
© 2010 IBM Corporation

WebSphere

IBM WebSphere MQ
Best Practices

Editable Text Editable 
Text Editable Text



© 2010 IBM Corporation2

What does this presentation cover?

� IBM® WebSphere® MQ is IBM's message-oriented middleware product. It enables 

independent and potentially non-concurrent applications on a heterogeneous system to 

communicate with one other. It is supported on more than 80 different platforms and 

environments.

� One of the strengths of MQ is its ability to be highly configurable and customizable for 

diverse customer environments and data transmission needs. However, this strength can 

open the door for poorly configured systems that don't support future expansion, changing 

development standards and protocols, and robust security. 

� This presentation describes the most common best practices in designing, building, running, 

and maintaining MQ solutions in order to achieve the full benefits of MQ. Keep in mind that 

not all recommendations are appropriate for all situations, and that they are offered as 

guidelines, not hard-and-fast rules. 



© 2010 IBM Corporation3

BEST PRACTICES

DESIGN 



© 2010 IBM Corporation4

Best Practices --- Design
Use short names for queue managers and MQ objects 

� Generally, names of MQ objects can have up to 48 characters, except for channel names, 

which can be no more than 20 characters. You can use upper and lower case A-Z, numeric 

0-9, underscore (_), period (.), and two special characters: forward slash (/) and percent (%)

� Use full UPPERCASE for all objects, including the queue manager, to prevent portability 

issues in heterogeneous environments

� Queue manager names should be unique in the MQ network and reflect the location, 

function, and environment of the queue manager (dev, test, etc.). Channel names should 

reflect their function and origin/destination queue manager connection flow; use 

FROMQUEUEMANAGERNAME.TOQUEUEMANAGERNAME for all sender and receiver 

channels

� Keep queue manager names short, no more than 8 characters

� Do not use spaces in any names of MQ objects, including system host names

� Although the forward slash (/) and percent (%) special characters are allowed, avoid them 

because they can cause cross-platform difficulties



© 2010 IBM Corporation5

� The DLQ is a local queue that is also referred as the undelivered-message queue. It's a 

good practice to create and assign one for each queue manager and use it to catch 

messages that are not sent due to network or destination issues

� If you do not define a DLQ, errors in the application programs may cause channels to shut 

down. If this happens, not only will the queue stop receiving messages, but it may effect the 

normal operations of MQ

� In addition, the DLQ should be monitored as messages arriving in that queue are likely an 

error. DLQ’s should be defined, available, and sized for the largest messages the system is 

expected to handle

� In more robust environments, set up a dead-letter handler as a trigger so that the dead 

messages are automatically re-tried without intervention

� If you have not associated a DLQ to an existing queue manager, use the MQSC ALTER 

command to add the DLQ to the queue-manager object

Best Practices --- Design
Always assign a dead letter queue (DLQ) to the queue manager 



© 2010 IBM Corporation6

� Today's dynamic business needs are driving IT departments to implement standards-based 

computing. JMS is a J2EE based standard for messaging, and provides a standard API for 

applications to use when performing enterprise messaging with application portability

� Using standards such as JMS in your solution will facilitate application portability and reduce 

dependency on vendor-specific API's. This will in turn ease integration challenges, and 

reduce vendor tie-in

� SOAP/JMS messaging is increasingly becoming a Web services supported platform, which 

will help customers in their SOA-based implementations

� MQ is one of the more popular JMS providers to J2EE applications in the market today. MQ 

JMS implementations can interoperate with other MQ programs without the need for bridges

� The MQ JMS implementation supports both point-to-point and publish/subscribe messaging 

models

� With standardized JMS APIs, you can upgrade to other JMS brokers, such as WebSphere 

Message Broker, without redevelopment of the applications or interfaces

Best Practices --- Design
Use standards like JMS whenever possible



© 2010 IBM Corporation7

� Use persistent messages for critical or essential data only. Persistent messages are logged 

to disk and can reduce the performance of your application

� Retrieving messages from a queue by message or correlation identifiers will reduce 

application performance. It causes the queue manager to search all messages in the queue 

until it finds the desired message. If applications have high-performance requirements, 

applications should be designed to process messages sequentially

� Ensure that messaging applications are designed to work in parallel with each other and with 

multiple instances of applications. The queue manager executes one service request within 

a queue at a given time to maintain integrity. Avoid programs that use numerous MQPUT 

calls in a sync point without committing them

� Keep connections and queues open if you are going to reuse them instead of repeatedly 

opening and closing, connecting and disconnecting

� Configure channels with a disconnect interval so that they can go inactive when there is no 

activity on the channel after a period of time. This will reduce overhead and help improve 

overall performance

� MQ performance is commonly bound by disk I/O writes. Ensure that the storage team is 

involved with disk layouts to ensure the fastest reliable disk writes possible

Best Practices --- Design
Build with performance in mind



© 2010 IBM Corporation8

� Avoiding the use of hard-coded MQ objects and location-names in your applications will 

provide for significant architectural flexibility, portability, and deployment flexibility

