

®

IBM Software Group

© 2009 IBM Corporation

Updated June 24, 2009

WebSphere Enterprise Service Bus V6.2
WebSphere Process Server V6.2
WebSphere Integration Developer V6.2

Mediation module and flow concepts

This presentation provides an overview of mediation module and flow concepts. It
examines the role a mediation module plays in enabling enterprise service bus
functionality and then looks at the mediation flow component and mediation primitives that
are used to define mediation logic.

WBPMv62_MediationModules.ppt Page 1 of 33

IBM Software Group

2

Mediation module and flow concepts © 2009 IBM Corporation

Agenda - Introduction

� Introduction

�Mediation module

�Mediation flow component

�Mediation primitives

�Development life cycle and deployment

The agenda of the presentation is shown here. This first section is a short introduction to
the concepts of an enterprise service bus and the role of mediations. The presentation
then takes a close look at mediation module concepts and the building blocks used to
define a mediation module. An introduction to the mediation flow component and
mediation primitives is provided. The presentation ends with looking at the development
life cycle and deployment of a mediation module.

WBPMv62_MediationModules.ppt Page 2 of 33

IBM Software Group

3

Mediation module and flow concepts © 2009 IBM Corporation

Introduction
� In a loosely coupled SOA architecture, service requestors and providers

connect with each other through an enterprise service bus (ESB)

� Loosely coupled services provide more flexibility and the ability to introduce
mediations and qualities of service that can then be applied uniformly to the
services connecting through the bus

� Loose coupling enables protocol transformations between service requestor and
provider

� Mediation services can modify messages as they pass between service
requestors and providers

� Mediation services can make routing decisions, dynamically selecting a service
provider to satisfy a request

� Mediation services are implemented using mediation modules that contain
mediation flows

� A mediation module uses service component architecture (SCA) in the same
way as a module in WebSphere® Process Server

� WebSphere Enterprise Service Bus and WebSphere Process Server provide
ESB capability through the use of a mediation module deployed in the server as
a J2EE™ application

In a service oriented architecture, services represent business functions that can be
reused and combined to create flexible and responsive business systems. These services
can have loosely coupled connections through an enterprise service bus (ESB) rather than
being connected directly to each other.

When services are loosely coupled through an ESB the overall system has more flexibility
and can be easily modified and enhanced to meet changing business requirements. The
ESB can also be used to apply qualities of service uniformly to all the services connecting
through the bus.

The use of an ESB provides several functional capabilities, which together result in the
loose coupling nature of the system. The ESB enables protocol transformations, allowing
service requestors and service providers to use different protocols for communication. The
ESB also provides mediation services, which can inspect, modify, augment and transform
a message as it flows from requestor to provider. The mediation services of the ESB can
also be used to dynamically select a service provider to satisfy the request.

In WebSphere Enterprise Service Bus and WebSphere Process Server there are
mediation modules which are used to provide the enterprise service bus functionality.
These mediation modules are a part of service component architecture (SCA) and are
very similar to SCA modules. They contain an SCA component called the mediation flow
component and use exports and imports to connect to external service requestors and
providers. The mediation flow component makes use of mediation primitives to define the
logic of a mediation flow.

Mediation modules are deployed to WebSphere Enterprise Service Bus and WebSphere
Process Server as J2EE applications.

WBPMv62_MediationModules.ppt Page 3 of 33

IBM Software Group

4

Mediation module and flow concepts © 2009 IBM Corporation

Mediation moduleMediation module

Section

This section of the presentation looks at the concepts of mediation modules and the
building blocks used to define them.

WBPMv62_MediationModules.ppt Page 4 of 33

IBM Software Group

5

Mediation module and flow concepts © 2009 IBM Corporation

Mediation module - Concepts
� WebSphere Enterprise Service Bus and WebSphere Process Server provide

mediation modules, that:
� Intercept and modify messages between service requester and the service provider
�Provide the ESB functions of converting protocols, routing, transformation and other

custom processing on the messages

� A mediation module is special type of service component architecture (SCA)
module, containing:
�Exports and imports
�SCA components (only certain component types are allowed)

� A mediation module is the unit of deployment that runs in WebSphere
Enterprise Service Bus or WebSphere Process Server

Service
requester

Service
provider

Requests
Responses

Requests
Responses

Mediation module

Enterprise service bus functionality is provided by WebSphere Enterprise Service Bus and
WebSphere Process Server through the use of mediation modules. They intercept and
modify messages as they flow between a service requestor and service provider. ESB
capabilities that are provided include protocol transformation, dynamic routing decisions
and message modification and transformation.

The mediation module is a special type of SCA module used specifically for ESB
mediation capabilities. It contains SCA imports, exports and a limited set of SCA
components. Looking at the graphic in the slide, the mediation module is shown with the
blue box on the left representing SCA exports through which service requests are
received. The green box on the right of the mediation module represents SCA imports
through which service providers are called.

The mediation module represents the unit of deployment that is generated into a J2EE
application that is installed on a WebSphere Enterprise Service Bus or WebSphere
Process Server.

WBPMv62_MediationModules.ppt Page 5 of 33

IBM Software Group

6

Mediation module and flow concepts © 2009 IBM Corporation

Requests
Responses

Requests
Responses

Mediation module

Mediation module - Contents
� Mediation flow component

� Provides mediation function on messages between service requestors and providers
� Interface defined by WSDL only

� Exports
� Expose the mediation module to external service requesters
� Interface defined by WSDL or Java

� Imports
� Identify external service providers and their interfaces
� Interface defined by WSDL or Java

� SCA Java components
� Used for service invoke primitives or to support the use of Java interfaces
� Interface defined by WSDL or Java

Imports
Represents a service provider outside the
scope of the bus, such as a Web service

provider or a JMS application

Exports
Represents a service requester outside the
scope of the bus, such as a Web service

client or a JMS application

Service
requester

Service
provider

Mediation
flow

component

Java component

This slide takes a little closer look at a mediation module, examining its contents as shown
in the graphic. It is composed of SCA exports and imports, an SCA mediation flow
component and optionally SCA Java components.

