
WPIv601_ESB_MediationModule_details.
ppt Page 1 of 30

®

IBM Software Group

© 2005 IBM Corporation

Updated May 1, 2006

WebSphere® Integration Developer V6.0.1
WebSphere® Process Server V6.0.1
WebSphere® Enterprise Service Bus V6.0.1

ESB Concepts: Mediation Module, Flow
Component and Primitives

This presentation will provide an overview and detailed description of Mediation Module,
containing the Mediation Flow component and the mediation primitives that process
service messages as they pass through the Mediation Module.

WPIv601_ESB_MediationModule_details.
ppt Page 2 of 30

IBM Software Group

2

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Agenda

�Overview and ESB Concepts

�Mediation Module

�Mediation Flow Component

�Mediation Primitives

�Unified Common Data Structure - SMO

�Mediation Module Deployment Package and
Development to Deployment Life Cycle

The agenda of the presentation is shown here. The first section will provide an overview of
the Mediation Module.

WPIv601_ESB_MediationModule_details.
ppt Page 3 of 30

IBM Software Group

3

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Overview
� In a loosely coupled SOA architecture, Service requestors and

providers connect with each other through an Enterprise Service Bus

� Loosely coupled services provide more flexibility and ability to introduce
mediations and QOS that can then be applied uniformly to the services
connecting through the bus

� Mediation services intercept and modify messages that are passed
between existing services (providers) and clients (requesters) that want
to use those services

� Mediation services are implemented using mediation modules that
contain mediation flows.

� WebSphere ESB and Process Server provide the ESB capability
through the use of Mediation Module deployed in the server

� Mediation Module uses the same Service component architecture
(SCA) introduced in WebSphere Integration Developer V6.0.0 and
WebSphere Process Server V6.0.0

In a service-oriented architecture, services represent business functions that can be
reused and combined to create responsive business systems. These services can have
loosely-coupled connections through an Enterprise Service Bus (ESB) rather than being
connected directly to each other. Service requestors and providers connect to the ESB
using the entry and exit end points

Introducing WebSphere ESB between services enables you to mediate between these
services. Mediations intercept messages that are passed between services in order to

provide a quality of service that can be uniformly applied to all the services using the bus.

The new WebSphere ESB and upgraded WebSphere Process Server v6.0.1 includes the

new capabilities of the ESB functionality through the use of Mediation Module, deployed in
the server.

Mediation Module follows the same SCA concepts introduced in WebSphere Process
Server v6.0.0.

Service requestors connect to the Mediation Module through the module exports. Calls to
the external service provider through the bus are made using the module imports.

WPIv601_ESB_MediationModule_details.
ppt Page 4 of 30

IBM Software Group

4

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

ESB Concepts: Mediation Module

� WebSphere ESB and Process Server introduces a new type of module, called
Mediation Module, that intercept and modify messages between service
requester and the service provider
�Mediation module provides the ESB functions of converting protocols, routing,

transformation and other custom processing on the messages

� Mediation Module is the unit of deployment and runs within the WebSphere
ESB or Process Server

� Interactions with external service requesters and providers defined by imports
and exports, whose interfaces is defined using WSDL

Import
Represents a service provider
outside the scope of the bus,

such as a Web Service provider
or a JMS application

Export
Represents a service requester

outside the scope of the bus, such
as a Web Service client or a JMS

application

Service
requester

Service
provider

Requests

Responses

Requests

Responses
Mediation Module

Mediation Module is a new module introduced in WebSphere ESB and WebSphere
Process Server to provide ESB functionality by allowing message processing between
service requestors and providers. This module enables loosely coupled connectivity and
mediation services between service requestors and providers connecting through the bus.

The Mediation module allows protocol conversion, routing, transformation and other
custom processing on messages typically required in an ESB environment. WebSphere
Process Server supports business modules used for business processing and the new
mediation modules, whereas WebSphere ESB supports mediation modules. Service
requestors interact with the mediation module in the bus using module exports, and the
module interacts with the service providers using module imports. Both the export and

import interfaces are defined using WSDL.

