete
statements, an application calls SQLGetInfo with the
SQL_POSITIONED_STATEMENTS option.

In ODBC 1.0, positioned update, positioned delete, and SELECT FOR UPDATE
statements were part of the core SQL grammar. In ODBC 2.x, positioned
update, positioned delete, and SELECT FOR UPDATE statements are part of
the extended grammar. Applications that use the SQL conformance level to
determine whether these statements are supported also need to check the
version number of the driver to interpret the information correctly. In
particular, applications that use these features with ODBC 1.0 drivers need to
check explicitly for these capabilities in ODBC 2.x drivers.
7-14 INFORMIX-CLI Programmer’s Manual

Processing Multiple Results
Processing Multiple Results
SELECT statements return result sets. UPDATE, INSERT, and DELETE state-
ments return a count of affected rows. If any of these statements are batched,
submitted with arrays of parameters, or in procedures, they can return
multiple result sets or counts.

To process a batch of statements, statement with arrays of parameters, or
procedure that returns multiple result sets or row counts, an application
performs the following operations:

1. Calls SQLExecute or SQLExecDirect to execute the statement or
procedure

2. Calls SQLRowCount to determine the number of rows affected by an
UPDATE, INSERT, or DELETE statement

For statements or procedures that return result sets, the application
calls functions to determine the characteristics of the result set and
retrieve data from the result set.

3. Calls SQLMoreResults to determine if another result set or row count
is available.

4. Repeats steps 2 and 3 until SQLMoreResults returns
SQL_NO_DATA_FOUND.
Retrieving Results 7-15

8
Chapter
Retrieving Status and Error
Information
Function Return Codes 8-3

Retrieving Error Messages 8-4

Error Messages . 8-5
Error Text Format 8-5
Sample Error Messages 8-6

Sample Error Returned from the Driver 8-6
Sample Error Returned from the Driver Manager. 8-7
Sample Error Returned from the Data Source 8-7

Processing Error Messages 8-8

8-2 INFO
RMIX-CLI Programmer’s Manual

This chapter defines INFORMIX-CLI return codes and error-handling
protocol. The return codes indicate whether a function succeeded, succeeded
but returned a warning, or failed. The error-handling protocol defines how
the components in an INFORMIX-CLI connection construct and return error
messages through SQLError.

The protocol describes the following points:

■ Use of the error text to identify the source of an error

■ Rules to ensure consistent and useful error information

■ Responsibility for setting the SQLSTATE based on the native error

Function Return Codes
When an INFORMIX-CLI application calls a function, the driver executes the
function and returns a predefined code. These return codes indicate success,
warning, or failure status. The following table defines the return codes.

Return Code Description

SQL_SUCCESS Function completed successfully; no additional
information is available.

SQL_SUCCESS_WITH_INFO Function completed successfully, possibly with a
nonfatal error. The application can call SQLError to
retrieve additional information.

SQL_NO_DATA_FOUND All rows from the result set have been fetched.

 (1 of 2)
Retrieving Status and Error Information 8-3

Retrieving Error Messages
The application is responsible for taking the appropriate action based on the
return code.

Retrieving Error Messages
If a function other than SQLError returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an application can call SQLError to obtain
additional information. The application might need to call SQLError more
than once to retrieve all the error messages from a function because a
function might return more than one error message. When the application
calls a different function, the error messages from the previous function are
deleted.

Additional error or status information can come from one of the following
sources:

■ Error or status information from an ODBC function, indicating that a
programming error was detected

■ Error or status information from the data source, indicating that an
error occurred during SQL statement processing

The information returned by SQLError is in the same format as that provided
by SQLSTATE in the X/Open and SQL Access Group SQL CAE specification
(1992). SQLError never returns error information about itself.

SQL_ERROR Function failed. The application can call SQLError
to retrieve error information.

SQL_INVALID_HANDLE Function failed due to an invalid environment
handle, connection handle, or statement handle.
This situation indicates a programming error. No
additional information is available from SQLError.

SQL_NEED_DATA While the driver was processing a statement, it
determined that the application needs to send
parameter data values.

Return Code Description

 (2 of 2)
8-4 INFORMIX-CLI Programmer’s Manual

Error Messages
Error Messages
ODBC defines a layered architecture to connect an application to a data
source. In INFORMIX-CLI, SQLError returns error messages that follow the
standard ODBC format. Error messages must not only explain the error but
also provide the identity of the component in which it occurred. Because
SQLError does not return the identity of the component in which the error
occurred, this information must be embedded in the error text.

Error Text Format
Error messages returned by SQLError come from two sources: data sources
and ODBC components (the driver manager or the driver). Consequently, the
error text returned by SQLError has two formats: one for errors that occur in
a data source and one for errors that occur in ODBC components.

If an ODBC component receives an error message from a data source, it must
identify the data source as the source of the error. It must also identify itself
as the component that received the error. For errors that occur in a data
source, the error text must use the following format::

[vendor_identifier][ODBC_component_identifier]
[data_source_identifier]data_source_supplied_text

If the source of an error is an ODBC component, the error message must
explain which component. For errors that do not occur in a data source, the
error text must use the following format:

[vendor_dentifier][ODBC_component_identifier]
component_supplied_text
Retrieving Status and Error Information 8-5

Sample Error Messages
The following table shows the meaning of each element.

The brackets ([]) are included in the error text; they do not indicate optional
items.

Sample Error Messages
The following examples show how various components in a connection
might generate the text of error messages and how INFORMIX-CLI might
return the error messages to the application with SQLError.

Sample Error Returned from the Driver

An INFORMIX-CLI driver sends requests to a DBMS and returns information
to the application through the driver manager. Because it is the component
that interfaces with the driver manager, it formats and returns arguments for
SQLError.

For example, if an INFORMIX-CLI driver for INFORMIX-SE encounters a
duplicate cursor name, it might return the following arguments for SQLError:

szSQLState = "3C000"
pfNativeError = NULL
szErrorMsg = "[Informix][ODBC Informix Driver]
Duplicate cursor name:EMPLOYEE_CURSOR."
pcbErrorMsg = 67

Element Meaning

vendor_identifier Identifies the vendor of the component in
which the error occurred or that received the
error directly from the data source.

ODBC_component_identifier Identifies the component in which the error
occurred or that received the error directly
from the data source.

data_source_identifier Identifies the data source. For multiple-tier
drivers, this is the DBMS product.

component_supplied_text Error text generated by the ODBC component.
(the driver manager or the driver).

data_source_supplied_text Error text generated by the data source
8-6 INFORMIX-CLI Programmer’s Manual

Sample Error Messages
Because the error occurred in the driver, it adds prefixes to the error text for
the vendor (Informix) and the driver (ODBC Informix Driver).

Sample Error Returned from the Driver Manager

The driver manager can also generate error messages. For example, if an
application passed an invalid argument value to SQLDataSources, the driver
manager might format and return the following arguments for SQLError:

szSQLState = "S1009"
pfNativeError = NULL
szErrorMsg = "[Informix][ODBC DLL]Invalid argument value:SQLDataSources."
pcbErrorMsg = 60

Because the error occurred in the driver manager, it adds prefixes to the error
text for its vendor (Informix) and its identifier (ODBC DLL).

Sample Error Returned from the Data Source

If the DBMS could not find the table EMPLOYEE, the driver might format and
return the following arguments for SQLError:

szSQLState = "S0002"
pfNativeError = -206
szErrorMsg = "[Informix][ODBC Informix Driver][Informix]The
specified table (EMPLOYEE) is not in the database."
pcbErrorMsg = 96

Because the error occurred in the data source, the driver added a prefix for
the data source identifier (Informix) to the error text. Because the driver
component interfaced with the data source, it adds prefixes for its vendor
(Informix) and identifier (ODBC Informix Driver) to the error text. For a
description of an error that the data source returns, look up the native error
value in the Informix Error Messages manual.
Retrieving Status and Error Information 8-7

Processing Error Messages
Processing Error Messages
In your application, provide users with all the error information available
through SQLError: the SQLSTATE, the native error code, the error text, and the
source of the error. The application might parse the error text to separate the
text from the information that identifies the source of the error. The appli-
cation must take appropriate action based on the error or provide the user
with a choice of actions.
8-8 INFORMIX-CLI Programmer’s Manual

9
Chapter
Terminating Transactions and
Connections
Terminating Statement Processing 9-3

Terminating Transactions. 9-4

Terminating Connections. 9-4

9-2 INFO
RMIX-CLI Programmer’s Manual

The INFORMIX-CLI interface provides functions that terminate state-
ments, transactions, and connections, as well as free statement (hstmt),
connection (hdbc), and environment (henv) handles.

Terminating Statement Processing
To free the resources associated with a statement handle, an application calls
SQLFreeStmt. The SQLFreeStmt function has the following options:

■ SQL_CLOSE

This option closes the cursor, if one exists, and discards pending
results. The application can use the statement handle again later.

■ SQL_DROP

This option closes the cursor, if one exists, discards pending results,
and frees all resources associated with the statement handle.

■ SQL_UNBIND

This option frees all return buffers bound by SQLBindCol for the
statement handle.

■ SQL_RESET_PARAMS

This option frees all parameter buffers requested by
SQLBindParameter for the statement handle.
Terminating Transactions and Connections 9-3

Terminating Transactions
Terminating Transactions
An application calls SQLTransact to commit or roll back the current
transaction.

Terminating Connections
An application terminates a connection to a driver or to a data source by
closing the connection associated with a connection handle and freeing the
connection and environment handles. To terminate a connection to a driver
and data source, an application performs the following operations:

1. Calls SQLDisconnect to close the connection

You can then use the handle to reconnect to the same data source or
to a different data source.

2. Calls SQLFreeConnect to free the connection handle and free all
resources associated with the handle

3. Calls SQLFreeEnv to free the environment handle and free all
resources associated with the handle
9-4 INFORMIX-CLI Programmer’s Manual

10
Chapter
Constructing an INFORMIX-CLI
Application
Static SQL Example. 10-4

Interactive Ad-Hoc Query Example 10-7

10-2 INF
ORMIX-CLI Programmer’s Manual

This chapter provides the following examples of C-language source
code for INFORMIX-CLI-enabled applications:

■ An example that uses static SQL functions to create a table, add data
to it, and select the inserted data

■ An example of interactive, ad-hoc query processing
Constructing an INFORMIX-CLI Application 10-3

Static SQL Example
Static SQL Example
The following example constructs SQL statements within the application. The
example comments include equivalent embedded SQL calls for illustrative
purposes.

#include "sql.h"
#include <string.h>

#ifndef NULL
#define NULL 0
#endif
#define MAX_NAME_LEN 50
#define MAX_STMT_LEN 100
int print_err(HDBC hdbc, HSTMT hstmt);

int example1(server, uid, pwd)
UCHAR * server;
UCHAR * uid;
UCHAR * pwd;
{
HENV henv;
HDBC hdbc;
HSTMT hstmt;

SDWORD id;
UCHAR name[MAX_NAME_LEN + 1];
UCHAR create[MAX_STMT_LEN]
UCHAR insert[MAX_STMT_LEN]
UCHAR select[MAX_STMT_LEN]
SDWORD namelen;
RETCODE rc;

/* EXEC SQL CONNECT TO :server USER :uid USING :pwd; */
/* Allocate an environment handle. */
/* Allocate a connection handle. */
/* Connect to a data source. */
/* Allocate a statement handle. */

SQLAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(print_err(hdbc, SQL_NULL_HSTMT));
SQLAllocStmt(hdbc, &hstmt);

/* EXEC SQL CREATE TABLE NAMEID (ID integer, NAME varchar(50)); */
/* Execute the SQL statement. */

lstrcpy(create, "CREATE TABLE NAMEID (ID INTEGER, NAME
VARCHAR(50))");

rc = SQLExecDirect(hstmt, create, SQL_NTS);
10-4 INFORMIX-CLI Programmer’s Manual

Static SQL Example
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)
return(print_err(hdbc, hstmt));

/* EXEC SQL COMMIT WORK; */
/* Commit the table creation. */

/* Note that the default transaction mode for drivers that support */
/* SQLSetConnectOption is auto-commit and SQLTransact has no effect */

SQLTransact(hdbc, SQL_COMMIT);

/* EXEC SQL INSERT INTO NAMEID VALUES (:id, :name); */
/* Show the use of the SQLPrepare/SQLExecute method: */
/* Prepare the insertion and bind parameters. */
/* Assign parameter values. */
/* Execute the insertion. */

lstrcpy(insert, "INSERT INTO NAMEID VALUES (?, ?)");
if (SQLPrepare(hstmt, insert, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,

0, 0, &id, 0, NULL);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

MAX_NAME_LEN, 0, name, 0, NULL);
id=500;
lstrcpy(name, "Babbage");
if (SQLExecute(hstmt) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));

/* EXEC SQL COMMIT WORK; */
/* Commit the insertion. */

SQLTransact(hdbc, SQL_COMMIT);

/* EXEC SQL DECLARE c1 CURSOR FOR SELECT ID, NAME FROM NAMEID; */
/* EXEC SQL OPEN c1; */
/* Show the use of the SQLExecDirect method. */
/* Execute the selection. */
/* Note that the application does not declare a cursor. */

lstrcpy(select, "SELECT ID, NAME FROM NAMEID");
if (SQLExecDirect(hstmt, select, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));

/* EXEC SQL FETCH c1 INTO :id, :name; */
/* Bind the columns of the result set with SQLBindCol. */
/* Fetch the first row. */

SQLBindCol(hstmt, 1, SQL_C_SLONG, &id, 0, NULL);
SQLBindCol(hstmt, 2, SQL_C_CHAR, name, (SDWORD)sizeof(name), &namelen);
SQLFetch(hstmt);

/* EXEC SQL COMMIT WORK; */
/* Commit the transaction. */
Constructing an INFORMIX-CLI Application 10-5

Static SQL Example
SQLTransact(hdbc, SQL_COMMIT);

/* EXEC SQL CLOSE c1; */
/* Free the statement handle. */

SQLFreeStmt(hstmt, SQL_DROP);

/* EXEC SQL DISCONNECT; */
/* Disconnect from the data source. */
/* Free the connection handle. */
/* Free the environment handle. */

SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

return(0);
}

10-6 INFORMIX-CLI Programmer’s Manual

Interactive Ad-Hoc Query Example
Interactive Ad-Hoc Query Example
The following example illustrates how an application can determine the
nature of the result set prior to retrieving results:

#include "sql.h"
#include <string.h>
#include <stdlib.h>

#define MAXCOLS 100
#define max(a,b) (a>b?a:b)

int print_err(HDBC hdbc, HSTMT hstmt);
UDWORD display_size(SWORD coltype, UDWORD collen, UCHAR *colname);

example2(server, uid, pwd, sqlstr)
UCHAR * server;
UCHAR * uid;
UCHAR * pwd;
UCHAR * sqlstr;
{
int i;
HENV henv;
HDBC hdbc;
HSTMT hstmt;
UCHAR errmsg[256];
UCHAR colname[32];
SWORD coltype;
SWORD colnamelen;
SWORD nullable;
UDWORD collen[MAXCOLS];
SWORD scale;
SDWORD outlen[MAXCOLS];
UCHAR * data[MAXCOLS];
SWORD nresultcols;
SDWORD rowcount;
RETCODE rc;

/* Allocate environment and connection handles. */
/* Connect to the data source. */
/* Allocate a statement handle. */
SQLAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO)

return(print_err(hdbc, SQL_NULL_HSTMT));
SQLAllocStmt(hdbc, &hstmt);
/* Execute the SQL statement. */
if (SQLExecDirect(hstmt, sqlstr, SQL_NTS) != SQL_SUCCESS)

return(print_err(hdbc, hstmt));

/* See what kind of statement it was.If there are no result */
Constructing an INFORMIX-CLI Application 10-7

Interactive Ad-Hoc Query Example
/* columns,the statementis not a SELECT statement.If the */
/* number of affected rows is greater than 0, the statement was */
/* probably an UPDATE, INSERT, or DELETE statement, so print the */
/* number of affected rows. If the number of affected rows is 0, */
/* the statement is probably a DDL statement, so print that the */
/* operation was successful and commit it. */

SQLNumResultCols(hstmt, &nresultcols);
if (nresultcols = = 0) {

SQLRowCount(hstmt, &rowcount);
if (rowcount > 0) {

printf("%ld rows affected.\n", rowcount);
} else {

printf("Operation successful.\n");
}
SQLTransact(hdbc, SQL_COMMIT);

/* Otherwise, display the column names of the result set and use the */
/* display_size() function to compute the length needed by each data */
/* type. Next, bind the columns and specify all data will be */
/* converted to char. Finally, fetch and print each row, printing */
/* truncation messages as necessary. */

} else {
for (i = 0; i < nresultcols; i++) {

SQLDescribeCol(hstmt, i + 1, colname, (SWORD)sizeof(colname),
 &colnamelen, &coltype, &collen[i], &scale,
 &nullable);
collen[i] = display_size(coltype, collen[i], colname);
printf("%*.*s", collen[i], collen[i], colname);
data[i] = (UCHAR *) malloc(collen[i] + 1);
SQLBindCol(hstmt, i + 1, SQL_C_CHAR, data[i], collen[i],
 &outlen[i]);

}
while (TRUE) {

rc = SQLFetch(hstmt);
if (rc = = SQL_SUCCESS || rc = = SQL_SUCCESS_WITH_INFO) {

errmsg[0] = '\0';
for (i = 0; i < nresultcols; i++)

if (outlen[i] = = SQL_NULL_DATA) {
lstrcpy(data[i], "NULL");

} else if (outlen[i] >= collen[i]) {
sprintf(&errmsg[strlen(errmsg)],
 "%d chars truncated, col %d\n",
 *outlen[i] - collen[i] + 1,
 colnum;

}
printf("%*.*s ", collen[i], collen[i], data[i]);

}
printf("\n%s", errmsg);

} else {
break;

}
}

}

10-8 INFORMIX-CLI Programmer’s Manual

Interactive Ad-Hoc Query Example
/* Free the data buffers. */
for (i = 0; i < nresultcols; i++) {

free(data[i]);
}

SQLFreeStmt(hstmt, SQL_DROP); /* Free the statement handle. */
SQLDisconnect(hdbc); /* Disconnect from the data source. */
SQLFreeConnect(hdbc); /* Free the connection handle. */
SQLFreeEnv(henv); /* Free the environment handle. */

return(0);
}
/**/
/* The following function is included for completeness, but */
/* is not relevant for understanding the function of ODBC. */
/**/

#define MAX_NUM_PRECISION 15

/* Define max length of char string representation of number as: */
/* = max(precision) + leading sign + E + exp sign + max exp length */
/* = 15 + 1 + 1 + 1 + 2 */
/* = 15 + 5 */

#define MAX_NUM_STRING_SIZE (MAX_NUM_PRECISION + 5)

UDWORD display_size(coltype, collen, colname)
SWORD coltype;
UDWORD collen;
UCHAR * colname;
{
switch (coltype) {

case SQL_CHAR:
case SQL_VARCHAR:

return(max(collen, strlen(colname)));

case SQL_SMALLINT:
return(max(6, strlen(colname)));

case SQL_INTEGER:
return(max(11, strlen(colname)));

case SQL_DECIMAL:
case SQL_NUMERIC:
case SQL_REAL:
case SQL_FLOAT:
case SQL_DOUBLE:

return(max(MAX_NUM_STRING_SIZE, strlen(colname)));

/* Note that this function only supports the core data types. */
default:

printf("Unknown datatype, %d\n", coltype);
return(0);

}

Constructing an INFORMIX-CLI Application 10-9

11
Chapter
Designing Performance-
Oriented Applications
Connecting to a Data Source 11-4

Executing Calls . 11-11
SQLPrepare/SQLExecute Versus SQLExecDirect 11-11

Committing Data 11-16

11-2 INF
ORMIX-CLI Programmer’s Manual

his chapter provides guidelines for designing and coding perfor-
mance-oriented INFORMIX-CLI applications. These guidelines are not hard
theorems but general advice that apply to ODBC applications. The guidelines
address areas in which inefficient performance can be improved.

Areas in Which Performance is Impacted
A number of areas can slow performance. This section aims to identify the
impacted performance area and provide solutions to increase performance
levels.

Performance Issue Action

Network communication is slow. Reduce network traffic as much as
possible.

The process of evaluating complex SQL
queries on the DBMS server might be slow
and might reduce concurrency.

Simplify queries as much as possible.

Excessive calls from the application to the
driver decrease performance.

Optimize the application to driver
interaction.

Disk I/O is slow. Limit disk I/O to improve
performance.

T

Designing Performance-Oriented Applications 11-3

Connecting to a Data Source
Connecting to a Data Source
Connection management is extremely important to application performance.
Connecting to a data source is very expensive and should be avoided after
you establish an initial connection. Designers should optimize applications
by connecting once and using multiple statement handles instead of
performing multiple connections.

Some ODBC applications are designed so that they call informational
gathering routines that have no record of already-attached connection
handles. For example, some applications establish a connection and then call
a routine in a separate DLL or shared library that re-attaches and gathers up-
front information about the driver to be used later in the application.
Although gathering driver information at connect time is a good algorithm,
it should not be minimized by connecting twice to get this information. At
least one popular ODBC-enabled application connects a second time to gather
driver information but never disconnects the second connection. Applications
that are designed as separate entities should pass the already-connected hdbc
pointer to the data collection routine instead of establishing a second
connection.

Another poor algorithm is to connect and disconnect several times
throughout your application to perform SQL statements. Connection handles
can have multiple statement handles associated with them. Statement
handles are defined to be memory storage for information about SQL
statements.

Applications should use statement handles to manage multiple SQL
statements.

Connection and statement handling should not be delayed until implemen-
tation. Spending time in the design phase on connection management makes
your application perform better and makes it more maintainable.
11-4 INFORMIX-CLI Programmer’s Manual

Retrieving Information about a Data Source
Retrieving Information about a Data Source
Catalog functions are relatively slow compared to all other ODBC functions.
In addition, SQLGetTypeInfo is also a potentially expensive ODBC function
and is included in this discussion of catalog functions. For a list of the catalog
functions that INFORMIX-CLI supports, see “Retrieving Information About
the Data-Source Catalog” on page 6-9.

Minimize the use of Catalog Functions
Although almost no ODBC application can be written without catalog
functions, their use should be minimized. To return all result column infor-
mation mandated by the ODBC specification, a driver might have to perform
multiple queries, joins, subqueries, and/or unions in order to return the
necessary result set for a single call to a catalog function. Frequent use of
catalog functions in an application will likely result in poor performance.

If possible, applications should cache information returned from catalog
functions so that multiple executions are not needed. For example, call
SQLGetTypeInfo once in the application and cache the elements of the result
set on which your application depends. Probably no application uses all
elements of the result set generated by a catalog function, so the cache of
information should not be difficult to maintain.

Supply Non-Null Arguments to Catalog Functions
Passing null arguments to catalog functions results in time-consuming
queries being generated by the driver. In addition, network traffic potentially
increases due to unwanted result-set information. Always supply as many
non-null arguments to catalog functions as possible.
Designing Performance-Oriented Applications 11-5

Supply Non-Null Arguments to Catalog Functions
Because catalog functions are slow, applications should invoke them as
efficiently as possible. Many applications pass the least amount of non-null
arguments necessary for the function to return success. Consider a call to
SQLTables in which the application requests information about a table
named Customers. Many times this call is coded similarly to the following
example.

rc = SQLTables (NULL, NULL, NULL, NULL, “Customers”, SQL_NTS,
 NULL);

A driver could turn this SQLTables call into SQL similar to the following
commands:

SELECT ... FROM SysTables WHERE TableName = ‘Customers’
UNION ALL

SELECT ... FROM SysViews WHERE ViewName = ‘Customers’ UNION
ALL
SELECT ... FROM SysSynonyms WHERE SynName = ‘Customers’
ORDER BY ...

In some circumstances, not much information is known about the object for
which you are requesting information, but in many cases at least some infor-
mation is known. Any additional information that the application can send
the driver when calling catalog functions can result in improved perfor-
mance and reliability.

Suppose in the previous example that three Customers tables were returned
in the result set: one owned by the user, one owned by sales, and one that was
a view created by management. Although it might be obvious that the intent
of the application is to use the one owned by the user, it might not be obvious
to the user which table to choose. If the application had specified the
OwnerName argument for the SQLTables call, then reliability is improved
(only one table returned) and performance increases. (Less network traffic is
required to return only one result row, and unwanted rows are filtered by the
DBMS.) In addition, if the TableType argument can be supplied, then the SQL
sent to the server can be optimized from a three-query union to a singleton
SELECT similar to the following command:

SELECT ... FROM SysTables WHERE TableName = ‘Customers’ and
Owner = ‘Beth’
11-6 INFORMIX-CLI Programmer’s Manual

Avoid Using SQLColumns to Determine Table Characteristics
Avoid Using SQLColumns to Determine Table
Characteristics
Avoid using SQLColumns to determine characteristics about a table. Instead,
use a dummy query with SQLDescribeCol. In both cases, the application
sends a query to the server.

When the application calls SQLColumns, the database server must evaluate
the query and form a result set that must then must be sent back to the client.
When the application makes a dummy query with SQLDescribeCol, the
database server does not execute the query; it only prepares it. Thus, no
results are sent back to the client.

Consider an ad-hoc application that allows the user to choose the columns
that will be selected. Should the application use SQLColumns to return infor-
mation about the columns to the user or instead prepare a dummy query and
call SQLDescribeCol?

Case 1: SQLColumns Method

rc = SQLColumns (... “UnknownTable” ...);
// This call to SQLColumns will generate a query to the system
// catalogs... possibly a join which must be prepared,
// executed, and produce a result set
rc = SQLBindCol (...);
rc = SQLExtendedFetch (...);
// user must retrieve N rows from the server
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: SQLDescribeCol Method

// prepare dummy query
rc = SQLPrepare (... “SELECT * from UnknownTable

WHERE 1 = 0” ...);
// query is never executed on the server - only prepared
rc = SQLNumResultCols (...);
for (irow = 1; irow <= NumColumns; irow++) {

rc = SQLDescribeCol (...)
// + optional calls to SQLColAttributes
}

// result column information has now been obtained
// Note we also know the column ordering within the table!
// This information cannot be
// assumed from the SQLColumns example.
Designing Performance-Oriented Applications 11-7

Retrieving Data
In both cases a query is sent to the server, but in Case 1 the query must be
evaluated and form a result set that must be sent to the client. Clearly, Case 2
is the better performing model.

Retrieving Data
Limit the amount of data retrieved and reduce the call load to increase the
performance of an application.

Retrieving Long Data
Retrieving long data (SQL_LONGVARCHAR and SQL_LONGVARBINARY data)
across the network is resource intensive and thus slow. Applications should
avoid requesting long data unless it is absolutely necessary. If the user does
wish to see these result items, then the application can requery the database
specifying only the long columns in the select list.

How often do users want to see long data? By default, it is generally
acceptable not to retrieve long data or binary data because most users do not
want to see such information. If the user does wish to see these result items,
then the application can requery the database specifying only the long
columns in the select list. This method allows the average user to retrieve the
result set without having to pay a high performance penalty for intense
network traffic.

Although the optimal method is to exclude long data from the select list,
some applications do not formulate the select list before they send the query
to the ODBC driver (that is, some applications simply SELECT * FROM <table
name>...). If the select list contains long data then some drivers must retrieve
that data at fetch time even if the application does not bind the long data in
the result set. If possible, the designer should attempt to implement a method
that does not retrieve all columns of the table.
11-8 INFORMIX-CLI Programmer’s Manual

Use SQLSetStmtOption to Reduce the Size of Data Retrieved
Use SQLSetStmtOption to Reduce the Size of Data Retrieved
To reduce the size of any data being retrieved to some manageable limit, call
SQLSetStmtOption with the SQL_MAX_SIZE option. This option reduces
network traffic and improves performance by allowing the driver to commu-
nicate to the DBMS backend server that only Z bytes of data are pertinent to
the client.

While eliminating SQL_LONGVARCHAR and SQL_LONGVARBINARY data
from the result set is ideal in terms of performance, many times long data
must be retrieved. Consider, however, that most users do not want to see 100
kilobytes or more of textual information on the screen. What techniques, if
any, are available to limit the amount of data retrieved?

Many application developers mistakenly assume that if they call
SQLGetData with a container of size x that the ODBC driver only retrieves x
bytes of information from the server. Because SQLGetData can be called
multiple times for any one column, most drivers optimize their network use
by retrieving long data in large chunks and then returning it to the user when
requested.

Example:

char CaseContainer[1000];
...
rc = SQLExecDirect (hstmt, “SELECT CaseHistory FROM Cases
WHERE

CaseNo = 71164”, SQL_NTS);
...
rc = SQLFetch (hstmt);
rc = SQLGetData (hstmt, 1, CaseContainer,(SWORD)
sizeof(CaseContainer), ...);

At this point, it is more likely that an ODBC driver retrieves 64 kilobytes of
information from the server instead of 1000 bytes. One 64 kilobytes retrieval
is less expensive than sixty-four 1000 byte retrievals in terms of network
access. Unfortunately, the application might not call SQLGetData again; thus,
the first and only retrieval of CaseHistory was slowed by the fact that 64
kilobytes of data had to be sent across the network.
Designing Performance-Oriented Applications 11-9

Use SQLBindCol to Reduce the Call Load
Many ODBC drivers allow limiting the amount of data retrieved across the
network by supporting the statement option SQL_MAX_SIZE. This option
allows the driver to communicate to the database server that only Z bytes of
data are pertinent to the client. The server responds by sending only the first
Z bytes of data for all result columns. This optimization greatly reduces
network traffic and thus improves performance of the client. The preceding
example returned just one row, but consider the case where 100 rows are
returned in the result set. The performance improvement is substantial.

Use SQLBindCol to Reduce the Call Load
To improve performance, retrieve data through bound columns
(SQLBindCol) instead of using SQLGetData to reduce the ODBC call load.

Consider the following pseudo-code fragment:

rc = SQLExecDirect (hstmt, “SELECT <20 columns> FROM Employees
WHERE HireDate >= ?”, SQL_NTS);

do {
rc = SQLFetch (hstmt);
// call SQLGetData 20 times
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

Suppose the query returns 90 result rows. The number of ODBC calls made is
> 1890 (20 calls to SQLGetData x 90 result rows + 91 calls to SQLFetch).

Consider the same scenario that uses SQLBindCol instead of SQLGetData.

rc = SQLExecDirect (hstmt, “SELECT <20 columns> FROM Employees
WHERE HireDate >= ?”, SQL_NTS);

// call SQLBindCol 20 times
do {
rc = SQLFetch (hstmt);
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

The number of ODBC calls made is reduced from greater than 1890 to about
110 (20 calls to SQLBindCol + 91 calls to SQLFetch). In addition to reducing
the call load, many drivers optimize use of SQLBindCol by binding result
information directly from the DBMS into the user’s buffer. That is, instead of
the driver retrieving information into a container and then copying that
information to the user’s buffer, the driver simply requests that the infor-
mation from the server be placed directly into the user’s buffer.
11-10 INFORMIX-CLI Programmer’s Manual

Use SQLExtendedFetch instead of SQLFetch
Use SQLExtendedFetch instead of SQLFetch
Use SQLExtendedFetch instead of SQLFetch to retrieve data. The ODBC call
load decreases (resulting in better performance), and the code is less complex
(resulting in more maintainable code).

Again consider the preceding example using SQLExtendedFetch instead of
SQLFetch:

rc = SQLSetStmtOption (hstmt, SQL_ROWSET_SIZE, 100);
// use arrays of 100 elements
rc = SQLExecDirect (hstmt, “SELECT <20 columns> FROM

Employees WHERE HireDate >= ?”, SQL_NTS);
// call SQLBindCol 1 time specifying row-wise binding
do {
rc = SQLExtendedFetch (hstmt, SQL_FETCH_NEXT, 0, &RowsFetched,

RowStatus);
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

The number of ODBC calls made by the application is reduced from 110 in the
previous example to 4 calls (1 SQLSetStmtOption + 1 SQLExecDirect + 1
SQLBindCol + 1 SQLExtendedFetch). The total savings changes from an
initial call load of more than 1890 ODBC calls in the first presentation of the
example to 4 calls. In addition to reducing the call load, many ODBC drivers
retrieve data from the server in arrays that further improve the performance
by reducing network traffic.

Executing Calls
ODBC drivers are optimized based on the perceived use of the functions that
are being executed. This section discusses differences that can affect the
performance of your application.

SQLPrepare/SQLExecute Versus SQLExecDirect
Use SQLExecDirect for queries that will be executed once and
SQLPrepare/SQLExecute for queries that will be executed more than once.

SQLPrepare/SQLExecute is optimized for multiple executions of a statement
that most likely uses parameter markers. SQLExecDirect is optimized for a
single execution of an SQL statement. Unfortunately, more than 75 percent of
all ODBC applications use SQLPrepare/SQLExecute exclusively.
Designing Performance-Oriented Applications 11-11

Using SQLPrepare and Multiple SQLExecute Calls
The pitfall of always coding SQLPrepare/SQLExecute can be understood
better by considering an ODBC driver that implements SQLPrepare by
creating a stored procedure on the server that contains the prepared
statement. Creating a stored procedure has substantial overhead, but the
ODBC driver assumes that the statement will be executed multiple times.
Although stored procedure creation is relatively expensive, execution is
minimal because the query is parsed and optimization paths are stored when
the procedure is created. Using SQLPrepare/SQLExecute for a statement that
will be executed only once with such an ODBC driver will result in unneeded
overhead. Furthermore, applications that use SQLPrepare/SQLExecute for
large, single-execution query batches will almost certainly exhibit poor
performance when they are used with ODBC drivers.

Similar arguments can be used to show applications that always use
SQLExecDirect cannot perform as well as those that logically use a combi-
nation of SQLPrepare/SQLExecute and SQLExecDirect sequences.

Using SQLPrepare and Multiple SQLExecute Calls
Applications that use SQLPrepare and multiple SQLExecute calls should use
SQLParamOptions. Passing arrays of parameter values reduces the ODBC
call load and greatly reduces network traffic.

Consider the following pseudocode for inserting data in bulk:

rc = SQLPrepare (hstmt, “INSERT INTO DailyLedger (...) VALUES
 (?,?,...)”, SQL_NTS);

// bind parameters
...
do {
// read ledger values into bound parameter buffers
...
rc = SQLExecute (hstmt); // insert row
} while ! (eof);
11-12 INFORMIX-CLI Programmer’s Manual

Updating Data
If there are 100 rows to insert, SQLExecute is called 100 times, resulting in 100
network requests to the server. Consider, however, an algorithm that uses
parameter arrays by calling SQLParamOptions.

rc = SQLPrepare (hstmt, “INSERT INTO DailyLedger (...) VALUES
(?,?,...)”, SQL_NTS);

rc = SQLParamOptions (hstmt, (UDWORD) 50, &CurrentRow);
// pass 50 parameters per execute
// bind parameters
...
do {
// read up to 50 ledger values into bound parameter buffers
...
rc = SQLExecute (hstmt); // insert row

The call load has been reduced from 100 executions to just two SQLExecute
calls; furthermore, network traffic is reduced considerably. To achieve high
performance, applications should contain algorithms for using
SQLParamOptions. SQLParamOptions is ideal for copying data into new
tables or loading tables in bulk.

Updating Data
Use positioned updates and deletes and SQLSpecialColumns to increase the
performance of your application.

Use Positioned Updates and Deletes
Designing an efficient method for updating data is challenging. Although
positioned updates do not apply to all types of applications, attempt to use
positioned updates and deletes whenever possible. Positioned updates (via
UPDATE WHERE CURRENT OF cursor) allow you to update data simply by
positioning the database cursor to the appropriate row to be changed and
signal the driver to “change the data here.” You are not forced to build a
complex SQL statement but simply required to supply the data that is to be
changed.
Designing Performance-Oriented Applications 11-13

Use SQLSpecialColumns to Determine the Optimal Set of Columns
Besides making the code more maintainable, positioned updates typically
result in improved performance. Because the database server is already
positioned on the row (for the SELECT statement currently in process),
expensive operations to locate the row to be changed are not needed. If the
row must be located, the server typically has an internal pointer to the row
available (for example, ROWID).

Use SQLSpecialColumns to Determine the Optimal Set of
Columns
Use SQLSpecialColumns to determine the optimal set of columns to use in
the WHERE clause for updating data. Many times pseudo-columns provide
the fastest access to the data, and these columns can only be determined by
using SQLSpecialColumns.

Many applications cannot be designed to take advantage of positioned
updates and deletes. These applications typically update data by forming a
WHERE clause that consists of some subset of the column values returned in
the result set. Some applications might formulate the WHERE clause by using
all searchable result columns or by calling SQLStatistics to find columns that
might be part of a unique index. These methods typically work but can result
in fairly complex queries.

Consider the following:

rc = SQLExecDirect (hstmt, “SELECT first_name, last_name, ssn,
 address, city, state, zip FROM emp”, SQL_NTS);

// fetchdata
...
rc = SQLExecDirect (hstmt, “UPDATE EMP SET ADDRESS = ?

 WHERE first_name = ? and last_name = ? and ssn = ?
 and address = ? and city = ? and state = ? and zip = ?”,
 SQL_NTS);

// fairly complex query
11-14 INFORMIX-CLI Programmer’s Manual

Use SQLSpecialColumns to Determine the Optimal Set of Columns
Applications should call SQLSpecialColumns/SQL_BEST_ROWID to retrieve
the optimal set of columns (possibly a pseudo-column) that identifies any
given record. Many databases support special columns that are not explicitly
defined by the user in the table definition but are “hidden” columns of every
table (for example, ROWID, TID, and so on). These pseudo-columns almost
always provide the fastest access to the data because they typically are
pointers to the exact location of the record. Because pseudo-columns are not
part of the explicit table definition, they are not returned from SQLColumns.
The only method of determining if pseudo-columns exist is to call
SQLSpecialColumns.

Consider the previous example again:

...
rc = SQLSpecialColumns (hstmt, ‘emp’, ...);
...
rc = SQLExecDirect (hstmt, “SELECT first_name, last_name, ssn,

 address, city, state, zip, ROWID FROM emp”, SQL_NTS);
// fetch data and probably “hide” ROWID from the user
...
rc = SQLExecDirect (hstmt, “UPDATE emp SET address = ? WHERE

 ROWID = ?”, SQL_NTS);
// fastest access to the data!

If your data source does not contain special pseudo-columns, the result set of
SQLSpecialColumns consists of the columns of the optimal unique index on
the specified table (if a unique index exists); therefore, your application need
not additionally call SQLStatistics to find the smallest unique index.
Designing Performance-Oriented Applications 11-15

Committing Data
Committing Data
Committing data is extremely disk I/O intensive and thus slow. Always turn
auto-commit off if the driver can support transactions.

What is actually involved in a commit? At commit time, the DBMS server
must flush back to disk every data page that contains updated or new data.
This is not a sequential write but a searched write to replace existing data
already in the table. By default, auto-commit is on when connecting to a data
source. Auto-commit mode is typically detrimental to performance because
of the amount of disk I/O needed to commit every operation.

Further reducing performance, some DBMS servers do not provide an auto-
commit mode. For this type of server, the ODBC driver must explicitly issue
a COMMIT statement and perhaps a BEGIN TRANSACTION for every
operation sent to the server. In addition to the large amount of disk I/O
required to support auto-commit mode, we must also pay a performance
penalty for up to three network requests for every statement issued by an
application in this scenario.
11-16 INFORMIX-CLI Programmer’s Manual

12
Chapter
Function Summary
INFORMIX-CLI Function Summary 12-3
Connecting to a Data Source 12-4
Obtaining Information About a Driver and Data Source. 12-4
Setting and Retrieving Driver Options 12-5
Preparing SQL Requests. 12-5
Submitting SQL Requests 12-6
Retrieving Results and Information about Results 12-7
Obtaining Information About Data-Source System Tables 12-8
Terminating a Statement 12-9
Terminating a Connection 12-9

Setup Shared-Library Function Summary 12-10

Translation Shared-Library Function Summary 12-10

12-2 INF
ORMIX-CLI Programmer’s Manual

This chapter summarizes the functions that INFORMIX-CLI-enabled
applications and related software use:

■ INFORMIX-CLI functions

■ Setup shared-library functions

■ Translation shared-library functions

INFORMIX-CLI Function Summary
The following tables list INFORMIX-CLI functions according to the type of
task that the functions perform. The tables include function name,
conformance designation, and a brief description of each function. For more
information about conformance designations, see “API Conformance Level
of INFORMIX-CLI” on page 1-12. For more information about the syntax and
semantics for each function, see Chapter 13, “INFORMIX-CLI Function
Reference.”

An application can call the SQLGetInfo function to obtain conformance infor-
mation about a driver. To obtain information about support for a specific
function in a driver, an application can call SQLGetFunctions.
Function Summary 12-3

Connecting to a Data Source
Connecting to a Data Source
The following table describes functions that connect to a data source.

Obtaining Information About a Driver and Data Source
The following table describes functions that obtain information about a
driver and data source.

Function Name
ODBC
Conformance Purpose

SQLAllocEnv Core Obtains an environment handle. One
environment handle is used for one or more
connections.

SQLAllocConnect Core Obtains a connection handle.

SQLConnect Core Connects to a specific driver by data source
name, user ID, and password.

SQLDriverConnect Level 1 Connects to a specific driver by connection
string or requests that the driver manager
and driver display connection dialog boxes
for the user.

SQLBrowseConnect Level 2 Returns successive levels of connection
attributes and valid attribute values. When a
value has been specified for each connection
attribute, connects to the data source.

Function Name
ODBC
Conformance Purpose

SQLDataSources Level 2 Returns the list of available data sources.

SQLDrivers Level 2 Returns the list of installed drivers and their
attributes.

 (1 of 2)
12-4 INFORMIX-CLI Programmer’s Manual

Setting and Retrieving Driver Options
Setting and Retrieving Driver Options
The following table describes functions that set and retrieve driver options.

Preparing SQL Requests
The following table describes functions that prepare SQL requests.

SQLGetInfo Level 1 Returns information about a specific driver
and data source.

SQLGetFunctions Level 1 Returns supported driver functions.

SQLGetTypeInfo Level 1 Returns information about supported data
types.

Function Name
ODBC
Conformance Purpose

SQLSetConnectOption Level 1 Sets a connection option.

SQLGetConnectOption Level 1 Returns the value of a connection
option.

SQLSetStmtOption Level 1 Sets a statement option.

SQLGetStmtOption Level 1 Returns the value of a statement option.

Function Name
ODBC
Conformance Purpose

SQLAllocStmt Core Allocates a statement handle.

SQLPrepare Core Prepares an SQL statement for later
execution.

 (1 of 2)

Function Name
ODBC
Conformance Purpose

 (2 of 2)
Function Summary 12-5

Submitting SQL Requests
Submitting SQL Requests
The following table describes functions that submit SQL requests.

SQLBindParameter Level 1 Assigns storage for a parameter in an
SQL statement.

SQLParamOptions Level 2 Specifies the use of multiple values for
parameters.

SQLGetCursorName Core Returns the cursor name associated with
a statement handle.

SQLSetCursorName Core Specifies a cursor name.

SQLSetScrollOptions Level 2 Sets options that control cursor
behavior.

Function Name
ODBC
Conformance Purpose

SQLExecute Core Executes a prepared statement.

SQLExecDirect Core Executes a statement.

SQLNativeSql Level 2 Returns the text of an SQL statement as
translated by the driver.

SQLNumParams Level 2 Returns the number of parameters in a
statement.

SQLParamData Level 1 Used with SQLPutData to supply
parameter data at execution time.
(Useful for long data values.)

SQLPutData Level 1 Sends part or all of a data value for a
parameter. (Useful for long data values.)

Function Name
ODBC
Conformance Purpose

 (2 of 2)
12-6 INFORMIX-CLI Programmer’s Manual

Retrieving Results and Information about Results
Retrieving Results and Information about Results
The following table describes functions that retrieve results and information
about results.

Function Name
ODBC
Conformance Purpose

SQLRowCount Core Returns the number of rows affected by
an insert, update, or delete request.

SQLNumResultCols Core Returns the number of columns in the
result set.

SQLDescribeCol Core Describes a column in the result set.

SQLColAttributes Core Describes attributes of a column in the
result set.

SQLBindCol Core Assigns storage for a result column and
specifies the data type.

SQLFetch Core Returns a result row.

SQLExtendedFetch Level 2 Returns multiple result rows.

SQLGetData Level 1 Returns part or all of one column of one
row of a result set. (Useful for long data
values.)

SQLMoreResultsr Level 2 Determines whether more result sets are
available and, if so, initializes
processing for the next result set.

SQLError Core Returns additional error or status
information.
Function Summary 12-7

Obtaining Information About Data-Source System Tables
Obtaining Information About Data-Source System Tables
The following table describes functions that obtain information about data-
source system tables (catalog functions).

Function Names
ODBC
Conformance Purpose

SQLColumnPrivileges Level 2 Returns a list of columns and associated
privileges for one or more tables.

SQLColumns Level 1 Returns the list of column names in
specified tables.

SQLPrimaryKeys Level 2 Returns the list of column name(s) that
comprise the primary key for a table.

SQLProcedures Level 2 Returns a list of procedure names stored
in a specific data source.

SQLSpecialColumns Level 1 Returns information about the optimal
set of columns that uniquely identifies a
row in a specified table, or the columns
that are automatically updated when
any value in the row is updated by a
transaction.

SQLStatistics Level 1 Returns statistics about a single table
and the list of indexes associated with
the table.

SQLTablePrivileges Level 2 Returns a list of tables and the privileges
associated with each table.

SQLTables Level 1 Returns the list of table names stored in
a specific data source.
12-8 INFORMIX-CLI Programmer’s Manual

Terminating a Statement
Terminating a Statement
The following table describes functions that terminate a statement.

Terminating a Connection
The following table describes functions that terminate a connection.

INFORMIX-CLI does not support the following ODBC functions:

■ SQLDescribeParam

■ SQLForeignKeys

■ SQLProcedurColumns

■ SQLSetPos

Function Name
ODBC
Conformance Purpose

SQLFreeStmt Core Ends statement processing and closes
the associated cursor, discards pending
results, and, optionally, frees all
resources associated with the statement
handle.

SQLCancel Core Cancels an SQL statement.

SQLTransact Core Commits or rolls back a transaction.

Function Name
ODBC
Conformance Purpose

SQLDisconnect Core Closes the connection.

SQLFreeConnect Core Releases the connection handle.

SQLFreeEnv Core Releases the environment handle.
Function Summary 12-9

Setup Shared-Library Function Summary
Setup Shared-Library Function Summary
The following table describes setup shared-library functions. For more infor-
mation about the syntax and semantics for each function, see Chapter 14,
“Setup Shared Library Function Reference.”

Translation Shared-Library Function Summary
The following table describes translation shared-library functions. For more
information about the syntax and semantics for each function, see
Chapter 15, “Translation Shared Library Function Reference.”

Task Function Name Purpose

Setting up data sources
and translators

ConfigDSN Adds, modifies, or deletes a data
source.

ConfigTranslator Returns a default translation
option.

Task Function name Purpose

Translating
data

SQLDriverToDataSource Translates all data that flows from the
driver to the data source.

SQLDataSourceToDriver Translates all data that flows from the
data source to the driver.
12-10 INFORMIX-CLI Programmer’s Manual

13
Chapter
INFORMIX-CLI Function
Reference
Arguments . 13-6

INFORMIX-CLI Include Files 13-9

Diagnostics . 13-9

Tables and Views 13-9

Catalog Functions 13-10

Search Pattern Arguments 13-10
SQLAllocConnect 13-11
SQLAllocEnv 13-14
SQLAllocStmt 13-16
SQLBindCol . 13-18
SQLBindParameter 13-25
SQLBrowseConnect 13-40
SQLCancel . 13-51

SQLColAttributes 13-54

SQLColumnPrivileges. 13-62
SQLColumns 13-68
SQLConnect . 13-77
SQLDataSources 13-83
SQLDescribeCol 13-87
Related Functions 13-92
SQLDisconnect 13-92

SQLDriverConnect 13-95
SQLDrivers . 13-106
SQLError . 13-110
SQLExecDirect 13-113
SQLExecute . 13-122

13-2 INF
SQLExtendedFetch 13-129
SQLFetch . 13-146

SQLFreeConnect . 13-152
SQLFreeEnv . 13-154
SQLFreeStmt. 13-156
SQLGetConnectOption 13-160
SQLGetCursorName 13-163
SQLGetData . 13-166
SQLGetFunctions 13-176
SQLGetInfo . 13-183
SQLGetStmtOption 13-215
SQLGetTypeInfo 13-218

SQLMoreResults . 13-227
SQLNativeSql 13-230
SQLNumParams 13-233
SQLNumResultCols 13-235
SQLParamData 13-238

SQLParamOptions 13-241
SQLPrepare . 13-246
SQLPrimaryKeys 13-253

SQLProcedures . 13-257
SQLPutData . 13-265
SQLRowCount 13-272
SQLSetConnectOption 13-274
SQLSetCursorName 13-283
SQLSetParam 13-287
SQLSetScrollOptions 13-287
SQLSetStmtOption. 13-288

SQLSpecialColumns 13-297
SQLStatistics . 13-307

SQLTablePrivileges 13-315
SQLTables . 13-321
SQLTransact . 13-327
ORMIX-CLI Programmer’s Manual

This chapter describes each INFORMIX-CLI function. The functions are
listed alphabetically. Each function is defined as a programming-language
function. The function descriptions include the following aspects:

■ Conformance level

■ Purpose

■ Syntax

■ Return codes

■ Diagnostics

■ Usage

■ Code example (optional)

■ Related functions

Error handling is described under the SQLError function description. The
text associated with SQLSTATE values is included to provide a description of
the condition, but it is not intended to prescribe specific text.
INFORMIX-CLI Function Reference 13-3

Arguments
Arguments
All INFORMIX-CLI function arguments use a naming convention of the
following form:

[[prefix]...]tag[qualifier][suffix]

Optional elements are enclosed in brackets ([]) and use the following
prefixes.

The following tags are used.

Prefix Description

c Count of

h Handle of

i Index of

p Pointer to

rg Range (array) of

Tag Description

b Byte

col Column (of a result set)

dbc Database connection

env Environment

f Flag (enumerated type)

par Parameter (of an SQL statement)

row Row (of a result set)

stmt Statement

sz Character string (array of characters, terminated by zero)

v Value of unspecified type
13-4 INFORMIX-CLI Programmer’s Manual

Arguments
Prefixes and tags combine to correspond roughly to the ODBC C types listed
below. Flags (f) and byte counts (cb) do not distinguish among SWORD,
UWORD, SDWORD, and UDWORD.

Combined Prefix Tag ODBC C Type(s) Description

cb c b SWORD, SDWORD,
UDWORD

Count of bytes

crow c row SDWORD,
UDWORD, UWORD

Count of rows

f – f SWORD, UWORD Flag

hdbc h dbc HDBC Connection handle

henv h env HENV Environment handle

hstmt h stmt HSTMT Statement handle

hwnd h wnd HWND Widget

ib i b SWORD Byte index

icol i col UWORD Column index

ipar i par UWORD Parameter index

irow i row SDWORD, UWORD Row index

pcb pc b SWORD FAR *,
SDWORD FAR *,
UDWORD FAR *

Pointer to byte count

pccol pc col SWORD FAR * Pointer to column count

pcpar pc par SWORD FAR * Pointer to parameter count

pcrow pc row SDWORD FAR *,
UDWORD FAR *

Pointer to row count

pf p f SWORD, SDWORD,
UWORD

Pointer to flag

phdbc ph dbc HDBC FAR * Pointer to connection handle

phenv ph env HENV FAR * Pointer to environment
handle

 (1 of 2)
INFORMIX-CLI Function Reference 13-5

Arguments
Qualifiers are used to distinguish specific variables of the same type. Quali-
fiers consist of the concatenation of one or more capitalized English words or
abbreviations.

INFORMIX-CLI defines one value for the suffix Max, which denotes that the
variable represents the largest value of its type for a given situation.

For example, the argument cbErrorMsgMax contains the largest possible byte
count for an error message; in this case, the argument corresponds to the size
in bytes of the argument szErrorMsg, a character string buffer. The argument
pcbErrorMsg is a pointer to the count of bytes available to return in the
argument szErrorMsg, not including the null termination character.

Important: Because characters are signed in many UNIX implementations and
string arguments in INFORMIX-CLI functions are unsigned, applications that pass
string objects to INFORMIX-CLI functions without casting them receive compiler
warnings.

phstmt ph stmt HSTMT FAR * Pointer to statement handle

pib pi b SWORD FAR * Pointer to byte index

pirow pi row UDWORD FAR * Pointer to row index

prgb prg b PTR FAR * Pointer to range (array) of
bytes

pv p v PTR Pointer to value of unspec-
ified type

rgb rg b PTR Range (array) of bytes

rgf rg f UWORD FAR * Range (array) of flags

sz – sz UCHAR FAR * String, zero terminated

v – v UDWORD Value of unspecified type

Combined Prefix Tag ODBC C Type(s) Description

 (2 of 2)
13-6 INFORMIX-CLI Programmer’s Manual

INFORMIX-CLI Include Files
INFORMIX-CLI Include Files
The files sql.h and sqlext.h contain function prototypes for all the
INFORMIX-CLI functions. They also contain all type definitions and #define
names.

Diagnostics
The diagnostics provided with each function list SQLSTATE values that might
be returned for the function by the driver manager or a driver. The driver can,
however, return additional SQLSTATE values that arise from implementation-
specific situations.

The character string value returned for an SQLSTATE consists of a two-
character class value followed by a three-character subclass value. A class
value of “01” indicates a warning and is accompanied by a return code of
SQL_SUCCESS_WITH_INFO. Class values other than “01,” except for the class
“IM,” indicate an error and are accompanied by a return code of SQL_ERROR.
The class “IM” is signifies warnings and errors that derive from the imple-
mentation of INFORMIX-CLI. The subclass value “000” in any class is for
implementation-defined conditions within the given class. The assignment
of class and subclass values is defined by ANSI SQL-92.

Tables and Views
In INFORMIX-CLI functions, tables and views are interchangeable. The term
table is used for tables and views, except where view is used explicitly.
INFORMIX-CLI Function Reference 13-7

Catalog Functions
Catalog Functions
INFORMIX-CLI supports a set of functions that return information about the
system tables or catalog of the data source. These functions are sometimes
collectively called the catalog functions. For more information about catalog
functions, see “Retrieving Information About the Data-Source Catalog” on
page 6-9. The following list shows the catalog functions:

■ SQLColumnPrivileges

■ SQLColumns

■ SQLPrimaryKeys

■ SQLProcedures

■ SQLSpecialColumns

■ SQLStatistics

■ SQLTablePrivileges

■ SQLTables

Search Pattern Arguments
Each catalog function returns information in the form of a result set. The
information a function returns can be constrained by a search pattern passed
as an argument to that function. These search patterns can contain the under-
score (_), the percent symbol (%), and a driver-defined escape character, as
follows:

■ The underscore represents any single character.

■ The percent symbol represents any sequence of zero or more
characters.

■ The escape character, backslash (\), permits the underscore and
percent metacharacters to be used as literal characters in search
patterns. To use a metacharacter as a literal character in the search
pattern, precede it with the escape character. To use the escape
character as a literal character in the search pattern, include it twice.

■ All other characters represent themselves.
13-8 INFORMIX-CLI Programmer’s Manual

SQLAllocConnect
For example, if the search pattern for a table name is “%A%,” the function
returns all tables with names that contain the character “A.” If the search
pattern for a table name is “B__” (“B” followed by two underscores), the
function returns all tables with names that are three characters long and start
with the character “B.” If the search pattern for a table name is “%”, the
function returns all tables.

If the search pattern for a table name is “ABC\%,” the function returns the
table named “ABC%.” If the search pattern for a table name is “ \\%,” the
function returns all tables with names that start with a backslash. Failing to
precede a metacharacter used as a literal with the escape character might
return more results than expected. For example, if a table identifier,
MY_TABLE, returns as the result of a call to SQLTables, and an application
wants to retrieve a list of columns for MY_TABLE using SQLColumns,
SQLColumns returns all the tables that match MY_TABLE, such as
MY_TABLE, MY1TABLE, MY2TABLE, and so on, unless the escape character
precedes the underscore.

Important: A zero-length search pattern matches the empty string. A search-pattern
argument that is a null pointer means the search is not constrained for the argument.
A null pointer and a search string of “%” should return the same values.

SQLAllocConnect
SQLAllocConnect allocates memory for a connection handle within the
environment identified by henv.

Syntax
RETCODE SQLAllocConnect(henv, phdbc)

The SQLAllocConnect function accepts the following arguments.

Type Argument Use Description

HENV henv Input Environment handle

HDBC FAR * phdbc Output Pointer to storage for the
connection handle

Core
INFORMIX-CLI Function Reference 13-9

SQLAllocConnect
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

If SQLAllocConnect returns SQL_ERROR, it sets the hdbc referenced by phdbc
to SQL_NULL_HDBC. To obtain additional information, the application can
call SQLError with the specified henv and with hdbc and hstmt set to
SQL_NULL_HDBC and SQL_NULL_HSTMT, respectively.

Diagnostics
When SQLAllocConnect returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLAlloc-
Connect and explains each value in the context of this function; the
notation“(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

(DM) The driver manager could not allocate
memory for the connection handle.

The driver could not allocate memory for the
connection handle.

S1009 Invalid argument
value

(DM) The argument phdbc was a null pointer.
13-10 INFORMIX-CLI Programmer’s Manual

SQLAllocConnect
Usage
A connection handle references information such as the valid statement
handles on the connection and whether a transaction is currently open. To
request a connection handle, an application passes the address of an hdbc to
SQLAllocConnect. The driver allocates memory for the connection infor-
mation and stores the value of the associated handle in the hdbc. On operating
systems that support multiple threads, applications can use the same hdbc on
different threads. The application passes the hdbc value in all subsequent calls
that require an hdbc.

The driver manager processes the SQLAllocConnect function and calls the
driver SQLAllocConnect function when the application calls SQLConnect,
SQLBrowseConnect, or SQLDriverConnect. (For more information, see
“Usage” on page 13-78.)

If the application calls SQLAllocConnect with a pointer to a valid hdbc, the
driver overwrites the hdbc without regard to its previous contents.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions

For information about See

Connecting to a data source SQLConnect

Freeing a connection handle SQLFreeConnect
INFORMIX-CLI Function Reference 13-11

SQLAllocEnv
SQLAllocEnv
SQLAllocEnv allocates memory for an environment handle and initializes
the INFORMIX-CLI call level interface for application use. An application
must call SQLAllocEnv before it calls any other INFORMIX-CLI function.

Syntax
RETCODE SQLAllocEnv(phenv)

The SQLAllocEnv function accepts the following argument.

Return Codes
SQL_SUCCESS or SQL_ERROR

If SQLAllocEnv returns SQL_ERROR, it sets the henv that phenv references to
SQL_NULL_HENV. In this case, the application can assume that the error was
a memory-allocation error.

Diagnostics
A driver cannot return SQLSTATE values directly after the call to
SQLAllocEnv because no valid handle exists with which to call SQLError.

Two levels of SQLAllocEnv functions exist, one within the driver manager
and one within the driver. The driver manager does not call the driver-level
function until the application calls SQLConnect, SQLBrowseConnect, or
SQLDriverConnect. If an error occurs in the driver-level SQLAllocEnv
function, the driver manager-level SQLConnect, SQLBrowseConnect, or
SQLDriverConnect function returns SQL_ERROR. A subsequent call

Type Argument Use Description

HENV FAR * phenv Output Pointer to storage for the environment
handle

Core
13-12 INFORMIX-CLI Programmer’s Manual

SQLAllocEnv
toSQLError with henv, SQL_NULL_HDBC, and SQL_NULL_HSTMT returns
SQLSTATE IM004 (the driver SQLAllocEnv function failed), followed by one of
the following errors from the driver:

■ SQLSTATE S1000 (General error)

■ A INFORMIX-CLI SQLSTATE value, that ranges from S1000 to S19ZZ.
For example, SQLSTATE S1001 (Memory-allocation failure) indicates
that the call from the driver manager to the driver-level
SQLAllocEnv returned SQL_ERROR, and the henv from the driver
manager was set to SQL_NULL_HENV.

For additional information about the flow of function calls between the
driver manager and a driver, see “Usage” on page 13-78.

Usage
An environment handle references global information such as valid
connection handles and active connection handles. To request an
environment handle, an application passes the address of an henv to
SQLAllocEnv. The driver allocates memory for the environment information
and stores the value of the associated handle in the henv. On operating
systems that support multiple threads, applications can use the same hdbc on
different threads. The application passes the henv value in all subsequent
calls that require an henv.

More than one henv should never be allocated at one time, and the appli-
cation should not call SQLAllocEnv when a current valid henv exists. If the
application calls SQLAllocEnv with a pointer to a valid henv, the driver
overwrites the henv without regard to its previous contents.

When the driver manager processes the SQLAllocEnv function, it checks the
Trace keyword in the ODBC options section of the odbc.ini file. If the
keyword is set to 1, the driver manager enables tracing for all applications.

Code Example
See SQLBrowseConnect and SQLConnect.
INFORMIX-CLI Function Reference 13-13

SQLAllocStmt
Related Functions

SQLAllocStmt
SQLAllocStmt allocates memory for a statement handle and associates the
statement handle with the connection that hdbc specifies.

An application must call SQLAllocStmt before it submits SQL statements.

Syntax
RETCODE SQLAllocStmt(hdbc, phstmt)

The SQLAllocStmt function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, or
SQL_ERROR

If SQLAllocStmt returns SQL_ERROR, it sets the hstmt that phstmt references
to SQL_NULL_HSTMT. The application can then obtain additional infor-
mation by calling SQLError with the hdbc and SQL_NULL_HSTMT.

For information about See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Freeing an environment handle SQLFreeEnv

Type Argument Use Description

HDBC hdbc Input Connection handle

HSTMT FAR * phstmt Output Pointer to storage for the statement
handle

Core
13-14 INFORMIX-CLI Programmer’s Manual

SQLAllocStmt
Diagnostics
When SQLAllocStmt returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLAllocStmt and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

Usage
A statement handle references statement information, such as network infor-
mation, SQLSTATE values and error messages, cursor name, several result-set
columns, and status information for SQL statement processing.

SQLSTATE Error Description

01000 General warning informational message (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) The connection specified by the hdbc
argument was not open. The connection
process must be completed successfully (and
the connection must be open) for the driver to
allocate an hstmt.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

(DM) The driver manager could not allocate
memory for the statement handle.

The driver could not allocate memory for the
statement handle.

S1009 Invalid argument
value

(DM) The argument phstmt was a null pointer.
INFORMIX-CLI Function Reference 13-15

SQLBindCol
To request a statement handle, an application connects to a data source and
then passes the address of an hstmt to SQLAllocStmt. The driver allocates
memory for the statement information and stores the value of the associated
handle in the hstmt. On operating systems that support multiple threads,
applications can use the same hdbc on different threads. The application
passes the hstmt value in all subsequent calls that require an hstmt.

If the application calls SQLAllocStmt with a pointer to a valid hstmt, the
driver overwrites the hstmt without regard to its previous contents.

Code Example
See SQLBrowseConnect, SQLConnect, and SQLSetCursorName.

Related Functions

SQLBindCol
SQLBindCol assigns the storage and data type for a column in a result set, as
follows:

■ A storage buffer that receives the contents of a column of data

■ The length of the storage buffer

■ A storage location that receives the actual length of the column of
data returned by the fetch operation

■ Data type conversion

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Freeing a statement handle SQLFreeStmt

Preparing a statement for execution SQLPrepare

Core
13-16 INFORMIX-CLI Programmer’s Manual

SQLBindCol
Syntax
RETCODE SQLBindCol(hstmt, icol, fCType, rgbValue, cbValueMax,
pcbValue)

The SQLBindCol function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, ordered
sequentially left to right, starting at 1.

SWORD fCType Input The C data type of the result data, which
must be one of the following values:

SQL_C_BINARY
SQL_C_BIT
SQL_C_CHARSQL_C_DATE
SQL_C_DEFAULT
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TIME
SQL_C_TIMESTAMP
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT

SQL_C_DEFAULT specifies that data be
transferred to its default C data type.

For information about how data is
converted, see “Converting Data from SQL
to C Data Types” on page C-13.

PTR rgbValue Input Pointer to storage for the data. If rgbValue is
a null pointer, the driver unbinds the
column. (To unbind all columns, an appli-
cation calls SQLFreeStmt with the
SQL_UNBIND option.)

 (1 of 2)
INFORMIX-CLI Function Reference 13-17

SQLBindCol
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

SDWORD cbValueMax Input Maximum length of the rgbValue buffer. For
character data, rgbValue must also include
space for the null-termination byte. For
more information about length, see
“Precision, Scale, Length, and Display Size”
on page C-8.

SDWORD
FAR *

pcbValue Input SQL_NULL_DATA or the number of bytes
(excluding the null-termination byte for
character data) available to return in
rgbValue prior to calling SQLExtendedFetch
or SQLFetch, or SQL_NO_TOTAL if the
number of available bytes cannot be deter-
mined.

For character data, if the number of bytes
available to return is SQL_NO_TOTAL or is
greater than or equal to cbValueMax, the
data in rgbValue is truncated to cbValueMax
– 1 bytes and is null-terminated by the
driver.

For binary data, if the number of bytes
available to return is SQL_NO_TOTAL or is
greater than cbValueMax, the data in
rgbValue is truncated to cbValueMax bytes.

For all other data types, the value of
cbValueMax is ignored, and the driver
assumes the size of rgbValue is the size of the
C data type specified with fCType.

For more information about the value
returned in pcbValue for each fCType, see
“Converting Data from SQL to C Data
Types” on page C-13.

Type Argument Use Description

 (2 of 2)
13-18 INFORMIX-CLI Programmer’s Manual

SQLBindCol
Diagnostics
When SQLBindCol returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values that SQLBindCol commonly
returns and explains each value in the context of this function; the notation
“(DM)” precedes the description of each SQLSTATE returned by the driver
manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support executing or completing the function.

S1002 Invalid column
number

The value specified for the argument icol
exceeded the maximum number of columns
supported by the data source.

S1003 Program type out
of range

(DM) The argument fCType was not a valid data
type or SQL_C_DEFAULT.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for the argument cbVal-
ueMax was less than 0.

S1C00 Driver not capable The driver does not support the data type
specified in the argument fCType.

The argument icol was 0, and the driver does not
support bookmarks.
INFORMIX-CLI Function Reference 13-19

SQLBindCol
Usage
The INFORMIX-CLI interface provides the following ways to retrieve a
column of data:

■ SQLBindCol assigns the storage location for a column of data before
the data is retrieved. When SQLFetch or SQLExtendedFetch is called,
the driver places the data for all bound columns in the assigned
locations.

■ SQLGetData (an extended function) assigns a storage location for a
column of data after SQLFetch or SQLExtendedFetch is called. It also
places the data for the requested column in the assigned location.
Because it can retrieve data from a column in parts, SQLGetData can
retrieve long data values.

An application might choose to bind every column with SQLBindCol, to
retrieve data only (and not bind) with SQLGetData, or to use a combination.
However, unless the driver provides extended functionality, SQLGetData can
be used only to retrieve data from columns that occur after the last bound
column.

An application calls SQLBindCol to pass the pointer to the storage buffer for
a column of data to the driver and to specify how or if to convert the data.
The application must allocate enough storage for the data. If the buffer
contains variable-length data, the application must allocate as much storage
as the maximum length of the bound column, or the data might be truncated.
For a list of valid data conversion types, see “Converting Data from SQL to C
Data Types” on page C-13.

At fetch time, the driver processes the data for each bound column according
to the arguments specified in SQLBindCol. First, it converts the data
according to the argument fCType. Next, it fills the buffer to which rgbValue
points. Finally, it stores the available number of bytes in pcbValue; The value
stored in pcbValue is the number of bytes available before the driver calls
SQLFetch or SQLExtendedFetch.
13-20 INFORMIX-CLI Programmer’s Manual

SQLBindCol
Before the driver calls SQLFetch or SQLExtendedFetch, it returns a value,
according to the following conditions:

■ If SQL_MAX_LENGTH has been specified with SQLSetStmtOption
and the available number of bytes is greater than
SQL_MAX_LENGTH, the driver stores SQL_MAX_LENGTH in
pcbValue.

■ If the data is truncated because of SQL_MAX_LENGTH, but the user’s
buffer is large enough for SQL_MAX_LENGTH bytes of data, the
driver returns SQL_SUCCESS.

Important: The SQL_MAX_LENGTH statement option is intended to reduce
network traffic. To guarantee that data is truncated, an application should allocate a
buffer of the desired size and specify this size in the cbValueMax argument.