The heart of a mediation module is the mediation flow component, which provides the
mediation logic applied to a message as it flows from service requestor to a provider. It is
an SCA component that is normally used in a mediation module. The interface for input
and output of a mediation flow component must be defined by a Web services definition
language (WSDL) document. The use of Java defined interfaces is not allowed for the
mediation flow component. This component type is examined in more detail on the next
slide.

SCA exports are used to expose the mediation module to service requestors. They
provide the interface and protocol definition used by the requestor to make the call. Their
interfaces can be defined using either Java or WSDL interfaces.

SCA imports are used so that the mediation module can make calls out to service
providers. They define the interface and protocol needed to make the call. Similar to
exports, their interfaces can also be defined with WSDL or Java.

Finally, a mediation module can optionally contain SCA Java components. There are two
reasons why you might need to do this. The first is to support the use of the service invoke
primitive when the Java component in the assembly contains the logic for the service
being called. The second reason is for mapping between WSDL and Java interfaces. An
example of this requirement is when the service provider is implemented as a stateless
session bean, which requires the import to have a Java interface. A Java component is
used to map the WSDL interface of the mediation flow component to the Java interface of
the import.

WBPMv62_MediationModules.ppt Page 6 of 33

IBM Software Group

7

Mediation module and flow concepts © 2009 IBM Corporation

Mediation module - Mediation flow component
� Mediation flow component is a type of SCA component

�Normally used in a mediation module, but can also be used in a module
�A module or mediation module can contain more than one mediation flow component
�Source defined by an interface
�Target defined by one or more references
� Interface and references are described as WSDL interfaces, Java interfaces are not

supported

� Enables ESB functionality
�Routing decisions, selection of service provider
�Message modification and augmentation
�Covert messages to support different interfaces between requestor and provider

Imports

Service
requester

Service
provider

Mediation module

Mediation flow
component

Interface References

Exports

The mediation flow component is a type of SCA component that is typically used in a
mediation module, but as of version 6.2 it can also be used in a module. Also added in
version 6.2 is the capability to have more than one mediation flow component in a module
or mediation module. Before version 6.2, you can only have one mediation flow
component and it had to be contained in a mediation module.

Looking at the graphic, you see that the mediation flow component contains a source
interface and target references similar to other SCA components. The source interface is
described using WSDL and must match the WSDL definition of the export to which it is
wired. The target references are described using WSDL and must match the WSDL
definitions of the imports or Java components to which they are wired.

The mediation flow component handles most of the ESB functions. These include dynamic
routing and selection of service provider, message modification and augmentation and
mapping of message formats between differing interfaces used by the requestor and
provider.

WBPMv62_MediationModules.ppt Page 7 of 33

IBM Software Group

8

Mediation module and flow concepts © 2009 IBM Corporation

Mediation module - Imports and exports

� Imports and exports are configured with bindings
�Bindings provide support for varying protocols

� For example, Web service or JMS

�Bindings enable the ESB function of protocol
transformation between requester and providers

�Bindings are configured at development time
� Binding type is fixed for the import or export at this time

�Most binding types can be administered at runtime

SCA exports and imports play a major role in supporting ESB functionality in a mediation
module. They are configured with bindings that specify and configure the protocol used for
communication between requestor and mediation module and between mediation module
and provider. The ESB functionality of protocol transformation is enabled through the use
of exports and imports with different binding types.

Bindings are associated with an import or export at development time using WebSphere
Integration Developer, at which time the binding type is set. The configuration data, which
varies by binding type, is also set at development time. However, most binding types
support modification of the binding configuration data at runtime using the Administrative
console or the wsadmin commands.

There are several different binding types, or protocols, that are supported. These are listed
on the next couple of slides.

WBPMv62_MediationModules.ppt Page 8 of 33

IBM Software Group

9

Mediation module and flow concepts © 2009 IBM Corporation

Mediation module –
Import and export bindings

� SCA (default) binding
�Used for communication between SCA modules

� Web services binding
�JAX-RPC with SOAP 1.1 over HTTP or JMS
�JAX-WS with SOAP 1.1 or 1.2 over HTTP

� HTTP binding
�HTTP/HTTPS
�Payload does not have to be SOAP
�Access to headers

� MQ binding
�Enables interaction with MQ applications that are not based on JMS
�Exposes MQ header handling conventions and provides access to all header

data
�Support for a variety of different request/reply correlation techniques common

to MQ

The first binding type is the SCA binding, which allows imports to communicate with
exports in a different SCA module or mediation module using SCA as the transport. These
are often referred to as the SCA default bindings.

The Web services binding supports either JAX-RPC or JAX-WS. The JAX-RPC bindings
use SOAP 1.1 over either HTTP or JMS, while the JAX-WS bindings use either SOAP 1.1
or 1.2 over HTTP.

The HTTP binding supports any HTTP or HTTPS interaction. They differ from the Web
services binding in that the payload of the HTTP message does not have to be SOAP and
the binding provides access to HTTP headers.

There are a few different variations of bindings that support messaging protocols, the first
of which is shown on this slide. The MQ binding enables interaction with MQ based
applications that are using native MQ protocols rather than JMS protocols. These
applications typically make use of data in the headers and follow MQ header handling
conventions, all of which is exposed in this binding type. The various request and reply
correlation schemes used in MQ are also supported.

