Agile Model-Driven
Development for Real-
Time and Embedded
Systems with Rational
Harmony

Bruce Powel Douglass, Ph.D.
Chief Evangelist, IBM/Rational
Bruce.Douglass@us.ibm.com

Twitter: @BruceDouglass
http://tech.groups.yahoo.com/group/RT-UML

Innovate2010

The Rational Software Conference !

fod
||| ull
-
[y

I
The premiere software and product delivery event. ”I"I"

Let’s build a smarter planet.

|l"| ﬂﬂ\fﬂt& The Rational Software Conferance

IBM® Rational® Harmony™ for Embedded RealTime Development

= Rational Harmony for Embedded RealTime Development is a coherent set of best practices
meant to effectively realize a set of core principles that define

» Roles
» Work Products
» Tasks

= Rational Harmony for Embedded RealTime Development is
» Agile

= “Just enough” ceremony to meet the project
governance needs but not more

= “Test Driven Development”
= Constant execution nanocycle
= Continuous Integration
» Requirements-driven
» Architecture-centric
» Optimized for
= Systems and Software Engineering projects
= Real-time (also safety-critical and high-reliability, optionally)
= Embedded
= Hardware-software co-design

= Scalability from small to large systems projects _ ﬂ

In nﬂvate The Rational Software Conferance

Harmony Agile Principles

= Your primary goal: develop working software

= Your primary measure of progress is working software
= Continuous feedback is crucial

= Five Key views of architecture define your architecture
= Plan, Track, and Adapt

= Leading cause of project failure is ignoring risk

= Continuous attention to quality is essential

= Modeling is crucial

These principles guide the approaches,
practices, work products, and
worktlows in the Harmony Process |

II'I nﬂvate The Rational Software Conferance

Principle: Your primary goal: develop working software

= This implies that activities that do not directly assist in developing working
software are necessarily secondary

» Even if you're signing off documents faster than planned, you're not making real
progress if the software doesn’t work

= Practice: Daily activities should focus on
» Understanding what needs to be done now
» Getting execution immediately

» (informally) Validating after each small incremental change that the software is doing
the right thing

» Avoid spending time doing tasks that don’t contribute to execution

= This is not to say writing documents and other tasks are inappropriate, just that
they are not your primary goal

Too often, managers and developers lose sight
of this principle, but it is the most important
single thing to remember! | ﬂ

II'I nﬂvate The Rational Software Conferance

Principle: Continuous feedback is crucial

"N =“|t ain’t right if it don’t run” — Law of Douglass
r) =“Optimism is the enemy of realism” — Law of Douglass
~ =“Optimism is a disease — feedback is the cure” — Kent Beck

= A key premise of the waterfall approach is that it is possible to go from phase to phase
without making significant mistakes

» We know now that this is not true!
= Practice: As we develop software over days, weeks, and months, we need assurance that
we’re doing the right thing:
» Continual execution of the software provides feedback that the software at least runs

» Comparing execution against expectations provides assurance that our expectations and
actuality match

» Debugging informally identifies and repairs either the expectation or the actuality
» Testing formally assurances compliance between expectations and actuality
» This execution should occur many times per day

The nanocycle in the Harmony process
focuses on the continual execution
of the software against its requirements § ﬂ

In I"If.wate The Rational Software Conference

Practice:

7))
& I i
H armOny > 55 | defines the properties of all
. g I Prototype Detintion : accep‘l’able solutions
Microcycle < | .
| |
! 55 !
? IL Ohject Analysis |
| 7 r__'___‘_ e
E5 1
Bﬁ Develop Stakeholder Reguiremerts I ﬁ%
Prespiral | Planning _/-\] I
l EE l o j E Architectural Design : E{'ﬁ
Define and deplay the dg;pm o Cortinuous Irtegration IPrepare for Yalidstion Testing .
5 N -5 | B I specifies a
. fe Mu:_m%ycwe l d;, c I Mechanistic Design : ParTiCUIOr' "op‘l’imal"
" =) ! |/ solution
® © n | I
$ 2 my o
_>. | Detailed Design :
e I
-5- L_t's'
>" Perform Model Review
I—
r—-=-—=-- - _l
! . I alidates against prototype
D G Y gamstp miszpn
8 ! alidation | 0
e P |
I—

