
© 2009 IBM Corporation

CRM07

IBM Rational Software Conference 2009

Monojit Basu
Product Manager, Rational Change and Configuration Management

monobasu@in.ibm.com

© 2009 IBM Corporation

IBM Rational Software Conference 2009

Agenda

Introduction

Typical Development Environments

Understanding Agile

Agile Methods - Scrum, Requirements, Modeling, TDD, CI

Game Plan to adopt Agile Methods

2

IBM Rational Software Conference 2009

Typical Development Environments

Which of these scenarios apply to your company?
A large corporation of employees with highly visible projects that have trouble delivering
on time or adapting to change because the existing process is elongated
A company that has multiple development sites that are geographically dispersed between
hemispheres or across the continent
A small or medium sized company of highly skilled workers unable to demonstrate value
and quick turnaround in a repeatable fashion

Many companies fall into one or more of these scenarios looking to for a way to
help with the pain

Agile techniques and practices are gaining more and more attention in the
software community

What’s not clear are the differences between the techniques
Which techniques should be adopted for your organization or project?
Then there’s the fear that you may lose productivity

3

IBM Rational Software Conference 2009

Typical Development Environments

Software development has evolved and changed drastically in the last 20 years
Technologies have evolved
Framework have been developed
Complex Tools created to ease the burden of developing software

Software development life should be easier by now right?
Truth is, software development has gotten heavily burdensome and overly complicated
What used to be quick in today’s environment takes much longer to accomplish
There just seems to be too many steps getting in the way of the primary goal to develop
software

4

IBM Rational Software Conference 2009

Typical Development Environments - Waterfall

In order to understand how or what to adopt, it’s important to understand what
Agile really means and how it differs from traditional development

To set the stage, consider the Waterfall based process:

Pros:

Simple, Well-defined milestones, Disciplined,
Ordered

Still used by the majority of large companies

Cons:

Risk is delayed until the very end. This costs money
if things go wrong.

What if the architecture won’t work?

What if System Testing identifies a major bug – or
worse, missed requirements?

5

IBM Rational Software Conference 2009

Typical Development Environments - Waterfall

Waterfall based processes demand thick documentation with a focus on many
physical artifacts (documents) that ended up becoming a series of forests cut
down

Why? It’s a hand-off – sometimes between groups
The single “Requirements Document” consisting of many, many pages handed over to
developers, testers, and business stakeholders

These are filled with declarative statements such as “The System shall ….”
In many cases, one document artifact gets copied or translated into other similar
documents

Requirements Specification to Technical Specifications to Design Specifications
All the while the notion of what the system is really supposed to do or how someone would
use that system becomes harder to see clearly amid all of the pages of documentation
Maintaining a system like this or adding new capabilities becomes more and more difficult

6

IBM Rational Software Conference 2009

Typical Development Environments - Iterative
Then along came iterative based development

It too was well defined
Risks were resolved earlier by developing incremental
behavior of the system and integrating sooner
Unlike Waterfall – which had a single release – functionality
could be deployed earlier in the lifecycle in a series of
releases
RUP, Spiral, MSF, OpenUP are examples of iterative
processes
Software created in time-boxed iterations
Each revision incrementally builds upon the
last working and tested software

7

IBM Rational Software Conference 2009

Typical Development Environments - Iterative

Iterative development processes like the RUP take a different approach
Use Cases used to capture functional requirements of a system organized in a sequence
of steps that yield some observable result to the external Actor requesting it
Use Cases focus on how someone or something uses a system – the usage model
Actors are used to abstract someone or something outside the
boundary of the system being developed

Benefits:
Easier to understand since they are written in the language
of the customer
Puts requirements into the appropriate context of system
responsibility
Facilitates re-use across iterations

8

IBM Rational Software Conference 2009

Typical Development Environments - Iterative

However, when adopting an iterative process, mistakes
can happen

RUP for example is a Framework – not necessarily
a specific process

There are over 2500+ web pages to sift through

Might be morphed into an artifact based process instead of
one that delivers value and resolves risk

Focus at first addresses technical Architectural Risks rather
than delivering Business Value to the customer.

