.7 ﬁﬂﬁ}

| Software Conference 2009

Transformation Design Patterns

Sandeep Katoch
sakatoch@in.ibm.com

software NMACO1

© 2009 IBM Corporation 7+ |Goto IBM

IBM Rational Software Conference 2009

Agenda

= Quick Review

» Model Driven Development

» Rational MDD Platform

» Model to Model Transformations

» Designing Model to Model Transformations with Mappings

= Transformation Design Patterns

» Reference Filter
» One to Many

» Filling the Gaps
» Ask the User
» Copy a Reference

IBM Rational Software Conference 2009

Model-Driven Development

= What is model-driven development (MDD) ?

» Technical Definition:
= Development with models as the primary artifacts from which efficient implementations
are generated by the application of transformations.
= Models in the application domain are the primary focus when developing new software
components.

= Code, executables and other target domain artifacts are generated by using
transformations that are designed by using input from modeling experts and target
domain experts.

» Another way to look at it?

= When applied properly, MDD leverages abstractions to accelerate and improve the
guality of individual and group software development.

= To reap these benefits, use model-based technologies to provide abstractions and
accelerators for solution delivery.

IBM Rational Software Conference 2009

MDD Approach — Few Key Ideas

= Abstraction

» Focus on relevant details

= In MDD, we use abstraction to enable us to work with a logical view of our
application, focusing on the functionality of the system without being
concerned with implementation details

» Abstraction can be used to model applications at

= Different Levels

— Analysis / Design / Implementation
= Perspectives

— Security / User Interface

IBM Rational Software Conference 2009

MDD Approach — Few Key Ideas

= Automation

» Modeling is a valuable technique in itself, but manually synchronizing models
and code is error prone and time consuming

» Automation is the main characteristic that distinguishes MDD from other
approaches that use modeling

» MDD is concerned with automating the development process so that any
artifact, which can be derived from information in a model, is generated

IBM Rational Software Conference 2009

MDD Approach — Few Key Ideas

= Automation — Profiles

E Reservation

creates & handles

makes reservation | Reception

Customer

reserve

5

: Qﬂomn

«Entity»
@ Reservation

creates & handles

«Boundarys
makes resernvation H® Reception

Customer

Mesernes

«Entity:
@ Room

E Manager
OVErSEEs
«Controls
......... ‘ Manager
OVErsees

IBM Rational Software Conference 2009

MDD Approach — Few Key Ideas

= Automation - Transformations

» Automate generation of Artifacts from Models

» This includes the generation of code and also the generation of more detailed
models, for example generating a design model from an analysis model

Application i nﬁﬁﬁ
MDdEI o |kems ¢ :erﬂr[l'aﬁ
@ransformations @U ML to WSDL
Implementation e s
Artifacts .

IBM Rational Software Conference 2009

MDD Approach — Few Key Ideas

=Transformations - Layered Modeling

» Each successive layer adds further detail to the solution, answering questions that were
left open in the layer above and constraining the implementation of the application

/ Craate ACcount
£3 Analysis Model Operator

“Entitym

«refirie» Transformation (& Account
o balance

o accounthumber

[Design Model > @ makeDeposit ()
@ makevithdrawal

Erfity B @ gerBalance 1)
. i «Entity Bear:
srefinos Transformation = Account

o (@ balance : Ohject
o (@ accountMumber ¢ Chject

£ Implementation Model
\ €k Accountlocal
@ L getBalance ()
@' setBalance ()
@ makeDenosit)
@ makewithdrawd ¢)

LI o LI T CLIE e

IBM Rational Software Conference 2009

MDD Approach — Few Key Ideas

= Automation - Patterns

» Best practice approaches to common design problems

» Automate the creation and the modification of model elements
within a model to apply a given software pattern

winterface:

¥ Product © Creator

KSR

() ConcreteProduct () ConcreteCreator

«FactoryMapping::
WLISEx

Factory Method

Define an interface for creating an object, but let subclasses
decide which class to instantiate.