Increment Review ("Party Phase™ I

Il'lm‘.wate The Rational Software Conferance

Practice: Nanocycle Incremental Construction

Produces partial models that are executed and debugged on a highly frequent basis
- typically 10 - 60 minutes
= Based on the concept of continual (informal) validation

» After each small incremental change, the portion of the model is reexecuted to make
sure that it is right.

» Best when debugging & unit testing can be at the modeling, rather than the code, level of
abstraction
= Primary Activities
» Code Generation: Source code is generated from the model frequently (<1 hr)

» Debugging: Often informal tests are constructed and applied either with tools (e.g. Test
Conductor) or by building “test buddy classes” to drive and check execution

» Unit testing: Unit tests are created along with the software and unit tests are applied
within the nanocycle

» Make changes available: Tested changes are submitted to the CM manager for
integration/test and update to baseline at least daily

In I"Imfate The Rational Software Conference

Practice: Object Analysis Workflow

N -
.,:-t”:. A r T [meets all functional requirements]
‘ " ’ Nanocycle
o
M e Lo
By T
gl Identify Ohiects and
»J:jf- Clazzes
B r 1
o 1 i 1
1
& . Integration Cgx :
1 } 1
==
e X Make Change Set Svailable !
1 1
P . <3 [test passed]. _ _

[el=e]

[needs refinement]

Unit testing
L
Execute Unit Test

Refine Collaboration Create Unit Test PlaniSuite

Typically 20-60 minutes

Tranzlation

Dol | gy
< o

Execute Model

Factor Elements Into Model

In I"If.wate The Rational Software Conference

Principle: Orthogonal sets of strategic design decisions define your
architecture

= Architecture consists of a coherent set of design and technology decisions that
affect most or all of the system

» Design decisions are not about functionality — they are about optimizing the functionality
of the system in various ways

» A strong architecture is important because it optimizes the system according to a small
set of consistent criteria within which all developers must work

|l'I novate The Rational Software Conferance

Practice: Harmony’'s 5 Key Views of Architecture

= Harmony identifies 3 levels of design optimization

» Architectural
» Mechanistic
» Detailed

= Architecture is divided into 5 primary views

» Each view is characterized by its own
set of design patterns, approaches,
and technologies

» Secondary architecture views
include

= Information Assurance

= Data Management

= Quality of Service Management

= Error and exception Management

Concurrency
and

Safety and
Reliability
View

Distribution

Deployment
Vizw View

Il'lm‘.wate The Rational Software Conferance

Practice: Apply Patterns Intelligently for System Architecture

() =“Apply no design before its time” - Law of Douglass

= Use design at the right time

>
>

Analysis focuses on essential properties - and executing the correct functionality

Design focuses on optimizing the analysis model against the weighted set of design criteria
- therefore optimality

Don’t supply decision or technology decisions until the functionality is correct and complete
for the prototype at hand

= Harmony Agile Design is primarily a design-pattern focused activity

4
4
4

Design patterns are generalized solutions to recurring problems
Each design has benefits and costs

To select the best design pattern you must understand the optimization criteria in detail
first

Don’t optimize too early. Optimize only after:
= Functionality is in place and working correctly
= You understand the quality of service and other design criteria
= You've identified and ranked the design criteria
= You understand the costs as well as the benefits of the proposed design solutions ﬂ

II'I nﬂvate The Rational Software Conferance

Principle: Plan, Track, and Adapt

- (; =“The more you know, the more you know!” - Law of Douglass
‘) =“Plan to Replan” — Law of Douglass

= Far too many managers use “Ballistic Planning”

» that is, they identify a plan and pray* that some number of years later, the project will arrive on the target
date and at the target cost, despite not tracking intermediate progress and identifying and taking corrective
action when appropriate

