THE

IBM's new hybrid
DB2 puts the full
power of a relational
engine to work on a
truly native XML store
that sits side by side with

DB2’s relational data
repository.

NATIVE XML STORAGE <<<

HYBRID ENGINE

elational databases drive most businesses of any size today. Popular

and important as these databases are, they’re simply not a great

match for semi-structured (and hierarchical) content represented

in XML. Because enterprises have, in aggregate, trillions of dollars invest-

ed in relational data and relational database management systems (RDBMSs), simply

replacing RDBMSs with a pure XML store isn’t an option. Adding an XML-only data-

base into the infrastructure adds yet another integration and complexity challenge.

IBM is about to introduce true-native
support for both XML and relational data.
This evolutionary technology, now in
beta tests with a small group of IBM cus-
tomers, provides hybrid relational/ XML
storage from the ground up. That means
DB2 will no longer need the XML
Extender (just as it doesn’t need an SQL
Extender). DB2 will simply handle XML
natively. (There are varying definitions of
“native” XML support. To clear up the
confusion about what’s typically called
“native” today, see the sidebar on page 45.)

In the hybrid version, XML is han-
dled as a new data type. Nearly every
DB2 component, tool, and utility has
been enhanced to recognize and handle
this new data type. The new storage par-
adigm retains XML in a parsed, annotat-
ed tree form—similar to the XML
Document Object Model (DOM)—
that’s separate from the relational data
store (see Figure 1, page 44).

On top of both data stores (relation-
al and XML) sits one hybrid database
engine. That single engine can process
XQuery, XPath, SQL, and SQL/XML.
The engine features a bilingual query
compiler with parsers for both SQL and
XQuery. So developers can access infor-
mation using either language (or both

together) according to what makes the
most sense in specific situations. A hybrid
DB2 provides the flexibility to shift
(between XML and SQL) paradigms as
information management needs change.

Storing relational and XML data in a
database management system that under-
stands and supports both models at every
level (from the client, through the engine,
down to the disk) provides flexibility and
consistently fast performance. The XML
data inherits the same backup and recov-
ery, optimization, scalability, and high
availability DB2 offers for relational data.
Ultimately, a unified XML /relational data-
base keeps things simple by avoiding the
need to integrate XML and relational data
from separate stores.

NATIVE BENEFITS

The first generation of XML support in
relational databases was based on either
shredding (or decomposing) documents to
fit into relational tables or storing docu-
ments intact as character or binary large
objects (CLOBs or BLOBs). Each of these
choices attempts to force XML into a rela-
tional model. However, these approaches
have serious limitations in capability and

performance. The hybrid model stores
XML in a model similar to the DOM. The

BY ANJUL BHAMBHRI

XML data is formatted to buffered data
pages for faster navigation and query exe-
cution as well as simpler indexing.

When DB2’s true-native XML support
debuts with the next major release, exist-
ing support for storing XML documents
shredded in relational tables or intact as
CLOBs and BLOBs will continue. Support
for shredding is important because XML
can be used to feed existing relational
schemas. However, true-native storage
offers significant advantages in these areas:

Storage. DB2’s native XML technology
will store XML with node-level granulari-
ty instead of document-level. While inter-
acting with IBM’s native XML support, the
abstraction shown is a column of type XML
in a relational table. This column has no
maximum length and no mandatory con-
straining XML schema. Any well-formed
XML statement can be inserted into that
column. Therefore, the following state-
ment is a valid table definition:

Create table dept (deptlD int, deptdoc xml)

A table isn’t limited to a single col-
umn of any given type, so the following
statement is equally valid:

Create table dept2 (deptID int, deptinfo xml,
orgchart xml, employees xml)

In the physical storage layer, the pri-
mary storage unit in the IBM implemen-
tation is a node. A node exists on a page
along with other nodes from the same or
different documents. Each node is linked
not only to its parent, but also to its chil-
dren. As a result, navigating to a node’s

www.db2mag.com « DB2 magazine 43

parent, siblings, or children is highly effi-
cient, operating at little more than
pointer traversal speeds as long as the
next referenced node is on the same
page. Nodes can grow or shrink in size, or
they can be relocated to other pages
without rewriting the entire document.

Indexing. XML applications that
manage millions of XML documents
aren’t uncommon; indexing these large
collections of XML data is required to
provide high query performance. DB2
supports path-specific indexes on XML
columns so that elements and attributes
frequently used in predicates and cross-
document joins can be indexed.