ELISE

winterface:s: winterface:

) AbstractFactory €9 AbstractProduct
«ProductMapping::
«FactoryMapping:
WLSER
{3 ConcreteFactory {2 ConctreteProduct

Abstract Factory

Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

IBM Rational Software Conference 2009

MDD Approach — Process

= There the two distinct types of activities in the MDD process

» Framework Development
= Develop Profiles, Patterns, Transformations

» Application Development
= Modeling the Application using Profiles & Patterns
= Apply Transformations to generate artifacts

= There is no magic to MDD

» Someone must come up with a set of modeling conventions that are
suitable for the software under development

» Someone must also develop transformations that can automate the
generation of code from models that follow these conventions

IBM Rational Software Conference 2009

Framework Development Application Development

Start Framework Development

Start Application Development

Artifact Template UML Profile(s) Patterns

Transformations

IBM Rational Software Conference 2009

Rational MDD Platform

= Rational Modeling tools provide a set of flexible technologies that can be
used to implement “MDD”
» Set of supporting technologies for managing and manipulating models
» Support authoring of various forms of patterns
= Transformation framework
= Model2Model transformations
= Model2Text transformations
= Model operative (in place) pattern (MoP) authoring for UML models
» Support authoring of various forms of domain specific modeling languages
= UML-based DSL tool authoring
= Custom DSL tool authoring
» Future technologies for executable models

= These technologies can be used together in various ways to address a
huge variety of problems

IBM Rational Software Conference 2009

Model To Model Transformations

= Model to model transformations om wikipeniA)

» The notion of model transformation is central to Model Driven Engineering. A model
transformation takes as input a model conforming to a given metamodel and produces as
output another model conforming to a given metamodel. If the source and target
metamodels are identical the transformation is called endogeneous. If they are different
the transformation is called exogeneous. A model transformation may also have several
source models and several target models. One of the characteristics of a model
transformation is that a transformation is also a model, i.e. it conforms to a given
metamodel. This facilitates the definition of Higher Order Transformations (HOTS), i.e.
transformations taking other transformations as input and/or transformations producing
other transformations as output.

IBM Rational Software Conference 2009

Rational Transformation Framework

The transformation framework has the
following features:

= |tis a framework for managing and
customizing transformations.

= |t provides a default transformation
engine.
= |t supports a Ul and multiple services:
» Managing installed transformations
» Managing transformation configurations
» Managing transformation extensions
>

Chaining transformations; for example,
Model2Model with Model2Text

» Supporting headless transformations

» Integrating transformations with Eclipse
build

= Modeling - Miscellaneous Modelsfjava?.tc - Rational Software Architect

File Edit Mawvigate Search Project Modeling Sample Menu Run ClearCase Sample Window
 C3- B IE I ERONEET 2§ 3 %
@ i 53 ot e T e P oad

@l@ Modeling ||.—[\:|Resource

BE javaz.tc X

=2

o Forward transformation

&= Mame: UML ko Java ¥S.0

EE Descripkion: This kransformation converts a UMLZ model ko Java code,
Author: IBM Corporakion

B8 NMew Transformation Configuration

rlame and Transformation

specify the file and transformation information.

Mare: | myZonfig |

Forvear d transformation:

| UrIL ko dawva YS.0 {com.ibm.xktools.kransform. umlz . javas.internal UMLZJavaTransForm) |
= [Eb IEM Rational Transformations

o Ef o+ TouML
~-Ef2 Jgva ko LML

ES UML ko 4+

o EE UML b CORBA
B2 UML o Java vi4
B UL o Java vs.o
Bl urL to wsoL
By uML to xsD
CElg uML ko ®sD

Shiows all transformations

[1Enable reverse transformation

| Jawa to UML {com.ibm. xtools. transform. java. uml, Jawva-ko-LrL) |

Zonfiguration File destination:

| IMiscellanecus Maodels

S
)

Mexk =] I_ Finish] [Zancel]

= Back [

IBM Rational Software Conference 2009

Model to Model Transformations

= Transformation frameworks

» Rational Transformation Framework (RTF) from IBM Rational

= Since 6.0

= Forms the basis for built-in transformations
— UML-to-Java, UML-to-C++, UML-to-C# ...