= An agile methods key principle is “Dynamic Planning”

» Plans are always made in the face of incomplete knowledge

» Understanding improves as the project processes

» In addition, things change, such as

= Requirements

= Customer needs Hope is not a plan!
= Environments

= Capabilities

» Thus, plans provide a blueprint but must be frequently updated to reflect the deeper understanding and
address changes

In I"Iﬂvate The Rational Software Conferance

Principle: Leading cause of project failure is ignoring risk

(\) »“Leading cause of failure is ignoring risk” - Law of Douglass

= Most projects go awry because of predictable problems that were never addressed, e.g.:
» Schedules were unrealistic from the outset
» Project is under/over manned
» Project scope is too ambitious
» Requirements were inadequate or don’t meet stakeholder needs
» Obvious process inefficiencies were never addressed
» Staff is overtasked due to unscheduled “wedge” projects and tasks
» New technology is poorly understood by relevant team members

= Practice: The best way to reduce risk is to manage it:
Identify the risks
Define risk mitigation activities (RMAS)

v v v

Plan RMA execution in schedule

v

Heed the results of your RMAs

v

Frequently look for new risks

In nﬂvate The Rational Software Conferance

Continuous attention to quality is essential

(| =“The best way not to have defects in your software is to not put them in!” - Law of Douglass

= Quality cannot be effectively added later into developed software

= Practice: Continual attention to technical excellence is the best way to get quality software,
using practices such as
» Constant execution
= Execute after small incremental changes, typically no less than once per hour
» Explicitly state pre- and post-conditions
= State assumptions for correct execution (e.g. memory needs, parameter value ranges, etc)
» Defensive design
= Plan for your software to be robust in the presence of precondition violations
» Test-Driven Development
= Develop your tests prior to, or in conjunction with, the software elements
» Peer modeling to give another set of eyes over the design or implementation

Being agile not not an excuse to hack or create
low-quality software. It is an opportunity to focus
on the things that make your software better! ﬂ

In nﬂvate The Rational Software Conferance

Principle: Modeling is crucial

F ~; =“Modeling is next to Godliness” - Law of Douglass

= Modeling, properly performed, can greatly improve your design in terms of correctness,
functionality, understandability, portability, and reusability

= Modeling, improperly performed, provides marginal benefit

= Practice: The Harmony process provides strong guidance over the best ways to model, for
example:

» Each diagram should have a stated mission (purpose) and include all elements that
contribute to that mission, but no elements that do not. Example class diagram missions
include:

Collaboration of classes realize a single use case

Provide an architectural view (see Five Key Architectural Views principle), such as a task diagram for
the concurrency architecture

Show a generalization taxonomy
Show a class structure (aka “structure diagram”)

Show contents of a package

II'I nﬂvate The Rational Software Conferance

Practice: Use model-code associativity

D *“The model is the code!” - Law of Douglass

MCA allows tools to automatically maintain synchronicity between the source code
and the model

» MCA assumes you have a model already. To construct a new model from an existing
code base, we “reverse engineer” the design

Developers should work at any level of abstraction if it is appropriate

» Mostly, developers work in the model level and “forward-generate” code but sometimes it
is more convenient to work at the code level

Not all code must be modeled!

» Itis easy to use hand-written code with model-based code

» If some code is highly stable, known to be of high quality, and won'’t undergo much
maintenance, then making a model of it make not be an effective use of time

|l'I novate The Rational Software Conferance

A Look at the Harmony for Embedded RealTime Development Nanocycle

= Throughout analysis and design, developers produces partial models that are
executed and debugged on a highly frequent basis - typically 10 - 60 minutes

= Based on the concept of continual (informal) validation

» After each small incremental change, the portion of the model is reexecuted to make
sure that it is right.

