
Embedded software development
White paper
December 2009

AUTOSAR: from concept to code.
Introducing support for behavior modeling tool (BMT)
implementation, providing automated code and internal
behavior generation for AUTOSAR models

2 Introduction

3 Describing an AUTOSAR system

model using UML/SysML

4 An innovative approach to

AUTOSAR implementation

modeling

10 Generating the AUTOSAR

internal behavior and

implementation artifacts

12 Conclusion

Contents
Introduction

As modern vehicles continue to grow in complexity, the automotive industry has
been challenged to find more efficient development practices. As a result, the
industry established the Automotive Open System Architecture (AUTOSAR)
development partnership, which specifies a platform and methodology to improve
reuse, quality and efficiency in automotive electronic and electric (E/E) develop-
ment. Nowadays AUTOSAR is rapidly being adopted by automotive engineers
in companies around the world.

In this white paper, we will show how IBM Rational® Rhapsody® software, as
part of the IBM Rational software platform for automotive systems, enables you to
model E/E architectures, electronic control units (ECUs) and their embedded soft-
ware and now also support the automatic generation of both C source code and
AUTOSAR internal behavior artifacts for AUTOSAR software components (SWCs).

A few definitions

An AUTOSAR application consists of many components, including the software
architecture that’s composed of AUTOSAR atomic software components and the
behavior or implementation of each one.

Unified Modeling Language (UML)/Systems Modeling Language (SysML) are
widely used modeling languages for specifying and designing software applica-
tions and include powerful behavioral modeling notations such as statecharts
and activity diagrams.

AUTOSAR: from concept to code.
Page 2

AUTOSAR: from concept to code.
Page 3

Highlights
Describing an AUTOSAR system model using UML/SysML

Graphical models are a powerful method for capturing an AUTOSAR system,
providing the benefits of abstraction from a design standpoint while making it
easier to communicate the design intent. UML and SysML are widely used stan-
dards and enable the use of domain-specific concepts, making them an excel-
lent fit for AUTOSAR. The method we describe here uses a UML/SysML–based
AUTOSAR profile with domain-specific AUTOSAR terminology to express the
SWCs, interfaces, ECUs and system topology using various diagrams.

Capturing and specifying the system under development

The process for capturing the system under development (SUD), which might
be an entire E/E system for a vehicle or a subsystem out of the E/E system,
includes the following steps:

Capture the SUD from a functional viewpoint using the software component •	
diagram. This diagram allows engineers to define the SWC and the commu-
nication between them over the AUTOSAR Virtual Functional Bus (VFB).
We assume that the requirements capture and analysis as well as the logical
analysis on vehicle level have been already completed.
Capture the electrical architecture for the SUD using an ECU diagram and •	
a topology diagram. First, the ECU diagram captures the ECUs by describ-
ing the hardware configuration details for each individual ECU type and its
ports. Second, the topology diagram is used to define the physical (electrical)
architecture of the SUD, using ECU instances (described in ECU diagrams)
and the CAN, LIN and Flexray buses that connect them.

UML and SysML are widely used

standards and enable the use of

domain-specific concepts, making

them an excellent fit for AUTOSAR.

The process for capturing a system

under development includes a num-

ber of steps.

AUTOSAR: from concept to code.
Page 4

Highlights
Partition the SUD by mapping the SWCs to the ECU instances in the topol-•	
ogy diagram. Thus the SWCs become atomic software components.
Define the scheduling of the different runnable elements for each atomic •	
software component using internal behavior diagrams. An internal behav-
ior diagram specifies the internal scheduling of runnable entities and the

interface to the RTE for a specific software component. The actual imple-
mentations of these runnable entities (code bodies or the algorithms them-
selves) are either directly captured in code or defined using a behavioral
modeling tool.