■ If the user’s buffer causes the truncation, the driver returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01004 (Data truncated) for
the fetch function.

■ If the data value for a column is NULL, the driver sets pcbValue to
SQL_NULL_DATA.

■ If the number of bytes available to return cannot be determined in
advance, the driver sets pcbValue to SQL_NO_TOTAL.

When an application uses SQLExtendedFetch to retrieve more than one row
of data, it needs to call SQLBindCol only once for each column of the result
set (in the same way that it binds a column in order to retrieve a single row
of data with SQLFetch). The SQLExtendedFetch function coordinates placing
each row of data into subsequent locations in the rowset buffers. For
additional information about binding rowset buffers, see “Usage” on
page 13-131.

An application can call SQLBindCol to bind a column to a new storage
location, regardless of whether data has already been fetched. The new
binding replaces the old binding. The new binding does not apply to data
already fetched; it takes effect the next time SQLFetch or SQLExtendedFetch
is called.

To unbind a single bound column, an application calls SQLBindCol and
specifies a null pointer for rgbValue; if rgbValue is a null pointer and the
column is not bound, SQLBindCol returns SQL_SUCCESS. To unbind all
bound columns, an application calls SQLFreeStmt with the SQL_UNBIND
option.
INFORMIX-CLI Function Reference 13-21

SQLBindCol
Code Example
In the following example, an application executes a SELECT statement to
return a result set of the employee names, ages, and birthdays, which is
sorted by birthday. It then calls SQLBindCol to bind the columns of data to
local storage locations. Finally, the application fetches each row of data with
SQLFetch and prints the name, age, and birthday of each employee.

For more code examples, see SQLColumns and SQLExtendedFetch.

#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[NAME_LEN], szBirthday[BDAY_LEN];
SWORD sAge;
SDWORD cbName, cbAge, cbBirthday;

retcode = SQLExecDirect(hstmt,
"SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
SQL_NTS);

if (retcode = = SQL_SUCCESS) {

/* Bind columns 1, 2, and 3 */

SQLBindCol(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLBindCol(hstmt, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN, &cbBirthday);

/* Fetch and print each row of data. On */
/* an error, display a message and exit. */

while (TRUE) {
retcode = SQLFetch(hstmt);
if (retcode = = SQL_ERROR || retcode = = SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName,

 sAge, BDAY_LEN-1, szBirthday);
} else {

break;
}

}
}

13-22 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
Related Functions

SQLBindParameter
SQLBindParameter binds a buffer to a parameter marker in an SQL
statement.

SQLBindParameter is an ODBC 2.0 function that replaces the ODBC 1.0
function SQLSetParam. For more information, see “Usage” on page 13-28.

Syntax
RETCODE SQLBIND (hstmt, ipar, fParamType, fCType, FSqlType,
cbColDef, ibScale, rgbValue, cbValueMax, pcbValue)

For information about See

Returning information about a column
in a result set

SQLDescribeCol

Fetching a block of data or scrolling
through a result set

SQLExtendedFetch

Fetching a row of data SQLFetch

Freeing a statement handle SQLFreeStmt

Fetching part or all of a column of data SQLGetData

Returning the number of result set
columns

SQLNumResultCols

Level 1
INFORMIX-CLI Function Reference 13-23

SQLBindParameter
The SQLBindParameter function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle

UWORD ipar Input Parameter number, ordered sequen-
tially left to right, starting at 1

SWORD fParamType Input The type of the parameter. For more
information, see “fParamType
Argument” on page 13-28.

SWORD fCType Input The C data type of the parameter. For
more information, see “fCType
Argument” on page 13-29.

SWORD fSqlType Input The SQL data type of the parameter.
For more information, see “fSqlType
Argument” on page 13-30.

UDWORD cbColDef Input The precision of the column or
expression of the corresponding
parameter marker. For more infor-
mation, see “cbColDef Argument” on
page 13-31.

SWORD ibScale Input The scale of the column or expression
of the corresponding parameter
marker. For further information
concerning scale, see “Precision, Scale,
Length, and Display Size” on
page C-8.

 (1 of 2)
13-24 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Diagnostics
When SQLBindParameter returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLBind-
Parameter and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

PTR rgbValue Input/
Output

A pointer to a buffer for the data of the
parameter. For more information, see
“rgbValue Argument” on page 13-31.

Input/
SDWORD

cbValueMax Input Maximum length of the rgbValue
buffer. For more information, see
“cbValueMax Argument” on
page 13-32.

SDWORD FAR * pcbValue Input/
Output

A pointer to a buffer for the length of
the parameter. For more information,
see “pcbValue Argument” on
page 13-33.

Type Argument Use Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-25

SQLBindParameter
SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

The data value identified by the fCType
argument cannot be converted to the data
type identified by the fSqlType argument.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required
to support executing or completing the
function.

S1003 Program type out of
range

(DM) The value specified by the argument
fCType was not a valid data type or
SQL_C_DEFAULT.

S1004 SQL data type out of
range

(DM) The value specified for the argument
fSqlType was in the block of numbers reserved
for ODBC SQL data type indicators but was not
a valid ODBC SQL data type indicator.

S1009 Invalid argument
value

(DM) The argument rgbValue was a null
pointer, the argument pcbValue was a null
pointer, and the argument fParamType was not
SQL_PARAM_OUTPUT.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was
called for the hstmt and returned
SQL_NEED_DATA. This function was called
before data was sent for all
data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for the argument
cbValueMax was less than 0.

 (1 of 2)
13-26 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
S1093 Invalid parameter
number

(DM) The value specified for the argument
ipar was less than 1.

The value specified for the argument ipar was
greater than the maximum number of param-
eters supported by the data source.

S1094 Invalid scale value The value specified for the argument ibScale
was outside the range of values supported by
the data source for a column of the SQL data
type specified by the fSqlType argument.

S1104 Invalid precision
value

The value specified for the argument cbColDef
was outside the range of values supported by
the data source for a column of the SQL data
type specified by the fSqlType argument.

S1105 Invalid parameter
type

(DM) The value specified for the argument
fParamType was invalid. For more infor-
mation, see “fParamType Argument” on
page 13-28.

The value specified for the argument
fParamType was SQL_PARAM_OUTPUT, and
the parameter did not mark a return value
from a procedure or a procedure parameter.

The value specified for the argument
fParamType was SQL_PARAM_INPUT, and the
parameter marked the return value from a
procedure.

S1C00 Driver not capable The driver or data source does not support the
conversion specified by the combination of
the value specified for the argument fCType
and the driver-specific value specified for the
argument fSqlType.

The driver or data source does not support the
value specified for the argument fSqlType.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-27

SQLBindParameter
Usage
An application calls SQLBindParameter to bind each parameter marker in an
SQL statement. Bindings are effective until the application calls SQLBindPar-
ameter again or until the application calls SQLFreeStmt with the SQL_DROP
or SQL_RESET_PARAMS option.

For more information concerning parameter data types and parameter
markers, see “Parameter Data Types” on page B-2 and “Parameter Markers”
on page B-3.

fParamType Argument

The fParamType argument specifies the parameter type. All parameters in SQL
statements that do not call procedures, such as INSERT statements, are input
parameters. Parameters in procedure calls can be input, input/output, or
output parameters.

The fParamType argument is one of the following values:

■ SQL_PARAM_INPUT

This parameter marks a parameter in an SQL statement that does not
call a procedure, such as an INSERT statement, or it marks an input
parameter in a procedure; these are collectively known as input
parameters. For example, the parameters in INSERT INTO Employee
VALUES (?, ?, ?) and {call AddEmp(?, ?, ?)} are input parameters.

When the statement executes, the driver sends data for the
parameter to the data source; the rgbValue buffer must contain a valid
input value or the pcbValue buffer must contain SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or the result of the SQL_LEN_DATA_AT_EXEC
macro.

If an application cannot determine the type of a parameter in a
procedure call, it sets fParamType to SQL_PARAM_INPUT; if the data
source returns a value for the parameter, the driver discards it.
13-28 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
■ SQL_PARAM_INPUT_OUTPUT

The parameter marks an input/output parameter in a procedure. For
example, the parameter in {call GetEmpDept(?)} is an input/output
parameter that accepts the name of an employee and returns the
department name of the employee.

When the statement executes, the driver sends data for the
parameter to the data source; the rgbValue buffer must contain a valid
input value or the pcbValue buffer must contain SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or the result of the SQL_LEN_DATA_AT_EXEC
macro. After the statement executes, the driver returns data for the
parameter to the application; if the data source does not return a
value for an input/output parameter, the driver sets the pcbValue
buffer to SQL_NULL_DATA.

If an application calls SQLSetParam, the driver manager converts
this to a call to SQLBindParameter in which the fParamType argument
is set to SQL_PARAM_INPUT_OUTPUT.

■ SQL_PARAM_OUTPUT

The parameter marks the return value of a procedure or an output
parameter in a procedure; these are collectively known as output
parameters. For example, the parameter in {?=call GetNextEmpID} is
an output parameter that returns the next employee ID.

After the statement executes, the driver returns data for the
parameter to the application, unless the rgbValue and pcbValue
arguments are both null pointers, in which case the driver discards
the output value. If the data source does not return a value for an
output parameter, the driver sets the pcbValue buffer to
SQL_NULL_DATA.

fCType Argument

The fCType argument is the C data type of the parameter. The fCType argument
must be one of the following values:

■ SQL_C_BINARY

■ SQL_C_CHAR

■ SQL_C_DATE

■ SQL_C_DEFAULT

■ SQL_C_DOUBLE
INFORMIX-CLI Function Reference 13-29

SQLBindParameter
■ SQL_C_FLOAT

■ SQL_C_SLONG

■ SQL_C_SSHORT

■ SQL_C_TIME

■ SQL_C_TIMESTAMP

■ SQL_C_ULONG

■ SQL_C_USHORT

SQL_C_DEFAULT specifies that the parameter value be transferred from the
default C data type for the SQL data type specified with fSqlType.

For more information, see “Default C Data Types” on page C-6, “Converting
Data from C to SQL Data Types” on page C-24, and “Converting Data from
SQL to C Data Types” on page C-13.

fSqlType Argument

The fSqlType argument must be one of the following values:

■ SQL_CHAR

■ SQL_DATE

■ SQL_DECIMAL

■ SQL_DOUBLE

■ SQL_INTEGER

■ SQL_LONGVARBINARY

■ SQL_LONGVARCHAR

■ SQL_REAL

■ SQL_SMALLINT

■ SQL_TIMESTAMP

■ SQL_VARCHAR

Values greater than SQL_TYPE_DRIVER_START are reserved by ODBC. For
information about how data is converted, see “Converting Data from C to
SQL Data Types” on page C-24 and “Converting Data from SQL to C Data
Types” on page C-13.
13-30 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
cbColDef Argument

The cbColDef argument specifies the precision of the column or expression
that corresponds to the parameter marker, unless all of the following condi-
tions are true:

■ An application calls SQLSetParam. The driver manager converts
these calls to SQLBindParameter.

■ The fSqlType argument is SQL_LONGVARBINARY or
SQL_LONGVARCHAR.

■ The data for the parameter is sent with SQLPutData.

In this case, the cbColDef argument contains the total number of bytes that are
sent for the parameter. For more information, see “Passing Parameter
Values” on page 13-34.

rgbValue Argument

The rgbValue argument points to a buffer that, when SQLExecute or
SQLExecDirect is called, contains the actual data for the parameter. The data
must be in the form specified by the fCType argument.

If pcbValue is the result of the SQL_LEN_DATA_AT_EXEC(length) macro or
SQL_DATA_AT_EXEC, then rgbValue is an application-defined 32-bit value
that is associated with the parameter. It is returned to the application through
SQLParamData. For example, rgbValue might be a token such as a parameter
number, a pointer to data, or a pointer to a structure that the application used
to bind input parameters. If the parameter is an input/output parameter,
rgbValue must be a pointer to a buffer where the output value is stored.

If SQLParamOptions is called to specify multiple values for the parameter,
the application can use the value of the pirow argument in SQLParamOptions
with the rgbValue. For example, rgbValue might point to an array of values
and the application might use pirow to retrieve the correct value from the
array. For more information, see “Passing Parameter Values” on page 13-34.

If the fParamType argument is SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT, rgbValue points to a buffer in which the driver returns
the output value. If the procedure returns one or more result sets, the rgbValue
buffer is not guaranteed to be set until all results have been fetched. If
fParamType is SQL_PARAM_OUTPUT and rgbValue and pcbValue are both null
pointers, the driver discards the output value.
INFORMIX-CLI Function Reference 13-31

SQLBindParameter
If the application calls SQLParamOptions to specify multiple values for each
parameter, rgbValue must point to an array. A single SQL statement processes
the entire array of input values for an input or input/output parameter and
returns an array of output values for an input/output or output parameter.

cbValueMax Argument

For character and binary C data, the cbValueMax argument specifies the
length of the rgbValue buffer, if it is a single element, or the length of an
element in the rgbValue array if the application calls SQLParamOptions to
specify multiple values for each parameter. If the application specifies
multiple values, cbValueMax determines the location of values in the rgbValue
array, both on input and on output. For input/output and output param-
eters, it determines whether to truncate character and binary C data on
output.

For character C data, if the number of bytes available to return is greater than
or equal to cbValueMax, the data in rgbValue is truncated to cbValueMax – 1
bytes and is null-terminated by the driver.

For binary C data, if the number of bytes available to return is greater than
cbValueMax, the data in rgbValue is truncated to cbValueMax bytes.

For all other types of C data, the cbValueMax argument is ignored. The length
of the rgbValue buffer (if it is a single element) or the length of an element in
the rgbValue array (if the application calls SQLParamOptions to specify
multiple values for each parameter) is assumed to be the length of the C data
type.

When an ODBC 1.0 application calls SQLSetParam in an ODBC 2.x driver, the
driver manager converts this to a call to SQLBindParameter in which the
cbValueMax argument is always SQL_SETPARAM_VALUE_MAX. Because the
driver manager returns an error when an ODBC 2.x application sets
cbValueMax to SQL_SETPARAM_VALUE_MAX, an ODBC 2.x driver can use this
to determine when it is called by an ODBC 1.0 application.

In SQLSetParam, the driver defines how an application specifies the length of
the rgbValue buffer, so that the driver can return character or binary data, and
how an application sends an array of character or binary parameter values to
the driver.
13-32 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
pcbValue Argument

The pcbValue argument points to a buffer that, when SQLExecute or SQLEx-
ecDirect is called, contains one of the following values:

■ The length of the parameter value stored in rgbValue

This is ignored except for character or binary C data.

■ SQL_NTS

The parameter value is a null-terminated string.

■ SQL_NULL_DATA

The parameter value is NULL.

■ SQL_DEFAULT_PARAM

A procedure is to use the default value of a parameter, rather than a
value retrieved from the application. This value is valid only in a
procedure call and then only if the fParamType argument is
SQL_PARAM_INPUT or SQL_PARAM_INPUT_OUTPUT. When pcbValue
is SQL_DEFAULT_PARAM, the corresponding parameter can only be
a parameter for an ODBC canonical procedure invocation. When
pcbValue is SQL_DEFAULT_PARAM, the fCType, fSqlType, cbColDef,
ibScale, cbValueMax and rgbValue arguments are ignored for input
parameters and are used only to define the output parameter value
for input/output parameters. This value was introduced in ODBC
2.0.

■ The result of the SQL_LEN_DATA_AT_EXEC(length) macro

The data for the parameter is sent with SQLPutData. If the fSqlType
argument is SQL_LONGVARBINARY, SQL_LONGVARCHAR, or a long,
data-source-specific data type and the driver returns “Y” for the
SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo,
length is the number of bytes of data to be sent for the parameter;
otherwise, length must be a nonnegative value and is ignored. For
more information, see “Passing Parameter Values” on page 13-34.

For example, to send 10,000 bytes of data with SQLPutData for an
SQL_LONGVARCHAR parameter, an application sets pcbValue to
SQL_LEN_DATA_AT_EXEC(10000). This macro was introduced in
ODBC 2.0.
INFORMIX-CLI Function Reference 13-33

SQLBindParameter
If pcbValue is a null pointer, the driver assumes that all input parameter
values are non-null and that character and binary data are null-terminated. If
fParamType is SQL_PARAM_OUTPUT and rgbValue and pcbValue are both null
pointers, the driver discards the output value.

Important: Application developers are strongly discouraged from specifying a null
pointer for pcbValue when the data type of the parameter is SQL_C_BINARY. For
SQL_C_BINARY data, the driver sends only the data preceding an occurrence of the
null-termination character, 0x00. To ensure that the driver does not unexpectedly
truncate SQL_C_BINARY data, pcbValue should contain a pointer to a valid length
value.

If the fParamType argument is SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT, pcbValue points to a buffer in which the driver returns
SQL_NULL_DATA, the number of bytes available to return in rgbValue
(excluding the null-termination byte of character data), or SQL_NO_TOTAL if
the number of bytes available to return cannot be determined. If the
procedure returns one or more result sets, the pcbValue buffer is not
guaranteed to be set until all the results have been fetched.

If the application calls SQLParamOptions to specify multiple values for each
parameter, pcbValue points to an array of SDWORD values. These values can
be any of the values listed earlier in this section and are processed with a
single SQL statement.

Passing Parameter Values

An application can pass the value for a parameter either in the rgbValue buffer
or with one or more calls to SQLPutData. Parameters whose data is passed
with SQLPutData are known as data-at-execution parameters. These are
commonly used to send data for SQL_LONGVARBINARY and
SQL_LONGVARCHAR parameters and can be mixed with other parameters.
13-34 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
To pass parameter values

1. The application calls SQLBindParameter for each parameter to bind
buffers for the value (rgbValue argument) and length (pcbValue
argument) of the parameter. For data-at-execution parameters,
rgbValue is an application-defined 32-bit value such as a parameter
number or a pointer to data. The value is returned later and can be
used to identify the parameter.

2. The application places values for input and input/output
parameters in the rgbValue and pcbValue buffers.

■ For normal parameters, the application places the parameter
value in the rgbValue buffer and the length of that value in the
pcbValue buffer.

■ For data-at-execution parameters, the application places the
result of the SQL_LEN_DATA_AT_EXEC(length) macro in the
pcbValue buffer.

3. The application calls SQLExecute or SQLExecDirect to execute the
SQL statement.

■ If no data-at-execution parameters exist, the process is complete.

■ If any data-at-execution parameters exist, the function returns
SQL_NEED_DATA.

4. The application calls SQLParamData to retrieve the application-
defined value specified in the rgbValue argument for the first
data-at-execution parameter to be processed.

The data-at-execution parameters are similar to
data-at-execution columns, although the value that SQLParamData
returns is different for each. SQ.

5. The application calls SQLPutData one or more times to send data for
the parameter. More than one call is needed if the data value is larger
than the rgbValue buffer specified in SQLPutData; multiple calls to
SQLPutData for the same parameter are allowed only when sending
character C data to a column with a character, binary, or data-source-
specific data type or when sending binary C data to a column with a
character, binary, or data-source-specific data type.
INFORMIX-CLI Function Reference 13-35

SQLBindParameter
6. The application calls SQLParamData again to signal that all data has
been sent for the parameter.

■ If more data-at-execution parameters exist, SQLParamData
returns SQL_NEED_DATA and the application-defined value for
the next data-at-execution parameter to be processed. The appli-
cation repeats steps 5 and 6.

■ If no more data-at-execution parameters exist, the process is
complete. If the statement executes successfully, SQLParamData
returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO; if the
execution fails, it returns SQL_ERROR. At this point,
SQLParamData can return any SQLSTATE that can be returned
by the function used to execute the statement (SQLExecDirect or
SQLExecute).

Output values for any input/output or output parameters are
available in the rgbValue and pcbValue buffers after the appli-
cation retrieves any result sets that the statement generates.

If after SQLExecute or SQLExecDirect returns SQL_NEED_DATA and before
data is sent for all data-at-execution parameters, the statement is canceled or
an error occurs in SQLParamData or SQLPutData, the application can call
only SQLCancel, SQLGetFunctions, SQLParamData, or SQLPutData with the
hstmt or the hdbc associated with the hstmt. If the application calls any other
function with the hstmt or the hdbc associated with the hstmt, the function
returns SQL_ERROR and SQLSTATE S1010 (Function-sequence error).

If the application calls SQLCancel while the driver still needs data for
data-at-execution parameters, the driver stops executing the statement; the
application can then call SQLExecute or SQLExecDirect again. If the appli-
cation calls SQLParamData or SQLPutData after it cancels the statement, the
function returns SQL_ERROR and SQLSTATE S1008 (Operation canceled).
13-36 INFORMIX-CLI Programmer’s Manual

SQLBindParameter
Code Example
In the following example, an application prepares an SQL statement to insert
data into the EMPLOYEE table. The SQL statement contains parameters for the
NAME, AGE, and BIRTHDAY columns. For each parameter in the statement,
the application calls SQLBindParameter to specify the ODBC C data type and
the SQL data type of the parameter and to bind a buffer to each parameter.
For each row of data, the application assigns data values to each parameter
and calls SQLExecute to execute the statement.

#define NAME_LEN 30

UCHAR szName[NAME_LEN];
SWORD sAge;
SDWORD cbName = SQL_NTS, cbAge = 0, cbBirthday = 0;
DATE_STRUCT dsBirthday;

retcode = SQLPrepare(hstmt,
"INSERT INTO EMPLOYEE (NAME, AGE, BIRTHDAY) VALUES (?, ?, ?)",
SQL_NTS);

if (retcode = = SQL_SUCCESS) {

/* Specify data types and buffers. */
/* for Name, Age, Birthday parameter data. */

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_CHAR, NAME_LEN, 0, szName, 0, &cbName);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SSHORT,
 SQL_SMALLINT, 0, 0, &sAge, 0, &cbAge);
SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_DATE,
 SQL_DATE, 0, 0, &dsBirthday, 0, &cbBirthday);
strcpy(szName, "Smith, John D."); /* Specify first row of */
sAge = 40; /* parameter data */
dsBirthday.year = 1952;
dsBirthday.month = 2;
dsBirthday.day = 29;
retcode = SQLExecute(hstmt); /* Execute statement with */
 /* first row */

strcpy(szName, "Jones, Bob K."); /* Specify second row of */
sAge = 52; /* parameter data */
dsBirthday.year = 1940;
dsBirthday.month = 3;
dsBirthday.day = 31;
SQLExecute(hstmt); /* Execute statement with */
 /* second row */

}

For other similar examples, see SQLParamOptions, SQLProcedures, and
SQLPutData.
INFORMIX-CLI Function Reference 13-37

SQLBrowseConnect
Related Functions

SQLBrowseConnect
SQLBrowseConnect supports an iterative method of discovering and
enumerating the attributes and attribute values required to connect to a data
source. Each call to SQLBrowseConnect returns successive levels of
attributes and attribute values. When all levels are enumerated, a connection
to the data source is completed, and SQLBrowseConnect returns a complete
connection string. A return code of SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS indicates that all connection information has been specified
and the application is now connected to the data source.

Syntax
RETCODE SQLBrowseConnect(hdbc, szConnStrIn, cbConnStrIn,
szConnStrOut, cbConnStrOutMax, pcbConnStrOut)

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of statement
parameters

SQLNumParams

Returning the next parameter to send
data for

SQLParamData

Specifying multiple parameter values SQLParamOptions

Sending parameter data at execution
time

SQLPutData

Level 2
13-38 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
The SQLBrowseConnect function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle.

UCHAR FAR * szConnStrIn Input Browse request connection
string. (See “szConnStrIn
Argument” on page 13-43.)

SWORD cbConnStrIn Input Length of szConnStrIn.

UCHAR FAR * szConnStrOut Output Pointer to storage for the
browse result connection
string. (See “szConnStrOut
Argument” on page 13-43.)

SWORD cbConnStrOutMax Input Maximum length of the
szConnStrOut buffer.

SWORD FAR * pcbConnStrOut Output The total number of bytes
(excluding the null-termination
byte) available to return in
szConnStrOut. If the number of
bytes available to return is
greater than or equal to
cbConnStrOutMax, the
connection string in
szConnStrOut is truncated to
cbConnStrOutMax – 1 bytes.
INFORMIX-CLI Function Reference 13-39

SQLBrowseConnect
Diagnostics
When SQLBrowseConnect returns SQL_ERROR, SQL_SUCCESS_WITH_INFO,
or SQL_NEED_DATA, an associated SQLSTATE value can be obtained by
calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLBrowseConnect and explains each value in the context of
this function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szConnStrOut was not large
enough to return entire browse result
connection string, so the string was truncated.
The argument pcbConnStrOut contains the
length of the untruncated browse result
connection string (function returns
SQL_SUCCESS_WITH_INFO).

01S00 Invalid connection
string attribute

An invalid attribute keyword was specified in
the browse request connection string
(szConnStrIn). (Function returns
SQL_NEED_DATA.)

An attribute keyword was specified in the
browse request connection string
(szConnStrIn) that does not apply to the
current connection level (function returns
SQL_NEED_DATA).

08001 Unable to connect to
data source

The driver could not establish a connection
with the data source.

08002 Connection in use (DM) The specified hdbc already established a
connection with a data source, and the
connection is open.

08004 Data source rejected
establishment of
connection

The data source rejected the establishment of
the connection for implementation-defined
reasons.

 (1 of 3)
13-40 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

28000 Invalid authori-
zation specification

Either the user identifier or the authorization
string or both as specified in the browse-
request connection string (szConnStrIn)
violated restrictions defined by the data
source.

IM002 Data source not
found and no
default driver
specified

(DM) INFORMIX-CLI cannot find the data-
source name specified in the browse-request
connection string (szConnStrIn) in the
odbc.ini file, and a default driver specification
does not exist.

(DM) INFORMIX-CLI cannot find the odbc.ini
file.

IM003 Specified driver
could not be loaded

(DM) The driver listed in the data source
specification in the odbc.ini file, specified by
the DRIVER keyword, was not found or could
not be loaded for some other reason.

IM004 Driver SQLAl-
locEnv failed

(DM) During SQLBrowseConnect, the driver
manager called the driver SQLAllocEnv
function, and the driver returned an error.

IM005 Driver SQLAllocCo-
nnect failed

(DM) During SQLBrowseConnect, the driver
manager called the driver SQLAllocConnect
function and the driver returned an error.

IM006 Driver SQLSetCon-
nectOption failed

(DM) During SQLBrowseConnect, the driver
manager called the driver
SQLSetConnectOption function, and the
driver returned an error.

IM009 Unable to load
translation-shared
library

The driver did not load the translation-shared
library that was specified for the data source
or for the connection.

IM010 Data-source name
too long

(DM) The attribute value for the DSN keyword
was longer than SQL_MAX_DSN_LENGTH
characters.

SQLSTATE Error Description

 (2 of 3)
INFORMIX-CLI Function Reference 13-41

SQLBrowseConnect
Usage
Each time an application calls SQLBrowseConnect, the function validates the
current attributes, returns the next level of attributes, and returns a user-
friendly name for each attribute. It might also return a list of valid values for
those attributes. After an application has specified each level of attributes
and values, SQLBrowseConnect connects to the data source and returns a
complete connection string. This string can be used with SQLDriverConnect
to reconnect to the data source.

IM011 Driver name too
long

(DM) The attribute value for the DRIVER
keyword was longer than 255 characters.

IM012 DRIVER keyword
syntax error

(DM) The keyword-value pair for the DRIVER
keyword contained a syntax error.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

(DM) The driver manager did not allocate
memory required to support executing or
completing the function.

The driver did not allocate memory required
to support executing or completing the
function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbConnStrIn was less than0 and was not equal
to SQL_NTS.

(DM) The value specified for argument
cbConnStrOutMax was less than 0.

S1T00 Time-out expired The time-out period expired before the
connection to the data source completed. The
time-out period is set through SQLSetConnec-
tOption, SQL_LOGIN_TIMEOUT.

SQLSTATE Error Description

 (3 of 3)
13-42 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
szConnStrIn Argument

A browse-request connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string
attribute ::= attribute-keyword=attribute-value | DRIVER={attribute-value}
(The braces are literal; the application must specify them.)
attribute-keyword ::= DSN | UID | PWD
 | driver-defined-attribute-keyword
attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier

In this example, character-string has zero or more characters; identifier has one
or more characters; attribute-keyword is case insensitive; attribute-value might
be case sensitive; and the value of the DSN keyword does not consist solely
of blanks. Because of connection-string and initialization-file grammar, avoid
keywords and attribute values that contain the characters []{ }(),;?*=!@\.
Because of the registry grammar, keywords and data-source names cannot
contain a backslash (\).

If any keywords are repeated in the browse-request connection string, the
driver uses the value associated with the first occurrence of the keyword. If
the DSN and DRIVER keywords are included in the same browse-request
connection string, the driver manager and driver use whichever keyword
appears first.

szConnStrOut Argument

The browse-result connection string is a list of connection attributes. A
connection attribute consists of an attribute keyword and a corresponding
attribute value. The browse-result connection string has the following
syntax:

connection-string ::= attribute[;] | attribute; connection-string
attribute ::= [*]attribute-keyword=attribute-value
attribute-keyword ::= ODBC-attribute-keyword
 | driver-defined-attribute-keyword
ODBC-attribute-keyword = {UID | PWD}[:localized-identifier]
driver-defined-attribute-keyword ::= identifer[:localized-identifier]
attribute-value ::= {attribute-value-list} | ?
(The braces are literal; they are returned by the driver.)
attribute-value-list ::= character-string | character-string, attribute-value-
list
INFORMIX-CLI Function Reference 13-43

SQLBrowseConnect
In this example, character-string has zero or more characters, identifier and
localized-identifier have one or more characters, attribute-keyword is not case
sensitive, and attribute-value might be case sensitive. Because of connection-
string and initialization-file grammar, avoid keywords, localized identifiers,
and attribute values that contain the characters []{ }(),;?*=!@\. Because of the
registry grammar, keywords and data-source names cannot contain a
backslash (\).

The browse-result connection string syntax is used according to the
following semantic rules:

■ If an asterisk (*) precedes an attribute-keyword, the attribute is optional
and can be omitted in the next call to SQLBrowseConnect.

■ The attribute keywords UID and PWD have the same meaning as
defined in SQLDriverConnect.

■ A driver-defined-attribute-keyword names the kind of attribute for
which an attribute value can be supplied. For example, it might be
SERVER, DATABASE, HOST, or DBMS.

■ ODBC-attribute-keywords and driver-defined-attribute-keywords include
a localized or user-friendly version of the keyword. This localized
version might be used by applications as a label in a dialog box.
However, UID, PWD, or the identifier alone must be used when the
application passes a browse-request connection string to the driver.

■ The {attribute-value-list} is an enumeration of actual values valid for
the corresponding attribute-keyword. The braces ({ }) do not indicate a
list of choices; the driver returns them. For example, the list might
include server names or a list of database names.

■ If the attribute-value is a single question mark (?), a single value
corresponds to the attribute-keyword. For example, UID=JohnS;
PWD=Sesame.

■ Each call to SQLBrowseConnect returns only the information
required to satisfy the next level of the connection process. The
driver associates state information with the connection handle so
that the context can be determined on each call.
13-44 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
Using SQLBrowseConnect

SQLBrowseConnect requires an allocated hdbc. The driver manager loads the
driver that is specified in or that corresponds to the data-source name
specified in the initial browse-request connection string. For additional infor-
mation, see “Usage” on page 13-78. It might establish a connection with the
data source during the browsing process. If SQLBrowseConnect returns
SQL_ERROR, outstanding connections terminate, and the hdbc returns to an
unconnected state.

When SQLBrowseConnect is called for the first time on an hdbc, the browse-
request connection string must contain the DSN keyword or the DRIVER
keyword. If the browse-request connection string contains the DSN keyword,
the driver manager locates a corresponding data-source specification in the
odbc.ini file, as the following list describes:

■ If the driver manager finds the corresponding data-source specifi-
cation, it loads the associated driver shared library; the driver can
retrieve information about the data source from the odbc.ini file.

■ If the driver manager cannot find the corresponding data-source
specification, it locates the default data-source specification and
loads the associated driver shared library; the driver can retrieve
information about the default data source from the odbc.ini file.

■ If the driver manager cannot find the corresponding data-source
specification, and no default data-source specification exists, it
returns SQL_ERROR with SQLSTATE IM002 (Data source not found
and no default driver specified).

If the browse-request connection string contains the DRIVER keyword, the
driver manager loads the specified driver; it does not attempt to locate a data
source in the odbc.ini file. Because the DRIVER keyword does not use infor-
mation from the odbc.ini file, the driver must define enough keywords so a
driver can connect to a data source using only the information in the browse-
request connection strings.
INFORMIX-CLI Function Reference 13-45

SQLBrowseConnect
On each call to SQLBrowseConnect, the application specifies the connection
attribute values in the browse-request connection string. The driver returns
successive levels of attributes and attribute values in the browse-result
connection string; it returns SQL_NEED_DATA as long as there are connection
attributes that have not yet been enumerated in the browse-request
connection string. The application uses the contents of the browse-result
connection string to build the browse-request connection string for the next
call to SQLBrowseConnect. The application cannot use the contents of
previous browse-result connection strings when it builds the current one;
that is, it cannot specify different values for attributes set in previous levels.

When all levels of connection and their associated attributes are enumerated,
the driver returns SQL_SUCCESS, the connection to the data source is
complete, and a complete connection string returns to the application.

The connection string can be used with SQLDriverConnect with the
SQL_DRIVER_NOPROMPT option to establish another connection.

SQLBrowseConnect also returns SQL_NEED_DATA if recoverable, nonfatal
errors occur during the browse process; for example, an invalid password
supplied by the application or an invalid attribute keyword supplied by the
application. When SQL_NEED_DATA returns and the browse-result
connection string is unchanged, an error has occurred, and the application
must call SQLError to return the SQLSTATE for browse-time errors. This
permits the application to correct the attribute and continue the browse.

An application can terminate the browse process at any time by calling
SQLDisconnect. The driver terminates any outstanding connections and
returns the hdbc to an unconnected state.

For more information, see “Connection Browsing with SQLBrowseConnect”
on page 5-9.

Code Example
In the following example, an application calls SQLBrowseConnect
repeatedly. Each time SQLBrowseConnect returns SQL_NEED_DATA, it
passes back information about the data that it needs in szConnStrOut. The
application passes szConnStrOut to its routine GetUserInput (not shown).
GetUserInput parses the information, builds and displays a dialog box, and
13-46 INFORMIX-CLI Programmer’s Manual

SQLBrowseConnect
returns the information entered by the user in szConnStrIn. The application
passes the user’s information to the driver in the next call to SQLBrowse-
Connect. After the application provides all the necessary information for the
driver to connect to the data source, SQLBrowseConnect returns
SQL_SUCCESS, and the application proceeds.

For example, to connect to the data source My Source, the following actions
might occur. First, the application passes the following string to
SQLBrowseConnect, as shown in the following example:

"DSN=My Source"

The driver manager loads the driver associated with the data source My
Source. It then calls the driver SQLBrowseConnect function with the same
arguments that it received from the application. The driver returns the
following string in szConnStrOut:

"HOST:Server={red,blue,green};UID:ID=?;PWD:Password=?"

The application passes this string to its GetUserInput routine, which
provides a dialog box that asks the user to select the red, blue, or green
database server and to enter a user ID and password. The routine passes the
following user-specified information back in szConnStrIn, which the appli-
cation passes to SQLBrowseConnect:

"HOST=red;UID=Smith;PWD=Sesame"

SQLBrowseConnect uses this information to connect to the red database
server as Smith with the password Sesame, and returns the following string
in szConnStrOut:

"*DATABASE:Database={master,model,empdata}"

The application passes this string to its GetUserInput routine, which
provides a dialog box that asks the user to select a database. The user selects
empdata, and the application calls SQLBrowseConnect a final time with the
following string:

"DATABASE=empdata"
INFORMIX-CLI Function Reference 13-47

SQLBrowseConnect
This is the final piece of information that the driver needs to connect to the
data source; SQLBrowseConnect returns SQL_SUCCESS, and szConnStrOut
contains the completed connection string.

"DSN=My Source;HOST=red;UID=Smith;PWD=Sesame;DATABASE=empdata"

#define BRWS_LEN 100
HENV henv;
HDBC hdbc;
HSTMT hstmt;
RETCODE retcode;
UCHAR szConnStrIn[BRWS_LEN], szConnStrOut[BRWS_LEN];
SWORD cbConnStrOut;

retcode = SQLAllocEnv(&henv); /* Environment handle */
if (retcode = = SQL_SUCCESS) {

retcode = SQLAllocConnect(henv, &hdbc); /* Connection handle */
if (retcode = = SQL_SUCCESS) {/* Call SQLBrowseConnect until it returns a

value other than */
/* SQL_NEED_DATA (pass the data source name the first time). */
/* If SQL_NEED_DATA is returned, call GetUserInput (not */
/* shown) to build a dialog from the values in szConnStrOut. */
/* The user-supplied values are returned in szConnStrIn, */
/* which is passed in the next call to SQLBrowseConnect. */

lstrcpy(szConnStrIn, "DSN=MyServer");
do {

retcode = SQLBrowseConnect(hdbc, szConnStrIn, SQL_NTS,
 szConnStrOut, BRWS_LEN, &cbConnStrOut)
if (retcode = = SQL_NEED_DATA)

GetUserInput(szConnStrOut, szConnStrIn);
} while (retcode = = SQL_NEED_DATA);

if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

/* Process data after successful connection */

retcode = SQLAllocStmt(hdbc, &hstmt);
if (retcode = = SQL_SUCCESS) {

...;

...;

...;
SQLFreeStmt(hstmt, SQL_DROP);

}
SQLDisconnect(hdbc);

}
}
SQLFreeConnect(hdbc);

}
SQLFreeEnv(henv);
13-48 INFORMIX-CLI Programmer’s Manual

SQLCancel
Related Functions

SQLCancel
SQLCancel cancels the processing on an hstmt.

Syntax
RETCODE SQLCancel(hstmt)

The SQLCancel function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

For information about See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Disconnecting from a data source SQLDisconnect

Connecting to a data source using a connection string or
dialog box

SQLDriverConnect

Returning driver descriptions and attributes SQLDrivers

Freeing a connection handle SQLFreeConnect

Type Argument Use Description

HSTMT hstmt Input Statement handle

Core
INFORMIX-CLI Function Reference 13-49

SQLCancel
Diagnostics
When SQLCancel returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLCancel
and explains each value in the context of this function; the notation “(DM)”
precedes the description of each SQLSTATE returned by the driver manager.
The return code associated with each SQLSTATE value is SQL_ERROR unless
noted otherwise.

Usage
SQLCancel can cancel function processing on an hstmt that needs data.

If an application calls SQLCancel when processing does not involve the
hstmt, SQLCancel has the same effect as SQLFreeStmt with the SQL_CLOSE
option; this behavior is defined only for completeness, and applications
should call SQLFreeStmt to close cursors.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

70100 Operation aborted The data source did not process the cancel
request.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required
to support execution or completion of the
function.
13-50 INFORMIX-CLI Programmer’s Manual

SQLCancel
Canceling Functions that Need Data

After SQLExecute or SQLExecDirect returns SQL_NEED_DATA and before
data has been sent for all data-at-execution parameters, an application can
call SQLCancel to cancel the statement execution. After the statement is
canceled, the application can call SQLExecute or SQLExecDirect again. For
more information, see “Passing Parameter Values” on page 13-34.

Canceling Functions in Multithreaded Applications

In a multithreaded application, the application can cancel a function that is
running synchronously on an hstmt. To cancel the function, the application
calls SQLCancel with the same hstmt as that used by the target function, but
on a different thread. The return code of SQLCancel indicates whether or not
the driver processed the request successfully. The return code of the original
function indicates whether the function completed normally or was canceled.

Related Functions

For information about See

Assigning storage for a parameter SQLBindParameter

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Freeing a statement handle SQLFreeStmt

Returning the next parameter for which
to send data

SQLParamData

Sending parameter data at execution
time

SQLPutData
INFORMIX-CLI Function Reference 13-51

13-52 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
SQLColAttributes
SQLColAttributes returns descriptor information for a column in a result set;
it cannot be used to return information about the bookmark column
(column 0). Descriptor information is returned as a character string, a 32-bit
descriptor-dependent value, or an integer value.

Syntax
RETCODE SQLColAttributes(hstmt, icol, fDescType, rgbDesc,
cbDescMax, pcbDesc, pfDesc)

The SQLColAttributes function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data,
ordered sequentially from left to
right, starting at 1. Columns can be
described in any order.

UWORD fDescType Input A valid descriptor type. (See “Usage”
on page 13-55.)

PTR rgbDesc Output Pointer to storage for the descriptor
information. The format of the
descriptor information returned
depends on the fDescType.

SWORD cbDescMax Input Maximum length of the rgbDesc
buffer.

 (1 of 2)

Core

SQLColAttributes
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLColAttributes returns either SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLColAttributes and explains each value in the context of this function;
the notation “(DM)” precedes the description of each SQLSTATE returned by
the driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SWORD FAR * pcbDesc Output Total number of bytes (excluding the
null-termination byte for character
data) available to return in rgbDesc.

For character data, if the number of
bytes available to return is greater
than or equal to cbDescMax, the
descriptor information in rgbDesc is
truncated to cbDescMax – 1 bytes and
is null-terminated by the driver.

For all other types of data, the value
of cbValueMax is ignored and the
driver assumes the size of rgbValue is
32 bits.

SDWORD FAR * pfDesc Output Pointer to an integer value to contain
descriptor information for numeric
descriptor types, such as
SQL_COLUMN_LENGTH.

Type Argument Use Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-53

SQLColAttributes
SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer rgbDesc was not large enough to
return the entire string value, so the string
value was truncated. The argument pcbDesc
contains the length of the untruncated string
value (function returns
SQL_SUCCESS_WITH_INFO).

24000 Invalid cursor state The statement associated with the hstmt does
not return a result set. There are no columns to
describe.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support executing or completing the
function.

S1002 Invalid column
number

(DM) The value specified for the argument icol
was 0, and the argument fDescType was not
SQL_COLUMN_COUNT.

The value specified for the argument icol was
greater than the number of columns in the
result set, and the argument fDescType was not
SQL_COLUMN_COUNT.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

 (1 of 2)
13-54 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
SQLColAttributes can return any SQLSTATE that can be returned by
SQLPrepare or SQLExecute when it is called after SQLPrepare and before
SQLExecute depending on when the data source evaluates the SQL statement
associated with the hstmt.

Usage
SQLColAttributes returns information either in pfDesc or in rgbDesc. Integer
information is returned in pfDesc as a 32-bit, signed value; all other formats
of information are returned in rgbDesc. When information is returned in
pfDesc, the driver ignores rgbDesc, cbDescMax, and pcbDesc. When infor-
mation is returned in rgbDesc, the driver ignores pfDesc.

S1010 Function-
sequence error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The value specified for the argument
cbDescMax was less than 0.

S1091 Descriptor type
out of range

(DM) The value specified for the argument
fDescType was in the block of numbers
reserved for ODBC descriptor types but was
not valid for the version of ODBC supported by
the driver.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fDescType.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested information.
The time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-55

SQLColAttributes
This function is an extensible alternative to SQLDescribeCol.
SQLDescribeCol returns a fixed set of descriptor information based on
ANSI-89 SQL. SQLColAttributes allows access to the more extensive set of
descriptor information available in ANSI SQL-92 and Informix extensions.

The following table shows the currently defined descriptor types and the
arguments in which information is returned for them; more descriptor types
will probably be defined to take advantage of different data sources.

If a descriptor type does not apply to a driver or data source, then, unless
otherwise stated, the driver returns 0 in pcbDesc or an empty string in rgbDesc.

fDescType
Information
Returned in Description

SQL_COLUMN_AUTO_INCREMENT pfDesc TRUE if the column is auto increment.

FALSE if the column is not auto increment or is not
numeric.

Auto increment is valid for numeric data type
columns only. An application can insert values
into an auto-increment column but cannot update
values in the column.

SQL_COLUMN_CASE_SENSITIVE pfDesc TRUE if the column is treated as case sensitive for
collations and comparisons.

FALSE if the column is not treated as case sensitive
for collations and comparisons or is noncharacter.

SQL_COLUMN_COUNT pfDesc Number of columns available in the result set. The
icol argument is ignored.

SQL_COLUMN_DISPLAY_SIZE pfDesc Maximum number of characters required to
display data from the column. For more infor-
mation on display size, see “Precision, Scale,
Length, and Display Size” on page C-8.

 (1 of 4)
13-56 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
SQL_COLUMN_LABEL rgbDesc The column label or title. For example, a column
named EmpName might be labeled Employee
Name.

If a column does not have a label, the column name
is returned. If the column is unlabeled and
unnamed, an empty string is returned.

SQL_COLUMN_LENGTH pfDesc The length in bytes of data transferred on an
SQLGetData or SQLFetch operation if
SQL_C_DEFAULT is specified. For numeric data,
this size can be different than the size of the data
stored on the data source. For more length infor-
mation, see “Precision, Scale, Length, and Display
Size” on page C-8.

SQL_COLUMN_MONEY pfDesc TRUE if the column is MONEY data type.

FALSE if the column is not MONEY data type.

SQL_COLUMN_NAME rgbDesc The column name.

If the column is unnamed, an empty string is
returned.

SQL_COLUMN_NULLABLE pfDesc SQL_NO_NULLS if the column does not accept
NULL values.

SQL_NULLABLE if the column accepts NULL
values.

SQL_NULLABLE_UNKNOWN if it is not known
whether the column accepts NULL values.

SQL_COLUMN_OWNER_NAME rgbDesc The owner of the table that contains the column.
The returned value is implementation defined if
the column is an expression or if the column is part
of a view. If the data source does not support
owners or the owner name cannot be determined,
an empty string is returned.

fDescType
Information
Returned in Description

 (2 of 4)
INFORMIX-CLI Function Reference 13-57

SQLColAttributes
SQL_COLUMN_PRECISION pfDesc The precision of the column on the data source. For
more information on precision, see “Precision,
Scale, Length, and Display Size” on page C-8.

SQL_COLUMN_QUALIFIER_NAME rgbDesc The qualifier of the table that contains the column.
The returned value is implementation defined if
the column is an expression or if the column is part
of a view. If the data source does not support quali-
fiers or the qualifier name cannot be determined,
an empty string is returned.

SQL_COLUMN_SCALE pfDesc The scale of the column on the data source. For
more information on scale, see “Precision, Scale,
Length, and Display Size” on page C-8.

SQL_COLUMN_SEARCHABLE pfDesc SQL_UNSEARCHABLE if the column cannot be
used in a WHERE clause.

SQL_LIKE_ONLY if the column can be used in a
WHERE clause only with the LIKE predicate.

SQL_ALL_EXCEPT_LIKE if the column can be used
in a WHERE clause with all comparison operators
except LIKE.

SQL_SEARCHABLE if the column can be used in a
WHERE clause with any comparison operator.

Columns of type SQL_LONGVARCHAR and
SQL_LONGVARBINARY usually return
SQL_LIKE_ONLY.

SQL_COLUMN_TABLE_NAME rgbDesc The name of the table that contains the column.
The returned value is implementation defined if
the column is an expression or if the column is part
of a view.

If the table name cannot be determined, an empty
string is returned.

fDescType
Information
Returned in Description

 (3 of 4)
13-58 INFORMIX-CLI Programmer’s Manual

SQLColAttributes
SQL_COLUMN_TYPE pfDesc SQL data type. For a list of valid ODBC SQL data
types, see Appendix C. For information on how
Informix data types map to ODBC SQL data types,
see “Mapping Data Types” on page 1-15

SQL_COLUMN_TYPE_NAME rgbDesc Data-source-dependent data type name; for
example, CHAR, VARCHAR, MONEY, LONG
VARBINARY, or CHAR () FOR BIT DATA.

If the type is unknown, an empty string is
returned.

SQL_COLUMN_UNSIGNED pfDesc TRUE if the column is unsigned or not numeric.

FALSE if the column is signed.

SQL_COLUMN_UPDATABLE pfDesc Column is described by the values for the defined
constants:

SQL_ATTR_READONLY
SQL_ATTR_WRITE
SQL_ATTR_READWRITE_UNKNOWN

SQL_COLUMN_UPDATABLE describes the updat-
ability of the column in the result set. Whether a
column is updatable can be based on the data type,
user privileges, and the definition of the result set
itself. If it is unclear whether a column is
updatable, SQL_ATTR_READWRITE_UNKNOWN
should be returned.

fDescType
Information
Returned in Description

 (4 of 4)
INFORMIX-CLI Function Reference 13-59

SQLColumnPrivileges
Related Functions

SQLColumnPrivileges
SQLColumnPrivileges returns a list of columns and associated privileges for
the specified table. The driver returns the information as a result set on the
specified hstmt.

Syntax
RETCODE SQLColumnPrivileges(hstmt, szTableQualifier,
cbTableQualifier, szTableOwner, cbTableOwner, szTableName,
cbTableName, szColumnName, cbColumnName)

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLDescribeCol

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Level 2
13-60 INFORMIX-CLI Programmer’s Manual

SQLColumnPrivileges
The SQLColumnPrivileges function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Table qualifier. If a driver
supports qualifiers for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes those
tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input Owner name. If a driver
supports owners for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes those
tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.

UCHAR FAR * szColumnName Input String search pattern for
column names.

SWORD cbColumnName Input Length of szColumnName.
INFORMIX-CLI Function Reference 13-61

SQLColumnPrivileges
Diagnostics
When SQLColumnPrivileges returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLColumnPrivileges and explains each one in the context of this
function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

 (1 of 2)
13-62 INFORMIX-CLI Programmer’s Manual

SQLColumnPrivileges
Usage
SQLColumnPrivileges returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, COLUMN_NAME,
GRANTOR, and GRANTEE. The following table lists the columns in the result
set.

Important: SQLColumnPrivileges might not return all columns. For example, the
driver might not return information about pseudocolumns, such as Informix
ROWID. Applications can use any valid column, regardless of whether it is returned
by SQLColumnPrivileges.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length
arguments exceeded the maximum-length
value for the corresponding qualifier or name.
See “Usage.”

S1C00 Driver not capable A table qualifier was specified, but the driver
or data source does not support qualifiers.

A table owner was specified, but the driver or
data source does not support owners.

A string search pattern was specified for the
column name, but the data source does not
support search patterns for that argument.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-63

SQLColumnPrivileges
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and COLUMN_NAME
columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table qualifier identifier; NULL if not
applicable to the data source. If a driver
supports qualifiers for some tables but
not for others, such as when the driver
retrieves data from different DBMSs, it
returns an empty string ("") for those
tables that do not have qualifiers.

TABLE_OWNER VARCHAR(128) Table owner identifier; NULL if not
applicable to the data source. If a driver
supports owners for some tables but not
for others, such as when the driver
retrieves data from different DBMSs, it
returns an empty string ("") for those
tables that do not have owners.

TABLE_NAME VARCHAR(128)
not NULL

Table identifier.

COLUMN_NAME VARCHAR(128)
not NULL

Column identifier.

GRANTOR VARCHAR(128) Identifier of the user who granted the
privilege; NULL if not applicable to the
data source.

 (1 of 2)
13-64 INFORMIX-CLI Programmer’s Manual

SQLColumnPrivileges
The szColumnName argument accepts a search pattern. For more information
about valid search patterns, see “Search Pattern Arguments” on page 13-8.

Code Example
For a code example of a similar function, see SQLColumns.

GRANTEE VARCHAR(128)
not NULL

Identifier of the user to whom the
privilege was granted.

PRIVILEGE VARCHAR(128)
not NULL

Identifies the column privilege. Can be
one of the following or others
supported by the data source when
implementation defined:

SELECT: The grantee is permitted to
retrieve data for the column.

INSERT: The grantee is permitted to
provide data for the column in new
rows that are inserted into the
associated table.

UPDATE: The grantee is permitted to
update data in the column.

REFERENCES: The grantee is permitted
to refer to the column within a
constraint (for example, a unique, refer-
ential, or table-check constraint).

IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is
permitted to grant the privilege to other
users; “YES”, “NO”, or NULL if
unknown or not applicable to the data
source.

Column Name Data Type Comments

 (2 of 2)
INFORMIX-CLI Function Reference 13-65

SQLColumns
Related Functions

SQLColumns
SQLColumns returns the list of column names in specified tables. The driver
returns this information as a result set on the specified hstmt.

Syntax
RETCODE SQLColumns(hstmt, szTableQualifier,
cbTableQualifier, szTableOwner, cbTableOwner, szTableName,
cbTableName, szColumnName, cbColumnName)

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning the columns in a table or tables SQLColumns

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning privileges for a table or tables SQLTablePrivileges

Returning a list of tables in a data source SQLTables

Level 1
13-66 INFORMIX-CLI Programmer’s Manual

SQLColumns
The SQLColumns function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver
supports qualifiers for some
tables but not for others, such as
when the driver retrieves data
from different DBMSs, an empty
string ("") denotes those tables
that do not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input String search pattern for owner
names. If a driver supports
owners for some tables but not for
others, such as when the driver
retrieves data from different
DBMSs, an empty string ("")
denotes those tables that do not
have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input String search pattern for table
names.

SWORD cbTableName Input Length of szTableName.

UCHAR FAR * szColumnName Input String search pattern for column
names.

SWORD cbColumnName Input Length of szColumnName.
INFORMIX-CLI Function Reference 13-67

SQLColumns
Diagnostics
When SQLColumns returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLColumns and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver did not allocate memory required
to support executing or completing the
function.

S1008 Operation canceled The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was
called for the hstmt and returned
SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution
parameters or columns.

 (1 of 2)
13-68 INFORMIX-CLI Programmer’s Manual

SQLColumns
Usage
This function is typically used before statement execution to retrieve infor-
mation about columns for a table or tables from the catalog of the data source.
In contrast, SQLColAttributes and SQLDescribeCol describe the columns in
a result set, and SQLNumResultCols returns the number of columns in a
result set.

S1090 Invalid string or
buffer length

(DM) The value of one of the name length
arguments was less than 0 but not equal to
SQL_NTS.

The value of one of the name-length
arguments exceeded the maximum-length
value for the corresponding qualifier or name.
The maximum length of each qualifier or
name can be obtained by calling SQLGetInfo
with the fInfoType values (see “Usage” on
page 13-184).

S1C00 Driver not capable A table qualifier was specified, but the driver
or data source does not support qualifiers.

A table owner was specified, but the driver or
data source does not support owners.

A string search pattern was specified for the
table owner, table name, or column name, but
the data source does not support search
patterns for one or more of those arguments.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options is not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-69

SQLColumns
Important: SQLColumns might not return all columns. For example, the driver
might not return information about pseudocolumns, such as Informix ROWID.
Applications can use any valid column, regardless of whether it is returned by
SQLColumns.

SQLColumns returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, COLUMN_NAME,
DATA_TYPE, and S TYPE_NAME. The following table lists the columns in the
result set. Additional columns beyond column 12 (REMARKS) can be defined
by the driver.

The lengths of VARCHAR columns shown in the following table are
maximums; the actual lengths depend on the data source. To determine the
actual lengths of the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and
COLUMN_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table qualifier identifier; NULL if not
applicable to the data source. If a
driver supports qualifiers for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have qualifiers.

TABLE_OWNER VARCHAR(128) Table owner identifier; NULL if not
applicable to the data source. If a
driver supports owners for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

TABLE_NAME VARCHAR(128)
not NULL

Table identifier.

COLUMN_NAME VARCHAR(128)
not NULL

Column identifier.

 (1 of 3)
13-70 INFORMIX-CLI Programmer’s Manual

SQLColumns
DATA_TYPE SMALLINT
not NULL

SQL data type. For a list of valid
ODBC SQL data types, see
Appendix C. For information on
how Informix data types map to
ODBC SQL data types, see “Mapping
Data Types” on page 1-15.

TYPE_NAME VARCHAR(128)
not NULL

Data-source-dependent data-type
name; for example, CHAR,
VARCHAR, MONEY, LONG
VARBINARY, or CHAR () for BIT
DATA.

PRECISION INTEGER The precision of the column on the
data source. For precision infor-
mation, see “Precision, Scale,
Length, and Display Size” on
page C-8.

LENGTH INTEGER The length in bytes of data trans-
ferred on an SQLGetData or
SQLFetch operation if
SQL_C_DEFAULT is specified. For
numeric data, this size might be
different than the size of the data
stored on the data source. This value
is the same as the PRECISION column
for character or binary data. For
more information about length, see
“Precision, Scale, Length, and
Display Size” on page C-8.

SCALE The scale of the column on the data
source. For more scale information,
see “Precision, Scale, Length, and
Display Size” on page C-8. NULL is
returned for data types where scale
is not applicable.

Column Name Data Type Comments

 (2 of 3)
INFORMIX-CLI Function Reference 13-71

SQLColumns
The szTableOwner, szTableName, and szColumnName arguments accept search
patterns. For more information about valid search patterns, see “Search
Pattern Arguments” on page 13-8.

RADIX SMALLINT For numeric data types, either 10 or
2. If it is 10, the values in PRECISION
and SCALE give the number of
decimal digits allowed for the
column. For example, a
DECIMAL(12,5) column would
return a RADIX of 10, a PRECISION of
12, and a SCALE of 5; a FLOAT
column could return a RADIX of 10,
a PRECISION of 15, and a SCALE of
NULL.

If it is 2, the values in PRECISION and
SCALE give the number of bits
allowed in the column. For example,
a FLOAT column could return a
RADIX of 2, a PRECISION of 53, and a
SCALE of NULL.

NULL is returned for data types
where RADIX is not applicable.

NULLABLE SMALLINT
not NULL

SQL_NO_NULLS if the column does
not accept NULL values.

SQL_NULLABLE if the column
accepts NULL values.

SQL_NULLABLE_UNKNOWN if it is
not known if the column accepts
NULL values.

REMARKS VARCHAR(254) A description of the column.

Column Name Data Type Comments

 (3 of 3)
13-72 INFORMIX-CLI Programmer’s Manual

SQLColumns
Code Example
In the following example, an application calls SQLColumns to return a result
set that describes each column in the EMPLOYEE table. It then calls
SQLBindCol to bind the columns in the result set to the storage locations.
Finally, the application fetches each row of data with SQLFetch and processes
it.

#define STR_LEN 128+1
#define REM_LEN 254+1

/* Declare storage locations for result set data */

UCHAR szQualifier[STR_LEN], szOwner[STR_LEN];
UCHAR szTableName[STR_LEN], szColName[STR_LEN];
UCHAR szTypeName[STR_LEN], szRemarks[REM_LEN];
SDWORD Precision, Length;
SWORD DataType, Scale, Radix, Nullable;

/* Declare storage locations for bytes available to return */

SDWORD cbQualifier, cbOwner, cbTableName, cbColName;
SDWORD cbTypeName, cbRemarks, cbDataType, cbPrecision;
SDWORD cbLength, cbScale, cbRadix, cbNullable;

retcode = SQLColumns(hstmt,
 NULL, 0, /* All qualifiers */
 NULL, 0, /* All owners */
 "EMPLOYEE", SQL_NTS, /* EMPLOYEE table */
 NULL, 0); /* All columns */
if (retcode == SQL_SUCCESS) {

/* Bind columns in result set to storage locations */

SQLBindCol(hstmt, 1, SQL_C_CHAR, szQualifier, STR_LEN,&cbQualifier);
SQLBindCol(hstmt, 2, SQL_C_CHAR, szOwner, STR_LEN, &cbOwner);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szTableName, STR_LEN,&cbTableName);
SQLBindCol(hstmt, 4, SQL_C_CHAR, szColName, STR_LEN, &cbColName);
SQLBindCol(hstmt, 5, SQL_C_SSHORT, &DataType, 0, &cbDataType);
SQLBindCol(hstmt, 6, SQL_C_CHAR, szTypeName, STR_LEN, &cbTypeName);
SQLBindCol(hstmt, 7, SQL_C_SLONG, &Precision, 0, &cbPrecision);
SQLBindCol(hstmt, 8, SQL_C_SLONG, &Length, 0, &cbLength);
SQLBindCol(hstmt, 9, SQL_C_SSHORT, &Scale, 0, &cbScale);
SQLBindCol(hstmt, 10, SQL_C_SSHORT, &Radix, 0, &cbRadix);
SQLBindCol(hstmt, 11, SQL_C_SSHORT, &Nullable, 0, &cbNullable);
SQLBindCol(hstmt, 12, SQL_C_CHAR, szRemarks, REM_LEN, &cbRemarks);

while(TRUE) {
retcode = SQLFetch(hstmt);
if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){
INFORMIX-CLI Function Reference 13-73

SQLColumns
...; /* Process fetched data */
} else {

break;
}

}
}

Related Functions

C

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning privileges for a column or columns SQLColumnPrivileges

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics

Returning a list of tables in a data source SQLTables

Returning privileges for a table or tables SQLTablePrivileges
13-74 INFORMIX-CLI Programmer’s Manual

SQLConnect
SQLConnect
SQLConnect loads a driver and establishes a connection to a data source. The
connection handle references where all information about the connection,
including status, transaction state, and error information is stored.

Syntax
RETCODE SQLConnect(hdbc, szDSN, cbDSN, szUID, cbUID,
szAuthStr, cbAuthStr)

The SQLConnect function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle

UCHAR FAR * szDSN Input Data-source name

SWORD cbDSN Input Length of szDSN

UCHAR FAR * szUID Input User identifier

SWORD cbUID Input Length of szUID

UCHAR FAR * szAuthStr Input Authentication string
(typically the password)

SWORD cbAuthStr Input Length of szAuthStr

Core
INFORMIX-CLI Function Reference 13-75

SQLConnect
Diagnostics
When SQLConnect returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLConnect and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect
to data source

The driver could not establish a connection
with the data source.

08002 Connection in use (DM) The specified hdbc had already been used
to establish a connection with a data source,
and the connection was still open.

08004 Data source rejected
establishment of
connection

The data source rejected the establishment of
the connection for implementation-defined
reasons.

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

28000 Invalid authori-
zation specification

The value specified for the argument szUID or
the value specified for the argument szAuthStr
violated restrictions defined by the data
source.

IM002 Data source not
found and no
default driver
specified

(DM) The data-source name specified in the
argument szDSN was not found in the odbc.ini
file, nor was there a default driver specifi-
cation.

(DM) The odbc.ini file was not found.

IM003 Specified driver
could not be loaded

(DM) The driver listed in the data source speci-
fication in the odbc.ini file was not found or
could not be loaded for some other reason.

 (1 of 3)
13-76 INFORMIX-CLI Programmer’s Manual

SQLConnect
IM004 Driver SQLAl-
locEnv failed

(DM) During SQLConnect, the driver manager
called the driver SQLAllocEnv function, and
the driver returned an error.

IM005 Driver SQLAlloc-
Connect failed

(DM) During SQLConnect, the driver manager
called the driver SQLAllocConnect function,
and the driver returned an error.

IM006 Driver
SQLSetConnect-
Option failed

(DM) During SQLConnect, the driver manager
called the driver SQLSetConnectOption
function, and the driver returned an error
(function returns SQL_SUCCESS_WITH_INFO).

IM009 Unable to load
translation shared
library

The driver did not load the translation shared
library that was specified for the data source.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

(DM) The driver manager did not allocate
memory required to support execution or
completion of the function.

The driver did not allocate memory required
to support execution or completion of the
function.

SQLSTATE Error Description

 (2 of 3)
INFORMIX-CLI Function Reference 13-77

SQLConnect
Usage
The driver manager does not load a driver until the application calls a
function (SQLConnect, SQLDriverConnect, or SQLBrowseConnect) to
connect to the driver. Until that point, the driver manager works with its own
handles and manages connection information. When the application calls a
connection function, the driver manager checks if a driver is currently loaded
for the specified hdbc:

■ If a driver is not loaded, the driver manager loads the driver and calls
SQLAllocEnv, SQLAllocConnect, SQLSetConnectOption (if the
application specified any connection options), and the connection
function in the driver. The driver manager returns SQLSTATE IM006
(Driver SQLSetConnectOption function failed) and
SQL_SUCCESS_WITH_INFO for the connection function if the driver
returns an error for SQLSetConnectOption.

■ If the specified driver is already loaded on the hdbc, the driver
manager calls only the connection function in the driver. In this case,
the driver must ensure that all connection options for the hdbc
maintain their current settings.

S1090 Invalid string or
buffer length

(DM) The value specified for argument cbDSN
was less than 0, but not equal to SQL_NTS.

(DM) The value specified for argument cbDSN
exceeded the maximum length for a data-
source name.

(DM) The value specified for argument cbUID
was less than 0 but not equal to SQL_NTS.

(DM) The value specified for argument
cbAuthStr was less than 0 but not equal to
SQL_NTS.

S1T00 Time-out expired The time-out period expired before the
connection to the data source completed. The
time-out period is set through
SQLSetConnectOption, SQL_LOGIN_TIMEOUT.

SQLSTATE Error Description

 (3 of 3)
13-78 INFORMIX-CLI Programmer’s Manual

SQLConnect
The driver then allocates handles and initializes itself.

When the application calls SQLDisconnect, the driver manager calls
SQLDisconnect in the driver. However, it does not unload the driver. This
keeps the driver in memory for applications that repeatedly connect to and
disconnect from a data source. When the application calls SQLFreeConnect,
the driver manager calls SQLFreeConnect and SQLFreeEnv in the driver and
then unloads the driver.

An INFORMIX-CLI application can establish more than one connection.

After being loaded by the driver manager, a driver can locate its corre-
sponding data-source specification in the odbc.ini file and use driver-specific
information from the specification to complete its set of required connection
information.

Code Example
In the following example, an application allocates environment and
connection handles. It then connects to the EmpData data source with the
user ID JohnS and the password Sesame and processes data. When it has
finished processing data, it disconnects from the data source and frees the
handles.

HENV henv;
HDBC hdbc;
HSTMT hstmt;
RETCODE retcode;

retcode = SQLAllocEnv(&henv); /* Environment handle */
if (retcode == SQL_SUCCESS) {

retcode = SQLAllocConnect(henv, &hdbc); /* Connection handle */
if (retcode == SQL_SUCCESS) {

/* Set login time-out to 5 seconds. */

SQLSetConnectOption(hdbc, SQL_LOGIN_TIMEOUT, 5);

/* Connect to data source */

retcode = SQLConnect(hdbc, "EmpData", SQL_NTS,

 "JohnS", SQL_NTS,

 "Sesame", SQL_NTS);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){
INFORMIX-CLI Function Reference 13-79

SQLConnect
/* Process data after successful connection */

retcode = SQLAllocStmt(hdbc, &hstmt); /* Statement handle */
if (retcode == SQL_SUCCESS) {

...;

...;

...;
SQLFreeStmt(hstmt, SQL_DROP);

}
SQLDisconnect(hdbc);

}
SQLFreeConnect(hdbc);

}
SQLFreeEnv(henv);

}

Related Functions

For information about See

Allocating a connection handle SQLAllocConnect

Allocating a statement handle SQLAllocStmt

Discovering and enumerating values
required to connect to a data source

SQLBrowseConnect

Disconnecting from a data source SQLDisconnect

Connecting to a data source using a
connection string or dialog box

SQLDriverConnect

Returning the setting of a connection option SQLGetConnectOption

Setting a connection option SQLSetConnectOption
13-80 INFORMIX-CLI Programmer’s Manual

SQLDataSources
SQLDataSources
SQLDataSources lists data-source names. This function is implemented
solely by the driver manager.

Syntax
RETCODE SQLDataSources(henv, fDirection, szDSN, cbDSNMax,
pcbDSN, szDescription, cbDescriptionMax, pcbDescription)

The SQLDataSources function accepts the following arguments.

Type Argument Use Description

HENV henv Input Environment handle.

UWORD fDirection Input Determines whether the driver
manager fetches the next data-
source name in the list
(SQL_FETCH_NEXT) or whether
the search starts from the
beginning of the list
(SQL_FETCH_FIRST).

UCHAR FAR * szDSN Output Pointer to storage for the data-
source name.

SWORD cbDSNMax Input Maximum length of the szDSN
buffer; this buffer need not be
longer than
SQL_MAX_DSN_LENGTH + 1.

SWORD FAR * pcbDSN Output Total number of bytes (excluding
the null-termination byte)
available to return in szDSN. If
the number of bytes available to
return is greater than or equal to
cbDSNMax, the data-source name
in szDSN is truncated to
cbDSNMax – 1 bytes.

 (1 of 2)

Level 2
INFORMIX-CLI Function Reference 13-81

SQLDataSources
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLDataSources returns either SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLDataSources and explains each value in the context of this function;
the notation “(DM)” precedes the description of each SQLSTATE returned by
the driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

UCHAR FAR * szDescription Output Pointer to storage for the
description of the driver
associated with the data source.