» Best when debugging & unit testing can be at the modeling, rather than the code, level of
abstraction

= Primary Activities
» Code Generation: Source code is generated from the model frequently (<1 hr)

» Debugging: Often informal tests are constructed and applied either with tools (e.g. Test
Conductor) or by building “test buddy classes” to drive and check execution

» Unit testing: Unit tests are created along with the software and unit tests are applied
within the nanocycle

» Make changes available: Tested changes are submitted to the CM manager for
integration/test and update to baseline at least daily

In I"Iﬂvate The Rational Software Conferance

Nanocycle Example: Elevator Scenario (1 of 3)

Jirm =Usan Jill Cloudd
/ I I I I
"hangin out" Talking Listening to iPod itian =
. E1.position = Floor 1
*_Position = Floor 3 > < Fosition = Floor b > < Position = Floor 10 Ep1n.55|t|;:|tr; = |.:|I|:|EEIr
| | | E2 position = Floor 30
| | | EZ state = Idle
Ref

Jim Calls the Elevataor

| | |
Hef

Jirn Goes to Floor 8

—_— —_—

In I"Iﬂvate The Rational Software Conferance

Jim Suzan Jill Cloudd
T T I
["hangin ot Talking Listzning to iF od E1.p osition = Flaor 1
Fosition = Floor3 F osition = Floor G Position=F loor 10 E1.state= Idle
T g
' EZ .position = Floor 30

EZ.state= |dle

Py |
ﬁ quensState(E1, state, position)

hallCall{UP)

{2100 mzec }

quensState(EZ, state, position)

selachE1])

st Jet it

izpatchiE1. 1. UPETRUE

t]

backlightHALL, UP)
buttonBadkdight{UF)

W

LoarClose(E1)

E1.state = closing

DoorlnterlockReleaseE1)

I

E1.state = movingDh

flaarbatacE1): 2

floorl etectE2): 1

EA1 .state = aligning

FloorfligniE1)

MotorHaldFosition(E1)

éoollntetlod{Engage(Eﬂ
E1.state = Opening
DoorOpeniE1) ﬂ

'.":i"!‘
a

II'I nﬂvate The Rational Software Conferance

dirm Susan Jill Cloudd
In Elevator 1 Talking Listeningto iPod
o= - E1.state = Open
Position= Floor1 Pnsitinn=FloorG Position = Flagr 1 0 vt Flnpcur1

|carCaII(8)

[

- validateRequest()
Jim steps in the elevator

and presses the button for
| Floor &
engueleRequest{s)

hackliotCAB(T, 8)

Vi _
[Fr tm{DoorZlozeTime)

E1.state = Closing

{ =100 msec}

huttonBacklight(S)

E1DoorinterlockRelease)

E1 state = movinglIP

B
Fa—

queryState(E1, state, position)
=100 msec }

t],

quenysStatedE2, state, position)

t]

select(EZ)

dispatchiEZ, 8, DO}

acklight{HALL, &, DOYyR)
huttanBacklight{Doy

ol
-

Tt

DoorClose(EZ)

E2state = closing

|
| |
| |
| |
| |
| |
a |
| |
| |
| |
| |
| |
| |
| |
| [hallCalliD oy
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b
|
|
|
|
|
|

DoorinterlockRelease(E2) ﬂ
)
T

In I"Imfate The Rational Software Conference

Object Analysis
Workflow T

&
Identify Objects and
. Claszes
& 1 . 1
s ’ \ Integration La !
&3 :‘:w g : Make Change Set Available :
o | i |
”':"jf' : [test passed] :
“‘“%"“‘" [elze] i
r.lf
an
i
*

[meeds refinement]

Unit testing
=
Execute Unit Test

o e

Refine Collabarstion Creste Unit Test PlaniSuite

Typically 20-60 minutes

loococoodbhoococococooocooooo 1
Code Gen !
| La
| e Transletion |
'Debugging} P
: Execute Model : Factor Elements Into Model

II'I nﬂvate The Rational Software Conferance

Step 1: Requesting the elevator

Jim Suzan Jill Cloud

S "hangin out Talldng Listening o iPod Ed.pasition = Flaar 1
\‘. FPosition = Floor 2 P e=ition = Flaor 8 Pusition=Floor 10 E1.stgts= ldle

