

November 2005

Managing XML for Maximum Return

By C. M. Saracco
IBM Software Group

Managing XML Data
Page 2

1. Overview
In an industry rife with acronyms, one three-letter combination makes
many information technology leaders shudder: ROI (return on
investment). Perhaps that’s because ROI for any given project – or any
given investment in supporting infrastructure – is usually difficult to
quantify or predict. Yet few technology initiatives are funded without a
convincing business case that describes the anticipated business value.

This paper explores the need for – and value of – managing XML data.
It also reviews key technology alternatives and outlines which options
may be most appropriate based on your business needs. But first, it
addresses perhaps the most obvious question: why should you care?

2. Why XML?
Since its debut in the 1990s, XML (eXtensible Markup Language) has
emerged as a critical enabler to various technology initiatives. Service-
oriented architectures (SOA), enterprise application integration (EAI),
enterprise information integration (EII), Web services, and
standardization efforts in many industries all rely on or make use of XML
as an underlying technology.

Why? XML provides a neutral, flexible way of exchanging data among
different devices, systems, and applications. Data is maintained in a
self-describing format to accommodate a variety of ever-evolving
business needs. Free software is available to help firms create, process,
and transform XML data. All major industry vendors provide some level
of XML support in their software offerings, and many have sought to
exert considerable influence over XML-related standards – a sure sign of
the technology’s importance. Indeed, few industry analysts question the
importance of XML today, and some are quite bullish on its prospects.
ZapThink, for example, projects that the market for XML information
exchange will approach nearly $3.8 billion by the end of the decade.

 The business drivers behind XML’s popularity are straightforward:

 A demand for increased business agility and efficiency
 A need to contain costs and “do more with less”
 A mandate to conform to regulatory requirements or comply with

de facto industry standards

Let’s look briefly at each of these in turn.

Building an agile business that can quickly respond to new market
demands and competitive pressures implies that the underlying IT
infrastructure must be easy to adapt and evolve. For example, tracking
new information about customer preferences or buying behaviors can’t

CONTENTS

1. Overview 2

2. Why XML? 2

3. Managing XML: Need, Benefits 3

4. Managing XML: Options 4

 4.1 Large Objects and Tables 5

 4.2 Decomposition 5

 4.3 XML-Only Data Management 6

 4.4 Hybrid Data Management 7

5. Managing XML: IBM Solution 8

 5.1 Relational Extensions 8

 5.2 Native XML Support 9

 5.3 Early Successes 12

6. Summary 13

7. References 14

Managing XML Data
Page 3

translate into a significant overhaul of a firm’s production database; such
an undertaking would be too time-consuming and costly. Similarly, firms
can’t afford to have the success of a new business partnership or
acquisition hampered by an inability to exchange information between
different systems.

Cost containment implies a need to make maximum use of new and
existing IT assets. It counters the notion of “rip-and-replace” inherent in
some technology proposals. SOA enables firms to create building
blocks – or services – for their IT assets, thereby promoting greater code
reuse and a more adaptable infrastructure. XML is emerging as the
preferred format for services to receive and publish data. It runs on a
wide range of hardware devices, it’s supported by proprietary and open
source software, and it can accommodate a variety of data content.

Regulatory requirements and industry-specific initiatives are also driving
the deployment of XML. As more business transactions are conducted
through Web-based interfaces and electronic forms, government
agencies and commercial enterprises bear greater responsibility for
preserving the original order, request, claim, or submission. Doing so
can be essential for legal reasons and good customer relations. Again,
XML provides a straightforward means of capturing and maintaining the
data associated with these electronic transactions; indeed, electronic
forms are commonly based on XML. Furthermore, consortiums in many
vertical industries and application-specific areas have already begun to
define XML-based schemas to promote exchange of data. These
include such diverse efforts as ACORD in the insurance industry, FpML
and FIXML in the financial services industry, RosettaNet in supply chain
management (SCM), XBRL for reporting in business reporting
applications, and others.

Finally, many firms are revisiting their proprietary electronic data
interchange (EDI) efforts in favor of XML-based solutions. Cost savings
are part of the reason. According to one study published in Computer
Economics, XML often supports business-to-business transactions more
economically than EDI. Indeed, 88% of the surveyed XML users
received a full return on their investments compared with only 65% of the
EDI users. Furthermore, EDI solutions were more likely to exceed total
cost of ownership (TCO) expectations than XML-based solutions. More
than 40% of the EDI users suffered from higher-than-anticipated TCO,
while only 17% of the XML users did so.