WPIv601_ESB_MediationModule_details.
ppt Page 5 of 30

IBM Software Group

5

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Module: Import and Export Bindings

� Different kinds of requester and provider types of interactions are made
available via different bindings for the imports and exports

� WebSphere ESB provides support for
�JMS bindings - JMS 1.1 provided by WebSphere Platform Messaging

� Can exploit a variety of transports
– TCP/IP, SSL, HTTP(S)

� Allows interoperation with the WebSphere family
– WAS, WebSphere MQ, WebSphere Message Broker

�Web Services binding
� SOAP/HTTP, SOAP/JMS, WSDL 1.1

� Service Registry – UDDI 3.0

� WS-Security, WS-Atomic Transactions

�WebSphere Adapter bindings
� JCA Adapters - SAP, PeopleSoft, Siebel, Files, JDBC

� WBI Adapters for all the rest

�Built-in SCA (default) binding
� Used for module to module communication - supports both synchronous and asynchronous communication

� WebSphere ESB supports update this binding via the admin console allowing module to module connectivity to
be changed

Default (SCA) Binding

JMS Binding

Web Services Binding

WebSphere JCA Adapter Binding

WBI Adapter Binding

Supported Bindings

Exports

Imports

Interactions with external service requesters and providers are defined by imports and
exports. Import and export interfaces are defined using Web Services Description
Language (WSDL), which can contain several service operations. Various kinds of
requesters and providers are made available using bindings for the imports and exports.

WebSphere ESB and WebSphere Process Server v6.0.1 support JMS binding, Web
Services bindings, WebSphere Adapter bindings and the default, built-in SCA binding.
These bindings allow maximum flexibility for requestors and providers to use the protocol
of their choice. Use of different bindings also permits easy transformation of protocols
between service requestors and providers. The import and export bindings are the same

as those used for Business modules in WebSphere Process Server.

WPIv601_ESB_MediationModule_details.
ppt Page 6 of 30

IBM Software Group

6

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Flow Component and Request-
Response Interaction

� Mediation module contains a new type of SCA component, called Mediation Flow
Component

� Mediation Flow Components act as ‘service intermediaries’ to

�Pass a (potentially modified) request from a service requester to a service provider

�Pass a (potentially modified) response from a service provider to a service requester

� Processing of requests is separated from processing of responses in the mediation flow
component

� Request processing within a mediation flow component can send a response back to the
requester without necessarily needing to contact a service provider

Import
Represents a service provider
outside the scope of the bus,

such as a Web Service provider
or a JMS application

Export
Represents a service requester

outside the scope of the bus, such
as a Web Service client or a JMS

application

Service
requester

Service
provider

Requests

Responses

Enterprise Service Bus

Requests

Responses

Mediation Module

Mediation Flow
Component

Process request
and response

message

Mediation Module contains a new SCA component called Mediation flow component,
which acts as a service intermediary for the processing of messages. The Mediation flow
component provides a standard way of processing the message independent of the
binding protocol used by the service requestors or providers, and supports a one way
model where no response is expected, or a 2 way request and response model. It also
supports an asynchronous or synchronous invocation model, similar to other SCA
components.

Within the Mediation flow component, processing of the request message is performed
separately from the response message, allowing different processing to occur on the

request and the response side by having different mediation primitives on the request and
response flows.

The mediation application developer can choose to create and handle the response within
the mediation flow component without actually calling the service provider. The Mediation

Module developer will need to construct the response message based on the interface
definition of the module export.

WPIv601_ESB_MediationModule_details.
ppt Page 7 of 30

IBM Software Group

7

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Agenda

�Overview and ESB Concepts

�Mediation Module

�Mediation Flow Component

�Mediation Primitives

�Unified Common Data Structure - SMO

�Mediation Module Deployment Package and
Development to Deployment Life Cycle

This section will provide more details concerning the Mediation Module.