WBPMv62_MediationModules.ppt Page 9 of 33

IBM Software Group

10

Mediation module and flow concepts © 2009 IBM Corporation

Mediation module –
Import and export bindings (continued)

� JMS binding
�Uses the default messaging provider built into in WebSphere Application

Server, utilizing the service integration bus (SIB)
�Can interoperate with MQ based messaging using MQLink and MQClientLink

� JMS MQ binding
�Uses the WebSphere MQ JMS provider
�Works directly with WebSphere MQ JMS applications without requiring SIB

and MQLink interaction

� Generic JMS binding
�Uses any JMS provider that implements the JMS 1.1 specification

� Adapter bindings
�WebSphere Adapters (JCA based)
�WebSphere Business Integration Adapters (JMS based)

� Session bean binding
�Imports only, used to call session bean as a service

The next three bindings are also messaging bindings and all support JMS protocols.

The JMS binding makes use of the default messaging provider that is built-in to
WebSphere Application Server and uses the service integration bus (SIB). These are used
for JMS communication with other applications using the default messaging provider. They
can also communicate with MQ applications through configuration of an MQLink or
MQClientLink in the SIB.

The JMS MQ binding makes use of JMS with the MQ JMS provider. This enables direct
interaction with MQ JMS applications without having to go through the SIB with MQLink or
MQClientLink. This enables better performance and more flexibility in configuring the use
of JMS.

The generic JMS binding allows interaction with other JMS providers. It is based on the
JMS 1.1 specification, and therefore the provider used must be compliant with JMS 1.1.
An example of such a provider is SonicMQ, but there are many others as well.

There are two basic forms of adapters, the WebSphere Adapters based on JCA and the
WebSphere Business Integration Adapters, which use a specific protocol over JMS. There
are adapter specific import and export binding types that can be generated for both of
these adapter varieties.

Finally, there is the session bean binding. These are supported only for imports to enable
a stateless session bean to be called as a service. These import bindings only support
Java interfaces. Therefore, an intervening Java component is required when wiring a
mediation flow component to one of these imports.

WBPMv62_MediationModules.ppt Page 10 of 33

IBM Software Group

11

Mediation module and flow concepts © 2009 IBM Corporation

Export
Imports

Requestor

Mediation flow
component

Mediation module

Service
provider Mediation flow

component

Service
requester

Requests
Responses

Requests
Responses

Mediation module – Assembly diagram

An assembly diagram is used to represent the contents of a mediation module.
WebSphere Integration Developer provides an assembly editor which enables you to
define and configure the imports, exports and mediation flow component that make up the
mediation module. It is only the interface, references and associated wiring of the
mediation flow component that is defined in the assembly diagram. Other editors are used
to define the contents of the mediation flow component.

In addition to introducing the assembly diagram, the graphic on this slide shows you how
to relate the diagrams that are used in this presentation to what you will see in WebSphere
Integration Developer.

WBPMv62_MediationModules.ppt Page 11 of 33

IBM Software Group

12

Mediation module and flow concepts © 2009 IBM Corporation

Mediation flow componentMediation flow component

Section

This section provides the next level of details about the mediation flow component. It
discusses operation connections, request and response flows, flow logic, service message
objects and the tools in WebSphere Integration Developer.

WBPMv62_MediationModules.ppt Page 12 of 33

IBM Software Group

13

Mediation module and flow concepts © 2009 IBM Corporation

Mediation flow component –
Operation connections

� Operation connections
�Establish relationship between source operations and target operations

�A source operation can be related to one or more target operations

�There must be an operation connection for each source operation

�Not all target operations need to be connected

�Define source and target of mediation flows

� Source operation can connect to
�Same operation

� Reference with the same WSDL

�Different operation
� Reference with a different WSDL

� Reference with same WSDL

�More than one operation
� Enables flow to make routing decisions

Mediation module

Mediation flow component
Operation connections

op1
op2
op3

op1
op2
op3

opA
opB

Interface References

Once a mediation flow component has been defined on an assembly diagram it has both a
source interface and one or more target references. These are each associated with a
WSDL interface which defines the operations and their associated inputs, outputs and
faults. The first part of defining the implementation of a mediation flow component is to
define the operation connections that establish the relationships between source and
target operations. There must be an operation connection defined for every operation on
the source interface and each source operation can be connected to one or more target
operations. Not all target operations need to be part of a connection.

Looking at the graphic, you see that the interface on the left is defined by a WSDL with
operations op1, op2 and op3. On the right, the bottom reference is defined by the same
WSDL and the upper reference is defined by a WSDL with opA and opB. Using this as an
example, you can see an operation connection between op3 and op3 showing a
connection between the same operation defined on the same WSDL. There is also an
operation connection between op1 and opA showing a connection between different
operations of different WSDLs. This connection will require the message be transformed
by the mediation. Looking at op2, it is connected to both op2 and opB. This connection will
require some type of routing decision and when the target is opB it will also require a
message transformation.

WBPMv62_MediationModules.ppt Page 13 of 33

IBM Software Group

14

Mediation module and flow concepts © 2009 IBM Corporation

Mediation flow component –
Request and response flows

� For each operation connection there is a flow
�Separated into request flow and response flow

� One-way operations only have a request flow

�Defines the mediation logic for that specific source operation

� The flow logic enables the ESB functions of:
�Routing decisions, selection of service provider
�Message modification and augmentation
�Convert messages to support different interfaces and operations

� Request flow capable of building a response without calling a provider
�For example, if the mediation module implemented a cache

Imports

Service
requester

Service
provider

Mediation module

Mediation flow
component

Request flow
Response flow

Exports

After defining the operation connections, the next step in building a mediation flow
component implementation is to define the flows. Every source operation and its
associated operation connections has a flow associated with it. When the operation is a
request response operation there are actually two parts of the flow to define, the request
flow and the response flow. The logic of the mediation is defined in the flow, providing the
ESB functions of dynamic routing and service selection, message modification and
augmentation and message transformation.