3. Managing XML: The Need and Benefits
All this is leading many organizations to search for a way to effectively
manage their messages and documents written in XML. Often, their
motivation is straightforward: as XML becomes more critical to the
operations of an enterprise, it becomes an asset that needs to be

Managing XML Data
Page 4

shared, searched, secured, and maintained. Depending on its use, XML
data may also need to be updated, audited, and integrated with other
data. File systems aren’t well-suited to supporting many of these tasks,
particularly when scalability, concurrency, recovery, transaction
management, and usability issues are taken into consideration.
Database management software is a more appropriate choice, although
until recently support for XML in many commercial offerings was
somewhat limited.

Benefits of storing – or persisting – XML in a database management
system vary according to the specific system in use. In a moment, we’ll
discuss several common architectural options and the trade-offs among
them. However, potential benefits include:

• Improved employee productivity
• Improved IT resource utilization
• Reduced labor costs
• Quicker “time to value” for certain applications

You’ll learn how this is possible as we explore different options for
managing XML data and review IBM’s solution.

4. Managing XML: The Options
The growing use of XML hasn’t been lost on database management
systems (DBMS) vendors. Relational DBMS vendors began extending
their products to accommodate “unstructured” and “semi-structured” data
years ago, while other vendors built new, specialized DBMS products
specifically to support XML. More recently, some relational DBMS
vendors, such as IBM, moved to merge these two distinct efforts into one
offering. The result is a multi-functional DBMS that works efficiently with
data modeled in both tabular and hierarchical structures. Because XML
files typically consist of nested hierarchies, the ability to effectively store,
search, and update data in these hierarchies is significant.

Early attempts to support “non-traditional” forms of data often involved
straightforward extensions to commercial relational DBMS products, and
some of these extensions were ultimately applied to managing XML
data. For example, character and binary large objects (CLOBs and
BLOBs) are two data types commonly used to store the entire contents
of an XML file as a single column in a row of a table. Furthermore, some
vendors enable users to “shred” or decompose an XML document
across multiple columns in one or more tables.

These early efforts to extend relational DBMS products to accommodate
various forms of “non-traditional” data had merit and can be successfully
used to address the needs of certain XML-based applications. However,
each of these technologies introduced limitations that ultimately led

Managing XML Data
Page 5

some vendors to offer “native” support for XML data, which we’ll discuss
shortly.

4.1 Large Objects and Tables
Character or binary large objects (CLOBs or BLOBs) are one means of
storing XML data in a tabular structure. By storing the XML document
intact in a column of a row within a table, users don’t need to break their
document into pieces and map these pieces into various columns of one
or more tables. Thus, the data modeling effort is simple and
straightforward. Furthermore, complex joins aren’t needed to reconstruct
the original XML document because the document was never
decomposed prior to storage.

However, using large objects – character or binary – has its drawbacks.
Searching and retrieving a subset of the document can be expensive.
New indexing technology may be needed to avoid the high cost of
parsing XML for each query to determine which portions of the document
satisfy the specified search criteria. Furthermore, updating large objects
can be expensive. Often, client applications must provide the entire
document to the DBMS for update, even if it only changed a small
portion of it. This can result in unacceptably high processing costs,
particularly if the XML document is very large.

4.2 Decomposition (“Shredding”) into Tables
Performance problems for retrieving and updating portions of XML
documents stored in large object columns led some vendors to offer
document decomposition technology. This approach enables an
administrator to map the elements and attributes of an XML document to
columns in one or more tables. XML document values are then stored in
these tables without their original tags.

“Shredding” XML data enables users to work with it in a purely tabular
format, which implies several advantages. Users can leverage their
existing SQL programming skills, as well as popular query and reporting
tools, to work directly with selected portions of the “converted” XML data.
This minimizes the need to develop new skills, which can translate into a
higher level of productivity and even shorter application development
cycles. Furthermore, runtime performance issues may be more
predictable. No new indexing technology needs to be introduced, and
updates against the converted XML data can be handled as efficiently as
any other updates to data in standard SQL columns.

Unfortunately, the benefits of decomposing XML data often depend on
the nature of the underlying XML document. This is because many XML
documents contain heavily nested parent/child relationships and irregular
structures. Shredding such documents may require a large number of
tables, some of which may need to have values generated for foreign

Managing XML Data
Page 6

keys to capture the relationships inherent in the original XML documents.
As an example, one firm with 1500 electronic forms needed more than
30,000 tables to contain their data.