WPIv601_ESB_MediationModule_details.
ppt Page 8 of 30

IBM Software Group

8

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Module: Contents

� Mediation Module can have the following:
�Exports, defined using WSDL, that expose the mediation module to external

service requesters

�Imports, defined using WSDL, that identify external service providers and
their interfaces

�A new type of SCA component called, Mediation flow component – this
provides the mediation function on the messages between these services
requestors and the providers
� In cases, where the only need is to transform the message from one interaction protocol to

another, there may not be any need for a mediation flow component in the module

�Optional SCA Java components – this is used in conjunction with the custom
mediation primitive or when there is a need to use Java interface

Imports
Represents a service
provider outside the

scope of the bus, such
as a Web Service
provider or a JMS

application

Exports
Represents a service
requester outside the

scope of the bus, such
as a Web Service client

or a JMS application

Service
requester

Requests

Responses

Mediation

Module

Service
provider

Requests

Responses

Mediation module contains exports, imports, a new type of SCA component called the
Mediation flow component and optionally other SCA components.

Mediation Imports are like normal SCA imports with all the supported bindings, including
the Default SCA, JMS, and Web Services, which serve as entry points into the Bus.

Similarly, Mediation Exports are like normal SCA exports with all the supported bindings,
including the Default SCA, JMS, and Web Services, which serve as the exit points from

the Bus.

A new type of SCA component, called the Mediation Flow component, contains logic for

how the message is processed between the input and output of the flow. Functions like
message routing, transformation, augmentation, logging or any other custom processing
are performed on the message within the Mediation Flow component.

Lastly, the module can optionally contain SCA Java™ components, which are used to
implement custom mediation primitives. This will be covered in greater detail later in the
presentation.

WPIv601_ESB_MediationModule_details.
ppt Page 9 of 30

IBM Software Group

9

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Module: Assembly Diagram Editor

Exports Imports

Provider 1Provider 1

Provider 2Provider 2

Requestor

Mediation Flow
Component

Mediation Module

Service
Provider

Mediation Flow
Component

Service
Requester

Requests
Responses

Requests
Responses

WebSphere Integration Developer includes the Assembly Diagram editor, which is used to
build the Mediation Module. The components shown in this diagram form the Mediation
Module that runs within the Enterprise service bus of WebSphere ESB or WebSphere
Process Server. It also contains the exports used by service requestors to send the
service message to the bus and the Mediation Flow component, which is used to process
the service message through the use of mediation primitives. Lastly, it shows the imports
through which service providers are called. Each export and import are for a specific
binding protocol and having multiple import or exports allows support of multiple bindings.

WPIv601_ESB_MediationModule_details.
ppt Page 10 of 30

IBM Software Group

10

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Agenda

�Overview and ESB Concepts

�Mediation Module

�Mediation Flow Component

�Mediation Primitives

�Unified Common Data Structure - SMO

�Mediation Module Deployment Package and
Development to Deployment Life Cycle

This section will provide more details related to the Mediation Flow component.

WPIv601_ESB_MediationModule_details.
ppt Page 11 of 30

IBM Software Group

11

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Flow Component

� Mediation Flow component is where the request and response message is
processed between the services

� Mediation flow component contains the following:
�Connections between the message flow input (entry) and output (exit) operation

� The message flow is created by the Integration Developer by visually wiring the input with the appropriate output
operation

� For N input operations, and M output operations, there are a total of NxM possible operation connections

�For each connected flow from an input, zero or more Mediation primitives can be
defined to act on the message, for the request flow as well as for the response flow
� Primitives are wired together to create the message flow between the incoming message and the outgoing

message

� Mediation Flow Editor allows creating visual connections of input and output
operations, and adding Mediation Primitives

Mediation Module

Service
Provider

Service
Requester

Requests
Responses

Requests
Responses

Mediation Flow

Bus

Mediation

Primitive
Mediation
Primitive

Input
Interface

Output
ReferenceExport Import

The Mediation flow component is the main component of the Mediation Module, where the
service message between the requestor and provider is processed. The inputs of the
Mediation flow components receive the message that is passed by the requestor through
the mediation module exports. Between the mediation flow component input and output
are the mediation primitives, which process the message and perform routing,
transformation, augmentation, logging and any other custom processing on the message.