� Deployment flexibility will be enhanced by leveraging alias queues and/or model queues 

along with WebSphere environment variables

� Adhering to these rules enables applications to be deployed on different environments 

(unreliable network, mixed operating system, communication protocol, and mixed language 

environments) without changing the application

Best Practices --- Design
Avoid location assumptions and fixed queue names in programs



© 2010 IBM Corporation9

If your infrastructure can support it and your budget allows it, hardware and software clustering 

provide a great way to increase the resiliency, scalability, and performance of your MQ 

solutions. Here are some recommendations when considering MQ clustering:

� MQ queue managers do not restart automatically after crashing, and in general, neither MQ 

clustering nor hardware-based clustering like HACMP provide this behavior by default

� Applications that have message affinities may lead to cluster workload management routines 

that are complicated and less than optimal

� With appropriate permissions, you can PUT messages with a destination of any queue in the 

cluster; however you can only GET messages from a local instance of a cluster queue

� You must choose at least one and preferably two queue managers in the cluster to serve as 

the full repository. Adding more than two full repositories often degrades overall 

performance, because the cluster will need to send additional traffic and spend more time 

maintaining all of the repositories

� When deciding which servers will host the full repositories, select servers that are highly 

reliable, well-managed, and have a static IP

� Use hub and spoke or bus models for maximum flexibility and performance, especially in 

large environments

Best Practices --- Design
When feasible, cluster your MQ servers



© 2010 IBM Corporation10

� For architectural as well as performance reasons, it is usually better to create one queue 

manager with 100 queues as opposed to 100 queue managers with one queue apiece

� Where it makes sense, try to limit the number of queue managers in an MQ environment. A 

single queue manager per server can usually fulfill the needs of all of the queues and 

applications on that server. While the queue manager can fulfill multiple roles, the 

segregation of responsibility should occur at the queue level, preferably with a function 

identifier in the queue name

Best Practices --- Design
Design infrastructures with fewer queue managers with more queues



© 2010 IBM Corporation11

BEST PRACTICES

BUILD



© 2010 IBM Corporation12

� Design your applications to take advantage of MQ completion and reason codes returned 

from MQI calls, which enables an application to determine if the message arrived safely and 

was processed correctly, or if there was a problem with the delivery of the message or 

processing

� MQ methods will throw an exception whenever the completion code or reason code resulting 

from an MQ call is not zero

� When using API’s other than MQI, be sure to capture the linked exception. In the case of the 

MQ implementation of JMS, MQ raises a java MQException that contains the completion 

code, reason code, and details of the exception. Do not return just the JMSexception, as it 

will not contain the necessary completion and reason codes

Best Practices --- Build
Capture completion and reason codes in all application MQI calls



© 2010 IBM Corporation13

� When writing an MQ application, consider pulling messages off the queue as soon as 

possible and deciding whether to process them immediately or to send them to a failure 

queue

� Do not design the application code that requires messages to be cleared (such as messages 

that are not in the anticipated format) or needs administrator intervention prior to the 

application being able to process additional messages off of the queue

Best Practices --- Build
Code applications to continually process messages



© 2010 IBM Corporation14

� Code applications to properly close and disconnect their connections prior to disconnecting 

or shutting down

� Failure to do so, especially when client connections are in use, will result in hung 

connections, which will increase resource consumption and may continue until the maximum 

connections are reached, which will block new connections

Best Practices --- Build
Close and disconnect connections properly



© 2010 IBM Corporation15

� Understand the connection options, such as client binding, server binding, managed client 

binding modes, and the limitations of the client for C, JMS, Java, or .NET applications. For 

example, the .Net MQ client does not have support SSL channel encryption, XA 

transactions, and channel compression. Another example is that the Java MQ client 

supports only the TCP/IP transport and does not read any of the MQ environment variables 

at startup

� Network and firewall problems may cause MQ connections to fail, and may be misdiagnosed 

as MQ problems

� Assign connecting applications their own unique channel definitions, so that administrators 

can easily determine which application is connecting, as well as implement additional 

security segmentation options

� In production systems, the SYSTEM.DEF.SVRCONN channel should have a non-privileged 

user added to the MCAUSER field, and potentially be placed in a stopped status. 

Applications should not be configured to use this channel, and should instead be assigned 

their own distinct channel

Best Practices --- Build
Be aware of the different features of various MQ clients



© 2010 IBM Corporation16

BEST PRACTICES

RUNTIME



© 2010 IBM Corporation17

� MQ comes with sample programs that illustrate how to get and put messages. These 

samples come in both compiled and un-compiled forms. 

� Do not use these programs verbatim as production-grade applications to get or put 

messages, since they have buffer limits and may not have the robustness or functionality 

needed by production-grade applications

Best Practices --- Runtime
Do not use the sample get/put utilities for production purposes



© 2010 IBM Corporation18

� In MQ V5.3 or later, the runmqlsr network listener program allows for multi-threaded 

connections. The advantage of using a multi-threaded process as opposed to initiating a 

new process per connection via amqcrsta is decreased system resource usage, as well as 

eliminating potential administrative outages. 