= Allows users to author new transformations

» Rational Transformation Mapping Framework (RTMF) from IBM Rational

= Introduced in 7.0

IBM Rational Software Conference 2009

Model to Model Transformations: RTF

= A transform is an ordered set of
] Lib rules, content extractors, and
nested transforms

name
ackagedElements extracto
b g - A content extractor traverses the
input model and collect objects to
: be transformed
s BRIty
«Entity» | Company = Avrule creates or updates objects in
| Company “Entity» the output model
employees I Person
name
\ 4
| <beanPackage=Lib
transform
name
bean

s Bty
= Person | Person
age [name
dob —% | dob
name offspring
offspring age

iInput model

output model

IBM Rational Software Conference 2009

Model to Model Transformations: RTMF

=Visual construction of RTF transformations

» Design transformations by mapping between input and output metamodel types
» Generation of Java source code for RTF transformations

* Input models

» Ecore (includes UML models, profiles, and libraries) — typically loaded from workspace

= Generated output models

» In-memory Ecore

= Post processing options

» Merge model with existing model — the default behavior
» Persist model (overwriting existing model if one with same uri exists)

» Pass model as input to another transformation (not mutually exclusive with merge/persist)

1
Iy

—— .
——
[
——
I
——
——

Ty
1\“['
i

IBM Rational Software Conference 2009

Model to Model Transformations: Example

IBM Rational Software Conference 2009

= Mapping Model = set of Mapping Declarations
Mappings: = Mapping Declaration = set of Mappings

= Mapping = relationships between inputs and outputs

» Type (move, submap, custom) conveys how the mapping should be
implemented when transformation source code is generated

~Model2Root .~ £ 0| & M| Im e
£ 1 Model | = I Root
~Attribute2Property 7 1 0| &0 R | B e
cAnnotations EAnnatation [/ Submap ~ 9 I Project [] S e, | # | ¥
ownedComment Comment [=———————————— 81 Pty At o 19 Property
eAnnotstions EAnnotation [] S - EString
vHModel2Project™ .~ [L = =5 R(l= ownedComment Comment [] | o = -
THodeiRroject | & % | @1 o S | custom I type EString
= [¥1 Model =) [E» Project wisibility visibilitykind
dientDs d D d
eAnnotations EAnnotation [] | Move~ " s e ien Eapan ency SEEEHE ency []
nameExpression ingExpression
ownedComment Comment | =
0 p Submap > beanPackage EeanPackageﬁ isLeaf Boolean
name String % =
A Cstm ———o - isStatic Boolean
vy Vistbiitykind ‘ Sioosnaaa| baseNamespace EString / i e I
rientNenendency Nenendenry 11 ierirdarad [T
petagne g Fatagemige) / |
packagedElement Padaagaableﬁtﬂant [1
profileApplication ProﬁleAjpf(caﬁon [1 =) - - -
" 5"9(wAttribute2listProperty 7 1 | 5 R | B o
/ (=1 B4 Property «Attribute» = (B ListProperty
rPackagedBeanPackage .~ [[P | & K| [» o eAnnotations EAnnotation [— e 1 ame Estring
ownedComment Comment [] — o
= [Package = [E» BeanFickage e String ! || R cantentTyps EString
eAnnotations EAnnotation [] ‘— Mave ¥ F——1" W& / Estring / :lsnb!:r - :snhlht;;ﬁﬂd 5
ientDependency ependency
ownedComment Comment [] T 3 o : i
String — e be: Begi[] nameExpression StringExpression
Vicihilitfind isLeaf Boolean
isStatic Boolean
packagemerge rFackagemerge | Tk s ;
packagedElement Packag ement [] :A 5 Rwl
profileApplication Eapplication []
~Entity2Bean " 0 40| &5 R | [@ ~Attribute2DerivedProperty " [0 U0 | & R | B |®
= [Class «Entity» = [Property <Attribute» |7l [DerivedProperty
eAnnotations EAnnotation [] /Egﬁg eAnnotations EAnnotation [] |—| Mave = F——— e —_
ownedComment Comment [] ownedComment Comment [] i =
Lo Custom
% Property [1 —_ e type EString
name String name String
visbiity Visblitykind [stbmap~ 75 lstProperty ListProperty [1 vishilty Visilitykind
dientDependency Dependency [] — e dientDependency Dependency [1
nameExpression StringExpression ‘ tesivedopety Pesivediropety nameExpression StringExpression
i [is o e isLeaf Boolean
uselase UseCase | | | ‘ I ils Bokeawy
— type Type ii
ownedAttribute Property] g f— Rnnlazn
AwneACARnEctar Fannactar 11

IBM Rational Software Conference 2009

Mappings: Move

[= £+ Model [= [E» Project
eAnnotations EAnnotation [] _ reTs EString
ownedComment Comment [] PI— &) N
) el = beanPackage BeanPackage []
name String
wizibility VisibilityKind e baseMamespace EString
AianHianandanms Manandanos ri