One of the interesting capabilities of the request flow is to enable the flow to respond
directly to the service requestor without making a call to any service provider. This might
be used for various reasons, such as the mediation module implementing a caching
scheme to optimize response time by eliminating certain calls to service providers.

WBPMv62_MediationModules.ppt Page 14 of 33

IBM Software Group

15

Mediation module and flow concepts © 2009 IBM Corporation

Mediation flow component – Flow logic
� Each request and response flow has its own logic

� Mediation primitives are used to define the processing
�Each primitive performs some specific function

� Interrogate the message
� Update the message
� Transform the format of the message
� Make routing decisions

� Flow of logic defined by wiring
�Defines connection between source operations, primitives and target

operations
�Source operation can be wired directly to the target operation

� Flow is a pass through with no logic

Mediation module

Mediation flow component - Flow logic

op2
op2

opB

Interface – source operation References – target operations

Mediation
primitive

Mediation
primitive

Mediation
primitive

Each request flow and response flow has its own logic. The logic is defined using
mediation primitives where each primitive performs some function within the flow. A
primitive might interrogate the values in the message to do something like write a log
message or raise an event. It might update elements within a message, such as filling in
input parameter values from a database lookup or the primitive might need to transform
the message format because the source and target operations are different. Or the
primitive could be involved in making routing decisions based the message content.

In addition to the primitives which each perform a function, the overall logic for the flow is
defined by wiring the source operation to primitives, primitives to other primitives and
finally primitives to a target operation. The message flows through the wires and is acted
upon by the primitives.

When the source and target operation are the same, they can be wired directly together
without any primitives being in the flow, defining a mediation flow that is essentially a pass
through operation.

WBPMv62_MediationModules.ppt Page 15 of 33

IBM Software Group

16

Mediation module and flow concepts © 2009 IBM Corporation

Mediation flow component –
Mediation flow editor

� WebSphere Integration Developer provides a mediation flow editor

� The editor is divided into the three sections:
�Operation connections – top section

� You define the mapping of each source operation to one or more target operations

� Once the connection is defined, you select a source operation to display the flow

�Message flow – middle section
� Displays a flow diagram for the selected source operation

� Tabs let you select between seeing the request flow or the response flow

� Flow diagram contains a canvas where the logic is defined

� Canvas contains nodes representing the source and target operations

� You drag mediation primitives from a palette onto the canvas

� You define the wiring between the source operation, primitives and the target operations

�Properties view – bottom section
� Displays the properties used to define the element selected in the message flow section

� Selected elements can be for a mediation primitive, an individual wire, the source and target
operations and the overall flow itself

Mediation flow components, which were described on the last several slides, are
implemented in WebSphere Integration Developer using the mediation flow editor. There
are three major sections in the mediation flow editor, the operation connections section,
the message flow section and the properties view.

The operation connections section is located in the top section of the editor. It enables you
to define the connections between source operations and target operations. In the editor,
selecting the source operation will display the flow for that operation.

The middle section of the editor contains the message flow for the selected operation, with
tabs enabling you to switch between the request flow and the response flow. It contains a
canvas with nodes representing the source and target operations. You drag mediation
primitives from a palette, drop them unto the canvas and wire the nodes and primitives
together to define the flow.

The bottom section of the editor has the properties view which is used to display and edit
configuration properties. Whatever element is selected in the message flow section will
have its properties displayed in the properties view. The elements which can be selected
include mediation primitives, a wire, the source or target operations or clicking on the
canvas will select the flow itself.

The next few slides provide diagrams of the different sections of the editor.

WBPMv62_MediationModules.ppt Page 16 of 33

Callout

IBM Software Group

17

Mediation module and flow concepts © 2009 IBM Corporation

Mediation flow editor

Operation
connection

Palette
with

mediation
primitives

Operation
connections

section

Message
flow

section

1

2

3

Canvas
Mediation

primitives added
here and

wired to create
the flow

Input
response

node

a

b

Callout
nodes

Input
node

1

2

3

Mediation flow component on
assembly diagram

Source
operation

Target
operations

Mediation
flow

configuration

This slide shows how a mediation flow component on an assembly diagram is represented
in the mediation flow editor. At the top of the graphic you see a mediation flow component
as it appears in the assembly diagram. It has an interface labeled 1 and two references
labeled 2 and 3.

The operations connections section of the mediation flow editor shows the source
interface on the left and the two target references on the right. The name of the interface
and references are shown in the title bar for each. All the operations defined for each are
listed below the title bar, but in this case they all contain only one operation, called
getQuote. The lines labeled a and b define the operation connections for the getQuote
source operation, showing that its flow might possibly call either of the two getQuote target
operations.

The message flow section contains the input node on the left side, representing the
message as it is received from the requestor. On the right side are the two callout nodes,
representing the message as it is sent to a target service. At the bottom right of the
message flow section is the input response node which can be used to respond to the
requestor without calling a service provider.

The nodes that were just described are on the canvas. Mediation primitives are dragged
from the palette on the left and dropped onto the canvas. Wires are then used to create
the flow by connecting the nodes and primitives to perform the mediation function required
for the flow. The palette can be hidden when not needed to provide more room on the
canvas. On the right is mediation flow configuration information, where the configured
references and contexts are listed. Similar to the palette, this can be hidden when not
needed to increase the area available to the canvas.

