
WPIv602_WESBWhatsNew602.ppt Page 1 of 17

®

IBM Software Group

© 2007 IBM Corporation

Updated February 19, 2007

WebSphere ® Enterprise Service Bus V6.0.2
WebSphere Integration Developer V6.0.2

What is new in V6.0.2 – New function overview

This presentation provides an introduction to the new function that has been added to
WebSphere Enterprise Service Bus in version 6.0.2.

WPIv602_WESBWhatsNew602.ppt Page 2 of 17

IBM Software Group

2

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Goals

� To introduce you to:
�WebSphere Enterprise Service Bus V6.0.2 enhancements

�Related WebSphere Integration Developer V6.0.2 enhancements

� At the end of the presentation you should be able to:
�Identify the new features available in the V6.0.2 release

� SCA import/export bindings

� Mediation flow enhancements

� New mediation primitives

�Details of the enhancements are found in other presentations

� Prerequisites to understanding this presentation:
�Knowledge of WebSphere Enterprise Service Bus V6.0.1

The goal of this presentation is to introduce you to the enhancements that have been
made to WebSphere Enterprise Service Bus in version 6.0.2. This includes new and
changed capabilities in WebSphere Integration Developer version 6.0.2 which support the
WebSphere Enterprise Service Bus enhancements from a development tool perspective.

At the end of the presentation you should be able to identify the new features in
WebSphere Enterprise Service Bus version 6.0.2. These enhancements fall into three
categories.

The SCA import and export binding enhancements include the support for all JMS body
types, bindings for native WebSphere MQ and also bindings for JMS over WebSphere
MQ.

The Mediation flow enhancements include dynamic endpoint selection, handling of
unmodeled faults, runtime administration of mediation properties and improved
configuration of custom mediation primitives.

The new mediation primitives which are being introduced are the event emitter primitive,
the message element setter primitive and the endpoint lookup primitive.

These enhancements are just being introduced here and you will find more detailed
information on these enhancements in other presentations.

In order to understand the material being presented in the following slides you should
already have a knowledge of the capabilities of WebSphere Enterprise Service Bus
version 6.0.1.

WPIv602_WESBWhatsNew602.ppt Page 3 of 17

IBM Software Group

3

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

SCA import and export binding enhancementsSCA import and export binding enhancements

Section

This section will introduce you to the SCA import and export binding enhancements.
These enhancements include improvements to the existing JMS bindings to provide built
in support for all of the JMS body types. They also include two new binding types, one that
works directly with WebSphere MQ queue managers and clients and the other that
supports interfacing with JMS running over WebSphere MQ.

WPIv602_WESBWhatsNew602.ppt Page 4 of 17

IBM Software Group

4

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

All JMS body type enhancement

� Easier to understand and configure
� When integrating with existing applications it reduces or eliminates the need to:

�Build custom data binding classes

�Build custom function selectors

�Make updates to client code

Benefits

� Six new Data Binding classes are provided to support all JMS message body types
�TextMessage – Java™ String (not restricted to just XML)

�BytesMessage - byte array

�ObjectMessage – serialized Java Object (not restricted to serialized DataObject)

�StreamMessage - a sequence of simple Java types

�MapMessage – a set of name/value pairs, values are simple Java types

�Message – an empty body

� New Business Objects are provided to support each of the body types
� A new Function Selector is provided which uses the JMSType property of the message
to select the operation name

New

6.0.2

� Limited built in data binding support - provided for only two JMS body types:
�TextMessage - must be an XML description

�ObjectMessage - must be in serialized DataObject

� All other cases require the use of user implemented custom data binding classes

Existing

6.0.1

This enhancement provides support in SCA imports and exports for all of the message body types defined by
the Java Message Service, also known as JMS.

In version 6.0.1 only two of the JMS body types had any built in support. Even the support that was provided
was limited in nature. The TextMessage body type was supported only if the text it contained was XML and
the ObjectMessage body type was supported only in the case where the serialized object it contained was a
serialized DataObject. In all other cases you were required to implement your own custom data binding
class.

The enhancement in version 6.0.2 provides new data binding classes and new business objects in support of
all the body types. It also provides a new function selector class which keys off of the body type of the
message.

The purpose of a data binding with SCA JMS imports and exports is to convert between the JMS message
encoding and the business object representation of the data. By providing data bindings and business
objects for all of the body types, it is possible for you to handle any JMS message without coding any data
bindings or defining any business objects.