WPIv601_ESB_MediationModule_details.
ppt Page 12 of 30

IBM Software Group

12

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Flow Editor

� Mediation Flow Component is implemented in the Mediation
Flow Editor in WebSphere Integration Developer tool

� The Editor is divided into the 3 sections:

�Operation Mediation Section – Top Section

� Used to define the mapping of a source operation to one or more target operations

�Message Flow Section – Middle section

� Displays a flow diagram for a selected source operation per flow direction (Request
and Response)

� The user drag-n-drops mediation elements from the palette groups onto the canvas
and wire them together

�Mediation Properties Section – Bottom section

� Displays a property sheet that shows the properties for each selected mediation
primitives in the Message Flow section

The Mediation Flow editor is used to provide the implementation of the mediation
components that are used to process the message flow as it flows from the service
requestor to the service provider through the Enterprise Service bus. The editor contains
the following 3 sections:

•The top section, the Operation Meditation section, is used to define the mapping of the
source input operation to one or more target output operations. The map is created by
visually wiring the input operation to the appropriate target out operation.

•The middle section, the Mediation Flow section, is used to create the message
processing flow once the connection is made between a source and target operation.
Mediation Primitives are added here and wired to create the message flow between the

input and output operation.

•The bottom section of the editor, the Mediation Properties section, is used to view or
modify the properties of the connection and primitives that are highlighted in the mediation

flow section.

The next few slides provide diagrams of the different sections of the editor.

WPIv601_ESB_MediationModule_details.
ppt Page 13 of 30

IBM Software Group

13

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Flow Editor

Connected
Operation(s)

Mediation
Primitives

Operation
Connection Section

Mediation Flow
Palette

1

2

3

Mediation Primitives
added here and

wired to create the
message flow

between input and
output operations

Input
Response

4

a

b

CalloutCallout

Input
Request

1

2

3

Mediation Flow
Component

Input
Operation

Output
Operation

Output
Operation

Examples of the top and middle sections of the Mediation Flow editor are shown here.

The top most box is the mediation flow component in the assembly diagram of the service
module.

The import is represented by box 1 in the example. The example has 2 exports and 2
outputs shown by boxes 2 and 3.

The matching source input and target output operations are shown in the operation
connection section and the mediation flow palette.

The 2 wired connections between the input and output operations are represented by
boxes ‘a’ and ‘b’ in the operation connection section.

The mediation flow palette is where the necessary mediation primitives are added and
wired to create the message flow and its processing between the input and output
operations.

The Input response component, represented by box 4 in the diagram, is used to send back
the response without going to any external provider. For example, the mediation primitives

might create their own response on a user exception and send it back to the requestor.
The developer can perform this action by wiring the appropriate output of the primitive to

the Input response component. In that case, the message will not get forwarded to
external providers, but processed by the primitives in the bus and sent back to the
requestor. As previously noted, an appropriate response message will need to be

WPIv601_ESB_MediationModule_details.
ppt Page 14 of 30

IBM Software Group

14

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Operation Connection and Flows

1 2

3

1

1

2

3

2

3

4

1 Input

2 Output 1

3 Output 2

4 Input Response

Response Flow

Request Flow

Operation Connection

Mediation
Primitives

added here for
response flow

Mediation
Primitives added
here for Request

flow
CalloutCallout

This page shows more details of the mediation flow editor. Specifically, the separate
request and response flow, which can be selected as the tabs on the bottom of the
mediation flow palette. The operation connection section is shown in the middle of the
page. The top right box shows the request flow palette and the bottom right box shows the
response flow palette.

WPIv601_ESB_MediationModule_details.
ppt Page 15 of 30

IBM Software Group

15

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Flow Component Design
Methodologies
�Two types of design methodology:

�Top-down design
� Developer creates with Mediation Flow component with the required

interfaces and references

� Developer generates an implementation (empty) for the Flow component

– This will open the Mediation Flow component editor

� Using the Mediation Flow Editor, the developer create mappings from a
source operation to one or more target operations

�Bottom-up design
� User starts with actual implementation of the flow component – does not

yet have the Mediation Flow component

� The mediation flow component is then used to assemble the module

� This approach can be used to modify any existing design and then merging
the implementation of the flow component

Two design methodologies can be used when designing the mediation module within
WebSphere Integration Developer.