WBPMv62_MediationModules.ppt Page 17 of 33

IBM Software Group

18

Mediation module and flow concepts © 2009 IBM Corporation

Operation connections and mediation flows

1 2

3

1a

1b

2a

3a

2b

3b

1b

Operation connections

Canvas
Mediation
primitives

added
here Response flow

Request flow

Canvas
Mediation
primitives

added here

1 Input

2 Callout 1

3 Callout 2

a = Request
b = Response

This page shows more details of the mediation flow editor, relating the operation
connections to both the request and response in the message flow section of the editor.
The middle of the slide shows the operation connection, with the source input operation
being labeled 1 and the target callout operations being labeled 2 and 3.

The top of the slide shows the request flow. Notice that in the lower left corner is a tab
used to display the request flow portion of the message flow panel. The label 1a is by the
input node where a request flow will start with an incoming request. The labels 2a and 3a
are by the callout nodes where the request flow ends with a call to a service provider.
Label 1b is by the input response node which can be used to return to the caller without
making a call to a provider. The mediation flow logic is built on the canvas by wiring
together primitives.

The bottom of the slide shows the response flow. On the lower left is the response flow tab
used to display the response portion of the message flow panel. The labels 2b and 3b are
by the callout response nodes, where the response flow will begin upon return from the
service provider. Label 1b is by the input response node, which is where the response flow
ends as it returns to the original requestor. The mediation flow logic for the response is
built on the canvas in the same way it is done for the request flow.

WBPMv62_MediationModules.ppt Page 18 of 33

IBM Software Group

19

Mediation module and flow concepts © 2009 IBM Corporation

Mediation flow component –
Service message object (SMO)

� Service message object (SMO) provides a common representation of a
message in a mediation flow

� The SMO is a service data object (SDO)

� The SMO contains three major sections
�The body is the application data for the message
�The headers are protocol specific header information for the message
�The context is data used within the flow itself

� An SMO has a schema definition
�The headers schema is predefined and the same for all flows
�The context schema

� Mostly predefined and the same for all flows
� Correlation, transient and shared contexts specified on a per flow basis

�The body schema varies by flow and within flow, based on:
� Interface and operation the message represents
� Whether application data is the operation’s input, output or fault data

� The body schema defines the SMOs “message type”

In a mediation flow, the message is represented as a service message object (SMO). It
provides a common representation of the message so that mediation primitives are able to
access it within a flow. The SMO is built using service data object (SDO) technology and
can be accessed using the generic DataObject APIs, type specific SMO APIs and XPath
expressions.

The SMO is divided into three major sections, the context, headers and body. The body is
the application specific data which is defined by the operation and the input, output or fault
data that is being passed for that operation. The headers contain protocol specific header
information that is related to the protocol used by the export or import associated with this
flow. The context contains flow specific data that is useful within the flow but is not passed
outside of the flow.

The SMO has a schema definition for all three sections. The schema for the headers is the
same for all flows, but which of the specific headers contain data will depend upon the
protocol used by the export or import. The schema for most of the context is the same for
all flows except for the correlation, transient and shared context sections. The correlation,
transient and shared contexts are flow specific extensions to the context that are used to
pass data within the flow that is required by the flow logic. The body varies for every flow
and can also vary within a flow. This is based first on the interface and operation the
message represents at that point in the flow and whether the data for the operation is
input, output or fault data. These elements of the body of the message define an SMO
message type which becomes an important factor when developing flow logic.

WBPMv62_MediationModules.ppt Page 19 of 33

IBM Software Group

20

Mediation module and flow concepts © 2009 IBM Corporation

Mediation primitivesMediation primitives

Section

This section provides more details related to mediation primitives and lists the primitives
available for use. There is also an example mediation flow explained.

WBPMv62_MediationModules.ppt Page 20 of 33

IBM Software Group

21

Mediation module and flow concepts © 2009 IBM Corporation

Mediation primitives

� Mediation primitives perform functions within a flow
�Updating or adding data elements to the SMO
�Transforming the SMO to a different schema

�Flow control for iteration or routing decisions
�Perform logging or event generation

� Built-in primitives provide a predefined configurable function

� Custom mediation primitives allow you to implement the function in Java

� Mediation primitives have input and output terminals
�Terminals are the endpoints for wires in a mediation flow
�Primitives have one or more input terminals and zero, one or more output

terminals
�A fail terminal is an output terminal taken with the mediation primitive has an

exception
�Each terminal has a specific message type defining the schema of the SMO at

that point in the flow

Mediation primitives are the core building blocks used to process the request and
response messages in a flow. They are used to update, add to and transform the SMO, to
control the flow for iteration or to make routing decisions, and to perform logging and event
generation.

There are built in primitives which perform some predefined function that is configurable
through the use of properties. There are also custom mediation primitives which allow you
to implement the function in Java.

Mediation primitives have input and output terminals, through which the message flows.
The terminals are the endpoints for the wires used to connect primitives and nodes into a
flow. Almost all primitives have only one input terminal, but multiple input terminals are
possible for custom mediation primitives. Primitives can have zero, one or more output
terminals. There is also a special terminal called the fail terminal through which the
message is propagated when the processing of a primitive results in an exception.

Every terminal on primitives and nodes has a specific message type associated with it. It
defines the exact schema for the SMO at that point in the flow. Some primitives are able to
change the message type between the input and output terminals, but most do not change
the message type.