The purpose of the function selector used with the export is to specify which operation on the interface
should be called. The implementation of this function selector defines unique operations to be called for each
of the body types. This is based on the JMSType field passed in the JMS message header which is one of
the standard fields in any JMS message. You can define an interface which uses the unique operation
names returned by this function selector and provide an implementation for each operation which is specific
to the body type of the message.

These enhancements are independent of each other. In some situations you might only need to use the data
binding, in other situations you might only need the function selector and in some cases you can use them
together.

Among the benefits of these enhancements, you can reduce or eliminate the need to develop custom data
binding classes and custom function selectors. Because the function selector is keying on a standard JMS
header field it reduces the occasions where you might have to update the client which is sending the JMS
message.

WPIv602_WESBWhatsNew602.ppt Page 5 of 17

IBM Software Group

5

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Native WebSphere MQ enhancement

�Interoperability between SCA and non-JMS applications in WebSphere MQ
backbones
�Bringing native WebSphere MQ applications into the world of SOA
�Interaction between WebSphere Process Server and WebSphere Enterprise
Service Bus can take advantage of WebSphere MQ qualities of service

Benefits

�SCA support added for interoperability with WebSphere MQ
�Similar architecture to SCA support for JMS

�Messages presented in a manner familiar to WebSphere MQ and
WebSphere Message Broker programmers, administrators and users

�Configuration options for SCA Exports and Imports
�Contents of Service Message Objects in Mediation flows

�New Data Bindings and Function Selectors
�Extensible framework for WebSphere MQ centric header and body data bindings
�Several implementations of data bindings and function selectors provided

New

6.0.2

� SCA integration with Native WebSphere MQ is not supported
Existing

6.0.1

This enhancement provides support in SCA imports and exports to allow them to directly interact with
WebSphere MQ queue managers and clients.

In version 6.0.1 the ability for SCA imports and exports to send and receive messages from WebSphere MQ
was not supported.

In version 6.0.2 support has been added to allow SCA imports and exports to be configured to interact
directly with WebSphere MQ queue managers and clients. The SCA architecture for doing this is similar to
how the JMS support is implemented, using data bindings for conversion of the message data and function
selectors to determine the operation to call for an incoming message.
There are characteristics of the WebSphere MQ architecture that are familiar to those who have
programmed or administered WebSphere MQ environments. The structure and use of multiple headers and
the conventions used for message correlation are a couple of examples. The design of this support in
version 6.0.2 allows those characteristics to show through in a variety of ways, thus making the support
understandable to you if you have a WebSphere MQ background. These characteristics show in the
configuration options for the imports and exports. They also show in the WebSphere MQ header structure of
the service message object used in mediation flows. The new data bindings and function selectors provided
are based on an extensible framework which encapsulates much of the WebSphere MQ specific knowledge.
This make it easier for you to develop your own data bindings and function selectors if the predefined ones
do not meet your needs.
There are several benefits obtained from this support. It allows interoperability between SCA applications
and non-JMS applications running in WebSphere MQ. Therefore, the door is opened for existing WebSphere
MQ applications to become integrated into service oriented architecture environments. Another way this can
be used is enabling WebSphere MQ to handle the messaging between WebSphere Process Server and
WebSphere Enterprise Service Bus instances so that they can take advantage of the qualities of service
WebSphere MQ provides.

WPIv602_WESBWhatsNew602.ppt Page 6 of 17

IBM Software Group

6

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

JMS over WebSphere MQ enhancement

� Tighter integration with WebSphere MQ JMS applications
� Improved performance
� Easier development and administration of connectivity to MQ-based
backbones

Benefits

� New SCA binding type utilizing JMS over WebSphere MQ
New

6.0.2

� SCA interaction with JMS over WebSphere MQ not supported
� Indirect support provided using Service Integration Bus

�Imports/exports can have JMS bindings utilizing SIB
�SIB supports MQLink and MQClientLink for WebSphere MQ interaction

Existing

6.0.1

This enhancement provides support in SCA imports and exports to allow them to directly
interact with JMS running over WebSphere MQ.

In version 6.0.1 the capability to have an SCA import or export interact directly with
WebSphere MQ JMS was not supported. It was possible to configure an SCA import or
export to interact with the built in service integration bus and then configure the service
integration bus to interact with WebSphere MQ using MQLink or MQClientLink. However,
this approach had limitations, performance implications and complexities in configuration.

