
Agile software development
White paper
January 2009

The top three secrets to successful
agile software development.
Galina Mishiev, go-to-market manager, Rational software,
IBM Software Group

Adeel Omer, go-to-market engineer, Rational software,
IBM Software Group

Contents

2 	 Introduction

2 	 Scaling agile for larger

development opportunities

3 	 Incorporating traditional

development processes to

get the most out of agile

development

4 	 Secret 1—Process helps

smooth out the complexities

of software development

6 	 Secret 2—Software develop-

ment technologies can help

deliver ship-ready code

9	 Secret 3—It’s possible to

leverage far-ranging expertise

and still maintain a fast

development pace

12	 Why IBM?

Introduction

Agile software development methodologies have taken the development commu-
nity by storm. A recent agile adoption survey of Dr. Dobb’s subscribers found that
69 percent of respondents were already using one or more agile techniques.1

And it’s easy to see why agile has become popular. It focuses the efforts of devel-
opment teams on results and deliverables. This underscores the ultimate goal
of commercial software development—providing software solutions that fulfill
unmet marketplace needs, drive competitiveness and help ensure profitability for
the company. The iterative and incremental nature of agile—with daily builds, or
even multiple builds throughout the day—enables the enterprise to get applica-
tions to the marketplace faster, rather than having to dislodge competitors later.

Agile is highly collaborative and self-organizing, meaning the people doing
the work are the people doing the organizing. It provides just the right
amount of process to match the needs and culture of the development team.

Successful agile development teams have found that they can produce quality
applications. The methodologies are cost-effective and time efficient, with less
process burden. Teams can meet customer needs and build close working rela-
tionships with stakeholders to rapidly adapt to changing requirements and gain
a competitive advantage against the competition.

Scaling agile for larger development opportunities

A key facet of agile development is that it is highly adaptable to different organi-
zations. Agile methodologies are already providing a number of benefits to early
adopters among small, colocated development teams. And the obvious success that
smaller teams are having with agile approaches is being noticed by larger teams
and organizations that wish to implement its principles and techniques in their
own environments.

The top three secrets to successful agile
software development.
Page 2

The top three secrets to successful agile
software development.
Page 3

Highlights

Although agile practices are often

considered only useful for small

development teams, they can be

scaled to address the needs of

large teams.

But the broader adoption of agile methodologies in the global development
community places greater demands on its use to meet some ongoing, real-world
challenges. Agile methodologies need to adapt to the many business, organiza-
tion and technical complexities that development teams are now facing. These
challenges include:

	• Keeping information flowing properly among larger, distributed
development teams.

	 Making effective handoffs—especially when the development team •
is offshore or outsourced to a third party.

	 Accommodating platform-specific requirements or multiple •
hardware resources.

	 Conforming to regulatory requirements—including the Sarbanes-Oxley •
Act—and internal governance mandates.

So how do we achieve the full potential of agile development? More importantly,
how do larger development teams—often distributed around the world—get the
most from it?

Fortunately, the principles underlying agile development can be modified for
larger teams. And tools to improve product quality, team efficiency and on-
time delivery have now made this possible.

Incorporating traditional development processes to get the most out of

agile development

Development teams still need to have a plan for the overall effort. They need
to have consistent, streamlined processes. They need to provide documenta-
tion for audits. And they need to train incoming staff.

When you apply agile practices to

larger teams, you need to have an

effective implementation plan.

The top three secrets to successful agile
software development.
Page 4

The IBM vision for scaling agile

practices includes three fundamental

elements: process, technology

and expertise.

Further, as agile development practices scale to larger projects and organizations,
development teams become more spread out around the globe. They work in more
offshore locations. And they become more outsourced. This increases the need for
more sophisticated coordination than is required for smaller, colocated teams.

This white paper discusses what IBM has found to be the most useful processes
to incorporate into agile development and the latest solutions that make that pos-
sible. The IBM vision encompasses three fundamental building blocks for getting
the most from agile development:

	 Process•
	 Technology•
	 Expertise•

Secret 1—Process helps smooth out the complexities of software development

First, it’s important to apply the right amount of process to the development effort
by implementing practices. Practices provide useful units of knowledge that help
solve one or more commonly occurring problems. A practice can be adopted inde-
pendently and improved from other practices so that an organization can adopt
one or a few practices at a time.

