
WPIv601_ESB_AccessingSMOs.ppt Page 1 of 17

®

IBM Software Group

© 2006 IBM Corporation

Updated May 1, 2006

WebSphere® Process Server V6.0.1
WebSphere® Integration Developer V6.0.1
WebSphere® Enterprise Service Bus V6.0.1

Accessing Service Message Objects

This presentation will examine how Service Message Objects are accessed from within a
mediation flow.

WPIv601_ESB_AccessingSMOs.ppt Page 2 of 17

IBM Software Group

2

Accessing Service Message Objects © 2006 IBM Corporation

Goals

�Understand the accessing of Service Message
Objects (SMO)

�Access and manipulation of SMO content

�Manipulation of message type

�Approaches used

�XPath

�XSL Transformations (XSL Stylesheets)

�Java™ code

The goal of this presentation is to provide you with an understanding of how to access
Service Message Objects (SMO). Accessing SMOs occurs within mediation flows and
involves the reading, writing and updating of the elements of an SMO. Updating an SMO
might also include modifying the message type, which occurs when the structure of the
payload of the message is changed. Each of the mechanisms for accessing and
manipulating SMOs, which includes the use of XPath expressions, XSL Transformations
using XSL Stylesheets and Java code will also be covered.

WPIv601_ESB_AccessingSMOs.ppt Page 3 of 17

IBM Software Group

3

Accessing Service Message Objects © 2006 IBM Corporation

Manipulating SMOs

�Three ways to access and manipulate SMOs

�XPath 1.0 expressions
� Primary mechanism for accessing the SMO

� Used in some form by all of the mediation primitives

� Identify elements to read, update or process conditional expressions

�XSL Stylesheets
� Used by the XSLT mediation primitive

� Normally used to modify message type within a flow

� Also used to manipulate SMO content without changing message type

�Java code
� Used by the Custom Mediation primitive

� Generic DataObject APIs

� SMO APIs

� Can access and update content and can also modify message type

This slide provides an overview of the three different mechanisms for accessing and
manipulating the contents of an SMO. XPath 1.0 is the primary mechanism for accessing
SMOs and is employed in one form or another by all of the mediation primitives. XPath
expressions can be used to identify elements of the SMO to read or update and can also
be conditional expressions to be evaluated. XSL Stylesheets are used by the XSLT
mediation primitive, which is typically used to modify the message type within the flow by
changing the structure of the body of the message. They can also be use to update the
content of the message without changing the message type. Java code is used by the
Custom Mediation primitive to access the SMO. The generic DataObject APIs can be
used, making use of XPath expressions to identify properties within the SMO. There are
also SMO specific APIs, which provide type safe access to the properties within the SMO.
Using Java code, you can update the message content and also have the ability to modify

the message type by changing the structure of the message body. In the next series of

slides, each of these mechanisms will be examined in detail.

WPIv601_ESB_AccessingSMOs.ppt Page 4 of 17

IBM Software Group

4

Accessing Service Message Objects © 2006 IBM Corporation

XPath

Section

This section takes a closer look at the use of XPath for accessing SMOs.

WPIv601_ESB_AccessingSMOs.ppt Page 5 of 17

IBM Software Group

5

Accessing Service Message Objects © 2006 IBM Corporation

Manipulating SMOs – XPath

� All mediation primitives use XPath in some form
�XPath expression identifying a specific property within the SMO

�XPath conditional expression to be evaluated

� Root property
�Used to specify what part of the SMO is visible to the primitive

�Values selected from a drop down, are normally:

� / /body /context /headers

� Some instances of Root are more restrictive

� Other instances of Root are less restrictive and allow use of custom XPath

� Other properties using XPath
�Specified using the XPath Expression Builder

�Builder accessed using:
� Custom XPath… button

� … button from a table cell

�Select a target expression, optionally add a condition, or override

XPath expressions are used in some form by all of the mediation primitives and are
typically simply a qualified path based on the SMO schema that identifies a property within
the SMO. The property identified might be a complex DataObject type or a simple
element with a primitive type. At other times the XPath expression might be a conditional
expression to be evaluated true or false relative to the value of an element in the SMO.
There are generally two different ways that an XPath expression is specified within the
properties for a mediation primitive. The first is the use of a Root property, which identifies
that portion of the SMO that is to be visible to or used by the primitive. In most cases, the
Root property consists of four possible values that are selected using a drop down box.
The values are / (slash) indicating the entire SMO, /body indicating the body or payload of
the SMO, /context referring to the context of the SMO or /headers referring to the SMO
headers. However, the use of the Root property is not always exactly like this. One case

is more restrictive and only provides two possible choices and another case allows the use

of a custom XPath expression that can identify any property within the SMO. Other uses
of XPath by mediation primitives make use of the XPath Expression Builder dialog. The
dialog allows you to traverse the SMO schema to select a particular property or element

within the SMO and optionally to define a conditional expression involving that element.
This dialog is accessed using a Custom XPath… button next to an entry field for an
XPath expression or through the … button in a table cell requiring an XPath expression.
The next couple of slides will look more closely at the XPath Expression Builder dialog.