EZ .position= Floor 30
ata = |dle

lrb-‘ queryState(E1, state, positio

queryState(E2, state, position)

hallCalltUF)

{2100 m=ec}

bzt |

selecE1)

izpateh(E1, 1, UPLETRUE

f

backlightHaLL{1,UF)
buttonBacklightUP)

LI

< E1.state = ¢losing

DoornterlockRe eaze(E)

Innovate

The Rational Software Conferance

Elevator3tateType elevitate;

int 7j; OMEoolean success;
int pos:; success = dispatch(elIl, f£loorID):;
if [(success) |
for (j=0;j<MNELEVATORZ:j++) { theHallButton[floorID] ->backlight (] :

itsElevator[Jj] -rqueryitate (elevitate, pos);: 1:

2 2SIl e o itsElevator[elIDl] ->gotoFloor (floorMum) ;
select (], floorID); return TRUE:
Y S end iF
Yoo Alend for
Button / ElevatorCaontraller
_ 1..MFLOORBUTTONS 1
= flaariDint theHallButton /
H buttanDir:DirectionType
] ﬁhaﬁ/klightHALL(ﬂDDrNum:int,huttDnDirectiDn:Di ctionType)void
ﬁpreaa.ﬂl:vmd _ & select{elD:int):vaid
ﬁhgckhghm:vmd _ & dispatchielD:int foarum:int): OWBoalean
= disableLight():vaid - U 2 acceptElevatorRequest(floorD:int ,upDown: DirectionType):void
. ¢llsages
qUSEEE%“ux e ! \\
1 T - ¢llsages \H}J
. ocT:g,l'pEx- — wType
DirectionType ElevatorStateType
L
\quage:s« A
itsElevatar | 1..MELEWATORS /
Elevatar /qLJSage:s«
M position:int
M direction:DirectionType
Fassenger
& queryState(eState: ElevatorStateType position:int):void
& gotoFlaorfloorD:int): OMBaolean ﬂ

Innovate

Executing Step 1

The Rational Software Conferance

aTvpen aTypen
MFLOORBUTTONS i MELEWATORS
¢U§age>s> N zllsages
ESystem
NFLOORBUTTONS jtsButton:Button 1 itsElevatorController: ElevatarContraller
= floarlD:int
B buttonDir: DirectionType 1. NFLOORBUTTONS 1
theHallButton - & backlightHALLfloarMurm:int buttonDirection: DirectionTypelvaid

itsElevatorContraoller ﬁselect(eID:int,ﬂuanD:int]:vnid
Hpressiivaid E dizpatchielD:int foarkum:int): OMBoalean
& backlight():vaid
& dizableLight{):vaid

& acceptElevatarRequestfloarlD:int, upDawn: DirectionTypelvaid

itsElevatorController

|—

itsElevator | 1L.NELEVATORS
HELEWVATORS itsElevator: Elevator
M positian:int

M direction:DirectionType

E queryState(eState: ElevatorStateType position:int):vaid
& gotaFlaariflaorD:int): OWBaalean

|l'I novate The Rational Software Conferance

Executing Step 1

EMW ESystem ESystem.itsE levat ESystem.itsB ESystem.itsElevat ESystem. itsElevat
arizontroller Eleva utton: Button or[0] Elevator o[1]:Elevator

torController

< Createl) | | | | |

g _____ ™ Create) | L | |

Z [Createf) T T Rl |

7 Createl) " | | |

g press() !_ _____ '!_ _____ _:l1 I I

| |

g | L acceptEIevatorReqpestl[floorlD=3, UDDOWTI:UP]I |

7

g I I queryState(eStatezldl!e, position=1) PI I

7 | i

g | ! queryState(eState:IdI!a, position=30] ! |

7 I "select(elD=0) i i "1|

7 —

Z | -— | | |

Z | dispatchielD=0, ﬂDOF[]JUFTI:f)]I | |

7 —

Z | | | | |

7 e

g I |gotoF|oor(floorID:3] l l .J

é | | backlight() | | |

Z | | g | |

|l"| ﬂﬂ\fﬂt& The Rational Software Conferance

Step 2: Make classes reactive

| ButtonState |

WWaiting
pressf
cout << "Button pushed” << endl;

itsElevatorController->acceptElevatorRequestifloorlD, buttonDir);