SWORD cbDescriptionMax Input Maximum length of the
szDescription buffer; this buffer
should be at least 255 bytes.

SWORD FAR * pcbDescription Output Total number of bytes (excluding
the null-termination byte)
available to return in
szDescription. If the number of
bytes available to return is
greater than or equal to
cbDescriptionMax, the driver
description in szDescription is
truncated to cbDescriptionMax – 1
bytes.

Type Argument Use Description

 (2 of 2)
13-82 INFORMIX-CLI Programmer’s Manual

SQLDataSources
SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated (DM) The buffer szDSN was not large enough to
return the entire data-source name, so the name
was truncated. The argument pcbDSN contains
the length of the entire data-source name
(function returns SQL_SUCCESS_WITH_INFO).

(DM) The buffer szDescription was not large
enough to return the entire driver description,
so the description was truncated. The argument
pcbDescription contains the length of the untrun-
cated data-source description (function returns
SQL_SUCCESS_WITH_INFO).

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was defined.
The error message returned by SQLError in the
argument szErrorMsg describes the error and its
cause.

S1001 Memory-
allocation failure

(DM) The driver manager did not allocate
memory required to support execution or
completion of the function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbDSNMax was less than 0.
(DM) The value specified for argument
cbDescriptionMax was less than 0.

S1103 Direction option
out of range

(DM) The value specified for the argument
fDirection was not equal to SQL_FETCH_FIRST or
SQL_FETCH_NEXT.
INFORMIX-CLI Function Reference 13-83

SQLDataSources
Usage
An application can call SQLDataSources multiple times to retrieve all data-
source names. The driver manager retrieves this information from the
odbc.ini file. When no more data-source names remain, the driver manager
returns SQL_NO_DATA_FOUND. If SQLDataSources is called with
SQL_FETCH_NEXT immediately after it returns SQL_NO_DATA_FOUND, it
returns the first data-source name.

If SQL_FETCH_NEXT is passed to SQLDataSources the first time that it is
called, it returns the first data-source name.

The driver determines how data-source names are mapped to actual data
sources.

Related Functions

For information about See

Discovering and listing values required to connect to a
data source

SQLBrowseConnect

Connecting to a data source SQLConnect

Connecting to a data source using a connection string
or dialog box

SQLDriverConnect

Returning driver descriptions and attributes SQLDrivers
13-84 INFORMIX-CLI Programmer’s Manual

SQLDescribeCol
SQLDescribeCol
SQLDescribeCol returns the result descriptor (column name, type, precision,
scale, and nullability) for one column in the result set; it cannot be used to
return information about the bookmark column (column 0).

Syntax
RETCODE SQLDescribeCol(hstmt, icol, szColName, cbColNameMax,
pcbColName, pfSqlType, pcbColDef, pibScale, pfNullable)

The SQLDescribeCol function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data,
ordered sequentially left to right,
starting at 1.

UCHAR FAR * szColName Output Pointer to storage for the column
name. If the column is unnamed
or the column name cannot be
determined, the driver returns
an empty string.

SWORD cbColNameMax Input Maximum length of the
szColName buffer.

SWORD FAR * pcbColName Output Total number of bytes (excluding
the null-termination byte)
available to return in szColName.
If the number of bytes available
to return is greater than or equal
to cbColNameMax, the column
name in szColName is truncated
to cbColNameMax – 1 bytes.

 (1 of 3)

Core
INFORMIX-CLI Function Reference 13-85

SQLDescribeCol
SWORD FAR * pfSqlType Output The SQL data type of the column.
The SQL data type must be one of
the following values:

SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_REAL
SQL_SMALLINT
SQL_TIMESTAMP
SQL_VARCHAR

If the data type cannot be deter-
mined, the driver returns 0. For
more information, see
Appendix C. For information on
how Informix data types map to
ODBC SQL data types, see
“Mapping Data Types” on
page 1-15

Type Argument Use Description

 (2 of 3)
13-86 INFORMIX-CLI Programmer’s Manual

SQLDescribeCol
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

UDWORD FAR * pcbColDef Output The precision of the column on
the data source. If the precision
cannot be determined, the driver
returns 0. For more information
on precision, see “Precision,
Scale, Length, and Display Size”
on page C-8.

SWORD FAR * pibScale Output The scale of the column on the
data source. If the scale cannot be
determined or is not applicable,
the driver returns 0. For more
information on scale, see
“Precision, Scale, Length, and
Display Size” on page C-8.

SWORD FAR * pfNullable Output Indicates whether the column
allows one of the following
values:

SQL_NO_NULLS: The column
does not allow NULL values.

SQL_NULLABLE: The column
allows NULL values.

SQL_NULLABLE_UNKNOWN:
The driver cannot determine if
the column allows NULL values.

Type Argument Use Description

 (3 of 3)
INFORMIX-CLI Function Reference 13-87

SQLDescribeCol
Diagnostics
When SQLDescribeCol returns either SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLDescribeCol and explains each value in the context of this function;
the notation “(DM)” precedes the description of each SQLSTATE returned by
the driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szColName was not large enough to
return the entire column name, so the column
name was truncated. The argument pcbColName
contains the length of the untruncated column
name (function returns
SQL_SUCCESS_WITH_INFO).

24000 Invalid cursor
state

The statement associated with the hstmt did not
return a result set. There were no columns to
describe.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was defined.
The error message returned by SQLError in the
argument szErrorMsg describes the error and its
cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support executing or completing the function.

S1002 Invalid column
number

(DM) The value specified for the argument icol
was 0.

The value specified for the argument icol was
greater than the number of columns in the result
set.

 (1 of 2)
13-88 INFORMIX-CLI Programmer’s Manual

SQLDescribeCol
SQLDescribeCol can return any SQLSTATE that SQLPrepare or SQLExecute
returns when SQLDescribeCol is called after SQLPrepare and before
SQLExecute, depending on when the data source evaluates the SQL
statement associated with the hstmt.

Usage
An application typically calls SQLDescribeCol after a call to SQLPrepare and
before or after the associated call to SQLExecute. An application can also call
SQLDescribeCol after a call to SQLExecDirect.

SQLDescribeCol retrieves the column name, type, and length generated by a
SELECT statement. If the column is an expression, szColName is either an
empty string or a driver-defined name.

S1008 Operation
canceled

The function was called, but before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded
application.

S1010 Function-
sequence error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent for
all data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for argument cbCol-
NameMax was less than 0.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-89

Related Functions
Related Functions

SQLDisconnect
SQLDisconnect closes the connection associated with a specific connection
handle.

Syntax
RETCODE SQLDisconnect(hdbc)

The SQLDisconnect function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

For information about See

Assigning storage for a column in a result
set

SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a
result set

SQLColAttributes

Fetching a row of data SQLFetch

Returning the number of result-set columns SQLNumResultCols

Preparing a statement for execution SQLPrepare

Type Argument Use Description

HDBC hdbc Input Connection handle.

Core
13-90 INFORMIX-CLI Programmer’s Manual

SQLDisconnect
Diagnostics
When SQLDisconnect returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLDis-
connect and explains each value in the context of this function; the notation
“(DM)” precedes the description of each SQLSTATE returned by the driver
manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01002 Disconnect error An error occurred during the disconnect.
However, the disconnect succeeded (function
returns SQL_SUCCESS_WITH_INFO).

08003 Connection not
open

(DM) The connection specified in the
argument hdbc was not open.

25000 Invalid trans-
action state

A transaction was in process on the
connection specified by the argument hdbc.
The transaction remains active.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was
called for the hstmt associated with the hdbc
and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-
execution parameters or columns.
INFORMIX-CLI Function Reference 13-91

SQLDisconnect
Usage
If an application calls SQLDisconnect after SQLBrowseConnect returns
SQL_NEED_DATA and before it returns a different return code, the driver
cancels the connection-browsing process and returns the hdbc to an uncon-
nected state.

If an application calls SQLDisconnect while an incomplete transaction is
associated with the connection handle, the driver returns SQLSTATE 25000
(Invalid transaction state), indicating that the transaction is unchanged and
the connection is open. An incomplete transaction is one that has not been
committed or rolled back with SQLTransact.

If an application calls SQLDisconnect before it has freed every hstmt
associated with the connection, the driver frees each remaining hstmt after it
successfully disconnects from the data source.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions

For information about See

Allocating a connection handle SQLAllocConnect

Connecting to a data source SQLConnect

Connecting to a data source using a connection string or
dialog box

SQLDriverConnect

Freeing a connection handle SQLFreeConnect

Executing a commit or rollback operation SQLTransact
13-92 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
SQLDriverConnect
SQLDriverConnect is an alternative to SQLConnect. It supports data sources
that require more connection information than the three arguments in
SQLConnect, dialog boxes to prompt the user for all connection information,
and data sources that are not defined in the odbc.ini file.

SQLDriverConnect provides the following connection options:

■ You can establish a connection using a connection string that
contains the data-source name, one or more user IDs, one or more
passwords, and other information required by the data source.

■ You can establish a connection using a partial connection string or no
additional information; in this case, the driver manager and the
driver can each prompt the user for connection information.

Once a connection is established, SQLDriverConnect returns the completed
connection string. The application can use this string for subsequent
connection requests.

Syntax
RETCODE SQLDriverConnect(hdbc, hwnd, szConnStrIn,
cbConnStrIn, szConnStrOut, cbConnStrOutMax, pcbConnStrOut,
fDriverCompletion)

The SQLDriverConnect function accepts the following arguments.

Level 1
INFORMIX-CLI Function Reference 13-93

SQLDriverConnect
Type Argument Use Description

HDBC hdbc Input Connection handle.

HWND hwnd Input Window handle (platform dependent): For Windows,
this is the parent window handle. For UNIX, this is
the parent Widget handle.
If the window handle is not applicable, or a null
pointer is passed, SQLDriverConnect does not
present any dialog boxes.

UCHAR FAR * szConnStrIn Input A full connection string (see “Connection Strings” on
page 13-99), a partial connection string, or an empty
string.

SWORD cbConnStrIn Input Length of szConnStrIn.

UCHAR FAR *szConnStrOut Output Pointer to storage for the completed connection
string. Upon successful connection to the target data
source, this buffer contains the completed connection
string. Applications should allocate at least 255 bytes
for this buffer.

SWORD cbConnStrOutMax Input Maximum length of the szConnStrOut buffer.

SWORD FAR * pcbConnStrOut Output Pointer to the total number of bytes (excluding the
null termination byte) available to return in
szConnStrOut. If the number of bytes available to
return is greater than or equal to cbConnStrOutMax,
the completed connection string in szConnStrOut is
truncated to cbConnStrOutMax – 1 bytes.

UWORD fDriverCompletion Input Flag that indicates whether driver manager or driver
must prompt for more connection information:

SQL_DRIVER_PROMPT,
SQL_DRIVER_COMPLETE,
SQL_DRIVER_COMPLETE_REQUIRED, or
SQL_DRIVER_NOPROMPT.

For more information, see “Driver Manager Guide-
lines” on page 13-100 and “Driver Guidelines” on
page 13-101.
13-94 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLDriverConnect returns either SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLDriverConnect and explains each value in the context of this function;
the notation “(DM)” precedes the description of each SQLSTATE returned by
the driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szConnStrOut was not large
enough to return the entire connection string,
so the connection string was truncated. The
argument pcbConnStrOut contains the length
of the untruncated connection string (function
returns SQL_SUCCESS_WITH_INFO).

01S00 Invalid connection
string attribute

An invalid attribute keyword was specified in
the connection string (szConnStrIn), but the
driver connected to the data source anyway
(function returns SQL_SUCCESS_WITH_INFO).

08001 Unable to connect
to data source

The driver did not establish a connection with
the data source.

08002 Connection in use (DM) The specified hdbc was used already to
establish a connection with a data source, and
the connection was still open.

08004 Data source rejected
establishment of
connection

The data source rejected the establishment of
the connection for implementation-defined
reasons.

 (1 of 4)
INFORMIX-CLI Function Reference 13-95

SQLDriverConnect
08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

28000 Invalid authori-
zation specification

Either the user identifier or the authorization
string or both as specified in the connection
string (szConnStrIn) violated restrictions
defined by the data source.

IM002 Data source not
found and no
default driver
specified

(DM) The data-source name specified in the
connection string (szConnStrIn) was not found
in the odbc.ini file, and no default driver
specification existed.

(DM) The odbc.ini file could not be found.

IM003 Specified driver
could not be loaded

(DM) The driver listed in the data- source
specification in the odbc.ini file, or specified
by the DRIVER keyword, was not found or
was not loaded for some other reason.

IM004 Driver SQLAl-
locEnv failed

(DM) During SQLDriverConnect, the driver
manager called the driver SQLAllocEnv
function, and the driver returned an error.

IM005 Driver SQLAlloc-
Connect failed

(DM) During SQLDriverConnect, the driver
manager called the driver SQLAllocConnect
function, and the driver returned an error.

IM006 Driver
SQLSetConnect-
Option failed

(DM) During SQLDriverConnect, the driver
manager called the driver SQLSetConnec-
tOption function, and the driver returned an
error.

IM007 No data source or
driver specified;
dialog prohibited

C fDriverCompletion was
SQL_DRIVER_NOPROMPT.

IM008 Dialog failed (DM) The driver manager attempted to
display the SQL Data Sources dialog box but
failed.

The driver attempted to display its login
dialog box but failed.

SQLSTATE Error Description

 (2 of 4)
13-96 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
IM009 Unable to load
translation shared
library

The driver did not load the translation shared
library that was specified for the data source
or for the connection.

IM010 Data-source name
too long

(DM) The attribute value for the DSN keyword
was longer than SQL_MAX_DSN_LENGTH
characters.

IM011 Driver name too
long

(DM) The attribute value for the DRIVER
keyword was longer than 255 characters.

IM012 DRIVER keyword
syntax error

(DM) The keyword-value pair for the DRIVER
keyword contained a syntax error.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-allocation
failure

The driver manager did not allocate memory
required to support execution or completion
of the function.

The driver did not allocate memory required
to support execution or completion of the
function.

SQLSTATE Error Description

 (3 of 4)
INFORMIX-CLI Function Reference 13-97

SQLDriverConnect
Usage
SQLDriverConnect uses a connection string to specify the information
needed to connect to a driver and data source. The connection string is a more
flexible interface than the data-source name, user ID, and password used by
SQLConnect. The application can use the connection string for multiple
levels of login authorization or to convey other data-source-specific
connection information.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbConnStrIn was less than0 and was not equal
to SQL_NTS.

(DM) The value specified for argument
cbConnStrOutMax was less than 0.

S1110 Invalid driver
completion

(DM) The value specified for the argument
fDriverCompletion was not equal to
SQL_DRIVER_PROMPT,
SQL_DRIVER_COMPLETE,
SQL_DRIVER_COMPLETE_REQUIRED, or
SQL_DRIVER_NOPROMPT.

S1T00 Time-out expired The time-out period expired before the
connection to the data source completed. The
time-out period is set through SQLSetConnec-
tOption, SQL_LOGIN_TIMEOUT.

SQLSTATE Error Description

 (4 of 4)
13-98 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect

rd
Connection Strings

A connection string has the following syntax:

connection-string ::= empty-string[;] | attribute[;] |
attribute; connection-string
empty-string ::=
attribute ::= attribute-keyword=attribute-value |
DRIVER={attribute-value}
(The braces ({}) are literal; the application must specify
them.)
attribute-keyword ::= DSN | UID | PWD
 | driver-defined-attribute-keywo
attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier

In this example, character-string has zero or more characters; identifier has one
or more characters; attribute-keyword is case insensitive; attribute-value might
be case sensitive; and the value of the DSN keyword does not consist solely
of blanks. Because of connection-string and initialization-file grammar, avoid
keywords and attribute values that contain the characters []{ }(),;?*=!@\ .
Because of the registry grammar, keywords and data-source names cannot
contain the backslash (\).

The connection string might include several driver-defined keywords.
Because the DRIVER keyword does not use information from the odbc.ini file,
the driver must define enough keywords so that a driver can connect to a
data source using only the information in the connection string. (For more
information, see “Driver Guidelines” on page 13-101.) The driver defines
which keywords are required in order to connect to the data source. For more
information about keywords that can be used in a connection string for the
INFORMIX-CLI driver, see “Using a Connection-String to Connect to a Data
Source” on page 2-13 for UNIX and “Using a Connection-String to Connect to
a Data Source” on page 2-28 for Windows.

If any keywords are repeated in the connection string, the driver uses the
value associated with the first occurrence of the keyword. If the DSN and
DRIVER keywords are included in the same connection string, the driver
manager and the driver use the keyword that appears first. The following
table describes the attribute values of the DSN, DRIVER, UID, and PWD
keywords.
INFORMIX-CLI Function Reference 13-99

SQLDriverConnect
Driver Manager Guidelines

The driver manager constructs a connection string to pass to the driver in the
szConnStrIn argument of the driver SQLDriverConnect function. The driver
manager does not modify the szConnStrIn argument passed to it by the
application.

If the connection string specified by the application contains the DSN
keyword or does not contain either the DSN or DRIVER keywords, the action
of the driver manager is based on the value of the fDriverCompletion
argument, as follows:

■ SQL_DRIVER_PROMPT

The driver manager displays the Data Sources dialog box. It
constructs a connection string from the data source name returned
by the dialog box and any other keywords passed to it by the appli-
cation. If the data-source name returned by the dialog box is empty,
the driver manager specifies the keyword-value pair DSN=Default.

■ SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED

If the connection string specified by the application includes the DSN
keyword, the driver manager copies the connection string specified
by the application. Otherwise, it takes the same actions as it does
when fDriverCompletion is SQL_DRIVER_PROMPT.

■ SQL_DRIVER_NOPROMPT

The driver manager copies the connection string specified by the
application.

Keyword Attribute value description

DSN Name of a data source as returned by SQLDataSources or the data
sources dialog box of SQLDriverConnect

DRIVER Description of the driver as returned by the SQLDrivers function

UID A user ID

PWD The password that corresponds to the user ID, or an empty string if
no password exists for the user ID (PWD=;)
13-100 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
If the connection string specified by the application contains the DRIVER
keyword, the driver manager copies the connection string specified by the
application.

Using the connection string that it constructed, the driver manager deter-
mines which driver to use, loads that driver, and passes the connection string
that it has constructed to the driver. For more information about the inter-
action of the driver manager and the driver, see “Usage” on page 13-78. If the
connection string contains the DSN keyword or does not contain either the
DSN or the DRIVER keyword, the driver manager determines which driver to
use, as follows:

1. If the connection string contains the DSN keyword, the driver
manager retrieves the driver associated with the data source from
the odbc.ini file.

2. If the connection string does not contain the DSN keyword or the
data source is not found, the driver manager retrieves the driver
associated with the default data source from the odbc.ini file.
However, the driver manager does not change the value of the DSN
keyword in the connection string.

3. If the data source is not found and the Default data source is not
found, the driver manager returns SQL_ERROR with SQLSTATE IM002
(Data source not found and no default driver specified).

Driver Guidelines

The driver checks if the connection string passed to it by the driver manager
contains the DSN or DRIVER keyword. If the connection string contains the
DRIVER keyword, the driver cannot retrieve information about the data
source from the odbc.ini file. If the connection string contains the DSN
keyword or does not contain either the DSN or the DRIVER keyword, the
driver can retrieve information about the data source from the odbc.ini file,
as follows:

1. If the connection string contains the DSN keyword, the driver
retrieves the information for the specified data source.

2. If the connection string does not contain the DSN keyword or the
specified data source is not found, the driver retrieves the infor-
mation for the default data source.
INFORMIX-CLI Function Reference 13-101

SQLDriverConnect
The driver uses any information that it retrieves from the odbc.ini file to
augment the information passed to it in the connection string. If the infor-
mation in the odbc.ini file duplicates information in the connection string,
the driver uses the information in the connection string.

Based on the value of fDriverCompletion, the driver prompts the user for
connection information, such as the user ID and password, and connects to
the data source, as follows:

■ SQL_DRIVER_PROMPT

The driver displays a dialog box, using the values from the
connection string and odbc.ini file as initial values. When the user
exits the dialog box, the driver connects to the data source. It also
constructs a connection string from the value of the DSN or DRIVER
keyword in szConnStrIn and the information returned from the
dialog box. It places this connection string in the buffer referenced by
szConnStrOut.

■ SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED

If the connection string contains enough correct information, the
driver connects to the data source and copies szConnStrIn to
szConnStrOut. If any information is missing or incorrect, the driver
takes the same actions as it does when fDriverCompletion is
SQL_DRIVER_PROMPT, except that if fDriverCompletion is
SQL_DRIVER_COMPLETE_REQUIRED, the driver disables the controls
for any information that is not required to connect to the data source.

■ SQL_DRIVER_NOPROMPT

If the connection string contains enough information, the driver
connects to the data source and copies szConnStrIn to szConnStrOut.
Otherwise, the driver returns SQL_ERROR for SQLDriverConnect.

After successfully connecting to the data source, the driver also sets
pcbConnStrOut to the length of szConnStrOut.

If the user cancels a dialog box presented by the driver manager or the driver,
SQLDriverConnect returns SQL_NO_DATA_FOUND.

For information about how the driver manager and the driver interact during
the connection process, see “Usage” on page 13-78.
13-102 INFORMIX-CLI Programmer’s Manual

SQLDriverConnect
Connection Options

The SQL_LOGIN_TIMEOUT connection option, set using
SQLSetConnectOption, defines the number of seconds to wait for a login
request to complete before returning to the application. If the user is
prompted to complete the connection string, a waiting period for each login
request begins after the user has dismissed each dialog box.

The driver opens the connection in SQL_MODE_READ_WRITE access mode by
default. To set the access mode to SQL_MODE_READ_ONLY, the application
must call SQLSetConnectOption with the SQL_ACCESS_MODE option before
calling SQLDriverConnect.

If a default translation shared library is specified in the odbc.ini file for the
data source, the driver loads it. A different translation shared library can be
loaded by calling SQLSetConnectOption with the SQL_TRANSLATE_DLL
option. A translation option can be specified by calling SQLSetConnec-
tOption with the SQL_TRANSLATE_OPTION option.

Related Functions

For information about See

Allocating a connection handle SQLAllocConnect

Discovering and enumerating values
required to connect to a data source

SQLBrowseConnect

Connecting to a data source SQLConnect

Disconnecting from a data source SQLDisconnect

Returning driver descriptions and
attributes

SQLDrivers

Freeing a connection handle SQLFreeConnect

Setting a connection option SQLSetConnectOption
INFORMIX-CLI Function Reference 13-103

SQLDrivers
SQLDrivers
SQLDrivers lists driver descriptions and driver-attribute keywords. This
function is implemented solely by the driver manager. SQLDrivers is an
ODBC 2.0 function.

Syntax
RETCODE SQLDrivers(henv, fDirection, szDriverDesc,
cbDriverDescMax, pcbDriverDesc, szDriverAttributes,
cbDrvrAttrMax, pcbDrvrAttr)

The SQLDrivers function accepts the following arguments.

Level 2

Type Argument Use Description

HENV henv Input Environment handle.

UWORD fDirection Input Determines whether the driver manager fetches
the next driver description in the list
(SQL_FETCH_NEXT) or whether the search starts
from the beginning of the list (SQL_FETCH_FIRST).

UCHAR FAR * szDriverDesc Output Pointer to storage for the driver description.

SWORD cbDriverDescMax Input Maximum length of the szDriverDesc buffer.

SWORD FAR * pcbDriverDesc Output Total number of bytes (excluding the null-
termnation byte) available to return in
szDriverDesc. If the number of bytes available to
return is greater than or equal to cbDriver-
DescMax, the driver description in szDriverDesc is
truncated to cbDriverDescMax – 1 bytes.

 (1 of 2)
13-104 INFORMIX-CLI Programmer’s Manual

SQLDrivers
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLDrivers returns either SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLDrivers
and explains each value in the context of this function; the notation “(DM)”
precedes the description of each SQLSTATE returned by the driver manager.
The return code associated with each SQLSTATE value is SQL_ERROR unless
noted otherwise.

UCHAR FAR * szDriverAttributes Output Pointer to storage for the list of driver attribute
value pairs (see “Usage” on page 13-107).

SWORD cbDrvrAttrMax Input Maximum length of the szDriverAttributes buffer.

SWORD FAR * pcbDrvrAttr Output Total number of bytes (excluding the null-
termnation byte) available to return in
szDriverAttributes. If the number of bytes
available to return is greater than or equal to
cbDrvrAttrMax, the list of attribute-value pairs in
szDriverAttributes is truncated to
cbDrvrAttrMax – 1 bytes.

Type Argument Use Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-105

SQLDrivers
SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated (DM) The buffer szDriverDesc was not large
enough to return the entire driver description,
so the description was truncated. The
argument pcbDriverDesc contains the length of
the entire driver description (function returns
SQL_SUCCESS_WITH_INFO).

(DM) The buffer szDriverAttributes was not
large enough to return the entire list of
attribute-value pairs, so the list was truncated.
The argument pcbDrvrAttr contains the length
of the untruncated list of attribute-value pairs
(function returns SQL_SUCCESS_WITH_INFO).

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

(DM) The driver manager did not allocate
memory required to support execution or
completion of the function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbDriverDescMax was less than 0.

(DM) The value specified for argument
cbDrvrAttrMax was less than 0 or equal to 1.

S1103 Direction option
out of range

(DM) The value specified for the argument
fDirection was not equal to SQL_FETCH_FIRST
or SQL_FETCH_NEXT.
13-106 INFORMIX-CLI Programmer’s Manual

SQLDrivers
Usage
SQLDrivers returns the driver description in the szDriverDesc argument. It
returns additional information about the driver in the szDriverAttributes
argument as a list of keyword-value pairs. Each pair is terminated with a null
byte, and the entire list is terminated with a null byte (that is, 2 null bytes
mark the end of the list).

If szDriverAttributes cannot hold the entire list, the list is truncated,
SQLDrivers returns SQLSTATE 01004 (Data truncated), and the length of the
list (excluding the final null-termination byte) is returned in pcbDrvrAttr.

Driver attribute keywords are added during the installation procedure. For
more information, see “Understanding the odbc.ini File” on page 1-7.

An application can call SQLDrivers multiple times to retrieve all driver
descriptions. The driver manager retrieves this information from the
odbcinst.ini file. When no more driver descriptions remain, SQLDrivers
returns SQL_NO_DATA_FOUND. If SQLDrivers is called with
SQL_FETCH_NEXT immediately after it returns SQL_NO_DATA_FOUND, it
returns the first driver description.

If SQL_FETCH_NEXT passes to SQLDrivers the first time it is called,
SQLDrivers returns the first data-source name.

Because SQLDrivers is implemented in the driver manager, it is supported
for all drivers, regardless of the conformance level of a particular driver.

Related Functions

For information about See

Discovering and listing values required to
connect to a data source

SQLBrowseConnect

Connecting to a data source SQLConnect

Returning data source names SQLDataSources

Connecting to a data source using a
connection string or dialog box

SQLDriverConnect
INFORMIX-CLI Function Reference 13-107

SQLError
SQLError
SQLError returns error or status information.

Syntax
RETCODE SQLError(henv, hdbc, hstmt, szSqlState,
pfNativeError, szErrorMsg, cbErrorMsgMax, pcbErrorMsg)

The SQLError function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

Core

Type Argument Use Description

HENV henv Input Environment handle or SQL_NULL_HENV.

HDBC hdbc Input Connection handle or SQL_NULL_HDBC.

HSTMT hstmt Input Statement handle or SQL_NULL_HSTMT.

UCHAR FAR * szSqlState Output SQLSTATE as null-terminated string. For a list of
SQLSTATE values, see Appendix A “INFORMIX-
CLI Error Codes.”

SDWORD FAR * pfNativeError Output Native error code (specific to the data source).

UCHAR FAR * szErrorMsg Output Pointer to storage for the error message text.

SWORD cbErrorMsgMax Input Maximum length of the szErrorMsg buffer. This
value must be less than or equal to
SQL_MAX_MESSAGE_LENGTH – 1.

SWORD FAR * pcbErrorMsg Output Pointer to the total number of bytes (excluding the
null-termination byte) available to return in
szErrorMsg. If the number of bytes available to
return is greater than or equal to cbErrorMsgMax,
the error message text in szErrorMsg is truncated to
cbErrorMsgMax – 1 bytes.
13-108 INFORMIX-CLI Programmer’s Manual

SQLError
Diagnostics
SQLError does not post error values for itself. SQLError returns
SQL_NO_DATA_FOUND when it cannot retrieve any error information (in
which case szSqlState equals 00000). If SQLError cannot access error values for
any reason that would normally return SQL_ERROR, SQLError returns
SQL_ERROR but does not post any error values. If the buffer for the error
message is too short, SQLError returns SQL_SUCCESS_WITH_INFO but still
does not return a SQLSTATE value for SQLError.

To determine that a truncation occurred in the error message, an application
can compare cbErrorMsgMax to the actual length of the message text written
to pcbErrorMsg.

Usage
An application typically calls SQLError when a previous call to an
INFORMIX-CLI function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR.
However, any INFORMIX-CLI function can post zero or more errors each time
that it is called, so an application can call SQLError after any INFORMIX-CLI
function call.

SQLError retrieves an error from the data structure associated with the
rightmost non-null handle argument. An application requests error infor-
mation, as follows:

■ To retrieve errors associated with an environment, the application
passes the corresponding henv and includes SQL_NULL_HDBC and
SQL_NULL_HSTMT in hdbc and hstmt, respectively. The driver returns
the error status of the INFORMIX-CLI function most recently called
with the same henv.

■ To retrieve errors associated with a connection, the application
passes the corresponding hdbc plus an hstmt equal to
SQL_NULL_HSTMT. In such a case, the driver ignores the henv
argument. The driver returns the error status of the INFORMIX-CLI
function most recently called with the hdbc.
INFORMIX-CLI Function Reference 13-109

SQLError
■ To retrieve errors associated with a statement, an application passes
the corresponding hstmt. If the call to SQLError contains a valid
hstmt, the driver ignores the hdbc and henv arguments. The driver
returns the error status of the INFORMIX-CLI function most recently
called with the hstmt.

■ To retrieve multiple errors for a function call, an application calls
SQLError multiple times. For each error, the driver returns
SQL_SUCCESS and removes that error from the list of available errors.

When no additional information for the rightmost non-null handle remains,
SQLError returns SQL_NO_DATA_FOUND. In this case, szSqlState equals
00000 (Success), pfNativeError is undefined, pcbErrorMsg equals 0, and
szErrorMsg contains a single null-termination byte (unless cbErrorMsgMax
equals 0).

The driver manager stores error information in its henv, hdbc, and hstmt
structures. Similarly, the driver stores error information in its henv, hdbc, and
hstmt structures. When the application calls SQLError, the driver manager
checks if any errors exist in its structure for the specified handle. If errors exist
for the specified handle, it returns the first error; if no errors exist, it calls
SQLError in the driver.

The driver manager can store up to 64 errors with an henv and its associated
hdbcs and hstmts. When this limit is reached, the driver manager discards any
subsequent errors posted on the henv, hdbcs, or hstmts of the driver manager.
The number of errors that a driver can store is driver dependent.

An error is removed from the structure associated with a handle when
SQLError is called for that handle and returns the error. All errors stored for
a specific handle are removed when the handle is used in a subsequent
function call. For example, errors on an hstmt that were returned by
SQLExecDirect are removed when SQLExecDirect or SQLTables is called
with that hstmt. The errors stored on a specific handle are not removed as the
result of a call to a function using an associated handle of a different type. For
example, errors on an hdbc that were returned by SQLNativeSql are not
removed when SQLError or SQLExecDirect is called with an hstmt associated
with that hdbc.

For more information about error codes, see Appendix A.
13-110 INFORMIX-CLI Programmer’s Manual

SQLExecDirect
Related Functions
None.

SQLExecDirect
SQLExecDirect executes a preparable statement, using the current values of
the parameter-marker variables if any parameters exist in the statement.
SQLExecDirect is the fastest way to submit an SQL statement for one-time
execution.

Syntax
RETCODE SQLExecDirect(hstmt, szSqlStr, cbSqlStr)

The SQLExecDirect function uses the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle

UCHAR FAR * szSqlStr Input SQL statement to be executed

SDWORD cbSqlStr Input Length of szSqlStr

Core
INFORMIX-CLI Function Reference 13-111

SQLExecDirect
Diagnostics
When SQLExecDirect returns either SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLExecDirect and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The argument szSqlStr contained an SQL
statement that contained a character or binary
parameter or literal, and the value exceeded the
maximum length of the associated table
column.

The argument szSqlStr contained an SQL
statement that contained a numeric parameter
or literal, and the fractional part of the value was
truncated.

The argument szSqlStr contained an SQL
statement that contained a date or time
parameter or literal, and a time-stamp value
was truncated.

01006 Privilege not
revoked

The argument szSqlStr contained a REVOKE
statement, and the user did not have the
specified privilege (function returns
SQL_SUCCESS_WITH_INFO).

01S03 No rows updated
or deleted

The argument szSqlStr contained a positioned
UPDATE or DELETE statement, and no rows were
updated or deleted (function returns
SQL_SUCCESS_WITH_INFO).

 (1 of 6)
13-112 INFORMIX-CLI Programmer’s Manual

SQLExecDirect
01S04 More than one
row updated or
deleted

The argument szSqlStr contained a positioned
UPDATE or DELETE statement, and more than
one row was updated or deleted (function
returns SQL_SUCCESS_WITH_INFO).

07001 Wrong number of
parameters

The number of parameters specified in
SQLBindParameter was less than the number of
parameters in the SQL statement contained in
the argument szSqlStr.

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

21S01 Insert value list
does not match
column list.

The argument szSqlStr contained an INSERT
statement, and the number of values to be
inserted did not match the degree of the derived
table.

21S02 Degree of
derived table
does not match
column list.

The argument szSqlStr contained a CREATE
VIEW statement, and the number of names
specified is not the same degree as the derived
table defined by the query specification.

22003 Numeric value
out of range

The argument szSqlStr contained an SQL
statement that contained a numeric parameter
or literal, and the value caused the whole (as
opposed to fractional) part of the number to be
truncated when assigned to the associated table
column.

22005 Error in
assignment

The argument szSqlStr contained an SQL
statement that contained a parameter or literal,
and the value was incompatible with the data
type of the associated table column.

22008 Datetime field
overflow

The argument szSqlStr contained an SQL
statement that contained a date, time, or time-
stamp parameter or literal, and the value was,
respectively, an invalid date, time, or time
stamp.

SQLSTATE Error Description

 (2 of 6)
INFORMIX-CLI Function Reference 13-113

SQLExecDirect
22012 Division by zero The argument szSqlStr contained an SQL
statement that contained an arithmetic
expression that caused division by zero.

23000 Integrity-
constraint
violation

The argument szSqlStr contained an SQL
statement that contained a parameter or literal.
The parameter value was NULL for a column
defined as NOT NULL in the associated table
column, a duplicate value was supplied for a
column constrained to contain only unique
values, or some other integrity constraint was
violated.

24000 Invalid cursor
state

A cursor was already opened on the statement
handle.

The argument szSqlStr contained a positioned
UPDATE or DELETE statement, but the cursor
was positioned before the start of the result set
or after the end of the result set.

34000 Invalid cursor
name

The argument szSqlStr contained a positioned
UPDATE or DELETE statement, but the cursor
referenced by the statement being executed was
not open.

37000 Syntax error or
access violation

The argument szSqlStr contained an SQL
statement that was not preparable or contained
a syntax error.

40001 Serialization
failure

The transaction to which the SQL statement
contained in the argument szSqlStr belonged
was terminated to prevent deadlock.

42000 Syntax error or
access violation

The user did not have permission to execute the
SQL statement contained in the argument
szSqlStr.

S0001 Base table or
view already
exists.

The argument szSqlStr contained a CREATE
TABLE or CREATE VIEW statement, but the table
name or view name specified already exists.

SQLSTATE Error Description

 (3 of 6)
13-114 INFORMIX-CLI Programmer’s Manual

SQLExecDirect
S0002 Table or view not
found

The argument szSqlStr contained a DROP TABLE
or a DROP VIEW statement, but the specified
table name or view name did not exist.

The argument szSqlStr contained an ALTER
TABLE statement, but the specified table name
did not exist.

The argument szSqlStr contained a CREATE
VIEW statement, but a table name or view name
defined by the query specification did not exist.

The argument szSqlStr contained a CREATE
INDEX statement, but the specified table name
did not exist.

The argument szSqlStr contained a GRANT or
REVOKE statement, but the specified table name
or view name did not exist.

The argument szSqlStr contained a SELECT
statement, but a specified table name or view
name did not exist.

The argument szSqlStr contained a DELETE,
INSERT, or UPDATE statement, but the specified
table name did not exist

The argument szSqlStr contained a CREATE
TABLE statement, but a table specified in a
constraint (referencing a table other than the one
being created) did not exist.

S0011 Index already
exists.

The argument szSqlStr contained a CREATE
INDEX statement, but the specified index name
already existed.

S0012 Index not found The argument szSqlStr contained a DROP INDEX
statement, but the specified index name did not
exist.

SQLSTATE Error Description

 (4 of 6)
INFORMIX-CLI Function Reference 13-115

SQLExecDirect
S0021 Column already
exists.

The argument szSqlStr contained an ALTER
TABLE statement, but the column specified in
the ADD clause is not unique or identifies an
existing column in the base table.

S0022 Column not
found

The argument szSqlStr contained a CREATE
INDEX statement, but one or more of the column
names specified in the column list did not exist.

The argument szSqlStr contained a GRANT or
REVOKE statement, but a specified column
name did not exist.

The argument szSqlStr contained a SELECT,
DELETE, INSERT, or UPDATE statement, but a
specified column name did not exist.

The argument szSqlStr contained a CREATE
TABLE statement, but a column specified in a
constraint (referencing a table other than the one
being created) did not exist.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was defined.
The error message returned by SQLError in the
argument szErrorMsg describes the error and its
cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support execution or completion of the function.

S1008 Operation
canceled

The function was called, but before it completed
execution, SQLCancel was called on the hstmt
from a different thread in a multithreaded
application.

S1009 Invalid argument
value

(DM) The argument szSqlStr was a null pointer.

SQLSTATE Error Description

 (5 of 6)
13-116 INFORMIX-CLI Programmer’s Manual

SQLExecDirect
S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent for
all data-at-execution parameters or columns.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStr was less than or
equal to 0, but not equal to SQL_NTS.

A parameter value, set with SQLBindParameter,
was a null pointer and the parameter length
value was not 0, SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

A parameter value, set with SQLBindParameter,
was not a null pointer and the parameter length
value was less than 0, but was not SQL_NTS,
SQL_NULL_DATA, SQL_DATA_AT_EXEC, or less
than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

S1109 Invalid cursor
position

The argument szSqlStr contained a positioned
UPDATE or DELETE statement, but the cursor
was positioned (by SQLExtendedFetch) on a
row for which the value in the rgfRowStatus
array in SQLExtendedFetch was
SQL_ROW_DELETED or SQL_ROW_ERROR.

S1C00 Driver not
capable

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (6 of 6)
INFORMIX-CLI Function Reference 13-117

SQLExecDirect
Usage
The application calls SQLExecDirect to send an SQL statement to the data
source. The driver modifies the statement to use the form of SQL used by the
data source then submits it to the data source. In particular, the driver
modifies the escape clauses used to define ODBC-specific SQL. For a
description of SQL statement grammar, see Appendix B.

The application can include one or more parameter markers in the SQL
statement. To include a parameter marker, the application embeds a question
mark (?) into the SQL statement at the appropriate position.

If the SQL statement is a SELECT statement, and if the application called
SQLSetCursorName to associate a cursor with an hstmt, the driver uses the
specified cursor. Otherwise, the driver generates a cursor name.

If the data source is in manual-commit mode (requiring explicit transaction
initiation), and a transaction has not been initiated, the driver initiates a
transaction before it sends the SQL statement.

If an application uses SQLExecDirect to submit a COMMIT or ROLLBACK
statement, it is not interoperable between DBMS products. To commit or roll
back a transaction, call SQLTransact.

If SQLExecDirect encounters a data-at-execution parameter, it returns
SQL_NEED_DATA. The application sends the data using SQLParamData and
SQLPutData. For more information, see SQLBindParameter, SQLParamData,
SQLParamOptions, and SQLPutData.

Code Example
See SQLBindCol, SQLExtendedFetch, SQLGetData, and SQLProcedures.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing a prepared SQL statement SQLExecute
13-118 INFORMIX-CLI Programmer’s Manual

SQLExecDirect
Fetching a block of data or scrolling through a
result set

SQLExtendedFetch

Fetching a row of data SQLFetch

Returning a cursor name SQLGetCursorName

Fetching part or all of a column of data SQLGetData

Returning the next parameter to send data for SQLParamData

Preparing a statement for execution SQLPrepare

Sending parameter data at execution time SQLPutData

Setting a cursor name SQLSetCursorName

Setting a statement option SQLSetStmtOption

Executing a commit or rollback operation SQLTransact

For information about See
INFORMIX-CLI Function Reference 13-119

SQLExecute
SQLExecute
SQLExecute executes a prepared statement, using the current values of the
parameter-marker variables if any parameter markers exist in the statement.

Syntax
RETCODE SQLExecute(hstmt)

The SQLExecute statement accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLExecute returns either SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLExecute
and explains each value in the context of this function; the notation “(DM)”
precedes the description of each SQLSTATE returned by the driver manager.
The return code associated with each SQLSTATE value is SQL_ERROR unless
noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle

Core
13-120 INFORMIX-CLI Programmer’s Manual

SQLExecute
SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The prepared statement associated with the
hstmt contained a character or binary
parameter or literal, but the value exceeded the
maximum length of the associated table
column.

The prepared statement associated with the
hstmt contained a numeric parameter or literal,
but the fractional part of the value was
truncated.

The prepared statement associated with the
hstmt contained a date or time parameter or
literal, and a time-stamp value was truncated.

01006 Privilege not
revoked

The prepared statement associated with the
hstmt was REVOKE, but the user did not have
the specified privilege (function returns
SQL_SUCCESS_WITH_INFO).

01S03 No rows updated
or deleted

The prepared statement associated with the
hstmt was a positioned UPDATE or DELETE
statement, but no rows were updated or
deleted (function returns
SQL_SUCCESS_WITH_INFO).

01S04 More than one row
updated or deleted

The prepared statement associated with the
hstmt was a positioned UPDATE or DELETE
statement, and more than one row was
updated or deleted (function returns
SQL_SUCCESS_WITH_INFO).

07001 Wrong number of
parameters

The number of parameters specified in
SQLBindParameter was less than the number
of parameters in the prepared statement
associated with the hstmt.

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

 (1 of 4)
INFORMIX-CLI Function Reference 13-121

SQLExecute
22003 Numeric value out
of range

The prepared statement associated with the
hstmt contained a numeric parameter, and the
parameter value caused the whole (as opposed
to fractional) part of the number to be
truncated when assigned to the associated
table column.

22005 Error in
assignment

The prepared statement associated with the
hstmt contained a parameter, but the value was
incompatible with the data type of the
associated table column.

22008 Datetime field
overflow

The prepared statement associated with the
hstmt contained a date, time, or time-stamp
parameter or literal, and the value was an
invalid date, time, or time stamp, respectively.

22012 Division by zero The prepared statement associated with the
hstmt contained an arithmetic expression that
caused division by zero.

23000 Integrity
constraint
violation

The prepared statement associated with the
hstmt contained a parameter. The parameter
value was NULL for a column defined as NOT
NULL in the associated table column, a
duplicate value was supplied for a column
constrained to contain only unique values, or
some other integrity constraint was violated.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

The prepared statement associated with the
hstmt contained a positioned update or delete
statement, and the cursor was positioned
before the start of the result set or after the end
of the result set.

40001 Serialization
failure

The transaction to which the prepared
statement associated with the hstmt belonged
was terminated to prevent deadlock.

SQLSTATE Error Description

 (2 of 4)
13-122 INFORMIX-CLI Programmer’s Manual

SQLExecute
42000 Syntax error or
access violation

The user did not have permission to execute
the prepared statement associated with the
hstmt.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support executing or completing the
function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

(DM) The hstmt was not prepared. Either the
hstmt was not in an executed state, or a cursor
was open on the hstmt and SQLFetch or
SQLExtendedFetch had been called.

The hstmt was not prepared. It was in an
executed state, and either no result set was
associated with the hstmt or SQLFetch or
SQLExtendedFetch had not been called.

SQLSTATE Error Description

 (3 of 4)
INFORMIX-CLI Function Reference 13-123

SQLExecute
SQLExecute can return any SQLSTATE that can be returned by SQLPrepare
based on when the data source evaluates the SQL statement associated with
the hstmt.

S1090 Invalid string or
buffer length

A parameter value, set with
SQLBindParameter, was a null pointer, and the
parameter length value was not 0,
SQL_NULL_DATA, SQL_DATA_AT_EXEC, or less
than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

A parameter value, set with
SQLBindParameter, was not a null pointer, and
the parameter length value was less than0, but
was not SQL_NTS, SQL_NULL_DATA, or
SQL_DATA_AT_EXEC, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

S1109 Invalid cursor
position

The prepared statement was a positioned
UPDATE or DELETE statement, and the cursor
was positioned (by SQLExtendedFetch) on a
row for which the value in the rgfRowStatus
array in SQLExtendedFetch was
SQL_ROW_DELETED or SQL_ROW_ERROR.

S1C00 Driver not capable The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (4 of 4)
13-124 INFORMIX-CLI Programmer’s Manual

SQLExecute
Usage
SQLExecute executes a statement prepared by SQLPrepare. Once the
application processes or discards the results from a call to SQLExecute, the
application can call SQLExecute again with new parameter values.

To execute a SELECT statement more than once, the application must call
SQLFreeStmt with the SQL_CLOSE parameter before it reissues the SELECT
statement.

If the data source is in manual-commit mode (requiring explicit transaction
initiation), and a transaction has not already been initiated, the driver
initiates a transaction before it sends the SQL statement.

If an application uses SQLPrepare to prepare and SQLExecute to submit a
COMMIT or ROLLBACK statement, it is not interoperable between DBMS
products. To commit or roll back a transaction, call SQLTransact.

If SQLExecute encounters a data-at-execution parameter, it returns
SQL_NEED_DATA. The application sends the data using SQLParamData and
SQLPutData. For more information, see SQLBindParameter, SQLParamData,
SQLParamOptions, and SQLPutData.

Code Example
See SQLBindParameter SQLParamOptions, and SQLPutData.
INFORMIX-CLI Function Reference 13-125

SQLExecute
Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Freeing a statement handle SQLFreeStmt

Returning a cursor name SQLGetCursorName

Fetching part or all of a column of data SQLGetData

Returning the next parameter to send data for SQLParamData

Preparing a statement for execution SQLPrepare

Sending parameter data at execution time SQLPutData

Setting a cursor name SQLSetCursorName

Setting a statement option SQLSetStmtOption

Executing a commit or rollback operation SQLTransact
13-126 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
SQLExtendedFetch
ESQLExtendedFetch extends the functionality of SQLFetch in the following
ways:

■ It returns rowset data (one or more rows), in the form of an array, for
each bound column.

■ It scrolls through the result set according to the setting of a scroll-
type argument.

SQLExtendedFetch works in conjunction with SQLSetStmtOption.

To fetch one row of data at a time in a forward direction, an application
should call SQLFetch.

For more information about scrolling through result sets, see “Using Block
and Scrollable Cursors” on page 7-9.

Syntax
RETCODE SQLExtendedFetch(hstmt, fFetchType, irow, pcrow,
rgfRowStatus)

The SQLExtendedFetch function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle

UWORD fFetchType Input Type of fetch

SDWORD irow Input Number of the row to fetch

UDWORD FAR * pcrow Output Number of rows actually
fetched

UWORD FAR * rgfRowStatus Output An array of status values

Level 2
INFORMIX-CLI Function Reference 13-127

SQLExtendedFetch
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLExtendedFetch returns either SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLExtendedFetch and explains each value in the context of this function;
the notation “(DM)” precedes the description of each SQLSTATE returned by
the driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more columns
was truncated. String values are right
truncated. For numeric values, the fractional
part of number was truncated (function
returns SQL_SUCCESS_WITH_INFO).

01S01 Error in row An error occurred while fetching one or more
rows (function returns
SQL_SUCCESS_WITH_INFO).

07006 Restricted data
type attribute
violation

A data value could not be converted to the C
data type specified by fCType in SQLBindCol.

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

22002 Indicator value
required but not
supplied

If the column value for any bound column is
null, the INDICATOR_PTR field of the corre-
sponding descriptor record must not be a null
pointer.

 (1 of 4)
13-128 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
22003 Numeric value out
of range

Returning the numeric value (as numeric or
string) for one or more columns would have
caused the whole (as opposed to fractional)
part of the number to be truncated.

Returning the binary value for one or more
columns would have caused a loss of binary
significance.

For more information, see Appendix C.

22005 Error in
assignment

A zero-length string was inserted into a string
field, and the string was bound to a numeric
data type, so the string was converted to a
zero.

22008 Datetime field
overflow

An SQL_C_TIME, SQL_C_DATE, or
SQL_C_TIMESTAMP value was converted to an
SQL_CHAR data type, and the value was an
invalid date, time, or time stamp, respectively.

22012 Division by zero A value from an arithmetic expression was
returned which resulted in division by zero.

24000 Invalid cursor state The hstmt was in an executed state, but no
result set was associated with the hstmt.

40001 Serialization
failure

The transaction (in which the fetch was
executed) was terminated to prevent deadlock.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

SQLSTATE Error Description

 (2 of 4)
INFORMIX-CLI Function Reference 13-129

SQLExtendedFetch
S1002 Invalid column
number

A column number specified in the binding for
one or more columns was greater than the
number of columns in the result set.

Column 0 was bound with SQLBindCol and
the SQL_USE_BOOKMARKS statement option
was set to SQL_UB_OFF.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) The specified hstmt was not in an
executed state. The function was called
without first calling SQLExecDirect, SQLEx-
ecute, or a catalog function.

(DM) SQLExecute or SQLExecDirect, was
called for the hstmt and returned
SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution
parameters or columns.

(DM) SQLExtendedFetch was called for an
hstmt after SQLFetch was called and before
SQLFreeStmt was called with the SQL_CLOSE
option.

S1106 Fetch type out of
range

(DM) The value specified for the argument
fFetchType was invalid.

The value of the SQL_CURSOR_TYPE statement
option was SQL_CURSOR_FORWARD_ONLY
and the value of argument fFetchType was not
SQL_FETCH_NEXT.

SQLSTATE Error Description

 (3 of 4)
13-130 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
Usage
SQLExtendedFetch returns one rowset of data to the application. An appli-
cation cannot mix calls to SQLExtendedFetch and SQLFetch for the same
cursor.

An application specifies the number of rows in the rowset by calling SQLSet-
StmtOption with the SQL_ROWSET_SIZE statement option.

S1107 Row value out of
range

The value specified with the statement
option SQL_CURSOR_TYPE was
SQL_CURSOR_KEYSET_DRIVEN, but the value
specified with the SQL_KEYSET_SIZE statement
option was greater than 0 and less than the
value specified with the SQL_ROWSET_SIZE
statement option.

S1C00 Driver not capable The driver or data source does not support the
specified fetch type.

The driver or data source does not support the
conversion specified by the combination of the
fCType in SQLBindCol and the SQL data type of
the corresponding column. This error applies
only when the SQL data type of the column
was mapped to a driver-specific SQL data type.

The argument fFetchType was
SQL_FETCH_RESUME, and the driver supports
ODBC 2.0.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (4 of 4)
INFORMIX-CLI Function Reference 13-131

SQLExtendedFetch
Binding

If any columns in the result set have been bound with SQLBindCol, the driver
converts the data for the bound columns as necessary and stores it in the
locations bound to those columns. The result set can be bound in a column-
wise (the default) or row-wise fashion.

Column-Wise Binding

To bind a result set in column-wise fashion, an application specifies
SQL_BIND_BY_COLUMN for the SQL_BIND_TYPE statement option; this is the
default value.

To bind each column

1. The application allocates an array of data-storage buffers. The array
has as many elements as the rowset has rows, plus an additional
element if the application searches for key values or appends new
rows of data. The size of each buffer is the maximum size of the C
data that can be returned for the column. For example, when the C
data type is SQL_C_DEFAULT, the size of each buffer is the column
length. When the C data type is SQL_C_CHAR, the size of each buffer
is the display size of the data. For more information, see “Converting
Data from SQL to C Data Types” on page C-13 and“Precision, Scale,
Length, and Display Size” on page C-8.

2. The application allocates an array of SDWORDs to hold the number
of bytes available to return for each row in the column. The array has
as many elements as the rowset has rows.

3. The application calls SQLBindCol:

■ The rgbValue argument specifies the address of the data-storage
array.

■ The cbValueMax argument specifies the size of each buffer in the
data-storage array.

■ The pcbValue argument specifies the address of the number-of-
bytes array.
13-132 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
When the application calls SQLExtendedFetch, the driver retrieves the data
and the number of bytes that are available to return and stores them in the
buffers that are allocated by the application:

■ For each bound column, the driver stores the data in the rgbValue
buffer bound to the column. It stores the first row of data at the start
of the buffer and each subsequent row of data at an offset of cbVal-
ueMax bytes from the data for the previous row.

■ For each bound column, the driver stores the number of bytes that
are available to return in the pcbValue buffer that is bound to the
column. This is the number of bytes available before calling SQLEx-
tendedFetch. (If the number of bytes available to return cannot be
determined in advance, the driver sets pcbValue to SQL_NO_TOTAL.
If the data for the column is NULL, the driver sets pcbValue to
SQL_NULL_DATA.) It stores the number of bytes available to return
for the first row at the start of the buffer and the number of bytes
available to return for each subsequent row at an offset of
sizeof(SDWORD) from the value for the previous row.

Row-Wise Binding

To bind a result set in row-wise fashion, an application must specify the
SQL_BIND_TYPE statement option for SQLSetStmtOption.

To bind a result set in row-wise fashion

1. The application declares a structure that can hold a single row of
retrieved data and the associated data lengths. For each bound
column, the structure contains one field for the data and one
SDWORD field for the number of bytes that are available to return.
The size of the data field is the maximum size of the C data that can
be returned for the column.

2. The application calls SQLSetStmtOption with fOption set to
SQL_BIND_TYPE and vParam set to the size of the structure.

3. The application allocates an array of these structures. The array has
as many elements as the rowset has rows, plus an additional element
if the application searches for key values or appends new rows of
data.
INFORMIX-CLI Function Reference 13-133

SQLExtendedFetch
4. The application calls SQLBindCol for each column to be bound:

■ The rgbValue argument specifies the address of the data field of
the column in the first array element.

■ The cbValueMax argument specifies the size of the data field of
the column.

■ The pcbValue argument specifies the address of the number-of-
bytes field of the column in the first array element.

When the application calls SQLExtendedFetch, the driver retrieves the data
and the number of bytes that are available to return and stores them in the
buffers that are allocated by the application:

■ For each bound column, the driver stores the first row of data at the
address specified by rgbValue for the column and each subsequent
row of data at an offset of vParam bytes from the data for the previous
row.

■ For each bound column, the driver stores the number of bytes that
are available to return for the first row at the address specified by
pcbValue and the number of bytes that are available to return for each
subsequent row at an offset of vParam bytes from the value for the
previous row. This is the number of bytes that are available prior to
calling SQLExtendedFetch. (If the number of bytes that are available
to return cannot be determined in advance, the driver sets pcbValue
to SQL_NO_TOTAL. If the data for the column is NULL, the driver sets
pcbValue to SQL_NULL_DATA.)

Positioning the Cursor

The following operations require a cursor position:

■ Positioned update and delete statements

■ Calls to SQLGetData

Before the application executes a positioned update, a delete statement, or a
call to SQLGetData, it must position the cursor by calling SQLExtendedFetch
to retrieve a rowset; the cursor points to the first row in the rowset.
13-134 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
The following table shows the rowset and code returned when the appli-
cation requests different rowsets.

For example, suppose a result set has 100 rows, and the rowset size is 5. The
following table shows the rowset and code returned by SQLExtendedFetch
for different values of irow when the fetch type is SQL_FETCH_RELATIVE.

Requested Rowset Return Code Cursor Position Returned Rowset

Before start of
result set

SQL_NO_DATA_FOUND Before start of result
set

None. The contents of the rowset
buffers are undefined.

Overlaps start of
result set

SQL_SUCCESS Row 1 of rowset First rowset in result set.

Within result set SQL_SUCCESS Row 1 of rowset Requested rowset.

Overlaps end of
result set

SQL_SUCCESS Row 1 of rowset For rows in the rowset that
overlap the result set, data is
returned.

For rows in the rowset outside the
result set, the contents of the
rgbValue and pcbValue buffers are
undefined, and the rgfRowStatus
array contains
SQL_ROW_NOROW.

After end of result
set

SQL_NO_DATA_FOUND After end of result
set

None. The contents of the rowset
buffers are undefined.

Current
Rowset irow Return Code New Rowset

1 to 5 –5 SQL_NO_DATA_FOUND None.

1 to 5 –3 SQL_SUCCESS 1 to 5.

96 to 100 5 SQL_NO_DATA_FOUND None.

96 to 100 3 SQL_SUCCESS 99 and 100. For rows 3, 4, and 5 in
the rowset, the rgfRowStatusArray
is set to SQL_ROW_NOROW.
INFORMIX-CLI Function Reference 13-135

SQLExtendedFetch
Before SQLExtendedFetch is called the first time, the cursor is positioned
before the start of the result set.

For the purpose of moving the cursor, deleted rows (that is, rows with an
entry in the rgfRowStatus array of SQL_ROW_DELETED) are treated no differ-
ently than other rows. For example, calling SQLExtendedFetch with
fFetchType set to SQL_FETCH_ABSOLUTE and irow set to 15 returns the rowset
starting at row 15, even if the rgfRowStatus array for row 15 is
SQL_ROW_DELETED.

Processing Errors

If an error occurs that pertains to the entire rowset, such as SQLSTATE S1T00
(Time-out expired), the driver returns SQL_ERROR and the appropriate
SQLSTATE. The contents of the rowset buffers are undefined, and the cursor
position is unchanged.

If an error occurs that pertains to a single row, the driver performs the
following actions:

■ Sets the element in the rgfRowStatus array for the row to
SQL_ROW_ERROR

■ Posts SQLSTATE 01S01 (Error in row) in the error queue

■ Posts zero or more additional SQLSTATE values for the error after
SQLSTATE 01S01 (Error in row) in the error queue

After it processes the error or warning, the driver continues the operation for
the remaining rows in the rowset and returns SQL_SUCCESS_WITH_INFO.
Thus, for each error that pertains to a single row, the error queue contains
SQLSTATE 01S01 (Error in row) followed by zero or more additional
SQLSTATEs.

After the driver processes the error, it fetches the remaining rows in the
rowset and returns SQL_SUCCESS_WITH_INFO. Thus, for each row that
returns an error, the error queue contains SQLSTATE 01S01 (Error in row)
followed by zero or more additional SQLSTATE values.
13-136 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
If the rowset contains rows that have already been fetched, the driver is not
required to return SQLSTATE values for errors that occurred when the rows
were first fetched. However, it is required to return SQLSTATE 01S01 (Error in
row) for each row in which an error originally occurred and to return
SQL_SUCCESS_WITH_INFO. For example, a static cursor that maintains a
cache might cache row-status information (so it can determine which rows
contain errors) but might not cache the SQLSTATE associated with those
errors.

Error rows do not affect relative cursor movements. For example, suppose
the result set size is 100, and the rowset size is 10. If the current rowset is rows
11 through 20 and the element in the rgfRowStatus array for row 11 is
SQL_ROW_ERROR, calling SQLExtendedFetch with the SQL_FETCH_NEXT
fetch type still returns rows 21 through 30.

If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated),
it returns warnings that apply to the entire rowset or to unknown rows in the
rowset before it returns error information that applies to specific rows. It
returns warnings for specific rows along with any other error information
about those rows.

fFetchType Argument

The fFetchType argument specifies how to move through the result set. It is
one of the following values:

■ SQL_FETCH_NEXT

■ SQL_FETCH_FIRST

■ SQL_FETCH_LAST

■ SQL_FETCH_PRIOR

■ SQL_FETCH_ABSOLUTE

■ SQL_FETCH_RELATIVE

If the value of the SQL_CURSOR_TYPE statement option is
SQL_CURSOR_FORWARD_ONLY, the fFetchType argument must be
SQL_FETCH_NEXT.

Important: If an application specifies SQL_FETCH_RESUME, the driver manager
returns SQLSTATE S1C00 (Driver not capable). The SQL_FETCH_RESUME fetch
type is obsolete in ODBC 2.x drivers.
INFORMIX-CLI Function Reference 13-137

SQLExtendedFetch
Moving by Row Position

SQLExtendedFetch supports the following values of the fFetchType argument
to move the cursor relative to the current rowset.

It supports the following values of the fFetchType argument to move the
cursor to an absolute position in the result set.

fFetchType Argument Action

SQL_FETCH_NEXT The driver returns the next rowset. If the cursor is
positioned before the start of the result set, this is equiv-
alent to SQL_FETCH_FIRST.

SQL_FETCH_PRIOR The driver returns the prior rowset. If the cursor is
positioned after the end of the result set, this is equivalent
to SQL_FETCH_LAST.

SQL_FETCH_RELATIVE The driver returns the rowset irow rows from the start of
the current rowset. If irow equals 0, the driver refreshes
the current rowset. If the cursor is positioned before the
start of the result set and irow is greater than 0, or if the
cursor is positioned after the end of the result set and irow
is less than 0, this is equivalent to SQL_FETCH_ABSOLUTE.

fFetchType Argument Action

SQL_FETCH_FIRST The driver returns the first rowset in the result set.

SQL_FETCH_LAST The driver returns the last complete rowset in the result
set.

SQL_FETCH_ABSOLUTE If irow is greater than 0, the driver returns the rowset
starting at row irow.

If irow equals 0, the driver returns
SQL_NO_DATA_FOUND, and the cursor is positioned
before the start of the result set.

If irow is less than 0, the driver returns the rowset starting
at row n+irow+1, where n is the number of rows in the
result set. For example, if irow is –1, the driver returns the
rowset that starts at the last row in the result set. If the
result set size is 10 and irow is –10, the driver returns the
rowset that starts at the first row in the result set.
13-138 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
irow Argument

For the SQL_FETCH_ABSOLUTE fetch type, SQLExtendedFetch returns the
rowset that starts at the row number specified by the irow argument.

For the SQL_FETCH_RELATIVE fetch type, SQLExtendedFetch returns the
rowset that starts irow rows from the first row in the current rowset.

The irow argument is ignored for the SQL_FETCH_NEXT, SQL_FETCH_PRIOR,
SQL_FETCH_FIRST, and SQL_FETCH_LAST fetch types.

rgfRowStatus Argument

In the rgfRowStatus array, SQLExtendedFetch returns any changes in status to
each row since it was last retrieved from the data source. Rows might be
unchanged (SQL_ROW_SUCCESS), updated (SQL_ROW_UPDATED), deleted
(SQL_ROW_DELETED), added (SQL_ROW_ADDED), or unretrievable due to
an error (SQL_ROW_ERROR). For static cursors, this information is available
for all rows. For keyset, mixed, and dynamic cursors, this information is
available only for rows in the keyset; the driver does not save data outside
the keyset and cannot compare the newly retrieved data to anything.

Important: The Informix driver cannot detect changes to data.

The number of elements must equal the number of rows in the rowset (as defined by
the SQL_ROWSET_SIZE statement option). If the number of rows fetched is less than
the number of elements in the status array, the driver sets remaining status elements
to SQL_ROW_NOROW.

For keyset, mixed, and dynamic cursors, if a key value is updated, the row of
data is considered to have been deleted, and a new row is added.
INFORMIX-CLI Function Reference 13-139

SQLExtendedFetch
Code Example
The following two examples show how an application could use column-
wise or row-wise binding to bind storage locations to the same result set.

Column-Wise Binding

In the following example, an application declares storage locations for
column-wise bound data and the returned numbers of bytes. Because
column-wise binding is the default, there is no need to request column-wise
binding with SQLSetStmtOption, as in the row-wise binding example.
However, the application does call SQLSetStmtOption to specify the number
of rows in the rowset.

The application then executes a SELECT statement to return a result set of the
employee names and birthdays, which is sorted by birthday. It calls
SQLBindCol to bind the columns of data, passing the addresses of storage
locations for both the data and the returned numbers of bytes. Finally, the
application fetches the rowset data with SQLExtendedFetch and prints each
employee’s name and birthday.

#define ROWS 100
#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[ROWS][NAME_LEN], szBirthday[ROWS][BDAY_LEN];
SWORD sAge[ROWS];
SDWORD cbName[ROWS], cbAge[ROWS], cbBirthday[ROWS];

UDWORD crow, irow;
UWORD rgfRowStatus[ROWS];

SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);
SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);
SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWS);
retcode = SQLExecDirect(hstmt,

 "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
 SQL_NTS);

if (retcode = = SQL_SUCCESS) {
SQLBindCol(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, cbName);
SQLBindCol(hstmt, 2, SQL_C_SSHORT, sAge, 0, cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN,
 cbBirthday);

/* Fetch the rowset data and print each row. */
13-140 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
/* On an error, display a message and exit. */

while (TRUE) {
retcode = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 1, &crow,

 rgfRowStatus);
if (retcode = = SQL_ERROR || retcode = = SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

for (irow = 0; irow < crow; irow++) {
if (rgfRowStatus[irow] != SQL_ROW_DELETED &&

rgfRowStatus[irow] != SQL_ROW_ERROR)
fprintf(out, "%-*s %-2d %*s",

 NAME_LEN-1, szName[irow], sAge[irow],

 BDAY_LEN-1, szBirthday[irow]);
}

} else {
break;

}
}

}

Row-Wise Binding

In the following example, an application declares an array of structures to
hold row-wise bound data and the returned numbers of bytes. Using SQLSet-
StmtOption, it requests row-wise binding and passes the size of the structure
to the driver. The driver uses this size to find successive storage locations in
the array of structures. Using SQLSetStmtOption, it specifies the size of the
rowset.
INFORMIX-CLI Function Reference 13-141

SQLExtendedFetch
The application then executes a SELECT statement to return a result set of the
employee names and birthdays, which is sorted by birthday. It calls
SQLBindCol to bind the columns of data, passing the addresses of storage
locations for both the data and the returned numbers of bytes. Finally, the
application fetches the rowset data with SQLExtendedFetch and prints each
employee’s name and birthday.

#define ROWS 100
#define NAME_LEN 30
#define BDAY_LEN 11

typedef struct {
UCHAR szName[NAME_LEN];
SDWORD cbName;
SWORD sAge;
SDWORD cbAge;
UCHAR szBirthday[BDAY_LEN];
SDWORD cbBirthday;
} EmpTable;

EmpTable rget[ROWS];
UDWORD crow, irow;
UWORD rgfRowStatus[ROWS];

SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(EmpTable));
SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);
SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);
SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWS);
retcode = SQLExecDirect(hstmt,
 "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
 SQL_NTS);

if (retcode = = SQL_SUCCESS) {
SQLBindCol(hstmt, 1, SQL_C_CHAR, rget[0].szName, NAME_LEN,
 &rget[0].cbName);
SQLBindCol(hstmt, 2, SQL_C_SSHORT, &rget[0].sAge, 0,
 &rget[0].cbAge);
SQLBindCol(hstmt, 3, SQL_C_CHAR, rget[0].szBirthday, BDAY_LEN,
 &rget[0].cbBirthday);

/* Fetch the rowset data and print each row. */
/* On an error, display a message and exit. */

while (TRUE) {
retcode = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 1, &crow,
 rgfRowStatus);
if (retcode = = SQL_ERROR || retcode = = SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

for (irow = 0; irow < crow; irow++) {
if (rgfRowStatus[irow] != SQL_ROW_DELETED &&

rgfRowStatus[irow] != SQL_ROW_ERROR)
13-142 INFORMIX-CLI Programmer’s Manual

SQLExtendedFetch
fprintf(out, "%-*s %-2d %*s",
 NAME_LEN-1, rget[irow].szName, rget[irow].sAge,
 BDAY_LEN-1, rget[irow].szBirthday);

}
} else {

break;
}

}
}

Related Function
The following table shows where to find information about related functions.

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a
result set

SQLDescribeCol

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of result set columns SQLNumResultCols

Setting a statement option SQLSetStmtOption
INFORMIX-CLI Function Reference 13-143

13-144 INFORMIX-CLI Programmer’s Manual

SQLFetch
SQLFetch
SQLFetch fetches a row of data from a result set. The driver returns data for
all columns that were bound to storage locations with SQLBindCol.