“It’s a great design. Too bad we didn’t have it 3 months
ago when we really needed that front end piece.”

9

IBM Rational Software Conference 2009

Understanding Agile

Agile methods are not Cowboy programming as depicted by some
in the media

In fact, some of the key practices of Agile methods include:
Iterative and incremental development
Two levels of planning
Frequent releases
Self-organizing teams
Just-in-time requirements specification
Concurrent testing (developer & system)
Continuous Integration
Refactoring
Unit testing & Test Driven Development (TDD)
Retrospectives

10

IBM Rational Software Conference 2009

Understanding Agile

There is more than one method in the Agile camp. Each has its own strengths and
areas of focus

All Agile methods typically conform to the same basic Principles:
Lightweight, minimalist, low-ceremony
Highly collaborative: People over process and tools
Value-driven: Frequently provide value to end users
Embrace Change: Adapt instead of Predict
Feedback: Promote extremely tight response loop
Build Quality In: Adopt a “stop the line” mentality

11

IBM Rational Software Conference 2009

Understanding Agile

All Agile methods are adaptive in nature
The cadence of agility is to expect change for incremental release and to
react to those changes
This type of feedback allows the team to respond to change as opposed
to following a strict plan
Customers see results sooner and therefore have more input for what to
do next

12

IBM Rational Software Conference 2009

Agile Methods – Scrum Overview

Every project starts off with planning but many of today’s plans are educated
guesses that are padded for safety

Scrum is an Agile Project Management Framework based upon empirical evidence
Scrum does not prescribe specific software engineering technique such as requirements
gathering, testing, or development

13

IBM Rational Software Conference 2009

Agile Methods – Scrum Overview

Scrum uses two levels of planning:
Requirements, Features, Defects, etc. are all
organized into virtual work item lists called
Backlogs
The Product Backlog is managed by
a Product Owner who ranks each item
based upon the value it brings
Development is then done in a series of
time boxed iterations called Sprints
At the end of a Sprint, you have potentially
shippable code

14

IBM Rational Software Conference 2009

Agile Methods – Scrum Overview

Product Backlog
Estimated by the Team using relative
estimation measurements called
“Points”
Points are estimated per Backlog based
upon their size and difficulty relative to
other Backlog items
You don’t need all of the requirements
detailed before you can begin
Commitments to the requirements is deferred
until the Sprint planning begins
Requirements are detailed just-in-time for them to be worked

15

IBM Rational Software Conference 2009

Agile Methods – Scrum Overview

Sprint Backlog
This is a detailed iteration plan that is created by the team by pulling off items from the
Product Backlog
Each product backlog item is then broken down into individual tasks necessary to complete
the work
Each task’s work effort in is estimated collaboratively in hrs by the Team

Not to exceed 16 hrs
Team members then self-assign the tasks they want to do
Estimated remaining hrs for the task is updated by the individual team member daily

As an Online Shopper,
I want to be able to
browse for products

Develop middleware - 8 hrs

Create UI - 4 hrs

Code tests - 4 hrs

Code xxx Class - 6 hrs

Refactor - 4 hrs

16

IBM Rational Software Conference 2009

Agile Methods – Scrum Overview

Daily Scrum
Each day, the team comes together to answer 3 basic questions:

What did I do yesterday?
What am I going to do today?
What’s in my way?

This is a short (15 minutes) meeting to give status to the rest of the team
It’s not to solve problems but rather to foster communication
It indicates commitment of the work items

Anyone can attend but only the Team, Scrum Master, and Product Owner can contribute

17

IBM Rational Software Conference 2009

Agile Methods – Scrum Overview

Sprint Review
At the end of the Sprint the team comes together to show their accomplishments during the
Sprint
Typically this is done as a live demonstration and the Product Owner can accept or reject
the changes

Rejections or defects are added back onto the Product Backlog
Accepted items’ relative point estimates are accumulated for the Sprint into a total known
as “Velocity” – which measures how much work a team can do in a Sprint

All team members participate in the demo
Does not require days of preparation. In fact it should be 2 hrs or less