The new XML values index can pro-
vide efficient evaluation of XML pattern
expressions to improve performance dur-
ing queries on XML documents. In con-
trast to traditional relational indexes, in
which index keys are composed of one or
more table columns specified by the user,
the XML values index uses a particular
XML pattern expression (subset of XPath
that doesn’t contain predicates, among
other things) to index paths and values in
XML documents stored in a single XML
column. The index can also fill in default
attribute and element values from the
schema at insertion time if the values
aren’t specified in the document. When

. FIGURE 1. DB2’s new XML-relational storage model.

creating an index, you can specify what
paths to index and as what type. Any
nodes that match the path expression or
the set of path expressions in the XML
documents stored in that column are
indexed, and the index points directly to
the node in storage that’s linked to its
parent and children for fast navigation.

Instead of providing index-access to
the beginning of a document, index
entries contain actual document node
position information. As a result, the
index can quickly provide direct access to
the nodes within a document and avoid a
document traversal. In addition, because
the index has this document node posi-
tion information, it understands the doc-
ument hierarchy and can perform con-
tainment tests. The index knows which
child nodes belong to the same ancestor
and can do appropriate filtering.

For example, here’s how to define an
index on all employee names in all docu-
ments in the XML column deptdoc:

create index idx1 on dept(deptdoc) generate
key using xmlpattern '/dept/employee/name’
as sql varchar(35);

The xmipattern is a path that identifies
the XML nodes to be indexed.

Because DB2 doesn’t require a single
XML schema for all
documents in an XML

Xuery wiﬂ!ﬂllﬂﬂ“ﬂ;ﬂ saL

Lanquage |
Flewiility

= |
I |
éi b

44 DB2 magazine * QUARTER 3, 2005

column, it may not
know which data type
to use in the index for a
given xmipattern. The
user must specify the
datatype explicitly in
the as sql <type> clause.

If a node matches
the xmlpattern but fails
to cast to the specified
index type, then no
index entry is created
for the node without
raising an error. A sin-
gle document
contain zero, one, oOr
multiple nodes that
match the xmipattern.

may

Thus there may be zero, one, or multiple
index entries for a single row in a table
(which is significantly different from
indexes on relational columns).

You can create indexes on multiple
path expressions on any given column of
type XML. Therefore, the following
statements are also valid:

create index idx1 on dept(deptdoc) generate
keyusing xmlpattern '/dept/employee/name’
as sql varchar(35);

create index idx2 on dept(deptdoc) generate
key using xmlpattern '/dept/employee/@id as
sqlint;

Furthermore, path expressions can
include both wildcards and descendant-
or-self axis traversal, so the following
statements are also valid:

Create Index IX3 on dept(deptdoc) generate
keys using xmlpattern '/dept/*/name' as sql
varchar(20)

Create Index 1X4 on dept(deptdoc) generate
keys using xmlpattern '//office' as sql double

Create Index IX5 on dept(deptdoc) generate
keys using xmlpattern '/dept/employee/*' as
sql varchar(20)

Query. XQuery, the new language for
querying XML data, is designed to han-
dle diverse schemas, including constructs
such as sequences (instead of sets, as in
SQL), multiple nested sequences, and
sparse attributes. XQuery can also sup-
port heterogeneous schemas and dynam-
ic schema changes.

The IBM implementation has no
stand-alone XQuery or XPath processor.
The basic XQuery and XPath primitives
are built directly into the query engine.
The query compiler itself is bilingual,
having two interoperating query lan-
guage parsers—one for SQL and the
other for XQuery—to generate a new
variation of the Query Graph Model
designed to process relational and XML
data. Because the intermediate query
representation is language-neutral,
XQuery, SQL and combinations of
XQuery and SQL compile into the same

WHAT IS TRUE NATIVE?

Each of the currently available (non-
native) methods for managing XML in
relational databases attempts to make
XML conform to the relational model in
some way. These approaches include:

Shredding. Most major RDBMSs
(including DB2) support shredding.
Shredding involves defining a relational
schema that corresponds to the XML
(for example, representing parent/child
relationships in the XML as one or more
child tables in a referential integrity con-
straint with its parent) and defining a
mapping from the XML data to the rela-
tional schema.

Shredding is a good fit in existing
relational environments. However, map-
ping can be complex and fragile, and
you must define a mapping for each
XML document you want to store. If the
XML schema changes, the mapping
may no longer be valid or may require a
complex change process. Once decom-
posed, the data ceases to be XML,
loses any digital signature, and
becomes difficult and expensive to
reconstruct (often requiring many joins).