Syntax
RETCODE SQLFetch(hstmt)

The SQLFetch function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle

Core

SQLFetch
Diagnostics
When SQLFetch returns either SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLFetch
and explains each value in the context of this function; the notation “(DM)”
precedes the description of each SQLSTATE returned by the driver manager.
The return code associated with each SQLSTATE value is SQL_ERROR unless
noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more columns
was truncated. String values are right
truncated. For numeric values, the fractional
part of number was truncated (function
returns SQL_SUCCESS_WITH_INFO).

07006 Restricted data-
type attribute
violation

The data value could not be converted to the
data type specified by fCType in SQLBindCol.

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

22002 Indicator value
required but not
supplied

If the column value for any bound column is
null, the INDICATOR_PTR field of the corre-
sponding descriptor record must not be a null
pointer.

 (1 of 3)
INFORMIX-CLI Function Reference 13-145

SQLFetch
22003 Numeric value out
of range

Returning the numeric value (as numeric or
string) for one or more columns would have
caused the whole (as opposed to fractional)
part of the number to be truncated.

Returning the binary value for one or more
columns would have caused a loss of binary
significance.

For more information, see “Converting Data
from SQL to C Data Types” on page C-13.

22005 Error in
assignment

A zero-length string was inserted into a string
field, and the string was bound to a numeric
data type, so the string was converted to a
zero.

22008 Datetime field
overflow

An SQL_C_TIME, SQL_C_DATE, or
SQL_C_TIMESTAMP value was converted to an
SQL_CHAR data type, and the value was an
invalid date, time, or time stamp, respectively.

22012 Division by zero A value from an arithmetic expression was
returned that resulted in division by zero.

24000 Invalid cursor state The hstmt was in an executed state, but no
result set was associated with the hstmt.

40001 Serialization
failure

The transaction in which the fetch was
executed was terminated to prevent deadlock.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support executing or completing the
function.

SQLSTATE Error Description

 (2 of 3)
13-146 INFORMIX-CLI Programmer’s Manual

SQLFetch
S1002 Invalid column
number

A column number specified in the binding for
one or more columns was greater than the
number of columns in the result set.

A column number specified in the binding for
a column was 0..

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) The specified hstmt was not in an
executed state. The function was called
without first calling SQLExecDirect, SQLEx-
ecute, or a catalog function.

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

(DM) SQLExtendedFetch was called for an
hstmt after SQLFetch was called and before
SQLFreeStmt was called with the SQL_CLOSE
option.

S1C00 Driver not capable The driver or data source does not support the
conversion specified by the combination of the
fCType in SQLBindCol and the SQL data type of
the corresponding column. This error applies
only when the SQL data type of the column
was mapped to a driver-specific SQL data type.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (3 of 3)
INFORMIX-CLI Function Reference 13-147

SQLFetch
Usage
SQLFetch positions the cursor on the next row of the result set. Before
SQLFetch is called the first time, the cursor is positioned before the start of
the result set. When the cursor is positioned on the last row of the result set,
SQLFetch returns SQL_NO_DATA_FOUND, and the cursor is positioned after
the end of the result set. An application cannot mix calls to SQLExtended-
Fetch and SQLFetch for the same cursor.

If the application called SQLBindCol to bind columns, SQLFetch stores data
into the locations specified by the calls to SQLBindCol. If the application does
not call SQLBindCol to bind any columns, SQLFetch does not return any
data; it moves the cursor to the next row. An application can call SQLGetData
to retrieve data that is not bound to a storage location.

The driver manages cursors during the fetch operation and places each value
of a bound column into the associated storage. The driver follows these
guidelines when it performs a fetch operation:

■ SQLFetch accesses column data in left-to-right order.

■ After each fetch, pcbValue (specified in SQLBindCol) contains the
number of bytes that are available to return for the column. This is
the number of bytes that are available prior to calling SQLFetch. If
the number of bytes that are available to return cannot be deter-
mined in advance, the driver sets pcbValue to SQL_NO_TOTAL. (If
SQL_MAX_LENGTH has been specified with SQLSetStmtOption and
the number of bytes that are available to return is greater than
SQL_MAX_LENGTH, pcbValue contains SQL_MAX_LENGTH.)

Tip: The SQL_MAX_LENGTH statement option is intended to reduce network traffic
and might not be supported by all drivers. To guarantee that data is truncated, an
application should allocate a buffer of the desired size and specify this size in the
cbValueMax argument.

■ If rgbValue cannot hold the entire result, the driver stores part of the
value and returns SQL_SUCCESS_WITH_INFO. A subsequent call to
SQLError indicates that a truncation occurred. The application can
compare pcbValue to cbValueMax (specified in SQLBindCol) to
determine which column or columns were truncated. If pcbValue is
greater than or equal to cbValueMax, then truncation occurred.

■ If the data value for the column is NULL, the driver stores
SQL_NULL_DATA in pcbValue.
13-148 INFORMIX-CLI Programmer’s Manual

SQLFetch
SQLFetch is valid only after a call that returns a result set.

For information about conversions allowed by SQLBindCol and
SQLGetData, see “Converting Data from SQL to C Data Types” on page C-13.

Code Example
See SQLBindCol, SQLColumns, SQLGetData, and SQLProcedures.

Related Functions.

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a
result set

SQLDescribeCol

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch

Freeing a statement handle SQLFreeStmt

Fetching part or all of a column of data SQLGetData

Returning the number of result set columns SQLNumResultCols

Preparing a statement for execution SQLPrepare
INFORMIX-CLI Function Reference 13-149

SQLFreeConnect
SQLFreeConnect
SQLFreeConnect releases a connection handle and frees all memory
associated with the handle.

Syntax
RETCODE SQLFreeConnect(hdbc)

The SQLFreeConnect function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle.

Core
13-150 INFORMIX-CLI Programmer’s Manual

SQLFreeConnect
Diagnostics
When SQLFreeConnect returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLFree-
Connect and explains each value in the context of this function; the notation
“(DM)” precedes the description of each SQLSTATE returned by the driver
manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

Usage
Prior to calling SQLFreeConnect, an application must call SQLDisconnect for
the hdbc. Otherwise, SQLFreeConnect returns SQL_ERROR, and the hdbc
remains valid. SQLDisconnect automatically drops any hstmts open on the
hdbc.

Code Example
See SQLBrowseConnect and SQLConnect.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1010 Function-
sequence error

(DM) The function was called prior to calling
SQLDisconnect for the hdbc.
INFORMIX-CLI Function Reference 13-151

SQLFreeEnv
Related Functions

SQLFreeEnv
SQLFreeEnv frees the environment handle and releases all memory
associated with the environment handle.

Syntax
RETCODE SQLFreeEnv(henv)

The SQLFreeEnv function accepts the following argument.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

For information about See

Allocating a statement handle SQLAllocConnect

Connecting to a data source SQLConnect

Disconnecting from a data source SQLDisconnect

Connecting to a data source using a connection
string or dialog box

SQLDriverConnect

Freeing an environment handle SQLFreeEnv

Freeing a statement handle SQLFreeStmt

Type Argument Use Description

HENV henv Input Environment handle

Core
13-152 INFORMIX-CLI Programmer’s Manual

SQLFreeEnv
Diagnostics
When SQLFreeEnv returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLFreeEnv and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

Usage
Before an application calls SQLFreeEnv, it must call SQLFreeConnect for any
hdbc allocated under the henv. Otherwise, SQLFreeEnv returns SQL_ERROR
and the henv and any active hdbc remains valid.

When the driver manager processes the SQLFreeEnv function, it checks the
TraceAutoStop keyword in the ODBC section of the odbc.ini file. If the
keyword is set to 1, the driver manager disables tracing for all applications
and sets the Trace keyword in the ODBC section of the odbc.ini file to 0.

Code Example
See SQLBrowseConnect and SQLConnect.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was defined.
The error message returned by SQLError in the
argument szErrorMsg describes the error and its
cause.

S1010 Function-
sequence error

(DM) There was at least one hdbc in an allocated
or connected state. Call SQLDisconnect and
SQLFreeConnect for each hdbc before calling
SQLFreeEnv.
INFORMIX-CLI Function Reference 13-153

SQLFreeStmt
Related Functions

SQLFreeStmt
SQLFreeStmt stops processing associated with a specific hstmt, closes any
open cursors associated with the hstmt, discards pending results, and,
optionally, frees all resources associated with the statement handle.

Syntax
RETCODE SQLFreeStmt(hstmt, fOption)

The SQLFreeStmt function accepts the following arguments.

For information about See

Allocating an environment handle SQLAllocEnv

Freeing a connection handle SQLFreeConnect

Core
13-154 INFORMIX-CLI Programmer’s Manual

SQLFreeStmt
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fOption Input One of the following options:

SQL_CLOSE: Close the cursor
associated with hstmt (if one is
defined) and discard all pending
results. The application can reopen
this cursor later by executing a
SELECT statement again with the
same or different parameter values. If
no cursor is open, this option has no
effect for the application.

SQL_DROP: Release the hstmt, free all
resources associated with it, close the
cursor (if one is open), and discard all
pending rows. This option terminates
all access to the hstmt. The hstmt must
be reallocated to be reused.

SQL_UNBIND: Release all column
buffers bound by SQLBindCol for the
given hstmt.

SQL_RESET_PARAMS: Release all
parameter buffers set by SQLBindPa-
rameter for the given hstmt.
INFORMIX-CLI Function Reference 13-155

SQLFreeStmt
Diagnostics
When SQLFreeStmt returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLFreeStmt and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1092 Option type out of
range

(DM) The value specified for the argument
fOption was not:

SQL_CLOSE
SQL_DROP
SQL_UNBIND
SQL_RESET_PARAMS
13-156 INFORMIX-CLI Programmer’s Manual

SQLFreeStmt
Usage
An application can call SQLFreeStmt to terminate processing of a SELECT
statement with or without canceling the statement handle.

The SQL_DROP option frees all resources that are allocated by the
SQLAllocStmt function.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions

For information about See

Allocating a statement handle SQLAllocStmt

Canceling statement processing SQLCancel

Setting a cursor name SQLSetCursorName
INFORMIX-CLI Function Reference 13-157

SQLGetConnectOption
SQLGetConnectOption
SQLGetConnectOption returns the current setting of a connection option.

Syntax
RETCODE SQLGetConnectOption(hdbc, fOption, pvParam)

The SQLGetConnectOption function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fOption Input Option to retrieve.

PTR pvParam Output Value associated with fOption. Depending
on the value of fOption, a 32-bit integer
value or a pointer to a null-terminated
character string will be returned in
pvParam.

Level 1
13-158 INFORMIX-CLI Programmer’s Manual

SQLGetConnectOption
Diagnostics
When SQLGetConnectOption returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLGetConnectOption and explains each value in the context of this
function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) An fOption value was specified that
required an open connection.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1010 Function-
sequence error

(DM) SQLBrowseConnect was called for the
hdbc and returned SQL_NEED_DATA. This
function was called before SQLBrowseConnect
returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

S1092 Option type out of
range

(DM) The value specified for the argument
fOption was in the block of numbers reserved
for ODBC connection and statement options
but was not valid for the version of ODBC
supported by the driver.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fOption.
INFORMIX-CLI Function Reference 13-159

SQLGetConnectOption
Usage
For a list of options, see SQLSetConnectOption.

Important: When fOption specifies an option that returns a string, pvParam must
be a pointer to storage for the string. The maximum length of the string is
SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null-termination
byte).

Depending on the option, an application does not need to establish a
connection prior to calling SQLGetConnectOption. However, if
SQLGetConnectOption is called and the specified option does not have a
default and has not been set by a prior call to SQLSetConnectOption,
SQLGetConnnectOption returns SQL_NO_DATA_FOUND.

Although an application can set statement options using
SQLSetConnectOption, an application cannot use SQLGetConnectOption to
retrieve statement-option values; it must call SQLGetStmtOption to retrieve
the settings of statement options.

Related Functions

For information about See

Returning the setting of a statement option SQLGetStmtOption

Setting a connection option SQLSetConnectOption

Setting a statement option SQLSetStmtOption
13-160 INFORMIX-CLI Programmer’s Manual

SQLGetCursorName
SQLGetCursorName
SQLGetCursorName returns the cursor name associated with a specified
hstmt.

Syntax
RETCODE SQLGetCursorName(hstmt, szCursor, cbCursorMax,
pcbCursor)

The SQLGetCursorName function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szCursor Output Pointer to storage for the cursor
name.

SWORD cbCursorMax Input Length of szCursor.

SWORD FAR * pcbCursor Output Total number of bytes (excluding
the null termination byte) available
to return in szCursor. If the number
of bytes available to return is
greater than or equal to
cbCursorMax, the cursor name in
szCursor is truncated to
cbCursorMax – 1 bytes.

Core
INFORMIX-CLI Function Reference 13-161

SQLGetCursorName
Diagnostics
When SQLGetCursorName returns either SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLGetCursorName and explains each value in the context of this
function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szCursor was not large enough to
return the entire cursor name, so the cursor
name was truncated. The argument pcbCursor
contains the length of the untruncated cursor
name (function returns
SQL_SUCCESS_WITH_INFO).

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support executing or completing the
function.

 (1 of 2)
13-162 INFORMIX-CLI Programmer’s Manual

SQLGetCursorName
Usage
The only INFORMIX-CLI SQL statements that use a cursor name are
positioned update and delete (for example, UPDATE table-name ...WHERE
CURRENT OF cursor-name). If the application does not call SQLSetCur-
sorName to define a cursor name when a SELECT statement executes, the
driver generates a name that begins with the letters SQL_CUR and does not
exceed 18 characters.

SQLGetCursorName returns the name of a cursor regardless of whether the
name was created explicitly or implicitly.

A cursor name that is set either explicitly or implicitly remains set until the
hstmt with which it is associated is dropped, using SQLFreeStmt with the
SQL_DROP option.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1015 No cursor name
available

(DM) There was no open cursor on the hstmt,
and no cursor name had been set with
SQLSetCursorName.

S1090 Invalid string or
buffer length

(DM) The value specified in the argument
cbCursorMax was less than 0.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-163

SQLGetData
Related Functions

SQLGetData
SQLGetData returns result data for a single unbound column in the current
row. The application must call SQLFetch or SQLExtendedFetch to position
the cursor on a row of data before it calls SQLGetData. It is possible to use
SQLBindCol for some columns and use SQLGetData for others within the
same row. This function can be used to retrieve character or binary data
values in parts from a column with a character, binary, or data-source-specific
data type (for example, data from SQL_LONGVARBINARY or
SQL_LONGVARCHAR columns).

Syntax
RETCODE SQLGetData(hstmt, icol, fCType, rgbValue, cbValueMax,
pcbValue)

The SQLGetData function accepts the following arguments.

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Preparing a statement for execution SQLPrepare

Setting a cursor name SQLSetCursorName

Setting cursor scrolling options SQLSetScrollOptions

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD icol Input Column number of result data, ordered
sequentially left to right, starting at 1.

 (1 of 3)

Level 1
13-164 INFORMIX-CLI Programmer’s Manual

SQLGetData
SWORD fCType Input The C data type of the result data. This must
be one of the following values:

SQL_C_BINARY
SQL_C_BIT
SQL_C_CHAR
SQL_C_DATE
SQL_C_DEFAULT
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TIME
SQL_C_TIMESTAMP
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT

SQL_C_DEFAULT specifies that data be
converted to its default C data type.

For information about how data is
converted, see “Converting Data from SQL
to C Data Types” on page C-13.

PTR rgbValue Output Pointer to storage for the data.

SDWORD cbValueMax Input Maximum length of the rgbValue buffer. For
character data, rgbValue must also include
space for the null-termination byte.

For character and binary C data,
cbValueMax determines the amount of data
that can be received in a single call to
SQLGetData. For all other types of C data,
cbValueMax is ignored; the driver assumes
that the size of rgbValue is the size of the C
data type specified with fCType and returns
the entire data value. For more information
about length, see “Precision, Scale, Length,
and Display Size” on page C-8.

Type Argument Use Description

 (2 of 3)
INFORMIX-CLI Function Reference 13-165

SQLGetData
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

SDWORD
FAR *

pcbValue Output SQL_NULL_DATA, the total number of bytes
(excluding the null-termination byte for
character data) available to return in
rgbValue prior to the current call to
SQLGetData, or SQL_NO_TOTAL if the
number of available bytes cannot be deter-
mined.

For character data, if pcbValue is
SQL_NO_TOTAL or is greater than or equal
to cbValueMax, the data in rgbValue is
truncated to cbValueMax – 1 bytes and is
null-terminated by the driver.

For binary data, if pcbValue is
SQL_NO_TOTAL or is greater than
cbValueMax, the data in rgbValue is
truncated to cbValueMax bytes.

For all other data types, the value of
cbValueMax is ignored, and the driver
assumes the size of rgbValue is the size of the
C data type specified with fCType.

Type Argument Use Description

 (3 of 3)
13-166 INFORMIX-CLI Programmer’s Manual

SQLGetData
Diagnostics
When SQLGetData returns either SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLGetData and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated All the data for the specified column, icol,
could not be retrieved in a single call to the
function. The argument pcbValue contains the
length of the data that remains in the specified
column prior to the current call to SQLGetData
(function returns SQL_SUCCESS_WITH_INFO).
For more information on using multiple calls
to SQLGetData for a single column, see
“Usage” on page 13-171.

07006 Restricted data-
type attribute
violation

The data value cannot be converted to the C
data type specified by the argument fCType.

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

22002 Indicator value
required but not
supplied

If the column value is null, then StrLen_or_Ind
must not be a null pointer.

 (1 of 5)
INFORMIX-CLI Function Reference 13-167

SQLGetData
22003 Numeric value out
of range

Returning the numeric value (as numeric or
string) for the column would have caused the
whole (as opposed to fractional) part of the
number to be truncated.

Returning the binary value for the column
would have caused a loss of binary signifi-
cance.

For more information, see Appendix C.

22005 Error in
assignment

The data for the column was incompatible
with the data type into which it was to be
converted. For more information, see
Appendix C.

22008 Datetime-field
overflow

The data for the column was not a valid date,
time, or time-stamp value. For more infor-
mation, see Appendix C.

22012 Division by zero A value from an arithmetic expression was
returned that resulted in a division by zero.

24000 Invalid cursor state (DM) The hstmt was in an executed state, but
no result set was associated with the hstmt.

(DM) A cursor was open on the hstmt, but
SQLFetch or SQLExtendedFetch had not been
called.

A cursor was open on the hstmt and SQLFetch
or SQLExtendedFetch had been called, but the
cursor was positioned before the start of the
result set or after the end of the result set.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

SQLSTATE Error Description

 (2 of 5)
13-168 INFORMIX-CLI Programmer’s Manual

SQLGetData
S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1002 Invalid column
number

The value specified for the argument icol was
0, and SQLFetch was used to fetch the data.

The value specified for the argument icol was
0, and the SQL_USE_BOOKMARKS statement
option was set to SQL_UB_OFF.

The specified column was greater than the
number of result columns.

The specified column was bound through a
call to SQLBindCol. This description does not
apply to drivers that return the
SQL_GD_BOUND bitmask for the
SQL_GETDATA_EXTENSIONS option in
SQLGetInfo.

The specified column was at or before the last
bound column specified through SQLBindCol.
This description does not apply to drivers that
return the SQL_GD_ANY_COLUMN bitmask for
the SQL_GETDATA_EXTENSIONS option in
SQLGetInfo.

The application already called SQLGetData for
the current row. The column specified in the
current call was before the column specified in
the preceding call. This description does not
apply to drivers that return the
SQL_GD_ANY_ORDER bitmask for the
SQL_GETDATA_EXTENSIONS option in
SQLGetInfo.

S1003 Program type out
of range

(DM) The argument fCType was not a valid data
type or SQL_C_DEFAULT.

SQLSTATE Error Description

 (3 of 5)
INFORMIX-CLI Function Reference 13-169

SQLGetData
S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1009 Invalid argument
value

(DM) The argument rgbValue was a null
pointer.

S1010 Function-
sequence error

(DM) The specified hstmt was not in an
executed state. The function was called
without first calling SQLExecDirect,
SQLExecute, or a catalog function.

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbValueMax was less than 0.

S1109 Invalid cursor
position

The cursor was positioned (by SQLExtended-
Fetch) on a row for which the value in the
rgfRowStatus array in SQLExtendedFetch was
SQL_ROW_DELETED or SQL_ROW_ERROR.

SQLSTATE Error Description

 (4 of 5)
13-170 INFORMIX-CLI Programmer’s Manual

SQLGetData
Usage
With each call, the driver sets pcbValue to the number of bytes that are
available in the result column before the current call to SQLGetData. If
SQLSetStmtOption sets SQL_MAX_LENGTH and the total number of bytes
that are available on the first call is greater than SQL_MAX_LENGTH, the
available number of bytes is set to SQL_MAX_LENGTH.

The SQL_MAX_LENGTH statement option is intended to reduce network
traffic and might not be supported by all drivers. To guarantee that data is
truncated, an application should allocate a buffer of the desired size and
specify this size in the cbValueMax argument. If the total number of bytes that
are in the result column cannot be determined in advance, the driver sets
pcbValue to SQL_NO_TOTAL. If the data value for the column is NULL, the
driver stores SQL_NULL_DATA in pcbValue.

S1C00 Driver not capable The driver or data source does not support the
use of SQLGetData with multiple rows in
SQLExtendedFetch. This description does not
apply to drivers that return the
SQL_GD_BLOCK bitmask for the
SQL_GETDATA_EXTENSIONS option in
SQLGetInfo.

The driver or data source does not support the
conversion specified by the combination of the
fCType argument and the SQL data type of the
corresponding column. This error applies only
when the SQL data type of the column was
mapped to a driver-specific SQL data type.

The argument icol was 0, and the driver does
not support bookmarks.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (5 of 5)
INFORMIX-CLI Function Reference 13-171

SQLGetData
SQLGetData can convert data to a different data type. The result and success
of the conversion is determined by the rules for assignment specified in
“Converting Data from SQL to C Data Types” in Appendix D, “Data Types.”

If the application requires more than one call to SQLGetData to retrieve data
from a single column with a character, binary, or data source-specific data
type, the driver returns SQL_SUCCESS_WITH_INFO. A subsequent call to
SQLError returns SQLSTATE 01004 (Data truncated). The application can then
use the same column number to retrieve subsequent parts of the data until
SQLGetData returns SQL_SUCCESS, indicating that all the column data has
been retrieved. SQLGetData returns SQL_NO_DATA_FOUND when it calls for
a column after all the data has been retrieved and before data is retrieved for
a subsequent column. The application can ignore excess data by proceeding
to the next result column.

Important: An application can use SQLGetData to retrieve data from a column in
parts only when it retrieves character C data from a column with a character, binary,
or data-source-specific data type or when it retrieves binary C data from a column
with a character, binary, or data-source-specific data type. If SQLGetData is called
more than once in a row for a column under any other conditions, it returns
SQL_NO_DATA_FOUND for all calls after the first call.

For maximum interoperability, applications should call SQLGetData only for
unbound columns with numbers greater than the number of the last bound
column. Within a single row of data, the column number in each call to
SQLGetData should be greater than or equal to the column number in the
previous call (that is, data should be retrieved in increasing order of column
number). As extended functionality, drivers can return data through
SQLGetData from bound columns, from columns before the last bound
column, or from columns in any order. To determine whether a driver
supports these extensions, an application calls SQLGetInfo with the
SQL_GETDATA_EXTENSIONS option.

Furthermore, applications that use SQLExtendedFetch to retrieve data
should call SQLGetData only when the rowset size is 1.
13-172 INFORMIX-CLI Programmer’s Manual

SQLGetData
Code Example
In the following example, an application executes a SELECT statement to
return a result set of the employee names, ages, and birthdays sorted by
birthday, age, and name. For each row of data, it calls SQLFetch to position
the cursor to the next row. It calls SQLGetData to retrieve the fetched data; the
storage locations for the data and the returned number of bytes are specified
in the call to SQLGetData. Finally, it prints each employee’s name, age, and
birthday.

#define NAME_LEN 30
#define BDAY_LEN 11

UCHAR szName[NAME_LEN], szBirthday[BDAY_LEN];
SWORD sAge;
SDWORD cbName, cbAge, cbBirthday;

retcode = SQLExecDirect(hstmt,

 "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE ORDER BY 3, 2, 1",
 SQL_NTS);

if (retcode = = SQL_SUCCESS) {
while (TRUE) {

retcode = SQLFetch(hstmt);
if (retcode = = SQL_ERROR || retcode = = SQL_SUCCESS_WITH_INFO) {

show_error();
}
if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO){

/* Get data for columns 1, 2, and 3 */
/* Print the row of data */

SQLGetData(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLGetData(hstmt, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);
SQLGetData(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN,

 &cbBirthday);

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName, sAge,

 BDAY_LEN-1, szBirthday);
} else {

break;
}

}
}

INFORMIX-CLI Function Reference 13-173

SQLGetFunctions
Related Functions

SQLGetFunctions
SQLGetFunctions returns information about whether a driver supports a
specific ODBC function. This function is implemented in the driver manager;
it can also be implemented in drivers. If a driver implements
SQLGetFunctions, the driver manager calls the function in the driver.
Otherwise, it executes the function.

Syntax
RETCODE SQLGetFunctions(hdbc, fFunction, pfExists)

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Sending parameter data at execution time SQLPutData

Level 1
13-174 INFORMIX-CLI Programmer’s Manual

SQLGetFunctions
The SQLGetFunctions function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fFunction Input SQL_API_ALL_FUNCTIONS or a #define
value that identifies the ODBC function
of interest. For a list of #define values
that identify ODBC functions, see
“Usage” on page 13-177.

UWORD FAR * pfExists Output If fFunction is
SQL_API_ALL_FUNCTIONS, pfExists
points to a UWORD array with 100
elements. The array is indexed by
#define values used by fFunction to
identify each ODBC function; some
elements of the array are unused and
are reserved for future use. An element
is TRUE if it identifies an ODBC function
supported by the driver. It is FALSE if it
identifies an ODBC function not
supported by the driver or does not
identify an ODBC function.

The fFunction value
SQL_API_ALL_FUNCTIONS was added
in ODBC 2.0.

If fFunction identifies a single ODBC
function, pfExists points to a single
UWORD. pfExists is TRUE if the
specified function is supported by the
driver; otherwise, it is FALSE.
INFORMIX-CLI Function Reference 13-175

SQLGetFunctions
Diagnostics
When SQLGetFunctions returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLGet-
Functions and explains each value in the context of this function; the notation
“(DM)” precedes the description of each SQLSTATE returned by the driver
manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1010 Function-
sequence error

(DM) SQLGetFunctions was called before
SQLConnect, SQLBrowseConnect, or
SQLDriverConnect.

(DM) SQLBrowseConnect was called for the
hdbc and returned SQL_NEED_DATA. This
function was called before SQLBrowseConnect
returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

S1095 Function type out
of range

(DM) An invalid fFunction value was specified.
13-176 INFORMIX-CLI Programmer’s Manual

SQLGetFunctions
Usage
SQLGetFunctions always returns that SQLGetFunctions, SQLDataSources,
and SQLDrivers are supported. It does so because these functions are imple-
mented in the driver manager.

The following list identifies valid values for fFunction for ODBC core
functions that the INFORMIX-CLI driver supports:

■ SQL_API_SQLALLOCCONNECT

■ SQL_API_SQLALLOCENV

■ SQL_API_SQLALLOCSTMT

■ SQL_API_SQLBINDCOL

■ SQL_API_SQLCANCEL

■ SQL_API_SQLCOLATTRIBUTES

■ SQL_API_SQLCONNECT

■ SQL_API_SQLDESCRIBECOL

■ SQL_API_SQLDISCONNECT

■ SQL_API_SQLERROR

■ SQL_API_SQLEXECDIRECT

■ SQL_API_SQLEXECUTE

■ SQL_API_SQLFETCH

■ SQL_API_SQLFREECONNECT

■ SQL_API_SQLFREEENV

■ SQL_API_SQLFREESTMT

■ SQL_API_SQLGETCURSORNAME

■ SQL_API_SQLNUMRESULTCOLS

■ SQL_API_SQLPREPARE

■ SQL_API_SQLROWCOUNT

■ SQL_API_SQLSETCURSORNAME

■ SQL_API_SQLSETPARAM

■ SQL_API_SQLTRANSACT
INFORMIX-CLI Function Reference 13-177

SQLGetFunctions
The following list identifies valid values for fFunction for ODBC extension
level 1 functions that the INFORMIX-CLI driver supports:

■ SQL_API_SQLBINDPARAMETER

■ SQL_API_SQLCOLUMNS

■ SQL_API_SQLDRIVERCONNECT

■ SQL_API_SQLGETCONNECTOPTION

■ SQL_API_SQLGETDATA

■ SQL_API_SQLGETFUNCTIONS

■ SQL_API_SQLGETINFO

■ SQL_API_SQLGETSTMTOPTION

■ SQL_API_SQLGETTYPEINFO

■ SQL_API_SQLPARAMDATA

■ SQL_API_SQLPUTDATA

■ SQL_API_SQLSETCONNECTOPTION

■ SQL_API_SQLSETSTMTOPTION

■ SQL_API_SQLSPECIALCOLUMNS

■ SQL_API_SQLSTATISTICS

■ SQL_API_SQLTABLES

The following list identifies valid values for fFunction for ODBC extension
level 2 functions that the INFORMIX-CLI driver supports:

■ SQL_API_SQLBROWSECONNECT

■ SQL_API_COLUMNPRIVILEGES

■ SQL_API_SQLDATASOURCES

■ SQL_API_SQLDRIVERS

■ SQL_API_SQLEXTENDEDFETCH

■ SQL_API_MORERESULTS

■ SQL_API_SQLNATIVESQL

■ SQL_API_SQLNUMPARAMS

■ SQL_API_PARAMOPTIONS

■ SQL_API_SQLPRIMARYKEYS

■ SQL_API_PROCEDURES

■ SQL_API_SQLSETSCROLLOPTIONS

■ SQL_API_TABLEPRIVILEGES
13-178 INFORMIX-CLI Programmer’s Manual

SQLGetFunctions
Code Example
The following examples show how an application uses SQLGetFunctions to
determine if a driver supports SQLTables, SQLColumns, and SQLStatistics.
If the driver does not support these functions, the application disconnects
from the driver. The first example calls SQLGetFunctions once for each
function.

UWORD TablesExists, ColumnsExists, StatisticsExists;

SQLGetFunctions(hdbc, SQL_API_SQLTABLES, &TablesExists);
SQLGetFunctions(hdbc, SQL_API_SQLCOLUMNS, &ColumnsExists);
SQLGetFunctions(hdbc, SQL_API_SQLSTATISTICS,
&StatisticsExists);

if (TablesExists && ColumnsExists && StatisticsExists) {

/* Continue with application */

}

SQLDisconnect(hdbc);

The second example calls SQLGetFunctions once and passes it an array in
which SQLGetFunctions returns information about all INFORMIX-CLI
functions.

UWORD fExists[100];

SQLGetFunctions(hdbc, SQL_API_ALL_FUNCTIONS, fExists);

if (fExists[SQL_API_SQLTABLES] &&
 fExists[SQL_API_SQLCOLUMNS] &&
 fExists[SQL_API_SQLSTATISTICS]) {

/* Continue with application */

}

SQLDisconnect(hdbc);
INFORMIX-CLI Function Reference 13-179

SQLGetFunctions
Related Functions

For information about See

Returning the setting of a connection option SQLGetConnectOption

Returning information about a driver or data source SQLGetInfo

 Returning the setting of a statement option SQLGetStmtOption
13-180 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQLGetInfo
SQLGetInfo returns general information about the driver and data source
associated with an hdbc.

Syntax
RETCODE SQLGetInfo(hdbc, fInfoType, rgbInfoValue,
cbInfoValueMax, pcbInfoValue)

The SQLGetInfo function accepts the following arguments.

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fInfoType Input Type of information.

The fInfoType argument must be a
value that represents the type of
interest (see “Usage” on
page 13-184).

 (1 of 2)

Level 1
INFORMIX-CLI Function Reference 13-181

SQLGetInfo
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

PTR rgbInfoValue Output Pointer to storage for the infor-
mation. Depending on the fInfoType
requested, the information returned
will be one of the following: a null-
terminated character string, a 16-bit
integer value, a 32-bit flag, or a 32-
bit binary value.

SWORD cbInfoValueMax Input Maximum length of the rgbInfoValue
buffer.

SWORD FAR * pcbInfoValue Output The total number of bytes
(excluding the null-termination
byte for character data) available to
return in rgbInfoValue.

For character data, if the number of
bytes available to return is greater
than or equal to cbInfoValueMax, the
information in rgbInfoValue is
truncated to cbInfoValueMax – 1
bytes and is null-terminated by the
driver.

For all other types of data, the value
of cbValueMax is ignored, and the
driver assumes the size of rgbValue
is 32 bits.

Type Argument Use Description

 (2 of 2)
13-182 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
Diagnostics
When SQLGetInfo returns either SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLGetInfo
and explains each value in the context of this function; the notation “(DM)”
precedes the description of each SQLSTATE returned by the driver manager.
The return code associated with each SQLSTATE value is SQL_ERROR unless
noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer rgbInfoValue was not large enough
to return all of the requested information, so
the information was truncated. The argument
pcbInfoValue contains the length of the
requested information in its untruncated form
(function returns SQL_SUCCESS_WITH_INFO).

08003 Connection not
open

(DM) The type of information requested in
fInfoType requires an open connection. Of the
information types reserved by ODBC, only
SQL_ODBC_VER can be returned without an
open connection.

22003 Numeric value out
of range

Returning the requested information would
have caused a loss of numeric or binary
significance.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

 (1 of 2)
INFORMIX-CLI Function Reference 13-183

SQLGetInfo
Usage
The format of the information returned in rgbInfoValue depends on the
fInfoType requested. SQLGetInfo returns information in one of five formats:

■ A null-terminated character string

■ A 16-bit integer value

■ A 32-bit bitmask

■ A 32-bit integer value

■ A 32-bit binary value

The format for each of the following information types is noted in the
description. The application must cast the value returned in rgbInfoValue
accordingly. For an example of how an application could retrieve data from
a 32-bit bitmask, see “Code Example” on page 13-211.

S1009 Invalid argument
value

(DM) The fInfoType was SQL_DRIVER_HSTMT,
and the value pointed to by rgbInfoValue was
not a valid statement handle.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbInfoValueMax was less than 0.

S1096 Information type
out of range

(DM) The value specified for the argument
fOption was in the block of numbers reserved
for ODBC information types but was not valid
for the version of ODBC supported by the
driver.

S1C00 Driver not capable The driver does not support the value
specified for the argument fOption.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested information.
The time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
13-184 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
A driver must return a value for each information type defined in the
following tables. If an information type does not apply to the driver or data
source, the driver returns one of the following values.

For example, if a data source does not support procedures, SQLGetInfo
returns the following values for the fInfoType values, which are related to
procedures.

SQLGetInfo returns SQLSTATE S1096 (Invalid argument value) for a value of
fInfoType that is not defined by the version of ODBC the driver supports. To
determine the version of ODBC to which a driver conforms, an application
calls SQLGetInfo with the SQL_DRIVER_ODBC_VER information type.
SQLGetInfo returns SQLSTATE S1C00 (Driver not capable) for values of
fInfoType that are in the range of information types reserved for driver-
specific use but that the driver does not support.

Information Types

This section lists the information types supported by SQLGetInfo. Infor-
mation types are grouped categorically and listed alphabetically.

Format of rgbInfoValue Returned value

Character string (“Y” or “N”) N

Character string (not “Y” or “N”) Empty string

16-bit integer 0

32-bit bitmask or 32-bit binary value 0L

fInfoType Returned value

SQL_PROCEDURES N

SQL_ACCESSIBLE_PROCEDURES N

SQL_MAX_PROCEDURE_NAME_LEN 0

SQL_PROCEDURE_TERM Empty string
INFORMIX-CLI Function Reference 13-185

SQLGetInfo
Driver Information

The following values of fInfoType return information about the Informix
driver, such as the number of active statements, the data source name, and
the API conformance levels:

■ SQL_ACTIVE_CONNECTIONS

■ SQL_ACTIVE_STATEMENTS

■ SQL_DATA_SOURCE_NAME

■ SQL_DRIVER_HDBC

■ SQL_DRIVER_HENV

■ SQL_DRIVER_HLIB

■ SQL_DRIVER_HSTMT

■ SQL_DRIVER_NAME

■ SQL_DRIVER_ODBC_VER

■ SQL_DRIVER_VER

■ SQL_FETCH_DIRECTION

■ SQL_FILE_USAGE

■ SQL_GETDATA_EXTENSIONS

■ SQL_LOCK_TYPES

■ SQL_ODBC_API_CONFORMANCE

■ SQL_ODBC_SAG_CLI_CONFORMANCE

■ SQL_ODBC_VER

■ SQL_POS_OPERATIONS

■ SQL_ROW_UPDATES

■ SQL_SEARCH_PATTERN_ESCAPE

■ SQL_SERVER_NAME

DBMS Product Information

The following values of fInfoType return information about the Informix
DBMS product, such as the DBMS name and version:

■ SQL_DATABASE_NAME

■ SQL_DBMS_NAME

■ SQL_DBMS_VER
13-186 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
Data-Source Information

The following values of fInfoType return information about the data source,
such as cursor characteristics and transaction capabilities:

■ SQL_ACCESSIBLE_PROCEDURES

■ SQL_ACCESSIBLE_TABLES

■ SQL_CONCAT_NULL_BEHAVIOR

■ SQL_CURSOR_COMMIT_BEHAVIOR

■ SQL_CURSOR_ROLLBACK_BEHAVIOR

■ SQL_DATA_SOURCE_READ_ONLY

■ SQL_DEFAULT_TXN_ISOLATION

■ SQL_MULT_RESULT_SETS

■ SQL_MULTIPLE_ACTIVE_TXN

■ SQL_NEED_LONG_DATA_LEN

■ SQL_NULL_COLLATION

■ SQL_OWNER_TERM

■ SQL_PROCEDURE_TERM

■ SQL_QUALIFIER_TERM

■ SQL_SCROLL_CONCURRENCY

■ SQL_SCROLL_OPTIONS

■ SQL_STATIC_SENSITIVITY

■ SQL_TABLE_TERM

■ SQL_TXN_CAPABLE

■ SQL_TXN_ISOLATION_OPTION

■ SQL_USER_NAME
INFORMIX-CLI Function Reference 13-187

SQLGetInfo
Supported SQL

The following values of fInfoType return information about the SQL
statements that are supported by the data source. These information types do
not exhaustively describe ODBC SQL grammar, but they describe those parts
of the grammar for which data sources commonly offer different levels of
support.

Applications should determine the general level of supported grammar from
the SQL_ODBC_SQL_CONFORMANCE information type and use the other
information types to determine variations from the stated conformance level:

■ SQL_ALTER_TABLE

■ SQL_COLUMN_ALIAS

■ SQL_CORRELATION_NAME

■ SQL_EXPRESSIONS_IN_ORDERBY

■ SQL_GROUP_BY

■ SQL_IDENTIFIER_CASE

■ SQL_IDENTIFIER_QUOTE_CHAR

■ SQL_KEYWORDS

■ SQL_LIKE_ESCAPE_CLAUSE

■ SQL_NON_NULLABLE_COLUMNS

■ SQL_ODBC_SQL_CONFORMANCE

■ SQL_ODBC_SQL_OPT_IEF

■ SQL_ORDER_BY_COLUMNS_IN_SELECT

■ SQL_OUTER_JOINS

■ SQL_OWNER_USAGE

■ SQL_POSITIONED_STATEMENTS

■ SQL_PROCEDURES

■ SQL_QUALIFIER_LOCATION

■ SQL_QUALIFIER_NAME_SEPARATOR

■ SQL_QUALIFIER_USAGE

■ SQL_QUOTED_IDENTIFIER_CASE

■ SQL_SPECIAL_CHARACTERS

■ SQL_SUBQUERIES

■ SQL_UNION
13-188 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL Limits

The following values of fInfoType return information about the limits applied
to identifiers and clauses in SQL statements, such as the maximum lengths of
identifiers and the maximum number of columns in a SELECT list. Limita-
tions might be imposed by either the driver or the data source:

■ SQL_MAX_BINARY_LITERAL_LEN

■ SQL_MAX_CHAR_LITERAL_LEN

■ SQL_MAX_COLUMN_NAME_LEN

■ SQL_MAX_COLUMNS_IN_GROUP_BY

■ SQL_MAX_COLUMNS_IN_ORDER_BY

■ SQL_MAX_COLUMNS_IN_INDEX

■ SQL_MAX_COLUMNS_IN_SELECT

■ SQL_MAX_COLUMNS_IN_TABLE

■ SQL_MAX_CURSOR_NAME_LEN

■ SQL_MAX_INDEX_SIZE

■ SQL_MAX_OWNER_NAME_LEN

■ SQL_MAX_PROCEDURE_NAME_LEN

■ SQL_MAX_QUALIFIER_NAME_LEN

■ SQL_MAX_ROW_SIZE

■ SQL_MAX_ROW_SIZE_INCLUDES_LONG

■ SQL_MAX_STATEMENT_LEN

■ SQL_MAX_TABLE_NAME_LEN

■ SQL_MAX_TABLES_IN_SELECT

■ SQL_MAX_USER_NAME_LEN
INFORMIX-CLI Function Reference 13-189

SQLGetInfo
Scalar Function Information

The following values of fInfoType return information about the scalar
functions supported by the data source and the driver: For more information
on scalar functions, refer to the Informix Guide to SQL: Syntax.

■ SQL_NUMERIC_FUNCTIONS

■ SQL_STRING_FUNCTIONS

■ SQL_SYSTEM_FUNCTIONS

■ SQL_TIMEDATE_ADD_INTERVALS

■ SQL_TIMEDATE_DIFF_INTERVALS

■ SQL_TIMEDATE_FUNCTIONS

Information-Type Descriptions

The following table alphabetically lists each information type and its
description.

InfoType Returns

SQL_ACCESSIBLE_PROCEDURES A character string: “Y” if the user can execute all procedures
returned by SQLProcedures; “N” if procedures might be
returned that the user cannot execute.

SQL_ACCESSIBLE_TABLES A character string: “Y” if the user is guaranteed SELECT privi-
leges to all tables returned by SQLTables, “N” if tables might be
returned that the user cannot access.

SQL_ACTIVE_CONNECTIONS A 16-bit integer value that specifies the maximum number of
active hdbcs that the driver can support. This value can reflect a
limitation imposed by either the driver or the data source. If no
limit is specified or the limit is unknown, this value is set to 0.

SQL_ACTIVE_STATEMENTS A 16-bit integer value that specifies the maximum number of
active hstmts that the driver can support for an hdbc. This value
can reflect a limitation imposed by either the driver or the data
source. If no limit is specified or the limit is unknown, this value
is set to 0.

 (1 of 22)
13-190 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_ALTER_TABLE A 32-bit bitmask that enumerates the clauses in the ALTER TABLE
statement supported by the data source.

The following bitmask is used to determine which clauses are
supported:

SQL_AT_ADD_COLUMN
SQL_AT_DROP_COLUMN

SQL_BOOKMARK_PERSISTENCE
UNSUPPORTED

INFORMIX-CLI does not support this option.

SQL_COLUMN_ALIAS A character string: “Y” if the data source supports column
aliases; otherwise, “N” is returned.

SQL_CONCAT_NULL_BEHAVIOR A 16-bit integer value that indicates how the data source handles
the concatenation of NULL-valued character-data-type columns
with non-NULL-valued character-data-type columns:

SQL_CB_NULL = Result is NULL valued.

SQL_CB_NON_NULL = Result is concatenation of non-NULL-
valued column or columns.

SQL_CONVERT_FUNCTIONS
UNSUPPORTED

INFORMIX-CLI does not support this option.

SQL_CORRELATION_NAME A 16-bit integer that indicates if table correlation names are
supported:

SQL_CN_NONE = Correlation names are not supported.

SQL_CN_DIFFERENT = Correlation names are supported, but
they must differ from the names of the tables that they represent.

SQL_CN_ANY = Correlation names are supported and can be any
valid user-defined name.

InfoType Returns

 (2 of 22)
INFORMIX-CLI Function Reference 13-191

SQLGetInfo
SQL_CURSOR_COMMIT_BEHAVIOR A 16-bit integer value that indicates how a COMMIT operation
affects cursors and prepared statements in the data source:

SQL_CB_DELETE = Close cursors and delete prepared state-
ments. To use the cursor again, the application must reprepare
and reexecute the hstmt.

SQL_CB_CLOSE = Close cursors. For prepared statements, the
application can call SQLExecute on the hstmt without calling
SQLPrepare again.

SQL_CB_PRESERVE = Preserve cursors in the same position as
before the COMMIT operation. The application can continue to
fetch data or it can close the cursor and reexecute the hstmt
without repreparing it.

SQL_CURSOR_ROLLBACK_BEHAVIOR A 16-bit integer value that indicates how a ROLLBACK operation
affects cursors and prepared statements in the data source:

SQL_CB_DELETE = Close cursors and delete prepared state-
ments. To use the cursor again, the application must reprepare
and reexecute the hstmt.

SQL_CB_CLOSE = Close cursors. For prepared statements, the
application can call SQLExecute on the hstmt without calling
SQLPrepare again.

SQL_CB_PRESERVE = Preserve cursors in the same position as
before the ROLLBACK operation. The application can continue to
fetch data, or it can close the cursor and reexecute the hstmt
without repreparing it.

SQL_DATA_SOURCE_NAME A character string with the data-source name used during
connection. If the application called SQLConnect, this is the
value of the szDSN argument. If the application called SQLDriv-
erConnect or SQLBrowseConnect, this is the value of the DSN
keyword in the connection string passed to the driver. If the
connection string did not contain the DSN keyword (as when it
contains the DRIVER keyword), this is an empty string.

SQL_DATA_SOURCE_READ_ONLY A character string: “Y” if the data source is set to READ ONLY
mode, “N” if it is otherwise.

This characteristic pertains only to the data source; it is not a
characteristic of the driver that enables access to the data source.

InfoType Returns

 (3 of 22)
13-192 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_DATABASE_NAME A character string with the name of the current database in use,
if the data source defines a named object called “database.”

In ODBC 2.0, this value of fInfoType has been replaced by the
SQL_CURRENT_QUALIFIER connection option.

SQL_DBMS_NAME A character string with the name of the DBMS product accessed
by the driver.

SQL_DBMS_VER A character string that indicates the version of the DBMS product
accessed by the driver. The version has the form ##.##.####,
where the first two digits are the major version, the next two
digits are the minor version, and the last four digits are the
release version. The driver must render the DBMS product
version in this form but can also append the DBMS product-
specific version. For example, “04.01.0000 Rdb 4.1.”

InfoType Returns

 (4 of 22)
INFORMIX-CLI Function Reference 13-193

SQLGetInfo
SQL_DEFAULT_TXN_ISOLATION A 32-bit integer that indicates the default transaction isolation
level supported by the driver or data source, or zero if the data
source does not support transactions. The following terms are
used to define transaction isolation levels:

Dirty Read Transaction 1 changes a row. Transaction 2 reads the
changed row before transaction 1 commits the change. If trans-
action 1 rolls back the change, transaction 2 will have read a row
that is considered to have never existed.

Nonrepeatable Read Transaction 1 reads a row. Transaction 2
updates or deletes that row and commits this change. If trans-
action 1 attempts to reread the row, it will receive different row
values or discover that the row has been deleted.

Phantom Transaction 1 reads a set of rows that satisfy some
search criteria. Transaction 2 inserts a row that matches the
search criteria. If transaction 1 reexecutes the statement that read
the rows, it receives a different set of rows.

If the data source supports transactions, the driver returns one of
the following bitmasks:

SQL_TXN_READ_UNCOMMITTED = Dirty Reads, Nonrepeatable
Reads, and Phantoms are possible.

SQL_TXN_READ_COMMITTED = Dirty Reads are not possible.
Nonrepeatable Reads and Phantoms are possible.

SQL_TXN_REPEATABLE_READ = Dirty Reads and Nonrepeatable
Reads are not possible. Phantoms are possible.

SQL_TXN_SERIALIZABLE = Transactions are serializable. Dirty
Reads, Nonrepeatable Reads, and Phantoms are not possible.

SQL_TXN_VERSIONING = Transactions are serializable, but
higher concurrency is possible than with
SQL_TXN_SERIALIZABLE. Dirty Reads are not possible. Typically,
SQL_TXN_SERIALIZABLE is implemented by using locking
protocols that reduce concurrency, and SQL_TXN_VERSIONING
is implemented by using a nonlocking protocol such as record
versioning.

SQL_DRIVER_HDBC
SQL_DRIVER_HENV

A 32-bit value, the environment handle or connection handle of
the driver, determined by the argument hdbc.

These information types are implemented by the driver
manager alone.

InfoType Returns

 (5 of 22)
13-194 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_DRIVER_HLIB A 32-bit value, the library handle returned to the driver manager
when it loaded the driver shared library. The handle is only valid
for the hdbc specified in the call to SQLGetInfo.

This information type is implemented by the driver manager
alone.

SQL_DRIVER_HSTMT A 32-bit value, the statement handle of the driver determined by
the driver manager statement handle, which must be passed on
input in rgbInfoValue from the application.

In this case, rgbInfoValue is both an input and an output
argument. The input hstmt passed in rgbInfoValue was probably
an hstmt allocated on the argument hdbc.

This information type is implemented by the driver manager
alone.

SQL_DRIVER_NAME A character string with the filename of the driver used to access
the data source.

SQL_DRIVER_ODBC_VER A character string with the version of ODBC that the driver
supports. The version has the form ##.##, where the first two
digits are the major version and the next two digits are the minor
version. SQL_SPEC_MAJOR and SQL_SPEC_MINOR define the
major and minor version numbers. For the version of ODBC
described in this manual, these are 2 and 0, and the driver
should return 02.00.

If a driver supports SQLGetInfo but does not support this value
of the fInfoType argument, the driver manager returns 01.00.

SQL_DRIVER_VER A character string with the version of the driver and, optionally,
a description of the driver. At a minimum, the version has the
form ##.##.####, where the first two digits are the major version,
the next two digits are the minor version, and the last four digits
are the release version.

SQL_EXPRESSIONS_IN_ORDERBY A character string: “Y” if the data source supports expressions
in the ORDER BY list; “N” if it does not.

InfoType Returns

 (6 of 22)
INFORMIX-CLI Function Reference 13-195

SQLGetInfo
SQL_FETCH_DIRECTION A 32-bit bitmask that enumerates the supported fetch direction
options.

The following bitmasks are used in conjunction with the flag to
determine which options are supported:

SQL_FD_FETCH_NEXT
SQL_FD_FETCH_FIRST)
SQL_FD_FETCH_LAST
SQL_FD_FETCH_PRIOR
SQL_FD_FETCH_ABSOLUTE
SQL_FD_FETCH_RELATIVE
SQL_FD_FETCH_RESUME

SQL_FILE_USAGE A 16-bit integer value that indicates how a single-tier driver
directly treats files in a data source:

SQL_FILE_NOT_SUPPORTED = The driver is not a single-tier
driver.

SQL_FILE_TABLE = A single-tier driver treats files in a data
source as tables. For example, a text driver treats each text file as
a table.

SQL_FILE_QUALIFIER = A single-tier driver treats files in a data
source as a qualifier.

InfoType Returns

 (7 of 22)
13-196 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_GETDATA_EXTENSIONS A 32-bit bitmask that enumerates extensions to SQLGetData.

The following bitmasks are used in conjunction with the flag to
determine what common extensions the driver supports for
SQLGetData:

SQL_GD_ANY_COLUMN = SQLGetData can be called for any
unbound column, including those before the last bound column.
The columns must be called in order of ascending column
number unless SQL_GD_ANY_ORDER is also returned.

SQL_GD_ANY_ORDER = SQLGetData can be called for unbound
columns in any order. SQLGetData can be called only for
columns after the last bound column unless
SQL_GD_ANY_COLUMN is also returned.

SQL_GD_BOUND = SQLGetData can be called for bound columns
as well as unbound columns. A driver cannot return this value
unless it also returns SQL_GD_ANY_COLUMN.

SQLGetData is required to return data only from unbound
columns that occur after the last bound column, are called in
order of increasing column number, and are not in a row in a
block of rows.

InfoType Returns

 (8 of 22)
INFORMIX-CLI Function Reference 13-197

SQLGetInfo
SQL_GROUP_BY A 16-bit integer value that specifies the relationship between the
columns in the GROUP BY clause and the non-aggregated
columns in the SELECT list:

SQL_GB_NOT_SUPPORTED = GROUP BY clauses are not
supported.

SQL_GB_GROUP_BY_EQUALS_SELECT = The GROUP BY clause
must contain all nonaggregated columns in the SELECT list. It
cannot contain any other columns. For example:

SELECT DEPT, MAX(SALARY) FROM EMPLOYEE GROUP
BY DEPT

SQL_GB_GROUP_BY_CONTAINS_SELECT = The GROUP BY clause
must contain all nonaggregated columns in the SELECT list. It
can contain columns that are not in the SELECT list. For example:

SELECT DEPT, MAX(SALARY) FROM EMPLOYEE GROUP
BY DEPT, AGE

SQL_GB_NO_RELATION = The columns in the GROUP BY clause
and the select list are not related. The meaning of nongrouped,
nonaggregated columns in the SELECT list is data-source
dependent. For example,

SELECT DEPT, SALARY FROM EMPLOYEE GROUP BY
DEPT, AGE

SQL_IDENTIFIER_CASE A 16-bit integer value as follows:

SQL_IC_UPPER = Identifiers in SQL are case insensitive and are
stored in uppercase in system catalog.

SQL_IC_LOWER = Identifiers in SQL are case insensitive and are
stored in lowercase in system catalog.

SQL_IC_SENSITIVE = Identifiers in SQL are case sensitive and are
stored in mixed case in system catalog.

SQL_IC_MIXED = Identifiers in SQL are case insensitive and are
stored in mixed case in system catalog.

SQL_IDENTIFIER_QUOTE_CHAR The character string used as the starting and ending delimiter of
a quoted (delimited) identifiers in SQL statements. (Identifiers
passed as arguments to ODBC functions do not need to be
quoted.) If the data source does not support quoted identifiers, a
blank is returned.

InfoType Returns

 (9 of 22)
13-198 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_KEYWORDS A character string that contains a comma-separated list of all
data-source-specific keywords. This list does not contain
keywords specific to ODBC or keywords used by both the data
source and ODBC.

For a list of ODBC keywords, see “List of Reserved Keywords”
on page B-21. The #define value SQL_ODBC_KEYWORDS
contains a comma-separated list of ODBC keywords.

SQL_LIKE_ESCAPE_CLAUSE A character string: “Y” if the data source supports an escape
character for the percent character (%) and underscore character
(_) in a LIKE predicate and the driver supports the ODBC syntax
for defining a LIKE predicate escape character; “N” otherwise.

SQL_MAX_BINARY_LITERAL_LEN A 32-bit integer value that specifies the maximum length
(number of hexadecimal characters, excluding the literal prefix
and suffix returned by SQLGetTypeInfo) of a binary literal in an
SQL statement. For example, the binary literal 0xFFAA has a
length of 4. If there is no maximum length or the length is
unknown, this value is set to 0.

SQL_MAX_CHAR_LITERAL_LEN A 32-bit integer value that specifies the maximum length
(number of characters, excluding the literal prefix and suffix
returned by SQLGetTypeInfo) of a character literal in an SQL
statement. If there is no maximum length or the length is
unknown, this value is set to 0.

SQL_MAX_COLUMN_NAME_LEN A 16-bit integer value that specifies the maximum length of a
column name in the data source. If there is no maximum length
or the length is unknown, this value is set to 0.

SQL_MAX_COLUMNS_IN_GROUP_BY A 16-bit integer value that specifies the maximum number of
columns allowed in a GROUP BY clause. If no limit is specified or
the limit is unknown, this value is set to 0.

SQL_MAX_COLUMNS_IN_INDEX A 16-bit integer value that specifies the maximum number of
columns allowed in an index. If no limit is specified or the limit
is unknown, this value is set to 0.

SQL_MAX_COLUMNS_IN_ORDER_BY A 16-bit integer value that specifies the maximum number of
columns allowed in an ORDER BY clause. If no limit is specified
or the limit is unknown, this value is set to 0.

InfoType Returns

 (10 of 22)
INFORMIX-CLI Function Reference 13-199

SQLGetInfo
SQL_MAX_COLUMNS_IN_SELECT A 16-bit integer value that specifies the maximum number of
columns allowed in a SELECT list. If no limit is specified or the
limit is unknown, this value is set to 0.

SQL_MAX_COLUMNS_IN_TABLE A 16-bit integer value that specifies the maximum number of
columns allowed in a table. If no limit is specified or the limit is
unknown, this value is set to 0.

SQL_MAX_CURSOR_NAME_LEN A 16-bit integer value that specifies the maximum length of a
cursor name in the data source. If there is no maximum length or
the length is unknown, this value is set to 0.

SQL_MAX_INDEX_SIZE A 32-bit integer value that specifies the maximum number of
bytes allowed in the combined fields of an index. If no limit is
specified or the limit is unknown, this value is set to 0.

SQL_MAX_OWNER_NAME_LEN A 16-bit integer value that specifies the maximum length of an
owner name in the data source. If there is no maximum length or
the length is unknown, this value is set to 0.

SQL_MAX_PROCEDURE_NAME_LEN A 16-bit integer value that specifies the maximum length of a
procedure name in the data source. If there is no maximum
length or the length is unknown, this value is set to 0.

SQL_MAX_QUALIFIER_NAME_LEN A 16-bit integer value that specifies the maximum length of a
qualifier name in the data source. If there is no maximum length
or the length is unknown, this value is set to 0.

SQL_MAX_ROW_SIZE A 32-bit integer value that specifies the maximum length of a
single row in a table. If no limit is specified or the limit is
unknown, this value is set to 0.

SQL_MAX_ROW_SIZE_INCLUDES_LONG A character string: “Y” if the maximum row size returned for the
SQL_MAX_ROW_SIZE information type includes the length of all
SQL_LONGVARCHAR and SQL_LONGVARBINARY columns in the
row; “N” otherwise.

SQL_MAX_STATEMENT_LEN A 32-bit integer value that specifies the maximum length
(number of characters, including white space) of an SQL
statement. If there is no maximum length or the length is
unknown, this value is set to 0.

InfoType Returns

 (11 of 22)
13-200 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_MAX_TABLE_NAME_LEN A 16-bit integer value that specifies the maximum length of a
table name in the data source. If there is no maximum length or
the length is unknown, this value is set to 0.

SQL_MAX_TABLES_IN_SELECT A 16-bit integer value that specifies the maximum number of
tables allowed in the FROM clause of a SELECT statement. If there
is no specified limit or the limit is unknown, this value is set to 0.

SQL_MAX_USER_NAME_LEN A 16-bit integer value that specifies the maximum length of a
user name in the data source. If there is no maximum length or
the length is unknown, this value is set to 0.

SQL_MULT_RESULT_SETS A character string: “Y” if the data source supports multiple
result sets, “N” if it does not.

SQL_MULTIPLE_ACTIVE_TXN A character string: “Y” if active transactions on multiple connec-
tions are allowed, “N” if only one connection at a time can have
an active transaction.

SQL_NEED_LONG_DATA_LEN A character string: “Y” if the data source needs the length of a
long data value (the data type is SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data-source-specific data type)
before that value is sent to the data source, “N” if it does not. For
more information, see SQLBindParameter.

SQL_NON_NULLABLE_COLUMNS A 16-bit integer that specifies whether the data source supports
non-nullable columns:

SQL_NNC_NULL = All columns must be nullable.

SQL_NNC_NON_NULL = Columns may be non-nullable (the data
source supports the NOT NULL column constraint in CREATE
TABLE statements).

SQL_NULL_COLLATION A 16-bit integer value that specifies where NULLs are sorted in a
list:

SQL_NC_END = NULLs are sorted at the end of the list, regardless
of the sort order.

SQL_NC_HIGH = NULLs are sorted at the high end of the list.

SQL_NC_LOW = NULLs are sorted at the low end of the list.

SQL_NC_START = NULLs are sorted at the start of the list,
regardless of the sort order.

InfoType Returns

 (12 of 22)
INFORMIX-CLI Function Reference 13-201

SQLGetInfo
SQL_NUMERIC_FUNCTIONS A 32-bit bitmask that enumerates the scalar numeric functions
supported by the driver and associated data source.

The following bitmasks are used to determine which numeric
functions are supported:

SQL_FN_NUM_ABS
SQL_FN_NUM_ACOS
SQL_FN_NUM_ASIN
SQL_FN_NUM_ATAN
SQL_FN_NUM_ATAN2
SQL_FN_NUM_CEILING
SQL_FN_NUM_COS
SQL_FN_NUM_COS
SQL_FN_NUM_DEGREES
SQL_FN_NUM_EXP
SQL_FN_NUM_FLOOR
SQL_FN_NUM_LOG
SQL_FN_NUM_LOG10
SQL_FN_NUM_MOD
SQL_FN_NUM_PI
SQL_FN_NUM_POWER
SQL_FN_NUM_RADIANS
SQL_FN_NUM_RAND
SiQL_FN_NUM_ROUND
SQL_FN_NUM_SIGN
SQL_FN_NUM_SIN
SQL_FN_NUM_SQRT
SQL_FN_NUM_TAN
SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE A 16-bit integer value that indicates the level of ODBC
conformance:

SQL_OAC_NONE = None
SQL_OAC_LEVEL1 = Level 1 supported
SQL_OAC_LEVEL2 = Level 2 supported

For a list of functions and conformance levels, see Chapter 12,
“Function Summary.”

InfoType Returns

 (13 of 22)
13-202 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_ODBC_SAG_CLI_CONFORMANCE A 16-bit integer value that indicates compliance to the functions
of the SAG specification:

SQL_OSCC_NOT_COMPLIANT = Not SAG-compliant; one or
more core functions are not supported.

SQL_OSCC_COMPLIANT = SAG-compliant

SQL_ODBC_SQL_CONFORMANCE A 16-bit integer value that indicates SQL grammar supported by
the driver:

SQL_OSC_MINIMUM = Minimum grammar supported
SQL_OSC_CORE = Core grammar supported
SQL_OSC_EXTENDED = Extended grammar supported

SQL_ODBC_SQL_OPT_IEF A character string: “Y” if the data source supports the optional
Integrity Enhancement Facility; “N” if it does not.

SQL_ODBC_VER A character string with the version of ODBC to which the driver
manager conforms. The version is of the form ##.##, where the
first two digits are the major version and the next two digits are
the minor version. This is implemented solely in the driver
manager.

SQL_ORDER_BY_COLUMNS_IN_SELECT A character string: “Y” if the columns in the ORDER BY clause
must be in the SELECT list; otherwise, “N.”

SQL_OUTER_JOINS A character string:

“N” = No. The data source does not support outer joins.

“Y” = Yes. The data source supports two-table outer joins, and
the driver supports the ODBC outer join syntax except for nested
outer joins. However, columns on the left side of the comparison
operator in the ON clause must come from the left-hand table in
the outer join, and columns on the right side of the comparison
operator must come from the right-hand table.

“P” = Partial. The data source partially supports nested outer
joins, and the driver supports the ODBC outer-join syntax.
However, columns on the left side of the comparison operator in
the ON clause must come from the left-hand table in the outer
join and columns on the right side of the comparison operator
must come from the right-hand table. Also, the right-hand table
of an outer join cannot be included in an inner join.

“F” = Full. The data source fully supports nested outer joins, and
the driver supports the ODBC outer-join syntax.

InfoType Returns

 (14 of 22)
INFORMIX-CLI Function Reference 13-203

SQLGetInfo
SQL_OWNER_TERM A character string with the data-source vendor name for an
owner; for example, “owner,” “Authorization ID,” or “Schema.”

SQL_OWNER_USAGE A 32-bit bitmask that enumerates the statements in which
owners can be used:

SQL_OU_DML_STATEMENTS = Owners are supported in all Data
Manipulation Language statements: SELECT, INSERT, UPDATE,
DELETE, and, if supported, SELECT FOR UPDATE and positioned
UPDATE and DELETE statements.

SQL_OU_PROCEDURE_INVOCATION = Owners are supported in
the ODBC procedure invocation statement.

SQL_OU_TABLE_DEFINITION = Owners are supported in all table
definition statements: CREATE TABLE, CREATE VIEW, ALTER
TABLE, DROP TABLE, and DROP VIEW.

SQL_OU_INDEX_DEFINITION = Owners are supported in all
index-definition statements: CREATE INDEX and DROP INDEX.

SQL_OU_PRIVILEGE_DEFINITION = Owners are supported in all
privilege-definition statements: GRANT and REVOKE.

SQL_POSITIONED_STATEMENTS A 32-bit bitmask that enumerates the supported positioned SQL
statements.

The following bitmasks are used to determine which statements
are supported:

SQL_PS_POSITIONED_DELETE
SQL_PS_POSITIONED_UPDATE
SQL_PS_SELECT_FOR_UPDATE

SQL_PROCEDURE_TERM A character string with the data-source vendor name for a
procedure; for example, “database procedure,” “stored
procedure,” or “procedure.”

SQL_PROCEDURES A character string: “Y” if the data source supports procedures
and the driver supports the ODBC procedure invocation syntax;
“N” otherwise.

InfoType Returns

 (15 of 22)
13-204 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_QUALIFIER_LOCATION A 16-bit integer value that indicates the position of the qualifier
in a qualified table name:

SQL_QL_START
SQL_QL_END

For example, a Text driver returns SQL_QL_START because the
directory (qualifier) name is at the start of the table name, as in
/empdata/emp.dbf.

SQL_QUALIFIER_NAME_SEPARATOR A character string: the character or characters that the data
source defines as the separator between a qualifier name and the
qualified name element that follows it.

SQL_QUALIFIER_TERM A character string with the data-source vendor name for a
qualifier; for example, “database” or “directory.”

SQL_QUALIFIER_USAGE A 32-bit bitmask that enumerates the statements in which quali-
fiers can be used.

The following bitmasks are used to determine where qualifiers
can be used:

SQL_QU_DML_STATEMENTS = Qualifiers are supported in all
Data Manipulation Language statements: SELECT, INSERT,
UPDATE, DELETE, and, if supported, SELECT FOR UPDATE and
positioned UPDATE and DELETE statements.

SQL_QU_PROCEDURE_INVOCATION = Qualifiers are supported
in the ODBC procedure invocation statement.

SQL_QU_TABLE_DEFINITION = Qualifiers are supported in all
table-definition statements: CREATE TABLE, CREATE VIEW,
ALTER TABLE, DROP TABLE, and DROP VIEW.

SQL_QU_INDEX_DEFINITION = Qualifiers are supported in all
index-definition statements: CREATE INDEX and DROP INDEX.

SQL_QU_PRIVILEGE_DEFINITION = Qualifiers are supported in
all privilege-definition statements: GRANT and REVOKE.

InfoType Returns

 (16 of 22)
INFORMIX-CLI Function Reference 13-205

SQLGetInfo
SQL_QUOTED_IDENTIFIER_CASE A 16-bit integer value as follows:

SQL_IC_UPPER = Quoted identifiers in SQL are case insensitive
and are stored in uppercase in system catalog.

SQL_IC_LOWER = Quoted identifiers in SQL are case insensitive
and are stored in lowercase in system catalog.

SQL_IC_SENSITIVE = Quoted identifiers in SQL are case sensitive
and are stored in mixed case in system catalog.

SQL_IC_MIXED = Quoted identifiers in SQL are not case sensitive
and are stored in mixed case in system catalog.

SQL_ROW_UPDATES A character string: “Y” if a keyset-driven or mixed cursor
maintains row versions or values for all fetched rows and
therefore can detect any changes made to a row by any user since
the row was last fetched; otherwise, “N.”

SQL_SCROLL_CONCURRENCY A 32-bit bitmask that enumerates the concurrency control
options supported for scrollable cursors.

The following bitmasks are used to determine which options are
supported:

SQL_SCCO_READ_ONLY = Cursor is read only. No updates are
allowed.

SQL_SCCO_LOCK = Cursor uses the lowest level of locking suffi-
cient to ensure that the row can be updated.

SQL_SCCO_OPT_ROWVER = Cursor uses optimistic concurrency
control, comparing row versions.

SQL_SCCO_OPT_VALUES = Cursor uses optimistic concurrency
control, comparing values.

For information about cursor concurrency, see “Specifying
Cursor Concurrency” on page 7-12.”