An innovative approach to AUTOSAR implementation modeling

An alternative approach to explicit definition of the AUTOSAR internal behavior
of an SWC is to integrate the AUTOSAR system architecture with UML/SysML
implementation and design models using Rational Rhapsody software. This
approach involves using UML/SysML designs, which hide the complexity of
the explicit internal behavior design and implementation from the designer.
AUTOSAR internal behavior artifacts can be generated automatically by Rational
Rhapsody software as needed, based on the actual implementation and support-
ive tables. Thus, software engineers are able to reduce the amount of time they
have to spend handwriting code.

Using an abstraction layer to mask complexity

An abstraction layer allows users to implement an atomic software component
with a UML/SysML C-implementation model by defining a mapping between
the two domains—the UML/SysML C-implementation domain and the AUTOSAR
domain—based on a one-to-one correspondence between UML/SysML active
elements and AUTOSAR runnable entities.

An alternative approach to explicit

definition of the AUTOSAR internal

behavior of an SWC is to integrate

the AUTOSAR system architecture

with UML/SysML implementation

and design models using Rational

Rhapsody software.

An abstraction layer allows users

to implement an atomic software

component with a UML/SysML

C-implementation model by

defining a mapping between the

two domains—the UML/SysML

C-implementation domain and the

AUTOSAR domain.

AUTOSAR: from concept to code.
Page 5

Highlights
Rational Rhapsody implementation blocks (RIMBs) act as bridges between the
AUTOSAR domain and the UML/SysML implementation domain, which the
following section explains in more detail.

Figure 1: The RIMB acts as an abstraction layer, mapping the green-colored AUTOSAR SWC LightManager
to the white-colored SysML/UML implementation LightManagerImpl.

RIMBs act as bridges between the

AUTOSAR domain and the UML/

SysML implementation domain.

AUTOSAR: from concept to code.
Page 6

Highlights
Using Rational Rhapsody implementation blocks to implement AUTOSAR application

software components

RIMBs are used by instantiating them as parts inside atomic software component
types. Those parts are called Rational Rhapsody implementation block objects
(RIMBOs). They are responsible for defining an AUTOSAR internal behavior
and implementation definition, along with actual C-code implementation for that
atomic software component. In particular, they are responsible for:

Receiving data arriving on receiver ports.•	
Handling the received data.•	
Sending data over sender ports.•	
Calling operations on client ports.•	
Implementing operations on server ports.•	
Performing calculations and algorithms needed for or during the above, •	
including executing statecharts.

RIMBs may have (regular) operations and active operations, an active elements
table, exclusive area settings, interrunnable attributes and (regular) attributes.
An operation, active or not, may call other nonactive operations in its implemen-
tation. When an operation on a RIMB is designated as active, it will be mapped
to AUTOSAR runnable entities. Each active operation defines execution policy
as either periodic or asynchronous. In case it is asynchronous, the user will
specify an additional activation policy via a dedicated table called the Access &
Activation table, described later.

RIMBOs are responsible for defining

an AUTOSAR internal behavior and

implementation definition, along with

actual C-code implementation for

that atomic software component.

RIMBs may have (regular) opera-

tions and active operations, an

active elements table, exclusive

area settings, interrunnable attri-

butes and (regular) attributes.

AUTOSAR: from concept to code.
Page 7

Highlights
RIMB ports, interfaces, port accessors and handlers

Like an AUTOSAR atomic software component, RIMBs have two kinds of ports
with corresponding interfaces: RIMB Sender/Receiver (S/R) ports, provided or
required, and RIMB Client/Server (C/S) ports, provided or required. The attri-
butes of a RIMB S/R port can be either a C-type or a Rational Rhapsody Event.
The RIMB C/S interface cannot have attributes. Both kinds of ports, related
attributes and operations can be detailed in Rational Rhapsody software so that
all kinds of AUTOSAR internal behavior can be realized.

