

®

IBM Software Group

© 2009 IBM Corporation

Updated June 25, 2009

WebSphere Process Server V6.2
WebSphere Enterprise Service Bus V6.2
WebSphere Integration Developer V6.2

Service Component Architecture overview

This presentation will provide an overview of Service Component Architecture (SCA).

WBPMv62_SCA_Overview.ppt Page 1 of 29

IBM Software Group

2

Service Component Architecture overview © 2009 IBM Corporation

Goals

� Introduce Service Component Architecture (SCA)
as it applies to:
�WebSphere® Process Server

�WebSphere Enterprise Service Bus

�WebSphere Integration Developer

The goal of this presentation is to introduce Service Component Architecture, or SCA. The
presentation specifically addresses the implementation of SCA that is provided by
WebSphere Process Sever and WebSphere Enterprise Service Bus and is enabled
through the WebSphere Integration Developer tool. There are places in the presentation
that reference WebSphere Process Server, but although not specifically stated, the
material is equally applicable to WebSphere Enterprise Service Bus.

WBPMv62_SCA_Overview.ppt Page 2 of 29

IBM Software Group

3

Service Component Architecture overview © 2009 IBM Corporation

Agenda

�Overview

�Architecture

�Summary and references

This section will provide an overview of Service Component Architecture (SCA).

WBPMv62_SCA_Overview.ppt Page 3 of 29

i
i

i
j

i

i
j l i i

Dynam c
serv ce

se ect on

i
i

l i

Med at on F ows
(ESB)

i i l

Bus ness
state

mach nes

i

i

Bus ness
ru es

i
l

Human
tasks

Bus ness
processes

i

IBM Software Group

4

Service Component Architecture overview © 2009 IBM Corporation

Service Oriented Architecture overview

Service Data Object (SDO)
Business Objects

Service Component
Architecture

(SCA)

Business Process
Execution Language

(BPEL)

Data

Invocation

Composition

WebSphere Application Server ND (J2EE Runtime)

Serv ce component
arch tecture

Bus ness
ob ects

Common event
nfrastructure

Interface
maps

Bus ness
ob ect
maps

Re at onsh ps
i

i
l i

Dynam c
serv ce

se ect on

i i lMed at on F ows
(ESB)

i

i

Bus ness
state

mach nes

i
l

Bus ness
ru es

Human
tasks

iBus ness
processes

This is a simple way to look at the important architectural constructs that make up a
service oriented architecture. Specifically, there must be a way to represent the data that
is exchanged between services, a mechanism for invoking services, and a way to
compose services into larger integrated business applications.

Today there are many different programming models for supporting each of these. This
situation presents developers with the challenge of not only solving a particular business
problem, but also choosing and understanding the appropriate implementation technology.
One of the important goals of the WebSphere Process Server SOA solution is to mitigate
these complexities. This is done by converging the various programming models used for
implementing service oriented business applications into a simplified programming model.

This presentation focuses specifically on the Service Component Architecture (SCA) in
WebSphere Process Server as the service oriented component model for defining and
invoking business services. SCA plays an important role in providing an invocation model
for the SOA solution in WebSphere Process Server. You will also learn in this presentation
that it plays a role in composing business services into composite business applications.

WBPMv62_SCA_Overview.ppt Page 4 of 29

IBM Software Group

5

Service Component Architecture overview © 2009 IBM Corporation

Service Component Architecture description

�SCA is a service oriented component model for
defining business services that publish or operate
on business data

�SCA provides a single abstraction for service types
that might already be expressed as other types
�Session bean, Web service, Java™ class, BPEL

�Separates “business logic” from “infrastructure
logic”

SCA is a service oriented component model for defining and invoking business services
that publish or operate on business data. SCA is aimed at providing a simplified
programming model for writing applications that run in a J2EE runtime environment, and is
based upon concepts and techniques that are refinements of existing J2EE technology.
One of the important aspects of SCA is to enable the separation between application
business logic and the implementation details. In order to accomplish this, SCA provides a
single abstraction for service types that might already be expressed as session beans,
Web services, Java classes, or BPEL. The ability to separate business logic from
infrastructure logic is important to help reduce the IT resources needed to build an
enterprise application, and give developers more time to work on solving a particular
business problem rather than focusing on the details of which implementation technology
to use.