Elevator state machine

backlight | ElevatorStates |

LightOff w LightOn

_, digableLight

- [elza]f

I sucess = FALSE;
| WaitingF arCammand [newDirection{floorlD) == direction]/
Button state machine | ocote gy %0 OB
f
[I5_IM(ldleState))

success = TRUE;

doneMoving Moving State
I ¥ —r= MavingUpState
| IdleSitate »
rrowe DOV | MovingDownState ‘

In nﬂvate The Rational Software Conferance

Step 2: Class Diagram

Step 2:
« Upon reflection, the decision is made to go to reactive objects.
+ The Button statemachine is added and the operations are made into event

receptions
* The Elevator statermachine is added (but only enough to support the steps so
farl)
Button B ElevatorController
: 1. . MFLODOREBUTTONS 1
= flooriD:int theHallButton
M huttonDir: DirectionType
& backlightHALLf oorMNum:int, buttonDirection: DirectionTy pe):void
i & select{elD:int floorlD:int):vaid
ﬁpress_{j;vmd _ & dispatchielD:int AoartMum:int): OMBaalean
Eh?Ckl'ghm:VU'd _ . & acceptElevatorRequest(floarD:int,upDown: DirectionType) void
B disableLight():void
T
T 1 |
¢llsages~. - ¢llsages
1 T . ¢lzages
«Typen e aTypen
DirectionType ElevatorStateType
' AT
 eUsages |
«Usages
itsElevator | 1..MELEYATORS |
Elevator =
M positian:int
B direction: DirectionType
Fassenger

& queryState(eState:ElevatarStateType position:int):vaid
& gatoFlaarflaadD:int): OMBaoalean

& moveUP():void

EmuveDOWNU:vnid

B8 donemoving():void

& newDirection(floorlD:int): DirectionType
B evG ot void

Innovate

The Rational Software Conferance

Executing Step 2

| |
select(elD=0, ﬂoorlq=3)

|

|

|

|

|

| S |
| | gotoFloor(floorlD=3): TRUE
|

|

|

|

|

ENV ‘ESystem ESystem.itsEl ESystem.itsB ESystem.itsEl ESystem.itsEl
evatorControll utton:Button evator[0] Elev evator[1] Elev
er:ElevatorCo ator ator

Create() | | | |
T — e, | | |
| | | |

Create()

Create0 T i
===V —» | |
| Create() | | |
_____________ _...

press() | | | |
| |
| | |
accep]EIevatorRequest(ﬂooﬂl.IFS, upDown=UP) | |
| I queryState(eState=I|File, position=1) ._}
| queryState(eState=Idle, position=30) | ~
|
|
|
|
|
|

| |

| | []

| backlight() I r_
|

evGoto(flooriD=3)

T

s

In I"Iﬂvate The Rational Software Conferance

Step 3: Closing the Doors

Jim Su=an Jill Cloud@

_;"'r' ha‘uuin ot T alki ng Lu.-h:rllrlg to iF od E1,position = Floor 4
"‘\ F'ﬂ:ltlun = Floor3 P o=ition = Floor & Position=F loor 10 E1.state = Idle
T

EZ.pogition = Floar 30
EZstate= ldia

hallCall{UP)

qu-ry‘Ein'tt{Eﬂ_stabu. positian]
{=100 m=eo }
quanStatelEZ. state. position)
=elechE1)

ispatch(E1, 1, UFETRUE

|;addightl-l.lll_L(1,LlP)

buttonBacklightfUF)

DoarCloseE1

.