Like the Daily Scrum, anyone can attend

Sprint Retrospective
After the Sprint review, the team comes together to discuss what went well and what
didn’t go so well

The goal is to self-improve

18

IBM Rational Software Conference 2009

Agile Methods – Agile Requirements Overview

User Stories are an Agile Requirements technique to describe discrete functionality
that benefits the customer

They encourage two agile principles:
Shifts the focus to conversation over the written word
Defers commitment until it is needed to build

Perfect size for planning purposes

Understood by the customer and the developer

Excellent for enhancing an existing application

They are smaller than a use case

19

IBM Rational Software Conference 2009

Agile Methods – Agile Requirements Overview

Each User Story is composed of three main parts:
A Short description no more than a sentence or two
Acceptance tests to confirm the story is complete
Verbal conversations that elaborate the story for understanding

Typically written by the Customer or Product Owner

They can be captured on a 5 x 9 index card or electronically captured in an agile
tool such as RTC

As Supply Manager, I
want to be able to add
new products to sell

As an Online Shopper,
I want to be able to pay
by credit card

As an Online Shopper,
I want to be able to add
products to a shopping
cart

Front

Must be able to delete existing
products

Must be able to identify inventory
count

Must be able to pay by Visa

Must be able to pay by Mastercard

Must be able to pay by AMEX

Must be able to specify quantity

Must be able to remove items

Must be able to continue shopping

Back

20

IBM Rational Software Conference 2009

Agile Methods – Agile Requirements Overview

Can be broken up into sub-stories if more detail is needed

Each story should be:
Independent
Negotiable
Valuable
Estimatable
Small
Testable

Organized in terms of: MoSCoW Rules
Must – Fundamental to the system
Should – important by not required
Could – could be left out
Won’t – not necessary this time around so it can wait

21

IBM Rational Software Conference 2009

Agile Methods – Agile Requirements Overview

Using the MoSCoW rules helps the Customer and Product Owner prioritize the
Product Backlog

Other techniques involve specifying whether this story is a Market Differentiator or
not

Those that may have more weight
Note that a Market Differentiator doesn’t have to be a Must category

The Product Backlog can be re-prioritized at any point in time
This gives the freedom to the Customer to control the feature efforts based on value to the
business – what a concept

22

IBM Rational Software Conference 2009

Agile Methods – Agile Modeling

Agile Modeling is an agile technique that is applied across multiple disciplines
The common thread in the above disciplines is that each of them have a common activity at
its core – that is the need to model
Models are an abstraction of a problem at a certain perspective using a common notation

RUP is very prescriptive about Models
Business Use Case models to system Use Case models
Domain models to Analysis models to Design models to Implementation models

Tools perpetuate this notion through their support of notations such as UML 1.x &
2.x, BPMN, BPEL, etc.

RSA for example, not only supports the 13 UML 2.x diagram types but also adds
additional diagrams like Topic and Browse diagrams. Do we really need all of them
for a project?

The short answer is: NO!!

23

IBM Rational Software Conference 2009

Agile Methods – Agile Modeling

There are really two kinds of models:
Formal models built with complex modeling tools
Informal models built on a whiteboard, digital picture, or simple modeling tools like Visio

Each model serves different audiences and a project usually has more than one
model

Models help teams think through a problem
a picture really does eliminate misunderstanding of the spoken word

All code ever developed came from one or more models
Either a formal set of diagrams, a whiteboard concept, or formed in the developer’s mind
before writing the code

Modeling can be extended into supporting practices such as MDD and MDA

24

IBM Rational Software Conference 2009

Agile Methods – Agile Modeling

Model when it’s
faster than writing
text

Original text was too
confusing. It needed
a model to be
explained

25

IBM Rational Software Conference 2009

Agile Methods – Agile Modeling

Adoption of Agile Modeling techniques means you only model what you can’t do
without

When it actually hurts your project not to have that model

Always model with a purpose in mind – not because it is “part of the process”
If it servers no purpose – don’t do it