WBPMv62_SCA_Overview.ppt Page 5 of 29

IBM Software Group

6

Service Component Architecture overview © 2009 IBM Corporation

ArchitectureArchitecture

Section

This section will provide the architectural details of SCA.

WBPMv62_SCA_Overview.ppt Page 6 of 29

IBM Software Group

7

Service Component Architecture overview © 2009 IBM Corporation

Service Component Architecture features

�Provides the Service Component Definition
Language (SCDL) for defining service components

�Provides the ability to:
�Define service components

�Make services available to clients outside current module

�Import and reference external services in current module

�Compose services into larger application components

�Provides a client programming model allowing
client access to service components

When learning a new technology or programming model, it is often useful to look at the
pieces that compose the overall architecture of that technology. This slide lists some of the
important features of SCA that you should be aware of as you begin learning about SCA.

First, the Service Component Definition Language (SCDL) provides the basis of SCA.
SCDL is an XML based definition language used to define all SCA artifacts in a project.
The WebSphere Integration Developer support of SCA takes care of generating the
appropriate SCDL definitions when building an SCA-based application. However, a basic
familiarity with SCDL can certainly help you to understand the overall architecture and help
when debugging applications.

The next important part of SCA is the different types of artifacts that can be defined using
SCDL. The various artifact types that exist in SCA were designed to support some of the
basic requirements of this service oriented architecture. To start with, SCA needs a
mechanism for defining a basic service component. Once there is a mechanism for
defining service components, it is important to have the ability to make these services
available to clients both inside or outside of the current SCA module. In addition to this, a
construct designed to import and reference services external to the current SCA module
must exist. Finally, SCA provides constructs for composing services and modules into
larger applications. In the remaining slides of this section, you will learn about each of
these SCA artifacts and how they can be composed into larger applications.

One final feature of SCA is the client programming model that allows clients to access and
invoke service components in an SCA module. Later in this presentation, you will learn
about the Java interfaces that are available for invoking services from a client.

WBPMv62_SCA_Overview.ppt Page 7 of 29

IBM Software Group

8

Service Component Architecture overview © 2009 IBM Corporation

Implementation Types

Selector

Service component overview

Java Business
Rule

Interface
Map

Mediation
Flow

Human
Task

Java

WSDL
Port Type Interface Reference

Java

WSDL
Port Type

Business
Process

State
Machine

The basic building block in SCA is the service component. The service component
represents a business service that publishes or operates on business data. The diagram
on this slide introduces the essential pieces of a service component definition.

A service component has one or more interfaces with which it is associated. The
interfaces associated with a service component advertise the business operations
associated with this service. These interfaces can be specified as either Java interfaces or
WSDL port type interfaces. However, you can not mix Java and WSDL port type interfaces
on the same service component definition. The arguments and return types for these
interfaces are specified as simple Java types, Java classes, Service Data Objects, or XML
Schema (for WSDL port type interfaces).

Also associated with a service component definition is an implementation. As the diagram
indicates, there are multiple language types available for implementing a service
component. This presentation will primarily focus on the Java implementation type.
However other presentations are available to discuss the details of the other
implementation types that are available.

Each service component can access other services in their implementation. For this, a
service component definition can include zero or more references to other service
components or imports included in the current module.

WBPMv62_SCA_Overview.ppt Page 8 of 29

IBM Software Group

9

Service Component Architecture overview © 2009 IBM Corporation

Service module overview

Import

Export

Stand-alone
Reference

Service
Component

Service
Component

Service Module

Wire

The previous slide introduced the service component as the basic building block in SCA.
This slide provides a broader look at SCA and the other pieces that make up the
architecture.

This discussion begins with the service module, which provides the basic unit of
deployment and administration in an SCA-enabled runtime. A service module
encapsulates the various artifacts available with SCA and is illustrated in the diagram on
this slide. The following is a summary of the elements that make up a service module.

A service module may have zero or more service components included with it. In order to
access these services by a client (SCA or non-SCA) there must exist at least one
reference to the service or the service must be exposed with an export.

A service module can have zero or more imports included with it. An import is used to
access services that are outside the current SCA module. Once an import has been
defined, other services from within the module can reference the imported service as if it
was a regular service component defined in the module.

A service module can have zero or more exports included with it. An export is used to
expose a particular service to clients outside the current SCA module.

A service may include a stand-alone references file that includes references to services in
the module that can be used by SCA and non-SCA services.