= Create a move mapping when the input and output attributes are compatible primitive
types; for example, String, int, boolean

= When transformation source code is generated a rule is defined; this rule copies the
contents of the specified input attribute of the current input object to the specified output
attribute of the current output object

= A move mapping can have a guard condition associated with it, thus making the rule
execution optional

IBM Rational Software Conference 2009

Mappings: Submap

= £ Model = [Cr Project
eAnnotations EAnnotation [] love 1 name EString
ownedComment Comment []

] ey beanPackage BeanPackage []

name Siring
visibility VisibilityKind - baseNamespace EString
dientDependency Dependency []
nameExpression StringExpression referenced mapping declaration

elementImport

ElementImpart []

packagelmpart PackageImport []

ownedRule Constraint [] Transfor ion - Submap
owningTemplateParameter TemplateFarameter —— | Fie: |mudelﬂdmﬂ:eans.mapping
templateParameter TemplateParameter =cripton \L

templateBinding TemplateBinding [] Details Map: Package 2BeanPackage
ownedTemplateSignature TemplateSignature Condition

packageMerge PackageMerge [] Input Filter

packagedElement PackageableElement [] | Output Filter

profileApplication ProfileApplication [] Custom Extractor

viewpoint

Siring

Create a submap mapping when the input and output attributes are complex types; for
example, Model, Package, Class.

= When transformation source code is generated a content extractor is defined; this content
extractor passes the contents of the specified input attribute of the current input object to the
transform that was generated from the referenced mapping declaration.

IBM Rational Software Conference 2009

Mappings: Custom

[= L1 Model = [E» Project
eAnnotations EAannotation [] Mowve 1 name EString
ownedComment Comment []

b mar

] Sz ' A beanPackage BeanPackage []
name Sfring

e BT R p— :
visibility Visibilitykind baseMNamespace EString

= Create a custom mapping when a move or submap mapping is insufficient.

= The transformation author supplies the code that computes the value for the output
feature by using the values of input feature(s) of the current input object.

Transformation - Custom

= You can SpeCIfy Java DE— scription Code: () Indine () External
source COde direCtly in the ' Details protected wvoid executeMNameToBaseMamespace_Rule { Model Model_src, Project Project_tgt) {
. ' final String DEFALULT_MAMESPACE = “com.ibm.rsdc20037;
mapplng mOdel or yOU can String name = Model_src.getMame ();
. int lastDelimiter = name.lastIndexOf{.");
provide the name of a Java if (astDelimiter >=0)
. Project_tgt.setBaseMamespace{name.substring(0, lastDelimiter));
class that contains the else

Project_tgt.setBaseMamespace(DEFAULT_MAMESPALCE);

custom code.

IBM Rational Software Conference 2009

Mappings: Submap Filters and Customizations
= Input Filter

» Subset the collection of input objects that the referenced mapping declaration will process
» Default: all objects in the input collection

= Output Filter

» Decide which generated object will be used to resolve a reference
» Default: first compatible object generated from input object by specified mapping declaration

= Custom Extractor

» Generate the collection of objects that the referenced mapping declaration will use as input
» Default: all objects in mapped input feature of current input object

= Custom Feature

» Specify the feature of the output object that the referenced mapping declaration will modify
» Default: mapped output feature

= Custom Output

» Specify the output object that the referenced mapping declaration will modify

IBM Rational Software Conference 2009

Model to Model Mappings: Example

IBM Rational Software Conference 2009

Pattern: Reference Filter

= Problem

» Need to create a reference to an output object of a particular type that was generated from
a specific input object, but there’s multiple output objects of different types to choose from

= Example
= Class1 | Class2
{L_F'.atmbutel:classz —

Design
Generated Implementation

sinterfaces sinterfaces | Class1Impl | class2Impl

£ IClass1 EIClass2 | i_l_F'iattnbutel:IEIaEEE —

yes no

IBM Rational Software Conference 2009

Pattern: Reference Filter

= Solution

» Filter types via mapping declarations

= Strategy

» Submap mapping specifies mapping declaration that generates a particular type of object

L L, = 1w [[T}

v = isStatic Boolean
> 7P
I:| -
isOrdered Boolean type Type
[| =N P ieMirdarad Brmlasm
Transformation - Submap
[
Description | File: | modelfReFerencelz‘iLtz{mapping | [Bmwse...]
Details Map: Class2Interface []
Condition |
= Consequences