Only model enough to support the effort

Don’t model for perfection. It just needs to be good enough to:
Get your point across
Meet the Intended Audience expectations
Clear and Detailed when necessary
Reliable
Simple
Holds value

There is a cost to maintaining models

26

IBM Rational Software Conference 2009

Agile Methods – Agile Modeling

Adopting Agile Modeling takes a certain approach.
Sometimes it really isn’t necessary to model at all

Do you need a model when all you are doing is adding a method to a class?
Agile models that are created and actually kept are a small percentage of the entire effort

Models that need to last longer than the project or for teams geographically distributed
are candidates to keep and maintain
When the cost of NOT having the model outweighs the cost of rebuilding it which slows
down development
Example keepers are Architectural Models, high visibility Activity steps, or complex
Business Rules

During Agile modeling, many models may be created but a large majority are transient and
are tossed once they serve their purpose

These rarely last past a few iterations
Examples would be some context or communication diagrams

27

IBM Rational Software Conference 2009

Agile Methods – Agile Modeling

Agile modeling efforts usually
don’t start in a tool

Whiteboards, Paper are perfectly
acceptable

The emphasis is to describe
visually an idea so that
conversation can begin
Shortens the development lifecycle
by removing unnecessary diagrams
Saves money over time by reducing
the number of models to maintain
Have value and meet a specific
purpose for an intended audience

Ali Ali - ATSC

28

IBM Rational Software Conference 2009

Agile Methods – Test Driven Development

TDD came from XP but contrary to its name – it’s not really geared towards the
Testing Discipline in the RUP.

TDD is a design and programming activity more closely aligned with traditional unit
testing than formal testing done by professional testers

TDD allows developers to organically develop a test suite while building their
applications

In the past, developers would write code and then test it.
Unit Tests may had been done manually with little thought to the potential of breaking
something else
TDD uses automated tests to constrain each functional bit of a program

TDD is different in that you write the test first and when it fails you write code to
pass the test.

29

IBM Rational Software Conference 2009

Agile Methods – Test Driven Development

The TDD life cycle repeats until no more features
are left to build:

Add a test for the new capability feature
forces the developer to focus on the requirements
before writing the code instead of after

Run all tests and see if the new one fails
A form of negative testing using all prior tests

Write some Code to pass that test
Run the Automated tests to see them succeed
Refactor Code as necessary

Gain knowledge in knowing refactoring will not
damage any prior tests

30

IBM Rational Software Conference 2009

Agile Methods – Test Driven Development

The are several tools available by choice of programming language that supports
TDD such as:

JUnit, PHPUnit, TestNG to name a few

A 2005 study found the using TDD meant writing more tests; developers who wrote
more tests tended to be more productive

TDD can help build software faster by elevating the confidence level that new code
will not break existing code

TDD eventually builds the automated regression Test Harness that can be shared
among the team

TDD can be extended to Test Driven Database Development (TDDD)

31

IBM Rational Software Conference 2009

Agile Methods – Continuous Integration

In today’s world, not maintaining the code repository with all working parts becomes
a hectic task.

Developer takes a copy of the code base to write their code
Before the developer can check in their code, they must update their code base with that of
the repository to catch any changes made by others since (s)he checked out the code
The more changes that were made, the more work the developer must do before (s)he can
check in their code to the repository
Eventually the repository becomes so different from the developer’s that it may take more
time to integrate the changes than it did to write the new changes
This is what’s referred to as “Integration Hell”

Here is where an Agile practice called Continuous Integration (CI) helps out

32

IBM Rational Software Conference 2009

Agile Methods – Continuous Integration

Continuous Integration (CI) is simply the practice of integrating components early
and often

This mitigates the “Integration Hell” some development teams face

The build frequency is really left open to interpretation and project needs but it is
definitely more than once. The term “several times a day” is typically adopted

The ultimate goal of CI is to reduce that integration time and thus reduce timely
rework which ultimately saves costs

CI Emerged from XP but there are examples of this used by IBM in the 1960’s
when they were building OS/360

They created builds 4 times each day

33

IBM Rational Software Conference 2009

Agile Methods – Continuous Integration

Continuous Integration (CI) basic rules
Maintain a repository

The system should be buildable from a freshly checked out codebase that is not
dependent on other code
Rather than creating a new developer branch, it is preferred that changes are integrated
directly into the trunk
Because of the multiple builds, this is an acceptable practice

Automate the Build
Several tools support this such as:

Build automation tools: Make, Ant, Maven, ClearCase
Continuous Integration Servers: RTC, BuildForge, CruiseControl, TeamCity, etc.