In version 6.0.2 a new SCA binding type which makes use of JMS running over
WebSphere MQ has been added. This binding is similar in many ways to the JMS binding
that utilizes the service integration bus. It makes use of the same data bindings, business
objects and function selector discussed in a previous slide. However, the implementation
uses the WebSphere MQ JMS provider based on JMS 1.1 whereas the JMS binding
implementation is based on a J2EE Connector Architecture implementation. This leads to
some differences you will see in how the imports and exports are configured for the two
different types of JMS bindings.

In addition, there are some WebSphere MQ specific configuration options that can be
specified, such as compression and connection pooling.

Among the benefits of this enhancement is the resulting tighter integration with
WebSphere MQ JMS applications, along with better performance and easier configuration
and administration when connecting to WebSphere MQ based backbones.

WPIv602_WESBWhatsNew602.ppt Page 7 of 17

IBM Software Group

7

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Mediation flow enhancementsMediation flow enhancements

Section

In this section you will be introduced to the mediation flow enhancements.

These enhancements include:

•Enabling of dynamic endpoint selection on the callout of a mediation flow

•The ability to handle unmodeled faults in the response flow

•The runtime administration of mediation properties

•Simplification in the configuration of custom mediation primitives

WPIv602_WESBWhatsNew602.ppt Page 8 of 17

IBM Software Group

8

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Dynamic endpoint selection

� Enable selection of service endpoints at runtime

�Mediation flow has greater influence on dynamic routing

�Endpoint address can by constructed or looked up by the mediation flow

�Target endpoint does not have to be predefined in the mediation flow

� More flexibility in managing mediation flows without requiring re-deploy

� Enables integration with WebSphere Service Registry and Repository

Benefits

� Enhanced callout notes to allow for dynamicity

�Boolean attribute on callout node to indicate if dynamicity of endpoint is allowed

�SMO header enhanced with a target address element

New

6.0.2

� Dynamic routing within mediation flows is limited

�Flow can be directed to one of multiple callout nodes

�However, endpoint for each callout node is statically defined

� Callout node associated with a reference

� Reference must be wired to an statically defined Import (or Java component)

Existing

6.0.1

One of the key characteristics of an enterprise service bus is the loose coupling of service requesters and
service providers. The bus determines which provider to use to satisfy a request. This enhancement,
dynamic endpoint selection, greatly increases the WebSphere Enterprise Service Bus capability and
flexibility when making service provider routing decisions.

In version 6.0.1 it was possible to make service provider routing decisions within a mediation flow. The flow
could be defined with multiple callout nodes. At runtime, decisions within the flow would determine which
callout would be used for a particular request. However, each of the callout nodes contained within the flow
had a static definition of the endpoint for the service provider. The callout node would be associated with a
reference on the flow component, and the reference would be wired to either an SCA import or SCA Java
component. In essence, the routing decision was made between different pre-configured endpoints.
In version 6.0.2 the callout node has been changed so that it can be configured to allow for the specification
of a dynamic endpoint in the form of a URI identifying the target address of the service provider. The
association of the callout node with a reference is then optional. The callout node obtains the URI from a field
contained within the service message object header and calls that endpoint to satisfy the service request.
The URI can identify the service as a Web Service with either SOAP over HTTP or SOAP over JMS. It can
also identify the service as an export in another module which has either a Web Service binding or SCA
binding. Finally, it can identify an import in the same module which can have any type of binding. It is up to
the logic of the mediation flow to initialize the service message object header with a valid URI.

The benefit of this enhancement is that the endpoint of a service provider can be determined at runtime,
giving the mediation flow a much greater influence over the routing to be done. The mediation flow can
construct or look up a URI based on some logic, including the possibility of making a call to the WebSphere
Service Registry and Repository. It is now also possible that when a service provider is moved and therefore
has a new endpoint address, the change can be handled in the mediation flow without requiring the
mediation module to be re-deployed.