InfoType Returns

 (17 of 22)
13-206 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_SCROLL_OPTIONS A 32-bit bitmask that enumerates the scroll options supported
for scrollable cursors.

The following bitmasks are used to determine which options are
supported:
SQL_SO_FORWARD_ONLY = The cursor only scrolls forward.
SQL_SO_STATIC = The data in the result set is static.

SQL_SO_KEYSET_DRIVEN = The driver saves and uses the keys
for every row in the result set.

SQL_SO_DYNAMIC = The driver keeps the keys for every row in
the rowset (the keyset size is the same as the rowset size).

SQL_SO_MIXED = The driver keeps the keys for every row in the
keyset, and the keyset size is greater than the rowset size. The
cursor is keyset driven inside the keyset and dynamic outside
the keyset.

For information about scrollable cursors, see“Scrollable
Cursors” on page 7-10.

SQL_SEARCH_PATTERN_ESCAPE A character string that specifies what the driver supports as an
escape character that permits the use of the pattern-match
metacharacters underscore (_) and percent (%) as valid
characters in search patterns. This escape character applies only
for those catalog function arguments that support search strings.
If this string is empty, the driver does not support a search-
pattern escape character.

This fInfoType is limited to catalog functions. For a description of
the use of the escape character in search pattern strings, see
“Search Pattern Arguments” on page 13-8.

SQL_SERVER_NAME A character string with the actual data-source-specific server
name; useful when a data-source name is used during
SQLConnect, SQLDriverConnect, and SQLBrowseConnect.

SQL_SPECIAL_CHARACTERS A character string that contains all special characters (that is, all
characters except a through z, A through Z, 0 through 9, and
underscore) that can be used in an object name, such as a table,
column, or index name, on the data source. For example, “#$^.”

InfoType Returns

 (18 of 22)
INFORMIX-CLI Function Reference 13-207

SQLGetInfo
SQL_STATIC_SENSITIVITY A 32-bit bitmask that enumerates whether changes made by an
application to a static or keyset-driven cursor through
positioned update or delete statements can be detected by that
application:

SQL_SS_ADDITIONS = Added rows are visible to the cursor; the
cursor can scroll to these rows. Where these rows are added to
the cursor is driver dependent.

SQL_SS_DELETIONS = Deleted rows are no longer available to the
cursor and do not leave a “hole” in the result set; after the cursor
scrolls from a deleted row, it cannot return to that row.

SQL_SS_UPDATES = Updates to rows are visible to the cursor; if
the cursor scrolls from and returns to an updated row, the data
returned by the cursor is the updated data, not the original data.
Because updating key values in a keyset-driven cursor is
considered to be deleting the existing row and adding a new
row, this value is always returned for keyset-driven cursors.

Whether an application can detect changes made to the result set
by other users, including other cursors in the same application,
depends on the cursor type. For more information, see “Scrol-
lable Cursors” on page 7-10.

SQL_SYSTEM_FUNCTIONS A 32-bit bitmask that enumerates the scalar system functions
supported by the driver and associated data source.

The following bitmasks are used to determine which system
functions are supported:

SQL_FN_SYS_DBNAME
SQL_FN_SYS_IFNULL
SQL_FN_SYS_USERNAME

SQL_TABLE_TERM A character string with the data-source vendor name for a table;
for example, “table” or “file.”

InfoType Returns

 (19 of 22)
13-208 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
SQL_TIMEDATE_ADD_INTERVALS A 32-bit bitmask that enumerates the time-stamp intervals
supported by the driver and associated data source for the
TIMESTAMPADD scalar function.

The following bitmasks are used to determine which intervals
are supported:

SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_SECOND
SQL_FN_TSI_MINUTE
SQL_FN_TSI_HOUR
SQL_FN_TSI_DAY
SQL_FN_TSI_WEEK
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS A 32-bit bitmask that enumerates the time-stamp intervals
supported by the driver and associated data source for the
TIMESTAMPDIFF scalar function.

The following bitmasks are used to determine which intervals
are supported:

SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_SECOND
SQL_FN_TSI_MINUTE
SQL_FN_TSI_HOUR
SQL_FN_TSI_DAY
SQL_FN_TSI_WEEK
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_YEAR

InfoType Returns

 (20 of 22)
INFORMIX-CLI Function Reference 13-209

SQLGetInfo
SQL_TIMEDATE_FUNCTIONS A 32-bit bitmask that enumerates the scalar date and time
functions supported by the driver and associated data source.

The following bitmasks are used to determine which date and
time functions are supported:

SQL_FN_TD_CURDATE
SQL_FN_TD_CURTIME
SQL_FN_TD_DAYNAME
SQL_FN_TD_DAYOFMONTH
SQL_FN_TD_DAYOFWEEK
SQL_FN_TD_DAYOFYEAR
SQL_FN_TD_HOUR
SQL_FN_TD_MINUTE
SQL_FN_TD_MONTH)
SQL_FN_TD_MONTHNAME)
SQL_FN_TD_NOW
SQL_FN_TD_QUARTER
SQL_FN_TD_SECOND
SQL_FN_TD_TIMESTAMPADD
SQL_FN_TD_TIMESTAMPDIFF
SQL_FN_TD_WEEK
SQL_FN_TD_YEAR

SQL_TXN_CAPABLE A 16-bit integer value that describes the transaction support in
the driver or data source:

SQL_TC_NONE = Transactions not supported.

SQL_TC_DML = Transactions can contain only Data Manipu-
lation Language (DML) statements (SELECT, INSERT, UPDATE,
DELETE). Data Definition Language (DDL) statements encoun-
tered in a transaction cause an error.

SQL_TC_DDL_COMMIT = Transactions can contain only DML
statements. DDL statements (CREATE TABLE, DROP INDEX, an so
on) encountered in a transaction cause the transaction to be
committed.

SQL_TC_DDL_IGNORE = Transactions can contain only DML
statements. DDL statements encountered in a transaction are
ignored.

SQL_TC_ALL = Transactions can contain DDL statements and
DML statements in any order.

InfoType Returns

 (21 of 22)
13-210 INFORMIX-CLI Programmer’s Manual

SQLGetInfo
Code Example
SQLGetInfo returns lists of supported options as a 32-bit bitmask in rgbIn-
foValue. The bitmask for each option is used with the flag to determine
whether the option is supported.

SQL_TXN_ISOLATION_OPTION A 32-bit bitmask that enumerates the transaction-isolation levels
available from the driver or data source. The following bitmasks
are used in conjunction with the flag to determine which options
are supported:

SQL_TXN_READ_UNCOMMITTED
SQL_TXN_READ_COMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE
SQL_TXN_VERSIONING

For descriptions of these isolation levels, see
“SQL_DEFAULT_TXN_ISOLATION” on page 13-194.

SQL_UNION A 32-bit bitmask that enumerates the support for the UNION
clause:

SQL_U_UNION = The data source supports the UNION clause.

SQL_U_UNION_ALL = The data source supports the ALL
keyword in the UNION clause. (SQLGetInfo returns both
SQL_U_UNION and SQL_U_UNION_ALL in this case.)

SQL_USER_NAME A character string with the name used in a particular database,
which can be different than login name.

InfoType Returns

 (22 of 22)
INFORMIX-CLI Function Reference 13-211

SQLGetInfo

*/
For example, an application could use the following code to determine
whether the SUBSTRING scalar function is supported by the driver associated
with the hdbc:

UDWORD fFuncs;

SQLGetInfo(hdbc,
 SQL_STRING_FUNCTIONS,
 (PTR)&fFuncs,
 sizeof(fFuncs),
 NULL);

if (fFuncs & SQL_FN_STR_SUBSTRING) /* SUBSTRING supported */
...;

else /* SUBSTRING not supported
...;

Related Functions

For information about See

Returning the setting of a connection option SQLGetConnectOption

Determining if a driver supports a function SQLGetFunctions

Returning the setting of a statement option SQLGetStmtOption

Returning information about the data types
of a data source

SQLGetTypeInfo
13-212 INFORMIX-CLI Programmer’s Manual

SQLGetStmtOption
SQLGetStmtOption
SQLGetStmtOption returns the current setting of a statement option.

Syntax
RETCODE SQLGetStmtOption(hstmt, fOption, pvParam)

The SQLGetStmtOption function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fOption Input Option to retrieve.

PTR pvParam Output Value associated with fOption. Depending on the
value of fOption, a 32-bit integer value or a
pointer to a null-terminated character string will
be returned in pvParam.

Level 1
INFORMIX-CLI Function Reference 13-213

SQLGetStmtOption
Diagnostics
When SQLGetStmtOption returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLGetStmtOption and explains each value in the context of this
function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The argument fOption was
SQL_ROW_NUMBER, but the cursor was not
open, or the cursor was positioned before the
start of the result set or after the end of the
result set.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1011 Operation invalid
at this time

The fOption argument was
SQL_GET_BOOKMARK, and the value of the
SQL_USE_BOOKMARKS statement option was
SQL_UB_OFF.

 (1 of 2)
13-214 INFORMIX-CLI Programmer’s Manual

SQLGetStmtOption
Usage
The following table lists statement options for which corresponding values
can be returned but not set. For a list of options that can be set and retrieved,
see “Usage” on page 13-288. If fOption specifies an option that returns a
string, pvParam must be a pointer to storage for the string. The maximum
length of the string is SQL_MAX_OPTION_STRING_LENGTH bytes, excluding
the null-termination byte.

S1092 Option type out of
range

(DM) The value specified for the argument
fOption was in the block of numbers reserved
for ODBC connection and statement options
but was not valid for the version of ODBC
supported by the driver.

S1109 Invalid cursor
position

The fOption argument was
SQL_ROW_NUMBER, but the value in the
rgfRowStatus array in SQLExtendedFetch for
the current row was SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fOption.

fOption pvParam contents

SQL_GET_BOOKMARK
UNSUPPORTED

INFORMIX-CLI does not support this option. The
default is set to SQL_USE_BOOKMARKS=SQL_UB_OFF.

SQL_ROW_NUMBER A 32-bit integer value that specifies the number of the
current row in the entire result set. If the number of the
current row cannot be determined or there is no current
row, the driver returns 0.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-215

SQLGetTypeInfo
Related Functions

SQLGetTypeInfo
SQLGetTypeInfo returns information about data types supported by the data
source. The driver returns the information in the form of an SQL result set.

Important: Applications must use the type names returned in the TYPE_NAME
column in ALTER TABLE and CREATE TABLE statements; they must not use the
sample type names listed in Appendix C, “SQL Grammar.” SQLGetTypeInfo might
return more than one row with the same value in the DATA_TYPE column.

Syntax
RETCODE SQLGetTypeInfo(hstmt, fSqlType)

For information about See

Returning the setting of a connection option SQLGetConnectOption

Setting a connection option SQLSetConnectOption

Setting a statement option SQLSetStmtOption

Level 1
13-216 INFORMIX-CLI Programmer’s Manual

SQLGetTypeInfo
The SQLGetTypeInfo function accepts the following arguments.:

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle for the result set.

SWORD fSqlType Input The SQL data type, which must be
one of the following values:

SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_REAL
SQL_SMALLINT
SQL_TIMESTAMP
SQL_VARCHAR

SQL_ALL_TYPES specifies that infor-
mation about all data types should be
returned.

For information on ODBC SQL data
types, see Appendix C. For infor-
mation on how Informix data types
map to ODBC SQL data types, see
“Mapping Data Types” on page 1-15
INFORMIX-CLI Function Reference 13-217

SQLGetTypeInfo
Diagnostics
When SQLGetTypeInfo returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLGetTypeInfo and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1004 SQL data type out
of range

(DM) The value specified for the argument
fSqlType was in the block of numbers reserved
for ODBC SQL data-type indicators but was not
a valid ODBC SQL data-type indicator.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

 (1 of 2)
13-218 INFORMIX-CLI Programmer’s Manual

SQLGetTypeInfo
Usage
SQLGetTypeInfo returns the results as a standard result set, ordered by
DATA_TYPE and TYPE_NAME. The following table lists the columns in the
result set.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fSqlType.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-219

SQLGetTypeInfo
The lengths of VARCHAR columns shown in the following table are
maximums; the actual lengths depend on the data source.

Column Name Data Type Comments

TYPE_NAME VARCHAR(128)
not NULL

Data-source-dependent data-type
name; for example, CHAR, VARCHAR,
MONEY, LONG VARBINARY, or CHAR ()
FOR BIT DATA. Applications must use
this name in CREATE TABLE and ALTER
TABLE statements.

DATA_TYPE SMALLINT
not NULL

SQL data type. For a list of valid ODBC
SQL data types, see Appendix C. For
information on how Informix data
types map to ODBC SQL data types, see
“Mapping Data Types” on page 1-15 .

PRECISION INTEGER The maximum precision of the data
type on the data source. NULL is
returned for data types where precision
is not applicable. For more information
on precision, see “Precision, Scale,
Length, and Display Size” on page C-8.

LITERAL_PREFIX VARCHAR(128) Character or characters used to prefix a
literal; for example, a single quote (')
for character data types or 0x for binary
data types; NULL is returned for data
types where a literal prefix is not
applicable.

LITERAL_SUFFIX VARCHAR(128) Character or characters used to
terminate a literal; for example, a single
quote (') for character data types; NULL
is returned for data types where a literal
suffix is not applicable.

 (1 of 4)
13-220 INFORMIX-CLI Programmer’s Manual

SQLGetTypeInfo
CREATE_PARAMS VARCHAR(128) Parameters for a data-type definition.
For example, CREATE_PARAMS for
DECIMAL would be “precision,scale;”
CREATE_PARAMS for VARCHAR would
equal “max length;” NULL is returned if
there are no parameters for the data
type definition; for example, INTEGER.

The driver supplies the
CREATE_PARAMS text in the language
of the country where it is used.

NULLABLE SMALLINT
not NULL

Whether the data type accepts a NULL
value:

SQL_NO_NULLS if the data type does
not accept NULL values.

SQL_NULLABLE if the data type accepts
NULL values.

SQL_NULLABLE_UNKNOWN if it is not
known if the column accepts NULL
values.

CASE_SENSITIVE SMALLINT
not NULL

Whether a character data type is case
sensitive in collations and comparisons:

TRUE if the data type is a character data
type and is case sensitive.

FALSE if the data type is not a character
data type or is not case sensitive.

Column Name Data Type Comments

 (2 of 4)
INFORMIX-CLI Function Reference 13-221

SQLGetTypeInfo
SEARCHABLE SMALLINT
not NULL

How the data type is used in a WHERE
clause:

SQL_UNSEARCHABLE if the data type
cannot be used in a WHERE clause.

SQL_LIKE_ONLY if the data type can be
used in a WHERE clause only with the
LIKE predicate.

SQL_ALL_EXCEPT_LIKE if the data type
can be used in a WHERE clause with all
comparison operators except LIKE.

SQL_SEARCHABLE if the data type can
be used in a WHERE clause with any
comparison operator.

UNSIGNED_ATTRIBUTE SMALLINT Whether the data type is unsigned:

TRUE if the data type is unsigned.

FALSE if the data type is signed.

NULL is returned if the attribute is not
applicable to the data type or the data
type is not numeric.

MONEY SMALLINT
not NULL

Whether the data type is a money data
type:

TRUE if it is a money data type.

FALSE if it is not.

AUTO_INCREMENT SMALLINT Whether the data type is
autoincrementing:

TRUE if the data type is
autoincrementing.

FALSE if the data type is not
autoincrementing.

NULL is returned if the attribute is not
applicable to the data type or the data
type is not numeric.

An application can insert values into a
column having this attribute, but
cannot update the values in the column.

Column Name Data Type Comments

 (3 of 4)
13-222 INFORMIX-CLI Programmer’s Manual

SQLGetTypeInfo
Attribute information can apply to data types or to specific columns in a
result set. SQLGetTypeInfo returns information about attributes associated
with data types; SQLColAttributes returns information about attributes
associated with columns in a result set.

LOCAL_TYPE_NAME VARCHAR(128) Localized version of the data-source-
dependent name of the data type. NULL
is returned if a localized name is not
supported by the data source. This
name is intended for display only, as in
dialog boxes.

MINIMUM_SCALE SMALLINT The minimum scale of the data type on
the data source. If a data type has a fixed
scale, the MINIMUM_SCALE and
MAXIMUM_SCALE columns both
contain this value. For example, an
SQL_TIMESTAMP column might have a
fixed scale for fractional seconds. NULL
is returned where scale is not appli-
cable. For more information, see
“Precision, Scale, Length, and Display
Size” on page C-8.

MAXIMUM_SCALE SMALLINT The maximum scale of the data type on
the data source. NULL is returned where
scale is not applicable. If the maximum
scale is not defined separately on the
data source but is instead defined to be
the same as the maximum precision,
this column contains the same value as
the PRECISION column. For more infor-
mation, see “Precision, Scale, Length,
and Display Size” on page C-8.

Column Name Data Type Comments

 (4 of 4)
INFORMIX-CLI Function Reference 13-223

SQLGetTypeInfo
Related Functions

For information about See

Assigning storage for a column in a result
set

SQLBindCol

Canceling statement processing SQL1Cancel

Returning information about a column in a
result set

SQLColAttributes

Fetching a block of data or scrolling
through a result set

SQLExtendedFetch

Fetching a row of data SQLFetch

Returning information about a driver or
data source

SQLGetInfo
13-224 INFORMIX-CLI Programmer’s Manual

SQLMoreResults
SQLMoreResults
SQLMoreResults determines whether more results are available on an hstmt
that contains SELECT, UPDATE, INSERT, or DELETE statements and, if so,
initializes processing for those results.

Syntax
RETCODE SQLMoreResults(hstmt)

The SQLMoreResults function accepts the following argument:

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_NO_DATA_FOUND, SQL_ERROR, or SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

Level 2
INFORMIX-CLI Function Reference 13-225

SQLMoreResults
Diagnostics
When SQLMoreResults returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLMoreResults and explains each one in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
13-226 INFORMIX-CLI Programmer’s Manual

SQLMoreResults
Usage
SELECT statements return result sets. UPDATE, INSERT, and DELETE state-
ments return a count of affected rows. If any of these statements are batched,
submitted with arrays of parameters, or in procedures, they can return
multiple result sets or counts.

If another result set or count is available, SQLMoreResults returns
SQL_SUCCESS and initializes the result set or count for additional processing.
After calling SQLMoreResults for SELECT statements, an application can call
functions to determine the characteristics of the result set and to retrieve data
from the result set. After calling SQLMoreResults for UPDATE, INSERT, or
DELETE statements, an application can call SQLRowCount.

If all results have been processed, SQLMoreResults returns
SQL_NO_DATA_FOUND.

If there is a current result set with unfetched rows, SQLMoreResults discards
that result set and makes the next result set or count available.

If a batch of statements or a procedure mixes other SQL statements with
SELECT, UPDATE, INSERT, and DELETE statements, these other statements do
not affect SQLMoreResults.

For additional information about the valid sequencing of result-processing
functions, see Appendix B, “ODBC State Transition Tables.”

Related Functions

For information about See

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Fetching part or all of a column of data SQLGetData
INFORMIX-CLI Function Reference 13-227

SQLNativeSql
SQLNativeSql
SQLNativeSql returns the SQL string translated by the driver.

Syntax
RETCODE SQLNativeSql(hdbc, szSqlStrIn, cbSqlStrIn, szSqlStr,
cbSqlStrMax, pcbSqlStr)

The SQLNativeSql function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HDBC hdbc Input Connection handle.

UCHAR FAR * szSqlStrIn Input SQL text string to be translated.

SDWORD cbSqlStrIn Input Length of szSqlStrIn text string.

UCHAR FAR * szSqlStr Output Pointer to storage for the trans-
lated SQL string.

SDWORD cbSqlStrMax Input Maximum length of the
szSqlStr buffer.

SDWORD FAR* pcbSqlStr Output The total number of bytes
(excluding the null-termination
byte) available to return in
szSqlStr. If the number of bytes
available to return is greater
than or equal to cbSqlStrMax,
the translated SQL string in
szSqlStr is truncated to cbSql-
StrMax – 1 bytes.

Level 2
13-228 INFORMIX-CLI Programmer’s Manual

SQLNativeSql
Diagnostics
When SQLNativeSql returns either SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLNativeSql and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szSqlStr was not large enough to
return the entire SQL string, so the SQL string
was truncated. The argument pcbSqlStr
contains the length of the untruncated SQL
string (function returns
SQL_SUCCESS_WITH_INFO).

08003 Connection not
open

The hdbc was not in a connected state.

37000 Syntax error or
access violation

The argument szSqlStrIn contained an SQL
statement that was not preparable or
contained a syntax error.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

 (1 of 2)
INFORMIX-CLI Function Reference 13-229

SQLNativeSql
Usage
The following example shows what SQLNativeSql might return for an input
SQL string that contains the scalar function LENGTH:

SELECT {fn LENGTH(NAME)} FROM EMPLOYEE

An INFORMIX-CLI driver might return the following translated SQL string:

SELECT length(NAME) FROM EMPLOYEE

Related Functions
None.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1009 Invalid argument
value

(DM) The argument szSqlStrIn was a null
pointer.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStrIn was less than 0,
but not equal to SQL_NTS.

(DM) The argument cbSqlStrMax was less than
0, and the argument szSqlStr was not a null
pointer.

SQLSTATE Error Description

 (2 of 2)
13-230 INFORMIX-CLI Programmer’s Manual

SQLNumParams
SQLNumParams
SQLNumParams returns the number of parameters in an SQL statement.

Syntax
RETCODE SQLNumParams(hstmt, pcpar)

The SQLNumParams function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLNumParams returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLNumParams and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

Type Argument Use Description

HSTMT hstmt Input Statement handle

SWORD FAR * pcpar Output Number of parameters in the
statement

Level 2
INFORMIX-CLI Function Reference 13-231

SQLNumParams
Usage
SQLNumParams can be called only after SQLPrepare has been called.

If the statement associated with hstmt does not contain parameters, SQLNum-
Params sets pcpar to 0.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1008 Operation canceled The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-sequence
error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) SQLExecute orSQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
13-232 INFORMIX-CLI Programmer’s Manual

SQLNumResultCols
Related Functions

SQLNumResultCols
SQLNumResultCols returns the number of columns in a result set.

Syntax
RETCODE SQLNumResultCols(hstmt, pccol)

The SQLNumResultCols function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

For information about See

Assigning storage for a parameter SQLBindParameter

Type Argument Use Description

HSTMT hstmt Input Statement handle

SWORD FAR * pccol Output Number of columns in the result set

Core
INFORMIX-CLI Function Reference 13-233

SQLNumResultCols
Diagnostics
When SQLNumResultCols returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLNumResultCols and explains each value in the context of this
function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) The function was called prior to calling
SQLPrepare or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.
13-234 INFORMIX-CLI Programmer’s Manual

SQLNumResultCols
SQLNumResultCols can return any SQLSTATE that can be returned by
SQLPrepare or SQLExecute when SQLNumResultCols is called after
SQLPrepare and before SQLExecute is called, depending on when the data
source evaluates the SQL statement associated with the hstmt.

Usage
SQLNumResultCols can be called successfully only when the hstmt is in the
prepared, executed, or positioned state.

If the statement associated with hstmt does not return columns,
SQLNumResultCols sets pccol to 0.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning information about a column in a result set SQLColAttributes

Returning information about a column in a result set SQLDescribeCol

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Fetching part or all of a column of data SQLGetData

Setting cursor scrolling options SQLSetScrollOptions
INFORMIX-CLI Function Reference 13-235

SQLParamData
SQLParamData
SQLParamData is used with SQLPutData to supply parameter data when a
statement executes.

Syntax
RETCODE SQLParamData(hstmt, prgbValue)

The SQLParamData function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLEINFORMIX-CLI

Type Argument Use Description

HSTMT hstmt Input Statement handle.

PTR FAR * prgbValue Output Pointer to storage for the value specified for the
rgbValue argument in SQLBindParameter (for
parameter data) or the address of the rgbValue
buffer specified in SQLBindCol (for column
data).

Level 1
13-236 INFORMIX-CLI Programmer’s Manual

SQLParamData
Diagnostics
When SQLParamData returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLParamData and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

22026 String data, length
mismatch

The SQL_NEED_LONG_DATA_LEN information
type in SQLGetInfo was “Y” and less data was
sent for a long parameter (the data type was
SQL_LONGVARCHAR, SQL_LONGVARBINARY,
or a long, data-source-specific data type) than
was specified with the pcbValue argument in
SQLBindParameter.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

 (1 of 2)
INFORMIX-CLI Function Reference 13-237

SQLParamData
If SQLParamData is called while sending data for a parameter in an SQL
statement, it can return any SQLSTATE that can be returned by the function
that was called to execute the statement (SQLExecute or SQLExecDirect).

Usage
For an explanation of how data-at-execution parameter data is passed at
statement-execution time, see “Passing Parameter Values” on page 13-34.

Code Example
See SQLPutData.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA.
SQLCancel was called before data was sent for
all data-at-execution parameters or columns.

S1010 Function-
sequence error

(DM) The previous function call was not a call
to SQLExecDirect or SQLExecute where the
return code was SQL_NEED_DATA or a call to
SQLPutData.

The previous function call was a call to
SQLParamData.

S1T00 Time-out expired The time-out period expired before the data
source completed processing the parameter
value. The time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
13-238 INFORMIX-CLI Programmer’s Manual

SQLParamOptions
Related Functions

SQLParamOptions
SQLParamOptions allows an application to specify multiple values for the
set of parameters assigned by SQLBindParameter. The ability to specify
multiple values for a set of parameters is useful for bulk inserts and other
work that requires the data source to process the same SQL statement
multiple times with various parameter values. For example, an application
can specify three sets of values for the set of parameters associated with an
INSERT statement, and then execute the INSERT statement once to perform
the three insert operations.

Syntax
RETCODE SQLParamOptions(hstmt, crow, pirow)

For information about See

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Sending parameter data at execution time SQLPutData

Assigning storage for a parameter SQLBindParameter

Level 2
INFORMIX-CLI Function Reference 13-239

SQLParamOptions
The SQLParamOptions function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UDWORD crow Input Number of values for each parameter. If
crow is greater than 1, the rgbValue
argument in SQLBindParameter points to
an array of parameter values, and pcbValue
points to an array of lengths.

UDWORD
FAR *

pirow Input Pointer to storage for the current row
number. As each row of parameter values is
processed, pirow is set to the number of that
row. No row number will be returned if
pirow is set to a null pointer.
13-240 INFORMIX-CLI Programmer’s Manual

SQLParamOptions
Diagnostics
When SQLParamOptions returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value may be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLParamOptions and explains each one in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1107 Row value out of
range

(DM) The value specified for the argument
crow was equal to 0.
INFORMIX-CLI Function Reference 13-241

SQLParamOptions
Usage
As a statement executes, the driver sets pirow to the number of the current
row of parameter values; the first row is row number 1. The contents of pirow
can be used as follows:

■ When SQLParamData returns SQL_NEED_DATA for data-at-
execution parameters, the application can access the value in pirow to
determine which row of parameters is being executed.

■ When SQLExecute or SQLExecDirect returns an error, the application
can access the value in pirow to find out which row of parameters
failed.

■ When SQLExecute, SQLExecDirect, SQLParamData, or SQLPutData
succeed, the value in pirow is set to crow (the total number of rows of
parameters processed).
13-242 INFORMIX-CLI Programmer’s Manual

SQLParamOptions
Code Example
In the following example, an application specifies an array of parameter
values with SQLBindParameter and SQLParamOptions. It then inserts those
values into a table with a single INSERT statement and checks for any errors.
If the first row fails, the application rolls back all changes. If any other row
fails, the application commits the transaction, skips the failed row, rebinds
the remaining parameters, and continues processing. (Note that irow is
1-based and szData[] is 0-based, so the irow entry of szData[] is skipped by
rebinding at szData[irow].)

#define CITY_LEN 256
SDWORD cbValue[] = {SQL_NTS, SQL_NTS, SQL_NTS, SQL_NTS, SQL_NTS};
UCHAR szData[][CITY_LEN] = {"Boston","New York","Keokuk","Seattle",
 "Eugene"};
UDWORD irow;
SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, 0);
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_DEFAULT, SQL_CHAR,
 CITY_LEN, 0, szData, 0, cbValue);
SQLPrepare(hstmt, "INSERT INTO CITIES VALUES (?)", SQL_NTS);
SQLParamOptions(hstmt, 5, &irow);

while (TRUE) {

retcode = SQLExecute(hstmt);

/* Done if execution was successful */

if (retcode != SQL_ERROR) {
break;

}
/* On an error, print the error. If the error is in row 1, roll */
/* back the transaction and quit. If the error is in another */
/* row, commit the transaction and, unless the error is in the */
/* last row, rebind to the next row and continue processing. */

show_error();
if (irow == 1) {

SQLTransact(henv, hstmt, SQL_ROLLBACK);
break;

} else {
SQLTransact(henv, hstmt, SQL_COMMIT);
if (irow == 5) {

break;
} else {

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,
 SQL_C_DEFAULT, SQL_CHAR, CITY_LEN, 0,
 szData[irow], 0, cbValue[irow]);
SQLParamOptions(hstmt, 5-irow, &irow);

}
}

}

INFORMIX-CLI Function Reference 13-243

SQLPrepare
Related Functions

SQLPrepare
SQLPrepare prepares an SQL string for execution.

Syntax
RETCODE SQLPrepare(hstmt, szSqlStr, cbSqlStr)

The SQLPrepare function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

For information about See

Assigning storage for a parameter SQLBindParameter

Type Argument Use Description

HSTMT hstmt Input Statement handle

UCHAR FAR * szSqlStr Input SQL text string

SDWORD cbSqlStr Input Length of szSqlStr

Core
13-244 INFORMIX-CLI Programmer’s Manual

SQLPrepare
Diagnostics
When SQLPrepare returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLPrepare
and explains each value in the context of this function; the notation “(DM)”
precedes the description of each SQLSTATE returned by the driver manager.
The return code associated with each SQLSTATE value is SQL_ERROR unless
noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

21S01 Insert value list
does not match
column list.

The argument szSqlStr contained an INSERT
statement, and the number of values to be
inserted did not match the degree of the
derived table.

21S02 Degree of derived
table does not
match column list.

The argument szSqlStr contained a CREATE
VIEW statement, and the number of names
specified is not the same degree as the derived
table defined by the query specification.

22005 Error in
assignment

The argument szSqlStr contained an SQL
statement that contained a literal or parameter,
and the value was incompatible with the data
type of the associated table column.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

34000 Invalid cursor
name

The argument szSqlStr contained a positioned
DELETE or a positioned UPDATE, and the
cursor referenced by the statement being
prepared was not open.

37000 Syntax error or
access violation

The argument szSqlStr contained an SQL
statement that was not preparable or
contained a syntax error.

 (1 of 4)
INFORMIX-CLI Function Reference 13-245

SQLPrepare
42000 Syntax error or
access violation

The argument szSqlStr contained a statement
for which the user did not have the required
privileges.

S0001 Base table or view
already exists

The argument szSqlStr contained a CREATE
TABLE or CREATE VIEW statement, but the
table name or view name specified already
exists.

S0002 Base table not
found

The argument szSqlStr contained a DROP
TABLE or a DROP VIEW statement, but the
specified table name or view name did not
exist.

The argument szSqlStr contained an ALTER
TABLE statement, but the specified table name
did not exist.

The argument szSqlStr contained a CREATE
VIEW statement, but a table name or view
name defined by the query specification did
not exist.

The argument szSqlStr contained a CREATE
INDEX statement, but the specified table name
did not exist.

The argument szSqlStr contained a GRANT or
REVOKE statement, but the specified table
name or view name did not exist.

The argument szSqlStr contained a SELECT
statement, but a specified table name or view
name did not exist.

The argument szSqlStr contained a DELETE,
INSERT, or UPDATE statement, but the specified
table name did not exist.

The argument szSqlStr contained a CREATE
TABLE statement, and a table specified in a
constraint (referencing a table other than the
one being created) did not exist.

SQLSTATE Error Description

 (2 of 4)
13-246 INFORMIX-CLI Programmer’s Manual

SQLPrepare
S0011 Index already
exists.

The argument szSqlStr contained a CREATE
INDEX statement, but the specified index name
already existed.

S0012 Index not found The argument szSqlStr contained a DROP
INDEX statement, but the specified index name
did not exist.

S0021 Column already
exists.

The argument szSqlStr contained an ALTER
TABLE statement, and the column specified in
the ADD clause is not unique or identifies an
existing column in the base table.

S0022 Column not found The argument szSqlStr contained a CREATE
INDEX statement, and one or more of the
column names specified in the column list did
not exist.

The argument szSqlStr contained a GRANT or
REVOKE statement, and a specified column
name did not exist.

The argument szSqlStr contained a SELECT,
DELETE, INSERT, or UPDATE statement, and a
specified column name did not exist.

The argument szSqlStr contained a CREATE
TABLE statement, and a column specified in a
constraint (referencing a table other than the
one being created) did not exist.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

SQLSTATE Error Description

 (3 of 4)
INFORMIX-CLI Function Reference 13-247

SQLPrepare
Usage
The application calls SQLPrepare to send an SQL statement to the data source
for preparation. The application can include one or more parameter markers
in the SQL statement. To include a parameter marker, the application embeds
a question mark (?) into the SQL string at the appropriate position.

Tip: If an application uses SQLPrepare to prepare and SQLExecute to submit a
COMMIT or ROLLBACK statement, it is not interoperable among DBMS products. To
commit or roll back a transaction, call SQLTransact.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1009 Invalid argument
value

(DM) The argument szSqlStr was a null pointer.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStr was less than or
equal to 0, but not equal to SQL_NTS.

S1C00 Driver not capable The cursor/concurrency combination is
invalid.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (4 of 4)
13-248 INFORMIX-CLI Programmer’s Manual

SQLPrepare
The driver modifies the statement to use the form of SQL used by the data
source and then submits it to the data source for preparation. In particular,
the driver modifies the escape clauses used to define ODBC-specific SQL. (For
a description of SQL statement grammar, see Appendix B.) For the driver, an
hstmt is similar to a statement identifier in embedded SQL code. If the data
source supports statement identifiers, the driver can send a statement
identifier and parameter values to the data source.

Once a statement is prepared, the application uses hstmt to refer to the
statement in later function calls. The prepared statement associated with the
hstmt might be reexecuted by calling SQLExecute until the application frees
the hstmt with a call to SQLFreeStmt with the SQL_DROP option or until the
hstmt is used in a call to SQLPrepare, SQLExecDirect, or one of the catalog
functions (SQLColumns, SQLTables, and so on). Once the application
prepares a statement, it can request information about the format of the result
set.

Some drivers cannot return syntax errors or access violations when the appli-
cation calls SQLPrepare. A driver might handle syntax errors and access
violations, only syntax errors, or neither syntax errors nor access violations.
Therefore, an application must be able to handle these conditions when it
calls subsequent related functions such as SQLNumResultCols,
SQLDescribeCol, SQLColAttributes, and SQLExecute.

Depending on the capabilities of the driver and data source and on whether
the application has called SQLBindParameter, parameter information (such
as data types) might be checked when the statement is prepared or when it is
executed. For maximum interoperability, an application should unbind all
parameters that applied to an old SQL statement before it prepares a new SQL
statement on the same hstmt. This action prevents errors that are caused by
old parameter information being applied to the new statement.

Warning: Committing or rolling back a transaction, either by calling SQLTransact
or by using the SQL_AUTOCOMMIT connection option, can cause the data source to
delete the access plans for all hstmts on an hdbc. For more information, see
“SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 13-192.

Code Example
See SQLBindParameter, SQLParamOptions, and SQLPutData.
INFORMIX-CLI Function Reference 13-249

SQLPrepare
Related Functions

For information about See

Allocating a statement handle SQLAllocStmt

Assigning storage for a column in a result
set

SQLBindCol

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the number of rows affected by a
statement

SQLRowCount

Setting a cursor name SQLSetCursorName

Assigning storage for a parameter SQLBindParameter

Executing a commit or rollback operation SQLTransact
13-250 INFORMIX-CLI Programmer’s Manual

SQLPrimaryKeys
SQLPrimaryKeys
SQLPrimaryKeys returns the column names that comprise the primary key
for a table. The driver returns the information as a result set. This function
does not support returning primary keys from multiple tables in a single call.

Syntax
RETCODE SQLPrimaryKeys(hstmt, szTableQualifier,
cbTableQualifier, szTableOwner, cbTableOwner, szTableName,
cbTableName)

The SQLPrimaryKeys function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver
supports qualifiers for some tables
but not for others, as when the
driver retrieves data from
different DBMSs, an empty string
("") denotes those tables that do
not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input Table owner. If a driver supports
owners for some tables but not for
others, as when the driver
retrieves data from different
DBMSs, an empty string ("")
denotes those tables that do not
have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.

Level 2
INFORMIX-CLI Function Reference 13-251

SQLPrimaryKeys
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLPrimaryKeys returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLPrimaryKeys and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

 (1 of 2)
13-252 INFORMIX-CLI Programmer’s Manual

SQLPrimaryKeys
Usage
SQLPrimaryKeys returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and KEY_SEQ. The
following table lists the columns in the result set.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length
arguments exceeded the maximum-length
value for the corresponding qualifier or name.

S1C00 Driver not capable A table qualifier was specified, but the driver
or data source does not support qualifiers.

A table owner was specified, but the driver or
data source does not support owners.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested result set.
The time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-253

SQLPrimaryKeys
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and
COLUMN_NAME columns, call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Related Functions

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Primary-key table-qualifier identifier;
NULL if not applicable to the data source.

TABLE_OWNER VARCHAR(128) Primary-key table-owner identifier; NULL if
not applicable to the data source.

TABLE_NAME VARCHAR(128)
not NULL

Primary-key table identifier.

COLUMN_NAME VARCHAR(128)
not NULL

Primary-key column identifier.

KEY_SEQ SMALLINT
not NULL

Column sequence number in key (starting
with 1).

PK_NAME VARCHAR(128) Primary-key identifier. NULL if not appli-
cable to the data source.

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics
13-254 INFORMIX-CLI Programmer’s Manual

SQLProcedures
SQLProcedures
SQLProcedures returns the list of procedure names stored in a specific data
source. Procedure is a generic term used to describe an executable object, or a
named entity that can be invoked using input and output parameters, and
which can return result sets similar to the results returned by SQL SELECT
expressions.

Syntax
RETCODE SQLProcedures(hstmt, szProcQualifier,
cbProcQualifier, szProcOwner, cbProcOwner, szProcName,
cbProcName)

The SQLProcedures function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szProcQualifier Input Procedure qualifier. If a driver
supports qualifiers for some tables
but not for others, such as when
the driver retrieves data from
different DBMSs, an empty string
("") denotes those tables that do
not have qualifiers.

SWORD cbProcQualifier Input Length of szProcQualifier.

UCHAR FAR * szProcOwner Input String search pattern for
procedure-owner names. If a
driver supports owners for some
procedures but not for others, as
when the driver retrieves data
from different DBMSs, an empty
string ("") denotes those proce-
dures that do not have owners.

 (1 of 2)

Level 2
INFORMIX-CLI Function Reference 13-255

SQLProcedures
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLProcedures returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value may be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLProcedures and explains each one in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SWORD cbProcOwner Input Length of szProcOwner.

UCHAR FAR * szProcName Input String search pattern for
procedure names.

SWORD cbProcName Input Length of szProcName.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

 (1 of 3)

Type Argument Use Description

 (2 of 2)
13-256 INFORMIX-CLI Programmer’s Manual

SQLProcedures
S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0 but not equal to
SQL_NTS.

The value of one of the name-length
arguments exceeded the maximum-length
value for the corresponding qualifier or name.

SQLSTATE Error Description

 (2 of 3)
INFORMIX-CLI Function Reference 13-257

SQLProcedures
Usage
SQLProcedures lists all procedures in the requested range. A user might or
might not have permission to execute any of these procedures. To check
accessibility, an application can call SQLGetInfo and check the
SQL_ACCESSIBLE_PROCEDURES information value. Otherwise, the appli-
cation must be able to handle a situation in which the user selects a procedure
that it cannot execute.

Important: SQLProcedures might not return all procedures. Applications can use
any valid procedure, regardless of whether it is returned by SQLProcedures.

SQLProcedures returns the results as a standard result set, ordered by
PROCEDURE_QUALIFIER, PROCEDURE_OWNER, and PROCEDURE_NAME.
The following table lists the columns in the result set.

S1C00 Driver not capable A procedure qualifier was specified, but the
driver or data source does not support
qualifiers.

A procedure owner was specified, but the
driver or data source does not support owners.
A string search pattern was specified for the
procedure owner or procedure name, but the
data source does not support search patterns
for one or more of those arguments.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested result set. The
time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (3 of 3)
13-258 INFORMIX-CLI Programmer’s Manual

SQLProcedures
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the PROCEDURE_QUALIFIER, PROCEDURE_OWNER, and
PROCEDURE_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN, and
SQL_MAX_PROCEDURE_NAME_LEN options.

Column Name Data Type Comments

PROCEDURE_QUALIFIER VARCHAR(128) Procedure qualifier identifier; NULL
if not applicable to the data source.
If a driver supports qualifiers for
some procedures but not for others,
as when the driver retrieves data
from different DBMSs, it returns an
empty string ("") for those proce-
dures that do not have qualifiers.

PROCEDURE_OWNER VARCHAR(128) Procedure owner identifier; NULL if
not applicable to the data source. If
a driver supports owners for some
procedures but not for others, as
when the driver retrieves data from
different DBMSs, it returns an
empty string ("") for those proce-
dures that do not have owners.

PROCEDURE_NAME VARCHAR(128)
not NULL

Procedure identifier.

NUM_INPUT_PARAMS N/A Reserved for future use. Applica-
tions should not rely on the data
returned in these result columns.

NUM_OUTPUT_PARAMS N/A Reserved for future use. Applica-
tions should not rely on the data
returned in these result columns.

NUM_RESULT_SETS N/A Reserved for future use. Applica-
tions should not rely on the data
returned in these result columns.

 (1 of 2)
INFORMIX-CLI Function Reference 13-259

SQLProcedures
The szProcOwner and szProcName arguments accept search patterns. For
more information about valid search patterns, see “Search Pattern
Arguments” on page 13-8.

REMARKS VARCHAR(254) A description of the procedure.

PROCEDURE_TYPE SMALLINT Defines the procedure type:

SQL_PT_UNKNOWN: It cannot be
determined whether the procedure
returns a value.

SQL_PT_PROCEDUR2E: The
returned object is a procedure; that
is, it does not have a return value.

SQL_PT_FUNCTION: The returned
object is a function; that is, it has a
return value.

Column Name Data Type Comments

 (2 of 2)
13-260 INFORMIX-CLI Programmer’s Manual

SQLProcedures
Code Example
In this example, an application uses the procedure AddEmployee to insert
data into the EMPLOYEE table. The procedure contains input parameters for
NAME, AGE, and BIRTHDAY columns. It also contains one output parameter
that returns a remark about the new employee. The example also shows the
use of a return value from a stored procedure. For the return value and each
parameter in the procedure, the application calls SQLBindParameter to
specify the ODBC C data type and the SQL data type of the parameter and to
specify the storage location and length of the parameter. The application
assigns data values to the storage locations for each parameter and calls
SQLExecDirect to execute the procedure. If SQLExecDirect returns
SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the return value and the value
of each output or input/output parameter is automatically put into the
storage location defined for the parameter in SQLBindParameter.

#define NAME_LEN 30
#define REM_LEN 128

UCHAR szName[NAME_LEN], szRemark[REM_LEN];
SWORD sAge, sEmpId;
SDWORD cbEmpId, cbName, cbAge = 0, cbBirthday = 0, cbRemark;
DATE_STRUCT dsBirthday;
/* Define parameter for return value (Employee ID) from procedure. */

SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER,
 0, 0, &sEmpId, 0, &cbEmpId);

/* Define data types and storage locations for Name, Age, Birthday */
/* input parameter data. */

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 NAME_LEN, 0, szName, 0, &cbName);
SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_SSHORT, SQL_SMALLINT,
 0, 0, &sAge, 0, &cbAge);
SQLBindParameter(hstmt, 4, SQL_PARAM_INPUT, SQL_C_DATE, SQL_DATE,
 0, 0, &dsBirthday, 0, &cbBirthday);

/* Define data types and storage location for Remark output parameter */

SQLBindParameter(hstmt, 5, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,
 REM_LEN, 0, szRemark, REM_LEN, &cbRemark);

strcpy(szName, "Smith, John D."); /* Specify first row of */
sAge = 40; /* parameter data. */
dsBirthday.year = 1952;
dsBirthday.month = 2;
dsBirthday.day = 29;
cbName = SQL_NTS;

/* Execute procedure with first row of data. After the procedure */
INFORMIX-CLI Function Reference 13-261

SQLProcedures
/* is executed, sEmpId and szRemark will have the values */
/* returned by AddEmployee. */

retcode = SQLExecDirect(hstmt, "{?=call AddEmployee(?,?,?,?)}",SQL_NTS);

strcpy(szName, "Jones, Bob K."); /* Specify second row of */
sAge = 52; /* parameter data */
dsBirthday.year = 1940;
dsBirthday.month = 3;
dsBirthday.day = 31;

/* Execute procedure with second row of data. After the procedure */
/* is executed, sEmpId and szRemark will have the new values */
/* returned by AddEmployee. */

retcode = SQLExecDirect(hstmt,

 "{?=call AddEmployee(?,?,?,?)}", SQL_NTS);

Related Functions

For information about See

Assigning storage for a column in a result
set

SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling
through a result set

SQLExtendedFetch

Fetching a row of data SQLFetch

Returning information about a driver or
data source

SQLGetInfo

Syntax for invoking stored procedures Chapter 6, “Executing SQL
Statements”
13-262 INFORMIX-CLI Programmer’s Manual

SQLPutData
SQLPutData
SQLPutData allows an application to send data for a parameter or column to
the driver at statement execution time. This function can send character or
binary data values in parts to a column with a character, binary, or data-
source-specific data type (for example, parameters of SQL_LONGVARBINARY
or SQL_LONGVARCHAR).

Syntax
RETCODE SQLPutData(hstmt, rgbValue, cbValue)

The SQLPutData function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

PTR rgbValue Input Pointer to storage for the actual data for the
parameter or column. The data must use the C
data type specified in the fCType argument of
SQLBindParameter (for parameter data) or
SQLBindCol (for column data).

SDWORD cbValue Input Length of rgbValue. Specifies the amount of data
sent in a call to SQLPutData. The amount of
data can vary with each call for a given
parameter or column. cbValue is ignored unless
it is SQL_NTS, SQL_NULL_DATA, or
SQL_DEFAULT_PARAM; the C data type
specified in SQLBindParameter or SQLBindCol
is SQL_C_CHAR or SQL_C_BINARY; or the C data
type is SQL_C_DEFAULT and the default C data
type for the specified SQL data type is
SQL_C_CHAR or SQL_C_BINARY. For all other
types of C data, if cbValue is not
SQL_NULL_DATA or SQL_DEFAULT_PARAM, the
driver assumes that the size of rgbValue is the
size of the C data type specified with fCType and
sends the entire data value. For more infor-
mation, see “Converting Data from C to SQL
Data Types” on page C-24.

Level 1
INFORMIX-CLI Function Reference 13-263

SQLPutData
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLPutData returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLPutData and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data sent for a character or binary
parameter or column in one or more calls to
SQLPutData exceeded the maximum length of
the associated character or binary column.

The fractional part of the data sent for a
numeric or bit parameter or column was
truncated.

Time-stamp data sent for a date or time
parameter or column was truncated.

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

22001 String data right
truncation

The SQL_NEED_LONG_DATA_LEN information
type in SQLGetInfo was “Y” and more data
was sent for a long parameter (the data type
was SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data-source-
specific data type) than was specified with the
pcbValue argument in SQLBindParameter.

 (1 of 3)
13-264 INFORMIX-CLI Programmer’s Manual

SQLPutData
22003 Numeric value out
of range

SQLPutData was called more than once for a
parameter or column, and it was not being
used to send character C data to a column with
a character, binary, or data-source-specific data
type or to send binary C data to a column with
a character, binary, or data-source-specific data
type.

The data sent for a numeric parameter or
column caused the whole (as opposed to
fractional) part of the number to be truncated
when assigned to the associated table column.

22005 Error in
assignment

The data sent for a parameter or column was
incompatible with the data type of the
associated table column.

22008 Datetime-field
overflow

The data sent for a date, time, or time-stamp
parameter or column was respectively, an
invalid date, time, or time stamp.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver could not allocate memory required
to support execution or completion of the
function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

SQLExecute or SQLExecDirect was called for
the hstmt and returned SQL_NEED_DATA.
SQLCancel was called before data was sent for
all data-at-execution parameters or columns.

SQLSTATE Error Description

 (2 of 3)
INFORMIX-CLI Function Reference 13-265

SQLPutData
Usage
For an explanation of how data-at-execution parameter data passes when a
statement executes, see “Passing Parameter Values” on page 13-34. For an
explanation of how data-at-execution column data is updated or added, see
“SQLSetScrollOptions” on page 13-285.

Important: An application can use SQLPutData to send parts of data when sending
character C data to a column with a character, binary, or data source-specific data
type or when SQLPutData sends binary C data to a column with a character, binary,
or data source-specific data type. If SQLPutData is called more than once under any
other conditions, it returns SQL_ERROR and SQLSTATE 22003 (Numeric value out
of range).

S1009 Invalid argument
value

(DM) The argument rgbValue was a null
pointer, and the argument cbValue was not 0,
SQL_DEFAULT_PARAM, or SQL_NULL_DATA.

S1010 Function-
sequence error

(DM) The previous function call was not a call
to SQLPutData or SQLParamData.

The previous function call was a call to
SQLExecDirect or SQLExecute where the
return code was SQL_NEED_DATA.

S1090 Invalid string or
buffer length

The argument rgbValue was not a null pointer,
and the argument cbValue was less than 0 but
not equal to SQL_NTS or SQL_NULL_DATA.

S1T00 Time-out expired The time-out period expired before the data
source completed processing the parameter
value. The time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (3 of 3)
13-266 INFORMIX-CLI Programmer’s Manual

SQLPutData
Code Example
In the following example, an application prepares an SQL statement to insert
data into the EMPLOYEE table. The statement contains parameters for the
NAME, ID, and PHOTO columns. For each parameter, the application calls
SQLBindParameter to specify the C and SQL data types of the parameter. It
also specifies that the data for the first and third parameters passes at
execution time and that the values 1 and 3 pass for later retrieval by
SQLParamData. These values identify which parameter is being processed.

The application calls GetNextID to get the next available employee ID
number. It then calls SQLExecute to execute the statement. SQLExecute
returns SQL_NEED_DATA when it needs data for the first and third param-
eters. The application calls SQLParamData to retrieve the value that it stored
with SQLBindParameter; it uses this value to determine for which parameter
to send data. For each parameter, the application calls InitUserData to
initialize the data routine. It repeatedly calls GetUserData and SQLPutData
to get and send the parameter data. Finally, it calls SQLParamData to indicate
that it has sent all the data for the parameter and to retrieve the value for the
next parameter. After data has been sent for both parameters, SQLParamData
returns SQL_SUCCESS.

For the first parameter, InitUserData does nothing, and GetUserData calls a
routine to prompt the user for the employee name. For the third parameter,
InitUserData calls a routine to prompt the user for the name of a file
containing a bitmap photo of the employee and opens the file. GetUserData
retrieves the next MAX_DATA_LEN bytes of photo data from the file. After it
retrieves all the photo data, it closes the photo file.

Some application routines are omitted for clarity.

#define MAX_DATA_LEN 1024
SDWORD cbNameParam, cbID = 0; cbPhotoParam, cbData;
SWORD sID;
PTR pToken, InitValue;
UCHAR Data[MAX_DATA_LEN];

retcode = SQLPrepare(hstmt,
 "INSERT INTO EMPLOYEE (NAME, ID, PHOTO) VALUES (?, ?, ?)",
 SQL_NTS);
if (retcode = = SQL_SUCCESS) {

/* Bind the parameters. For parameters 1 and 3, pass the */
/* parameter number in rgbValue instead of a buffer address. */
INFORMIX-CLI Function Reference 13-267

SQLPutData
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 NAME_LEN, 0, 1, 0, &cbNameParam);
SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SSHORT,
 SQL_SMALLINT, 0, 0, &sID, 0, &cbID);
SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT,
 SQL_C_BINARY, SQL_LONGVARBINARY,
 0, 0, 3, 0, &cbPhotoParam);

/* Set values so data for parameters 1 and 3 will be passed */
/* at execution. Note that the length parameter in the macro */
/* SQL_LEN_DATA_AT_EXEC is 0. This assumes that the driver */
/* returns "N" for the SQL_NEED_LONG_DATA_LEN information */
/* type in SQLGetInfo. */

cbNameParam = cbPhotoParam = SQL_LEN_DATA_AT_EXEC(0);

sID = GetNextID(); /* Get next available employee ID number. */

retcode = SQLExecute(hstmt);

/* For data-at-execution parameters, call SQLParamData to get the */
/* parameter number set by SQLBindParameter. Call InitUserData. */
/* Call GetUserData and SQLPutData repeatedly to get and put all */
/* data for the parameter. Call SQLParamData to finish processing */
/* this parameter and start processing the next parameter. */

while (retcode = = SQL_NEED_DATA) {
retcode = SQLParamData(hstmt, &pToken);
if (retcode = = SQL_NEED_DATA) {

InitUserData((SWORD)pToken, InitValue);
while (GetUserData(InitValue, (SWORD)pToken, Data, &cbData))

SQLPutData(hstmt, Data, cbData);
}

}
}

VOID InitUserData(sParam, InitValue)
SWORD sParam;
PTR InitValue;
{
UCHAR szPhotoFile[MAX_FILE_NAME_LEN];
switch sParam {

case 3:

/* Prompt user for bitmap file containing employee photo. */
/* OpenPhotoFile opens the file and returns the file handle. */

PromptPhotoFileName(szPhotoFile);
OpenPhotoFile(szPhotoFile, (FILE *)InitValue);
break;

}
}

BOOL GetUserData(InitValue, sParam, Data, cbData)
PTR InitValue;
13-268 INFORMIX-CLI Programmer’s Manual

SQLPutData
SWORD sParam;
UCHAR *Data;
SDWORD *cbData;

{

switch sParam {
case 1:

/* Prompt user for employee name. */

PromptEmployeeName(Data);
*cbData = SQL_NTS;
return (TRUE);

case 3:
/* GetNextPhotoData returns the next piece of photo data and */
/* the number of bytes of data returned (up to MAX_DATA_LEN). */

Done = GetNextPhotoData((FILE *)InitValue, Data,

 MAX_DATA_LEN, &cbData);
if (Done) {

ClosePhotoFile((FILE *)InitValue);
return (TRUE);

}
return (FALSE);

}
return (FALSE);
}

Related Functions

For information about See

Canceling statement processing SQLCancel

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning the next parameter to send data for SQLParamData

Assigning storage for a parameter SQLBindParameter
INFORMIX-CLI Function Reference 13-269

SQLRowCount
SQLRowCount
SQLRowCount returns the number of rows affected by an UPDATE, INSERT,
or DELETE statement.

Syntax
RETCODE SQLRowCount(hstmt, pcrow)

The SQLRowCount function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

SDWORD FAR * pcrow Output For UPDATE, INSERT, and DELETE state-
ments, pcrow is the number of rows
affected by the request or –1 if the
number of affected rows is not available.

For other statements and functions, the
driver can define the value of pcrow. For
example, some data sources might be
able to return the number of rows
returned by a SELECT statement or a
catalog function before fetching the
rows.

Many data sources cannot return the
number of rows in a result set before
fetching them; for maximum interopera-
bility, applications should not rely on
this behavior.

Core
13-270 INFORMIX-CLI Programmer’s Manual

SQLRowCount
Diagnostics
When SQLRowCount returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLRowCount and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

Usage
If the last executed statement associated with hstmt was not an UPDATE,
INSERT, or DELETE statement, the value of pcrow is driver defined.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1010 Function-
sequence error

(DM) The function was called prior to calling
SQLExecute or SQLExecDirect for the hstmt.

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.
INFORMIX-CLI Function Reference 13-271

SQLSetConnectOption
Related Functions

SQLSetConnectOption
SQLSetConnectOption sets options that govern aspects of connections.

Syntax
RETCODE SQLSetConnectOption(hdbc, fOption, vParam)

The SQLSetConnectOption function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Type Argument Use Description

HDBC hdbc Input Connection handle.

UWORD fOption Input Option to set, listed in “Usage.”

UDWORD vParam Input Value associated with fOption. Depending on the
value of fOption, vParam will be a 32-bit integer
value or point to a null-terminated character
string.

Level 1
13-272 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
Diagnostics
When SQLSetConnectOption returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLSetConnectOption and explains each value in the context of this
function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

The driver can return SQL_SUCCESS_WITH_INFO to provide information
about the result of setting an option. For example, setting
SQL_ACCESS_MODE to read only during a transaction might cause the trans-
action to be committed. The driver could use SQL_SUCCESS_WITH_INFO, and
information returned with SQLError, to inform the application of the commit
action.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01S02 Option value
changed

The driver did not support the specified value
of the vParam argument and substituted a
similar value (function returns
SQL_SUCCESS_WITH_INFO).

08002 Connection in use The argument fOption was
SQL_ODBC_CURSORS, and the driver was
already connected to the data source.

08003 Connection not
open

An fOption value was specified that required
an open connection, but the hdbc was not in a
connected state.

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

IM009 Unable to load
translation shared
library

The driver was unable to load the translation
shared library that was specified for the
connection. This error can only be returned
when fOption is SQL_TRANSLATE_DLL.

 (1 of 2)
INFORMIX-CLI Function Reference 13-273

SQLSetConnectOption
S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1009 Invalid argument
value

Given the specified fOption value, an invalid
value was specified for the argument vParam.
(The Driver Manager returns this SQLSTATE
only for connection and statement options that
accept a discrete set of values, such as
SQL_ACCESS_MODE. For all other connection
and statement options, the driver must verify
the value of the argument vParam.)

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for an hstmt associated with the hdbc and
returned SQL_NEED_DATA. This function was
called before data was sent for all data-at-
execution parameters or columns.

(DM) SQLBrowseConnect was called for the
hdbc and returned SQL_NEED_DATA. This
function was called before SQLBrowseConnect
returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

S1011 Operation invalid
at this time

The argument fOption was
SQL_TXN_ISOLATION, and a transaction was
open.

S1092 Option type out of
range

(DM) The value specified for the argument
fOption was in the block of numbers reserved
for ODBC connection and statement options,
but was not valid for the version of ODBC
supported by the driver.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fOption.

SQLSTATE Error Description

 (2 of 2)
13-274 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
When fOption is a statement option, SQLSetConnectOption can return any
SQLSTATE that is returned by SQLSetStmtOption.

Usage
The currently defined options are shown in the following table. Options from
0 to 999 are reserved by ODBC.

An application can call SQLSetConnectOption and include a statement
option. The driver sets the statement option for any hstmts associated with
the specified hdbc and establishes the statement option as a default for any
hstmts later allocated for that hdbc. For a list of statement options, see “Usage”
on page 13-288.

All connection and statement options that the application successfully sets
for the hdbc persist until SQLFreeConnect is called for the hdbc. For example,
if an application calls SQLSetConnectOption before it connects to a data
source, the option persists even if SQLSetConnectOption fails in the driver
when the application connects to the data source; if an application sets a
driver-specific option, the option persists even if the application connects to
a different driver on the hdbc.

Some connection and statement options support substituting a similar value
if the data source does not support the specified value of vParam. In such
cases, the driver returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02
(Option value changed). For example, if fOption is SQL_PACKET_SIZE and
vParam exceeds the maximum packet size, the driver substitutes the
maximum size. To determine the substituted value, an application calls
SQLGetConnectOption (for connection options) or SQLGetStmtOption (for
statement options).

The format of information set through vParam depends on the specified
fOption. SQLSetConnectOption accepts option information in one of two
formats: a null-terminated character string or a 32-bit integer value. The
format of each fOption is noted in the following table. Character strings
pointed to by the vParam argument of SQLSetConnectOption have a
maximum length of SQL_MAX_OPTION_STRING_LENGTH bytes (excluding
the null-termination byte).
INFORMIX-CLI Function Reference 13-275

SQLSetConnectOption
fOption vParam Contents

SQL_ACCESS_MODE A 32-bit integer value. SQL_MODE_READ_ONLY is used by the driver or data
source as an indicator that the connection is not required to support SQL
statements that cause updates to occur. This mode can be used to optimize
locking strategies, transaction management, or other areas as appropriate to
the driver or data source. The driver is not required to prevent such state-
ments from being submitted to the data source. The behavior of the driver
and data source when asked to process SQL statements that are not read only
during a read-only connection is implementation defined.
SQL_MODE_READ_WRITE is the default.

SQL_AUTOCOMMIT A 32-bit integer value that specifies whether to use autocommit or manual-
commit mode:

SQL_AUTOCOMMIT_OFF = The driver uses manual-commit mode, and the
application must explicitly commit or roll back transactions with
SQLTransact.

SQL_AUTOCOMMIT_ON = The driver uses autocommit mode. Each
statement is committed immediately after it is executed. This is the default.
Changing from manual-commit mode to autocommit mode commits any
open transactions on the connection.

Important: Some data sources delete the access plans and close the cursors
for all hstmts on an hdbc each time a statement is committed; autocommit
mode can cause this to happen after each statement is executed. For more
information, see the “SQL_CURSOR_COMMIT_BEHAVIOR” and
“SQL_CURSOR_ROLLBACK_BEHAVIOR” on page 13-192.

SQL_CURRENT_QUALIFIER
UNSUPPORTED

INFORMIX-CLI does not support this option.

SQL_LOGIN_TIMEOUT
UNSUPPORTED

INFORMIX-CLI does not support this option.

 (1 of 4)
13-276 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
SQL_ODBC_CURSORS A 32-bit option specifying how the driver manager uses the ODBC cursor
library:

SQL_CUR_USE_IF_NEEDED = The driver manager uses the ODBC cursor
library only if it is needed. If the driver supports the SQL_FETCH_PRIOR
option in SQLExtendedFetch, the driver manager uses the scrolling capabil-
ities of the driver. Otherwise, it uses the ODBC cursor library.

SQL_CUR_USE_ODBC = The driver manager uses the ODBC cursor library.

SQL_CUR_USE_DRIVER = The driver manager uses the scrolling capabilities
of the driver. This is the default setting.

Informix recommends that you use SQL_CUR_USE_DRIVER. For more infor-
mation about the ODBC cursor library, see the Microsoft ODBC Programmer’s
Reference and SDK Guide, Version 2.0.

SQL_OPT_TRACE A 32-bit integer value telling the driver manager whether to perform tracing:

SQL_OPT_TRACE_OFF = Tracing off (the default)

SQL_OPT_TRACE_ON = Tracing on

When tracing is on, the driver manager writes each INFORMIX-CLI function
call to the trace file.

When tracing is on, the driver manager can return SQLSTATE IM013 (Trace-
file error) from any function.

An application specifies a trace file with the SQL_OPT_TRACEFILE option. If
the file already exists, the driver manager appends to the file. Otherwise, it
creates the file. If tracing is on but no trace file has been specified, the driver
manager writes to the file sql.log in the current directory.

If the Trace keyword in the ODBC section of the odbc.ini file is set to 1 when
an application calls SQLAllocEnv, tracing is enabled.

SQL_OPT_TRACEFILE A null-terminated character string containing the name of the trace file.

The default value of the SQL_OPT_TRACEFILE option is specified with the
TraceFile keyname in the ODBC section of the odbc.ini file. For more infor-
mation, see “ODBC Options” on page 1-10.

SQL_PACKET_SIZE A 32-bit integer value specifying the network packet size in bytes.

Many data sources either do not support this option or can only return the
network packet size.

If the specified size exceeds the maximum packet size or is smaller than the
minimum packet size, the driver substitutes that value and returns
SQLSTATE 01S02 (Option value changed).

fOption vParam Contents

 (2 of 4)
INFORMIX-CLI Function Reference 13-277

SQLSetConnectOption
SQL_QUIET_MODE A 32-bit window handle (hwnd).

If the window handle is a null pointer, the driver does not display any dialog
boxes.

If the window handle is not a null pointer, it should be the parent window
handle of the application. The driver uses this handle to display dialog
boxes. This is the default.

If the application has not specified a parent window handle for this option,
the driver uses a null parent window handle to display dialog boxes or
return in SQLGetConnectOption.

The SQL_QUIET_MODE connection option does not apply to dialog boxes
displayed by SQLDriverConnect.

SQL_TRANSLATE_DLL A null-terminated character string that contains the name of a shared library
that contains the functions SQLDriverToDataSource and
SQLDataSourceToDriver that the driver loads and uses to perform tasks such
as character set translation. This option can be specified only if the driver has
connected to the data source. For more information about translating data,
see Chapter 15, “Translation Shared Library Function Reference.”

SQL_TRANSLATE_OPTION A 32-bit flag value that is passed to the translatation shared library. This
option can only be specified if the driver has connected to the data source.

fOption vParam Contents

 (3 of 4)
13-278 INFORMIX-CLI Programmer’s Manual

SQLSetConnectOption
SQL_TXN_ISOLATION A 32-bit mask that sets the transaction isolation level for the current hdbc. An
application must call SQLTransact to commit or roll back all open transac-
tions on an hdbc before calling SQLSetConnectOption with this option.

The valid values for vParam can be determined by calling SQLGetInfo with
fInfotype equal to SQL_TXN_ISOLATION_OPTIONS. The following terms are
used to define transaction isolation levels:

Dirty Read: Transaction 1 changes a row. Transaction 2 reads the changed row
before transaction 1 commits this change. Transaction 1 rolls back the change,
and transaction 2 reads a row that is considered to have never existed.

Nonrepeatable Read: Transaction 1 reads a row. Transaction 2 updates or
deletes that row and commits this change. Transaction 1 attempts to reread
the row, and it receives different row values or discovers that the row has
been deleted.

Phantom: Transaction 1 reads a set of rows that satisfy some search criteria.
Transaction 2 inserts a row that matches the search criteria. Transaction 1
reexecutes the statement that read the rows, and it receives a different set of
rows.

vParam must be one of the following values:

SQL_TXN_READ_UNCOMMITTED = Dirty Reads, Nonrepeatable Reads, and
Phantoms are possible.

SQL_TXN_READ_COMMITTED = Dirty Reads are not possible. Nonrepeatable
Reads and Phantoms are possible.

SQL_TXN_REPEATABLE_READ = Dirty Reads and Nonrepeatable Reads are
not possible. Phantoms are possible.

SQL_TXN_SERIALIZABLE = Transactions are serializable. Dirty Reads,
Nonrepeatable Reads, and Phantoms are not possible.

SQL_TXN_VERSIONING = Transactions are serializable, but higher concur-
rency is possible than with SQL_TXN_SERIALIZABLE. Dirty Reads are not
possible. Typically, SQL_TXN_SERIALIZABLE is implemented by using
locking protocols that reduce concurrency, and SQL_TXN_VERSIONING is
implemented by using nonlocking protocol such as record versioning.

fOption vParam Contents

 (4 of 4)
INFORMIX-CLI Function Reference 13-279

SQLSetConnectOption
Data Translation
Data translation is performed for all data moving between the driver and the
data source.

The translation option (set with the SQL_TRANSLATE_OPTION option) can be
any 32-bit value. Its meaning depends on the translation shared library that
you use. A new option can be set at any time and will be applied to the next
exchange of data following a call to SQLSetConnectOption. A default trans-
lation shared library can be specified for the data source in its data-source
specification in the odbc.ini file. The default translation shared library is
loaded by the driver at connection time. A translation option
(SQL_TRANSLATE_OPTION) can also be specified in the data-source
specification.

To change the translation shared library for a connection, an application calls
SQLSetConnectOption with the SQL_TRANSLATE_DLL option after it
connects to the data source. The driver attempts to load the specified shared
library and, if the attempt fails, the driver returns SQL_ERROR with the
SQLSTATE IM009 (Unable to load translation shared library).

If no translation shared library has been specified in the ODBC initialization
file or by calling SQLSetConnectOption, the driver does not attempt to
translate data. Any value set for the translation option is ignored.

For more information about translating data, see “ODBC Options” on
page 1-10 and Chapter 15, “Translation Shared Library Function Reference.”

Code Example
See SQLConnect.

Related Functions

For information about See

Returning the setting of a connection option SQLGetConnectOption

Returning the setting of a statement option SQLGetStmtOption

Setting a statement option SQLSetStmtOption
13-280 INFORMIX-CLI Programmer’s Manual

SQLSetCursorName
SQLSetCursorName
SQLSetCursorName associates a cursor name with an active hstmt. If an
application does not call SQLSetCursorName, the driver generates cursor
names as needed for SQL statement processing.