This includes automating the integration in order to deploy to a production like environment
Include binaries, web pages, statistics, and possibly documentation

Make the Build Self-testing
Employ TDD techniques to test the code to confirm the behavior

34

IBM Rational Software Conference 2009

Agile Methods – Continuous Integration

Commit/Check-in Code Daily
This reduces the number of conflicting changes to others instead of committing weeks
worth of code at once
Each Team member must do this

Each Check-in to the mainline/trunk should be built
This confirms that the integration was successful
It can be a manual process or set up as an Automated CI that looks for changes and starts
the build

Keep the Build Fast
It can’t take hours for the build to complete. You want to know when a problem occurs

Test the Build in an environment cloned from production
This mitigates the errors where a Test environment doesn’t match the production
environment

35

IBM Rational Software Conference 2009

Agile Methods – Continuous Integration

Make the Builds Available
That means alerting testers and stakeholders early. This feedback loop reduces the
amount of time if the build doesn’t meet the requirements

Publish the Build Results
In an ideal world, the results of the build is transparent and made available to the entire
team
This is helpful to identify when a build breaks and what caused it to break

Automate the Deployment
Creation of a build can be extended by automating the deployment into the target
deployment model

36

IBM Rational Software Conference 2009

What’s the Game Plan?

Create a plan of attack

Bring in professionals to help assess your needs and plan
out the strategy of attack

Nothing helps jumpstart an organization like a set of experienced
professionals
The alternative is a number of whitepapers and books each
focused on a particular area
Look for a firm with experience who offers a robust set of service
offerings that directly relate to your pain points

37

IBM Rational Software Conference 2009

What’s the Game Plan?

Execute the Plan

Step 1 - Initial assessment of your needs

Step 2 – Putting it all together
Exposure to more than just one Agile method
Formal Training
Hands-on Workshops
Tool Training to reinforce the concepts learned
Ongoing mentoring with real pilot projects

Touchdown!!

38

IBM Rational Software Conference 2009

Step 1: Assessment

Every company is different, because of that there cannot be a single cookie-cutter
plan

Your company may already be strong in one area but weaker in another

Ensure an assessment reflects this and specifies a target set of solutions to
address these needs

Perhaps planning and delivery is the bottleneck, maybe it’s requirements
Note that the solutions are usually plural – that’s ok, as long as it is part of a cohesive plan

The assessment should include the existing development team size and location
In today’s world, development teams are sometimes distributed in multiple buildings,
states, or hemispheres
Professional firms who claim to be agile, need to be able to embrace this fact

39

IBM Rational Software Conference 2009

Step 2: Putting it all Together

Now that we’ve discussed various Agile methods, let’s put the thoughts down on
paper and plan how we can do it in around 40 days

Week 1
Conduct assessment and provision the tooling environment

Week 2
Conduct just-in-time training covering:

Detailed Agile methods
Hands-on Workshops
Agile tools (RTC, RRC, RQM)

Week 3
Pilot process and tools with hands-on mentoring from Agile coaches

Week 4
Agile Modeling, TDD & CI Workshops

40

IBM Rational Software Conference 2009

Step 2: Putting it all Together

Week 5
Mentoring the project with the Agile Coaches

Week 6
Retrospective
Plan next Sprint

The best way to introduce new concepts is not just by the theory of a book

Combining just enough theory with heavy hands-on workshops helps to reinforce
the concepts being described

Heavy emphasis should be on:
Collaboration
Planning
Instruction
Execution

41

IBM Rational Software Conference 2009

42

IBM Rational Software Conference 2009

43

IBM Rational Software Conference 2009

© Copyright IBM Corporation 2009. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

44