WPIv602_WESBWhatsNew602.ppt Page 9 of 17

IBM Software Group

9

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Unmodeled faults

� Capability for all faults from a service to be handled in some defined way
�Faults from service calls due to infrastructure problems

�Faults added to a service after the service requestor has been implemented

�Generically handle multiple faults declared on the WSDL
� Simplifies prototyping & early development stage before full implementation of error handling

Benefits

� Handle unmodeled faults in the response flow of a mediation
�Addition of a “fail” terminal to the Callout Response Node of the response flow

�You can wire the flow to handle the fault as you would like

�Note: Only applies to synchronous service calls

New

6.0.2

� No support for unmodeled faults in service invocation
�Exceptions returned from a service for which there is no fault defined in the WSDL

�No way to get the fault information back to the caller

�No possibility of raising an event to record the fault

Existing

6.0.1

The enhancement for unmodeled faults enables better error handling logic in mediation
flows.
In version 6.0.1 the only way a mediation flow could handle an exception returned from a
service provider was if it was a fault defined on the WSDL definition of the interface.
Therefore, if an exception was returned for which there was no fault definition, the
mediation flow would not be given control. There was no ability to perform additional
processing such as logging the error, raising an event or returning the information to the
service requestor.
In version 6.0.2 the ability to handle an unmodeled fault in the response flow has been
added. This has been done by adding a fail terminal to the callout response node. When
an unmodeled fault is returned, control passes through this fail terminal which can be
wired to mediation primitives to perform appropriate processing logic for how you would
like the fault to be handled.
Note that this capability only applies if the service request was synchronous. This is
because the SCA exception handling architecture for asynchronous calls routes the
exception to the failed event queue rather than returning it to the mediation.
The benefit of this enhancement is that unmodeled faults on synchronous calls can be
handled in some defined way. It enables the mediation response flow to generate a log,
raise an event or even to map the unmodeled fault to a defined fault so that it can be
returned to the original requestor. Unmodeled faults might arise due to infrastructure
problems while processing the call. They could also arise if new faults have been added to
the interface of the service provider that the caller was not aware of.
It also enables the possibility of taking a generic approach to error handling. This can have
benefits during prototyping and early stages of development before all the detailed error
handling logic has been implemented.

WPIv602_WESBWhatsNew602.ppt Page 10 of 17

IBM Software Group

10

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Administrative configuration of properties

� Provide solution administrator with operational control over some
aspects of a mediation flow’s behavior

� Eliminates need to code to the Service Integration Bus for dynamic
control of mediations

Benefits

� Individual properties can be identified as runtime configurable

� Property values can be set:
�During installation of the mediation module

�Using the Administrative Console

�Using wsadmin commands

New

6.0.2

� Properties used to configure a mediation flow are statically defined

�They cannot be modified at runtime

�Changes must be made in the WebSphere Integration Developer tool

�The mediation module must be redeployed in the server

Existing

6.0.1

This enhancement allows administrative control over selected properties of mediation
primitives and mediation flows.

In version 6.0.1 the properties used to configure a mediation flow and the mediation
primitives were all statically defined during development. In order to change any property
value the change needed to be made in the WebSphere Integration Developer and the
mediation module then needed to be redeployed to the server.

In version 6.0.2 the ability to administratively modify selected property values within the
runtime environment has been added. The selection of which properties can be modified,
referred to as being promoted, is based on two things. First, only selected properties are
eligible to be promoted while other properties are restricted from being promoted. This is
because some properties define values which could not be modified at runtime without
requiring some other changes to the mediation. The remaining properties are not restricted
and these properties are referred to as being promotable. It is the mediation flow designer
who then determines for a specific mediation flow which of the promotable properties will
actually be promoted to allow administrative control. Those properties that are promoted
contain a value specified in the mediation flow itself, and the value can be modified during
installation of the module into the server or by using the Administrative Console or
wsadmin commands.

The benefits of this enhancement is that the administrator now can have some control
over selected aspects of the mediation flow. For example, a flow could be defined where
the administrator had control over whether or not log messages would be written, allowing
him to turn on logging if trying to debug a problem. It also eliminates the need to code to
the service integration bus when dynamic control of mediations is a requirement.

WPIv602_WESBWhatsNew602.ppt Page 11 of 17

IBM Software Group

11

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Custom mediation enhancement

� Custom mediation primitives are easier to define

� User errors from not following all the steps are eliminated for snippet case

� SCA Assembly diagram is not cluttered with additional components

� Using custom visual snippets makes development more productive

Benefits

� Custom mediation primitives can be constructed in two ways
�Logic in an SCA Java Component
�Logic in a Visual or Java snippet defined as a property of the primitive

� For a snippet, no SCA component is needed (nor is a reference & interface)
� Shared custom visual snippets can be used in custom mediation primitives

New

6.0.2

� All custom mediation primitives require an SCA Java Component, even if
logic is contained in a visual or Java snippet

�From user’s viewpoint, everything needed is in the snippet

�Extraneous interface, reference and Java component is needed to call the snippet

� Much of this is generated, but is a multi-step and error prone process

� When a custom primitive is deleted, additional steps required to clean assembly diagram

� Custom mediation primitives cannot utilize shared custom visual snippets

Existing

6.0.1

This enhancement makes it easier for you to use custom mediation primitives with a Java or visual snippet.