Storing XML as a CLOB. All major
vendors support storing entire XML
documents in a variable length charac-
ter type (VARCHAR) or as CLOBs. If
XML documents are inserted into CLOB
or VARCHAR columns, they are typically
inserted as unparsed text objects.
CLOBs preserve the original document
and provide uniform handling of any
XML, including highly volatile schemas.

Avoiding XML parsing at insert time
guarantees high insert performance.
However, without XML parsing, XML
document structure is entirely ignored.
This precludes the database from doing

intermediate representation, go through
the same rewrites and transformation,
are optimized in a similar manner, and
generate similar executable code. This
process results in optimal and interoper-
ating query plans regardless of the lan-
guage used to specify them.

Because the two parsers interoperate,
you can mix SQL and XQuery in the
same statement, making the searches
more powerful by providing the ability to
query within the XML document and
returning fragments of it from SQL:

select deptID, xmiquery(‘for $d in
$deptdoc/dept
where $d/@bldg = 101

return $d/name' passing d.deptdoc as

NATIVE

intelligent and efficient search and sub-
document level extract operations on
the stored text objects. The only remedy
is to invoke the XML parser at query
execution time to “look into” the XML
documents so that search conditions
can be evaluated. The high insert per-
formance comes at the cost of low
search and extract performance.

BLOB (pseudo native). BLOB-
based storage is conceptually similar to
CLOB storage; however, instead of stor-
ing the XML data as a preparsed string,
BLOBs store it in a proprietary post-
parse binary representation. This
approach is sometimes called pseudo
native, because the data representation
remains in XML within the BLOB.

However, the underlying storage for
a document is virtualized as a single
contiguous byte range, which can cause
performance problems. Updating can
require the entire document to be rewrit-
ten (and locked). Access to portions of
the document might require the entire
document to be read from disk.

True native. True native storage
holds the post-parsed data on disk,
enabling individual nodes of the data
model to be stored independently —that
is, not as a stream—and then intercon-
nected. True native storage provides the
advantages of BLOB and CLOB, but
resolves the remaining performance
issues because the document storage
isn’t virtualized as a single contiguous
byte range. The storage for the entire set
of documents is virtualized as a contigu-
ous byte range; however, individual
nodes can be relocated in this range
with minimal impact on other nodes and
indexing.

"deptdoc”)
from dept d
where deptID <> "PR27";

The query first filters the rows where
deptID is not PR27. After that, it returns
deptlD and the department name as XML
fragments if the building is 101.

In DB2, XQuery can operate on XML

documents in XML columns. However, if

you want to restrict the input to an
XQuery based on conditions placed on
relational columns you can do so via db2-
fn:sqlquery, which accepts any select state-
ment that returns a single XML column.

For $e in do2-fn:sqlquery('select deptdoc from
dept where deptid = "pr27"')/dept/employee

XML STORAGE <<<

Where $e/office = 344
Return $e/name

Deeper levels of nesting (SQL within
XQuery in which SQL itself contains
nested XQuery) is supported.

Flexibility and performance. With
IBM’s hybrid approach, there’s no need to
predefine XML schema, limit documents
to a given schema, or provide any map-
ping between XML and relational models.

The hybrid approach offers an impor-
tant advantage over shredding: It elimi-
nates the cost of joins and other process-
ing necessary to reconstitute XML
documents. In the case of complex docu-
ments, these costs can be very significant.

When compared to CLOB approach-
es, truly native storage eliminates the
need to parse XML documents at query
time. Given XML parsing costs, CLOB-
based approaches are impractical if any
form of search into the document—that
is, parsing—is necessary. CLOB should be
considered only when the usage models
are expected to be full document inser-
tion, search by purely relational attrib-
utes, and full document retrieval.

Native storage improves on the BLOB
approach because it provides more con-
sistent behavior as the size of documents
increases or when the amount of data to
access is a small percentage of the total
document size.

RIGHT MODEL, RIGHT TASK

A true-native XML data store does more
than expose XML to its clients—it repre-
sents the XML as XML throughout the
entire data engine stack (from client to
disk and back out again).

Hybrid systems don’t mandate that all
data be represented as relational data, nor
do they require that all data be in XML;
instead, they provide the choice of the
right model for the right task. H

) Anjul Bhambhri
[bhambhri@us.ibm.com] is the
senior development manager for XML
support in DB2 and heads the XML

effort across DB2 UDB.

www.db2mag.com « DB magazine 45