WBPMv62_MediationModules.ppt Page 21 of 33

IBM Software Group

22

Mediation module and flow concepts © 2009 IBM Corporation

Mediation primitive types

Downcasts element to more specific type Set message type

Message elements are set, copied or deleted Message element setter

Set elements from contents of a database row Database lookup

Read, update, copy and delete SOAP header elements SOAP header setter

Read, update, copy and delete MQ header elements MQ header setter

Read, update, copy and delete JMS header elements JMS header setter

Read, update, modify message using Java code Custom mediation

Update, modify message using a data handler Data handler

Read, update, copy and delete HTTP header elements HTTP header setter

Update, modify message using business object maps Business object map

Update, modify message using XSLT XSL transformation

Transformation primitives

The next few slides introduce the various mediation primitive types. There are various ways that mediation
primitive types can be organized. In WebSphere integration developer, they are categorized into broad
groupings based on the primary function of the primitive. They are categorized as transformation primitives,
routing primitives, tracing primitives, error handling primitives and subflow primitives. That is the highest level
of organization used on these slides. Another way to group primitives is according to their behavior and
abilities for updating the service message object as it flows through the mediation. These slides use color
coding to indicate this. Primitives which can change message type are shown in blue, those that update the
SMO without changing the message type are shown in yellow and finally those that do not update the SMO
are shown in red.

This slide looks at transformation primitives, starting with those that can change the message type. This is
the truest sense of transformation, as the message type of the SMO is being transformed.

The XSL transformation primitive is used to update or transform messages using XSLT. This can be used
to change the format of the message. An example of when the format needs to change is when the target
provider has a different interface than the incoming message.

The business object map primitive is very similar in function to the XSL transformation primitive, but it uses
business object maps rather than XSLT to perform the transformation. These are the same business object
maps that are used in WebSphere Process Server within an interface map to perform parameter mapping.
As a result, change logging and the relationship service are enabled.

The data handler primitive allows you to configure a data handler to transform the message. A data handler
can be one supplied with the product or one that you provide, along with any configuration data that is
needed by the data handler. These data handlers are the same as those used with SCA imports and exports.

The custom mediation primitive is used to do any message processing not covered by the other mediation
primitives. This is done through Java code that can be written as a visual snippet or as a Java snippet.

WBPMv62_MediationModules.ppt Page 22 of 33

IBM Software Group

23

Mediation module and flow concepts © 2009 IBM Corporation

Mediation primitive types (continue)

Downcasts element to more specific type Set message type

Message elements are set, copied or deleted Message element setter

Set elements from contents of a database row Database lookup

Read, update, copy and delete SOAP header elements SOAP header setter

Read, update, copy and delete MQ header elements MQ header setter

Read, update, copy and delete JMS header elements JMS header setter

Read, update, modify message using Java code Custom mediation

Update, modify message using a data handler Data handler

Read, update, copy and delete HTTP header elements HTTP header setter

Update, modify message using business object maps Business object map

Update, modify message using XSLT XSL transformation

Transformation primitives

Continuing with the transformation primitives, the next grouping are those that update the contents of the
SMO but do not actually transform the message type.

The first four, the header setter primitives, are all similar in nature. They provide you with an easy way to
access protocol specific headers within the header section of the SMO. Although these headers can be
accessed with other mediation primitives, these header setter primitives make it much easier because they
are aware of how these protocol specific headers are structured. This allows you to focus on those aspects
of the header you are interested in reading or updating, without having to be concerned with specifically how
they are represented in the SMO.

The HTTP header setter primitive enables you to access HTTP headers, which are grouped into control
elements, standard elements and user elements.

The JMS header setter primitive enables you to access JMS headers, which are grouped as standard
elements and user elements.

The MQ header setter primitive enables you to access MQ headers. The headers exposed are the message
descriptor, the CICS® bridge header, the IMS information header and the rules and formatting header two.

The SOAP header setter primitive enables you to access SOAP headers. Any XSD containing an element
can be a SOAP header. Some are provided by standards such as WS-Security and others are user defined.

The database lookup primitive is used to access information from a database and insert it into the message.
A field in the message is used as a key for the database access and selected fields from the resulting
database row can be placed into the message.

The message element setter primitive can be configured to update elements of the SMO. Individual
elements can be set to a specific value or can have their value deleted. Individual elements or sub-trees in
the SMO can be set by copying the values from another location in the SMO. Arrays in the SMO can have an
element appended.

The set message type primitive does not update the SMO contents, but is used to augment the message
type. If is used in conjunction with loosely typed elements in the SMO, such as an XSD:anyType, allowing it
to be downcast to a more specific type. This enables tools, such as the XPath expression builder, to
represent the element to you as the more specific type.

WBPMv62_MediationModules.ppt Page 23 of 33

IBM Software Group

24

Mediation module and flow concepts © 2009 IBM Corporation

Mediation primitives types (continue)

Selectively forward message based on element types Type filter

Selectively forward message based on element values Message filter

Check completion of a split/aggregate flow Fan in

Starts iterative or split flow for aggregation Fan out

Set policy constraints from registry query Policy resolution

Set potential endpoints from registry query Endpoint lookup

Invoke external service, message modified with result Service invoke

Routing primitives

This next grouping of primitives are those that are categorized as routing primitives. The service invoke
primitive is the first of these and is the only one in this category that changes the message type. It is used to
make a call from within a mediation flow to an external service defined on the mediation module assembly.
The service can be defined by a Java component or by an import. The input terminal message type conforms
to the input to the service and the output terminal message type conforms to the output from the service.

The endpoint lookup primitive is used to perform a query of the WebSphere Service Registry and
Repository. The SMOHeader section of the SMO is updated with potential service endpoints that can be
used by a callout node or service invoke primitive. Looked at from this perspective, the endpoint lookup is not
actually doing the routing, but rather is providing the information used later in the flow to perform routing.

The policy resolution primitive is similar, also performing a query of the WebSphere Service Registry and
Repository. Based on a conditional query, it looks up policy information and updates the dynamicProperty
section of the SMO with property values. These property values are then used by subsequent primitives in
the flow to influence their configured behavior.