Further, a practice can map to business objectives and pain points so that
you can identify needed improvements—speeding time to market, enhancing
quality or increasing productivity. The effectiveness of adopting the practice
and its results can be measured to take the necessary corrective actions.

Implementing practices makes it easier to adopt improved development techniques
while avoiding processes that are too heavy, large or complex. Independent
practices can be learned and implemented over time. And the adoption and
results of the practice can be measured more quickly.

Highlights

Practices can help you map

business objectives to areas

that need improvement.

The top three secrets to successful agile
software development.
Page 5

Rational Method Composer software

includes a customizable process

library to help you develop processes

that support business needs.

Incremental adoption of practices is the key for successfully employing them.
You can start small and add on as needed. It’s best to begin by assessing your
organization, its projects, and its needs and pains. Then choose which practices
you need to adopt first.

IBM Rational Method Composer software helps integrate industry-proven

best practices

Development teams need to facilitate collaboration between business and IT

teams to help organizations more effectively manage software projects and

maximize returns on technology investments. Better team communication

improves project predictability and helps better manage and mitigate risk.

Increased project responsiveness and resilience help keep development on

track and the company more competitive.

IBM Rational® Method Composer software represents a major evolution of

IBM’s process solutions. It includes and extends the IBM Rational Unified

Process®, a software process framework that has guided some 500,000

developers around the world in a broad range of software and systems devel-

opment projects.

Rational Method Composer includes a customizable process library and

tooling to help you manage, author, configure and deploy effective processes

tailored to your project needs. The process library offers proven and reliable

guidance for software and systems development, management and gover-

nance with more than 100 selectable and customizable process best practices

that can be applied to a variety of processes and domains.

Highlights

The top three secrets to successful agile
software development.
Page 6

Highlights

Visual modeling and development

tools help teams envision what the

overall software picture looks like.

Secret 2—Software development technologies can help deliver ship-ready code

Focusing on the quality of deliverables provides the best measure of the success of
the software development process. Begin with visual modeling and development
tools to help define the application at a much higher level, and then maintain it at
that level throughout the process.

Modeling helps the development team understand what the overall software
picture looks like and how the pieces fit together to make the whole. Just like a
completed puzzle consists of many pieces that must fit together perfectly in order
for the whole picture to emerge, visual modeling helps ensure that every piece is
in the right place.

But in an agile environment it’s also critical to transform the model to the code
and to enable reverse transformations. Teams may need to refactor code as
requirements change or because they uncover some unanticipated roadblock.
Visual modeling by itself may lack semantically relevant information. It might
require a lot of manual work that could derail timelines and result in outdated
requirements. The end pieces may not reflect the intended design.

New solutions are available to help teams more effectively use visual modeling.
When it comes to rapidly developing applications for your company to seize com-
petitive advantage, it becomes increasingly important to leverage the features that
make things simpler for development teams.

Your visual modeling tools

should help you rapidly develop

applications so you can seize

competitive advantage.

The top three secrets to successful agile
software development.
Page 7

Highlights

A domain-specific modeling language

and an integrated test environment

can help your development teams

avoid the human interaction that

slows down development and

increases errors.

New features include annotations editors, wizards and quick fixes, enabling
fast development with minimal human error.

A domain-specific modeling language enables you to use a semantically rich
visual language that is specific to your business and easily understood by busi-
ness stakeholders. These specifications are not just imprecise blobs of information.
They are documentation that can be used to generate code, automatically update
models as changes are made to code, and provide automatically generated docu-
mentation that supports compliance and other mandates.

It’s also important to test for quality at every point so that you can consistently
deliver ship-ready code. Integrated test environments enable and encourage
independent testing. Static code analysis and application profiling help identify
roadblocks at a much earlier stage. Coding guidelines can now be built into the
tooling. And teams can test code when it’s running to monitor performance of
the overall application.

Incremental development—a hallmark of the agile approach—is the key to
satisfying the marketplace and beating the competition. Tools enable you to
integrate across virtually all stages of the product development lifecycle. Teams
can track progress, assignments, and code and configuration changes. An
integrated view of the workforce can be taken to efficiently allocate tasks.