Even in simpler cases, the contents of a single electronic form can
seldom be normalized into a single table. Thus, mapping the XML data
to a relational schema and managing the resulting environment can
result in considerable labor for a database administrator. In some cases,
it may not even be practical to shred an XML document, not only
because of its internal complexity but because it may have many sparse
attributes (information that’s “missing” or irrelevant for a given record).
Modeling such documents using a normalized relational data model is
often too complex and expensive; however, de-normalizing the model
may not be feasible because of built-in database limits for the maximum
widths of rows or the maximum number of columns per table.

Moreover, querying a “shredded” document can require complex SQL
statements that include many joins. Such statements are often difficult to
develop and tune; this increases development costs, impedes “time to
value,” and ultimately causes runtime performance problems that impact
the productivity of multiple users.

Furthermore, changes to the XML schema often break the mapping
between the original XML schema and the relational database schema,
resulting in added labor costs. For example, the introduction of multiple
email addresses for a single customer may require that a new table be
created to comply with good database design principles (particularly
normalization). However, introducing this new table implies
implementing new primary/foreign key constraints, granting appropriate
user access privileges, changing certain application logic, etc. Such
work can be substantial. Consider a relatively optimistic case in which a
firm might need to update its 1000 electronic forms once or twice a year,
and each form was mapped to a mere three tables. This would result in
3000 to 6000 schema changes that would have to be manually
managed.

Finally, any inherent ordering of elements or any digital signatures
associated with the original XML document are lost when the document
is decomposed into columns spanning one or more tables. For some
applications, preserving the original form of the XML document – along
with any digital signature – is critical.

4.3 XML-Only Data Management
Technical challenges associated with managing XML data in commercial
relational DBMSs as large objects or through decomposition services
prompted several firms to build XML-only database management
products from scratch. By storing data in a hierarchical format and
supporting a query language designed explicitly for XML data (XQuery),

Managing XML Data
Page 7

these products avoided many of the performance, schema management,
and usability problems associated with other approaches.

However, this new breed of XML-only DBMS offerings failed to garner
significant customer interest or support. Industry analysts estimate that
the combined revenues of all XML-only DBMS products represent a tiny
fraction of overall DBMS sales. Indeed, several early entrants into the
XML DBMS field have gone out of business, shifted their focus, or been
acquired by other firms.

The reasons why XML-only DBMS products have struggled vary. Many
firms are reluctant to introduce a new, unproven DBMS environment into
their IT infrastructures. Integration with existing relational DBMS
products may be limited or non-existent, which poses a problem for the
many firms that need a cohesive, enterprise-wide view of their critical
data assets. Support for high levels of scalability, reliability, and
availability are seldom robust in new DBMS products. Finally, few
database administrators and application programmers have substantial
skills in managing XML databases or querying collections of XML data
using XQuery. Thus, introducing a new, unproven DBMS into an IT
infrastructure can compromise its efficiency. Although skilled XML
programmers may enjoy some productivity gains, high integration costs
and system management challenges often mitigate overall benefits.

4.4 Hybrid Data Management
The growing use of XML and the lack of a comprehensive, efficient
solution for managing this data along with other forms of corporate data
has led to the development of hybrid database management software.
Such software seeks to provide first-class support for both tabular and
XML data structures, as well as SQL and XQuery. The objective of such
systems is to preserve the benefits associated with commercial relational
DBMS offerings – including high levels of scalability, reliability,
availability, concurrency, and customer support – while making it easy to
manage and integrate existing corporate data with data modeled in
hierarchical XML structures.

Achieving this objective is best accomplished by building on a proven
relational DBMS base and crafting new core capabilities within the
system to efficiently index, search, and store XML data. Ideally, such a
DBMS should optionally support validating XML data prior to storage and
provide a simple means of coping with changing schemas.

For firms with existing relational DBMS environments, this approach
enables them to derive new value from their investment. A hybrid DBMS
enables users to seamless share, store, retrieve, and update both
existing corporate data and XML data that had previously existed only in
flat files or transient messages. Furthermore, it minimizes the amount of
new skills required to incorporate XML data into their database

Managing XML Data
Page 8

environments, reducing labor costs and potentially speeding project
delivery cycles.