The fan out primitive is used to start an iteration for a message splitting and aggregation flow. It can be used
to process an array of repeating elements within the SMO and can also be used as the head of a flow with
multiple paths. For a simple splitting scenario the fan out can be used without a fan in, but for a splitting and
aggregation scenario it has an associated fan in. When used with an aggregation scenario, the primitive
updates the FanOutContext section of the SMO.

The remaining routing primitives do not update the SMO. The fan in primitive is always used in conjunction
with a fan out primitive as part of a message splitting and aggregation scenario. The primitive controls the
flow based on the state of the flow and the fan in configuration information. Either the flow returns to the fan
out for another iteration or the flow proceeds from the fan in, passing the aggregated results.

The message filter primitive is used to modify the path through a flow by selectively forwarding the message
based on values of elements within the SMO. The primitive contains a table of simple XPath expressions,
each associated with an output terminal defining where the message is forwarded. The message is
forwarded based on evaluation results of the XPath expressions.

The type filter primitive is very similar to the message filter. It selectively forwards the message based on
the evaluation of element types within the SMO. The primitive contains a table with elements and associated
types, each associated with an output terminal defining where the message is forwarded. The message is
forwarded when an element in the SMO is of the same type as that defined in the table.

WBPMv62_MediationModules.ppt Page 24 of 33

IBM Software Group

25

Mediation module and flow concepts © 2009 IBM Corporation

Mediation primitives types (continue)

Raise a common base event to CEI Event emitter

Write a log message to database or custom destination Message logger

Tracing primitives

Stop entire flow and raise an exception Fail

Stop single path in flow without an exception Stop

Error handling primitives

Represents a user defined subflow Subflow

Mediation subflow primitives

This slide looks at the remaining primitives, the tracing primitives and error handler
primitives, which do not modify the SMO.

The first tracing primitive is the message logger that is used to log all or part of the
contents of the message. The primitive provides two different option. The first option logs
the message to a message log database which is identified through configuration of the
primitive. The other option allows you to specify a custom logging implementation based
on the Java logging APIs. A default implementation of this is provided that logs to a file.

The event emitter primitive is used to raise an event containing all or part of the contents
of the message. The event is emitted as a common base event which is handled by the
common event infrastructure.

The next category is the error handling primitives .

The stop primitive is used to stop an individual path through the mediation flow without
raising an exception or affecting other paths through the flow.

The fail primitive is used for error conditions and will stop the entire mediation flow and
cause an exception to be raised.

Finally, there is the mediation subflow primitive which represents flow logic that you have
provided as a subflow. A mediation subflow is a preconfigured set of mediation primitives
that are wired together to create a common pattern or use case. The logic of the subflow
determines if the SMO contents are update and if the message type is changed.

WBPMv62_MediationModules.ppt Page 25 of 33

IBM Software Group

26

Mediation module and flow concepts © 2009 IBM Corporation

Mediation primitives in the mediation flow editor

Operation
connections

Mediation
primitives

1

2

3

This slide shows a mediation flow component in the assembly editor and in the mediation
flow editor, similar to a previous slide. However, in this slide mediation primitives have
been added to the request flow. The request flow shown here is used on the next slide to
illustrate the flow of a message. The flow is designed to provide a stock quote, with quotes
being supplied by a service returning quotes that are delayed 20 minutes, except for
premium customers who receive real-time quotes.

The request flow starts at the input node and goes to a message logger primitive that will
log the message to the message database. Then a database lookup primitive determines
whether the request is for a premium customer and makes an update to the transient
context to indicate the customer’s status. The next primitive is a message filter which looks
at the transient context and directs the flow based on the type of customer. If it is not a
premium customer, the request is passed directly from the message filter to the callout
node for the delayed service without any transformation. If it is a premium customer, an
XSL transformation primitive is used to convert the message to the appropriate interface
for the premium real-time service. It is then passed from the XSL transformation to the
callout node for the premium real-time service.

The response flow is not shown in this example. That flow needs to contain an XSL
transformation primitive to translate the response from the premium real-time service
interface to the interface used by the requestor.

WBPMv62_MediationModules.ppt Page 26 of 33

Delayed

Realtime

IBM Software Group

27

Mediation module and flow concepts © 2009 IBM Corporation

Mediation flow example

Mediation module

Delayed
I BM H urley
Engl and

I BM H urley
Engl and

Realtime

Mediation – request flow

XSL
transform

SMO Message
logger

Message
filter

Database
lookup

XYZ

Mediation
flow

component

Requestor

Provider

Provider

SMO SMO SMO SMO

1

2

3

1

2

3

SMO

This is an illustration of the request flow shown on the previous slide. The color of the
boxes labeled SMO is intended to indicate when changes have occurred to the SMO
content or message type.

Starting in the upper left, a request for a stock quote is made. It is received by the
mediation module through an export, the SMO is constructed and the request flow begins
in the mediation flow component as shown on the bottom at the label 1. The SMO is
passed from the input node to a message logger which writes the message to a log
database. The unchanged SMO is then passed to the database lookup primitive which
performs a lookup of the customer in a database to determine if they are a premium
customer. This information is placed into the transient context of the SMO and the
modified SMO is passed to the message filter primitive. The message filter primitive
contains an XPath expression that checks to see if the transient context says this is a
premium customer. If not, the unchanged SMO is propagated from the message filter to
the callout for the delayed service at label 2. The call to the delayed service is then made
through the import labeled 2. If it was a premium customer, the unchanged SMO is
propagated from the message filter to the XSL transformation primitive that modifies the
message type of the SMO to be compatible with the interface of the real time service. The
transformed SMO is then passed to the callout for the real time service as shown at label
3. The real time service is called using the import labeled 3.

When the service provider returns, the result will be processed through a response flow
that is not shown here, and the result is then passed back to the requestor. For the
delayed quote service, the response flow would not need to do any processing. However,
for the real time quote service there would need to be an XSL transformation primitive to
change the message type of the response message to be compatible with the interface
used by the requestor.