Syntax
RETCODE SQLSetCursorName(hstmt, szCursor, cbCursor)

The SQLSetCursorName function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle

UCHAR FAR * szCursor Input Cursor name

SWORD cbCursor Input Length of szCursor

Core
INFORMIX-CLI Function Reference 13-281

SQLSetCursorName
Diagnostics
When SQLSetCursorName returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLSetCursorName and explains each value in the context of this
function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The statement corresponding to hstmt was
already in an executed or cursor-positioned
state.

34000 Invalid cursor
name

The cursor name specified by the argument
szCursor was invalid. For example, the cursor
name exceeded the maximum length as
defined by the driver.

3C000 Duplicate cursor
name

The cursor name specified by the argument
szCursor already exists.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

 (1 of 2)
13-282 INFORMIX-CLI Programmer’s Manual

SQLSetCursorName
Usage
The only ODBC SQL statements that use a cursor name are a positioned
UPDATE and DELETE (for example, UPDATE table-name ...WHERE CURRENT
OF cursor-name). If the application does not call SQLSetCursorName to define
a cursor name, when a SELECT statement executes, the driver generates a
name that begins with the letters SQL_CUR and does not exceed 18 characters.

All cursor names within the hdbc must be unique. The maximum length of a
cursor name is defined by the driver. For maximum interoperability, cursor
names should not exceed 18 characters.

A cursor name remains set until the hstmt with which it is associated is
dropped, using SQLFreeStmt with the SQL_DROP option.

S1009 Invalid argument
value

(DM) The argument szCursor was a null
pointer.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The argument cbCursor was less than 0,
but not equal to SQL_NTS.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-283

SQLSetCursorName
Code Example
In the following example, an application uses SQLSetCursorName to set a
cursor name for an hstmt. It then uses that hstmt to retrieve results from the
EMPLOYEE table. Finally, it performs a positioned update to change the name
of 25-year-old John Smith to John D. Smith. The application uses different
hstmts for the SELECT and UPDATE statements.

#define NAME_LEN 30

HSTMT hstmtSelect,
HSTMT hstmtUpdate;
UCHAR szName[NAME_LEN];
SWORD sAge;
SDWORD cbName;
SDWORD cbAge;

/* Allocate the statements and set the cursor name */

SQLAllocStmt(hdbc, &hstmtSelect);
SQLAllocStmt(hdbc, &hstmtUpdate);
SQLSetCursorName(hstmtSelect, "C1", SQL_NTS);

/* SELECT the result set and bind its columns to local storage */

SQLExecDirect(hstmtSelect,
 "SELECT NAME, AGE FROM EMPLOYEE FOR UPDATE",
 SQL_NTS);
SQLBindCol(hstmtSelect, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);
SQLBindCol(hstmtSelect, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);

/* Read through the result set until the cursor is */
/* positioned on the row for the 25-year-old John Smith */

do
 retcode = SQLFetch(hstmtSelect);
while ((retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO) &&
 (strcmp(szName, "Smith, John") != 0 || sAge != 25));

/* Perform a positioned update of John Smith's name */

if (retcode = = SQL_SUCCESS || retcode = = SQL_SUCCESS_WITH_INFO) {
SQLExecDirect(hstmtUpdate,

 "UPDATE EMPLOYEE SET NAME=\"Smith, John D.\" WHERE CURRENT OF C1",
 SQL_NTS);
}

13-284 INFORMIX-CLI Programmer’s Manual

SQLSetParam
Related Functions

SQLSetParam

Deprecated
SQLBindParameter replaces the ODBC 1.0 function SQLSetParam. For more
information, see SQLBindParameter.

SQLSetScrollOptions
In ODBC 2.0, the SQL_CURSOR_TYPE, SQL_CONCURRENCY,
SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE options for SQLSetStmtOption
superseded SQLSetScrollOptions. INFORMIX-CLI 2.5 applications should not
call this function.

For information about See

Executing an SQL statement SQLExecDirect

Executing a prepared SQL statement SQLExecute

Returning a cursor name SQLGetCursorName

Setting cursor scrolling options SQLSetScrollOptions

Level 2
INFORMIX-CLI Function Reference 13-285

13-286 INFORMIX-CLI Programmer’s Manual

SQLSetStmtOption
SQLSetStmtOption
SQLSetStmtOption sets options that are related to an hstmt. To set an option
for all the statements associated with a specific hdbc, an application can call
SQLSetConnectOption.

Syntax
RETCODE SQLSetStmtOption(hstmt, fOption, vParam)

The SQLSetStmtOption function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UWORD fOption Input Option to set, listed in “Usage.”

UDWORD vParam Input Value associated with fOption. Depending on the
value of fOption, vParam will be a 32-bit integer
value or point to a null-terminated character
string.

Level 1

SQLSetStmtOption
Diagnostics
When SQLSetStmtOption returns SQL_SUCCESS_WITH_INFO or SQL_ERROR,
an associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLSetStmtOption and explains each value in the context of this function;
the notation “(DM)” precedes the description of each SQLSTATE returned by
the driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

01S02 Option value
changed

The driver did not support the specified value of
the vParam argument and substituted a similar
value (function returns
SQL_SUCCESS_WITH_INFO).

08S01 Communication-
link failure

The communication link between the driver and
the data source failed before the function
completed.

24000 Invalid cursor state The fOption was SQL_CONCURRENCY,
SQL_SIMULATE_CURSOR, or SQL_CURSOR_TYPE,
and the cursor was open.

S1000 General error An error occurred for which no specific SQLSTATE
existed and for which no implementation-specific
SQLSTATE was defined. The error message
returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required to
support execution or completion of the function.

S1009 Invalid argument
value

Given the specified fOption value, an invalid
value was specified for the argument vParam.
(The driver manager returns this SQLSTATE only
for statement options that accept a discrete set of
values, such as SQL_ASYNC_ENABLE. For all
other statement options, the driver must verify
the value of the argument vParam.)

 (1 of 2)
INFORMIX-CLI Function Reference 13-287

SQLSetStmtOption
Usage
Statement options for an hstmt remain in effect until they are changed by
another call to SQLSetStmtOption or the hstmt is dropped by calling
SQLFreeStmt with the SQL_DROP option. Calling SQLFreeStmt with the
SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does not reset
statement options.

Some statement options support substituting a similar value if the data
source does not support the specified value of vParam. In such cases, the
driver returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value
changed). For example, if fOption is SQL_CONCURRENCY, vParam is
SQL_CONCUR_ROWVER, and the data source does not support this, the
driver substitutes SQL_CONCUR_VALUES. To determine the substituted
value, an application calls SQLGetStmtOption.

The currently defined options are shown in the following table. Options from
0 to 999 are reserved by ODBC.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

S1011 Operation invalid
at this time

The fOption was SQL_CONCURRENCY,
SQL_SIMULATE_CURSOR, or SQL_CURSOR_TYPE,
and the statement was prepared.

S1092 Option type out of
range

(DM) The value specified for the argument
fOption was in the block of numbers reserved for
ODBC connection and statement options, but was
not valid for the version of ODBC supported by
the driver.

S1C00 Driver not capable The driver or data source does not support the
value specified for the argument fOption.

SQLSTATE Error Description

 (2 of 2)
13-288 INFORMIX-CLI Programmer’s Manual

SQLSetStmtOption
The format of information set with vParam depends on the specified fOption.
SQLSetStmtOption accepts option information in one of two different
formats: a null-terminated character string or a 32-bit integer value. The
format is noted in the option description. This format applies to the infor-
mation returned for each option in SQLGetStmtOption. Character strings
pointed to by the vParam argument of SQLSetStmtOption have a maximum
length of SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null-
termination byte).

fOption vParam Contents

SQL_ASYNC_ENABLE
UNSUPPORTED

INFORMIX-CLI does not support this option. The default is set to
SQL_ASYNC_ENABLE_OFF..

SQL_BIND_TYPE A 32-bit integer value that sets the binding orientation to be used when
SQLExtendedFetch is called on the associated hstmt. Column-wise binding is
selected by supplying the defined constant SQL_BIND_BY_COLUMN for the
argument vParam. Row-wise binding is selected by supplying a value for
vParam specifying the length of a structure or an instance of a buffer into which
result columns will be bound.

The length specified in vParam must include space for all of the bound columns
and any padding of the structure or buffer to ensure that when the address of
a bound column is incremented with the specified length, the result will point
to the beginning of the same column in the next row. When using the sizeof
operator with structures or unions in ANSI C, this behavior is guaranteed.

Column-wise binding is the default binding orientation for
SQLExtendedFetch.

 (1 of 5)
INFORMIX-CLI Function Reference 13-289

SQLSetStmtOption
SQL_CONCURRENCY A 32-bit integer value that specifies the cursor concurrency:

SQL_CONCUR_READ_ONLY = Cursor is read only. No updates are allowed.
SQL_CONCUR_LOCK = Cursor uses the lowest level of locking sufficient to
ensure that the row can be updated.
SQL_CONCUR_ROWVER = Cursor uses optimistic concurrency control,
comparing row versions.
SQL_CONCUR_VALUES = Cursor uses optimistic concurrency control,
comparing values.

The default value is SQL_CONCUR_READ_ONLY. This option can also be set
through the fConcurrency argument in SQLSetScrollOptions. This option
cannot be specified for an open cursor.

If the SQL_CURSOR_TYPE fOption is changed to a type that does not support the
current value of SQL_CONCURRENCY, the value of SQL_CONCURRENCY is not
automatically changed to a supported value, and no error will be reported until
SQLExecDirect or SQLPrepare is called.

If the driver supports the SELECT_FOR_UPDATE statement, and such a
statement is executed while the value of SQL_CONCURRENCY is set to
SQL_CONCUR_READ_ONLY, an error will be returned. If the value of
SQL_CONCURRENCY is changed to a value that the driver supports for some
value of SQL_CURSOR_TYPE, but not for the current value of
SQL_CURSOR_TYPE, the value of SQL_CURSOR_TYPE is not automatically
changed to a supported value, and no error will be reported until
SQLExecDirect or SQLPrepare is called.

If the specified concurrency is not supported by the data source, the driver
substitutes a different concurrency and returns SQLSTATE 01S02 (Option value
changed). For SQL_CONCUR_VALUES, the driver substitutes
SQL_CONCUR_ROWVER, and vice versa. For SQL_CONCUR_LOCK, the driver
substitutes, in order, SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES.

fOption vParam Contents

 (2 of 5)
13-290 INFORMIX-CLI Programmer’s Manual

SQLSetStmtOption
SQL_CURSOR_TYPE A 32-bit integer value that specifies the cursor type:

SQL_CURSOR_FORWARD_ONLY = The cursor only scrolls forward.

SQL_CURSOR_STATIC = The data in the result set is static.

SQL_CURSOR_KEYSET_DRIVEN = The driver saves and uses the keys for the
number of rows specified in the SQL_KEYSET_SIZE statement option.

SQL_CURSOR_DYNAMIC = The driver only saves and uses the keys for the rows
in the rowset.

The default value is SQL_CURSOR_FORWARD_ONLY. This option cannot be
specified for an open cursor and can also be set through the crowKeyset
argument in SQLSetScrollOptions.

If the specified cursor type is not supported by the data source, the driver
substitutes a different cursor type and returns SQLSTATE 01S02 (Option value
changed). For a mixed or dynamic cursor, the driver substitutes, in order, a
keyset-driven or static cursor. For a keyset-driven cursor, the driver substitutes
a static cursor.

SQL_KEYSET_SIZE A 32-bit integer value that specifies the number of rows in the keyset for a
keyset-driven cursor. If the keyset size is 0 (the default), the cursor is fully
keyset-driven. If the keyset size is greater than 0, the cursor is mixed (keyset-
driven within the keyset and dynamic outside of the keyset). The default keyset
size is 0.

If the specified size exceeds the maximum keyset size, the driver substitutes
that size and returns SQLSTATE 01S02 (Option value changed).

SQLExtendedFetch returns an error if the keyset size is greater than 0 and less
than the rowset size.

fOption vParam Contents

 (3 of 5)
INFORMIX-CLI Function Reference 13-291

SQLSetStmtOption
SQL_MAX_LENGTH A 32-bit integer value that specifies the maximum amount of data that the
driver returns from a character or binary column. If vParam is less than the
length of the available data, SQLFetch or SQLGetData truncates the data and
returns SQL_SUCCESS. If vParam is 0 (the default), the driver attempts to return
all available data.

If the specified length is less than the minimum amount of data that the data
source can return (the minimum is 254 bytes on many data sources), or greater
than the maximum amount of data that the data source can return, the driver
substitutes that value and returns SQLSTATE 01S02 (Option value changed).

This option is intended to reduce network traffic and should only be supported
when the data source (as opposed to the driver) in a multiple-tier driver can
implement it. To truncate data, an application should specify the maximum
buffer length in the cbValueMax argument in SQLBindCol or SQLGetData.

In ODBC 1.0, this statement option only applied to SQL_LONGVARCHAR and
SQL_LONGVARBINARY columns.

SQL_MAX_ROWS A 32-bit integer value corresponding to the maximum number of rows to
return to the application for a SELECT statement. If vParam equals 0 (the
default), then the driver returns all rows.

This option is intended to reduce network traffic. Conceptually, it is applied
when the result set is created and limits the result set to the first vParam rows.

If the specified number of rows exceeds the number of rows that can be
returned by the data source, the driver substitutes that value and returns
SQLSTATE 01S02 (Option value changed).

SQL_NOSCAN A 32-bit integer value that specifies whether the driver does not scan SQL
strings for escape clauses:

SQL_NOSCAN_OFF = The driver scans SQL strings for escape clauses (the
default).

SQL_NOSCAN_ON = The driver does not scan SQL strings for escape clauses.
Instead, the driver sends the statement directly to the data source.

SQL_QUERY_TIMEOUT
UNSUPPORTED

INFORMIX-CLI does not support this option. The default is set to 0 (no time-
out).

fOption vParam Contents

 (4 of 5)
13-292 INFORMIX-CLI Programmer’s Manual

SQLSetStmtOption
SQL_RETRIEVE_DATA A 32-bit integer value:

SQL_RD_ON = SQLExtendedFetch retrieves data after it positions the cursor to
the specified location. This is the default.

SQL_RD_OFF = SQLExtendedFetch does not retrieve data after it positions the
cursor.

By setting SQL_RETRIEVE_DATA to SQL_RD_OFF, an application can verify if a
row exists without incurring the overhead of retrieving rows.

SQL_ROWSET_SIZE A 32-bit integer value that specifies the number of rows in the rowset. This is
the number of rows returned by each call to SQLExtendedFetch. The default
value is 1.

If the specified rowset size exceeds the maximum rowset size supported by the
data source, the driver substitutes that value and returns SQLSTATE 01S02
(Option value changed).

This option can be specified for an open cursor and can also be set through the
crowRowset argument in SQLSetScrollOptions.

SQL_SIMULATE_CURSOR
UNSUPPORTED

INFORMIX-CLI does not support this option.

SQL_USE_BOOKMARKS
UNSUPPORTED

INFORMIX-CLI does not support this option. The default is set to
SQL_UB_OFF = Off

fOption vParam Contents

 (5 of 5)
INFORMIX-CLI Function Reference 13-293

SQLSetStmtOption
Code Example
See SQLExtendedFetch.

Related Functions

For information about See

Canceling statement processing SQLCancel

Returning the setting of a connection option SQLGetConnectOption

Returning the setting of a statement option SQLGetStmtOption

Setting a connection option SQLSetConnectOption
13-294 INFORMIX-CLI Programmer’s Manual

SQLSpecialColumns
SQLSpecialColumns
SQLSpecialColumns retrieves the following information about columns
within a specified table:

■ The optimal set of columns that uniquely identifies a row in the table

■ Columns that are automatically updated when any value in the row
is updated by a transaction

Syntax
RETCODE SQLSpecialColumns(hstmt, fColType, szTableQualifier,
cbTableQualifier, szTableOwner, cbTableOwner, szTableName,
cbTableName, fScope, fNullable)

The SQLSpecialColumns function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle

UWORD fColType Input Type of column to return. Must be one
of the following values:

SQL_BEST_ROWID: Returns the optimal
column or set of columns that, by
retrieving values from the column or
columns, allows any row in the
specified table to be uniquely
identified. A column can be either a
pseudo-column specifically designed
for this purpose or the column or
columns of any unique index for the
table.

SQL_ROWVER: Returns the column or
columns in the specified table, if any,
that are automatically updated by the
data source when any value in the row
is updated by any transaction.

 (1 of 3)

Level 2
INFORMIX-CLI Function Reference 13-295

SQLSpecialColumns
UCHAR FAR * szTableQualifier Input Qualifier name for the table. If a driver
supports qualifiers for some tables but
not for others, as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables
that do not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier

UCHAR FAR * szTableOwner Input Owner name for the table. If a driver
supports owners for some tables but
not for others, such as when the driver
retrieves data from different DBMSs, an
empty string ("") denotes those tables
that do not have owners.

SWORD cbTableOwner Input Length of szTableOwner

UCHAR FAR * szTableName Input Table name

SWORD cbTableName Input Length of szTableName

Type Argument Use Description

 (2 of 3)
13-296 INFORMIX-CLI Programmer’s Manual

SQLSpecialColumns
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

UWORD fScope Input Minimum required scope of the rowid.
The returned rowid might be of greater
scope. It must be one of the following:

SQL_SCOPE_CURROW: The rowid is
guaranteed to be valid only while
positioned on that row. A later reselect
using rowid might not return a row if
the row was updated or deleted by
another transaction.

SQL_SCOPE_TRANSACTION: The rowid
is guaranteed to be valid for the
duration of the current transaction.

SQL_SCOPE_SESSION: The rowid is
guaranteed to be valid for the duration
of the session (across transaction
boundaries).

UWORD fNullable Input Determines whether to return special
columns that can have a NULL value. It
must be one of the following:

SQL_NO_NULLS: Exclude special
columns that can have NULL values.

SQL_NULLABLE: Return special
columns even if they can have NULL
values.

Type Argument Use Description

 (3 of 3)
INFORMIX-CLI Function Reference 13-297

SQLSpecialColumns
Diagnostics
When SQLSpecialColumns returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value can be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLSpecialColumns and explains each value in the context of this
function; the notation “(DM)” precedes the description of each SQLSTATE
returned by the driver manager. The return code associated with each
SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

 (1 of 2)
13-298 INFORMIX-CLI Programmer’s Manual

SQLSpecialColumns
S1090 Invalid string or
buffer length

(DM) The value of one of the length arguments
was less than 0 but not equal to SQL_NTS.

The value of one of the length arguments
exceeded the maximum-length value for the
corresponding qualifier or name. The
maximum length of each qualifier or name can
be obtained by calling SQLGetInfo with the
fInfoType values:

SQL_MAX_QUALIFIER_NAME_LEN,
SQL_MAX_OWNER_NAME_LEN, or
SQL_MAX_TABLE_NAME_LEN

S1097 Column type out
of range

(DM) An invalid fColType value was specified.

S1098 Scope type out of
range

(DM) An invalid fScope value was specified.

S1099 Nullable type out
of range

(DM) An invalid fNullable value was specified.

S1C00 Driver not capable A table qualifier was specified, but the driver
or data source does not support qualifiers.

A table owner was specified, but the driver or
data source does not support owners.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested result set. The
time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-299

SQLSpecialColumns
Usage
SQLSpecialColumns is provided so that applications can provide their own
custom scrollable-cursor functionality, similar to the functionality provided
by SQLExtendedFetch and SQLSetStmtOption.

When the fColType argument is SQL_BEST_ROWID, SQLSpecialColumns
returns the column or columns that uniquely identify each row in the table.
These columns can always be used in a SELECT list or WHERE clause.
However, SQLColumns does not necessarily return these columns. If no
columns uniquely identify each row in the table, SQLSpecialColumns
returns a rowset with no rows; a subsequent call to SQLFetch or
SQLExtendedFetch on the hstmt returns SQL_NO_DATA_FOUND.

If the fColType, fScope, or fNullable arguments specify characteristics that are
not supported by the data source, SQLSpecialColumns returns a result set
with no rows (as opposed to the function returning SQL_ERROR with
SQLSTATE S1C00 (Driver not capable)). A subsequent call to SQLFetch or
SQLExtendedFetch on the hstmt returns SQL_NO_DATA_FOUND.

SQLSpecialColumns returns the results as a standard result set, ordered by
SCOPE. The following table lists the columns in the result set.
13-300 INFORMIX-CLI Programmer’s Manual

SQLSpecialColumns
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual length of
the COLUMN_NAME column, an application can call SQLGetInfo with the
SQL_MAX_COLUMN_NAME_LEN option.

Column Name Data Type Comments

SCOPE SMALLINT Actual scope of the rowid. Contains one of
the following values:

SQL_SCOPE_CURROW
SQL_SCOPE_TRANSACTION
SQL_SCOPE_SESSION

NULL is returned when fColType is
SQL_ROWVER.

For a description of each value, see the
description of “fScope” on page 13-297.

COLUMN_NAME VARCHAR(128)
not NULL

Column identifier.

DATA_TYPE SMALLINT
not NULL

For a list of valid ODBC SQL data types, see
Appendix C. For information on how
Informix data types map to ODBC SQL
data types, see “Mapping Data Types” on
page 1-15

TYPE_NAME VARCHAR(128)
not NULL

Data source-dependent data-type name;
for example, CHAR, VARCHAR, MONEY,
LONG VARBINARY, or CHAR () FOR BIT
DATA.

PRECISION INTEGER The precision of the column on the data
source. NULL is returned for data types
where precision is not applicable. For more
information concerning precision, see
“Precision, Scale, Length, and Display
Size” on page C-8.”

 (1 of 2)
INFORMIX-CLI Function Reference 13-301

SQLSpecialColumns
Once the application retrieves values for SQL_BEST_ROWID, the application
can use these values to reselect that row within the defined scope. The
SELECT statement is guaranteed to return either no rows or one row.

If an application reselects a row based on the rowid column or columns and
the row is not found, the application can assume that the row was deleted or
the rowid columns were modified. The opposite is not true: Even if the rowid
has not changed, the other columns in the row might have changed.

Columns returned for column type SQL_BEST_ROWID are useful for
applications that need to scroll forward and backward within a result set to
retrieve the most recent data from a set of rows. The rowid column or
columns are guaranteed not to change while positioned on that row.

LENGTH Integer The length in bytes of data transferred on
an SQLGetData or SQLFetch operation if
SQL_C_DEFAULT is specified. For numeric
data, this size might be different than the
size of the data stored on the data source.
This value is the same as the PRECISION
column for character or binary data. For
more information, see “Precision, Scale,
Length, and Display Size” on page C-8.

SCALE SMALLINT The scale of the column on the data source.
NULL is returned for data types where
scale is not applicable. For more infor-
mation concerning scale, see “Precision,
Scale, Length, and Display Size” on
page C-8.

PSEUDO_COLUMN SMALLINT Returns one of the following values to
indicate whether the column is a pseudo-
column:

SQL_PC_UNKNOWN
SQL_PC_PSEUDO
SQL_PC_NOT_PSEUDO

Important: For maximum interoperability, pseudo-columns should not be quoted
with the identifier quote character returned by SQLGetInfo.

Column Name Data Type Comments

 (2 of 2)
13-302 INFORMIX-CLI Programmer’s Manual

SQLSpecialColumns
The rowid column or columns might remain valid even when the cursor is
not positioned on the row; the application can determine this by checking the
SCOPE column in the result set.

Columns returned for column type SQL_ROWVER are useful for applications
that need the ability to check if any columns in a given row have been
updated while the row was reselected using the rowid. For example, after
reselecting a row using rowid, the application can compare the previous
values in the SQL_ROWVER columns to the ones last fetched. If the value in a
SQL_ROWVER column differs from the previous value, the application can
alert the user that data on the display has changed.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Returning the columns in a table or tables SQLColumns

Fetching a block of data or scrolling through a
result set

SQLExtendedFetch

Fetching a row of data SQLFetch

Returning the columns of a primary key SQLPrimaryKeys
INFORMIX-CLI Function Reference 13-303

SQLStatistics
SQLStatistics
SQLStatistics retrieves a list of statistics about a single table and the indexes
associated with the table. The driver returns this information as a result set.

Syntax
RETCODE SQLStatistics(hstmt, szTableQualifier,
cbTableQualifier,szTableOwner, cbTableOwner, szTableName,
cbTableName, fUnique, fAccuracy)

The SQLStatistics function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver
supports qualifiers for some
tables but not for others, as when
the driver retrieves data from
different DBMSs, an empty string
("") denotes those tables that do
not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input Owner name. If a driver supports
owners for some tables but not for
others, such as when the driver
retrieves data from different
DBMSs, an empty string ("")
denotes those tables that do not
have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input Table name.

SWORD cbTableName Input Length of szTableName.

 (1 of 2)

Level 1
13-304 INFORMIX-CLI Programmer’s Manual

SQLStatistics
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLStatistics returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLStatistics and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

UWORD fUnique Input Type of index:

SQL_INDEX_UNIQUE or
SQL_INDEX_ALL

UWORD fAccuracy Input The importance of the CARDI-
NALITY and PAGES columns in
the result set:

SQL_ENSURE requests that the
driver unconditionally retrieve
the statistics.

SQL_QUICK requests that the
driver retrieve results only if they
are readily available from the
server. In this case, the driver
does not ensure that the values
are current.

Type Argument Use Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-305

SQLStatistics
SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length
arguments exceeded the maximum-length
value for the corresponding qualifier or name.

S1100 Uniqueness
option type out of
range

(DM) An invalid fUnique value was specified.

 (1 of 2)
13-306 INFORMIX-CLI Programmer’s Manual

SQLStatistics
Usage
SQLStatistics returns information about a single table as a standard result set,
ordered by NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_NAME, and
SEQ_IN_INDEX. The result set combines statistics information for the table
with information about each index. The following table lists the columns in
the result set.

Important: SQLStatistics might not return all indexes. Applications can use any
valid index, regardless of whether it is returned by SQLStatistics.

S1101 Accuracy option
type out of range

(DM) An invalid fAccuracy value was specified.

S1C00 Driver not capable A table qualifier was specified, but the driver
or data source does not support qualifiers.

A table owner was specified, but the driver or
data source does not support owners.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested result set.
The time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-307

SQLStatistics
The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and COLUMN_NAME
columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN
options.

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table-qualifier identifier of the table to
which the statistic or index applies; NULL
if not applicable to the data source. If a
driver supports qualifiers for some tables
but not for others, such as when the driver
retrieves data from different DBMSs, it
returns an empty string ("") for those
tables that do not have qualifiers.

TABLE_OWNER VARCHAR(128) Table-owner identifier of the table to
which the statistic or index applies; NULL
if not applicable to the data source. If a
driver supports owners for some tables
but not for others, such as when the driver
retrieves data from different DBMSs, it
returns an empty string ("") for those
tables that do not have owners.

TABLE_NAME VARCHAR(128)
not NULL

Table identifier of the table to which the
statistic or index applies

NON_UNIQUE SMALLINT Indicates whether the index prohibits
duplicate values:

TRUE if the index values can be
nonunique.

FALSE if the index values must be unique.

NULL is returned if TYPE is
SQL_TABLE_STAT.

 (1 of 3)
13-308 INFORMIX-CLI Programmer’s Manual

SQLStatistics
INDEX_QUALIFIER VARCHAR(128) The identifier that is used to qualify the
index name doing a DROP INDEX; NULL is
returned if an index qualifier is not
supported by the data source or if TYPE is
SQL_TABLE_STAT. If a non-null value is
returned in this column, it must be used to
qualify the index name on a DROP INDEX
statement; otherwise, the TABLE_OWNER
name should be used to qualify the index
name.

INDEX_NAME VARCHAR(128) Index identifier; NULL is returned if TYPE
is SQL_TABLE_STAT.

TYPE SMALLINT
not NULL

Type of information being returned:
SQL_TABLE_STAT indicates a statistic for
the table.

SQL_INDEX_CLUSTERED indicates a
clustered index.

SQL_INDEX_HASHED indicates a hashed
index.

SQL_INDEX_OTHER indicates another
type of index.

SEQ_IN_INDEX SMALLINT Column-sequence number in index
(starting with 1); NULL is returned if TYPE
is SQL_TABLE_STAT.

COLUMN_NAME VARCHAR(128) Column identifier. If the column is based
on an expression, such as SALARY +
BENEFITS, the expression is returned; if
the expression cannot be determined, an
empty string is returned. If the index is a
filtered index, each column in the filter
condition is returned; this might require
more than one row. NULL is returned if
TYPE is SQL_TABLE_STAT.

Column Name Data Type Comments

 (2 of 3)
INFORMIX-CLI Function Reference 13-309

SQLStatistics
If the row in the result set corresponds to a table, the driver sets TYPE to
SQL_TABLE_STAT and sets NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME,
SEQ_IN_INDEX, COLUMN_NAME, and COLLATION to NULL. If CARDI-
NALITY or PAGES are not available from the data source, the driver sets them
to NULL.

Code Example
For a code example of a similar function, see SQLColumns.

COLLATION CHAR(1) Sort sequence for the column; “A” for
ascending; “D” for descending; NULL is
returned if column sort sequence is not
supported by the data source or if TYPE is
SQL_TABLE_STAT.

CARDINALITY INTEGERS Cardinality of table or index; number of
rows in table if TYPE is SQL_TABLE_STAT;
number of unique values in the index if
TYPE is not SQL_TABLE_STAT; NULL is
returned if the value is not available from
the data source.

PAGES INTEGER Number of pages used to store the index
or table; number of pages for the table if
TYPE is SQL_TABLE_STAT; number of
pages for the index if TYPE is not
SQL_TABLE_STAT; NULL is returned if the
value is not available from the data
source, or if not applicable to the data
source.

FILTER_CONDITION VARHAR(128) If the index is a filtered index, this is the
filter condition, such as SALARY > 30000; if
the filter condition cannot be determined,
this is an empty string.

NULL if the index is not a filtered index, it
cannot be determined whether the index
is a filtered index, or TYPE is
SQL_TABLE_STAT.

Column Name Data Type Comments

 (3 of 3)
13-310 INFORMIX-CLI Programmer’s Manual

SQLStatistics
Related Functions

For information about See

Assigning storage for a column in a result set SQLBindCol

Canceling statement processing SQLCancel

Fetching a block of data or scrolling through a result set SQLExtendedFetch

Fetching a row of data SQLFetch

Returning the columns of a primary key SQLPrimaryKeys
INFORMIX-CLI Function Reference 13-311

SQLTablePrivileges
SQLTablePrivileges
SQLTablePrivileges returns a list of tables and the privileges associated with
each table. The driver returns the information as a result set on the specified
hstmt.

Syntax
RETCODE SQLTablePrivileges(hstmt, szTableQualifier,
cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName)

The SQLTablePrivileges function accepts the following arguments.v2

Type Argument Use Description

HSTMT hstmt Input Statement handle.

UCHAR FAR * szTableQualifier Input Table qualifier. If a driver
supports qualifiers for some
tables but not for others, such as
when the driver retrieves data
from different DBMSs, an empty
string ("") denotes those tables
that do not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input String search pattern for owner
names. If a driver supports
owners for some tables but not for
others, such as when the driver
retrieves data from different
DBMSs, an empty string ("")
denotes those tables that do not
have owners.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input String search pattern for table
names.

SWORD cbTableName Input Length of szTableName.

Level 2
13-312 INFORMIX-CLI Programmer’s Manual

SQLTablePrivileges
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE

Diagnostics
When SQLTablePrivileges returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, an associated SQLSTATE value may be obtained by calling
SQLError. The following table lists the SQLSTATE values commonly returned
by SQLTablePrivileges and explains each one in the context of this function;
the notation “(DM)” precedes the description of each SQLSTATE returned by
the driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver was unable to allocate memory
required to support execution or completion of
the function.

S1008 Operation
canceled

The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

 (1 of 2)
INFORMIX-CLI Function Reference 13-313

SQLTablePrivileges
Usage
The szTableOwner and szTableName arguments accept search patterns. For
more information about valid search patterns, see “Search Pattern
Arguments” on page 13-8.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length
arguments exceeded the maximum-length
value for the corresponding qualifier or name.

S1C00 Driver not capable A table qualifier was specified, but the driver
or data source does not support qualifiers.

A table owner was specified, but the driver or
data source does not support owners.

A string search pattern was specified for the
table owner, table name, or column name and
the data source does not support search
patterns for one or more of those arguments.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the result set. The time-out
period is set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
13-314 INFORMIX-CLI Programmer’s Manual

SQLTablePrivileges
SQLTablePrivileges returns the results as a standard result set, ordered by
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, and PRIVILEGE. The
following table lists the columns in the result set.

Important: SQLTablePrivileges might not return privileges for all tables. Applica-
tions can use any valid table, regardless of whether it is returned by
SQLTablePrivileges.

The lengths of VARCHAR columns shown in the table are maximums; the
actual lengths depend on the data source. To determine the actual lengths of
the TABLE_QUALIFIER, TABLE_OWNER, and TABLE_NAME columns, an
application can call SQLGetInfo with the SQL_MAX_QUALIFIER_NAME_LEN,
SQL_MAX_OWNER_NAME_LEN, and SQL_MAX_TABLE_NAME_LEN options.

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table-qualifier identifier; NULL if not appli-
cable to the data source. If a driver supports
qualifiers for some tables but not for others,
such as when the driver retrieves data from
different DBMSs, it returns an empty string
("") for those tables that do not have
qualifiers. .

TABLE_OWNER VARCHAR(128) Table-owner identifier; NULL if not appli-
cable to the data source. If a driver supports
owners for some tables but not for others,
such as when the driver retrieves data from
different DBMSs, it returns an empty string
("") for those tables that do not have owners.

TABLE_NAME VARCHAR(128)
not NULL

Table identifier. .

GRANTOR VARCHAR(128) Identifier of the user who granted the
privilege; NULL if not applicable to the data
source.

GRANTEE VARCHAR(128)
not NULL

Identifier of the user to whom the privilege
was granted.

 (1 of 2)
INFORMIX-CLI Function Reference 13-315

SQLTablePrivileges
Code Example
For a code example of a similar function, see SQLColumns.

PRIVILEGE VARCHAR(128)
not NULL

Identifies the table privilege. Can be one of
the following or a data-source-specific
privilege.
SELECT: The grantee is permitted to retrieve
data for one or more columns of the table.
INSERT: The grantee is permitted to insert
new rows containing data for one or more
columns into to the table.
UPDATE: The grantee is permitted to update
the data in one or more columns of the
table.
DELETE: The grantee is permitted to delete
rows of data from the table.
REFERENCES: The grantee is permitted to
refer to one or more columns of the table
within a constraint (for example, a unique,
referential, or table-check constraint).
The scope of action permitted the grantee
by a given table privilege is data source–
dependent. For example, the UPDATE
privilege might permit the grantee to
update all columns in a table on one data
source and only those columns for which
the grantor has the UPDATE privilege on
another data source.

IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted
to grant the privilege to other users; “YES”,
“NO”, or NULL if unknown or not appli-
cable to the data source.

Column Name Data Type Comments

 (2 of 2)
13-316 INFORMIX-CLI Programmer’s Manual

SQLTablePrivileges
Related Functions

For information about See

Assigning storage for a column in a result
set

SQLBindCol

Canceling statement processing SQLCancel

Returning privileges for a column or
columns

SQLColumnPrivileges

Returning the columns in a table or tables SQLColumns

Fetching a block of data or scrolling
through a result set

SQLExtendedFetch

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics

Returning a list of tables in a data source SQLTables
INFORMIX-CLI Function Reference 13-317

SQLTables
SQLTables
SQLTables returns the list of table names that are stored in a specific data
source. The driver returns this information as a result set.

Syntax
RETCODE SQLTables(hstmt, szTableQualifier, cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName,
szTableType, cbTableType)

The SQLTables function accepts the following arguments.

Type Argument Use Description

HSTMT hstmt Input Statement handle for retrieved
results.

UCHAR FAR * szTableQualifier Input Qualifier name. If a driver
supports qualifiers for some
tables but not for others, such as
when a driver retrieves data
from different DBMSs, an empty
string ("") denotes those tables
that do not have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.

UCHAR FAR * szTableOwner Input String search pattern for owner
names.

SWORD cbTableOwner Input Length of szTableOwner.

UCHAR FAR * szTableName Input String search pattern for table
names. If a driver supports
owners for some tables but not
for others, such as when the
driver retrieves data from
different DBMSs, an empty string
("") denotes those tables that do
not have owners.

 (1 of 2)

Level 1
13-318 INFORMIX-CLI Programmer’s Manual

SQLTables
Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING,
SQL_ERROR or SQL_INVALID_HANDLE

Diagnostics
When SQLTables returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLTables
and explains each value in the context of this function; the notation “(DM)”
precedes the description of each SQLSTATE returned by the driver manager.
The return code associated with each SQLSTATE value is SQL_ERROR unless
noted otherwise.

SWORD cbTableName Input Length of szTableName.

UCHAR FAR * szTableType Input List of table types to match.

SWORD cbTableType Input Length of szTableType.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication-
link failure

The communication link between the driver
and the data source failed before the function
completed.

24000 Invalid cursor state A cursor was already opened on the statement
handle.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

 (1 of 2)

Type Argument Use Description

 (2 of 2)
INFORMIX-CLI Function Reference 13-319

SQLTables
S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

S1008 Operation canceled The function was called, but before it
completed execution, SQLCancel was called
on the hstmt from a different thread in a multi-
threaded application.

S1010 Function-sequence
error

(DM) SQLExecute or SQLExecDirect was called
for the hstmt and returned SQL_NEED_DATA.
This function was called before data was sent
for all data-at-execution parameters or
columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name-length
arguments was less than 0, but not equal to
SQL_NTS.

The value of one of the name-length
arguments exceeded the maximum-length
value for the corresponding qualifier or name.

S1C00 Driver not capable A table qualifier was specified, but the driver
or data source does not support qualifiers.

A table owner was specified, but the driver or
data source does not support owners.

A string search pattern was specified for the
table owner or table name, but the data source
does not support search patterns for one or
more of those arguments.

The combination of the current settings of the
SQL_CONCURRENCY and SQL_CURSOR_TYPE
statement options was not supported by the
driver or data source.

S1T00 Time-out expired The time-out period expired before the data
source returned the requested result set. The
time-out period is set through
SQLSetStmtOption, SQL_QUERY_TIMEOUT.

SQLSTATE Error Description

 (2 of 2)
13-320 INFORMIX-CLI Programmer’s Manual

SQLTables
Usage
SQLTables lists all the tables in the requested range. A user might or might
not have SELECT privileges to any of these tables. To check accessibility, an
application can perform one of the following actions:

■ Call SQLGetInfo and check the SQL_ACCESSIBLE_TABLES info value.

■ Call SQLTablePrivileges to check the privileges for each table.

Otherwise, the application must handle situations where the user selects a
table for which SELECT privileges are not granted.

The szTableOwner and szTableName arguments accept search patterns. For
more information about valid search patterns, see “Search Pattern
Arguments” on page 13-8.

To support enumeration of qualifiers, owners, and table types, SQLTables
defines the following special semantics for the szTableQualifier, szTableOwner,
szTableName, and szTableType arguments:

■ If szTableQualifier is a single percent character (%) and szTableOwner
and szTableName are empty strings, the result set contains a list of
valid qualifiers for the data source. (All the columns except the
TABLE_QUALIFIER column contain NULLs.)

■ If szTableOwner is a single percent character (%) and szTableQualifier
and szTableName are empty strings, the result set contains a list of
valid owners for the data source. (All the columns except the
TABLE_OWNER column contain NULLs.)

■ If szTableType is a single percent character (%), and szTableQualifier,
szTableOwner, and szTableName are empty strings, then the result set
contains a list of valid table types for the data source. (All the
columns except the TABLE_TYPE column contain NULLs.)

If szTableType is not an empty string, it must contain a list of comma-separated
values for the types of interest; each value must be enclosed in single quotes
(') or unquoted. For example, “'TABLE','VIEW'” or “TABLE, VIEW.” If the data
source does not support a specified table type, SQLTables does not return any
results for that type.
INFORMIX-CLI Function Reference 13-321

SQLTables
SQLTables returns the results as a standard result set, ordered by
TABLE_TYPE, TABLE_QUALIFIER, TABLE_OWNER, and TABLE_NAME. The
following table lists the columns in the result set.

Important: SQLTables might not return all qualifiers, owners, or tables. Applica-
tions can use any valid qualifier, owner, or table, regardless of whether it is returned
by SQLTables.

The lengths of VARCHAR columns shown in the following table are
maximums; the actual lengths depend on the data source. To determine the
actual lengths of the TABLE_QUALIFIER, TABLE_OWNER, and TABLE_NAME
columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN, and
SQL_MAX_TABLE_NAME_LEN options.

Column Name Data Type Comments

TABLE_QUALIFIER VARCHAR(128) Table-qualifier identifier; NULL if not appli-
cable to the data source. If a driver supports
qualifiers for some tables but not for others,
such as when the driver retrieves data from
different DBMSs, it returns an empty string
("") for those tables that do not have
qualifiers.

TABLE_OWNER VARCHAR(128) Table-owner identifier; NULL if not appli-
cable to the data source. If a driver supports
owners for some tables but not for others,
such as when the driver retrieves data from
different DBMSs, it returns an empty string
("") for those tables that do not have owners.

TABLE_NAME VARCHAR(128) Table identifier.

TABLE_TYPE VARCHAR(128) Table-type identifier; one of the following:
“TABLE,” “VIEW,” “SYSTEM TABLE,”
“GLOBAL TEMPORARY,” “LOCAL
TEMPORARY,” “ALIAS,” “SYNONYM,” or a
data-source-specific type identifier.

REMARKS VARCHAR(254) A description of the table.
13-322 INFORMIX-CLI Programmer’s Manual

SQLTables
Code Example
For a code example of a similar function, see SQLColumns.

Related Functions

For information about See

Assigning storage for a column in a result
set

SQLBindCol

Canceling statement processing SQLCancel

Returning privileges for a column or
columns

SQLColumnPrivileges

Returning the columns in a table or tables SQLColumns

Fetching a block of data or scrolling
through a result set

SQLExtendedFetch

Fetching a row of data SQLFetch

Returning table statistics and indexes SQLStatistics

Returning privileges for a table or tables SQLTablePrivileges
INFORMIX-CLI Function Reference 13-323

SQLTransact
SQLTransact
SQLTransact requests a commit or rollback operation for all active operations
on all hstmts associated with a connection. SQLTransact can also request that
a commit or rollback operation be performed for all connections associated
with the henv.

Syntax
RETCODE SQLTransact(henv, hdbc, fType)

The SQLTransact function accepts the following arguments.

Return Codes
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE

Type Argument Use Description

HENV henv Input Environment handle

HDBC hdbc Input Connection handle

UWORD fType Input One of the following two values:

SQL_COMMIT
SQL_ROLLBACK

Core
13-324 INFORMIX-CLI Programmer’s Manual

SQLTransact
Diagnostics
When SQLTransact returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, an
associated SQLSTATE value can be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by
SQLTransact and explains each value in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE Error Description

01000 General warning INFORMIX-CLI informational message
(Function returns SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) The hdbc was not in a connected state.

08007 Connection failure
during transaction

The connection associated with the hdbc failed
during the execution of the function, and it
cannot be determined whether the requested
COMMIT or ROLLBACK occurred before the
failure.

S1000 General error An error occurred for which no specific
SQLSTATE existed and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory-
allocation failure

The driver did not allocate memory required
to support execution or completion of the
function.

 (1 of 2)
INFORMIX-CLI Function Reference 13-325

SQLTransact
Usage
If hdbc is SQL_NULL_HDBC and henv is a valid environment handle, the driver
manager attempts to commit or roll back transactions on all hdbcs that are in
a connected state. The driver manager calls SQLTransact in the driver
associated with each hdbc. The driver manager returns SQL_SUCCESS only if
it receives SQL_SUCCESS for each hdbc. If the driver manager receives
SQL_ERROR on one or more hdbcs, it returns SQL_ERROR to the application.
To determine which connection(s) failed during the COMMIT or ROLLBACK
operation, the application can call SQLError for each hdbc.

Important: The driver manager does not simulate a global transaction across all
hdbcs and therefore does not use two-phase commit protocols.

If hdbc is a valid connection handle, henv is ignored, and the driver manager
calls SQLTransact in the driver for the hdbc.

If hdbc is SQL_NULL_HDBC and henv is SQL_NULL_HENV, SQLTransact
returns SQL_INVALID_HANDLE.

If fType is SQL_COMMIT, SQLTransact issues a COMMIT request for all active
operations on any hstmt associated with an affected hdbc.

If fType is SQL_ROLLBACK, SQLTransact issues a ROLLBACK request for all
active operations on any hstmt associated with an affected hdbc. If no transac-
tions are active, SQLTransact returns SQL_SUCCESS with no effect on any data
sources.

S1010 Function-
sequence error

(DM) SQLExecute or SQLExecDirect was called
for an hstmt associated with the hdbc and
returned SQL_NEED_DATA. This function was
called before data was sent for all data-at-
execution parameters or columns.

S1012 Invalid trans-
action operation
code

(DM) The value specified for the argument
fType was neither SQL_COMMIT nor
SQL_ROLLBACK.

S1C00 Driver not capable The driver or data source does not support the
ROLLBACK operation.

SQLSTATE Error Description

 (2 of 2)
13-326 INFORMIX-CLI Programmer’s Manual

SQLTransact
If the driver is in manual-commit mode (by calling SQLSetConnectOption
with the SQL_AUTOCOMMIT option set to zero), a new transaction is
implicitly started when an SQL statement that can be contained within a
transaction is executed against the current data source.

To determine how transaction operations affect cursors, an application calls
SQLGetInfo with the SQL_CURSOR_ROLLBACK_BEHAVIOR and
SQL_CURSOR_COMMIT_BEHAVIOR options.

If the value of SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR equals SQL_CB_DELETE, SQLTransact
closes and deletes all open cursors on all hstmts that are associated with the
hdbc and discards all pending results. SQLTransact leaves any hstmt present
in an allocated (unprepared) state; the application can reuse them for subse-
quent SQL requests or can call SQLFreeStmt to deallocate them.

If the value of SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR equals SQL_CB_CLOSE, SQLTransact
closes all open cursors on all hstmts associated with the hdbc. SQLTransact
leaves any hstmt present in a prepared state; the application can call
SQLExecute for an hstmt associated with the hdbc without first calling
SQLPrepare.

If the value of SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR equals SQL_CB_PRESERVE, SQLTransact
does not affect open cursors associated with the hdbc. Cursors remain at the
row to which they pointed before the call to SQLTransact.

For drivers and data sources that support transactions, calling SQLTransact
with either SQL_COMMIT or SQL_ROLLBACK when no transaction is active
returns SQL_SUCCESS (indicating that there is no work to be committed or
rolled back) and has no effect on the data source.

Drivers or data sources that do not support transactions (SQLGetInfo fOption
SQL_TXN_CAPABLE is 0) are effectively always in autocommit mode.
Therefore, calling SQLTransact with SQL_COMMIT returns SQL_SUCCESS.
However, calling SQLTransact with SQL_ROLLBACK results in SQLSTATE
S1C00 (Driver not capable), indicating that a rollback can never be
performed.
INFORMIX-CLI Function Reference 13-327

SQLTransact
Related Functions

For information about See

Returning information about a driver or data source SQLGetInfo

Freeing a statement handle SQLFreeStmt
13-328 INFORMIX-CLI Programmer’s Manual

14
Chapter
Setup Shared Library Function
Reference
ConfigDSN . 14-3

ConfigTranslator. 14-7

14-2 INF
ORMIX-CLI Programmer’s Manual

This chapter describes the syntax of the driver-setup shared library
API, which consists of a single function (ConfigDSN). ConfigDSN can be in
the driver shared library or in a separate-setup shared library.

This chapter also describes the syntax of the translator-setup shared library
API, which consists of a single function (ConfigTranslator). ConfigTranslator
can be in the translator-setup shared library or in a separate setup shared
library.

For information on argument naming conventions, see “Arguments” on
page 13-4.

ConfigDSN
ConfigDSN adds, modifies, or deletes data sources from the odbc.ini file. It
might prompt the user for connection information. It can be in the driver
shared library or a separate-setup shared library. ConfigDSN was introduced
in ODBC 1.0

Syntax
BOOL ConfigDSN(hwndParent, fRequest, lpszDriver,
lpszAttributes)
Setup Shared Library Function Reference 14-3

ConfigDSN
The ConfigDSN function accepts the following arguments.

Returns
The function returns TRUE if it is successful. It returns FALSE if it fails.

Usage
ConfigDSN receives connection information from the installer shared library
as a list of attributes in the form of keyword-value pairs. Each pair is termi-
nated with a null byte, and the entire list is null terminated (that is, two null
bytes mark the end of the list). The keywords used by ConfigDSN are the
same as those used by SQLBrowseConnect and SQLDriverConnect, except
ConfigDSN does not accept the DRIVER keyword. As in SQLBrowseConnect
and SQLDriverConnect, the keywords and their values should not contain
the []{ }(),;?*=!@\ characters, and the value of the DSN keyword cannot
consist of blanks only. Because of the registry grammar, keywords and data-
source names cannot contain the backslash (\) character.

Type Argument Use Description

HWND hwndParent Input Parent window handle. The function will not
display any dialog boxes if the handle is null.

UINT fRequest Input Type of request. fRequest must contain one of
the following values:

■ ODBC_ADD_DSN

Add a new data source.

■ ODBC_CONFIG_DSN

Configure (modify) an existing data source.

■ ODBC_REMOVE_DSN

Remove an existing data source.

LPCSTR lpszDriver Input Driver description (usually the name of the
associated DBMS) presented to users instead of
the physical driver name.

LPCSTR lpszAttributes Input List of attributes in the form of keyword-value
pairs. For information about the list structure,
see “Comments.”
14-4 INFORMIX-CLI Programmer’s Manual

ConfigDSN
For example, to configure a data source that requires a user ID, password, and
database name, a setup application might pass the following keyword-value
pairs:

DSN=Personnel Data\0UID=Smith\0PWD=Sesame\0DATABASE=Personnel\0\0

For more information about these keywords, see “SQLDriverConnect” on
page 13-93 and “Adding and Modifying Data Sources” on page 2-6.

In order to display a dialog box, hwndParent must not be null.

Adding a Data Source

If a data-source name is passed to ConfigDSN in lpszAttributes, ConfigDSN
checks that the name is valid. If the data-source name matches an existing
data-source name and hwndParent is null, ConfigDSN overwrites the existing
name. If it matches an existing name and hwndParent is not null, ConfigDSN
prompts the user to overwrite the existing name.

If lpszAttributes contains enough information to connect to a data source,
ConfigDSN can add the data source or display a dialog box with which the
user can change the connection information. If lpszAttributes does not contain
enough information to connect to a data source, ConfigDSN must determine
the necessary information; if hwndParent is not null, it displays a dialog box
to retrieve the information from the user.

If ConfigDSN displays a dialog box, it must display any connection infor-
mation passed to it in lpszAttributes. In particular, if a data-source name was
passed to it, ConfigDSN displays that name but does not allow the user to
change it. ConfigDSN can supply default values for connection information
not passed to it in lpszAttributes.

If ConfigDSN cannot get complete connection information for a data source,
it returns FALSE.

If ConfigDSN can get complete connection information for a data source, it
calls SQLWriteDSNToIni in the installer shared library to add the new data-
source specification to the odbc.ini file. SQLWriteDSNToIni adds the data-
source name to the ODBC Data Sources section, creates the data-source-speci-
fication section, and adds the Driver keyword with the driver description as
its value. ConfigDSN calls SQLWritePrivateProfileString in the installer
shared library to add more keywords and values that the driver needs.
Setup Shared Library Function Reference 14-5

ConfigDSN
Modifying a Data Source

To modify a data source, a data-source name must be passed to ConfigDSN
in lpszAttributes. ConfigDSN checks that the data-source name is in the
odbc.ini file.

If hwndParent is null, ConfigDSN uses the information in lpszAttributes to
modify the information in the odbc.ini file. If hwndParent is not null,
ConfigDSN displays a dialog box that uses the information in lpszAttributes;
for information that is not in lpszAttributes, it uses information from the
odbc.ini file. The user can modify the information before ConfigDSN stores
it in the odbc.ini file.

If the data-source name was changed, ConfigDSN first calls SQLRemove-
DSNFromIni in the installer shared library to remove the existing data-source
specification from the odbc.ini file. It then follows the steps in the previous
section to add the new data-source specification. If the data-source name was
not changed, ConfigDSN calls SQLWritePrivateProfileString in the installer
shared library to make any other changes. ConfigDSN cannot delete or
change the value of the Driver keyword.

Deleting a Data Source

To delete a data source, a data-source name must be passed to ConfigDSN in
lpszAttributes. ConfigDSN checks that the data-source name is in the odbc.ini
file. It then calls SQLRemoveDSNFromIni in the installer shared library to
remove the data source.
14-6 INFORMIX-CLI Programmer’s Manual

ConfigTranslator
ConfigTranslator
ConfigTranslator returns a default translation option for a translator. It can
be in the translator shared library or a separate setup shared library.
ConfigTranslator was introduced in ODBC 2.0.

Syntax
BOOL ConfigTranslator(hwndParent, pvOption)

The ConfigTranslator function accepts the following arguments.

Returns
The function returns TRUE if it is successful. It returns FALSE if it fails.

Comments
If the translator supports only a single translation option, ConfigTranslator
returns TRUE and sets pvOption to the 32-bit option. Otherwise, it determines
the default translation option to use. ConfigTranslator can display a dialog
box with which a user selects a default translation option.

Type Argument Use Description

HWND hwndParent Input Parent window handle. The function
will not display any dialog boxes if the
handle is null.

DWORD FAR * pvOption Output A 32-bit translation option.
Setup Shared Library Function Reference 14-7

ConfigTranslator
Related Functions

For information about See

Getting a translation option SQLGetConnectOption

Selecting a translator SQLGetTranslator

Setting a translation option SQLSetConnectOption
14-8 INFORMIX-CLI Programmer’s Manual

15
Chapter
Translation Shared Library
Function Reference
SQLDataSourceToDriver 15-3

SQLDriverToDataSource 15-7

15-2 INF
ORMIX-CLI Programmer’s Manual

This chapter describes the syntax of the translation shared library API,
which comprises SQLDriverToDataSource and SQLDataSourceToDriver
functions. These functions must be included in the shared library that
performs translations for the driver.

For information on argument naming conventions, see Chapter 13,
“INFORMIX-CLI Function Reference.”

SQLDataSourceToDriver
SQLDataSourceToDriver supports translations for the Informix driver. This
function is not called by INFORMIX-CLI-enabled applications; applications
request translation through SQLSetConnectOption. The driver associated
with the hdbc specified in SQLSetConnectOption calls the specified shared
library to perform translations of all data that flows from the data source to
the driver. A default translation shared library can be specified in the
odbc.ini file.

Syntax
BOOL SQLDataSourceToDriver(fOption, fSqlType, rgbValueIn,
cbValueIn, rgbValueOut, cbValueOutMax, pcbValueOut,
szErrorMsg, cbErrorMsgMax, pcbErrorMsg)

Level 2
Translation Shared Library Function Reference 15-3

SQLDataSourceToDriver
The SQLDataSourceToDriver function accepts the following arguments.

Type Argument Use Description

UDWORD fOption Input Option value.

SWORD fSqlType Input The ODBC SQL data type. This
argument tells the driver how to
convert rgbValueIn to a form
acceptable by the application. This
must be one of the following values:

SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_REAL
SQL_SMALLINT
SQL_TIMESTAMP
SQL_VARCHAR

For information on ODBC SQL data
types, see Appendix C. For infor-
mation on how Informix data types
map to ODBC SQL data types, see
“Mapping Data Types” on page 1-15.

PTR rgbValueIn Input Value to translate.

SDWORD cbValueIn Input Length of rgbValueIn.

PTR rgbValueOut Output Result of the translation.

The translation shared library does
not null-terminate this value.

SDWORD cbValueOutMax Input Length of rgbValueOut.

 (1 of 2)
15-4 INFORMIX-CLI Programmer’s Manual

SQLDataSourceToDriver
Return Codes
The application returns TRUE if the translation succeeds; FALSE if it fails.

SDWORD FAR* pcbValueOut Output The total number of bytes (excluding
the null-termination byte) available
to return in rgbValueOut.

For character or binary data, if this is
greater than or equal to cbValue-
OutMax, the data in rgbValueOut is
truncated to cbValueOutMax bytes.

For all other data types, the value of
cbValueOutMax is ignored, and the
translation shared library assumes
the size of rgbValueOut is the size of
the default C data type of the SQL
data type specified with fSqlType.

UCHAR FAR * szErrorMsg Output Pointer to storage for an error
message. This is an empty string
unless the translation failed.

SWORD cbErrorMsgMax Input Length of szErrorMsg.

SWORD FAR * pcbErrorMsg Output Pointer to the total number of bytes
(excluding the null termination byte)
available to return in szErrorMsg. If
this is greater than or equal to
cbErrorMsg, the data in szErrorMsg is
truncated to cbErrorMsgMax – 1
bytes.

Type Argument Use Description

 (2 of 2)
Translation Shared Library Function Reference 15-5

SQLDataSourceToDriver
Usage
The driver calls SQLDataSourceToDriver to translate all the data (result set
data, table names, row counts, error messages, and so on) that passes from
the data source to the driver. The translation shared library might not
translate some data, depending on the data type and the purpose of the trans-
lation shared library. For example, a shared library that translates character
data from one code page to another ignores all numeric and binary data.

The value of fOption is set to the specified value of vParam by calling SQLSet-
ConnectOption with the SQL_TRANSLATE_OPTION option. It is a 32-bit value
that has a specific meaning for a given translation shared library. For
example, it might specify a certain character-set translation.

If the same buffer is specified for rgbValueIn and rgbValueOut, the translation
of data in the buffer is performed in place.

Important: Although cbValueIn, cbValueOutMax, and pcbValueOut are the
SDWORD type, SQLDataSourceToDriver does not necessarily support huge
pointers.

If SQLDataSourceToDriver returns FALSE, data truncation might have
occurred during translation. If pcbValueOut (the number of bytes available to
return in the output buffer) is greater than cbValueOutMax (the length of the
output buffer), then truncation occurs. The driver must determine whether
the truncation is acceptable. If truncation does not occur, the SQLData-
SourceToDriver returned FALSE due to another error. In either case, a specific
error message is returned in szErrorMsg.
15-6 INFORMIX-CLI Programmer’s Manual

SQLDriverToDataSource
Related Functions

SQLDriverToDataSource
SQLDriverToDataSource supports translations for the Informix driver. This
function is not called by INFORMIX-CLI-enabled applications; applications
request translation through SQLSetConnectOption. The driver associated
with the hdbc specified in SQLSetConnectOption calls the specified shared
library to perform translations of all the data that flows from the driver to the
data source. A default translation shared library can be specified in the
odbc.ini file.

Syntax
BOOL SQLDriverToDataSource(fOption, fSqlType, rgbValueIn,
cbValueIn, rgbValueOut, cbValueOutMax, pcbValueOut,
szErrorMsg, cbErrorMsg, pcbErrorMsg)

For information about See

Translating data being sent to the data source SQLDriverToDataSource

Returning the setting of a connection option SQLGetConnectOption (extension)

Setting a connection option SQLSetConnectOption (extension)

Level 2
Translation Shared Library Function Reference 15-7

SQLDriverToDataSource
The SQLDriverToDataSource function accepts the following arguments.

Type Argument Use Description

UDWORD fOption Input Option value.

SWORD fSqlType Input The ODBC SQL data type. This
argument tells the driver how to
convert rgbValueIn to a form
acceptable by the data source. This
must be one of the following
values:

SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_REAL
SQL_SMALLINT
SQL_TIMESTAMP
SQL_VARCHAR

For information on ODBC SQL
data types, see Appendix C. For
information on how Informix data
types map to ODBC SQL data
types, see “Mapping Data Types”
on page 1-15.

PTR rgbValueIn Input Value to translate.

SDWORD cbValueIn Input Length of rgbValueIn.

PTR rgbValueOut Output Result of the translation. The
translation shared library does not
null-terminate this value.

SDWORD cbValueOutMax Input Length of rgbValueOut.

 (1 of 2)
15-8 INFORMIX-CLI Programmer’s Manual

SQLDriverToDataSource
Return Codes
The application returns TRUE if the translation succeeds; FALSE if it fails.

SDWORD FAR * pcbValueOut Output The total number of bytes
(excluding the null-termination
byte) available to return in
rgbValueOut.

For character or binary data, if this
is greater than or equal to cbValue-
OutMax, the data in rgbValueOut is
truncated to cbValueOutMax bytes.

For all other data types, the value
of cbValueOutMax is ignored and
the translation shared library
assumes the size of rgbValueOut is
the size of the default C data type
of the SQL data type specified with
fSqlType.

UCHAR FAR * szErrorMsg Output Pointer to storage for an error
message. This is an empty string
unless the translation failed.

SWORD cbErrorMsgMax Input Length of szErrorMsg.

SWORD FAR * pcbErrorMsg Output Pointer to the total number of
bytes (excluding the null termi-
nation byte) available to return in
szErrorMsg. If this is greater than
or equal to cbErrorMsg, the data in
szErrorMsg is truncated to
cbErrorMsgMax – 1 bytes.

Type Argument Use Description

 (2 of 2)
Translation Shared Library Function Reference 15-9

SQLDriverToDataSource
Usage
The driver calls SQLDriverToDataSource to translate all data (SQL
statements, parameters, and so on) that passes from the driver to the data
source. The translation shared library might not translate some data,
depending on the data type and the purpose of the translation shared library.
For example, a shared library that translates character data from one code
page to another ignores all numeric and binary data.

The value of fOption is set to the value of vParam that is specified by calling
SQLSetConnectOption with the SQL_TRANSLATE_OPTION option. It is a 32-
bit value that has a specific meaning for a given translation shared library. For
example, it could specify a certain character-set translation.

If the same buffer is specified for rgbValueIn and rgbValueOut, the translation
of data in the buffer is performed in place.

Important: Although cbValueIn, cbValueOutMax, and pcbValueOut are the
SDWORD type, SQLDriverToDataSource does not necessarily support huge
pointers.

If SQLDriverToDataSource returns FALSE, data truncation might have
occurred during translation. If pcbValueOut (the number of bytes available to
return in the output buffer) is greater than cbValueOutMax (the length of the
output buffer), then truncation occurs. The driver must determine whether
the truncation is acceptable. If truncation does not occur, the SQLDriver-
ToDataSource returned FALSE due to another error. In either case, a specific
error message is returned in szErrorMsg.

Related Functions

For information about See

Translating data returned from the data source SQLDataSourceToDriver

Returning the setting of a connection option SQLGetConnectOption)

Setting a connection option SQLSetConnectOption)
15-10 INFORMIX-CLI Programmer’s Manual

A
Appendix
INFORMIX-CLI Error
Codes
SQLError returns SQLSTATE values as defined by the X/Open
and SQL Access Group SQL CAE specification (1992). SQLSTATE
values are strings that contain five characters. The following
table lists SQLSTATE values that the Informix driver can return
for SQLError.

The character-string value returned for an SQLSTATE consists of
a two-character class value followed by a three-character
subclass value. A class value of “01” indicates a warning and is
accompanied by a return code of SQL_SUCCESS_WITH_INFO.
Class values other than “01,” except for the class “IM,” indicate
an error and are accompanied by a return code of SQL_ERROR.
The class “IM” is specific to warnings and errors that derive from
the implementation of INFORMIX-CLI. The subclass value “000”
in any class is for implementation-defined conditions within the
given class. The assignment of class and subclass values is
defined by ANSI SQL-92.

A return value of SQL_SUCCESS normally indicates a function has executed
successfully, although the SQLSTATE 00000 also indicates success.

SQLSTATEs Error Can be returned from

01000 General warning All INFORMIX-CLI functions
except:

SQLAllocEnv
SQLError

01002 Disconnect error SQLDisconnect

01004 Data truncated SQLBrowseConnect
SQLColAttributes
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPutData

01006 Privilege not revoked SQLExecDirect
SQLExecute

01S00 Invalid connection string
attribute

SQLBrowseConnect
SQLDriverConnect

01S01 Error in row SQLExtendedFetch

01S02 Option value changed SQLSetConnectOption
SQLSetStmtOption

01S03 No rows updated or deleted SQLExecDirect
SQLExecute

 (1 of 13)
A-2 INFORMIX-CLI Programmer’s Manual

01S04 More than one row updated or
deleted

SQLExecDirect
SQLExecute

07001 Wrong number of parameters SQLExecDirect
SQLExecute

07006 Restricted data-type-attribute
violation

SQLBindParameter
SQLExtendedFetch
SQLFetch
SQLGetData

08001 Unable to connect to data source SQLBrowseConnect
SQLConnect
SQLDriver Connect

08002 Connection in use SQLBrowseConnect
SQLConnect
SQLDriver Connect
SQLSetConnectOption

08003 Connection not open SQLAllocStmt
SQLDisconnect
SQLGetConnectOption
SQLGetInfo
SQLNativeSql
SQLSetConnectOption
SQLTransact

08004 Data source rejected estab-
lishment of connection

SQLBrowseConnect
SQLConnect
SQLDriver Connect

08007 Connection failure during
transaction

SQLTransact

SQLSTATEs Error Can be returned from

 (2 of 13)
INFORMIX-CLI Error Codes A-3

08S01 Communication-link failure SQLBrowseConnect
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFreeConnect
SQLGetData
SQLGetTypeInfo
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedures
SQLPutData
SQLSetConnectOption
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

21S01 Insert value list does not match
column list

SQLExecDirect
SQLPrepare

21S02 Degree of derived table does not
match column list

SQLExecDirect
SQLPrepare

22001 String data right truncation SQLPutData

22002 Indicator variable required but
not supplied

SQLExtendedFetch
SQLFetch
SQLGetData

SQLSTATEs Error Can be returned from

 (3 of 13)
A-4 INFORMIX-CLI Programmer’s Manual

22003 Numeric value out of range SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetInfo
SQLPutData

22005 Error in assignment SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLPrepare
SQLPutData

22008 DATETIME field overflow SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLPutData

22012 Division by zero SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData

22026 String data, length mismatch SQLParamData

23000 Integrity-constraint violation SQLExecDirect
SQLExecute

SQLSTATEs Error Can be returned from

 (4 of 13)
INFORMIX-CLI Error Codes A-5

24000 Invalid cursor state SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetStmtOption
SQLGetTypeInfo
SQLPrepare
SQLPrimaryKeys
SQLProcedures
SQLSetCursorName
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

25000 Invalid transaction state SQLDisconnect

28000 Invalid authorization
specification

SQLBrowseConnect
SQLConnect
SQLDriverConnect

34000 Invalid cursor name SQLExecDirect
SQLPrepare
SQLSetCursorName

37000 Syntax error or access violation SQLExecDirect
SQLNativeSql
SQLPrepare

3C000 Duplicate cursor name SQLSetCursorName

SQLSTATEs Error Can be returned from

 (5 of 13)
A-6 INFORMIX-CLI Programmer’s Manual

40001 Serialization failure SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch

42000 Syntax error or access violation SQLExecDirect
SQLExecute
SQLPrepare

70100 Operation aborted SQLCancel

IM002 Data-source name not found and
no default driver specified

SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM003 Specified driver could not be
loaded

SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM004 Driver SQLAllocEnv failed SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM005 Driver SQLAllocConnect failed SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM006 Driver SQLSetConnectOption
failed

SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM007 No data source or driver
specified; dialog prohibited

SQLDriverConnect

IM008 Dialog failed SQLDriverConnect

IM009 Unable to load translation
shared library

SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLSetConnectOption

SQLSTATEs Error Can be returned from

 (6 of 13)
INFORMIX-CLI Error Codes A-7

IM010 Data-source name too long SQLBrowseConnect
SQLDriverConnect

IM011 Driver name too long SQLBrowseConnect
SQLDriverConnect

IM012 DRIVER keyword syntax error SQLBrowseConnect
SQLDriverConnect

IM013 Trace file error All ODBC functions.