» Filtering is symmetric with mapping solution for object creation
» Second level of filtering might be required if more than one object of same type created

il
[
it

[—
=]
=
=]
=

—

—_—

“\l
e
Ty
.1\“['
[

IBM Rational Software Conference 2009

Pattern: Reference Filter Example

IBM Rational Software Conference 2009

Pattern: One to Many

* Problem

» Multiple related output objects must be generated from a single input object

= Example

Design

| Class1

«interfaces
=] IClass1

et
» i

» i

P
.

| Class1Impl

Generated Implementation

generated relationship references

other objects generated from the

same input object

IBM Rational Software Conference 2009

Pattern: One to Many
= Solution

» Propagate input object to multiple mapping declarations

= Strategy

» Submap mappings specify an element, instead of a feature of element, as their input

= [Class [=| [Cr Class
eAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] ownedComment Comment [1
LldssHIE DENg i DErgwviun

dassifierBehavior Behavior

interfaceRealization InterfaceRealization []
ownedTrigger Trigger [] interfaceRealization InterfaceRealization []
nestedClassifier Classifier ['1 ownedTrigaer Trigaer 1

= Consequences

» Separation of concerns (into multiple mapping declarations) simplifies mapping solution
» Recursive application of the pattern can make the solution harder to maintain

1
Iy

—— .
——
[
——
I
——
——

I
| [l
LLi

IBM Rational Software Conference 2009

Pattern: One to Many Example

IBM Rational Software Conference 2009

Pattern: Filling the Gaps

* Problem

» Output model has structures that don’t directly correspond to anything in the input model

= Example

Design | Generated Implementation

3 Source F3 Generated from Source
- Class1 Eltl api <
: I <I% I':IEEE:L

Ellil implementation «——
o Class 1Impl

IBM Rational Software Conference 2009

Pattern: Filling the Gaps
= Solution

» Redirect output to objects other than the current target container

= Strategy

» Custom submap mappings can specify the output object that will be used (by the
transform that is generated from the referenced mapping declaration)

| packagemerge HACKaQEMErge | | |

| packageMerge PackageMerae [] |
packagedElement PackageableElement [] Submag ! 3
| profileApplication Profileapplication [] | l Custom Subma %_f_ packagedElement PackageableElement []
Custom Submap
| profileApplication ProfileApplication [] |
Transformation - Custom Submap
Description File: iEdEI;"FiIIingThEGaps.mapping | [E!ruwse...]

Details Map: Clazs2Interface [ﬂ

IBM Rational Software Conference 2009

Pattern: Filling the Gaps

Transformation - Custom Submap
= :

B Specify a custom output
Dietails Code: (& Inline () External
Condition protected ECbject extendPackagedElementToPackagedElement_UsingClass2Interface_Output { Package Package_tat) {
Input Filter final String API_PACKAGE_MAME = "api”;
Cutput Filter Package apiPackage = Package_tgt.getiestedPackage(APT_PACKAGE _MAME);

if (apiPackage == null) {
Custom Extractor apiPackage = Package_tgt.createMestedPackage(API PACKAGE_MAME);
Custom Feature ¥ g

return apiFackage;
Custom OQutput

|

= Consequences

» Specification of the target container is isolated from the referenced mapping
declaration, and so the population of the target container can still be specified in the
normal way with mappings (via the referenced mapping declaration)

» Custom code must be provided to create instances of some objects

IBM Rational Software Conference 2009

Pattern: Filling the Gaps Example

IBM Rational Software Conference 2009

Pattern: Ask the User

*Problem
» Output model is dependant on information that’s not contained in the input model
= Example
Design | Generated Implementation
£ Source [Generated from Source B3 Generated from Source
e, Clasz1 EIEI api EIEI api
- B ICkass1 - B IClass1
EIEI implementation EIEI implementation
b Class1Impl < > e Class1
Which naming

convention to use?