WBPMv62_SCA_Overview.ppt Page 9 of 29

IBM Software Group

10

Service Component Architecture overview © 2009 IBM Corporation

Service module artifacts

� Other artifacts include: Java Classes, WSDL files, XSD files, BPEL. Other Artifacts

� Two types of References
�In-line (contained within a service component definition)

�Stand-alone

� Stand-alone references are defined in the sca.references file

References

� A module can contain 0..n export definitions

� Each export definition is contained in a <EXPORT_NAME>.export file

Exports

� A module can contain 0..n import definitions

� Each import definition is contained in a <IMPORT_NAME>.import file

Imports

� A module can contain 0..n service definitions

� Each component definition is contained in a <SERVICE_NAME>.component file

Service
Components

� Contained in the sca.module file at the root SCA project JAR Module Definition

Comments Artifact

The table on this slide includes the primary artifacts that make up an SCA service module.
Listed in the comments column is the name of the file for the artifact that includes the
SCDL definition for that particular artifact type.

WBPMv62_SCA_Overview.ppt Page 10 of 29

IBM Software Group

11

Service Component Architecture overview © 2009 IBM Corporation

Service component definition
Component definitions include:
� name
� 1..N interfaces
� 0..N references
� implementation

� There are two supported types: Java
or WSDL Port type

� Support for synchronous and
asynchronous interaction styles

Interfaces

� Used to specify other service
components called by this component

References

� A service component can be
implemented in various languages

Implementation
� Unique within an SCA module
� Must match component file path

relative to module root

Component Name

Name = MyService

This slide provides a more detailed look at the service component definition introduced
earlier in this presentation. Each service component must have a unique name within the
SCA module and it must match the file path relative to the module root. As noted on the
previous slide, the service component definition is included in a file called {SERVICE
NAME}.component. Next, each service component can have one or more interfaces
associated with it, which can be either Java or WSDL port type interface definitions. The
interfaces associated with a service component can support either a synchronous or
asynchronous interaction style with clients calling the service. This feature is discussed in
more detail in upcoming slides in this presentation. As noted earlier, each service
component can be implemented in various ways, specified by the implementation
definition. Finally, service components can invoke other service components or imports
defined in the current service module. In this case, the appropriate reference must be
defined to indicate which service is used. Often this type of reference is in-lined in the
service component definition, although it may alternatively be placed in the stand-alone
references file. Each service component definition can have zero or more references to
other services called by the service component being defined.

WBPMv62_SCA_Overview.ppt Page 11 of 29

IBM Software Group

12

Service Component Architecture overview © 2009 IBM Corporation

References and wires

Used by a non-SCA component or
another component within the module

Stand-alone Reference

Used only by the component in which
the reference is defined

In-line Reference

Identifies the target service component
or import for the reference definition

Wire

Reference definitions include:
� name
� multiplicity
� interface
� wire

SCA and non-SCA clients calling a service component need a reference to that service in
order to invoke it. This slide reveals some of the details of defining references. Each
reference has a name, used to look up the appropriate service by a client using the client
programming model. Details of this look up code will be covered later in this presentation.
In addition to the name, a reference also includes an interface element. The multiplicity for
a reference indicates how many wire definitions can name this reference as the source.
Finally, the wire definition specifies the name of the target service component or Import
that will resolve the reference.

There are two ways to define references. The first way is to in-line the reference in the
service component definition. Using this approach, the references are only available to the
service component in which the references are included. Another approach is to include
reference definitions within the stand-alone references file. For this approach, the
references can be used by a non-SCA client or by another component within the module.
An example of a non-SCA component that may use a reference in the stand-alone
references file is a user interface component such as a JSP that needs the ability to
invoke a particular service. In order to invoke a service component, the client needs a
reference so that it can use the SCA runtime to lookup the appropriate service to invoke.

WBPMv62_SCA_Overview.ppt Page 12 of 29

IBM Software Group

13

Service Component Architecture overview © 2009 IBM Corporation

Imports
Import definitions include:
� name
� 1..N interfaces
� Binding

An import is a valid target for a wire

An import allows access to services
outside the current SCA module

Describes how the external service is
bound to the current module

Binding

JAX-RPC
Web Service

SCA
(default)

Stateless
Session Bean

JMS

MQ JMS

HTTP

Generic
JMS

MQ

JAX-WS
Web Service

SCA imports allow clients in an SCA module to access services that are outside the current SCA module.
Like service components, imports have a name and a set of from one to N interfaces with which they are
associated. Imports also have a binding attribute, which is used to describe how the external service is
bound to the current module. The common binding types are indicated on this slide.