In version 6.0.1 all custom mediation primitives defined in the mediation flow required an SCA Java
component to be wired in the assembly diagram. In some cases the logic would be encoded in the Java
component itself. However, in the case where the custom mediation primitive was a visual or Java snippet,
the Java component only contained generated code that called the snippet. So from your point of view, all the
logic needed was in the snippet but it carried along with it an extra interface, reference and Java component
as part of the infrastructure. This resulted in extra steps when creating a custom mediation primitive and
additional cleanup that was needed when a custom mediation primitive was deleted from a flow. The need
for these extra steps made the process error prone.

Additionally, in version 6.0.1, a custom mediation primitive visual snippet could not utilize any shared custom
visual snippets that were defined for the project.

In version 6.0.2, the handling of custom mediation primitives was greatly simplified. When creating the
custom mediation primitive you specify if the logic will be a visual snippet, a Java snippet or an invoke of an
SCA Java component. If either of the snippets is selected, then the additional interface, reference and Java
component are not needed and the snippet logic is coded as a property of the primitive. Additionally, if it is a
visual snippet, any custom visual snippets available in your project can be used in building the logic.
The benefit of this enhancement is that custom mediation primitives using a visual or Java snippet are easier
to define, modify and maintain and the process of creating them is less error prone. The SCA assembly
diagram is no longer cluttered with references wired to Java components which contained no real logic other
than to call a snippet. Finally, the ability to use custom visual snippets make the overall development process
easier and more productive.

WPIv602_WESBWhatsNew602.ppt Page 12 of 17

IBM Software Group

12

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

New mediation primitivesNew mediation primitives

Section

You will be introduced to three new mediation primitives in this section. They are the Event
Emitter mediation primitive, the Message Element Setter mediation primitive and the
Endpoint Lookup mediation primitive.

WPIv602_WESBWhatsNew602.ppt Page 13 of 17

IBM Software Group

13

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Event emitter mediation primitive

� Easy to use, flexible way to generate a common base event in a
mediation flow

� Eliminates the need to write custom Java code

� Notification ability for significant events within a mediation flow

Benefits

� Event Emitter mediation primitive added
New

6.0.2

� No built in support for emitting common base events from a
Mediation Flow

� Emitting common base events requires Java code in a custom
mediation primitive

Existing

6.0.1

This enhancement provides a mechanism to raise an event within a mediation flow without
having to write your own Java code.

In version 6.0.1 there was no built in mechanism within a mediation flow which enabled
you to emit a Common Base Event, commonly called a CBE. In order to raise a common
base event you needed to use a custom mediation primitive containing Java code which
used the event emitter APIs to raise the event.

In version 6.0.2 a new Event Emitter mediation primitive has been added. You configure
the Event Emitter primitive to emit a common base event that will be handled by the
common event infrastructure. The event can be configured to contain any portion of the
service message object that is relevant to the event being raised. The event participates in
all aspects of the common event infrastructure and is therefore viewable using the
Common Base Event Browser and can also be consumed by the WebSphere Business
Monitor or your own custom event processing application.

The benefit provided is the ease in which events can now be emitted from within a
mediation flow. This enables easily providing notification of significant events that occur
within the flow.

WPIv602_WESBWhatsNew602.ppt Page 14 of 17

IBM Software Group

14

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Message element setter mediation primitive

� Easy way to change data in mediation flow
� Enables updates to an SMO

�Without custom coding
�Without defining XML to XML maps (XSL transformation)

� Updates performed “in-place”
�Better performance than XSL transformations

Benefits

� Message Element Setter mediation primitive added
New

6.0.2

� Setting a simple value in a message element requires either:
�Defining an XSL transformation
�Coding a custom mediation primitive

Existing

6.0.1

This enhancement provides a new and simpler mechanism for setting a value into the
service message object.