Integration solutions help development teams manage complex relationships

Teams often have to express the design of their IT systems in order to pro-

vide communications across departmental boundaries, including between

development and operations. Conventional methods—e-mail, spread-

sheets, slides, diagrams—lack the methodology needed to communicate

this design, as well as a system to validate the communication. This leads

to a variety of configuration issues that are seen throughout the application

lifecycle, with unchecked deployments made in the target environments.

This gap worsens when a solution moves between different stages of the

application lifecycle.

The top three secrets to successful agile
software development.
Page 8

Highlights

Rational Software Architect features

a deployment architecture platform

that helps developers visually

understand IT systems and their

relationships.

The IBM Rational Software Architect solution provides a powerful deployment

architecture platform to design and understand IT systems and their complex

relationships visually. This platform is built on an extensible, strongly typed

model that provides a framework for describing practically any IT system.

IDEs cut time to marketplace for high-quality applications

Software testers have a particular problem with context switching. A tester

may have to use a static document with a representation of the model on it.

After using the model to author the code by hand, the tester must then build

and export it. Then the code is deployed to a test machine, and the server

is restarted. If a bug is discovered, the tester needs to go about the whole

cycle again. This process can occur several times, and—when coupled

with code reviews by other people—uses up huge amounts of time and

results in suggestions of massive changes, which often means schedules

are extended or poor-quality applications are shipped.

But a do-it-all integrated development environment (IDE) helps generate

the code foundation for the developer while providing realtime analysis

and suggestions on improving code. The tooling also automatically builds

the code, deploys it on a self-contained test server and provides statistics

on how well the application is performing. By eliminating the need to switch

between development and testing contexts, an IDE allows the developer to

improve quality and constantly test the application without having to use any

other resources.

The top three secrets to successful agile
software development.
Page 9

Highlights

Collaboration is essential for

effective software delivery, so

a traditional agile environment

needs to be augmented to support

collaboration within large teams.

Secret 3—It’s possible to leverage far-ranging expertise and still maintain a fast

development pace

Collaboration among development teams spread around the world is increas-
ingly important. Traditionally, if developers needed help from their teammates
they simply grabbed them in the office and started working on the same prob-
lem together. This kind of collaboration is no longer possible when teammates
are sitting in offices halfway around the world.

Teams need to share everything from requirements to the code that’s being
written at all stages of development. They also need to maintain traceability
from requirements to code so that they can accurately understand the impact
of change, especially in this dynamic process.

An agile development environment makes this even more challenging since
its iterations have much shorter cycles than traditional methodologies. Agile
teams need better reporting, traceability and collaborative debugging.

Debugging code in a distributed environment is particularly challenging.
Complex applications are broken into components. Team members are often
focused on just one component of a larger application. When required to
debug unfamiliar code, they often have to begin at the beginning. This means
they have to set up the environment, reproduce the problem and start the
whole process over again for a new problem. Global development—in different
time zones—makes this process even more inefficient. Common communications
media—like e-mail—are disjointed.

Fortunately, modern development tools, based on open platforms, help inte-
grate all aspects of the development process using a common server. An IDE
can support everything from requirements management and requirements
composition to test management and integrated development. Team members

Modern development tools support

widespread collaboration by

integrating all aspects of the

development process.

The top three secrets to successful agile
software development.
Page 10

Highlights

Team Debug allows developers to

establish a debug session on the

IBM Jazz server, which in turn allows

another developer anywhere else

in the world to use Rational Team

Concert to pick up the session.

can easily communicate with one another and share their progress. They can
determine what tasks are involved, see where the code exists, and have an
integrated view of defect and requirements management.

In fact, field experience has shown that development teams using high-level
implementation features for agile processes can cut development and test
cycles by 60 percent just by integrating the test environment with the develop-
ment environment.2

Team Debug enables collaborative debugging without having to reproduce

the problem

Many developers have found themselves in situations where they are trying to

debug the same problem for days. This is especially problematic when devel-

opers have little expertise in an area they’re called upon to debug, or they’re

trying to learn the code and perform debugging at the same time.

A new capability from IBM, Team Debug helps the developer establish a

debug session in the IBM Rational Application Developer solution, adding

the debug session to the IBM Jazz™ server, which manages it from that

point on. As long as this debug connection between the Jazz server and the

developer is not lost, Team Debug can help the developer transfer the ses-

sion or suspend it temporarily.