There is a group of binding types that are referred to as the messaging bindings. One of these is the MQ
binding, which enables clients to access a service using WebSphere MQ native protocols, including access
to MQ headers and message payloads. The remaining messaging bindings are all based on JMS. The MQ
JMS binding provides access to services using the WebSphere MQ JMS provider. The JMS binding makes
use of the JMS default messaging provider which uses the systems integration bus that is built into
WebSphere Application Server. The last of the messaging bindings is the generic JMS binding which can be
used with any JMS provider that is compliant with the JMS 1.1 specification, such as SonicMQ.

Web service bindings allow clients to access external Web services using the SCA programming model.
Support is included for JAX-WS using SOAP 1.1 or 1.2 over HTTP. Support is also included for JAX-RPC
using SOAP 1.1 over either HTTP or JMS.

The HTTP bindings provide access to HTTP based applications. These are different from the Web services
bindings in that the payload does not have to be SOAP, but can be any format. Also, unlike the Web services
bindings, the HTTP bindings provide access to the HTTP headers.

Stateless session bean bindings enable clients, using the SCA programming model, to access services that
have been exposed using a stateless session bean.

Finally, there is the SCA binding. Imports with SCA bindings allow clients to access SCA services that reside
in another SCA module and have an export which also has an SCA binding type. Because all types of
bindings are a part of SCA, this binding is often referred to as the SCA default binding.

There is also an EIS binding type that is used in association with adapter components. However, a
discussion of this binding type is outside the scope of this presentation.

Imports can be thought of as a special type of service component in an SCA module. Imports are valid
targets in a wire definition for a service reference. This means that to a client invoking a target service the
client programming model is the same whether the reference points to an import or a component.

WBPMv62_SCA_Overview.ppt Page 13 of 29

IBM Software Group

14

Service Component Architecture overview © 2009 IBM Corporation

Exports
Export definitions include:
� name
� target
� 1..N interfaces
� Binding

An export allows access to services for
use outside the current SCA module

Describes how the service is
bound externally

Binding

Identifies the component to be exported

Target

JAX-RPC
Web Service

SCA
(default)

JMS

MQ JMS

HTTP

Generic
JMS

MQ

JAX-WS
Web Service

SCA exports provide access to service components defined in an SCA module for use by clients outside of
the current SCA module. Exports include a name and a target attribute, which names the service component
that is to be exported. Like imports, exports have a binding attribute that indicates how the service is bound
externally. The common binding types are indicated on this slide.

The binding types for exports are the same as the binding types for imports, with the exception of the
stateless session bean binding, which is only available on imports.

You can see the messaging binding types on the left side of the slide. The MQ binding enables clients using
WebSphere MQ native protocols to invoke SCA services, with the binding providing access to the MQ
headers and message payloads. The MQ JMS binding enables clients using the WebSphere MQ JMS
provider to invoke SCA services and likewise the JMS binding enables clients using the JMS default
messaging provider to invoke SCA services. Clients using other JMS 1.1 compliant JMS providers make use
of the generic JMS binding in order to access SCA services.

The Web service bindings type allows SCA services to be exported and made available to external clients as
a Web service. The external clients can use JAX-WS with SOAP 1.1 or 1.2 over HTTP to invoke the SCA
service. They can also use JAX-RPC with SOAP 1.1 over HTTP or JMS.

The HTTP bindings enable HTTP based applications to access SCA services. Similar to how they are used
with imports, the payload does not have to be SOAP but can be any format and access to the HTTP headers
is provided.

The SCA default binding type allows SCA services to be exported to other SCA clients in modules external to
the current SCA module. This binding type is used in conjunction with a corresponding import with an SCA
binding type in another SCA module.

There is also an EIS binding type for exports that is used in association with adapter components.
Information on this binding type is addressed in the presentation on the various WebSphere adapters.