Rational Rhapsody software can automatically generate several helper func-
tions, freeing developers from having to write specific run-time environment
(RTE) application programming interfaces (APIs) and facilitating easy han-
dling of received data and maintenance of the application code. These functions
are Receivers, Handlers, Receiver-and-Handlers, Senders and Callers.

Receivers. •	 Generated for RIMBs and meant to be called by active operations.
A receiver is generated per attribute on a receiver port of the RIMB. It calls
RTE APIs to retrieve the value of the AUTOSAR data element connected to
that attribute.
Handlers.•	 Provides useful functionality that users may call in active operations
following a call to a receiver.

Receiver-and-Handlers. •	 Generated per attribute on a receiver port of a RIMB.
Senders. •	 Generated per attribute on a sender port of the RIMB.
Callers.•	 Generated per operation on a client port of the RIMB.

Note that the user may control the tool behavior to generate any and all of
those helper functions.

Rational Rhapsody software can

automatically generate several helper

functions, freeing developers from

having to write specific RTE APIs

and facilitating easy handling of

received data and maintenance of

the application code.

Users can control the behavior of the

Rational Rhapsody tool to generate a

variety of helper functions.

AUTOSAR: from concept to code.
Page 8

Highlights
RIMB attributes and interrunnable variables

RIMBs may have regular attributes. All operations, active or not, may access
those attributes. Users who want their code to work regardless of whether the
SWC type is singly or multiply instantiated should access attributes only via
generated setters and getters. A RIMB attribute may be designated as an inter-
runnable variable. In that case, Rational Rhapsody software will generate
AUTOSAR interrunnable variables, and the setters and getters will use the
RTE API to access it. This is another example of how the new code generation
capabilities for AUTOSAR in Rational Rhapsody software relieve the software
engineer from having to handwrite code, thus reducing the risk of manual errors.

Figure 2: The RIMB logic may be defined using a statechart, leveraging the automatic generated acces-
sors, which directly link the RTE APIs with the model.

The new code generation capabilities

for AUTOSAR in Rational Rhapsody

software relieve the software engineer

from having to handwrite code, thus

reducing the risk of manual errors.

AUTOSAR: from concept to code.
Page 9

Highlights

Figure 3: The generated code for the statechart and the generated accessors directly link the RTE APIs
with the model, thus reducing the likelihood of coding errors that can be common in manual programming.

The Access & Activation table

The Access & Activation table specifies the following for each active element:

The activation policy of the active element•	
The data elements on ports to which the active element has access•	
The operations on ports to which the active element has access•	
The interrunnable variables to which the active element has access•	
The exclusive areas in which the active element runs or which it may enter•	

By linking the RTE APIs with

the model, you can reduce the

likelihood of coding errors.

The Access & Activation table

specifies the attributes for each

active element.

AUTOSAR: from concept to code.
Page 10

Highlights
The table has the following columns:

Active element: •	 denotes an operation that will be the entry point for a
runnable entity
Activation policy: •	 relates to the RTE event to trigger the activation of
the operation

Context: •	 defines the RIMB ports, to be used as context for the selection of
relevant interfaces, to define the specific elements in the “elements” column
Elements: •	 defines the specific related elements in the interfaces implementing
the ports

Generating the AUTOSAR internal behavior and implementation artifacts

The information defined in the Access & Activation table will drive some of
the generation of AUTOSAR internal behavior and implementation artifacts.
So Rational Rhapsody software will generate a runnable entity for every active
element. All access elements, RTE events and wait points are automatically
generated. The tool will analyze the concrete connectors between the RIMB
ports and where they are used and will define the specific AUTOSAR inter-
nal behavior artifacts accordingly. In some cases, the user may choose to
use existing elements in the AUTOSAR design instead of generating new
ones. This capability allows users to mix manually defined artifacts with arti-
facts generated by Rational Rhapsody software.

The information defined in the

Access & Activation table drives

some of the generation of

AUTOSAR internal behavior and

implementation artifacts.