< E 1. state = olosing

! CoornterlocdkRele asefE1)
< E 1. state = mowingDM >

I
: detberer o Eia ct/E 1] 2

]

I floorDetechE27: 1

| l
|]
| 1'
| |
|]
| I
| I
| l
| |
| }
| l
| |
| |
| I
| l
| |
|]
| l
| I

—_————————x———— — — -

In nﬂvate The Rational Software Conferance

Step 3: Closing the Doors
Q

Step 3

« Doors need to close. We need to suppart timing to close the doors, ability to control 2 motar with
a movernent profile, and to engage and disengage with the doors on the floor,

s In other scenarios, we'd add the "safety chain” that ensures that the doors on all halls must be

closed befare the elevator can maove, what happens when there is an obstruction, etc.
Passpnger

1
Button B

= floorlD:int 1..NFLOORBUTTONS 1
M buttanDir: DirectionType | theHallButton

ElevatorContraller

H backlightHALLfloorMurn:int, buttonDirection: DirectionType):void
=] select{elD:int floorlD:int):vaid

) _— & dispatch(alD:int foorum:int): OMBoolean
EEraecisligﬁtD(;'vuid H acceptElevatorRequest{floorD:int, upDown: DirectionType):vaid
B8 disableLight()void

1

thellPButton |1 1 theDCWMEBUtton

ElevatorDoor L itsElevatar | 1..NELEVATORS
{ [Elevator B
Hall 1] —
- & = position:int
Egroesne%oooor%'vvool?cl M direction: DirectionType
H engagelnterock():void
H releaselnterlock():void & gotoFloarfloorD:int): OMBoolean
& moveUP(vaid
1 ﬁmoveDOWNO:vuid
1 & doneMaving():void
1 MNELEVATORS 1 ﬁnewDirection(ﬂporID:int):DirectionType
HallDoar B evGotofloorD:int):vaid
2 Interlack = & pendingDestination(): OhBaalean
B position:int EeVioneCI.osi;glj:void
& evEngagelnterlock()vaid EevDrrweg.vm. void
& openDoor():vaid 8 evDisengage()void evDaneOpening():voi
& closeDoor):vaid B evEngage(): vaid +]
] EisInterIockedO:OMBooIean
1 enagagelnterlock():void upDest | 0.NFLOORS downDest | 0.MFLOGRS
Passivelnterlock || Destination
= flaorint
Hisinterlocked(): OMBoolean . These connect electrically and mechanically only. The

Interlock can detect if it's interlocked by maonitaring
electric contact points that mean it's available, and
other contact points that indicate that it's interlocked.

In I"Imfate The Rational Software Conference

Step 3: Closing the Doors

MovinglpState
~
tm{DOORCLOSE_TIME) ‘ ClosingDoors
itsElevatorDoor-=GEM{evClose)
evDoneClosingy FALSE;
targetFloor = nextFloor(); _—) . ; ;
oveTo(targetFloar); [newDirection{params-=food D) == direction]/
success = TRUE;,
if {direction == UP) GEM{MoveUP?;

Stopped_Open f%) Moving |

| oto
‘E.itSDDDr—>reIeaseInterIDck0; ‘ ‘ >.

else GEM{MOowveDown],

4 l evirrive
| GEM{ Mo elIFY,
evDoneOpening Stopped_Closed @ Ty,
"y itsElevatorDoor-=engagelnterdock(); —‘-d—

| OpeningDoors

MovingState

- Jeur | MovingUpState
~ |

F

/itsElevatorDoor->GEM(evCpen);

iy 2 DY hovingDownstate

|
|

[E—

Elevator state machine

In I"Imfate The Rational Software Conference

Step 3: Closing the Doors

ManualControl)
‘ DoorQpen SO - DoorClosed ‘
evivlanClose
-
A
evGotohanual eviGotoMormal I
4 R

MormalOperation

evOpen[itsintedock =isintedocked(}] Closed [isClosed|]]

evDoneClosing
itsElevator-=>GEN(evDoneClosing),
™

‘ Opening ‘ ‘ Closing ‘
| . | ®

eviopen evClose Open ‘ (else]

evDoneOpening/ itsElevator-=GEN (evDoneOpening §; ™

ElevatorDoor state machine s

In I"Imfate The Rational Software Conference

Step 3: Closing the Doors

/success = TRUE;