WPIv601_ESB_AccessingSMOs.ppt Page 6 of 17

IBM Software Group

6

Accessing Service Message Objects © 2006 IBM Corporation

Manipulating SMOs – XPath Expression Builder

Use the Schema Viewer to
navigate SMO to the desired

XPath location

Selected location will be
displayed in the

XPath Location field

Optionally, Condition field
can be used to define

a conditional expression

Full XPath Expression
field contains the

complete expression

Override lets you
manually edit the

generated expression

The screen capture on this slide shows the XPath Expression Builder dialog.

The top panel in the dialog is the Schema Viewer, which allows you to traverse the SMO
schema to identify the location within the SMO that you are interested in. When you select
a specific location, it will be displayed in the XPath Location field and in the Full XPath
Expression field. The condition field can be used to create an optional conditional
expression. The condition field consists of a location and a value where an is equal to
comparison is performed between the value at the location and the value in the condition.
The location in the condition is used to further qualify the XPath Location when it identifies

a complex type, as the condition can only be performed against a simple element. The
conditional expression is added to the Full XPath Expression field. Finally, if the value that
has been built in the Full XPath Expression field is not the required expression, the

override checkbox can be selected and the full expression can then be edited as needed.

WPIv601_ESB_AccessingSMOs.ppt Page 7 of 17

IBM Software Group

7

Accessing Service Message Objects © 2006 IBM Corporation

Manipulating SMOs – XPath Expression Builder

Value defined using
Schema Viewer

Added condition

Override
Changed condition to

> rather than =

This slide shows an example of the XPath Expression Builder through the steps of
identifying a location, adding a condition and overriding the full expression. The top
screen capture shows the result after using the Schema Viewer to select the location
/headers/SMOHeader/Version. You can see that this value has been placed into the
XPath Location and Full XPath Expression fields. In the center screen capture, a
condition has been added, the location has been further qualified by Release and the
value has been set to 1. You can see that the Full XPath Expression has been updated to
contain this conditional expression. The requirement for this expression is to check for
Release greater than 1 rather than equal to 1. The bottom screen capture shows that the
Override checkbox has been selected and the Full XPath Expression has been edited to
change the equal operator to a greater than operator.

WPIv601_ESB_AccessingSMOs.ppt Page 8 of 17

IBM Software Group

8

Accessing Service Message Objects © 2006 IBM Corporation

XSL Transformation (XSL Stylesheets)

Section

This section takes a closer look at the use of XSL Transformations, which use XSL
Stylesheets for accessing SMOs.

WPIv601_ESB_AccessingSMOs.ppt Page 9 of 17

IBM Software Group

9

Accessing Service Message Objects © 2006 IBM Corporation

Manipulating SMOs – XSL Stylesheets

� XSLT primitives process XSL stylesheets at runtime

� The XSL stylesheet can be:

�Generated from a map created in the XML Mapping Editor

�Edited directly with the XSL Editor

� Typical usage is for modification of message type in a flow

�When Input and Callout nodes have different message types

�To reply using the Input Response node in a request flow

�To reply with a fault using the Input Fault node to report a flow error

� Used to manipulate SMO content without changing
message type

�Use XSLT Functions (e.g. string manipulation, numeric computation)

�Logical processing with XSL Choose/Otherwise statements

The XSLT mediation primitives use XSL stylesheets at runtime to manipulate the SMO.
There are two ways to define an XSL stylesheet. The first is to use the XML Mapping
Editor to define a mapping, which is then used to generate an XSL stylesheet. The second
approach is to the use the XSL Editor to edit the stylesheet directly. Typically the XSL
stylesheet is used within a mediation flow to modify the message type and this is required
when a mediation flow has an Input node and a Callout node that have terminals for
different message types. There are also other situations that require modification of the
message type. For instance, if the Input Response node is going to be used in the
request flow, the request message must be transformed into a response message.
Another instance is if an error was detected in the request flow and the message had to be

transformed to a fault message to be returned using the Input Fault node. XSL
stylesheets can also be used to manipulate the content of the SMO without changing the
message type. This is done by using XSLT functions that provide functionality such as

string manipulation or numeric computation. There is also some logical processing that
can be defined using the XSL Choose/Otherwise statements.

The XSL stylesheets provide a rich set of capabilities for manipulating the content of an
SMO.