IBM Rational Software Conference 2009

Pattern: Ask the User
= Solution

» Obtain the additional information from the transformation context object

= Strategy

» Define transformation specific properties and have the user assign values to those
properties programmatically or via the Transformation Configuration Editor

All Extensions laz B Extension Element Details
Define extensions for this plug-in in the following section. Set the properties of "Property”, Reguired fields are denoted by ™=
| type filter text | name™: | Interface Mame Pattern

id™®: i interface_name_pattern

= 4= com.ibm.xtools. fransform,core, fransformationProviders

B |:| com.ibm. xtocls. transform. authoring. patterns.ask_the_user.A description: ! Pattern for forming interface names (#' is source dass name)
Ed

----- @ Highest (Priority)
I:l EI Ask the User Transformation (Transformation)
i @ Merge Option (Property) _
- [X] Merge Warning (Property) P metatypeData: |
: D Class Mame Pattern {Prﬂperty}

value: | I#

metatype: : String

maxValues: |

delimiters: |

readonly: | false EI

IBM Rational Software Conference 2009

Pattern: Ask the User

E® run ask the user transformation.tc &3 . .) .
broperty o Transformation Configuration Editor
Class Mame Pattern =3 .
Interface Mame Pattern I# <+— P o pe rtl es tab
Merge Option automatic
Merge Warning true

public void execute (ECbject argl, ECbject argl) {
if (argl instanceof HamedElement £& argl instanceof HNamedElement) |

String name = ([(NamedElement)argl).getHame ()
String pattern = nnll;
if (argl instanceof Class) {

Retrieve pro perty pattern = (String)context.getPropertyValue (CLASS PATTERN PROPERTY ID):
} else if (argl in=stanceof Interface) {
Val ue from > pattern = (String)context.getPropertyValue (INTERFACE PATTERN PROFERTY ID):
H
H if (pattern != nmll && pattern.contains (NAME PLACE HOLDER TOKEN)) {
tranSformatlon ConteXt name = pattern.replacefll (NAME PLACE HOLDER TOKEN, name);

H
[(HamedElement)argl) .setName (name) ;

H

= Consequences

» Supplying information via properties is simpler then supplying via auxiliary models
» Complex properties can require custom GUI for specifying values

il
il

—— .
——
[
——
——
I
——
——

Iy
.1\“['
[

IBM Rational Software Conference 2009

Pattern: Ask the User Example

IBM Rational Software Conference 2009

Pattern: Copy a Reference

= Problem

» A reference to an external object (an object that is contained in a model that is not being
transformed) needs to be propagated from the input model to the output model

Generated Implementation

EI Generated from Source

= Example
Design
EI Snurn:e

&, m (UMLPrimitiveTypes)
...... i EIEII]'EEI'I COpy
...... 1aks II'ItEEIEF
...... 1 akd Stl'll'lg
------ P4 UnlimitedMatural

= <1> 7 (UMLPrimitiveTypes)
------ [Boolean
...... E Integer

...... E Stl'll'lg
------ E LinlimitedMatural

reference

IBM Rational Software Conference 2009

Pattern: Copy a Reference
= Solution

» Use a submap mapping that specifies an empty (or ignorable) mapping declaration

= Strategy

» When the target of a submap mapping is a reference, the specified mapping declaration is
only used (at transformation development time and transformation execution time) to ensure
type safety and assist with reference resolutions; consequently, any mappings in the
specified mapping declaration will be ignored. Intra-model references are copied if no
corresponding object was generated.

= [Packagelmport = [C» Packagelmport

eAnnotations Earnnotation [] eAnnotations EAannotation []
ownedComment Comment [] ownedComment Comment []
visibility Visibilitykind visibility Visibilitykind
importedPackage Package importedPackage Package
importingMamespace Mamespace — ; o

: “ importingMamespace Mamespace

= Consequences

» No need to define mappings for types that will be referenced, but not contained

» Transformation will create empty objects for instances of types with empty mapping

il
[
it

[—
=]
=
=]
=

—

—_—

“\l
e
Ty
.1\“['
[

IBM Rational Software Conference 2009

Pattern: Copy a Reference

IBM Rational Software Conference 2009

Pattern: Chain
= Problem

» Output model is input for other transformations

= Example

Design
Model to

Transient Model
I\/Iodel Model to

B3 source
EIQ Class1
- [Eg attribute1

4% Operation1 ()
=-§f% Operation2 ()
e Parameter 1
EI% Operation3 ()
e K Parameter1
o ,—F{, ({Interfacel)
I'_—'IE Interface1

[attributel

4% Operation1 ()
=-§f% Operation2 ()
e Parameter 1
EI% Operation3 ()
1 K Parameter1

-7, (UMLPrimitiveTypes)