WBPMv62_SCA_Overview.ppt Page 14 of 29

IBM Software Group

15

Service Component Architecture overview © 2009 IBM Corporation

Client programming model

�Client programming model allows clients to
�Locate services

�Invoke methods on services

�Clients locate services with the ServiceManager
�Key class is

� com.ibm.websphere.sca.ServiceManager

�Two ways to instantiate a ServiceManager depending on
required lookup scope for service

�Method to locate a service
� com.ibm.websphere.sca.Service locateService(String);

The SCA client programming model provides two primary functions for clients. The
programming model exposes an interface that allows clients to locate services within the
current module, and once a service is located the client programming model provides a
way for the client to invoke operations on that service.

The key interface that clients should be aware of for locating services is
com.ibm.websphere.sca.ServiceManager . This interface includes a locateService
method that returns a reference to the service implementation for the service requested.
The string parameter that is passed into the locateService method represents the
reference name for the service that the client wants to locate. The Java documentation for
the SCA programming model is included in the WebSphere Process Server information
center, and is also included if you choose to install the Java documentation as part of the
WebSphere Process Server installation.

WBPMv62_SCA_Overview.ppt Page 15 of 29

IBM Software Group

16

Service Component Architecture overview © 2009 IBM Corporation

Client programming model (continued)

� Two service invocation models
Dynamic Invocation

Type Safe Invocation
MyService myService = (MyService) serviceManager.locateService(“myService”);
String input = ...
String result = myService. someMethod(input);

Service myService = (Service) serviceManager.locateService(“myService”);
DataObject input = ...
DataObject result = (DataObject) myService. invoke(“someMethod”, input);

public Interface MyService {

public String someMethod(String input);

}

Once a client has located the appropriate service, there are two types of invocation
models that can be used to make a call to an operation or method offered by the service.
First, there is a dynamic invocation style of interaction. The key interface for this style of
interaction is com.ibm.websphere.sca.Service. The invoke() method on this interface takes
the name of the operation that you are going to invoke, along with the parameters needed
to call that operation. Clients can also use a type safe invocation method to call a
particular operation associated with a service. This type of invocation only works for
interface definitions that are specified as Java. In this situation, the client casts the return
from the locateService() call to the appropriate interface and can proceed calling the
appropriate type safe method calls on that interface.

WBPMv62_SCA_Overview.ppt Page 16 of 29

IBM Software Group

17

Service Component Architecture overview © 2009 IBM Corporation

Asynchronous model

� SCA provides the ability for services to be called
synchronously or asynchronously

� There are three types of asynchronous invocation models

invokeAsync()

Client Service

further
processing

One Way

invokeAsync()

Client Service

invokeResponse()

further
processing

Deferred Response

invokeAsync()

Client Service

onInvokeResponse()

Request with Callback

further
processing

So far, this presentation has focused on the synchronous invocation model. However,
SCA provides the ability for services to be called either synchronously or asynchronously.
The next several slides will present more about the asynchronous programming model.

With asynchronous invocation in SCA, there are three types of asynchronous interaction
styles available. With all three types of asynchronous invocation, the client receives control
back immediately from the SCA runtime upon an invokeAsync() call. However, there are
three different ways that the client can capture the response at a later time. First, the client
can choose to discard the response entirely or if it is a call to a void method. In this case,
the asynchronous invocation is said to be “one way”. Another option is for the client to call
invokeAsync() and then continue processing until some later time when the client makes a
request to capture the response. This scenario is termed “deferred response”. Finally, the
client also has the option of doing an asynchronous “request with callback”. To do this, the
client must first implement the ServiceCalback interface. Then, after making a call to
invokeAsync(), the SCA runtime provides a callback to the ServiceCallback handler to
provide the response to the client.

The next slide provides a summary of the interfaces needed to support these three
asynchronous invocation models for the dynamic interaction style.

WBPMv62_SCA_Overview.ppt Page 17 of 29

IBM Software Group

18

Service Component Architecture overview © 2009 IBM Corporation

Dynamic client invocation

Callback interface must be
implemented by the client using a
request with callback
asynchronous service invocation

void onInvokeResponse(Ticket, Object,
Exception)

ServiceCallback

Used to get response in the case of
deferred response invocation

Object invokeResponse(Ticket, long)

Used to invoke request with
callback asynchronous service
requests. The client must
implement the ServiceCallback
interface

Ticket invokeAsyncWithCallback(String, Object)

Used to invoke one-way or
deferred response asynchronous
service requests

Ticket invokeAsync(String, Object)

Used to invoke synchronous
service requests

Object invoke(String, Object) Service

Description Methods Interface

This slide provides a summary of some of the key methods and interfaces needed to
support both synchronous and asynchronous interaction when using dynamic client
invocation. The Java documentation for these interfaces is included with the WebSphere
Process Server installation and in the product information center.