In version 6.0.1 there were two mechanisms by which you could set a value into an
element of the service message object. One approach was using an XSL Transformation
primitive and the other was by coding a custom mediation primitive. When just needing to
set values for individual elements of a service message object these two more powerful
approaches are more difficult to implement than what is really required for the simple
setting of an element.

In version 6.0.2 the Message Element Setter primitive has been added. This provides a
much more straight forward way to set individual elements of the service message object.
An element can be set to a constant value or a value copied from another element of the
service message object. Copy gives the capability to copy leaf node elements and also
sub-trees provided the source and target sub-trees match.

The benefits of this enhancement include ease of development and also better
performance. Ease of development comes when the Message Element Setter can be used
rather than having to write custom Java code. It is also easier to configure the Message
Element Setter primitive than it is to configure an XSL Transformation primitive.
Additionally, the XSL Transformation primitive makes a new copy of the service message
object whereas the Message Element Setter primitive updates the service message object
in place and therefore provides better performance.

WPIv602_WESBWhatsNew602.ppt Page 15 of 17

IBM Software Group

15

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Endpoint lookup mediation primitive

� Enable registry lookup of service endpoints at runtime

�Endpoints can be managed using WebSphere Service Registry and Repository

�Mediation flow can be easily configured to perform registry lookups

�Capabilities of registry for service selection enable new application scenarios

� More flexibility in managing mediation flows without requiring redeploy

Benefits

� New Endpoint Lookup mediation primitive added

�Can be configured to search for service endpoints using various selection criteria

�Utilizes the WebSphere Service Registry and Repository as the registry

� New primitive function requires Dynamic Endpoints enhancement

�Primitive does the lookup, Dynamic Endpoints needed to actually call it

New

6.0.2

� Dynamic routing within mediation flows is limited

�Limited to picking between callouts associated with statically defined endpoints

�Same issues discussed in the Dynamic Endpoints enhancement

� No support for integration of a registry lookup to determine endpoint

�Could be done with custom code that bypasses mediation flow and SCA support

Existing

6.0.1

This enhancement provides a mechanism to integrate the use of WebSphere Service
Registry and Repository within a mediation flow.

In version 6.0.1 a mediation flow was limited in its dynamic routing capabilities. It could
only select between callouts which had statically defined endpoints associated with them.
In order to make use of a registry for the lookup of service endpoints in 6.0.1 you would
have to write custom code. This code would need to make calls to the service providers
directly, bypassing the mediation flow and SCA support all together.

In version 6.0.2 the Endpoint Lookup mediation primitive has been added. The new
primitive can be configured to make calls to a WebSphere Service Registry and
Repository. You configure various selection criteria used by the registry to lookup possible
service endpoints. This new primitive works in conjunction with the dynamic endpoint
selection enhancements, setting the URI of the selected endpoint in the service message
object which is then used by the dynamic callout.

The benefits of this enhancement include the ability to have the WebSphere Service
Registry and Repository manage the endpoints for services in your environment. The
primitive can be easily configured to perform the lookups. This leads to an environment
that can be more easily managed and enables scenarios where service endpoints can be
moved within the environment without having to re-deploy the applications and mediations
which use those services.

WPIv602_WESBWhatsNew602.ppt Page 16 of 17

IBM Software Group

16

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Summary

� You were introduced to the enhancements in WebSphere
Enterprise Service Bus V6.0.2
�SCA import/export bindings

� All JMS body types
� Native WebSphere MQ
� JMS over WebSphere MQ

�Mediation flow enhancements
� Dynamic endpoint selection
� Unmodeled faults
� Administrative configuration of mediation properties
� Custom mediation primitive improvements

�New mediation primitives
� Event Emitter
� Message Element Setter
� Endpoint Lookup

In this presentation you were introduced to the new features in WebSphere Enterprise
Service Bus version 6.0.2. These enhancements fall into three categories. The SCA
import and export binding enhancements include the support for all JMS body types,
bindings for native WebSphere MQ and also bindings for JMS over WebSphere MQ. The
Mediation flow enhancements include dynamic endpoint selection, handling of unmodeled
faults, runtime administration of mediation properties and improved configuration of
custom mediation primitives. The new mediation primitives are the event emitter primitive,
the message element setter primitive and the endpoint lookup primitive.

See other presentations for more detailed information on these enhancements.

WPIv602_WESBWhatsNew602.ppt Page 17 of 17

IBM Software Group

What is new in V6.0.2 - New function overview © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

