
The premiere software and product delivery event.

Agile Model-Driven
Development for Real-
Time and Embedded
Systems with Rational
Harmony

Bruce Powel Douglass, Ph.D.
Chief Evangelist, IBM/Rational
Bruce.Douglass@us.ibm.com
Twitter: @BruceDouglass
http://tech.groups.yahoo.com/group/RT-UML

IBM® Rational® Harmony™ for Embedded RealTime Development

� Rational Harmony for Embedded RealTime Development is a coherent set of best practices
meant to effectively realize a set of core principles that define
� Roles
� Work Products
� Tasks

� Rational Harmony for Embedded RealTime Development is
� Agile

� “Just enough” ceremony to meet the project
governance needs but not more

� “Test Driven Development”
� Constant execution nanocycle
� Continuous Integration

� Requirements-driven
� Architecture-centric
� Optimized for

� Systems and Software Engineering projects
� Real-time (also safety-critical and high-reliability, optionally)
� Embedded
� Hardware-software co-design
� Scalability from small to large systems projects

Harmony Agile Principles

� Your primary goal: develop working software

� Your primary measure of progress is working software

� Continuous feedback is crucial

� Five Key views of architecture define your architecture

� Plan, Track, and Adapt

� Leading cause of project failure is ignoring risk

� Continuous attention to quality is essential

� Modeling is crucial

These principles guide the approaches,
practices, work products, and

workflows in the Harmony Process

Principle: Your primary goal: develop working software
� This implies that activities that do not directly assist in developing working

software are necessarily secondary
�Even if you’re signing off documents faster than planned, you’re not making real

progress if the software doesn’t work

� Practice: Daily activities should focus on
�Understanding what needs to be done now

�Getting execution immediately

� (informally) Validating after each small incremental change that the software is doing
the right thing

�Avoid spending time doing tasks that don’t contribute to execution

� This is not to say writing documents and other tasks are inappropriate, just that
they are not your primary goal

Too often, managers and developers lose sight
of this principle, but it is the most important

single thing to remember!

Principle: Continuous feedback is crucial

� A key premise of the waterfall approach is that it is possible to go from phase to phase
without making significant mistakes
�We know now that this is not true!

� Practice: As we develop software over days, weeks, and months, we need assurance that
we’re doing the right thing:
�Continual execution of the software provides feedback that the software at least runs
�Comparing execution against expectations provides assurance that our expectations and

actuality match
�Debugging informally identifies and repairs either the expectation or the actuality
�Testing formally assurances compliance between expectations and actuality
�This execution should occur many times per day

The nanocycle in the Harmony process
focuses on the continual execution

of the software against its requirements

�“It ain’t right if it don’t run” – Law of Douglass
�“Optimism is the enemy of realism” – Law of Douglass

�“Optimism is a disease – feedback is the cure” – Kent Beck

Practice:
Harmony
Microcycle A

na
ly

si
s

D
es

ig
n

Te
st

Ty
pi

ca
lly

4-
6

w
ee

ks

���������	��
��
�������������
���
��������������

�
��������

����������
��� ��
��������

� �������������
������
��
� ������

Practice: Nanocycle Incremental Construction
Produces partial models that are executed and debugged on a highly frequent basis

- typically 10 - 60 minutes

� Based on the concept of continual (informal) validation
�After each small incremental change, the portion of the model is reexecuted to make

sure that it is right.

�Best when debugging & unit testing can be at the modeling, rather than the code, level of
abstraction

� Primary Activities
�Code Generation: Source code is generated from the model frequently (<1 hr)

�Debugging: Often informal tests are constructed and applied either with tools (e.g. Test
Conductor) or by building “test buddy classes” to drive and check execution

�Unit testing: Unit tests are created along with the software and unit tests are applied
within the nanocycle

�Make changes available: Tested changes are submitted to the CM manager for
integration/test and update to baseline at least daily

Practice: Object Analysis Workflow

Debugging

Unit testing

Nanocycle

Code Gen

Integration
Ty

pi
ca

lly
 2

0-
60

m
in

ut
es

Principle: Orthogonal sets of strategic design decisions define your
architecture

� Architecture consists of a coherent set of design and technology decisions that
affect most or all of the system

�Design decisions are not about functionality – they are about optimizing the functionality
of the system in various ways

�A strong architecture is important because it optimizes the system according to a small
set of consistent criteria within which all developers must work

Practice: Harmony’s 5 Key Views of Architecture

� Harmony identifies 3 levels of design optimization
�Architectural

�Mechanistic

�Detailed

� Architecture is divided into 5 primary views
�Each view is characterized by its own

set of design patterns, approaches,
and technologies

�Secondary architecture views
include

� Information Assurance

� Data Management

� Quality of Service Management

� Error and exception Management

Practice: Apply Patterns Intelligently for System Architecture

� Use design at the right time
� Analysis focuses on essential properties - and executing the correct functionality
� Design focuses on optimizing the analysis model against the weighted set of design criteria

- therefore optimality
� Don’t supply decision or technology decisions until the functionality is correct and complete

for the prototype at hand

� Harmony Agile Design is primarily a design-pattern focused activity
� Design patterns are generalized solutions to recurring problems
� Each design has benefits and costs
� To select the best design pattern you must understand the optimization criteria in detail

first
� Don’t optimize too early. Optimize only after:

� Functionality is in place and working correctly
� You understand the quality of service and other design criteria
� You’ve identified and ranked the design criteria
� You understand the costs as well as the benefits of the proposed design solutions

�“Apply no design before its time” - Law of Douglass

Principle: Plan, Track, and Adapt

� Far too many managers use “Ballistic Planning”
� that is, they identify a plan and pray* that some number of years later, the project will arrive on the target

date and at the target cost, despite not tracking intermediate progress and identifying and taking corrective
action when appropriate

� An agile methods key principle is “Dynamic Planning”
� Plans are always made in the face of incomplete knowledge

� Understanding improves as the project processes

� In addition, things change, such as

� Requirements

� Customer needs

� Environments

� Capabilities
� Thus, plans provide a blueprint but must be frequently updated to reflect the deeper understanding and

address changes

Hope is not a plan!