WBPMv62_SCA_Overview.ppt Page 18 of 29

I

 I

IBM Software Group

19

Service Component Architecture overview © 2009 IBM Corporation

SCA interactions

YES YES
Java
nterface

NO YES
WSDL
Port Type

Type Safe Dynamic Request
with
Callback

Deferred
Response

One Way Synchronous

Invocation Methods Invocation Model nterface Type

Data passed by reference in the same SCA Module

Data passed by value

The table shown on this slide lists the various invocation models and the method by which
the data is passed, whether by reference or by value. For synchronous invocation, data is
passed by reference within the same SCA module, while for asynchronous calls the data
is passed by value. The table on this slide also summarizes when it is possible to use
either type safe or dynamic invocation based upon the interface type. The dynamic
invocation methods are always available for either WSDL port type or Java interfaces.
However, in order to have type safe invocation methods available to the client a Java
interface type must be used for the interface definition on the appropriate client reference.

WBPMv62_SCA_Overview.ppt Page 19 of 29

IBM Software Group

20

Service Component Architecture overview © 2009 IBM Corporation

SCA quality of service

�Qualifiers are used to specify quality of service
requirements on the SCA runtime

� In WebSphere Integration Developer, the qualifiers
are grouped into these categories
�Reliability

�Activity session

�Security

�Other asynchronous

�Miscellaneous

Qualifiers are an important part of SCA because they allow you to place quality of service
requirements on the SCA runtime. There are several different categories into which SCA
qualifiers are grouped. The qualifier categories are reliability, activity session, security,
other asynchronous and miscellaneous. In WebSphere Integration Developer, the
qualifiers are presented to you in these groupings.

WBPMv62_SCA_Overview.ppt Page 20 of 29

IBM Software Group

21

Service Component Architecture overview © 2009 IBM Corporation

SCA quality of service

� Qualifiers are specified at various levels (scopes)

� Interface level qualifiers
�Apply to components, often to imports and occasionally to exports

�Are scoped to
� All interfaces

� A single interface

� An individual method on an interface

� Reference level qualifiers
�Are scoped to

� All references

� A single reference

� Implementation level qualifiers

Each SCA qualifier has a particular level, or scope, where the qualifier is specified. Some
qualifiers are specified at the interface level. All SCA interface level qualifiers apply to SCA
components, many apply to imports and one also applies to exports. These interface level
qualifiers are further specifiable at different scopes within the supported interfaces for the
SCA component or import. They can apply to all supported interfaces, and they can also
be specified with a narrower scope applying only to a specific interface or to just a specific
method.

Other qualifiers are specified at the reference level. Reference qualifiers apply only to SCA
components and can be scoped to all references defined on a component, or only for a
specific reference.

Finally, there are some qualifiers specified at the component implementation level.

The next slides provide tables showing the various qualifiers that are available and the
level at which each is specified. The qualifiers are sorted by the type of quality of service
they provide, such as reliability or security.

WBPMv62_SCA_Overview.ppt Page 21 of 29

Qualifiers

IBM Software Group

Type Qualifier Scope Description
Transaction Implementation global – A global transaction must be present to run

the component

local – A global transaction must not exist to run the
component

any – Component is unaffected by transactional state

Join transaction Interface
(component or
import)

true – Hosting container joins client transaction

false – Hosting container will not join client
transaction

Suspend
transaction

Reference true – Synchronous invocations of target component
do not run within client global transaction.

false – Synchronous invocations of target component
run within client global transaction

Asynchronous
invocation

Reference call – Asynchronous invocations of a target service
occur immediately

commit – Asynchronous invocations of a target
service occur as part of a global transaction

Reliability Reference Specifies the quality of service level for asynchronous
message delivery. Reliability can be one of these
values: best effort or assured

22

Service Component Architecture overview © 2009 IBM Corporation

Reliability qualifiers allow you to request a particular transactional environment for the components and
imports in an SCA module. They all relate to controlling transactions, asynchronous invocation and
asynchronous reliability.