Generated Implementation

Text

< Package GeneratedFromSource

= 4 Class Class1

I S Property attribute1

: < Operation Operation1

= 4+ Operation Operation2

. 4+ Parameter Parameter1
: 4+ Operation Operation3
=4 Interface Interfacel

: <4+ Operation Operation1
=+ Operation Operation2

. -4 Parameter Parameter 1
< Operation Operation3

<+ Property attribute1

Eﬂ generatedFromSource
Elm Class1.java
=@ Class1

b

I

o attributel

@&. getattribute1()

@&. Operation1()

&. Operation2{String)
&. Operation3)

@&. setAttribute 1{String)

nterfacel.java
& Interface1

getAttribute 10
Operation 1)
Operation2(String)
Operation3()
setAttribute 1{String)

IBM Rational Software Conference 2009

Pattern: Chain

= Solution

» Add rules that chain to other transformations

= Strategy

» Add instances of ChainRule or JETRule to PostProcessing rules of the RootTransformation -
a class which instantiates the top level (Main) transform of the generated transformation

protected REootTIransformation createBootTransformation(ITransformationDescriptor descriptor) {

retorn new RootTransformation (descriptor, new MainTransform()) {
@ACverride
protected wvoid addPostProcessingBules=s() {

add (new JETRule ("com.ibm.xtools.transform.authoring.patterns.chain.jet")):
H
b:

= Consequences

» Generated in-memory (optionally persisted) model can easily be passed to other
transformations, usually with no special adaptation for those transformations required

» Custom, transformation specific, properties can require extensions to standard chain rules

IBM Rational Software Conference 2009

RUCSHS

IBM Rational Software Conference 2009

© Copyright IBM Corporation 2009. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

IBM Rational Software Conference 2009

Backup

IBM Rational Software Conference 2009

Example solution: LogicalDataModel to Java beans

Model transformation Modal transformation Text

= Create two transformations, and transform in two steps:

» From a UML model that has the LogicalDataModel profile applied to it, create an instance of an Ecore model for
Java beans.

» From an Ecore model for Java beans, create a Java project and populate it with Java bean source code.

= Why do this in two steps?

» The best practices for authoring model-to-text transformations suggest the following steps:

. Harvest the templates from an exemplar project. For example, harvest the templates from a Java bean
reference project.

. Construct a model that contains the information that is required to instantiate the templates. For example,
construct an Ecore model for Java beans.

» Different requirements were used to design the LogicalDataModel profile and the Ecore Java bean model.

» These different requirements often lead to disparities between the models, which are typically resolved by inserting
an additional transformation step.

» You can reuse the transformations independently. For example, you can reuse the Ecore-model-to-Java-beans
transformation in many other contexts.

IBM Rational Software Conference 2009

Designing Model to Model Transformations: Mappings

= The following factors contribute to the complexity of transformation authoring:
» The inherit complexity in the input and output metamodels and their APIs
» The relationships of interest between the input and output metamodels
» The transformation framework elements, including the engine, languages, supporting tools, and APIs

= Learning the transformation framework is not the goal of the transformation author, but it often
becomes the main task

» The framework complexity and abstraction level impacts the productivity of experts and novices
» Complexity is a common problem for transformation frameworks:
= XSLT with XPath
= Query/View/Transformation (QVT) operational or relational transformation language with Object
Constraint Language (OCL)

= Mappings simplify transformation authoring so that the author can focus on the problem and
not the tooling required to implement the solution

LogicalDataModel mappings JavaBeanModel

a8

¥

IBM Rational Software Conference 2009

Designing Model to Model Transformations: Example

= Sketch of a design: mapping LogicalDataModel things to Java bean model things

get the bean project name and -
@ namespace from the model > H project
T ae L Tind all packages that contain classes |
& Package ; with The Entity stereotype > Beanpackage |
] Entity only interested in classes with T Bean

the Entity stereotype

- T ¢ e
T | property is not multi-valued or derived

> £ property
property is multi-valded but not derived
= ListProperty

property is derived = Derivedproperty |

IBM Rational Software Conference 2009

[
£=1 SourceModel ‘

£ Package

|

C=l TargetModel ‘

E Employee

2 readEmail ()
@ answerPhone ()
performWork ()

#3 reporiToManager [)

£ Package

= Employee

& readEmail ()

& answerPhone [

& performWork ()

& reportTeManager [)

winterfaces

£ TEm ployee

| #& reportToManager ()