•Using the top down design method, the developer creates the mediation flow component
with the required interfaces and references, and then creates the implementation of the
mediation flow component. The implementation is done by creating the mappings from the
source operation to the target operation within the mediation flow component editor and
then building the message flow between the source and the target operations using
mediation primitives. This is done for the request flow as well as the response flow.

•Using the bottom-up design, the developer starts with the actual implementation of the
mediation flow component and then uses it to build the mediation module. In this case,

the developer must know the interfaces of their service requester (source) and service
provider (target). The mediation flow component is then used to assemble the module,

where the appropriate imports and exports are added to the module and connected to the
flow component interfaces and references.

WPIv601_ESB_MediationModule_details.
ppt Page 16 of 30

IBM Software Group

16

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Agenda

�Overview and ESB Concepts

�Mediation Module

�Mediation Flow Component

�Mediation Primitives

�Unified Common Data Structure - SMO

�Mediation Module Deployment Package and
Development to Deployment Life Cycle

This section will provide details related to the Mediation primitives.

WPIv601_ESB_MediationModule_details.
ppt Page 17 of 30

IBM Software Group

17

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Primitives

� Mediation primitives can perform routing, transformation, augmentation,
logging or any other custom processing on the message
�Several built-in mediation primitives are provided within the WebSphere

Integration Developer tooling

�Users can create Custom mediation primitives, implemented by Java class

� Mediation primitives have input/output terminals to accept or propagate
messages
�All primitives have one Input terminal

�Most mediation primitives have one or more output terminals
� There are 2 kinds of output terminals: Successful flows and Fail flows

� There can be one or more successful output terminal, depending on the primitive

� There is up to 1 fail output terminal used when exception occurs – the fail terminal propagates the
original message, together with any exception information

� Input and Output messages to the Mediation primitives are represented
as Service Message Objects (SMO)

Mediation Primitives are the core building blocks used to process the request and the
response message.

WebSphere ESB and the tooling provide several function built-in primitives, including
logger, message filter and others. Some details of the built-in primitives are discussed later
in this presentation. Support for a custom mediation primitive is also provided for use by
developers where the built-in primitives do not provide the required functionality. Custom
mediation logic is implemented using the SCA Java™ component and more detail
concerning this is provided in a separate presentation.

Mediation primitives have input and outputs, known as terminals and one input where the

input message enters the mediation primitive. Mediation primitives also have 2 kinds of

output terminals. The first type of output terminal is for a successful flow with no
exceptions. Depending on the mediation primitive, there can be more than one output
success terminal, as in the case of the built-in Message filter mediation primitive. The

other type of output flow is for flows that fail due to exceptions.

The input and output messages for all the mediation primitives are represented as Service
Message Objects or SMO. The SMO interface extends the DataObject interface, which is
defined by Service Data Object (SDO). More on SMO later in this presentation.

WPIv601_ESB_MediationModule_details.
ppt Page 18 of 30

IBM Software Group

18

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Module

XQuoteXQuote
IBM Hurley

England

IBM Hurley

England

XIgniteXIgnite

Bus

XSL
transform

SMO Logger Filter
DB

Lookup

XYZ

Mediation
Flow

Component

Mediation Module

Requestor

Provider

Provider

SMOSMOSMO SMO

1
2

3

1

2

3

SMO

Shown here is an example of the different mediation primitives used in a message flow
from a requestor to one or more providers.

The 1st primitive shown is the built-in message logger used to log the message in a
database.

When the request passes through the Mediation Module, a DataBaseLookup Primitive is
used to look up the userid in a table of “gold” users, then a Filter is applied.