S0001 Base table or view already exists SQLExecDirect
SQLPrepare

S0002 Base table not found SQLExecDirect
SQLPrepare

S0011 Index already exists SQLExecDirect
SQLPrepare

S0012 Index not found SQLExecDirect
SQLPrepare

S0021 Column already exists SQLExecDirect
SQLPrepare

S0022 Column not found SQLExecDirect
SQLPrepare

S1000 General error All ODBC functions except:
SQLAllocEnv
SQLError

S1001 Memory-allocation failure All ODBC functions except:

SQLAllocEnv
SQLError
SQLFreeConnect
SQLFreeEnv

SQLSTATEs Error Can be returned from

 (7 of 13)
A-8 INFORMIX-CLI Programmer’s Manual

S1002 Invalid column number SQLBindCol
SQLColAttributes
SQLDescribeCol
SQLExtendedFetch
SQLFetch
SQLGetData

S1003 Program type out of range SQLBindCol
SQLBindParameter
SQLGetData

S1004 SQL data type out of range SQLBindParameter
SQLGetTypeInfo

S1009 Invalid argument value SQLAllocConnect
SQLAllocStmt
SQLBindCol
SQLBindParameter
SQLExecDirect
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPutData
SQLSetConnectOption
SQLSetCursorName
SQLSetStmtOption

SQLSTATEs Error Can be returned from

 (8 of 13)
INFORMIX-CLI Error Codes A-9

S1010 Function-sequence error SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDisconnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetConnectOption
SQLGetCursorName
SQLGetData
SQLGetFunctions
SQLGetStmtOption
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLParamOptions
SQLPrepare
SQLPrimaryKeys
SQLProcedures
SQLPutData
SQLRowCount
SQLSetConnectOption
SQLSetCursorName
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

S1011 Operation invalid at this time SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

SQLSTATEs Error Can be returned from

 (9 of 13)
A-10 INFORMIX-CLI Programmer’s Manual

S1012 Invalid transaction operation
code specified

SQLTransact

S1015 No cursor name available SQLGetCursorName

S1090 Invalid string or buffer length SQLBindCol
SQLBindParameter
SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPrimaryKeys
SQLProcedures
SQLPutData
SQLSetCursorName
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

S1091 Descriptor type out of range SQLColAttributes

S1092 Option type out of range SQLFreeStmt
SQLGetConnectOption
SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

S1093 Invalid parameter number SQLBindParameter

S1094 Invalid scale value SQLBindParameter

SQLSTATEs Error Can be returned from

 (10 of 13)
INFORMIX-CLI Error Codes A-11

S1095 Function type out of range SQLGetFunctions

S1096 Information type out of range SQLGetInfo

S1097 Column type out of range SQLSpecialColumns

S1098 Scope type out of range SQLSpecialColumns

S1099 Nullable type out of range SQLSpecialColumns

S1100 Uniqueness option type out of
range

SQLStatistics

S1101 Accuracy option type out of
range

SQLStatistics

S1103 Direction option out of range SQLDataSources
SQLDrivers

S1104 Invalid precision value SQLBindParameter

S1105 Invalid parameter type SQLBindParameter

S1106 Fetch type out of range SQLExtendedFetch

S1107 Row value out of range SQLExtendedFetch
SQLParamOptions
SQLSetScrollOptions

S1108 Concurrency option out of range SQLSetScrollOptions

S1109 Invalid cursor position SQLExecute
SQLExecDirect
SQLGetData
SQLGetStmtOption

S1110 Invalid driver completion SQLDriverConnect

SQLSTATEs Error Can be returned from

 (11 of 13)
A-12 INFORMIX-CLI Programmer’s Manual

S1111 Invalid bookmark value SQLExtendedFetch

S1C00 Driver not capable SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetConnectOption
SQLGetData
SQLGetInfo
SQLGetStmtOption
SQLGetTypeInfo
SQLPrepare
SQLPrimaryKeys
SQLProcedures
SQLSetConnectOption
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

SQLSTATEs Error Can be returned from

 (12 of 13)
INFORMIX-CLI Error Codes A-13

S1T00 Time-out expired SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDescribeCol
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetInfo
SQLGetTypeInfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedures
SQLPutData
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

SQLSTATEs Error Can be returned from

 (13 of 13)
A-14 INFORMIX-CLI Programmer’s Manual

B
Appendix
SQL Grammar
This chapter describes the recommended syntax for maximum
interoperability in calls to SQLPrepare, SQLExecute, and
SQLExecDirect. To the right of each construct is an indicator that
tells whether the construct is part of the minimum grammar, the
core grammar, or the extended grammar

Important: Informix database servers provide extensions to SQL other
than those defined by ODBC. To use one of these extensions, refer to
Informix Guide to SQL: Syntax. If your application uses the Informix-
specific syntax, it is not interoperable among DBMSs.

The Integrity Enhancement Facility (IEF) is included in the
grammar but is optional. The grammar for the IEF comes from
the X/Open and SQL Access Group SQL CAE specification (1992)
and is a subset of the ISO SQL-92 standard. Elements that are part
of the IEF and are optional in the ANSI 1989 standard are
presented in the following typeface and font, distinct from the
rest of the grammar:

table-constraint-definition

Important: In CREATE TABLE and ALTER TABLE statements, applica-
tions must use the data type name returned by SQLGetTypeInfo in the
TYPE_NAME column.

Parameter Data Types
Parameter Data Types
Although each parameter specified with SQLBindParameter is defined using
an SQL data type, the parameters in an SQL statement have no intrinsic data
type. Therefore, parameter markers can be included in an SQL statement only
if their data types can be inferred from another operand in the statement. For
example, in an arithmetic expression such as ? + COLUMN1, the data type of
the parameter can be inferred from the data type of the named column repre-
sented by COLUMN1. An application cannot use a parameter marker if the
data type cannot be determined.

The following table describes how a data type is determined for several types
of parameters.

Location of Parameter Assumed Data Type

 One operand of a binary arithmetic or
comparison operator

Same as the other operand

The first operand in a BETWEEN clause Same as the other operand

The second or third operand in a BETWEEN
clause

Same as the first operand

An expression used with IN Same as the first value or the result
column of the subquery

A value used with IN Same as the expression

A pattern value used with LIKE VARCHAR

An update value used with UPDATE Same as the update column
B-2 INFORMIX-CLI Programmer’s Manual

Parameter Markers
Parameter Markers
An application cannot place parameter markers in the following locations:

■ In a SELECT list

■ As both expressions in a comparison-predicate

■ As both operands of a binary operator

■ As both the first and second operands of a BETWEEN operation

■ As both the first and third operands of a BETWEEN operation

■ As both the expression and the first value of an IN operation

■ As the operand of a unary + or – operation

■ As the argument of a set-function-reference

For more information, see the ANSI SQL-92 specification.

If an application includes parameter markers in the SQL statement, the appli-
cation must call SQLBindParameter to associate storage locations with
parameter markers before it calls SQLExecute or SQLExecDirect. If the appli-
cation calls SQLPrepare, the application can call SQLBindParameter before
or after it calls SQLPrepare.

The application can set parameter markers in any order. The driver buffers
argument descriptors and sends the current values referenced by the
SQLBindParameter argument rgbValue for the associated parameter marker
when the application calls SQLExecute or SQLExecDirect. It is the responsi-
bility of the application to ensure that all pointer arguments are valid at
execution time.

The keyword USER in the following tables represents a character string
containing the user-name of the current user.
SQL Grammar B-3

SQLStatements
SQLStatements
The following SQL statements define the base ODBC SQL grammar.

ALTER TABLE Statement
Important: As a data-type in an ALTER TABLE statement, applications must use a
data type from the TYPE_NAME column of the result set that SQLGetTypeInfo
returns.

SQL conformance level: Core

ALTER TABLE base-table-name
{ADD column-identifier data-type
|ADD (column-identifier data-type [, column-identifier data-type]...)
}

SQL conformance level: Extended

ALTER TABLE base-table-name
{ADD column-identifier data-type
|ADD (column-identifier data-type [, column-identifier data-type]...)
|DROP [COLUMN] column-identifier [CASCADE | RESTRICT]
}

CREATE INDEX Statement

SQL conformance level: Core

CREATE [UNIQUE] INDEX index-name
ON base-table-name
(column-identifier [ASC | DESC]
[, column-identifier [ASC | DESC]]...)
B-4 INFORMIX-CLI Programmer’s Manual

CREATE TABLE Statement
CREATE TABLE Statement
Important: As a data-type in a CREATE TABLE statement, applications must use a
data type from the TYPE_NAME column of the result that SQLGetTypeInfo returns.

SQL conformance level: Minimum

CREATE TABLE base-table-name
(column-element [, column-element] ...)

column-element ::= column-definition | table-constraint-definition

column-definition ::=
column-identifier data-type
[DEFAULT default-value]
[column-constraint-definition[column-constraint-definition]...]
default-value ::= literal | NULL | USER

column-constraint-definition ::=
NOT NULL
| UNIQUE | PRIMARY KEY
| REFERENCES ref-table-name referenced-columns
| CHECK (search-condition)

table-constraint-definition ::=
UNIQUE (column-identifier [, column-identifier] ...)
| PRIMARY KEY (column-identifier [, column-identifier] ...)
| CHECK (search-condition)
| FOREIGN KEY referencing-columns REFERENCES
ref-table-name referenced-columns

CREATE VIEW Statement

SQL conformance level: Core

CREATE VIEW viewed-table-name
[(column-identifier [, column-identifier]...)]
AS query-specification
SQL Grammar B-5

DELETE Statement - Positioned
DELETE Statement - Positioned

SQL conformance level: Core (ODBC 1.0)

SQL conformance level: Extended (ODBC 2.0)

DELETE FROM table-name WHERE CURRENT OF cursor-name

DELETE Statement - Searched

SQL conformance level: Minimum (ODBC 2.0)

DELETE FROM table-name [WHERE search-condition]

DROP INDEX Statement

SQL conformance level: Core

DROP INDEX index-name

DROP TABLE Statement

SQL conformance level: Minimum

DROP TABLE base-table-name
[CASCADE | RESTRICT]

DROP VIEW Statement

SQL conformance level: Core

DROP VIEW viewed-table-name
[CASCADE | RESTRICT]
B-6 INFORMIX-CLI Programmer’s Manual

GRANT Statement
GRANT Statement

SQL conformance level: Core

GRANT {ALL | grant-privilege [, grant-privilege]... }
ON table-name
TO {PUBLIC | user-name [, user-name]... }

grant-privilege ::=
DELETE
| INSERT
| SELECT
| UPDATE [(column-identifier [, column-identifier]...)]
| REFERENCES [(column-identifier
[, column-identifier]...)]

INSERT Statement

SQL conformance level: Minimum

INSERT INTO table-name [(column-identifier [, column-identifier]...)]
VALUES (insert-value[, insert-value]...)

SQL conformance level: Core

INSERT INTO table-name [(column-identifier [, column-identifier]...)]
{ query-specification | VALUES (insert-value [, insert-value]...)}

ODBC Procedure Extension

SQL conformance level: Extended

ODBC-std-esc-initiator [?=] call procedure ODBC-std-esc-terminator
| ODBC-ext-esc-initiator [?=] call procedure ODBC-ext-esc-terminator
SQL Grammar B-7

REVOKE Statement
REVOKE Statement

SQL conformance level: Core

REVOKE {ALL | revoke-privilege [, revoke-privilege]... }
ON table-name
FROM {PUBLIC | user-name [, user-name]... }
[CASCADE | RESTRICT]

revoke-privilege ::=
DELETE
| INSERT
| SELECT
| UPDATE
| REFERENCES

SELECT Statement

SQL conformance level: Minimum

SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
[order-by-clause]

SQL conformance level: Core

SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
[GROUP BY column-name [, column-name]...]
[HAVING search-condition]
[order-by-clause]
B-8 INFORMIX-CLI Programmer’s Manual

SELECT FOR UPDATE Statement
SQL conformance level: Extended

SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
[GROUP BY column-name [, column-name]...]
[HAVING search-condition]
[UNION [ALL] select-statement]...
[order-by-clause]

(In ODBC 1.0, the UNION clause is in the SQL core grammar and does not
support the ALL keyword.)

SELECT FOR UPDATE Statement

SQL conformance level: Core (ODBC 1.0)

SQL conformance level: Extended (ODBC 2.0)

SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
FOR UPDATE OF [column-name [, column-name]...]

Statement List

SQL conformance level: Minimum

statement ::= create-table-statement
| delete-statement-searched
| drop-table-statement
| insert-statement
| select-statement
| update-statement-searched
SQL Grammar B-9

Statement List
SQL conformance level: Core

statement ::= alter-table-statement
| create-index-statement
| create-table-statement
| create-view-statement
| delete-statement-searched
| drop-index-statement
| drop-table-statement
| drop-view-statement
| grant-statement
| insert-statement
| revoke-statement
| select-statement
| update-statement-searched

SQL conformance level: Extended

statement ::= alter-table-statement
| create-index-statement
| create-table-statement
| create-view-statement
| delete-statement-positioned
| delete-statement-searched
| drop-index-statement
| drop-table-statement
| drop-view-statement
| ODBC-procedure-extension
| grant-statement
| insert-statement
| revoke-statement
| select-statement
| select-for-update-statement
| statement-list
| update-statement-positioned
| update-statement-searched

statement-list ::= statement | statement; statement-list
B-10 INFORMIX-CLI Programmer’s Manual

UPDATE Statement - Positioned
UPDATE Statement - Positioned

SQL conformance level: Core (ODBC 1.0)

SQL conformance level: Extended (ODBC 2.0)

UPDATE table-name
SET column-identifier = {expression | NULL}
[, column-identifier = {expression | NULL}]...
WHERE CURRENT OF cursor-name

UPDATE Statement - Searched

SQL conformance level: Minimum

UPDATE table-name
SET column-identifier = {expression | NULL }
[, column-identifier = {expression | NULL}]...
[WHERE search-condition]

Elements Used in SQL Statements
The following elements are used in the SQL statements listed previously.

Element

SQL
Conformance
Level

all-function ::= {AVG | MAX | MIN | SUM} (expression) Core

approximate-numeric-literal ::= mantissaEexponent Core

approximate-numeric-type ::= {approximate numeric types}
(For example, DOUBLE PRECISION, or REAL.)

Core

argument-list ::= expression | expression, argument-list Minimum

base-table-identifier ::= user-defined-name Minimum

base-table-name ::= base-table-identifier Minimum

 (1 of 11)
SQL Grammar B-11

Elements Used in SQL Statements
base-table-name ::= base-table-identifier
| owner-name.base-table-identifier
| qualifier-name qualifier-separator base-table-identifier
| qualifier-name qualifier-separator [owner-name].base-table-identifier
(The third syntax is valid only if the data source does not support
owners.)

Core

between-predicate ::=
expression [NOT] BETWEEN expression AND expression

Core

binary-literal ::= {implementation defined} Extended

binary-type ::= {binary types}
(For example, LONG VARBINARY.)

Extended

boolean-factor ::= [NOT] boolean-primary Minimum

boolean-primary ::= predicate | (search-condition) Minimum

boolean-term ::= boolean-factor [AND boolean-term] Minimum

character ::= {any character in the implementor’s character set} Minimum

character-string-literal :: = '{character}...'
(To include a single literal quote character (') in a character-string-
literal, use two literal quote characters (' ').)

Minimum

character-string-type ::= {character types}
(For example, CHAR, VARCHAR, or LONG VARCHAR.)

Minimum

column-alias ::= user-defined-name Core

column-identifier ::= user-defined-name Minimum

column-name ::= [table-name.]column-identifier Minimum

column-name ::= [{table-name | correlation-name}.]column-identifier Core

comparison-operator ::= < | > | <= | >= | = | <> Minimum

comparison-predicate ::= expression comparison-operator expression Minimum

Element

SQL
Conformance
Level

 (2 of 11)
B-12 INFORMIX-CLI Programmer’s Manual

Elements Used in SQL Statements
comparison-predicate ::=
expression comparison-operator {expression | (sub-query)}

Core

correlation-name ::= user-defined-name Core

cursor-name ::= user-defined-name Core

data-type ::= character-string-type Minimum

data-type ::=
character-string-type
| exact-numeric-type
| approximate-numeric-type

Core

data-type ::=
character-string-type
| exact-numeric-type
| approximate-numeric-type
| bit-type
| binary-type
| date-type
| time-type
| timestamp-type

Extended

date-separator ::= - Extended

date-type ::= {date types}
(For example, DATE.)

Extended

date-value ::=
years-value date-separator months-value date-separator days-value

Extended

days-value ::= digit digit Extended

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Minimum

distinct-function ::=
{AVG | COUNT | MAX | MIN | SUM} (DISTINCT column-name)

Core

dynamic-parameter ::= ? Minimum

empty-string ::= Extended

Element

SQL
Conformance
Level

 (3 of 11)
SQL Grammar B-13

Elements Used in SQL Statements
escape-character ::= character Extended

exact-numeric-literal ::=
[+|–] { unsigned-integer[.unsigned-integer]
| unsigned-integer.
| .unsigned-integer }

Core

exact-numeric-type ::= {exact numeric types}
(For example, DECIMAL, SMALLINT, or INTEGER.)

Core

exists-predicate ::= EXISTS (sub-query) Core

exponent ::= [+|–] unsigned-integer Core

expression ::= term | expression {+|–} term Minimum

factor ::= [+|–]primary Minimum

hours-value ::= digit digit Extended

index-identifier ::= user-defined-name Core

index-name ::= [index-qualifier.]index-identifier Core

index-qualifier ::= user-defined-name Core

in-predicate ::= expression [NOT] IN {(value {, value}...) | (sub-query)} Core

insert-value ::=
dynamic-parameter
| literal
| NULL
| USER

Minimum

keyword ::=
(see list of reserved keywords)

Minimum

length ::= unsigned-integer Minimum

letter ::= lower-case-letter | upper-case-letter Minimum

like-predicate ::= expression [NOT] LIKE pattern-value Minimum

Element

SQL
Conformance
Level

 (4 of 11)
B-14 INFORMIX-CLI Programmer’s Manual

Elements Used in SQL Statements
like-predicate ::=
expression [NOT] LIKE pattern-value [ODBC-like-escape-clause]

Extended

literal ::= character-string-literal Minimum

literal ::= character-string-literal | numeric-literal Core

literal ::= character-string-literal
| numeric-literal
| bit-literal
| binary-literal
| ODBC-date-time-extension

Extended

lower-case-letter ::=
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r |
s | t | u | v | w | x | y | z

Minimum

mantissa ::= exact-numeric-literal Core

minutes-value ::= digit digit Extended

months-value ::= digit digit Extended

null-predicate ::= column-name IS [NOT] NULL Minimum

numeric-literal ::= exact-numeric-literal | approximate-numeric-literal Minimum

ODBC-date-literal ::=
ODBC-std-esc-initiator d 'date-value' ODBC-std-esc-terminator
| ODBC-ext-esc-initiator d 'date-value' ODBC-ext-esc-terminator

Extended

ODBC-date-time-extension ::=
ODBC-date-literal
| ODBC-time-literal
| ODBC-timestamp-literal

Extended

ODBC-like-escape-clause ::=
ODBC-std-esc-initiator escape 'escape-character'
ODBC-std-esc-terminator
| ODBC-ext-esc-initiator escape 'escape-character'
ODBC-ext-esc-terminator

Extended

Element

SQL
Conformance
Level

 (5 of 11)
SQL Grammar B-15

Elements Used in SQL Statements
ODBC-time-literal ::=
| ODBC-std-esc-initiator t 'time-value' ODBC-std-esc-terminator
| ODBC-ext-esc-initiator t 'time-value' ODBC-ext-esc-terminator

Extended

ODBC-timestamp-literal ::=
| ODBC-std-esc-initiator ts 'timestamp-value' ODBC-std-esc-terminator
| ODBC-ext-esc-initiator ts 'timestamp-value' ODBC-ext-esc-terminator

Extended

ODBC-ext-esc-initiator ::= { Extended

ODBC-ext-esc-terminator ::= } Extended

ODBC-outer-join-extension ::=
ODBC-std-esc-initiator oj outer-join ODBC-std-esc-terminator
| ODBC-ext-esc-initiator oj outer-join ODBC-ext-esc-terminator

Extended

ODBC-scalar-function-extension ::=
ODBC-std-esc-initiator fn scalar-function ODBC-std-esc-terminator
| ODBC-ext-esc-initiator fn scalar-function ODBC-ext-esc-terminator

Extended

ODBC-std-esc-initiator ::= ODBC-std-esc-prefix SQL-esc-vendor-clause Extended

ODBC-std-esc-prefix ::= --(* Extended

ODBC-std-esc-terminator ::= *)-- Extended

order-by-clause ::= ORDER BY sort-specification [, sort-specification]... Minimum

outer-join ::= table-name [correlation-name] LEFT OUTER JOIN
{table-name [correlation-name] | outer-join} ON search-condition
(For outer joins, search-condition must contain only the join
condition between the specified table-names.)

Extended

owner-name ::= user-defined-name Core

pattern-value ::= character-string-literal | dynamic-parameter
(In a character-string-literal, the percent character (%) matches 0 or
more of any character; the underscore character (_) matches 1
character.)

Minimum

Element

SQL
Conformance
Level

 (6 of 11)
B-16 INFORMIX-CLI Programmer’s Manual

Elements Used in SQL Statements
pattern-value ::= character-string-literal | dynamic-parameter | USER
(In a character-string-literal, the percent character (%) matches 0 or
more of any character; the underscore character (_) matches 1
character.)

Core

precision ::= unsigned-integer Core

predicate ::= comparison-predicate | like-predicate | null-predicate Minimum

predicate ::=
between-predicate | comparison-predicate | exists-predicate
| in-predicate | like-predicate | null-predicate | quantified-predicate

Core

primary ::= column-name
| dynamic-parameter
| literal
| (expression)

Minimum

primary ::= column-name
| dynamic-parameter
| literal
| set-function-reference
| USER
| (expression)

Core

primary ::= column-name
| dynamic-parameter
| literal
| ODBC-scalar-function-extension
| set-function-reference
| USER
| (expression)

Extended

procedure ::= procedure-name | procedure-name (procedure-parameter-
list)

Extended

procedure-identifier ::= user-defined-name Extended

Element

SQL
Conformance
Level

 (7 of 11)
SQL Grammar B-17

Elements Used in SQL Statements
procedure-name ::= procedure-identifier
| owner-name.procedure-identifier
| qualifier-name qualifier-separator procedure-identifier
| qualifier-name qualifier-separator [owner-name].procedure-identifier
(The third syntax is valid only if the data source does not support
owners.)

Extended

procedure-parameter-list ::= procedure-parameter
| procedure-parameter, procedure-parameter-list

Extended

procedure-parameter ::= dynamic-parameter | literal | empty-string
(If a procedure parameter is an empty string, the procedure uses
the default value for that parameter.)

Extended

qualifier-name ::= user-defined-name Core

qualifier-separator ::= {implementation-defined}
(The qualifier separator is returned through SQLGetInfo with the
SQL_QUALIFIER_NAME_SEPARATOR option.)

Core

quantified-predicate ::= expression comparison-operator {ALL | ANY}
(sub-query)

Core

query-specification ::=
SELECT [ALL |DISTINCT]] select-list
FROM table-reference-list
[WHERE search-condition]
[GROUP BY column-name, [column-name]...]
[HAVING search-condition]

Core

ref-table-name ::= base-table-identifier Minimum

ref-table-name ::= base-table-identifier
| owner-name.base-table-identifier
| qualifier-name qualifier-separator base-table-identifier
| qualifier-name qualifier-separator [owner-name].base-table-identifier
(The third syntax is valid only if the data source does not support
owners.)

Core

referenced-columns ::= (column-identifier [, column-identifier]...) Core

referencing-columns ::= (column-identifier [, column-identifier]...) Core

Element

SQL
Conformance
Level

 (8 of 11)
B-18 INFORMIX-CLI Programmer’s Manual

Elements Used in SQL Statements
scalar-function ::= function-name (argument-list)
(The definitions for the non-terminals function-name and function-
name (argument-list) are derived from the list of scalar functions in
Appendix F, “Scalar Functions.”)

Extended

scale ::= unsigned-integer Core

search-condition ::= boolean-term [OR search-condition] Minimum

seconds-fraction ::= unsigned-integer Extended

seconds-value ::= digit digit Extended

select-list ::= * | select-sublist [, select-sublist]... Minimum

select-sublist ::= expression Minimum

select-sublist ::= expression [[AS] column-alias]
| {table-name | correlation-name}.*

Core

set-function-reference ::= COUNT(*) | distinct-function | all-function Core

sort-specification ::= {unsigned-integer | column-name } [ASC | DESC] Minimum

SQL-esc-vendor-clause ::= VENDOR(Microsoft), PRODUCT(ODBC) Extended

sub-query ::=
SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
[GROUP BY column-name [, column-name]...]
[HAVING search-condition]

Core

table-identifier ::= user-defined-name Minimum

table-name ::= table-identifier Minimum

table-name ::= table-identifier
| owner-name.table-identifier
| qualifier-name qualifier-separator table-identifier
| qualifier-name qualifier-separator [owner-name].table-identifier
(The third syntax is valid only if the data source does not support
owners.)

Core

Element

SQL
Conformance
Level

 (9 of 11)
SQL Grammar B-19

Elements Used in SQL Statements
table-reference ::= table-name Minimum

table-reference ::= table-name [correlation-name] Core

table-reference::= table-name [correlation-name]
| ODBC-outer-join-extension
(A SELECT statement can contain only one table-reference that is an
ODBC-outer-join-extension.)

Extended

table-reference-list ::= table-reference [,table-reference]… Core

term ::= factor | term {*|/} factor Minimum

timestamp-separator ::=
(The blank character.)

Extended

timestamp-type ::= {timestamp types}
(For example, TIMESTAMP. To determine the type name used by a
data source, an application calls SQLGetTypeInfo.)

Extended

timestamp-value ::= date-value timestamp-separator
time-value[.seconds-fraction]

Extended

unsigned-integer ::= {digit}... Minimum

upper-case-letter ::=
A | B | C | D | E | F | G | H | I | J | K | L | M |
N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Minimum

user-defined-name ::= letter[digit | letter | _]... Minimum

user-name ::= user-defined-name Core

value ::= literal | USER | dynamic-parameter Core

Element

SQL
Conformance
Level

 (10 of 11)
B-20 INFORMIX-CLI Programmer’s Manual

List of Reserved Keywords
List of Reserved Keywords
The following words are reserved for use in ODBC function calls. These
words do not constrain the minimum SQL grammar; however, to ensure
compatibility with drivers that support the core SQL grammar, applications
should avoid using any of these keywords. The #define value
SQL_ODBC_KEYWORDS contains a comma-separated list of these keywords.

■ ABSOLUTE

■ ADA

■ ADD

■ ALL

■ ALLOCATE

■ ALTER

■ AND

■ ANY

■ ARE

■ AS

■ ASC

■ ASSERTION

viewed-table-identifier ::= user-defined-name Core

viewed-table-name ::= viewed-table-identifier
| owner-name.viewed-table-identifier
| qualifier-name qualifier-separator viewed-table-identifier
| qualifier-name qualifier-separator [owner-name].viewed-table-
identifier
(The third syntax is valid only if the data source does not support
owners.)

Core

years-value ::= digit digit digit digit Extended

Element

SQL
Conformance
Level

 (11 of 11)
SQL Grammar B-21

List of Reserved Keywords
■ AT

■ AUTHORIZATION

■ AVG

■ BEGIN

■ BETWEEN

■ BIT

■ BIT_LENGTH

■ BY

■ CASCADE

■ CASCADED

■ CASE

■ CAST

■ CATALOG

■ CHAR

■ CHAR_LENGTH

■ CHARACTER

■ CHARACTER_LENGTH

■ CHECK

■ CLOSE

■ COALESCE

■ COBOL

■ COLLATE

■ COLLATION

■ COLUMN

■ COMMIT

■ CONNECT

■ CONNECTION

■ CONSTRAINT

■ CONSTRAINTS

■ CONTINUE

■ CONVERT

■ CORRESPONDING

■ COUNT
B-22 INFORMIX-CLI Programmer’s Manual

List of Reserved Keywords
■ CREATE

■ CURRENT

■ CURRENT_DATE

■ CURRENT_TIME

■ CURRENT_TIMESTAMP

■ CURSOR

■ DATE

■ DAY

■ DEALLOCATE

■ DEC

■ DECIMAL

■ DECLARE

■ DEFERRABLE

■ DEFERRED

■ DELETE

■ DESC

■ DESCRIBE

■ DESCRIPTOR

■ DIAGNOSTICS

■ DICTIONARY

■ DISCONNECT

■ DISPLACEMENT

■ DISTINCT

■ DOMAIN

■ DOUBLE

■ DROP

■ ELSE

■ END

■ END-EXEC

■ ESCAPE

■ EXCEPT

■ EXCEPTION

■ EXEC
SQL Grammar B-23

List of Reserved Keywords
■ EXECUTE

■ EXISTS

■ EXTERNAL

■ EXTRACT

■ FALSE

■ FETCH

■ FIRST

■ FLOAT

■ FOR

■ FOREIGN

■ FORTRAN

■ FOUND

■ FROM

■ FULL

■ GET

■ GLOBAL

■ GO

■ GOTO

■ GRANT

■ GROUP

■ HAVING

■ HOUR

■ IDENTITY

■ IGNORE

■ IMMEDIATE

■ IN

■ INCLUDE

■ INDEX

■ INDICATOR

■ INITIALLY

■ INNER

■ INPUT

■ INSENSITIVE
B-24 INFORMIX-CLI Programmer’s Manual

List of Reserved Keywords
■ INSERT

■ INTEGER

■ INTERSECT

■ INTERVAL

■ INTO

■ IS

■ ISOLATION

■ JOIN

■ KEY

■ LANGUAGE

■ LAST

■ LEFT

■ LEVEL

■ LIKE

■ LOCAL

■ LOWER

■ MATCH

■ MAX

■ MIN

■ MINUTE

■ MODULE

■ MONTH

■ MUMPS

■ NAMES

■ NATIONAL

■ NCHAR

■ NEXT

■ NONE

■ NOT

■ NULL

■ NULLIF

■ NUMERIC

■ OCTET_LENGTH
SQL Grammar B-25

List of Reserved Keywords
■ OF

■ OFF

■ ON

■ ONLY

■ OPEN

■ OPTION

■ OR

■ ORDER

■ OUTER

■ OUTPUT

■ OVERLAPS

■ PARTIAL

■ PASCAL

■ PLI

■ POSITION

■ PRECISION

■ PREPARE

■ PRESERVE

■ PRIMARY

■ PRIOR

■ PRIVILEGES

■ PROCEDURE

■ PUBLIC

■ RESTRICT

■ REVOKE

■ RIGHT

■ ROLLBACK

■ ROWS

■ SCHEMA

■ SCROLL

■ SECOND

■ SECTION

■ SELECT
B-26 INFORMIX-CLI Programmer’s Manual

List of Reserved Keywords
■ SEQUENCE

■ SET

■ SIZE

■ SMALLINT

■ SOME

■ SQL

■ SQLCA

■ SQLCODE

■ SQLERROR

■ SQLSTATE

■ SQLWARNING

■ SUBSTRING

■ SUM

■ SYSTEM

■ TABLE

■ TEMPORARY

■ THEN

■ TIME

■ TIMESTAMP

■ TIMEZONE_HOUR

■ TIMEZONE_MINUTE

■ TO

■ TRANSACTION

■ TRANSLATE

■ TRANSLATION

■ TRUE

■ UNION

■ UNIQUE

■ UNKNOWN

■ UPDATE

■ UPPER

■ USAGE

■ USER
SQL Grammar B-27

List of Reserved Keywords
■ USING

■ VALUE

■ VALUES

■ VARCHAR

■ VARYING

■ VIEW

■ WHEN

■ WHENEVER

■ WHERE

■ WITH

■ WORK

■ YEAR
B-28 INFORMIX-CLI Programmer’s Manual

C
Appendix
Data Types
Data stored on a data source has an SQL data type, which might
be specific to that data source. The Informix driver maps data
source-specific SQL data types to ODBC SQL data types. The
driver returns these mappings through SQLGetTypeInfo. It also
returns the SQL data types when describing the data types of
columns and parameters in SQLColAttributes, SQLColumns,
SQLDescribeCol, and SQLSpecialColumns.

Each ODBC SQL data type corresponds to an ODBC C data type.
By default, the Informix driver assumes that the C data type of a
storage location corresponds to the SQL data type of the column
or parameter to which the location is bound. If the C data type of
a storage location is not the default C data type, the application
can specify the correct C data type with the fCType argument in
SQLGetData or in SQLBindParameter. Before returning data
from the data source, the Informix driver converts it to the
specified C data type; before sending data to the data source, the
Informix driver converts it from the specified C data type.

This appendix discusses the following topics:

■ ODBC SQL data types that INFORMIX-CLI supports

■ ODBC C data types

■ Default ODBC C data types

■ Transferring data in its binary form

■ Precision, scale, length, and display size of SQL data
types

■ Converting data from SQL to C data types

■ Converting data from C to SQL data types

ODBC SQL Data Types That INFORMIX-CLI Supports
ODBC SQL Data Types That INFORMIX-CLI Supports
The following table lists valid values of fSqlType for the SQL data types that
INFORMIX-CLI supports. In the table, “precision” refers to the total number
of digits , and “scale” refers to the number of digits to the right of the decimal
point.

To determine which data types are supported by a data source and the
characteristics of those data types, an application calls SQLGetTypeInfo. For
information about how Informix data types map to ODBC SQL data types, see,
“Mapping Data Types” on page 1-15. For information on Informix data types,
refer to the Informix Guide to SQL: Reference.

fSqlType SQL Data Type Description

SQL_CHAR CHAR(n) Character string of fixed string
length n (1 ≤ n ≤ 254)

SQL_VARCHAR VARCHAR(n) Variable-length character string
with a maximum string length n
(1 ≤ n ≤ 254)

SQL_LONGVARCHAR LONG VARCHAR Variable length character data.
Maximum length is data source–
dependent

SQL_DECIMAL DECIMAL(p,s) Signed, exact, numeric value with
a precision p and scale s (1 ≤ p ≤ 15;
0 ≤ s ≤ p)

SQL_SMALLINT SMALLINT Exact numeric value with
precision 5 and scale 0 (signed:
–32,768 ≤ n ≤ 32,767, unsigned: 0≤
n ≤ 65,535) a

SQL_INTEGER INTEGER Exact numeric value with
precision 10 and scale 0 (signed:
–231 ≤ n ≤ 231 – 1, unsigned: 0 ≤ n ≤
232 – 1)a

 (1 of 2)
C-2 INFORMIX-CLI Programmer’s Manual

ODBC SQL Data Types That INFORMIX-CLI Supports
SQL_REAL REAL Signed, approximate, numeric
value with a mantissa precision 7
(zero or absolute value 10–38 to
1038)

SQL_DOUBLE DOUBLE PRECISION Signed, approximate, numeric
value with a mantissa precision 15
(zero or absolute value 10–308 to
10308)

SQL_LONGVARBINARY LONG VARBINARY Variable length binary data.
Maximum length is data source–
dependent.

SQL_DATE DATE Date data

SQL_TIMESTAMP TIMESTAMP Date/time data

a An application uses SQLGetTypeInfo or SQLColAttributes to determine if a
particular data type or a particular column in a result set is unsigned.

fSqlType SQL Data Type Description

 (2 of 2)
Data Types C-3

C Data Types
C Data Types
Data is stored in the application in ODBC C data types. The core C data types
support the minimum and core SQL data types. They also support some
extended SQL data types. The extended C data types support only extended
SQL data types.

The C data type is specified in the SQLBindCol, SQLGetData, and
SQLBindParameter functions with the fCType argument.

Core C Data Types
The following table lists valid values of fCType for the core C data types. These
values are defined in sql.h. The table also lists the ODBC C data type that
implements each value of fCType and the definition of this data type from
sql.h.

Important: Because string arguments in INFORMIX-CLI functions are unsigned,
applications that pass CString objects to INFORMIX-CLI functions without casting
them to unsigned strings receive compiler warnings.

fCType ODBC C Typedef C Type

SQL_C_CHAR UCHAR FAR * unsigned char FAR *

SQL_C_SSHORT SWORD short int

SQL_C_USHORT UWORD unsigned short int

SQL_C_SLONG SDWORD long int

SQL_C_ULONG UDWORD unsigned long int

SQL_C_FLOAT SFLOAT float

SQL_C_DOUBLE SDOUBLE double
C-4 INFORMIX-CLI Programmer’s Manual

Extended C Data Types
Extended C Data Types
The following table lists valid values of fCType for the extended C data types.
These values are defined in sqlext.h. The table also lists the ODBC C data type
that implements each value of fCType and the definition of this data type from
sqlext.h or sql.h.

fCType ODBC C Typedef C Type

SQL_C_BIT UCHAR unsigned char

SQL_C_STINYINT SCHAR signed char

SQL_C_UTINYINT UCHAR unsigned char

SQL_C_BINARY UCHAR FAR * unsigned char FAR *

SQL_C_DATE DATE_STRUCT struct tagDATE_STRUCT {
SWORD year; a

UWORD month; b

UWORD day; c

}

SQL_C_TIME TIME_STRUCT struct tagTIME_STRUCT {
UWORD hour; d

UWORD minute; e

UWORD second; f

}

SQL_C_TIMESTAMP TIMESTAMP_STRUCT struct
tagTIMESTAMP_STRUCT {

SWORD year; a

UWORD month; b

UWORD day; c

UWORD hour; d

UWORD minute; e

UWORD second; f

UDWORD fraction; g

}

a The value of the year field must be in the range from 0 to 9,999. Years are measured
from 0 A.D. Some data sources do not support the entire range of years.

b The value of the month field must be in the range from 1 to 12.

 (1 of 2)
Data Types C-5

Default C Data Types
Default C Data Types
If an application specifies SQL_C_DEFAULT for the fCType argument in
SQLBindCol, SQLGetData, or SQLBindParameter, the driver assumes that
the C data type of the output or input buffer corresponds to the SQL data type
of the column or parameter to which the buffer is bound. For each ODBC SQL
data type, the following table shows the corresponding, or default, C data
type. For information about how Informix data types map to ODBC SQL data
types, see, “Mapping Data Types” on page 1-15

Tip: For maximum interoperability, applications should specify a C data type other
than SQL_C_DEFAULT. This allows drivers that promote SQL data types (and
therefore cannot always determine default C data types) to return data. It also allows
drivers that cannot determine whether an integer column is signed or unsigned to
correctly return data.

Important: ODBC 2.0 drivers use the ODBC 2.0 default C data types for ODBC 1.0
and ODBC 2.0 integer C data.

c The value of the day field must be in the range from 1 to the number of days in the
month. The number of days in the month is determined from the values of the year
and month fields and is 28, 29, 30, or 31.

d The value of the hour field must be in the range from 0 to 23.

e The value of the minute field must be in the range from 0 to 59.

f The value of the second field must be in the range from 0 to 59.

gThe value of the fraction field is the number of nanoseconds (10–9 seconds) and
ranges from 0 to 999,999,999. For example, the value of the fraction field for a half-
second is 500,000,000, for a thousandth of a second (one millisecond) is 1,000,000,
for a millionth of a second (one microsecond) is 1,000, and for a billionth of a second
(one nanosecond) is 1.

fCType ODBC C Typedef C Type

 (2 of 2)
C-6 INFORMIX-CLI Programmer’s Manual

Default C Data Types
SQL Data Type Default C Data Type

SQL_CHAR SQL_C_CHAR

SQL_VARCHAR SQL_C_CHAR

SQL_LONGVARCHAR SQL_C_CHAR

SQL_DECIMAL SQL_C_CHAR

SQL_SMALLINT SQL_C_SSHORT or SQL_C_USHORT a

SQL_INTEGER SQL_C_SLONG or SQL_C_ULONG a

SQL_REAL SQL_C_FLOAT

SQL_DOUBLE SQL_C_DOUBLE

SQL_LONGVARBINARY SQL_C_BINARY

SQL_DATE SQL_C_DATE

SQL_TIMESTAMP SQL_C_TIMESTAMP

a If the driver can determine whether the column is signed or unsigned, such as
when the driver is fetching data from the data source or when the data source
supports only a signed type or only an unsigned type, but not both, the driver uses
the corresponding signed or unsigned C data type. If the driver cannot determine
whether the column is signed or unsigned, it passes the data value without
attempting to validate it numerically.
Data Types C-7

Transferring Data in its Binary Form
Transferring Data in its Binary Form
Among data sources that use the same DBMS, an application can safely
transfer data in the internal form used by that DBMS. For a particular piece of
data, the SQL data types must be the same in the source and target data
sources. The C data type is SQL_C_BINARY.

When the application calls SQLFetch, SQLExtendedFetch, or SQLGetData to
retrieve the data from the source data source, the driver retrieves the data
from the data source and transfers it, without conversion, to a storage
location of type SQL_C_BINARY. When the application calls SQLExecute,
SQLExecDirect, or SQLPutData to send the data to the target data source, the
driver retrieves the data from the storage location and transfers it, without
conversion, to the target data source.

Important: Applications that transfer any data (except binary data) in this manner
are not interoperable among DBMSs.

Precision, Scale, Length, and Display Size
SQLColAttributes, SQLColumns, and SQLDescribeCol return the precision,
scale, length, and display size of a column in a table. SQLProcedureColumns
returns the precision, scale, and length of a column in a procedure.
SQLDescribeParam returns the precision or scale of a parameter in an SQL
statement; SQLBindParameter sets the precision or scale of a parameter in an
SQL statement. SQLGetTypeInfo returns the maximum precision and the
minimum and maximum scales of an SQL data type on a data source.

SQLColAttributes, SQLColumns, and SQLDescribeCol return the precision,
scale, length, and display size of a column in a table. SQLBindParameter sets
the precision or scale of a parameter in an SQL statement. SQLGetTypeInfo
returns the maximum precision and the minimum and maximum scales of an
SQL data type on a data source.

Because of limitations in the size of the arguments that these functions use,
precision, length, and display size are limited to the size of an SDWORD, or
2,147,483,647.
C-8 INFORMIX-CLI Programmer’s Manual

Precision
Precision
The precision of a numeric column or parameter refers to the maximum
number of digits used by the data type of the column or parameter. The
precision of a nonnumeric column or parameter generally refers to either the
maximum length or the defined length of the column or parameter. To
determine the maximum precision allowed for a data type, an application
calls SQLGetTypeInfo. The following table defines the precision for each
ODBC SQL data type.

fSqlType Precision

SQL_CHAR
SQL_VARCHAR

The defined length of the column or parameter. For
example, the precision of a column defined as
CHAR(10) is 10.

SQL_LONGVARCHAR a, b The maximum length of the column or parameter.

SQL_DECIMAL The defined number of digits. For example, the
precision of a column defined as NUMERIC(10,3) is
10.

SQL_SMALLINT c 5

SQL_INTEGER c 10

SQL_REAL c 7

SQL_DOUBLE c 15

SQL_LONGVARBINARY a, b The maximum length of the column or parameter.

SQL_DATE c 10 (the number of characters in the yyyy-mm-dd
format).

SQL_TIMESTAMP The number of characters in the “yyyy-mm-dd
hh:mm:ss[.f...]” format used by the TIMESTAMP data
type. For example, if a time stamp does not use
seconds or fractional seconds, the precision is 16 (the
number of characters in the “yyyy-mm-dd hh:mm”
format). If a time stamp uses thousandths of a
second, the precision is 23 (the number of characters
in the “yyyy-mm-dd hh:mm:ss.fff” format).

 (1 of 2)
Data Types C-9

Scale
Scale
The scale of a numeric column or parameter refers to the maximum number
of digits to the right of the decimal point. For approximate floating point
number columns or parameters, the scale is undefined because the number
of digits to the right of the decimal point is not fixed. (For the SQL_DECIMAL
and SQL_NUMERIC data types, the maximum scale is generally the same as
the maximum precision. However, some data sources impose a separate limit
on the maximum scale. To determine the minimum and maximum scales
allowed for a data type, an application calls SQLGetTypeInfo.) The following
table defines the scale for each ODBC SQL data type.

a For an ODBC 1.0 application calling SQLSetParam in an ODBC 2.0 driver, when
pcbValue is SQL_DATA_AT_EXEC, cbColDef must be set to the total length of the data
to be sent, not the precision as defined in this table.

b If the driver cannot determine the column or parameter length, it returns
SQL_NO_TOTAL.

c The cbColDef argument of SQLBindParameter is ignored for this data type.

fSqlType Scale

SQL_CHAR a

SQL_VARCHAR a

SQL_LONGVARCHAR a

Not applicable.

SQL_DECIMAL The defined number of digits to the right of the
decimal point. For example, the scale of a column
defined as NUMERIC(10,3) is 3.

SQL_SMALLINT a

SQL_INTEGER a
0

SQL_REAL a

SQL_DOUBLE a
Not applicable.

SQL_LONGVARBINARY a Not applicable.

 (1 of 2)

fSqlType Precision

 (2 of 2)
C-10 INFORMIX-CLI Programmer’s Manual

Length
Length
The length of a column is the maximum number of bytes that are returned to
the application when data is transferred to its default C data type. For
character data, the length does not include the null-termination byte. The
length of a column might be different than the number of bytes that are
required to store the data on the data source. For a list of default C data types,
see the “Default C Data Types” on page C-6.

The following table defines the length for each ODBC SQL data type.

SQL_DATE a Not applicable.

SQL_TIMESTAMP The number of digits to the right of the decimal point
in the “yyyy-mm-dd hh:mm:ss[.f...]” format. For
example, if the TIMESTAMP data type uses the “yyyy-
mm-dd hh:mm:ss.fff” format, the scale is 3.

a The ibScale argument of SQLBindParameter is ignored for this data type.

fSqlType Length

SQL_CHAR
SQL_VARCHAR

The defined length of the column. For example, the
length of a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR a The maximum length of the column.

SQL_DECIMAL The maximum number of digits plus 2. Because these
data types are returned as character strings,
characters are needed for the digits, a sign, and a
decimal point. For example, the length of a column
defined as NUMERIC(10,3) is 12.

SQL_SMALLINT 2 (2 bytes).

SQL_INTEGER 4 (4 bytes).

SQL_REAL 4 (4 bytes).

 (1 of 2)

fSqlType Scale

 (2 of 2)
Data Types C-11

Display Size
Display Size
The display size of a column is the maximum number of bytes needed to
display data in character form. The following table defines the display size
for each ODBC SQL data type.

SQL_DOUBLE 8 (8 bytes).

SQL_LONGVARBINARY a The maximum length of the column.

SQL_DATE 6 (the size of the DATE_STRUCT or TIME_STRUCT
structure).

SQL_TIMESTAMP 16 (the size of the TIMESTAMP_STRUCT structure).

a If the driver cannot determine the column or parameter length, it returns
SQL_NO_TOTAL.

fSqlType Display Size

SQL_CHAR
SQL_VARCHAR

The defined length of the column. For example, the
display size of a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR a The maximum length of the column.

SQL_DECIMAL The precision of the column plus 2 (a sign, precision
digits, and a decimal point). For example, the display
size of a column defined as NUMERIC(10,3) is 12.

SQL_SMALLINT 6 if signed (a sign and 5 digits) or 5 if unsigned (5
digits).

SQL_INTEGER 11 if signed (a sign and 10 digits) or 10 if unsigned (10
digits).

SQL_REAL 13 (a sign, 7 digits, a decimal point, the letter E, a
sign, and 2 digits).

SQL_DOUBLE 22 (a sign, 15 digits, a decimal point, the letter E, a
sign, and 3 digits).

 (1 of 2)

fSqlType Length

 (2 of 2)
C-12 INFORMIX-CLI Programmer’s Manual

Converting Data from SQL to C Data Types
Converting Data from SQL to C Data Types
When an application calls SQLExtendedFetch, SQLFetch, or SQLGetData, the
driver retrieves the data from the data source. If necessary, it converts the
data from the data type in which the driver retrieved it to the data type
specified by the fCType argument in SQLBindCol or SQLGetData. Finally, it
stores the data in the location pointed to by the rgbValue argument in
SQLBindCol or SQLGetData.

The word convert is used in this section in a broad sense, and it includes the
transfer of data, without a conversion in data type, from one storage location
to another.

The following table shows the supported conversions from ODBC SQL data
types to ODBC C data types. A solid circle (●) indicates the default conversion
for an SQL data type (the C data type to which the data is converted when the
value of fCType is SQL_C_DEFAULT). A hollow circle (❍) indicates a supported
conversion.

SQL_LONGVARBINARY a The maximum length of the column times 2.

SQL_DATE 10 (a date in the format yyyy-mm-dd).

SQL_TIMESTAMP 19 (if the scale of the time stamp is 0) or 20 plus the
scale of the time stamp (if the scale is greater than 0).
This is the number of characters in the “yyyy-mm-dd
hh:mm:ss[.f...]” format. For example, the display size
of a column storing thousandths of a second is 23
(the number of characters in “yyyy-mm-dd
hh:mm:ss.fff”).

a If the driver cannot determine the column or parameter length, it returns
SQL_NO_TOTAL.

fSqlType Display Size

 (2 of 2)
Data Types C-13

Converting Data from SQL to C Data Types
The tables in the following sections describe how the driver or data source
converts data that is retrieved from the data source; drivers are required to
support conversions to all ODBC C data types from the ODBC SQL data types
that they support. For a given ODBC SQL data type, the first column of the
table lists the legal input values of the fCType argument in SQLBindCol and
SQLGetData. The second column lists the outcomes of a test, often using the
cbValueMax argument specified in SQLBindCol or SQLGetData, which the
driver performs to determine if it can convert the data. For each outcome, the
third and fourth columns list the values of the rgbValue and pcbValue
arguments specified in SQLBindCol or SQLGetData after the driver attempts
to convert the data.

The last column lists the SQLSTATE returned for each outcome by
SQLExtendedFetch, SQLFetch, or SQLGetData.

C Data Type

SQL Data Type SQ
L

_C
_C

H
A

R

SQ
L

_C
_B

IT

SQ
L

_C
_S

T
IN

Y
IN

T

SQ
L

_C
_U

T
IN

Y
IN

T

SQ
L

_C
_T

IN
Y

IN
T

SQ
L

_C
_S

SH
O

R
T

SQ
L

_C
_U

SH
O

R
T

SQ
L

_C
_S

H
O

R
T

SQ
L

_C
_S

L
O

N
G

SQ
L

_C
_U

L
O

N
G

SQ
L

_C
_L

O
N

G

SQ
L

_C
_F

L
O

A
T

SQ
L

_C
_D

O
U

B
L

E

SQ
L

_C
_B

IN
A

R
Y

SQ
L

_C
_D

A
T

E

SQ
L

_C
_T

IM
E

SQ
L

_C
_T

IM
E

ST
A

M
P

SQL_CHAR ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_VARCHAR ●● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_LONGVARCHAR ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_DECIMAL ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_SMALLINT (signed) ❍ ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_SMALLINT ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_INTEGER (signed) ❍❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ❍ ❍

SQL_INTEGER (unsigned) ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ❍

SQL_REAL ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍

SQL_DOUBLE ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍

SQL_LONGVARBINARY ❍ ● ❍ ❍

SQL_DATE ❍ ❍ ● ❍

SQL_TIMESTAMP ❍ ❍ ❍ ❍ ●
C-14 INFORMIX-CLI Programmer’s Manual

SQL to C: Character
If the fCType argument in SQLBindCol or SQLGetData contains a value for an
ODBC C data type that is not shown in the table for a given ODBC SQL data
type, SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE 07006
(Restricted data type attribute violation). If the fCType argument contains a
value that specifies a conversion from a driver-specific SQL data type to an
ODBC C data type and this conversion is not supported by the driver, SQLEx-
tendedFetch, SQLFetch, or SQLGetData returns SQLSTATE S1C00 (Driver not
capable).

Although it is not shown in the tables in this appendix, the pcbValue argument
contains SQL_NULL_DATA when the SQL data value is NULL. For an expla-
nation of the use of pcbValue when multiple calls are made to retrieve data,
see “Usage” on page 13-163. When SQL data is converted to character C data,
the character count returned in pcbValue does not include the null-termi-
nation byte. If rgbValue is a null pointer, SQLBindCol or SQLGetData returns
SQLSTATE S1009 (Invalid argument value).

The following terms and conventions are used in the tables:

■ Length of data is the number of bytes of C data that are available to
return in rgbValue, regardless of whether the data is truncated before
it returns to the application. For string data, this does not include the
null-termination byte.

■ Display size is the total number of bytes that are needed to display the
data in character format.

■ Words in italics represent function arguments or elements of the
ODBC SQL grammar. For the syntax of grammar elements, see
Appendix B.

SQL to C: Character
The character ODBC SQL data types are found in the following list:

■ SQL_CHAR

■ SQL_VARCHAR

■ SQL_LONGVARCHAR

The following table shows the ODBC C data types to which character SQL
data can be converted. For an explanation of the columns and terms in the
table, see the previous list.
Data Types C-15

SQL to C: Character
fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data < cbValueMax

Length of data ≥ cbValueMax

Data

Truncated data

Length of data

Length of data

N/A

01004

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT a

SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a

SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG a

Data converted without
truncation b

Data converted with truncation
of fractional digits b

Conversion of data would
result in loss of whole (as
opposed to fractional) digits b

Data is not a numeric-literal b

Data

Truncated data

Untouched

Untouched

Size of the C
data type

Size of the C
data type

Untouched

Untouched

N/A

01004

22003

22005

SQL_C_FLOAT
SQL_C_DOUBLE

Data is within the range of the
data type to which the number
is being converted b

Data is outside the range of the
data type to which the number
is being converted b

Data is not a numeric-literal b

Data

Untouched

Untouched

Size of the C
data type

Untouched

Untouched

N/A

22003

22005

SQL_C_BIT Data is 0 or 1

Data is greater than 0, less than
2, and not equal to 1 a

Data is less than 0 or greater
than or equal to 2 a

Data is not a numeric-literal a

Data

Truncated data

Untouched

Untouched

1 c

1 c

Untouched

Untouched

N/A

01004

22003

22005

SQL_C_BINARY Length of data ≤ cbValueMax

Length of data > cbValueMax

Data

Truncated data

Length of data

Length of data

N/A

01004

 (1 of 3)
C-16 INFORMIX-CLI Programmer’s Manual

SQL to C: Character
SQL_C_DATE Data value is a valid date-value b

Data value is a valid timestamp-
value; time portion is zero b

Data value is a valid timestamp-
value; time portion is non-zerob,

d

Data value is not a valid date-
value or timestamp-value b

Data

Data

Truncated data

Untouched

6 c

6 c

6 c

Untouched

N/A

N/A

01004

22008

SQL_C_TIME Data value is a valid time-value b

Data value is a valid timestamp-
value; fractional seconds
portion is zero b, e

Data value is a valid timestamp-
value; fractional seconds
portion is non-zero b, e, f

Data value is not a valid time-
value or timestamp-value b

Data

Data

Truncated data

Untouched

6 c

6 c

6 c

Untouched

N/A

N/A

01004

22008

SQL_C_TIMESTAMP Data value is a valid timestamp-
value; fractional seconds
portion not truncated b

Data value is a valid timestamp-
value; fractional seconds
portion truncated b

Data value is a valid date-value b

Data value is a valid time-value b

Data value is not a valid date-
value, time-value, or timestamp-
value b

Data

Truncated data

Data g

Data h

Untouched

16 c

16 c

16 c

16 c

Untouched

N/A

N/A

N/A

N/A

22008

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the
size of the C data type.

fCType Test rgbValue pcbValue SQLSTATE

 (2 of 3)
Data Types C-17

SQL to C: Numeric
When character SQL data is converted to numeric, date, time, or time-stamp
C data, leading and trailing spaces are ignored.

All drivers that support date, time, and time-stamp data can convert
character SQL data to date, time, or time-stamp C data, as specified in the
previous table. Drivers might be able to convert character SQL data from
other, driver-specific formats to date, time, or time-stamp C data. Such
conversions are not interoperable among data sources.

SQL to C: Numeric
The numeric ODBC SQL data types are found in the following list:

■ SQL_DECIMAL

■ SQL_REAL

■ SQL_SMALLINT

■ SQL_DOUBLE

■ SQL_INTEGER

The following table shows the ODBC C data types to which numeric SQL data
can be converted. For an explanation of the columns and terms in the table,
see “Converting Data from SQL to C Data Types” on page C-13.

c This is the size of the corresponding C data type.

d The time portion of timestamp-value is truncated.

e The date portion of timestamp-value is ignored.

f The fractional seconds portion of the time stamp is truncated.

g The time fields of the time-stamp structure are set to zero.

h The date fields of the time-stamp structure are set to the current date.

fCType Test rgbValue pcbValue SQLSTATE

 (3 of 3)
C-18 INFORMIX-CLI Programmer’s Manual

SQL to C: Numeric
fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax

Number of whole (as opposed
to fractional) digits < cbVal-
ueMax

Number of whole (as opposed
to fractional) digits ≥
cbValueMax

Data

Truncated data

Untouched

Length of data

Length of data

Untouched

N/A

01004

22003

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT a

SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a

SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG a

Data converted without
truncation b

Data converted with truncation
of fractional digits b

Conversion of data would
result in loss of whole (as
opposed to fractional) digits b

Data

Truncated data

Untouched

Size of the C
data type

Size of the C
data type

Untouched

N/A

01004

22003

SQL_C_FLOAT
SQL_C_DOUBLE

Data is within the range of the
data type to which the number
is being converted b

Data is outside the range of the
data type to which the number
is being converted b

Data

Untouched

Size of the C
data type

Untouched

N/A

22003

SQL_C_BIT Data is 0 or 1 b

Data is greater than 0, less than
2, and not equal to 1b

Data is less than 0 or greater
than or equal to 2 b

Data

Truncated data

Untouched

1 c

1 c

Untouched

N/A

01004

22003

 (1 of 2)
Data Types C-19

SQL to C: Binary
SQL to C: Binary
The binary ODBC SQL data type that INFORMIX-CLI supports is
SQL_LONGVARBINARY.

The following table shows the ODBC C data types to which binary SQL data
can be converted. For an explanation of the columns and terms in the table,
see “Converting Data from SQL to C Data Types” on page C-13.

When binary SQL data is converted to character C data, each byte (8 bits) of
source data is represented as two ASCII characters. These characters are the
ASCII character representation of the number in its hexadecimal form. For
example, a binary 00000001 is converted to “01” and a binary 11111111 is
converted to “FF.”

SQL_C_BINARY Length of data ≤ cbValueMax

Length of data > cbValueMax

Data

Untouched

Length of data

Untouched

N/A

22003

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the
size of the C data type.

c This is the size of the corresponding C data type.

fCType Test rgbValue pcbValue SQLSTATE

 (2 of 2)

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR (Length of data) * 2 < cbValueMax

(Length of data) * 2 ≥ cbValueMax

Data

Truncated data

Length of data

Length of data

N/A

01004

SQL_C_BINARY Length of data ≤ cbValueMax

Length of data > cbValueMax

Data

Truncated data

Length of data

Length of data

N/A

01004
C-20 INFORMIX-CLI Programmer’s Manual

SQL to C: Date
The driver always converts individual bytes to pairs of hexadecimal digits
and terminates the character string with a null byte. Because of this
conversion, if cbValueMax is even and is less than the length of the converted
data, the last byte of the rgbValue buffer is not used. (The converted data
requires an even number of bytes, the next-to-last byte is a null byte, and the
last byte cannot be used.)

SQL to C: Date
The date ODBC SQL data type is SQL_DATE.

The following table shows the ODBC C data types to which date SQL data can
be converted. For an explanation of the columns and terms in the table, see
“Converting Data from SQL to C Data Types” on page C-13.

When date SQL data is converted to character C data, the resulting string is
in the “yyyy-mm-dd” format.

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax ≥ 11

cbValueMax < 11

Data

Untouched

10

Untouched

N/A

22003

SQL_C_BINARY Length of data ≤ cbValueMax

Length of data > cbValueMax

Data

Untouched

Length of data

Untouched

N/A

22003

SQL_C_DATE None a Data 6 c N/A

SQL_C_TIMESTAMP None a Data b 16 c N/A

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the
size of the C data type.

b The time fields of the time-stamp structure are set to zero.

c This is the size of the corresponding C data type.
Data Types C-21

SQL to C: Time Stamp
SQL to C: Time Stamp
The time-stamp ODBC SQL data type is SQL_TIMESTAMP.

The following table shows the ODBC C data types to which time-stamp SQL
data can be converted. For an explanation of the columns and terms in the
table, see “Converting Data from SQL to C Data Types” on page C-13.

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax > Display size

20 ≤ cbValueMax ≤ Display
size

cbValueMax < 20

Data

Truncated data b

Untouched

Length of data

Length of data

Untouched

N/A

01004

22003

SQL_C_BINARY Length of data ≤ cbValueMax

Length of data > cbValueMax

Data

Untouched

Length of data

Untouched

N/A

22003

SQL_C_DATE Time portion of time stamp is
zeroa

Time portion of time stamp is
nonzero a

Data

Truncated data c

6 f

6 f

N/A

01004

SQL_C_TIME Fractional seconds portion of
time stamp is zeroa

Fractional seconds portion of
time stamp is nonzero a

Data d

Truncated data
d, e

6 f

6 f

N/A

01004

SQL_C_TIMESTAMP Fractional seconds portion of
time stamp is not truncated a

Fractional seconds portion of
time stamp is truncated a

Data e

Truncated data e

16 f

16 f

N/A

01004

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the
size of the C data type.

b The fractional seconds of the time stamp are truncated.

c The time portion of the time stamp is truncated.

 (1 of 2)
C-22 INFORMIX-CLI Programmer’s Manual

SQL to C Data Conversion Examples
When time-stamp SQL data is converted to character C data, the resulting
string is in the “yyyy-mm-dd hh:mm:ss[.f...]” format, where up to nine digits
can be used for fractional seconds. Except for the decimal point and fractional
seconds, the entire format must be used, regardless of the precision of the
time-stamp SQL data type.

SQL to C Data Conversion Examples
The following table illustrates how the driver converts SQL data to C data.

d The date portion of the time stamp is ignored.

e The fractional seconds portion of the time stamp is truncated.

f This is the size of the corresponding C data type.

fCType Test rgbValue pcbValue SQLSTATE

 (2 of 2)

SQL Data Type SQL Data Value C Data Type cbValueMax rgbValue SQLSTATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 a N/A

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 a N/A

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 ---- 22003

SQL_DECIMAL 1234.56 SQL_C_FLOAT ignored 1234.56 N/A

SQL_DECIMAL 1234.56 SQL_C_SSHORT ignored 1234 01004

SQL_DECIMAL 1234.56 SQL_C_STINYINT ignored ---- 22003

SQL_DOUBLE 1.2345678 SQL_C_DOUBLE ignored 1.2345678 N/A

SQL_DOUBLE 1.2345678 SQL_C_FLOAT ignored 1.234567 N/A

SQL_DOUBLE 1.2345678 SQL_C_STINYINT ignored 1 N/A

 (1 of 2)
Data Types C-23

Converting Data from C to SQL Data Types
Converting Data from C to SQL Data Types
When an application calls SQLExecute or SQLExecDirect, the driver retrieves
the data for any parameters that are bound with SQLBindParameter from
storage locations in the application. For data-at-execution parameters, the
application sends the parameter data with SQLPutData. If necessary, the
driver converts the data from the data type specified by the fCType argument
in SQLBindParameter to the data type specified by the fSqlType argument in
SQLBindParameter. Finally, the driver sends the data to the data source.

The word convert is used in this section in a broad sense, and it includes the
transfer of data, without a conversion in data type, from one storage location
to another.

SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0
a

N/A

SQL_DATE 1992-12-31 SQL_C_CHAR 10 ----- 22003

SQL_DATE 1992-12-31 SQL_C_TIMESTAMP ignored 1992,12,31,
0,0,0,0 b

N/A

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0
a

N/A

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 a

01004

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 18 ---- 22003

a “\0” represents a null-termination byte. The driver always null-terminates SQL_C_CHAR data.

b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT structure.

SQL Data Type SQL Data Value C Data Type cbValueMax rgbValue SQLSTATE

 (2 of 2)
C-24 INFORMIX-CLI Programmer’s Manual

Converting Data from C to SQL Data Types
The following table shows the supported conversions from ODBC C data
types to ODBC SQL data types. A solid circle (●) indicates the default
conversion for an SQL data type (the C data type from which the data is
converted when the value of fCType is SQL_C_DEFAULT). A hollow circle (❍)
indicates a supported conversion.

SQL Data Type

C Data Type SQ
L

_C
H

A
R

SQ
L

_V
A

R
C

H
A

R

SQ
L

_L
O

N
G

V
A

R
C

H
A

R

SQ
L

_D
E

C
IM

A
L

SQ
L

_S
M

A
L

L
IN

T
 (s

ig
ne

d
)

SQ
L

_S
M

A
L

L
IN

T
 (u

ns
ig

ne
d

)

SQ
L

_I
N

T
E

G
E

R
 (s

ig
ne

d
)

SQ
L

_I
N

T
E

G
E

R
 (u

ns
ig

ne
d

)

SQ
L

_R
E

A
L

SQ
L

_D
O

U
B

L
E

SQ
L

_L
O

N
G

V
A

R
B

IN
A

R
Y

SQ
L

_D
A

T
E

SQ
L

_T
IM

E
ST

A
A

M
P

SQL_C_CHAR ● ● ● ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_C_BIT ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_C_STINYINT ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_C_UTINYINT ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_C_TINYINT ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_C_SSHORT ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ❍ ❍

SQL_C_USHORT ❍ ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ❍

SQL_C_SHORT ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_C_SLONG ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍ ❍

SQL_C_ULONG ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍

SQL_C_LONG ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

SQL_C_FLOAT ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍

SQL_C_DOUBLE ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

SQL_C_BINARY ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍

SQL_C_DATE ❍ ❍ ❍ ● ❍

SQL_C_TIME ❍ ❍ ❍ ❍

SQL_C_TIMESTAMP ❍
❍

❍ ❍ ❍ ●
Data Types C-25

Converting Data from C to SQL Data Types
The tables in the following sections describe how the driver or data source
converts data sent to the data source; drivers are required to support conver-
sions from all ODBC C data types to the ODBC SQL data types that they
support. For a given ODBC C data type, the first column of the table lists the
legal input values of the fSqlType argument in SQLBindParameter. The
second column lists the outcomes of a test that the driver performs to
determine if it can convert the data. The third column lists the SQLSTATE that
is returned for each outcome by SQLExecDirect, SQLExecute, or SQLPutData.
Data is sent to the data source only if SQL_SUCCESS is returned.

If the fSqlType argument in SQLBindParameter contains a value for an ODBC
SQL data type that is not shown in the table for a given C data type, then
SQLBindParameter returns SQLSTATE 07006 (Restricted data type attribute
violation). If the fSqlType argument contains a driver-specific value and the
driver does not support the conversion from the specific ODBC C data type to
the driver-specific SQL data type, then SQLBindParameter returns SQLSTATE
S1C00 (Driver not capable).

If the rgbValue and pcbValue arguments specified in SQLBindParameter are
both null pointers, then that function returns SQLSTATE S1009 (Invalid
argument value). Although it is not shown in the tables, an application sets
the value pointed to by the pcbValue argument of SQLBindParameter or the
value of the cbValue argument to SQL_NULL_DATA to specify a NULL SQL
data value. The application sets these values to SQL_NTS to specify that the
value in rgbValue is a null-terminated string.

The following terms are used in the tables:

■ Length of data is the number of bytes of SQL data that are available to
send to the data source, regardless of whether the data is truncated
before it goes to the data source. For string data, this does not include
the null-termination byte.

■ Column length and display size are defined for each SQL data type in
“Precision, Scale, Length, and Display Size” on page C-8.

■ Number of digits is the number of characters that represent a number,
including the minus sign, decimal point, and exponent (if needed).

■ Words in italics represent elements of the ODBC SQL grammar. For
the syntax of grammar elements, see Appendix B.
C-26 INFORMIX-CLI Programmer’s Manual

C to SQL: Character
C to SQL: Character
The character ODBC C data type is SQL_C_CHAR.

The following table shows the ODBC SQL data types to which C character
data can be converted. For an explanation of the columns and terms in the
table, see “Converting Data from C to SQL Data Types” on page C-24.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data ≤ Column length

Length of data > Column length

N/A

01004

SQL_DECIMAL
SQL_SMALLINT
SQL_INTEGER

Data converted without truncation

Data converted with truncation of
fractional digits.

Conversion of data would result in loss of
whole (as opposed to fractional) digits.

Data value is not a numeric-literal.

N/A

01004

22003

22005

SQL_REAL
SQL_DOUBLE

Data is within the range of the data type to
which the number is being converted.

Data is outside the range of the data type to
which the number is being converted.

Data value is not a numeric-literal.

N/A

22003

22005

SQL_LONGVARBINARY (Length of data) / 2 ≤ Column length

(Length of data) / 2 > Column length

Data value is not a hexadecimal value.