� If you have systems with large numbers of connections, such as an integration hub or ESB, 

and existing listeners running via the UNIX-based inetd listening service (in combination with 

the amqcrsta program), consider migrating those listeners to runmqlsr.

� Place the listener port in the qm.ini file in the TCP stanza (or in the Windows Registry) so 

that ports are well associated with queue managers. Then, when the listeners are started, no 

command-line port number needs to be referenced

Best Practices --- Runtime
Use runmqlsr in lieu of inetd listener



© 2010 IBM Corporation19

� MS03: savequeue manager -- Provides code that exports all MQ object settings from 

runmqsc in a format that can later be reused to import (and recreate) queue-manager 

configurations. Depending on your environment, it can be vital for backup and recovery. 

� MS0E: runmqadm --- Provides an administrative wrapper that offers runmqsc and 

administrative-level access to users who are not members of the mqm group, enabling you 

to grant privileges in a much-more-granular fashion. 

� MA01: q utility -- Lets you browse messages and move then between queues. 

� MO03: qload utility -- Lets you move messages to and from files, for transport to different 

systems or for later reuse. 

� MC91: High availability -- Provides scripts and instructions for configuring MQ on highly-

available UNIX systems such as HACMP and Sun Cluster

Best Practices --- Runtime
Use SupportPacs to extend MQ functionality



© 2010 IBM Corporation20

BEST PRACTICES

MAINTAIN



© 2010 IBM Corporation21

� Make a practice out of writing any changes to queue managers into runmqsc commands in 

the form of a script. 

� Any commands that can be typed into a runmqsc editor can also be written to a file for later 

execution. 

� The script can be validated prior to execution using the runmqsc -v < filename switch. 

� At execution time, output from the scripts can easily be captured to a log file for later review. 

� This practice will help avoid costly typos and speed up execution of changes at execution 

time

Best Practices --- Maintain
When not using third-party configuration tools, automate all 
configuration and changes via MQSC scripts



© 2010 IBM Corporation22

IBM WebSphere MQ logs enable recovery of persistent messages from various types of 

failure. When the system is running properly, the logging process is an overhead that 

reduces the peak messaging capacity of the system in return for increased reliability. 

Circular logging

� Circular logs are used to contain the messages while they are inside of a transaction. During restart of the 

queue manager, the log files are reconciled against the queue files to determine the disposition of these 

transactional messages. 

� Circular logs are allocated once and then reused as needed. Because the total log allocation is finite, 

there is no danger of the logs growing to exceed the allotted file space

Linear logging

� Linear logging provides a superset of circular logging. Queue manager restart operations using linear logs 

function the same as with circular logs: the log files are reconciled against the queue files to determine the 

disposition of transactional messages. 

� In addition to the transactions under syncpoint, linear logs also contain a copy of all persistent messages. 

If one or more queue files are damaged, the queue can be recovered to the last known good state by 

replaying the linear logs. This is known as media recovery

� Unlike circular logs which are reused, the number of linear logs increases without limit as messages move 

through the queue manager. The amount of log data produced in a daily processing cycle is proportional 

to the amount of data processed as persistent messages during that same period

Best Practices --- Maintain
Use the appropriate logging mechanism



© 2010 IBM Corporation23

Best Practices --- Maintain
Use the appropriate logging mechanism

but in order to make a sound decision you will need to understand the costs and the 

probability of the risk that are involved. To help with that, the next sections will discuss 

what happens internally.



© 2010 IBM Corporation24

� Consider creating scripts to automate the regular maintenance of queue managers. 

� Maintenance should include a regular savequeue manager (MS03), security setting backup 

(amqoamd), linear-log cleanup (if applicable), and backup of other important settings such 

as .ini files. 

� Also, consider reviewing the contents of the FDC error directory for any FDC files that are 

old and should be removed or are new and should be examined since they indicate critical 

errors in the MQ system.

� Many third-party products can help provide this functionality. Consideration these vendor 

products as well as the freely available SupportPacs before writing and maintaining your 

own scripts, which will require maintenance with each new release of MQ

Best Practices --- Maintain
Configure automated maintenance of queue managers



© 2010 IBM Corporation25

� Many calls to IBM Support occur because of problems that have already been fixed in an 

IBM fix pack. Therefore we encourage administrators to plan, schedule, and apply MQ 

maintenance on a regular basis

� Regular upgrades not only prevent problems from occurring in your environment but also 

maintain it at a suitable level from where future upgrades can be managed much more 

effectively and in smaller cycles

� Finally, keeping your environment synced-up with the latest product version will ensure that 

you never end up in a situation where you need to carry out an urgent upgrade activity to 

avoid having an out-of-support version

Best Practices --- Maintain
Schedule and apply fix packs on a regular basis