Once the developer reaches the point where he or she needs help, IBM

Rational Team Concert™ software provides a way to look up a team member

and transfer the session. Alternatively, the developer can drag and drop the

debug session to the chat window using an instant messaging tool. Once

suspended in its current state, the debugging session will not advance until

someone restarts the session.

The top three secrets to successful agile
software development.
Page 11

IBM Rational solution Function URL

IBM Rational Application Developer for

WebSphere® Software

Helps Java™ developers rapidly design, develop,
assemble, test, profile and deploy high-quality Java/
Java Platform, Enterprise Edition; portal; Web/Web
2.0; Web services; and service-oriented architecture
(SOA) applications

ibm.com/software/awdtools/developer/

application

IBM Rational Software Architect for

WebSphere Software

Provides an integrated platform that facilitates
communication and collaboration, helping
development teams innovate and accelerate
delivery of software projects

ibm.com/software/awdtools/swarchitect/

websphere

IBM Rational Team Concert Provides a collaborative software delivery environment
that empowers project teams to simplify, automate and
govern software delivery

ibm.com/software/awdtools/rtc

IBM Rational Method Composer Provides a flexible process management platform
with one of the industry’s most comprehensive tooling
sets and a rich process library to help companies
implement effective processes for successful
software and IT projects

ibm.com/software/awdtools/rmc

IBM Rational Asset Manager Helps create, modify, govern, find and reuse virtually any
type of development assets, including SOA and systems
development assets

ibm.com/software/awdtools/ram

IBM has developed the right solution to help you adopt agile development successfully.

http://www-01.ibm.com/software/awdtools/developer/application/
http://www-01.ibm.com/software/awdtools/developer/application/
http://www-01.ibm.com/software/awdtools/swarchitect/websphere/
http://www-01.ibm.com/software/awdtools/swarchitect/websphere/
http://www-01.ibm.com/software/awdtools/rtc/
http://www-01.ibm.com/software/awdtools/rmc/
http://www-01.ibm.com/software/awdtools/ram/

Why IBM?

IBM provides technology, best practices and industry expertise to help
companies succeed in an agile development environment—regardless of
their size and complexities.

IBM Rational software can help you:

	 Bring together critical capabilities for better quality and faster, iterative •
development with end-to-end automation.

	 Empower distributed agile teams with realtime information and automatic •
handoffs that keep teams in sync.

	 Manage tests, defects and project progress through a realtime, single •
project view.

	 Increase developer productivity with faster software iterations and the •
ability to validate quality from individual IDEs to increase the frequency
of code check-ins and accelerate troubleshooting.

	 Make compliance management painless by embedding documentation •
into everyday work.

For more information

To learn more about how IBM can help you get the most from agile software
development, contact your IBM representative or IBM Business Partner, or visit:

ibm.com/rational/agile

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
January 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, and Rational are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first occur-
rence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time
this information was published. Such trademarks
may also be registered or common law trademarks
in other countries. A current list of IBM trademarks is
available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos
are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this document is
provided for informational purposes only and pro-
vided “as is” without warranty of any kind, express
or implied. In addition, this information is based on
IBM’s current product plans and strategy, which are
subject to change by IBM without notice. Without
limiting the foregoing, all statements regarding IBM
future direction or intent are subject to change or
withdrawal without notice and represent goals and
objectives only. Nothing contained in this docu-
mentation is intended to, nor shall have the effect of,
creating any warranties or representations from IBM
(or its suppliers or licensors), or altering the terms
and conditions of the applicable license agreement
governing the use of IBM software.

IBM customers are responsible for ensuring their
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification
and interpretation of any relevant laws and regula-
tory requirements that may affect the customer’s
business and any actions the customer may need
to take to comply with such laws.

1	�Dr. Dobb’s Portal, Has Agile Peaked?, Scott W.
Ambler, May 7, 2008.

2	IBM Rational Community of Practice.

RAW14101-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://www-01.ibm.com/software/rational/agile/

	Introduction
	Scaling agile for larger development opportunities
	Incorporating traditional development processes to get the most out of agile development
	Secret 1-Process helps smooth out the complexities of software development
	Secret 2-Software development technologies can help deliver ship-ready code
	Secret 3-It’s possible to leverage far-ranging expertise and still maintain a fast development pace
	Why IBM?
	For more information