N/A

01004

22005

 (1 of 2)
Data Types C-27

C to SQL: Character
When character C data is converted to date or time-stamp SQL data, leading
and trailing blanks are ignored.

SQL_DATE Data value is a valid ODBC-date-literal.

Data value is a valid ODBC-timestamp-literal;
time portion is zero.

Data value is a valid ODBC-timestamp-literal;
time portion is non-zero.a

Data value is not a valid ODBC-date-literal or
ODBC-timestamp-literal.

N/A

N/A

01004

22008

SQL_TIMESTAMP Data value is a valid ODBC-timestamp-literal;
fractional seconds portion not truncated.

Data value is a valid ODBC-timestamp-literal;
fractional seconds portion
truncated.

Data value is a valid ODBC-date-literal. d

Data value is a valid ODBC-time-literal. e

Data value is not a valid ODBC-date-literal,
ODBC-time-literal, or ODBC-timestamp-literal.

N/A

01004

N/A

N/A

22008

a The time portion of the time stamp is truncated.

b The date portion of the time stamp is ignored.

c The fractional seconds portion of the time stamp is truncated.

d The time portion of the time stamp is set to zero.

e The date portion of the time stamp is set to the current date.

fSqlType Test SQLSTATE

 (2 of 2)
C-28 INFORMIX-CLI Programmer’s Manual

C to SQL: Numeric
When character C data is converted to binary SQL data, each 2 bytes of
character data are converted to a single byte (8 bits) of binary data. Each 2
bytes of character data represent a number in hexadecimal form. For
example, “01” is converted to a binary 00000001 and “FF” is converted to a
binary 11111111.

The driver always converts pairs of hexadecimal digits to individual bytes
and ignores the null-termination byte. Because of this conversion, if the
length of the character string is odd, the last byte of the string (excluding the
null termination byte, if any) is not converted.

INFORMIX-CLI can convert character C data to date or time-stamp SQL data
as specified in the previous table.

C to SQL: Numeric
The numeric ODBC C data types are found in the following list:

■ SQL_C_DOUBLE

■ SQL_C_FLOAT

■ SQL_C_LONG

■ SQL_C_STINYINT

■ SQL_C_SLONG

■ SQL_C_SHORT

■ SQL_C_SSHORT

■ SQL_C_TINYINT

■ SQL_C_UTINYIN

■ SQL_C_ULONG

■ SQL_C_USHORT
Data Types C-29

C to SQL: Numeric
The following table shows the ODBC SQL data types to which numeric C data
can be converted. For an explanation of the columns and terms in the table,
see “Converting Data from C to SQL Data Types” on page C-24.

The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the numeric C data types. The driver assumes that the size of
rgbValue is the size of the numeric C data type.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Number of digits ≤ Column length

Number of whole (as opposed to fractional)
digits ≤ Column length

Number of whole (as opposed to fractional)
digits > Column length

N/A

01004

22003

SQL_DECIMAL
SQL_SMALLINT
SQL_INTEGER

Data converted without truncation

Data converted with truncation of fractional
digits

Conversion of data would result in loss of
whole (as opposed to fractional) digits.

N/A

01004

22003

SQL_REAL
SQL_DOUBLE

Data is within the range of the data type to
which the number is being converted.

Data is outside the range of the data type to
which the number is being converted.

N/A

22003
C-30 INFORMIX-CLI Programmer’s Manual

C to SQL: Bit
C to SQL: Bit
The bit ODBC C data type is SQL_C_BIT.

The following table shows the ODBC SQL data types to which bit C data can
be converted. For an explanation of the columns and terms in the table, see
“Converting Data from C to SQL Data Types” on page C-24.

The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the bit C data type. The driver assumes that the size of
rgbValue is the size of the bit C data type.

C to SQL: Binary
The binary ODBC C data type is SQL_C_BINARY.

The following table shows the ODBC SQL data types to which binary C data
can be converted. For an explanation of the columns and terms in the table,
see “Converting Data from C to SQL Data Types” on page C-24.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

None N/A

SQL_DECIMAL
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_DOUBLE

None N/A
Data Types C-31

C to SQL: Date
C to SQL: Date
The date ODBC C data type is SQL_C_DATE.

The following table shows the ODBC SQL data types to which date C data can
be converted. For an explanation of the columns and terms in the table, see
“Converting Data from C to SQL Data Types” on page C-24.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data ≤ Column length
Length of data > Column length

N/A
01004

SQL_DECIMAL
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_DOUBLE

Length of data = SQL data length a

Length of data ≠ SQL data length a
N/A
22003

SQL_LONGVARBINARY Length of data ≤ Column length
Length of data > Column length

N/A
01004

SQL_DATE
SQL_TIMESTAMP

Length of data = SQL data length
aLength of data ≠ SQL data length a

N/A
22003

a The SQL data length is the number of bytes needed to store the data on the data
source. This might be different than the column length, as defined “Precision, Scale,
Length, and Display Size” on page C-8.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ≥ 10
Column length < 10
Data value is not a valid date.

N/A
22003
22008

 (1 of 2)
C-32 INFORMIX-CLI Programmer’s Manual

C to SQL: Time
For information about what values are valid in a SQL_C_DATE structure, see
“Extended C Data Types” on page C-5.

When date C data is converted to character SQL data, the resulting character
data is in the “yyyy-mm-dd” format.

The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the date C data type. The driver assumes that the size of
rgbValue is the size of the date C data type.

C to SQL: Time
The time ODBC C data type is SQL_C_TIME.

SQL_DATE Data value is a valid date.
Data value is not a valid date.

N/A
22008

SQL_TIMESTAMP Data value is a valid date.
aData value is not a valid date.

N/A
22008

a The time portion of the time stamp is set to zero.

fSqlType Test SQLSTATE

 (2 of 2)
Data Types C-33

C to SQL: Time Stamp
The following table shows the ODBC SQL data types to which time C data can
be converted. For an explanation of the columns and terms in the table, see
“Converting Data from C to SQL Data Types” on page C-24.

For information about what values are valid in a SQL_C_TIME structure, see
“Extended C Data Types” on page C-5.

When time C data is converted to character SQL data, the resulting character
data is in the “hh:mm:ss” format.

The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the time C data type. The driver assumes that the size of
rgbValue is the size of the time C data type.

C to SQL: Time Stamp
The time-stamp ODBC C data type is SQL_C_TIMESTAMP.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ≥ 8

Column length < 8

Data value is not a valid time.

N/A

22003

22008

SQL_TIMESTAMP Data value is a valid time.a

Data value is not a valid time.

N/A

22008

a The date portion of the time stamp is set to the current date, and the fractional
seconds portion of the time stamp is set to zero.
C-34 INFORMIX-CLI Programmer’s Manual

C to SQL: Time Stamp
The following table shows the ODBC SQL data types to which time-stamp C
data can be converted. For an explanation of the columns and terms in the
table, see “Converting Data from C to SQL Data Types” on page C-24.

For information about what values are valid in a SQL_C_TIMESTAMP
structure, see “Extended C Data Types” on page C-5.

When time-stamp C data is converted to character SQL data, the resulting
character data is in the “yyyy-mm-dd hh:mm:ss[.f...]” format.

The value pointed to by the pcbValue argument of SQLBindParameter and the
value of the cbValue argument of SQLPutData are ignored when data is
converted from the time-stamp C data type. The driver assumes that the size
of rgbValue is the size of the time-stamp C data type.

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ≥ Display size

19 ≤ Column length < Display size a

Column length < 19

Data value is not a valid date.

N/A

01004

22003

22008

SQL_DATE Time fields are zero.

Time fields are non-zero. b

Data value does not contain a valid date.

N/A

01004

22008

SQL_TIMESTAMP Fractional seconds fields are not
truncated.

Fractional seconds fields are truncated. d

Data value is not a valid time stamp.

N/A

01004

22008

a The fractional seconds of the time stamp are truncated.

b The time fields of the time-stamp structure are truncated.

c The date fields of the time-stamp structure are ignored.

d The fractional seconds fields of the time-stamp structure are truncated.
Data Types C-35

C to SQL Data Conversion Examples
C to SQL Data Conversion Examples
The following table illustrates how the driver converts C data to SQL data.

C DataType C Data Value SQL Data Type Column length SQL Data Value SQLSTATE

SQL_C_CHAR abcdef\0 a SQL_CHAR 6 abcdef N/A

SQL_C_CHAR abcdef\0 a SQL_CHAR 5 abcde 01004

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 8 b 1234.56 N/A

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 7 b 1234.5 01004

SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 4 ---- 22003

SQL_C_FLOAT 1234.56 SQL_INTEGER not applicable 1234 01004

SQL_C_DATE 1992,12,31 c SQL_CHAR 10 1992-12-31 N/A

SQL_C_DATE 1992,12,31 c SQL_CHAR 9 ---- 22003

SQL_C_DATE 1992,12,31 c SQL_TIMESTAMP not applicable 1992-12-31
00:00:00.0

N/A

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 22 1992-12-31
23:45:55.12

N/A

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 21 1992-12-31
23:45:55.1

01004

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 18 ---- 22003

a “\0” represents a null-termination byte. The null-termination byte is required only if the length of the
data is SQL_NTS.

b An addition to bytes for numbers, one byte is required for a sign and another byte is required for the
decimal point.

c The numbers in this list are the numbers stored in the fields of the DATE_STRUCT structure.

d The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT structure.
C-36 INFORMIX-CLI Programmer’s Manual

D
Appendix
Comparison Between
INFORMIX-CLI and
Embedded SQL

This appendix compares INFORMIX-CLI and embedded SQL.

INFORMIX-CLI to Embedded SQL
The following table compares INFORMIX-CLI functions (core
ODBC) with embedded SQL statements. This comparison is
based on the X/Open and SQL Access Group SQL CAE specifi-
cation (1992).

INFORMIX-CLI uses a parameter marker in place of a host
variable, where a host variable occurs in embedded SQL.

The SQL language is based on the X/Open and SQL Access
Group SQL CAE specification (1992).

INFORMIX-CLI to Embedded SQL
INFORMIX-CLI Function Statement Comments

SQLAllocEnv none Driver manager and driver memory
allocation.

SQLAllocConnect none Driver manager and driver memory
allocation.

SQLConnect CONNECT Association management.

SQLAllocStmt none Driver manager and driver memory
allocation.

SQLPrepare PREPARE The prepared SQL string can contain
any of the valid preparable functions
as defined by the X/Open specifi-
cation, including ALTER, CREATE,
cursor-specification, searched DELETE,
dynamic SQL positioned DELETE,
DROP, GRANT, INSERT, REVOKE,
searched UPDATE, or dynamic SQL
positioned UPDATE.

SQLBindParameter SET DESCRIPTOR Dynamic SQL ALLOCATE
DESCRIPTOR and dynamic SQL SET
DESCRIPTOR. ALLOCATE
DESCRIPTOR would normally be
issued on the first call to SQLBindPa-
rameter for an hstmt. Alternatively,
ALLOCATE DESCRIPTOR can be
called during SQLAllocStmt,
although this call would not be
needed by SQL statements that do
not contain embedded parameters.
The descriptor name is generated by
the driver.

SQLSetCursorName none The specified cursor name is used in
the DECLARE CURSOR statement
generated by SQLExecute or
SQLExecDirect.

SQLGetCursorName none Driver cursor name management.

 (1 of 3)
D-2 INFORMIX-CLI Programmer’s Manual

INFORMIX-CLI to Embedded SQL
SQLExecute EXECUTE or
DECLARE CURSOR
and OPEN CURSOR

Dynamic SQL EXECUTE. If the SQL
statement requires a cursor, then a
dynamic SQL DECLARE CURSOR
statement and a dynamic SQL OPEN
are issued at this time.

SQLExecDirect EXECUTE
IMMEDIATE or
DECLARE CURSOR
and OPEN CURSOR

The INFORMIX-CLI function call
provides for support for a cursor
specification and statements allowed
in an EXECUTE IMMEDIATE dynamic
SQL statement. In the case of a cursor
specification, the call corresponds to
static SQL DECLARE CURSOR and
OPEN statements.

SQLNumResultCols GET DESCRIPTOR COUNT form of dynamic SQL GET
DESCRIPTOR.

SQLColAttributes GET DESCRIPTOR COUNT form of dynamic SQL GET
DESCRIPTOR or VALUE form of
dynamic SQL GET DESCRIPTOR with
field-name in {NAME, TYPE, LENGTH,
PRECISION, SCALE, NULLABLE}.

SQLDescribeCol GET DESCRIPTOR VALUE form of dynamic SQL GET
DESCRIPTOR with field-name in
{NAME, TYPE, LENGTH, PRECISION,
SCALE, NULLABLE}.

SQLBindCol none This function establishes output
buffers that correspond in usage to
host variables for static SQL FETCH,
and to an SQL DESCRIPTOR for
dynamic SQL FETCH cursor USING
SQL DESCRIPTOR descriptor.

SQLFetch FETCH Static or dynamic SQL FETCH. If the
call is a dynamic SQL FETCH, then
the VALUE form of GET DESCRIPTOR
is used, with field-name in {DATA,
INDICATOR}. DATA and INDICATOR
values are placed in output buffers
specified in SQLBindCol.

INFORMIX-CLI Function Statement Comments

 (2 of 3)
Comparison Between INFORMIX-CLI and Embedded SQL D-3

INFORMIX-CLI to Embedded SQL
SQLRowCount GET DIAGNOSTICS Requested field ROW_COUNT.

SQLFreeStmt
(SQL_CLOSE option)

CLOSE Dynamic SQL CLOSE.

SQLFreeStmt
(SQL_DROP option)

none Driver manager and driver memory
deallocation.

SQLTransact COMMIT WORK or
COMMIT
ROLLBACK

None.

SQLDisconnect DISCONNECT Association management.

SQLFreeConnect none Driver manager and driver memory
deallocation.

SQLFreeEnv none Driver manager and driver memory
deallocation.

SQLCancel none None.

SQLError GET DIAGNOSTICS GET DIAGNOSTICS retrieves infor-
mation from the SQL diagnostics
area that pertains to the most
recently executed SQL statement.
This information can be retrieved
following execution and preceding
the deallocation of the statement.

INFORMIX-CLI Function Statement Comments

 (3 of 3)
D-4 INFORMIX-CLI Programmer’s Manual

Embedded SQL to INFORMIX-CLI
Embedded SQL to INFORMIX-CLI
The following tables list the relationship between the X/Open embedded
SQL language and corresponding INFORMIX-CLI functions. The section
number that appears in the first column of each table refers to the section of
the X/Open and SQL Access Group SQL CAE specification (1992).

Declarative Statements
The following table lists declarative statements.

Data Definition Statements
The following table lists data definition statements.

Section SQL Statement INFORMIX-CLI Function Comments

4.3.1 Static SQL
DECLARE CURSOR

none Issued implicitly by the
driver if a cursor specifi-
cation is passed to
SQLExecDirect.

4.3.2 Dynamic SQL
DECLARE CURSOR

none Cursor is generated
automatically by the
driver. To set a name for
the cursor, use SQLSet-
CursorName. To retrieve a
cursor name, use
SQLGetCursorName.

Section SQL Statement INFORMIX-CLI Function Comments

5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

ALTER TABLE
CREATE INDEX
CREATE TABLE
CREATE VIEW
DROP INDEX
DROP TABLE
DROP VIEW
GRANT
REVOKE

SQLPrepare,
SQLExecute,
or SQLExecDirect

None.
Comparison Between INFORMIX-CLI and Embedded SQL D-5

Data Manipulation Statements
Data Manipulation Statements
The following table lists data manipulation statements.

Section SQL Statement INFORMIX-CLI Function Comments

5.2.1 CLOSE SQLFreeStmt
(SQL_CLOSE option)

None.

5.2.2 Positioned DELETE SQLExecDirect(...,
“DELETE FROM table-
name WHERE CURRENT
OF cursor-name”)

Driver-generated
cursor-name can be
obtained by calling
SQLGetCursorName.

5.2.3 Searched DELETE SQLExecDirect(...,
“DELETE FROM table-
name WHERE search-
condition”)

None.

5.2.4 FETCH SQLFetch None.

5.2.5 INSERT SQLExecDirect
(...,“INSERT INTO table-
name ...”)

Can also be invoked by
SQLPrepare and
SQLExecute.

5.2.6 OPEN none When a SELECT
statement is specified,
a cursor is opened
implicitly by
SQLExecute or
SQLExecDirect.

5.2.7 SELECT ...INTO none Not supported.

5.2.8 Positioned UPDATE SQLExecDirect(...,
“UPDATE table-name SET
column-identifier =
expression ...WHERE
CURRENT OF cursor-
name”)

Driver-generated
cursor-name can be
obtained by calling
SQLGetCursorName.

5.2.9 Searched UPDATE SQLExecDirect(...,
“UPDATE table-name SET
column-identifier =
expression ...WHERE
search-condition”)

None.
D-6 INFORMIX-CLI Programmer’s Manual

Dynamic SQL Statements
Dynamic SQL Statements
The following table lists dynamic SQL statements.

Section SQL Statement
INFORMIX-CLI
Function Comments

5.3
(see 5.2.1)

Dynamic SQL
CLOSE

SQLFreeStmt
(SQL_CLOSE option)

None.

5.3
(see 5.2.2)

Dynamic SQL
Positioned DELETE

SQLExecDirect(...,
“DELETE FROM table-
name WHERE
CURRENT OF cursor-
name”)

Can also be invoked by
SQLPrepare and
SQLExecute.

5.3
(see 5.2.8)

Dynamic SQL
Positioned
UPDATE

SQLExecDirect(...,
“UPDATE table-name
SET column-identifier
= expression ...WHERE
CURRENT OF cursor-
name”)

Can also be invoked by
SQLPrepare and
SQLExecute.

5.3.3 ALLOCATE
DESCRIPTOR

None Descriptor information
is implicitly allocated
and attached to the
hstmt by the driver.
Allocation occurs at
either the first call to
SQLBindParameter or
at SQLExecute or
SQLExecDirect time.

5.3.4 DEALLOCATE
DESCRIPTOR

SQLFreeStmt
(SQL_DROP option)

None.

5.3.5 DESCRIBE none None.

5.3.6 EXECUTE SQLExecute None.

5.3.7 EXECUTE
IMMEDIATE

SQLExecDirect None.

5.3.8 Dynamic SQL
FETCH

SQLFetch None.

 (1 of 2)
Comparison Between INFORMIX-CLI and Embedded SQL D-7

Transaction Control Statements
Transaction Control Statements
The following table lists transaction control statements.

5.3.9 GET DESCRIPTOR SQLNumResultCols
SQLDescribeCol
SQLColAttributes

COUNT FORM.
VALUE form with field-
name in {NAME, TYPE,
LENGTH, PRECISION,
SCALE, NULLABLE}.

5.3.10 Dynamic
SQL OPEN

SQLExecute None.

5.3.11 PREPARE SQLPrepare None.

5.3.12 SET DESCRIPTOR SQLBindParameter SQLBindParameter is
associated with only
one hstmt where a
descriptor is applied to
any number of state-
ments with USING SQL
DESCRIPTOR.

Section SQL Statement INFORMIX-CLI Function Comments

5.4.1 COMMIT WORK SQLTransact
(SQL_COMMIT option)

None.

5.4.2 ROLLBACK WORK SQLTransact
(SQL_ROLLBACK
option)

None.

Section SQL Statement
INFORMIX-CLI
Function Comments

 (2 of 2)
D-8 INFORMIX-CLI Programmer’s Manual

Association Management Statements
Association Management Statements
The following table lists association management statements.

Section SQL Statement
INFORMIX-CLI
Function Comments

5.5.1 CONNECT SQLConnect None.

5.5.2 DISCONNECT SQLDisconnect INFORMIX-CLI does not
support DISCONNECT ALL.

5.5.3 SET CONNECTION None The SQL Access Group (SAG)
Call Level Interface allows
multiple simultaneous
connections to be established,
but only one connection can
be active at one time. SAG-
compliant drivers track
which connection is active
and automatically switch to a
different connection if a
different connection handle is
specified. However, the active
connection must be in a state
that allows the connection
context to be switched; in
other words, there must not
be a transaction in progress
on the current connection.

Drivers that are not SAG-
compliant are not required to
support this behavior. That is,
drivers that are not SAG
compliant are not required to
return an error if the driver,
and its associated data source
can simultaneously support
multiple active connections.
Comparison Between INFORMIX-CLI and Embedded SQL D-9

Diagnostic Statement
Diagnostic Statement
The following table lists the GET DIAGNOSTIC statement.

Section SQL Statement
INFORMIX-CLI
Function Comments

5.6.1 GET
DIAGNOSTICS

SQLError
SQLRowCount

For SQLError, the following fields
from the diagnostics area are
available:

RETURNED_SQLSTATE,
MESSAGE_TEXT, and
MESSAGE_LENGTH.

For SQLRowCount, the
ROW_COUNT field is available.
D-10 INFORMIX-CLI Programmer’s Manual

Index

Index
A
Access mode 13-105
Access plans 6-6
ALIAS table type 13-325
Aliases, column 13-193
ALTER TABLE statements

data type names B-1
interoperability 6-3
modifying syntax 6-3
qualifier usage in 13-207
supported clauses 13-193

API conformance
definition of 1-12

Application
interactive example 10-7
static example 10-4

Architecture
INFORMIX-CLI 1-3
ODBC error handling 8-5

Arguments
naming conventions 13-6
null pointers 3-6
pointers 3-5
search patterns 13-10
SQLTables 13-324
See also Parameters.

Arrays 11
See Binding columns, column-

wise.
See Parameters, arrays.

Association management
statements D-9

Asterisk (*) 13-46
Attributes

columns 13-57, 13-91
connection string

for driver (UNIX) 2-13, 2-28
data source specification

for driver (UNIX) 2-9
definition of 1-9

Auto-commit mode
described 6-9
specifying 13-278
SQLTransact 13-329
See also Transactions.

B
Batch statements

processing 13-229
syntax B-11

Binary data
converting to C C-20
converting to SQL C-31
literal length 13-201
null-termination byte 13-35
retrieving in parts 13-167, 13-174
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

transferring C-8
Binary large object (blob). See

SQLGetData.
Binding columns

binding type 13-291
code examples 13-142
column attributes 7-4
column-wise 7-8, 13-134
null pointers 13-23
row-wise 7-8, 13-135
single row 7-4

SQLBindCol 13-22
unbinding 13-23, 13-156
See also Converting data.
See also Rowsets.

Binding parameters. See
Parameters, binding.

Bit data
converting to SQL C-31
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

Blob, binary large object. See
SQLGetData.

Block cursors 7-9
Bookmarks

SQLExtendedFetch 13-140
Boundaries, segment 3-5
Braces ({ }) 13-46, 13-101
Browse request connection

string 13-45
Browse result connection

string 13-45
Buffers

allocating 3-5
input 3-5
interoperability 3-5
maintaining pointers 3-5
NULL data 3-6
null pointers 3-6
null-termination 3-6
output 3-6
segment boundaries 3-5
truncating data 3-7
See also NULL data.
See also Null-termination byte.

Bulk operations 13-241

C
C data types

conversion examples C-23, C-36
converting from SQL data

types C-13
converting to SQL data

types C-24
defaults C-6
defined C-4

specifying conversions
SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

using 3-8
See also SQL data types.

Call Level Interface (CLI)
support of 13-205

Canceling
connection browsing 13-94
data-at-execution 13-53

Cardinality 13-313
Case-sensitivity

columns 13-58
data types 13-223
quoted SQL identifiers 13-208

Catalog functions
list of 6-9
search patterns 13-10
summary 12-8

Character data
case-sensitivity 13-223
converting to C C-15
converting to SQL C-27
empty string 3-5
literal

length 13-201
prefix string 13-222
suffix string 13-222

null-termination byte 3-6, 13-35
retrieving in parts 13-167, 13-174
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

Character sets 5-9
Characters, escape 13-10
Characters, special. See Special

characters.
CLI. See Call Level Interface.
Closing cursors 13-156, 13-194

SQLCancel 13-52
SQLFreeStmt 9-3

Clustered indexes 13-312
Code examples

ad hoc query 10-7
parameter values 6-8
static SQL 10-4

See also specific function
description.

Codes, return 8-3
Collating 13-203, 13-312
Columns

aliases 13-193
attributes 13-57, 13-91
binding. See Binding columns.
in GROUP BY clauses 13-201
in indexes 13-201
in select list 13-202
in tables 13-202
listing 13-71
maximum name length 13-201
nullability 13-203
number of 13-58, 13-235
precision. See Precision.
primary keys 13-255
pseudo 13-305
signed 13-61
unbinding 13-23, 13-156
uniquely identifying row 13-303
See also Results sets.
See also Retrieving data.
See also SQL data types.
See also Tables.

Comment Icons Intro-9
COMMIT statements

interoperability 6-9, 13-120
SQLExecute 13-127
SQLPrepare 13-250

Committing transactions 13-329
COMMIT, in

SQLExecDirect 13-120
Compliance, icons Intro-10
Concurrency

defined 7-12
serializability 7-12
specifying 13-287
supported types 13-208

ConfigDSN
function description 14-3
with

SQLRemoveDSNFromIni 14-
6

with SQLWriteDSNToIni 14-6
with

SQLWritePrivateProfileString
14-6
2 INFORMIX-CLI Programmer’s Manual

ConfigTranslator
function description 14-7
See also Translation setup shared

library.
Configuring data sources. See Data

sources, configuring.
Conformance

API levels 1-12
ODBC standards 1-12
SQL grammar 1-14

Conformance levels
by function 13-179
determining 13-205
in ODBC 1.0 7-14
SQL B-4, C-2
See also API conformance.
See also SQL conformance.

Connection handles
active 13-192
allocating 5-5, 13-13
defined 3-7
freeing 9-4
overwriting 13-13
SQLFreeConnect 13-152
with threads 13-13

Connection options
access mode 13-105
commit mode 13-278
dialog boxes 13-280
login interval 13-105
maximum length 13-162, 13-277
packet size 13-279
releasing 13-277
reserved 13-277
retrieving 13-160
setting 13-277
trace file 13-279
tracing 13-279

Connection string
for Informix driver (UNIX) 2-13,

2-28
Connection strings

browse request 13-45
browse result 13-45
special characters 13-45, 13-46
SQLDriverConnect 5-6, 13-101

Connections
dialog boxes 13-102, 13-104,

13-105

disconnecting 9-4
driver manager 13-80
function summary 12-4, 12-9
in embedded SQL D-9
login information 5-8
SQLBrowseConnect 13-47
SQLConnect 13-80
SQLDisconnect 13-94
SQLDriverConnect 13-101
terminating browsing 13-48

Converting data
C to SQL C-24
default conversions C-6
examples C-23, C-36
hexadecimal characters C-20,

C-29, C-31
parameters 6-7
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

SQL to C C-13
SQLExtendedFetch 13-134
SQLFetch 13-22
SQLGetData 13-174
See also Translation shared

libraries.
Core API

for INFORMIX driver 1-13
list of functions 1-13

CREATE TABLE statements
data type names B-1
interoperability 6-3
modifying syntax 6-3
NOT NULL clauses 13-203

Currency columns 13-59
Currency data types 13-224
Cursor position

errors 13-139
required 7-13, 13-174
SQLExtendedFetch 7-12, 13-136,

13-140
SQLFetch 13-150

Cursors
block 7-9
closing cursors

SQLCancel 13-52
SQLFreeStmt 9-3

described 7-6

dynamic 7-10
getting names 13-165
holes in 7-11, 13-210
keyset-driven 7-10
maximum name length 13-202
mixed 7-11
positioned statements 7-14
position. See Cursor position.
scrollable 7-10
sensitivity 13-210
setting names 13-285
simulated 13-303
specifying type 7-12
SQLFreeStmt 13-156
static 7-10
supported types 13-208
transaction behavior 13-330
See also Concurrency.
See also Cursor library.

D
Data

converting. See Converting data.
long See Long data values.
retrieving. See Retrieving data.
transferring in binary form C-8
translating. See Translation shared

libraries.
truncating. See Truncating data.

Data Definition Language (DDL)
in embedded SQL D-5

Data Manipulation Language
(DML)

in embedded SQL D-6
qualifier usage in 13-207

Data source name attribute
for driver (UNIX) 2-9

Data source specification entry
for driver (UNIX) 2-9

Data sources
adding 14-5
configuring 14-6
default 5-6
deleting 14-7
information types 13-189
listing 13-86
names 13-194
Index 3

read only 13-194
UNIX

adding and modifying 2-6
connecting to 2-11

Windows
adding and modifying 2-16

Data translation. See Translation
shared libraries.

Data Types
supported by INFORMIX

driver 1-15
Data types

supported by INFORMIX-CLI
driver 1-15

See C data types.
See SQL data types.

Data-at-execution
canceling 13-53
macro 13-30, 13-33, 13-35, 13-36
parameters 6-10
SQLBindParameter 13-30, 13-33,

13-35, 13-36
DATABASE attribute

for Informix driver (UNIX) 2-14,
2-29

Database name attribute
for driver (UNIX) 2-9

Databases
current 13-278
information types 13-188

Date data
converting to C C-21
converting to SQL C-32
intervals 13-211
literals 6-13
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

Date functions
supported by INFORMIX

driver 1-15
DBMS product information 13-188
DDL. See Data Definition

Language.
Declarative statements D-5
Default data source

specification 1-10
DELETE statements

See also SQLSetPos.
affected rows 13-272
qualifier usage in 13-207

Deletes, positioned. See Positioned
delete statements.

Deleting cursors 13-194
Delimiter character, SQL

identifiers 13-207
Deprecated functions 13-287
Descriptors

columns 13-57, 13-91
Diagnostic statements D-10
Dialog boxes

disabling 13-280
SQLDriverConnect 13-102,

13-104
Dirty reads 13-196
Display size 13-58, C-12
DML. See Data Manipulation

Language.
Documentation notes Intro-14
Driver keyword 13-101

version compatibility 13-47
Driver manager

allocating handles 13-14
described 3-4
errors 8-5, 8-7
functions supported 13-179
listing drivers 13-109
loading drivers 13-80
ODBC version supported 13-205
SQLBrowseConnect 13-47
SQLConnect 13-80
SQLDriverConnect 13-102
SQLError 13-112
SQLSTATE values 13-9
tracing 13-155, 13-279
transactions 13-329
unloading drivers 13-81

Driver path attribute
for driver (UNIX) 2-9

Driver setup shared library
function summary 12-10

Drivers
allocating handles 13-14
errors 8-3
file usage 13-198
functions supported 13-179
information types 13-188

Informix (UNIX) ?? to 1-16
INFORMIX-CLI (UNIX) 2-3
INFORMIX-CLI (Windows) 2-15
keywords 13-109
listing installed 13-109
loading 13-80
SQLError 13-112
SQLSTATE values 13-9

DROP INDEX statements 13-312
DSN attribute

for Informix driver (UNIX) 2-14,
2-29

DSN keyword 13-101
Dynamic cursors 7-10
Dynamic SQL D-7

E
Elements, SQL statements B-11
Embedded SQL

executing statements 6-5
ODBC function equivalents D-1,

D-5, D-6
Empty strings 3-5, 13-11
Environment handles

allocating 13-15
defined 3-7
freeing 9-4
initializing 5-4
overwriting 13-15
SQLFreeEnv 13-154
with threads 13-15
See also Handles.

Errors
application processing 8-8
clearing 13-112
format 8-5
messages 8-4
queues 13-112
return codes 8-3
rowsets 13-138
source 8-4
SQLError 13-111
SQLSTATE values A-1
with parameter arrays 13-244
See also specific function

description.
Escape characters 13-10
4 INFORMIX-CLI Programmer’s Manual

Escape clauses
datetime literals 6-13
outer joins 6-16
procedures 6-17
scalar functions 6-14
support of 13-201
syntax 6-12

Examples
ad hoc query 10-7
data conversion C-23, C-36
parameter values 6-8
static SQL 10-4

Expressions
data types B-11
in ORDER BY clauses 13-197

Expressions in NewEra statements
expression types 6-13

Extensions to SQL 6-12

F
Fat cursors 7-9
Fetching data. See Retrieving data.
Files

ODBC.INI 1-7, 1-10
odbc.ini file 1-6
sql.log 1-11
trace 1-10, 13-279
usage 13-198
.odbc.ini 2-6

Filtered indexes 13-313
Floating point data

converting to C C-18
converting to SQL C-29
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

Freeing handles 13-152, 13-154,
13-159

Functionality, driver 13-179, 13-188
Functions, ODBC

buffers 3-5
canceling 13-52
deprecated 13-287
list of 12-3
return codes 8-3

SQL statement equivalents D-1,
D-5, D-6, D-7, D-8, D-9, D-10

supported 13-179
See also specific function.

G
Global Language Support

(GLS) Intro-7, 2-4, 2-15
GLOBAL TEMPORARY table

type 13-325
Global transactions 13-329
Grammar, SQL B-11
Granting privileges 13-66, 13-318
GROUP BY clauses 13-200, 13-201

H
.h files 3-3
Handles

connection. See Connection
handles.

defined 3-7
error queues 13-112
library 13-197
SQLAllocConnect 13-13
SQLAllocEnv 13-15
SQLAllocStmt 13-17
SQLFreeConnect 13-152
SQLFreeEnv 13-154
SQLFreeStmt 13-159
statement. See Statement handles.

Hashed indexes 13-312
Header files

required 3-3
sqlext.h

C data types 3-8
contents 13-9

sql.h
contents 13-9
SQL data type C-2

henv. See Environment handles.
Hexadecimal characters C-20,

C-29, C-31
Holes in cursors 7-11, 13-210

I
Icons, compliance Intro-10
Identifiers, quoted

case-sensitive 13-208
IEF. See Integrity enhancement

facility.
Indexes

cardinality 13-313
clustered 13-312
collating 13-312
filtered 13-313
hashed indexes 13-312
listing 13-310
maximum columns in 13-201
maximum length 13-202
pages 13-313
qualifier usage in 13-207
sorting 13-312
unique 13-312
See also SQLStatistics.

Information, status
retrieving 8-4

INFORMIX 5 driver
isolation level 1-16
lock level 1-16

INFORMIX 7 driver
isolation level 1-16
lock level 1-16

INFORMIX driver
API conformance 1-12
data types 1-15
Isolation and lock levels 1-16
SQL conformance 1-14
supported ODBC extensions to

SQL 1-14
Informix driver (UNIX)

data source connection
using connection string 2-13,

2-28
Informix driver (Windows)

adding data sources 2-16
INFORMIX-CLI

architecture 1-3
Data types 1-15

INFORMIX-CLI driver
data types supported 1-15
for UNIX

adding data sources 2-6
Index 5

data source connection 2-11
PATH variable setting 2-4
setting INFORMIXDIR

environment variable 2-4
for Windows

modifying data sources 2-24
system requirements 2-15

INFORMIXDIR environment
variable 2-4

Input buffers 3-5
Input parameters 13-30
Input/output parameters 13-31
INSERT statements

affected rows 13-272
privileges 13-67
qualifier usage in 13-207
SQLParamOptions 13-241
See also SQLSetPos.

Installation. See odbcinst.ini file.
Integer data

converting to C C-18
converting to SQL C-29
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

Integrity enhancement facility
(IEF) 13-205, B-1

Interoperability
affected rows 7-4
buffer length 3-5
cursor names 13-285
default C data type C-6
functionality 13-188
functions 13-188
procedure parameters 6-17
pseudo-columns 13-305
SQL statements

ALTER TABLE 6-3, 13-218
COMMIT 6-9, 13-120, 13-127,

13-250
CREATE TABLE 6-3, 13-218
ODBC extensions 6-12
ROLLBACK 13-120, 13-127,

13-250
syntax B-1

SQLGetData 7-7, 7-9, 13-174
transactions 6-9
transferring data C-8

Intervals, datetime 13-211
Isolation level

INFORMIX 5 driver 1-16
INFORMIX 7 driver 1-16

Isolation levels, transaction 13-196

J
Joins, outer

described 6-16
support of 13-205

K
Keys

primary 13-255
Keyset-driven cursors 7-10
Keywords

data source-specific 13-201
in SQLBrowseConnect 13-45
in SQLDriverConnect 13-101
ODBC B-21

L
Length, available

SQLBindParameter 13-36
SQLExtendedFetch 13-135
SQLFetch 13-150
SQLGetData 13-173

Length, buffer
input 3-5
output 3-6
SQLBindCol 13-23
SQLBindParameter 13-34
SQLGetData 13-173

Length, column
defined C-11
result sets 13-87
tables 13-73, 13-305

Length, data-at-execution 13-35,
13-36

Length, maximum
buffers 3-5
column names length 13-201
columns 13-150, 13-173
connection options 13-162, 13-277

cursor names 13-202, 13-285
data 13-294
error messages 13-111
indexes 13-202
owner name 13-202
procedure names 13-202
qualifiers 13-202
rows 13-202
statement options 13-217, 13-291
user names 13-203

Length, unknown
in length C-11
in precision C-9
SQLBindParameter 13-36
SQLExtendedFetch 13-135
SQLFetch 13-150
SQLGetData 13-173

Level 1 API
for INFORMIX driver 1-13
list of functions 1-13

Level 2 API
for INFORMIX driver 1-13
list of functions 1-13

Levels, conformance. See
Conformance levels.

Library handles, driver 13-197
LIKE predicates

support of 13-201
Limitations, SQL statements 13-191
Literals

character 13-201
date 6-13
prefix string 13-222
procedure parameters 6-17
suffix string 13-222
time 6-13
timestamp 6-13

Loading drivers 13-80
LOCAL TEMPORARY table

type 13-325
Lock level

INFORMIX 5 driver 1-16
INFORMIX 7 driver 1-16

Login authorization
connection strings

description 5-6
SQLBrowseConnect 13-45,

13-104
example 13-81
6 INFORMIX-CLI Programmer’s Manual

interval period 13-105
time-out 13-105
See also Connections.

Long data values
length required 13-203
retrieving 7-7
sending

in parameters 6-10
SQLBindParameter 13-36

SQLGetData 13-174

M
Macros

data-at-execution 13-30, 13-33,
13-35, 13-36

Manual-commit mode
beginning transactions 13-330
described 6-9
specifying 13-278
SQLTransact 13-330
See also Transactions.

Memory, allocating
buffers 3-5
connection handles 3-7
environment handles 3-7
result sets 7-4
rowsets 7-8
SQLAllocConnect 13-13
SQLAllocEnv 13-15
SQLAllocStmt 13-17
SQLFreeConnect 13-152
SQLFreeEnv 13-154
SQLFreeStmt 13-159
statement handles 3-7

Messages, error. See Errors.
Mixed cursors 7-11
Modes

access 13-105
auto-commit. See Auto-commit

mode.
manual-commit. See Manual-

commit mode.
Money columns 13-59
Money data types 13-224
Multiple-tier drivers

error messages 8-6
identifying data sources 8-6

Multithreading
with connection handles 13-13
with environment handles 13-15
with statement handles 13-18

N
Names

arguments 13-6
cursors 13-165, 13-285
driver 13-197
index 13-312
localized data types 13-225
procedure 13-261
See also Terms.
server 13-209
tables 13-324, 13-325
user 13-213

Network traffic
maximum data length 13-294
packet size 13-279
prepared statements 6-6

Nonrepeatable reads 13-196
NOT NULL clauses 13-203
NULL data

collating 13-203
concatenation behavior 13-193
output buffers 3-6
retrieving 13-23
SQLBindParameter 13-35
SQLExtendedFetch 13-135
SQLFetch 13-150
SQLGetData 13-173
SQLPutData 13-265

Null pointers
input buffers 3-6
output buffers 3-6
parameter length 13-35
unbinding columns 13-23

Nullability
columns 13-59, 13-74, 13-89

Null-termination byte
binary data 13-35
character data 13-35
embedded 3-6
examples C-23, C-36
input buffers 3-5
output buffers 3-6

parameters 6-8
Numeric data

converting to C C-18
converting to SQL C-29
currency data type 13-224
money data type 13-224
radix 13-74
scalar functions 13-204
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

See also Floating point data.
See also Integer data.

Numeric functions
supported by INFORMIX

driver 1-14

O
ODBC

conformance standards 1-12
extensions to SQL

for INFORMIX driver 1-14
functions. See Functions, ODBC.
version compatibility. See Version

compatibility.
ODBC Administrator

adding data sources
for Informix driver 2-16

ODBC administrator
modifying data sources

for driver (Windows) 2-24
ODBC architecture

error handling 8-5
ODBC options 1-10
ODBC.INI

Windows 95 1-7, 2-17
Windows NT 1-7, 2-17

odbc.ini
keywords

trace 13-15
listing drivers 13-109
ODBC functions using

SQLAllocEnv 13-15
SQLBrowseConnect 13-47
SQLFreeEnv 13-155
SQLSetConnectOption 13-279
Index 7

Setup shared library functions
using ConfigDSN 14-6

structure 1-6
.odbc.ini (UNIX)

data source specification
section 1-9

default data source specification
section 1-10

file example 1-12
file format 1-8
for driver 2-10
modifying 2-6
ODBC data sources section 1-8
ODBC options section 1-10

ODBC.INI (Windows)
data source specification

section 1-9
default data source specification

section 1-10
definition of 1-7, 1-10
file example 1-11
file format 1-8
ODBC data sources section 1-8
ODBC options section 1-10

Optimistic concurrency control. See
Concurrency.

ORDER BY clauses
columns in select list 13-205
expressions in 13-197
maximum columns in 13-201

Outer joins
described 6-16
support of 13-205

Output buffers 3-6
Output parameters 13-31
Owner names

procedure 13-261
table 13-318, 13-324

SQLColAttributes 13-59
SQLColumnPrivileges 13-66
SQLColumns 13-72

term, vendor-specific 13-206

P
Packet size 13-279
Pages, index or table 13-313
Parameters

arrays 13-34, 13-241
binding 6-8, 13-30
data types B-2
data-at-execution 6-10, 13-30,

13-33, 13-35, 13-36
default 13-31
input 13-30
input/output 13-31
interoperability 6-17
long data values 6-10
markers 6-18, B-3
number of 13-233
output 13-31
preparing 13-250
procedure 6-18, 13-30
return values 6-17
unbinding 6-8, 13-156
values 6-7
version compatibility 13-287
See also Arguments.

Patterns, search patterns 13-10
Percent sign (%) 13-10, 13-324
Phantoms 13-196
Plans, access 6-6
Platform icons Intro-10
Pointers, maintaining 3-5
Pointers, null. See Null pointers.
Positioned DELETE statements

cursor name 13-165, 13-285
cursor position 13-136
executing 7-13
support of 13-206
version compatibility 7-14

Positioned UPDATE statements
cursor name 13-165, 13-285
cursor position 13-136
executing 7-13
support of 13-206
version compatibility 7-14

Position, cursor. See Cursor
position.

Precision
columns

result sets 13-60, 13-89
tables 13-73, 13-304

data types 13-222
defined C-9

Prepared statements,
deleting 13-194

Preparing statements 6-6, 13-250
Preserving cursors 13-194
Primary keys 13-255
Privileges

data source 13-194
grantable 13-67, 13-319
grantee 13-66, 13-318
grantor 13-66, 13-318
qualifier usage in 13-207
table user granting 13-66

Procedure columns
parameters 13-30

Procedures
defined 13-257
interoperability 6-17
name 13-261
name, maximum length 13-202
ODBC syntax 6-17
owner name 13-261
qualifier 13-261
qualifier usage in 13-207
return values 13-31
See also Procedure

columns 13-261
support of 13-206
term, vendor-specific 13-206

Pseudo-columns 13-305

Q
Qualifiers

current 13-278
index 13-312
maximum length 13-202
primary key 13-255
procedure 13-261
separator 13-207
table 13-60, 13-66, 13-72, 13-311,

13-324
term, vendor-specific 13-207
usage 13-207

Queries. See SQL statements.
Question mark (?)

browse result connection
string 13-46

parameter markers 13-120, 13-250
8 INFORMIX-CLI Programmer’s Manual

Queues, error 13-112
Quoted identifiers

case-sensitivity 13-208

R
Radix 13-74
Read committed isolation

level 13-196
Read only

access mode 13-105
data sources 13-194

Read uncommitted isolation
level 13-196

Reads, dirty 13-196
Reads, nonrepeatable 13-196
Read/write access mode 13-105
REFERENCES statements 13-67
Referential integrity 13-205, B-1
Refreshing data

SQLExtendedFetch 13-140
Release notes Intro-14
Remarks 13-74, 13-325
Repeatable read isolation

level 13-196
Result sets

arrays. See Rowsets.
binding columns 7-4
column attributes 7-4
described 4-3, 7-3
fetching data 7-5
fetching rowsets 7-9
multiple 13-203
number of columns 7-4
number of rows 7-4
retrieving data in parts 7-7
rowset size 7-7
SQLBindCol 13-22
SQLColAttributes 13-57
SQLDescribeCol 13-87
SQLFreeStmt 13-156
SQLMoreResults 13-229
SQLNumResultCols 13-235
SQLRowCount 13-272
See also Cursors.
See also Rows.

Result states. See State transitions.
Retrieving data

arrays. See Rowsets.
binding columns. See Binding

columns.
cursor position 13-136, 13-150
disabling 13-295
fetching data 7-5
fetching rowsets 7-9
in parts 7-7, 13-174
long data values 7-7
maximum length 13-294
multiple result sets 13-203
NULL data 13-23, 13-150, 13-173
retrieving 13-295
rows. See Rows.
SQLExtendedFetch 13-134
SQLFetch 13-150
SQLGetData 13-174
truncating data 13-150, 13-174
unbound columns 7-7

Return codes 8-3
Return values, procedure 13-31
ROLLBACK

SQLExecDirect 13-120
ROLLBACK statements

cursor behavior 13-194
interoperability 6-9, 13-120,

13-127
SQLExecute 13-127
SQLPrepare 13-250

Rolling back transactions 6-9,
13-329

Row status array
errors 13-138
SQLExtendedFetch 13-141

Row versioning isolation
level 13-196

ROWID 13-303, 13-305
Rows

affected 13-272
after last row 13-140
deleting 7-13
errors in 13-138
interoperability 7-4
maximum 13-294
maximum length 13-202
SQLExtendedFetch 13-141
updating 7-13
See also Cursors.
See also Retrieving data.

See also Rowsets.
Rowsets

allocating 7-8
binding 7-7
binding type 13-291
cursor position 13-136
errors in 13-138
retrieving 7-9
size 13-295
SQLExtendedFetch 13-133
status 13-141

S
SAG CLI compliance 13-205
Scalar functions

information types 13-192
supported by INFORMIX-CLI

driver 1-14
syntax 6-14
TIMESTAMPADD

intervals 13-211
TIMESTAMPDIFF

intervals 13-211
Scale

columns
result sets 13-89
tables 13-73, 13-305

data types 13-225
defined C-10

Scope, rowid 13-306
Scrollable cursors 7-10
Search patterns 13-10
Searchability

columns 13-60
data types 13-224

Segment boundaries 3-5
SELECT FOR UPDATE

statements 7-14, 13-206
Select list

maximum columns in 13-202
ORDER BY columns in 13-205

SELECT statements
affected rows 13-272
bulk 13-241
cursor name 13-162, 13-285
maximum tables in 13-203
multiple result sets 7-13, 13-229
Index 9

privileges 13-67
qualifier usage in 13-207
reexecuting 13-127
UNION clauses 13-213
See also Result sets.

Sensitivity, cursor 13-210
Separator, qualifier 13-207
Serializability 7-12
Serializable isolation level 13-196
Server name 13-209
Shared library. See specific shared

library.
Signed columns 13-61
Signed data types 13-224
Simulated cursors

by applications 13-303
Size, display 13-58, C-12
Sorting 13-203, 13-313
Special characters

in search patterns 13-10
in SQL identifiers 13-209
in SQLBrowseConnect 13-45,

13-46
SQL

conformance
definition of 1-14

data types. See SQL data types.
dynamic D-7
embedded

executing statements 6-5
ODBC function

equivalents D-1, D-5, D-6
information types 13-190, 13-191
interoperability 6-3, B-1
keywords B-21
ODBC extensions to 6-12
ODBC grammar B-1
referential integrity B-1
static 10-4
See also SQL statements.

SQL Access Group 13-205
SQL data types

columns
indexes 13-312
result sets 13-57
tables 13-73, 13-222

conformance levels C-2
conversion examples C-23, C-36

converting from C data
types C-24

converting to C data types C-13
default C data types C-6
display size C-12
in translation shared

libraries 15-4, 15-7
length C-11
parameters B-2
precision C-9
scale C-10
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

supported 13-73, 13-221, 13-222
See also C data types.
See also Converting data.

SQL identifiers
special characters 13-209

SQL quoted identifiers
case-sensitivity 13-208

SQL statements
batch 13-229, B-11
direct execution 6-7
embedded D-1, D-5

ODBC function
equivalents D-5, D-6

information types 13-190
interoperability B-1
keywords B-21
maximum length 13-202
native 13-230
qualifier usage in 13-207
query timeout 13-294
SQLCancel 13-52
SQLExecDirect 13-120
SQLExecute 13-127
SQLPrepare 13-250

SQLAllocConnect
allocating handles 5-5
function description 13-11, 13-14,

13-16, 13-18, 13-40, 13-51,
13-54, 13-62, 13-68, 13-77,
13-83, 13-87, 13-92, 13-95,
13-106, 13-110, 13-113, 13-122,
13-129, 13-146, 13-152, 13-154,
13-156, 13-160, 13-163, 13-166,
13-176, 13-183, 13-215, 13-218,

13-227, 13-230, 13-233, 13-235,
13-238, 13-241, 13-246, 13-253,
13-257, 13-265, 13-272, 13-274,
13-283, 13-287, 13-288, 13-297,
13-307, 13-315, 13-321, 13-327,
15-3, 15-7

with SQLConnect 13-80
SQLAllocEnv

function description 13-14, 13-40,
13-51, 13-54, 13-62, 13-68,
13-77, 13-83, 13-87, 13-92,
13-95, 13-106, 13-110, 13-113,
13-122, 13-129, 13-146, 13-152,
13-154, 13-156, 13-160, 13-163,
13-166, 13-176, 13-183, 13-215,
13-218, 13-227, 13-230, 13-233,
13-235, 13-238, 13-241, 13-246,
13-253, 13-257, 13-265, 13-272,
13-274, 13-283, 13-287, 13-288,
13-297, 13-307, 13-315, 13-321,
13-327, 15-3, 15-7

initializing handles 5-4
with SQLConnect 13-80

SQLAllocStmt 6-5, 13-16
SQLBindCol

binding columns 7-4
code example 13-24
function description 13-18
truncating data 13-22
unbinding columns 9-3, 13-23
with SQLFetch 13-150

SQLBindParameter
code example 13-39
function description 13-25
replaces SQLSetParam 13-31
sending long data values 6-10
unbinding parameters 9-3, 13-156
version compatibility 13-287
with SQLParamData 13-33, 13-36
with SQLParamOptions 13-33,

13-34
with SQLPutData 13-36

SQLBrowseConnect
code example 13-48
driver manager 13-47
function description 13-40, 15-3,

15-7
with SQLDisconnect 13-48
10 INFORMIX-CLI Programmer’s Manual

SQLCancel
function description 13-51

SQLColAttributes
column attributes 7-4
function description 13-54

SQLColumnPrivileges 13-62
SQLColumns

catalog 6-9
code example 13-75
function description 13-68
intended usage 13-71

SQLConnect
code example 13-81
driver manager 13-80
function description 13-77
with SQLAllocConnect 13-80
with SQLAllocEnv 13-80
with

SQLSetConnectOption 13-80
SQLDataSources 5-7, 13-83
SQLDataSourceToDriver 15-3
SQLDescribeCol 7-4, 13-87
SQLDisconnect

disconnecting 9-4
function description 13-92
with SQLBrowseConnect 13-48
with SQLFreeConnect 13-153

SQLDriverConnect
connecting with 5-6
connection strings 5-6
dialog boxes 5-7, 5-8
driver manager 13-102
function description 13-95
login interval 13-105
odbc.ini 5-7

SQLDrivers
function description 13-106,

13-110, 13-113, 13-122, 13-129,
13-146, 13-152, 13-154, 13-156,
13-160, 13-163, 13-166, 13-176,
13-183, 13-215, 13-218, 13-227,
13-230, 13-233, 13-235, 13-238,
13-241, 13-246, 13-253, 13-257,
13-265, 13-272, 13-274, 13-283,
13-287, 13-288, 13-297, 13-307,
13-315, 13-321, 13-327

listing drivers 5-7
SQLDriverToDataSource 15-7

SQLError
driver manager 13-112
function description 13-110
See also Errors.
See also SQLSTATEs.

SQLExecDirect
function description 13-113

SQLExecute
function description 13-122
with SQLPrepare 13-127

SQLExtendedFetch
code examples 13-142
function description 13-129
retrieving rowsets 7-9
with SQLGetData 7-9
with SQLSetPos 13-136
with SQLSetStmtOption 13-133

SQLFetch
fetching data 7-5
function description 13-146
positioning cursor 7-6
with SQLBindCol 13-150
with SQLGetData 13-150

SQLFreeConnect
freeing connection handles 9-4
function description 13-152
with SQLDisconnect 13-153
with SQLFreeEnv 13-155

SQLFreeEnv
freeing environment handles 9-4
function description 13-154
with SQLFreeConnect 13-155

SQLFreeStmt
closing cursors 7-6, 13-156
freeing statement handles 9-3,

13-159
function description 13-156
unbinding columns 9-3, 13-23,

13-156
unbinding parameters 6-8, 13-30,

13-156
SQLGetConnectOption 13-160
SQLGetCursorName 13-163
SQLGetData

code example 13-175
function description 13-166
interoperability 7-7, 7-9
long data values 7-7, 13-22
unbound columns 7-7

with SQLExtendedFetch 7-9
with SQLFetch 13-150

SQLGetFunctions
code example 13-181
function description 13-176

SQLGetInfo
code example 13-213
data sources 13-189
DBMSs 13-188
drivers 13-188
function description 13-183
scalar functions 13-192
SQL statements 13-190

SQLGetStmtOption 13-215
SQLGetTypeInfo

ALTER TABLE statements B-1
CREATE TABLE statements B-1
function description 13-218
supported data types 3-8

SQLMoreResults 13-227
SQLNativeSql 13-230
SQLNumParams 13-233
SQLNumResultCols 7-4, 13-235
SQLParamData

data-at-execution
parameters 6-10

function description 13-238
with SQLBindParameter 13-33,

13-36
with SQLPutData 13-238

SQLParamOptions
code example 13-245
function description 13-241
multiple parameter values 13-241
with SQLBindParameter 13-33,

13-34
SQLPrepare

function description 13-246
with SQLExecute 13-127

SQLPrimaryKeys 6-9, 13-253
SQLProcedureColumns

listing columns 6-18
SQLProcedures

code example 13-263
listing procedures 6-18

SQLPutData
code example 13-269
data-at-execution

parameters 6-10
Index 11

function description 13-265
with SQLBindParameter 13-36
with SQLParamData 13-238

SQLRemoveDSNFromIni 14-6
SQLRowCount

function description 13-272
interoperability 7-4

SQLSetConnectOption
commit mode 6-9
function description 13-274
translating data 5-9
with SQLConnect 13-80
with SQLTransact 13-278
See also Connection options.

SQLSetCursorName 13-283
SQLSetParam 13-287
SQLSetPos

locking rows 7-13
with SQLExtendedFetch 13-136

SQLSetScrollOptions 13-287
SQLSetStmtOption

function description 13-288
with SQLExtendedFetch 13-133
See also Statement options.

SQLSpecialColumns 6-10, 13-297
SQLSTATE

guidelines 8-3
naming conventions 13-9
values A-1
values. See also specific function

description.
SQLStatistics 6-10, 13-307
SQLTablePrivileges 13-315
SQLTables

argument syntax 13-324
catalog 6-9
formatting 13-324
function description 13-321

SQLTransact
commit mode 13-278
committing 6-9
function description 13-327
rolling back 6-9
two-phase commit 13-329
with

SQLSetConnectOption 13-278
SQLWriteDSNToIni 14-6
SQLWritePrivateProfileString 14-6
sql.log file 1-11

SQL_ERROR 8-3
SQL_INVALID_HANDLE 8-3
SQL_NEED_DATA 8-3
SQL_NO_DATA_FOUND 8-3
SQL_STILL_EXECUTING 8-3
SQL_SUCCESS 8-3
SQL_SUCCESS_WITH_INFO 8-3
Statement handles

allocating 6-5
defined 3-7
driver 13-197
freeing 9-3, 13-290
overwriting 13-18
SQLAllocStmt 13-17
SQLFreeStmt 13-159
SQLMoreResults 13-229
with threads 13-18
See also Handles.

Statement options
binding type 13-291
concurrency 7-12, 7-13
cursor type 13-293
driver-specific 13-291
maximum data length 13-293
maximum length 13-217, 13-291
maximum rows 13-294
releasing 13-290
reserved 13-291
retrieving 13-217
retrieving data 13-295
setting 13-290
substituting values 13-291

Static cursors
described 7-10
sensitivity 13-210

Static SQL 10-4
Statistics, listing 13-310
Status array

errors 13-138
SQLExtendedFetch 13-141

Status information
retrieving 8-4
See also Errors.

String data. See Character data.
String functions

supported by INFORMIX
driver 1-15

Strings, connection. See Connection
strings.

SYNONYM table type 13-325
Syntax

connection strings 13-45, 13-46,
13-101

ODBC SQL 6-12
SQL B-11

System functions
supported by INFORMIX

driver 1-15
System requirements

for INFORMIX-CLI (UNIX) 2-4
for INFORMIX-CLI

(Windows) 2-15
SYSTEM TABLE table type 13-325

T
Table definition statements

qualifier usage in 13-207
TABLE table type 13-325
Tables

accessibility 13-192
cardinality 13-313
columnsSee Columns 13-62
defined 13-9
in SELECT statement 13-203
indexes. See Indexes.
maximum columns in 13-202
names

maximum length 13-203
retrieving 13-311, 13-318
special characters 13-209
SQLColumnPrivileges 13-66
SQLColumns 13-72
SQLTables 13-324, 13-325

owner nameSee Owner
names 13-66

pages 13-313
primary keys 13-256
qualifierSee Qualifiers 13-66
rows. See Rows.
statistics 13-310
term, vendor-specific 13-210
types 13-325
versus views 13-9

Termination byte, null. See Null-
termination byte.
12 INFORMIX-CLI Programmer’s Manual

Terms, vendor-specific
owner 13-206
procedure 13-206
qualifier 13-207
table 13-210

Threads, multiple
with connection handles 13-13
with environment handles 13-15
with statement handles 13-18

Time data
converting to SQL C-33
literals 6-13
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

Time-out
login 13-105
query 13-294

Timestamp data
converting to C C-22
converting to SQL C-34
literals 6-13
specifying conversions

SQLBindCol 13-19
SQLBindParameter 13-31
SQLGetData 13-167

TIMESTAMPADD
intervals 13-211

TIMESTAMPDIFF
intervals 13-211

Trace file 1-10, 13-279
Trace keyword

SQLAllocEnv 13-15
TraceAutoStop, definition of 1-11
TraceFile, definition of 1-10
Trace, definition of 1-10
Tracing

SQLAllocEnv 13-15
SQLFreeEnv 13-155
SQLSetConnectOption 13-279

Traffic, network
maximum data length 13-293
packet size 13-279
prepared statements 6-6

Transactions
beginning 6-9, 13-330
commit mode 6-9, 13-278
committing 6-9, 13-329

concurrency. See Concurrency.
cursor behavior 13-330
incomplete 13-94
interoperability 6-9
isolation levels 13-196
multiple active 13-203
ODBC function equivalents D-8
rolling back 6-9, 13-329
serializability 7-12
SQLExecDirect 13-120
SQLExecute 13-127
SQLTransact 13-329
support of 13-212
two-phase commit 13-329

Transferring binary data C-8
Transitions, state. See State

transitions.
Translation options

default 14-7
described 13-282
specifying 13-280
SQLDriverConnect 13-105

Translation setup shared library
ConfigTranslator 14-3
See also Translation shared

libraries.
Translation shared libraries

character sets 5-9
default 13-105
default option 14-7
described 5-9, 13-282
function summary 12-10
setup shared library. See

Translation setup shared
library.

specifying 13-280
SQLDataSourceToDriver 15-6
SQLDriverConnect 13-105
SQLDriverToDataSource 15-10
truncating data 15-6, 15-10
See also Converting data.
See also odbcinst.ini.

Truncating data
maximum data length 13-294
output buffers 3-7
SQLBindCol 13-22
SQLBindParameter 13-34
SQLFetch 13-150
SQLGetData 13-174

translation shared libraries 15-6,
15-10

See also Binary data.
See also Character data.

Two-phase commit 13-329
Typographical

Conventions Intro-8

U
Unbinding columns 13-23, 13-156
Unbinding parameters 13-156
Underscore (_) 13-10
UNION clauses 13-213
Unloading drivers 13-81
UPDATE statements

affected rows 13-272
bulk 13-241
privileges 13-67
qualifier usage in 13-207
See also SQLSetPos.

Updates, positioned. See Positioned
UPDATE statements.

User names
maximum length 13-203
retrieving 13-213

V
Values

procedure return 13-31
Version

DBMS 13-195
driver

number 13-197
ODBC version 13-197

driver manager 13-205
Version compatibility

default C data types C-6
information types 13-187
number of input

parameters 13-261
number of output

parameters 13-261
number of result sets 13-261
parameter binding 13-287
positioned statements 7-14
Index 13

SQLBindParameter 13-179,
13-287

SQLForeignKeys 13-151
SQLSetParam 13-179, 13-287

Versioning isolation level 13-196
VIEW table type 13-325
Views 13-9

W
Window handles

null 14-5
parent, ConfigDSN 14-5
quiet mode 13-280
See also SQLDriverConnect.

Windows 95
ODBC.INI 1-7, 2-17

Windows NT
ODBC.INI 1-7, 2-17

Windows NT registry
data sources

adding 14-5
configuring 14-6
removing 14-7

Symbols
% (Percent sign) 13-10, 13-324
* (Asterisk) 13-46
? (Question mark)

browse result connection
string 13-46

parameter markers 13-120, 13-250
_ (Underscore) 13-10
{ } (braces) 13-46
14 INFORMIX-CLI Programmer’s Manual

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Demonstration Database

	New Features of This Product
	Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Compliance Icons
	Platform Icons

	Example Code Conventions
	Screen-Illustration Conventions

	Additional Documentation
	Printed Documentation
	On-Line Documentation
	Error Message Files
	Release Notes and Documentation Notes

	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Overview of INFORMIX-CLI
	What Is INFORMIX-CLI?
	Advantages of Using INFORMIX-CLI
	Overview of the Initialization Files
	Understanding the odbcinst.ini File
	Understanding the odbc.ini File
	File Format for odbc.ini
	ODBC Data Sources
	Data-Source Specification
	Default Data Source Specification
	ODBC Options

	File Examples for odbc.ini

	ODBC Conformance Levels
	API Conformance Level of INFORMIX-CLI
	SQL Conformance Level of INFORMIX-CLI

	Mapping Data Types
	Supported Isolation and Lock Levels

	INFORMIX-CLI
	INFORMIX-CLI for UNIX
	Setting Up INFORMIX-CLI
	System Requirements
	Setting Environment Variables

	Adding and Modifying Data Sources
	Adding a Data Source
	Required Data-Source Configuration Information
	Optional Data-Source Configuration Information

	Sample Data-Source Entry for .odbc.ini
	Modifying a Data Source

	Connecting to a Data Source
	Using Dialog Boxes to Connect to a Data Source
	Using a Connection-String to Connect to a Data Sou...

	INFORMIX-CLI for Windows
	Setting Up INFORMIX-CLI
	Systm Requirements
	Setting the INFORMIXDIR Environment Variable

	Adding and Modifying Data Sources
	Adding a Data Source
	Required Data-Source Configuration Information
	Optional Data-Source Configuration Information

	Modifying a Data Source

	Connecting to a Data Source
	Using Dialog Boxes to Connect to a Data Source
	Using a Connection-String to Connect to a Data Sou...

	Guidelines for Calling INFORMIX-CLI Functions
	Determining INFORMIX-CLI Conformance Levels
	Using the Driver Manager
	Calling Functions
	Buffers
	Input Buffers
	Output Buffers

	Environment, Connection, and Statement Handles
	Using Data Types
	Function Return Codes

	Basic Application Steps
	How an Application Uses the INFORMIX-CLI Interface...

	Connecting to a Data Source
	Description of Data Sources
	Initializing the Environment
	Allocating a Connection Handle
	Connecting to a Data Source
	Connecting with SQLConnect
	Connecting to a Data Source with SQLDriverConnect
	Connection Browsing with SQLBrowseConnect
	Translating Data

	Related Functions

	Executing SQL Statements
	Allocating a Statement Handle
	Executing an SQL Statement
	Prepared Execution
	Direct Execution

	Setting Parameter Values
	Performing Transactions
	Retrieving Information About the Data-Source Catal...
	Sending Parameter Data at Execution Time
	Specifying Arrays of Parameter Values
	Using ODBC Extensions to SQL
	Date, Time, and Time-Stamp Data
	Scalar Functions
	LIKE Predicate Escape Characters
	Outer Joins
	Procedures

	Related Functions

	Retrieving Results
	Assigning Storage for Results (Binding)
	Determining the Characteristics of a Result Set
	Fetching Result Data
	Using Cursors
	Retrieving Data from Unbound Columns
	Assigning Storage for Rowsets (Binding)
	Column-Wise and Row-Wise Binding

	Retrieving Rowset Data
	Using Block and Scrollable Cursors
	Block Cursors
	Scrollable Cursors
	Specifying the Cursor Type
	Specifying Cursor Concurrency

	Modifying Result Set Data with Positioned Update a...
	Processing Multiple Results

	Retrieving Status and Error Information
	Function Return Codes
	Retrieving Error Messages
	Error Messages
	Error Text Format
	Sample Error Messages
	Sample Error Returned from the Driver
	Sample Error Returned from the Driver Manager
	Sample Error Returned from the Data Source

	Processing Error Messages

	Terminating Transactions and Connections
	Terminating Statement Processing
	Terminating Transactions
	Terminating Connections

	Constructing an INFORMIX-CLI Application
	Static SQL Example
	Interactive Ad-Hoc Query Example

	Designing Performance- Oriented Applications
	Connecting to a Data Source
	Executing Calls
	SQLPrepare/SQLExecute Versus SQLExecDirect

	Committing Data

	Function Summary
	INFORMIX-CLI Function Summary
	Connecting to a Data Source
	Obtaining Information About a Driver and Data Sour...
	Setting and Retrieving Driver Options
	Preparing SQL Requests
	Submitting SQL Requests
	Retrieving Results and Information about Results
	Obtaining Information About Data-Source System Tab...
	Terminating a Statement
	Terminating a Connection

	Setup Shared-Library Function Summary
	Translation Shared-Library Function Summary

	INFORMIX-CLI Function Reference
	Arguments
	INFORMIX-CLI Include Files
	Diagnostics
	Tables and Views
	Catalog Functions
	Search Pattern Arguments
	SQLAllocConnect
	SQLAllocEnv
	SQLAllocStmt
	SQLBindCol
	SQLBindParameter
	SQLBrowseConnect
	SQLCancel

	SQLColAttributes
	SQLColumnPrivileges
	SQLColumns
	SQLConnect
	SQLDataSources
	SQLDescribeCol
	Related Functions
	SQLDisconnect

	SQLDriverConnect
	SQLDrivers
	SQLError
	SQLExecDirect
	SQLExecute
	SQLExtendedFetch
	SQLFetch

	SQLFreeConnect
	SQLFreeEnv
	SQLFreeStmt
	SQLGetConnectOption
	SQLGetCursorName
	SQLGetData
	SQLGetFunctions
	SQLGetInfo
	SQLGetStmtOption
	SQLGetTypeInfo

	SQLMoreResults
	SQLNativeSql
	SQLNumParams
	SQLNumResultCols
	SQLParamData

	SQLParamOptions
	SQLPrepare
	SQLPrimaryKeys

	SQLProcedures
	SQLPutData
	SQLRowCount
	SQLSetConnectOption
	SQLSetCursorName
	SQLSetParam
	SQLSetScrollOptions
	SQLSetStmtOption

	SQLSpecialColumns
	SQLStatistics

	SQLTablePrivileges
	SQLTables
	SQLTransact

	Setup Shared Library Function Reference
	ConfigDSN
	ConfigTranslator

	Translation Shared Library Function Reference
	SQLDataSourceToDriver
	SQLDriverToDataSource

	INFORMIX-CLI Error Codes
	SQL Grammar
	Data Types
	Comparison Between INFORMIX-CLI and Embedded SQL
	Index