For firms concerned only with XML data management, the hybrid
approach offers them a reliable and scalable infrastructure, the ability to
leverage “relational” tools against their native XML data through the use
of SQL/XML functions, the option of searching data in a query language
designed for XML (XQuery), and the backing of major industry vendors.
In addition, labor-intensive tasks such as mapping XML schemas to
relational schemas and writing complex SQL statements simply to query
“converted” XML data are minimized or eliminated, which can improve
both staff productivity and development cycle time.

5.0 Managing XML: The IBM Solution

IBM’s solution for managing XML data provides customers with a highly
flexible, reliable, and efficient DBMS environment. Firms can use large
objects or decomposition technology to model their XML data in tables,
just as they’ve been able to do for years. However, DB2’s new Viper
release allows users to store, query, and process XML data in its
hierarchical structure without sacrificing traditional DBMS support for
transaction management, security, query optimization, and the like. We’ll
briefly review the first two options and then focus on the new capabilities
in DB2’s Viper release for managing XML data in its native format.

5.1 Relational Extensions for XML
For years, DB2 customers have been able to use large objects, user-
defined types, user-defined functions, and administrative tools to store
XML data within tables. IBM continues to support these options and has
even provided new capabilities its Viper release. Collectively, IBM’s
relational extensions for managing XML data with large objects or
through XML decomposition and publishing technologies enable users
to:

• Store XML data in a single column with minimal DBMS
awareness of the internal structure of the XML data.

• Extract elements from an XML document and store their

contents in multiple columns of one or more tables, in effect
“converting” the XML data to tabular data. With Viper, new
shredding technology supports larger XML documents and offers
potential performance improvements.

• Store XML data type definitions (DTDs) for use in validating XML

data.

Managing XML Data
Page 9

• Compose and publish XML fragments from tables through the
use of SQL/XML functions and mapping files. For example,
users can write SQL queries that return results as well-formed
XML.

• Invoke system-supplied stored procedures to administer their

databases, generate XML documents, or “shred” XML
documents into tables.

• Invoke system-supplied functions to insert XML documents,

retrieve XML documents, extract element content or attribute
values, and update XML documents.

These capabilities are most useful for situations in which users primarily
want to perceive XML data as being part of a tabular data model that can
be queried using SQL or SQL/XML functions. Applications that require
high performance for searching and retrieving subsets of XML
documents, that must cope with frequently changing XML schemas, or
that require extensive use of XQuery and navigational expressions may
be better served through new DB2 capabilities for native storage and
management of XML data.

5.2 Native Storage and Management of XML
DB2’s Viper release, now in beta, features extensive new support for
XML as a first-class data type. This “native” support for XML includes
new storage techniques for efficient management of hierarchical
structures inherent in XML documents, new indexing technology to
speed retrieval of subsets of XML documents, new capabilities for
validating XML data and managing changing XML schemas, new query
language support (including native support for XQuery as well as new
SQL/XML enhancements), new query optimization techniques,
integration with popular application programming interfaces (APIs), and
extensions to popular database utilities. The result is a single DBMS
platform that offers the benefits of a commercial relational environment
and a native XML database environment.

Fig. 1 illustrates the overall architecture of DB2 Viper. Both tabular and
hierarchical storage models are supported through common engine
components. Furthermore, client applications that need to work with
both traditional SQL and XML data can use either SQL/XML or XQuery
statements (or a combination of both). Full support for DB2 transaction
semantics, security mechanisms, and distributed computing constructs
(such as stored procedures) are supported for both SQL and XML data.

Managing XML Data
Page 10

Fig. 1: DB2 Viper architecture

With DB2 Viper, collections of XML documents are captured in tables
that contain one or more columns based on a new XML data type. This
enables users to employ familiar SQL data definition language (DDL)
statements to create database objects for storing their XML, although
DB2 will treat the XML data different internally. Specifically, it will
automatically employ a custom storage management architecture that
preserves the hierarchical structure of the original XML data and
supports rapid retrieval of such data (or portions of it).

Tables created with XML data types may also contain columns with
“traditional” SQL data types, including numeric data, character strings,
date/time data, and others. Here’s a simple example of how to define a
table that maintains both types of data:

CREATE TABLE mytable (msgID INT PRIMARY KEY NOT NULL, msg
XML)

After creating tables, users can issue INSERT statements or invoke the
DB2 IMPORT facility to add data to their tables; such data may include
both “traditional” SQL data types as well as DB2’s new XML data type.
Inserting or importing data in this manner makes it easy for customers to
leverage their existing DB2 skills. However, these mechanisms hide the
fact that DB2 manages the XML data in a way that’s quite different from
how it manages traditional SQL data types. In short, a parsed
representation of each XML document is stored in its hierarchical format.
If users instruct DB2 to validate their XML data prior to storage based on
an XML schema, DB2 will annotate all nodes in the XML hierarchy with
information about the schema types; otherwise, it will annotate the nodes
with default type information. Furthermore, DB2 will automatically split
portions of XML documents across multiple database pages as needed.