Interlocklnactive

[isInterlocked()] [else]
5 : 1 evEngage/ -
InterlockActive success = engagelnterlock()
g
4 .
evDisengage/

success = disengagelnterloclk();

-

InterlockFailure 'I%‘

[lsuccess]

>

- alarm(INTERLOCK_FAILURE)

Interlock state machine

[Isuccess]

II'I nﬂvate The Rational Software Conferance

Step 3: Closing the Doors

En ElevatorContraller Elevator ElevatorDoor Interlock ‘Passivelnterlock

Scenerio: Door Open

. gotoFloorifloor D= 31‘ |
eman(ﬂnnrlD=3)|

|

|

Description: |
ewDiraction(): UP |
|

I

I

Starts with the
gotoFloor comrmand
sent to the selected
elevator and goes
through the closing of
the doar

_ﬂ]

mavel P

=

releaselnterlnckﬂ
Sent by the hw
tm(DOORCLDSEI_TIMEj

eanneCInsrngﬁl
evDoneClosing() |
riextFloor):3

|

|

|
moveTof targetFIDFr 3)

|

|

|

t

|
|
|
|
|
|
|
|
|
|
: evClosel) / |
|
|
|
|
|
|
|
|
|
|
|

7
/""
//
//
/
//
/
/
/
/
/_/
/
/_/
//"
//
//"
/
/__,-"
/
/__,-"
/
/__,-"
/
/"'
/""
/"'
/""
//
/""
//
//
/
//
/
/
/
/
/_/
/
/_/
//"
//
//"
/
/__,-"
/
/__,-"
/
/__,-"
/
/"'
/""
/"'
/""
//
/""
//
//
/
//
/
/
/
/
7
i

'_7_T

II'I nﬂvate The Rational Software Conferance

Summary

= Harmony for Embedded Realtime Development is a very agile process emphasizing
» Use of UML Modeling to capture application behavior and structure
» Not allowing defects to infect the design or implementation via
= Continual code generation (many times/day)
= Continual debugging and unit testing (many times/day)
= Continuous integration (reestablish baseline >=1/day)
» Frequently plan updates based on “truth on the ground”

= Harmony for Embedded Realtime Development is
» Requirements driven
» Architecture-centric
» Optimized for real-time and embedded systems, with guidance for
= Design optimization with design patterns
= Use of concurrency and OS features

= Hardware/software co-development
= Safety and reliability in analysis and design

II'I nﬂvate The Rational Software Conferance

References

‘EEAL Tive UML
THIRD EDITION

ADVANCES IN THE UML FOR
REAL-TIME SYSTEMS

BRUCE POWEL DOUGLASS 0

:

BRUCE POWEL DOUGLASS

PATTERNS

OING HARD TIME

DEVELOPING REAL-TIME
Systems witH UML, OBJECTS,
FRAMEWORKS, AND PATTERNS

EMBEDDED TECHNOLOGY ™~ SERIES

Real-Time UML
Workshop for
Embedded
Systems

srucel REAL-TIME AGILITY

EAL-TIME DESIGN

ROBUST SCALABLE ARCHITECTURE
FOR REAL-TIME SYSTEMS

BRUCE POWEL DOUGLASS

-‘ PATTERN-ORIENTED
~ SOFTWARE
~ ARCHITECTURE

DESIGN PATTERNS Fror
EMBEDDED SYSTEMSInC

An Embedded Software Engineering Toolkit

A System of Patterns

Scaok

Design Patterns

@| Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Hel
Ralph Johi

-agile
= amodeling

Effective
practlccs for
1 eXtreme Programming
G].“(I ||"L
Unified Process

7 |nI"IOVEIte The Rational Software Conference

www.ibm/software/rational

© Copyright IBM Corporation 2010. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do notimply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change atany time at IBM’s sole discretion based on market opportunities or other factors, and are notintended to be a commitment to future

product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services

are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, @
or service names may be trademarks or service marks of others. =