WBPMv62_MediationModules.ppt Page 27 of 33

IBM Software Group

28

Mediation module and flow concepts © 2009 IBM Corporation

Development life cycle and deploymentDevelopment life cycle and deployment

Section

This section looks at the development, test and deployment life cycle for a mediation
module developed in WebSphere Integration Developer and deployed to a WebSphere
Process Server or WebSphere Enterprise Service Bus server.

WBPMv62_MediationModules.ppt Page 28 of 33

IBM Software Group

29

Mediation module and flow concepts © 2009 IBM Corporation

Deployment

� A mediation module is deployed in the same way as an
SCA module

� WebSphere Integration Developer generates J2EE artifacts

� A J2EE EAR is generated from the J2EE artifacts using:
�WebSphere Integration Developer
�serviceDeploy

� Install into the server using standard J2EE EAR installation
�Administrative console application installation panels

�Using wsadmin $AdminApp install from the command line

� Can be installed into either:
�WebSphere Enterprise Service Bus

�WebSphere Process Server

The packaging and deployment for a mediation module is the same as that of an SCA
module. There are J2EE artifacts generated by WebSphere Integration Developer that are
used to build a J2EE EAR that can be deployed to a server. The building of the J2EE EAR
can be done by WebSphere Integration Developer or using a command line tool named
serviceDeploy. The J2EE EAR can then be installed into a WebSphere Enterprise Service
Bus or WebSphere Process Server using the normal installation capabilities of the
administrative console or the wsadmin $AdminApp install command line tool.

WBPMv62_MediationModules.ppt Page 29 of 33

Single
server

Unit
test

server

IBM Software Group

30

Mediation module and flow concepts © 2009 IBM Corporation

Development, test and deployment life cycle

Local or remote

Administrative
console

Single
server

WebSphere cell

Deployment
manager

Deployment
manager

Node

Managed
server

Managed
server

Node
agent

Node

Managed
server

Managed
server

Node
agent

WebSphere Integration
Developer

Generated
artifacts Mediation

module

Unit
test

server

Deploy

configure

server = WebSphere Enterprise Service Bus
or WebSphere Process Server

- Using WebSphere Integration Developer

- You create a mediation module

- It generates the J2EE artifacts

- Test it in unit test server, which is a real
server, administered with administrative
console or wsadmin

- Can also test in single local or remote server

- Can also test in a managed server in a
WebSphere cell

- When testing complete, deploy J2EE EAR to
production in single server or managed servers

J2EE EAR

This diagram shows the end to end development, testing and deployment life cycle of a
mediation module. Using WebSphere Integration Developer, you construct your mediation
module with SCA imports and exports, a mediation flow component and possibly some
Java components.

As you are developing your mediation module, WebSphere Integration Developer will be
generating J2EE artifacts.

When you are ready to unit test your module, WebSphere Integration Developer generates
a J2EE EAR and installs it into the unit test server that is installed with WebSphere
Integration Developer. This can be either a WebSphere Enterprise Service Bus or
WebSphere Process Server. The unit test server is a fully functional server and is
administered using the administrative console or wsadmin commands. However, while unit
testing the mediation module you interact with WebSphere Integration Developer to deploy
the mediation application and to refresh it in the server as you make iterative changes.

In addition to the unit test servers, WebSphere Integration Developer enables you to
configure a stand-alone WebSphere Enterprise Service Bus or WebSphere Process
Server to use for unit testing. A possible reason for doing this would be to do your unit
testing on a server running on a different operating system than the development tools,
such as an AIX® system.

You can also do your testing using a managed server that belongs to a WebSphere cell
that is managed by a deployment manager.

Once you have finished with your development and unit testing you may want to continue
your testing without the WebSphere Integration Developer. Using WebSphere Integration
Developer you can export a J2EE EAR containing your mediation application.

The EAR file can then be installed into a stand-alone or managed server using the
administrative console or wsadmin command line tools. You would do this in your quality
assurance test environment and your production environment.

WBPMv62_MediationModules.ppt Page 30 of 33

IBM Software Group

31

Mediation module and flow concepts © 2009 IBM Corporation

Summary

� ESB mediation capabilities are provided by both:
�WebSphere Enterprise Service Bus
�WebSphere Process Server

� ESB capabilities are enabled by mediation modules
�Similar to SCA modules with imports, exports and components
�Provide loosely coupled connectivity between service requestor and

provider
� Protocol transformation
� Dynamic message routing
� Message augmentation and transformation

� Mediation modules contain a mediation flow component
�Contains the flow logic for service operation requests and responses
�Built using mediation primitives that act on the message in the flow
�The message is represented as a service message object (SMO)

In summary, enterprise service bus functionality can be deployed into either WebSphere
Enterprise Service Bus or WebSphere Process Server.

The ESB capabilities are provided using a special type of SCA module called the
mediation module. Using the mediation module, a loose coupling of service requestors
and providers can be obtained. This includes enabling protocol transformations, dynamic
routing of messages and the augmentation and transformation of messages.

The mediation module contains a mediation flow component. The mediation flow logic is
defined in this component through the use of mediation primitives. The message that flows
through the mediation flow component is a type of SDO called a service message object.

WBPMv62_MediationModules.ppt Page 31 of 33

IBM Software Group

32

Mediation module and flow concepts © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv62_MediationModules.ppt

This module is also available in PDF format at: ../WBPMv62_MediationModules.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv62_MediationModules.ppt Page 32 of 33

IBM Software Group

33

Mediation module and flow concepts © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

AIX CICS WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

J2EE, Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WBPMv62_MediationModules.ppt Page 33 of 33