If the user is a gold customer, the request will be passed to a different external Web
Service (offered by XIgnite), otherwise it will continue as before. Because the message

formats differ, the request is first passed through an XSLT Primitive that will transform the
message using an XPath expression. The response from XIgnite must also be
transformed as part of the Mediation so that the format is as expected.

WPIv601_ESB_MediationModule_details.
ppt Page 19 of 30

IBM Software Group

19

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Flow Editor With Primitives

Operation
Connections

Mediation
Primitives

Request and
Response Flow

1

2

3

Shown here is a snapshot of the mediation flow editor with the primitives for the example
shown on the previous page. The example shows only the request message flow.

WPIv601_ESB_MediationModule_details.
ppt Page 20 of 30

IBM Software Group

20

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Primitives – Overview

To stop a path in the flow, and generate an

exception
Fail

Custom

Stop

XSLT

Database Lookup

Message Filter

Message Logger

Mediation Primitives Symbol

For custom processing of message. It uses a SCA

Java component for custom message processing

To stop a path in the flow, without generating an

exception

To manipulate or transform messages using XSL

transformation

To access information in a database and store it in

the message

To filter messages selectively forwarding them on

to output terminals, based on simple condition

expression

To log/store message information to a database

Description

WebSphere ESB provides several built-in mediation primitives and allows the capability of
adding your own custom mediation for cases that are not covered by the built-in
mediation primitives.

The following built-in mediation primitives are provided:

• Message Logger is used to log and store message information to a database.

• Message Filter is used to filter messages and selectively forward them on to output
terminals, based on simple condition expressions.

• Database lookup is used to access information in a database and insert it in the
message. The mediation primitive is supplied with the key id to look for, and where the
value of the key is located within the message. Using these two pieces of information,
the value of the specified column for the matching key is inserted in the specified
location within the message.

• XSL Transformation mediation primitive is used to transform messages using XSL
transformation. This is mainly used when the target provider has a different interface
than the incoming message interface. Using the mapping within the XSLT, input values
can be mapped to the appropriate output fields.

• Stop mediation primitive is used to stop the flow execution.

• Fail mediation primitive is used for error conditions where the flow execution is stopped
and an exception is generated.

Custom mediation primitive is used to perform message processing that is not covered by
other mediation primitives by executing custom logic. Custom Mediation Primitive calls
an SCA Java component that you create or provide. The SCA Java component must
be within the same Mediation module.

Details of each of the built-in primitives and the custom primitive are covered in another
presentation focused on the details of mediation primitives.

WPIv601_ESB_MediationModule_details.
ppt Page 21 of 30

IBM Software Group

21

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Agenda

�Overview and ESB Concepts

�Mediation Module

�Mediation Flow Component

�Mediation Primitives

�Unified Common Data Structure - SMO

�Mediation Module Deployment Package and
Development to Deployment Life Cycle

This section will cover the unified data structure, namely the Service Message Object or
SMO used within the Mediation primitives in the Mediation Flow component.

WPIv601_ESB_MediationModule_details.
ppt Page 22 of 30

IBM Software Group

22

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Use of Common Data Structure in the Flow -
SMO
� The Mediation module’s import and export binding interacts with some

specific service provider type with its own data representation (e.g. Web
Services, JMS and so on)

� The data from this binding-specific interaction is turned into a common
data structure called the Service Message Object (SMO)

� SMO provides a common representation of message data flowing
through the ESB for the Mediation programming environment

� SMO is implemented as a SDO (Service Data Object), similar to the
common data representation for all data objects in WebSphere Process
Server

� SMO provides a unified view of the message payload (a Business
Object), message headers, and context information

� SMO provides interface to access/modify the SMO content

�SMO and its embedded contents can be accessed using the SDO XPath
reference mechanism

The service requestor and service provider interact with the bus through the bindings for
the exports and imports of the mediation service module. The data representing the
message depends on the binding used for exports and imports. If the primitives in the
mediation flow component had to support the data representation for all the various
bindings, it would be difficult to implement primitives.

For this reason, the first thing the runtime does is convert the binding-specific data into
common data structure, called Service Message Objects (SMO).

