
Shashikant Padur
RTC SCM Developer

Jazz Source Control
Best Practices



Jazz Source Control Mantra

The fine print
Fast, easy, and a few concepts to support many flexible workflows

Give all users access to source control

Stop talking about it and just do it!

It's never too simple

Flowing changes to anyone



Give all users access to source control

Decouple giving your changes to your team from
using the SCM system as a tool.

Check-in, discard, suspend, history, revert can 
be used before you make your changes available to 
others. 



Jazz Source Control Mantra

Stop talking about it and just do it!
Focus on making and collaborating on changes
Remove the word branch, but make parallel development just happen

Repository workspaces - Provides constant isolation. You don't have to make your changes visible to the 
team just to backup or use the repository features.

Suspend and Resume - Provides task level isolation for personal work.

Work Item links - Provides light weight task level isolation for personal of team work. Work on a feature, 
attach to a work item and discard from your workspace. You or someone else continues the work by accepting 
the change sets back into their repository workspace.

Streams - Provides team or feature isolation.

Timelines - Provides process isolation.



Jazz Source Control Mantra

It's never too 
simple

Version control 
from the web



Jazz Source Control Mantra

Flowing changes to everyone – interconnected change flows



Repository Layout

File structure
Which file tree level should make as the component root?

There isn't a clear rule but some considerations:
How do you plan on loading the files on disk?
Currently, loading at the component level is
easiest to get started.
Depends on the IDE being used

Eclipse doesn't like files at the
root of a component so mapping to sub-folders
in the component can make it easier.
Visual Studio manages things differently we
recommend good articles to help
http://jazz.net/library/article/117 – Sharing solutions
http://jazz.net/library/article/445 – Mapping source to components.

Component



Repository Layout (cont...)

Component structure
You can start with one component.
Recommendation is no more than 70K file 
per component (current performance
limitation that will be removed in a future 
release)
You can easily move folders between 
components while retaining version history.

Create streams with components that 
developers can load as-is in most cases



Managing Changes

Keeping logical sets of changes together
Move changes between change sets
Suspend to make sure changes are really isolated when working on tasks that 
should be isolated or when you aren't delivering all changes together.
Don't be afraid of closing change sets at stable points when making large 
changes.

Using patches to merge changes
With large changes that take 
several days, it's possible to 
collapse a set of closed change 
sets together 



Suspending and Resuming

Suspend before accepting when 
incoming causes conflicts

Discarding isn't that scary
We don't delete changes and you 
can always find them
The difference between 
suspend/resume and discard is 
how active change sets are handled. 
Discard will close them automatically.
You can always search for changes.



Encoding and line endings

Defaults are guessed and right in most cases, but...
If someone complains that on different platforms they are wrong, it's because 
the guess wasn't right.
It's easy to fix them all up.



Loading 

�Basic Patterns
Loading Eclipse Projects
Loading from Visual Studio

Advanced Load Scenarios
Loading Folders Outside of the Eclipse Workspace
Loading the Component Root Folder
Loading a Folder More Than Once
Loading a Single File

Loading using the Source Control Command Line Client

http://jazz.net/library/article/192 – Loading Content from Source Control



Undoing changes 

�You've delivered a change set but it's bad, what are the options?
If there is a portion of the change that is bad, just undo it and check-in a new 
change.
If a large portion of the changes are bad, you can select the change set in the 
History view and run “Reverse” to create an inverse of the change set. You can 
then modify, pick and chose, and deliver a new change set.
At last resort, you can remove the changes from a stream. You can discard 
change sets from a repository workspace then replace the component in the 
stream with the exact contents of the component in your repository workspace. 
This will remove change sets from history. Don't worry, nothing is lost as a 
backup baseline is create in the stream that would allow you to go back.

Recommendation is to deliver new change sets with reversals, as it makes it easier 
to track the audit trail and keep changes incoming. 



Sharing repository workspaces 

Think of repository workspaces as backups of 
your work.
Use them to work on a set of changes on two 
different machines.
You'll have to reload as you move between 
machines re-using the same repository 
workspace.

Re-loading a workspace will only load what is new.
You will get a warning at the top of the pending 

changes view that reminds you to reload



Stream structure guidelines 

Start simple
You don't require a stream per component
Add them as needed

Add a stream per team who needs some isolation
Add a stream per team which needs to collaborate
Add a stream as a quality gate (eg, dev to GA)

Setup of write permissions at the component 
level



Merging between streams 

Try not to deliver baselines between streams. 
If you do, they will be harmonised but don't 
provide
Always merge everything into the latest so 
that you can keep track of backported 
changes.

We have en enhancement to allow marking 
change sets as merged, even when the changes 
aren't incorporated. Signal that merging occurred in 
other ways.

Don't be afraid of overwriting on conflicts



Ad-hoc collaboration options 

Jazz Source Control provides several options 
for collaborating on change sets, each with it's 
own pros and cons

You have changes that you want someone else to 
try out

Ask them to change their flow target to your repo 
workspace and accept them. They will have to be closed.
Attach them to a work item.
You can accept back and forth between repo workspaces 
or with work items.
Work items are good because they track the reason for 
the changes with the changes and allow a conversation to 



Having shared files that shouldn't be checked-in

There is a pattern in which files are checked-
into the repository but shouldn't be modified 
and checked-in by accident.
Check in the files and close the change set.
Add a .cvsignore to ignore the files from now 
on, check it in and deliver all the changes.
From now on changes to those files will be 
ignored, so they can't be accidentally 
checked-in.
You can always un-ignore check-in and



Deleting repository workspaces and streams

When you delete repository workspaces and 
streams we don't actually delete the contents. 
Baseline before you delete so that you can 
always go back to the components.
Streams can't be deleted if they have 
snapshots associated with them. You can 
move the snapshots to another stream.
Instead of deleting you can also repurpose 
streams by taking stable streams and 
replacing their contents with component other 
b li



Binary Files
Check in considerations

No limit on binary file size

Binary files are delta compressed and similar content is shared

Currently can't delete source controlled content from the repository, is being 
considered in the future.

Build output
Output of builds can be stored with 
the build result

Builds when deleted will clean-up 
their content

However, large build results (eg, 
over 1GB) can affect server 
performance on upload. Instead, 
you can keep the large build results 
on shared storage and keep links 
in the build result.



Thanks

This was just a sneak peak
Many great articles and videos at jazz.net

http://jazz.net/projects/rational-team-
concert/learnmore/

For an introduction to Jazz Source Control see
http://jazz.net/library/presentation/20