�“The more you know, the more you know!” - Law of Douglass
�“Plan to Replan” – Law of Douglass

Principle: Leading cause of project failure is ignoring risk

� Most projects go awry because of predictable problems that were never addressed, e.g.:
� Schedules were unrealistic from the outset

� Project is under/over manned

� Project scope is too ambitious

� Requirements were inadequate or don’t meet stakeholder needs

� Obvious process inefficiencies were never addressed

� Staff is overtasked due to unscheduled “wedge” projects and tasks

� New technology is poorly understood by relevant team members

� Practice: The best way to reduce risk is to manage it:
� Identify the risks

� Define risk mitigation activities (RMAs)

� Plan RMA execution in schedule

� Heed the results of your RMAs

� Frequently look for new risks

�“Leading cause of failure is ignoring risk” - Law of Douglass

Continuous attention to quality is essential

� Quality cannot be effectively added later into developed software

� Practice: Continual attention to technical excellence is the best way to get quality software,
using practices such as
� Constant execution

� Execute after small incremental changes, typically no less than once per hour

� Explicitly state pre- and post-conditions

� State assumptions for correct execution (e.g. memory needs, parameter value ranges, etc)

� Defensive design

� Plan for your software to be robust in the presence of precondition violations

� Test-Driven Development

� Develop your tests prior to, or in conjunction with, the software elements

� Peer modeling to give another set of eyes over the design or implementation

Being agile not not an excuse to hack or create
low-quality software. It is an opportunity to focus

on the things that make your software better!

�“The best way not to have defects in your software is to not put them in!” - Law of Douglass

Principle: Modeling is crucial

� Modeling, properly performed, can greatly improve your design in terms of correctness,
functionality, understandability, portability, and reusability

� Modeling, improperly performed, provides marginal benefit

� Practice: The Harmony process provides strong guidance over the best ways to model, for
example:

�Each diagram should have a stated mission (purpose) and include all elements that
contribute to that mission, but no elements that do not. Example class diagram missions
include:
� Collaboration of classes realize a single use case

� Provide an architectural view (see Five Key Architectural Views principle), such as a task diagram for
the concurrency architecture

� Show a generalization taxonomy

� Show a class structure (aka “structure diagram”)

� Show contents of a package

�“Modeling is next to Godliness” - Law of Douglass

Practice: Use model-code associativity

� MCA allows tools to automatically maintain synchronicity between the source code
and the model
� MCA assumes you have a model already. To construct a new model from an existing

code base, we “reverse engineer” the design

� Developers should work at any level of abstraction if it is appropriate
� Mostly, developers work in the model level and “forward-generate” code but sometimes it

is more convenient to work at the code level

� Not all code must be modeled!
� It is easy to use hand-written code with model-based code
� If some code is highly stable, known to be of high quality, and won’t undergo much

maintenance, then making a model of it make not be an effective use of time

�“The model is the code!” - Law of Douglass

A Look at the Harmony for Embedded RealTime Development Nanocycle

� Throughout analysis and design, developers produces partial models that are
executed and debugged on a highly frequent basis - typically 10 - 60 minutes

� Based on the concept of continual (informal) validation
�After each small incremental change, the portion of the model is reexecuted to make

sure that it is right.

�Best when debugging & unit testing can be at the modeling, rather than the code, level of
abstraction

� Primary Activities
�Code Generation: Source code is generated from the model frequently (<1 hr)

�Debugging: Often informal tests are constructed and applied either with tools (e.g. Test
Conductor) or by building “test buddy classes” to drive and check execution

�Unit testing: Unit tests are created along with the software and unit tests are applied
within the nanocycle

�Make changes available: Tested changes are submitted to the CM manager for
integration/test and update to baseline at least daily

Nanocycle Example: Elevator Scenario (1 of 3)

Object Analysis
Workflow

Debugging

Unit testing

Nanocycle

Code Gen

Integration

Ty
pi

ca
lly

 2
0-

60
m

in
ut

es

Step 1: Requesting the elevator

Executing Step 1

Executing Step 1

Step 2: Make classes reactive

Button state machine

Elevator state machine

Step 2: Class Diagram

Executing Step 2

Step 3: Closing the Doors

Step 3: Closing the Doors

Step 3: Closing the Doors

Elevator state machine

Step 3: Closing the Doors

ElevatorDoor state machine

Step 3: Closing the Doors

Interlock state machine

Step 3: Closing the Doors

Summary

� Harmony for Embedded Realtime Development is a very agile process emphasizing
�Use of UML Modeling to capture application behavior and structure

�Not allowing defects to infect the design or implementation via

� Continual code generation (many times/day)

� Continual debugging and unit testing (many times/day)

� Continuous integration (reestablish baseline >=1/day)

�Frequently plan updates based on “truth on the ground”

� Harmony for Embedded Realtime Development is
�Requirements driven

�Architecture-centric

�Optimized for real-time and embedded systems, with guidance for

� Design optimization with design patterns

� Use of concurrency and OS features

� Hardware/software co-development

� Safety and reliability in analysis and design

References

3
7

© Copyright IBM Corporation 2010. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future
product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services
are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product,
or service names may be trademarks or service marks of others.

www.ibm/software/rational