SMO interface extends the DataObject interface, which is defined by Service Data Object
(SDO), similar to other business objects used in WebSphere Process Server.

SMO includes the message headers, message data (payload) and context information and
provides an interface to access and modify the SMO data, including headers, payload and
context information. In addition, the SDO data can be accessed using the XPath
reference mechanism.

The Mediation module input contains binding specific data representation. The mediation
module output import binding dictates the data representation that must be sent to the
output message. As a result, there is a lack of consistency in data representation and if
the mediation flow primitives had to handle all the different data representation, it would
become a huge challenge. To solve this problem, the data from binding-specific
interaction is converted to a common data structure called the Service Message Object
(SMO). At the Mediation Flow input boundary, the input binding specific interaction data is
converted to SMO. At the Mediation Flow output boundary, the SMO is converted to the
output binding-specific interaction

The SMO is represented as a Service Data Object (SDO) and provides the Mediation
primitives a common representation of the message and its contents. SMO also provides
APIs to access or modify the SMO content. The XPath reference mechanism can be used
to access the SMO content.

WPIv601_ESB_MediationModule_details.
ppt Page 23 of 30

IBM Software Group

23

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Correlation and Transient Context

� Correlation and Transient context are like scratch pad used by mediation primitives to
store data to be used later by different mediation primitives within a mediation flow

� Transient data is available only on the request or response flow but not both

� Stored in memory

� Correlation data is available for the duration of the complete request/response flow

� For Synch request/response, data is stored in memory

� For Asynch request/response, data is stored in a Queue where different QOS can be applied

� Correlation and Transient context data are represented as a Data object and are defined
at the start of the mediation flow

� Defined at the input operation property panel for the Request flow or response flow, as shown below

Request Flow
Input

Operation

Correlation
and Transient

context

If the mediation primitives in a message flow require a temporary area to save data for
other primitives down the message flow or need data set in the request flow to be
available during the response flow, context information is used as a scratch pad.

There are 2 types of context information:

Transient context, as the name suggests, is temporary and available only on the specific
request flow or the response flow but is not carried from the request to the response flow,

and is therefore stored in memory.

Correlation context data is available for the duration of the complete request/response
flow. Data set in the request flow is available for all the primitives in the response flow.

Any primitive can modify the context information and downstream primitives in the
message flow will have access to that information.

The context data are represented as data objects and the structure is inserted in the SMO
structure at the start of the mediation flow.

In the mediation flow editor, the context information is defined at the input operation of the
flow within the property panel, as shown in the diagram.

WPIv601_ESB_MediationModule_details.
ppt Page 24 of 30

IBM Software Group

24

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Agenda

�Overview and ESB Concepts

�Mediation Module

�Mediation Flow Component

�Mediation Primitives

�Unified Common Data Structure - SMO

�Mediation Module Deployment Packaging and
Development to Deployment Life Cycle

This section covers the Mediation Module deployment package and application
development to deployment life cycle.

WPIv601_ESB_MediationModule_details.
ppt Page 25 of 30

IBM Software Group

25

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Mediation Module: Deployment Packaging

�Mediation Module deployment package is similar to
Business Module Deployment package

�WebSphere Integration Developer generates the
deployment artifacts for the Mediation Module and
creates a J2EE EAR file

�Mediation Module J2EE EAR file is installed in the
WebSphere ESB or Process Server using
Administrative Console or command line wsadmin
tool

The packaging of the mediation Module is similar to the business application used in
WebSphere Process Server.

The WebSphere Integration Developer tooling generates all the J2EE™ artifacts for the
mediation application and creates the J2EE EAR file that is then deployed in the
WebSphere ESB or WebSphere Process Server using the normal install process in the
Administrative console or using the command line wsadmin tool.