Managing XML Data
Page 11

To help speed searches, users can create indexes for specific elements
or attributes of their XML documents. Such indexes are defined over
XML patterns – essentially, XPath expressions without predicates – and
can speed the retrieval of queries targeting specific portions of XML
documents. Full text search over XML documents is also supported, and
specialized text indexes can be defined to improve performance of such
searches.

Because DB2 Viper is a bilingual product, users can search both XML
data and traditional SQL data types with SQL or XQuery. Indeed, a
single query can span XML and traditional SQL data stored within a
single database. Furthermore, with WebSphere Information Integrator,
firms can even write SQL-based queries that join and union XML data
maintained in external files with data in DB2 and other non-IBM data
sources. While details of supported query language capabilities are
beyond the scope of this paper, it’s important to note that IBM’s
implementation is based on existing and rapidly emerging standards for
both SQL and XQuery.

To efficiently process queries of XML data, DB2 leverages cost-based
query optimization technology to evaluate different data access
strategies and select a low-cost option. The large size of many XML
documents, the complexity of query predicates found in many XPath
expressions, and the need to preserve the order of elements contained
within XML documents prompted IBM to develop new query operators
and a new join algorithm specifically to speed searches of XML data.
The join algorithm provides for concurrent evaluation of “and” and “or”
query predicates, as well as employs multiple cursors on XML indexes to
locate the desired information quickly. Use of this new join technology is
transparent to application programmers; DB2 will automatically evaluate
queries and determine when it’s beneficial to use it.

To serve a wide range of programmer needs, DB2 Viper enables native
XML data to be accessed through Java (JDBC), C (embedded SQL and
call-level interface), COBOL (embedded SQL), PHP, and Microsoft’s
.NET environment (through the DB2.NET provider). To help
administrators monitor and tune their databases, familiar facilities such
as DB2 Snapshot, RUNSTATS, and EXPLAIN provide a “snapshot” of
database activities at a given point in time, collect statistics about the
nature of data within a database (including XML data), and report on the
access path selected by the query optimizer (including new information
about the use of indexes on XML data). Furthermore, DB2’s built-in
repository stores information relevant for validating XML data (including
XML schemas and data type definitions) as well as other XML artifacts.

Managing XML Data
Page 12

5.3 Early Successes
Interest in DB2’s new XML support has been strong, with firms in various
industries already evaluating an early release of the technology.
Storebrand, one of Norway’s largest providers of insurance and financial
services, is among these firms. Storebrand was an early adopter of SOA
and Web services, perceiving these technologies as important for
helping the firm improve its customer focus and deliver greater value at a
lower cost. According to Storebrand Senior Enterprise Architect Thore
Thomassen, the firm considers XML to be an important integration
mechanism. As such, XML data is an important asset that must be
stored, managed, shared, and analyzed to support various business
initiatives.

Thomassen noted that the firm’s early experiments with the alpha
release of DB2 Viper were promising. Although Storebrand found each
of DB2’s three storage options – large objects, decomposition (or
shredding), and native support – to be useful, Thomassen discovered
distinct advantages for native XML support in certain comparative test
situations. For example, preliminary work in test environments indicated
that DB2’s native XML support could help them

• Reduce the time it took to generate an internal report from more
than 1 day to less than 10 minutes.

• Cut the I/O portions of select Web services an average of 65%
and decrease the maintenance time for these Web services by
20%.

• Implement a schema change (in response to new business
requirements) in a few minutes instead of requiring a full day to
prototype and test the change and a full week to deliver it.

• Minimize the labor required to program six new database search
and retrieval scenarios. Using native XML features, a
programmer completed the task in a ½ hour. By contrast, the
same work required 2 hours with decomposition and 8 hours
with CLOBs.

In particular, Thomassen reviewed the results of one test project and
noted, “Development time using the (DB2) XML native store is overall
radically improved over shredding. Also, shredding often results in
complex mappings, which mean that the developer needs deep
competence in constructing SQL.”