AUTOSAR: from concept to code.
Page 11

Highlights

Figure 4: The AUTOSAR internal behavior artifacts shown in the browser at the left-hand side are derived
from the Access & Activation table, shown here for the LightManager RIMB type.

Gaining flexibility and supporting reuse with the abstraction layer

The abstraction layer connects the AUTOSAR and UML/SysML C-implementa-
tion domains, based on the concept of UML/SysML active elements. The con-
tained active elements of a RIMB map one-to-one with an AUTOSAR runnable
entity. The design concepts used support a great deal of flexibility in defining
the behavior for an AUTOSAR SWC while allowing access to all AUTOSAR
internal behavior features. The AUTOSAR activation policy for active elements
that may use any AUTOSAR RTE event as a trigger is fully supported. The

category of the generated AUTOSAR runnable entity may be controlled via

the receiveMethod tag and interrunnable variables. Exclusive areas are also
supported. The active operations and the RIMB doExecute() can contain any
code, which adds further flexibility. In addition, as the RIMB may refer to
other UML/SysML implementations simply by instantiating those, the possible
reuse level is high and extends beyond AUTOSAR implementations.

AUTOSAR internal behavior artifacts

are derived from the Access &

Activation table.

The design concepts in Rational

Rhapsody software support a great

deal of flexibility in defining the

behavior for an AUTOSAR SWC while

allowing access to all AUTOSAR

internal behavior features.

Conclusion

We have shown how an AUTOSAR system model design can be defined using
a UML/SysML design and implementation tool, and then how the actual
implementation of the various AUTOSAR atomic software components can be
defined using the commonly used UML/SysML design and implementation
concepts, in an integrated single environment.

We believe that the suggested approach has inherent benefits associated with
it. By using a well-known and commonly used design language such as UML/
SysML, you can reduce the need for highly skilled AUTOSAR design engineers
to perform common engineering tasks and software development. You can also
create an environment that supports greater reuse of intellectual property and
makes it easier to develop clear documentation of it. We see it as a useful and
practical engineering solution on top of the explicit definition of the internal
behavior and implementation sections defined in the AUTOSAR standard.

Rational Rhapsody software makes it easier for you to gain the benefits from
the presented approach. The code generation capabilities for AUTOSAR leads
to improved code quality, faster time to market and improved developer pro-
ductivity and efficiency. Furthermore, because Rational Rhapsody software is
tightly integrated with the IBM Rational software platform for automotive systems,
you can gain additional benefits, such as integrated requirements sharing across
globally distributed teams and projects and improved collaboration in the prod-
uct development process.

For more information

To learn more about how IBM can help you model and generate AUTOSAR-
compliant C code, contact your IBM representative or IBM Business Partner,
or visit:

ibm.com/software/rational/solutions/automotive/invehicle.html

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
December 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, Rational and Rhapsody
are trademarks or registered trademarks of Interna-
tional Business Machines Corporation in the United
States, other countries, or both. If these and other
IBM trademarked terms are marked on their first
occurrence in this information with a trademark sym-
bol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time
this information was published. Such trademarks
may also be registered or common law trademarks
in other countries. A current list of IBM trademarks is
available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Other company, product, or service names may
be trademarks or registered trademarks or service
marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible for
any damages arising out of the use of, or otherwise
related to, this documentation or any other docu-
mentation. Nothing contained in this documentation
is intended to, nor shall have the effect of, creating
any warranties or representations from IBM (or its
suppliers or licensors), or altering the terms and
conditions of the applicable license agreement
governing the use of IBM software.

Each IBM customer is responsible for ensuring its
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification
and interpretation of any relevant laws and regula-
tory requirements that may affect the customer’s
business and any actions the customer may need
to take to comply with such laws.

RAW14190-USEN-00

http://www.ibm.com/software/rational/solutions/automotive/invehicle.html
http://www.ibm.com/legal/copytrade.shtml