WPIv601_ESB_MediationModule_details.
ppt Page 26 of 30

IBM Software Group

26

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Bus Resources Created for Mediation Module

� Service integration resources, such as bus destinations, are created when
installing a mediation module - the bus destinations are used to hold the
messages for the service components

� Following bus destinations are created on the bus called
SCA.SYSTEM.cell_name.Bus
�Queue sca/module_name

�Queue sca/module_name/export/export_name

�Queue sca/module_name/exportlink/export_name

�Queue sca/module_name/import/import_name

�Queue sca/module_name/importlink/import_name

�Queue sca/module_name/import/sca/dynamic/import/scaimport [for SCA binding]

�Queue sca/module_name/import/sca/dynamic/import/wsimport [for Web service
binding]

�Queue sca/module_name/component/component_name

�Queue sca/module_name/component/component_name/source/source_name

�Queue sca/module_name/component/component_name/target/target_name

Several service integration bus resources and destinations are created when deploying a
mediation module in WebSphere ESB or WebSphere Process Server. The names used for
the bus destination resources follow a naming convention that uses the mediation module
name. Some of these resources are shown here. These destinations are used by the
mediation module to pass asynchronous messages. When the mediation module is
uninstalled, these destination resources are removed.

WPIv601_ESB_MediationModule_details.
ppt Page 27 of 30

IBM Software Group

27

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Development, Testing and Deployment Cycle

WPS or
WESB
Server

Single Server
(Local or Remote)

Administrative
Console

� WebSphere Integration Developer is

used to develop business or Mediation

Module

� Unit test is done within tooling using the

WebSphere ESB or Process Server test

environment or external servers (Single

Server or Cell environment)

� Module can then be exported as EAR file

and deployed on the target production

servers using wsadmin or Administrative

console

WESB
or WPS
Server

WESB
or WPS
Server

WPS or WESB Cell

Deployment
Manager

Deployment
Manager

WESB/WPS Node

WESB
or WPS
Server

WESB
or WPS
Server

Node
Agent

WESB/WPS Node

WESB
or WPS
Server

WESB
or WPS
Server

Node
Agent

WebSphere Integration
Developer

J2EE EAR

Generated
Artifacts

Mediation
or Business

Module

WESB
or WPS
Server

WESB
or WPS
Server

Deploy

Configure

This diagram shows the end to end development, testing and deployment lifecycle of both
the business and mediation modules.

WebSphere Integration Developer is used for development of the applications. Testing
can be done using the WebSphere ESB or WebSphere Process Server internal test
server, or external WebSphere ESB or WebSphere Process Server on the same or a
remote system. Additionally, the external servers could be single server or a Network
Deployment cell environment. The administration of the internal test or the external server
is done using the normal WebSphere ESB or WebSphere Process Server administration
tools, namely, the Administrative console or the wsadmin command line.

The applications are exported as regular EAR files containing SCA module files, which can

then be handed to the system administrator for deployment on the production server.

WPIv601_ESB_MediationModule_details.
ppt Page 28 of 30

IBM Software Group

28

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Summary and ReferencesSummary and References

Section

This section will provide a summary of this presentation.

WPIv601_ESB_MediationModule_details.
ppt Page 29 of 30

IBM Software Group

29

ESB – Mediation Module, Flow Component and Primitives © 2006 IBM Corporation

Summary

� WebSphere ESB and Process Server both provide the ESB
capability

� Mediation Modules provide the loosely coupled connectivity
for the service requestor and provider, along with mediation
and other QOS functionality

� Mediation Module follows the same SCA model architecture
introduced in WebSphere Integration Developer V6.0.0 and
WebSphere Process Server V6.0.0 – It contains a new SCA
component, called Mediation Flow component

� A Mediation Flow contains zero or more mediation
primitives used to process the service message to perform
routing, transformation, augmentation or any other custom
processing on the message

In summary, the mediation module provides ESB functionality for both WebSphere ESB
and WebSphere Process Server and follows the same SCA model architecture introduced
in WebSphere Integration Developer and WebSphere process Server V6.0.0. Mediation
Module contains mediation flow components that process the request and response
message using mediation primitives. This presentation provided some detail concerning
the mediation module, flow components and primitives in order to give you an idea of how
to build the mediation module.

WPIv601_ESB_MediationModule_details.
ppt Page 30 of 30

30

IBM Software Group

© 2005 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 7/18/2005 4:30 PM