Indeed, internal IBM studies have also demonstrated similar potential
benefits. One comparative study published on IBM developerWorks
involved a Web-based PHP application that used XML for capturing
customer input and publishing data. Specifically, it explored the design
and coding requirements for storing and searching the application’s data
using a traditional relational database environment (in which XML is

Managing XML Data
Page 13

shredded prior to storage) and DB2’s native XML support. Storing the
XML data in its native format simplified the database schema
considerably, resulting in only three tables of two columns each instead
of four tables with up to nine columns each. Furthermore, certain
aspects of the application, such as populating the database, were written
with only one-third of the code. Finally, accommodating a new user
requirement that resulted in an XML schema change was a more
straightforward undertaking because administrators didn’t need to
change the underlying database schema and application programmers
didn’t need to rewrite the logic of their code.

6.0 Summary
XML messages and documents have emerged as key assets in many
organizations, forcing IT executives and architects to find an effective
means of managing this data for maximum advantage. Previous
technology initiatives often fell short of achieving this goal. However, the
new IBM DB2 Viper release features hybrid database management
technology that incorporates proven relational capabilities with first-class
support for storing, searching, sharing, validating, and managing XML
data. The result is a reliable, scalable platform that provides high
performance for accessing and integrating “traditional” corporate data as
well as XML data.

Early adopters are already noting the labor savings, shortened
development cycles, and improved flexibility that DB2’s XML support
offers. In today’s environment, such benefits can quickly translate into
key competitive advantages.

Managing XML Data
Page 14

7. References and Related Reading

7.1 DB2 Materials
Beyer, Kevin, et. al. “System RX: One Part Relational, One Part XML,”
SIGMOD, June 2005.

Bhambhri, Anjul. “Firing up the Hybrid Engine,” DB2 Magazine, Quarter
3, 2005. (http://www.db2mag.com or
http://www.software.ibm.com/data/db2/xml)

“Comparing XML and relational storage: A best practices guide,” IBM
White Paper, IBM Corp., March 2005, IBM order number GC34-2497-00.
(http://www.software.ibm.com/data/db2/xml)

“The IBM approach to unified XML/relational databases,” IBM White
Paper, IBM Corp., March 2005, IBM order number GC34-2496-00.
(http://www.software.ibm.com/data/db2/xml)

Nicola, Mattias and Bert Van der Linden. ”Native XML Support in DB2
Universal Database,” Proceedings of the 31st Annual VLDB, 2005.
(http://www.vldb2005.org/program/paper/thu/p1164-nicola.pdf)

Singh, Hardeep and Amir Malik. “Use DB2 native XML with PHP,” IBM
developerWorks, Oct. 21, 2005. (http://www.ibm.com/developerworks)

Wong, Cindy. “Overview of DB2’s XML Capabilities: An introduction to
SQL/XML functions in DB2 UDB and the DB2 XML Extender,” IBM
developerWorks, Nov. 20, 2003. (http://www.ibm.com/developerworks)

7.2 General Materials
Bourret, Ronald. “XML and Databases,” self-published at
www.rpbourret.com, September 2005.

Linthicum, David S. “The ROI of Your SOA,” ebizq.net, July 10, 2005.

Schmeizer, Ronald. “The ROI of SOA,” ZapFlash, Jan. 27, 2005,
Document ID: ZAPFLASH-20050127.

“XML Economics Beat EDI in B2B Transactions,” Computer Economics,
July 2004.

7.3 Acknowledgments
Thanks to Seeling Cheung, Matthias Nicola, Hardeep Singh, and Thore
Thomassen for their contributions to this paper.

© Copyright IBM Corporation, 2005
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

11-05
All Rights Reserved.

Neither this documentation nor any part of it may be
copied or reproduced in any form or by any means or
translated into another language, without the prior consent
of the IBM Corporation.

DB2, DB2 Universal Database, IBM, and the IBM logo are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries or both.

Other company, product and service names may be
trademarks or service marks of others.

The following paragraph does not apply to the United
Kingdom or any other country where such provisions are
inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this
statement may not apply to you.

The information contained in this document is subject to
change without any notice. IBM reserves the right to make
any such changes without obligation to notify any person
of such revision or changes. IBM makes no commitment
to keep the information contained herein up to date.

The information contained in this document references
new products that IBM may or may not announce. The
specification of some of the features described in this
document may change before the General Availability
date of these products.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