The Transaction qualifier is set at the implementation scope of a component. This qualifier can be set to
either 'global', 'local', or 'any‘, with local being the default. When set to global, the component will run in the
context of a global transaction. If a global transaction is present on invocation, the component is added to this
global transaction scope. If set to local, the component will run in the context of a local transaction. Finally, if
the value is set to any, when a global transaction is present the component will join the current global
transaction. However, if a global transaction is not present, the component will run in the context of a local
transaction.

The Join transaction qualifier is set at the interface scope of a component or import. This qualifier can be
set to either true or false, false being the default. If set to true, it instructs the runtime not to suspend a global
transaction, if present, at the interface boundary. If set to false, it instructs the runtime to suspend a global
transaction, if present, at the interface boundary. Exposing the join transaction qualifier on an interface
provides metadata that can be used by assemblers and deployers to ensure that the assembled application
behaves as required. It is up to the assembler and deployer in addition to dynamic runtimes to reason about
whether a target component will federate with a propagated transaction.

The Suspend transaction qualifier is set at the reference level of a component and identifies whether a
global transaction should be suspended before invoking the target service associated with the reference.
This qualifier can be set to either true or false, with the default being false.

The Asynchronous invocation qualifier is similar to the suspend transaction qualifier, except that it pertains
to asynchronous interactions rather than synchronous types, as is the case with suspend transaction. The
asynchronous invocation qualifier can have the value of call or commit, with call being the default. If set to
call, it indicates to the runtime that the message for the asynchronous interaction should be committed to the
queue immediately when the call has been made. Alternatively, the value of commit indicates that the
message should be committed to the queue as part of a transaction associated with the current unit of work.

The reliability qualifier is used to specify the quality of service level for asynchronous message delivery. The
reliability can be set to either best effort or assured, which is the default.

WBPMv62_SCA_Overview.ppt Page 22 of 29

IBM Software Group

23

Service Component Architecture overview © 2009 IBM Corporation

Qualifiers (continued)
Type

Reference

Interface
(component or
import)

Implementation

Scope

true – Methods on target component will NOT
run as part of any client activity session

false –Methods on target component will run as
part of any client activity session

Suspend activity session

true – Hosting container joins client activity
session

false – Hosting container will not join client
activity session

Join activity session

true – There must be an activity session
established in order to run this component

false – The component runs under no Activity
Session

any – The component is agnostic to the presence
or absence of an activity session

Activity session

Description Qualifier

The set of activity session qualifiers are similar to the reliability qualifiers for transactions
introduced earlier. The activity session service is a Websphere Application Server
programming model extension that provides an alternative unit of work when compared
with global transactions. In fact, an activity session context can be longer lived than a
global transaction and can even include global transactions. Here is a summary of the
activity session qualifiers:

The activity session qualifier is specified at the implementation level and is used to
indicate whether an activity session should or should not exist in order to run the service
component with which it is associated. This qualifier can be set to either ‘true', ‘false', or
'any‘, with any being the default. If set to true, it indicates that the component will run as
part of an activity session. If set to false, the component should not run as part of an
activity session. Finally, if this qualifier is set to any, the component will run as part of an
activity session if it is present, otherwise it will not.

The join activity session qualifier is set at the interface level, and indicates whether the
component should join the activity session of the caller. There are two values for this
qualifier, true and false, with false being the default. If set to true it indicates that the
runtime should not suspend an activity session if present when the component is invoked.
If set to false it indicates that an activity session should be suspended before invoking the
component.

The suspend activity session qualifier is set at the reference level and is used to
indicate whether a target service associated with a reference will get called as part of the
calling activity session. If set to true, the activity session is suspended and the methods on
the target component will not run as part of the client activity session. If set to false the
activity session is not suspended and methods on the target component will run as part of
the client activity session. False is the default.

WBPMv62_SCA_Overview.ppt Page 23 of 29

IBM Software Group

24

Service Component Architecture overview © 2009 IBM Corporation

Qualifiers (continued)

Specifies the duration (milliseconds) between the time
a request is sent and the time a response or callback
is received

Reference Response expiration

Specifies the length of time (milliseconds) after which
an asynchronous request is to be discarded if not
delivered

Reference Request expiration

The caller identity must have the role specified from
this qualifier in order to have permission to run the
interface or method

Interface
(component
only)

Security permission

Specifies a logical name for the identity under which
the implementation executes at runtime.

Implementation Security identity

Type Scope Description Qualifier

There are two qualifiers available for indicating quality of service related to security.

The security identity qualifier is used to specify the security identity under which the
implementation for the service component should run at runtime. This qualifier must be
placed at the implementation scope for the service component and the value given must
match the logical name for the identity under which the component will run.

The security permission qualifier is specified at the interface level for components. The
value for this qualifier indicates that a caller of this service must have the role that is
specified in order to invoke the service.

For both the security permission and the security identity, the underlying implementation
for these qualifiers is based on existing J2EE concepts.

In addition to asynchronous reliability, which was already covered, there are two more
qualifiers available for controlling asynchronous request and response. Each of these
asynchronous qualifiers are specified at the reference scope.

The request expiration qualifier is used to specify the length of time the runtime should
hold onto an asynchronous request if it has not yet been delivered. After the time indicated
for this qualifier, given in milliseconds, this request is discarded.

The response expiration qualifier is used to specify the length of time that the runtime
must retain an asynchronous response or must provide a callback. The value for this
qualifier is also given in milliseconds.

WBPMv62_SCA_Overview.ppt Page 24 of 29

IBM Software Group

Qualifiers (continued)

Type Qualifier Scope Description

Data validation Interface
(component,
import and
export)

Confirms that the data passed in to an operation
matches the XSD types of the operation's inputs.

Log error and continue – Errors logged and
requested operation is performed.

Throw exception – Errors result in exception and
requested operation is not performed.

Event sequencing Interface
(component
only and at
method scope
only)

Controls the order in which the runtime environment
processes events. You specify one or more
operations and a key. Events for those operations
with the same key are processed in the order they are
received.

25

Service Component Architecture overview © 2009 IBM Corporation

There are two additional qualifiers that don’t fall into any of the preceding categories.

The Data validation qualifier is specified at the interface scope and can be used with
components, imports and exports. This is the only qualifier that is applicable to exports.
When data validation is specified, the input business object instances are checked to see
if the data they contain conforms to the XSD type definition. For those cases where the
input data does not conform, there are two options that can be used with this qualifier. The
first is log error and continue which requests that a log be written but that no exception be
thrown and that processing continues. The other option is called throw exception, which
does just that. When data which is not valid is discovered an exception is thrown and the
operation is not performed.

The Event sequencing qualifier is specified at the interface scope, but in a very limited
way. It is only applicable to components and can only be specified at the individual method
level. This qualifier controls the order in which events are processed by the component.
This qualifier is specified on one or more operations along with a key. Any events which
contain the same key arriving for the specified operations are processed in order. This
qualifier is only valid when used with a WebSphere Process Server runtime, and has no
affect in an WebSphere Enterprise Service Bus runtime.

WBPMv62_SCA_Overview.ppt Page 25 of 29

IBM Software Group

26

Service Component Architecture overview © 2009 IBM Corporation

SummarySummary

Section

This section will provide a summary of service component architecture.

WBPMv62_SCA_Overview.ppt Page 26 of 29

IBM Software Group

27

Service Component Architecture overview © 2009 IBM Corporation

Summary

�SCA is the fundamental component model
�Programming model for a Service Oriented Architecture

�Used by WebSphere Process Server and WebSphere
Enterprise Service Bus

�SCA separates business and implementation logic
�Focus is on assembling solutions rather than

implementation details

�Mitigates need for integration developers to have deep
knowledge of Java or J2EE

�Aimed at helping J2EE developers become more
productive

SCA is the fundamental component model for WebSphere Process Server and
WebSphere Enterprise Service Bus and provides the basis of the service oriented
architecture solution. SCA helps separate business logic from implementation logic and
allows you to focus on assembling solutions rather than focusing on implementation
details. This enables integration developers to develop applications without having a deep
knowledge of J2EE and at the same time enables J2EE developers to be more productive.

WBPMv62_SCA_Overview.ppt Page 27 of 29

IBM Software Group

28

Service Component Architecture overview © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv62_SCA_Overview.ppt

This module is also available in PDF format at: ../WBPMv62_SCA_Overview.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv62_SCA_Overview.ppt Page 28 of 29

IBM Software Group

29

Service Component Architecture overview © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

J2EE, Java, JSP, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WBPMv62_SCA_Overview.ppt Page 29 of 29