WPIv601_ESB_AccessingSMOs.ppt Page 10 of 17

IBM Software Group

10

Accessing Service Message Objects © 2006 IBM Corporation

Manipulating SMOs – XML Mapping Editor

� Bottom panel shows currently defined mappings

� Top panel used to define mappings

�Drag elements from source to target to define a move

�Pop-up menu on target element provides additional choices

� XSLT is quite powerful and therefore so is the XML Mapping Editor

Toolbar provides
various

selection options

Drag/drop to
create move

Right click,
select from menu,

follow dialogs
to define function

Example: Define map to transform between input and callout operations

This slide examines the XML Mapping Editor, which is used to define a map, which can
then be used to generate an XSL style sheet. The top panel is used to define the
mappings, while bottom panel shows those mappings that have already been defined. On
the top panel, the source XML is shown on the left and the target XML is shown on the
right, with a toolbar for use with both source and target. Elements of the source can be
dragged and dropped onto elements in the target to define a move operation. Elements in
the target can also be selected and XSLT functions applied. In the bottom panel, the
target XML is on the left, showing each of the elements that will be set. The center
column contains the source elements of move operations and the right column contains
the applied functions. In this example, there is a source interface with a
getCustomerInformation operation that contains a customerID input and a target
interface with a getCustomerExtendedInfo operation with customerID and

portfolioRequested inputs. The map that is defined moves the customerID from source

to target and the portfolioRequested is set using the XSLT string function. Opening the
string function would show it has been initialized to set the value of portfolioRequested to
the string “default”.

WPIv601_ESB_AccessingSMOs.ppt Page 11 of 17

IBM Software Group

11

Accessing Service Message Objects © 2006 IBM Corporation

Manipulating SMOs – Resulting XSL Stylesheet

XML Mapping Editor
and the resulting
XSL stylesheet

This slide shows the XSL stylesheet generated from the map created in the XML Mapping
Editor described on the previous slide. In the style sheet, you can see that there is a
template / (slash) that contains a template body and the template body contains a
template getCustomerExtendedInfo, which is the target of the transformation. Following
the arrows from the XML Mapping editor to the XSL stylesheet, and you will see that the
customerID in the target is set to the value from the source identified as
/body/getCustomerInformation/customerID/text() and the portfolioRequested is set to
the string “default”.

WPIv601_ESB_AccessingSMOs.ppt Page 12 of 17

IBM Software Group

12

Accessing Service Message Objects © 2006 IBM Corporation

Java Code

Section

This section takes a closer look at the use of Java code for accessing SMOs.

WPIv601_ESB_AccessingSMOs.ppt Page 13 of 17

IBM Software Group

13

Accessing Service Message Objects © 2006 IBM Corporation

Manipulating SMOs – Java Code

� Java code can be used in Custom Mediation primitives

� Custom Mediation operation:

�Is passed the SMO as a DataObject

�Returns the SMO as a DataObject

�Input/Output message types must match terminals of Custom Mediation

� DataObject API (commonj.sdo.DataObject)

�Defined by the Service Data Object (SDO) specification

�Provides a dynamic loosely typed interface to access an SMO

�Augmented subset of XPath 1.0 can be used with accessor methods

�Javadoc and specification available from IBM Developerworks

� ServiceMessageObject API

�Provides strongly typed interface for well defined portion of SMO

� Everything except the contents of the body, transient context and correlation context

�Javadoc available from the Information Center

Custom Mediation primitives contain Java code, which defines the logic for the primitive.
The Java operation called by the custom mediation takes the SMO typed as a DataObject
as input and returns the SMO typed as a DataObject. The body portion of the SMO must
conform to the message type defined for the input and output terminals of the Custom
Mediation primitive. The Java code can make use of the commonj.sdo.DataObject APIs to
access the SMO, which are defined by the Service Data Object specification, also known
as SDO. These APIs provide a loosely typed interface for accessing the SMO and have
accessor methods that make use of an augmented subset of XPath 1.0 to identify
properties within the DataObject. The full javadoc for these APIs and the SDO
specification are available from IBM Developerworks. There is also a set of SMO APIs,
which provide a strongly typed interface for accessing the well defined portion of the SMO.
In other words, these APIs understand the schema for the SMO except for the body, the

transient context and the correlation context, which are unique to each individual flow.

There is javadoc describing these APIs in the Information Center.

WPIv601_ESB_AccessingSMOs.ppt Page 14 of 17

IBM Software Group

14

Accessing Service Message Objects © 2006 IBM Corporation

� Compare DataObject API usage to SMO API usage

�Code to access the MessageUUID field contained in the SMOHeader

� Using DataObject with full path

� Using DataObject and traversing down through each property

� Using the SMO strongly typed APIs

� Discovery of coding errors

�Loosely typed DataObject errors such as misspelling a property name are not

discovered until runtime

�Strongly typed SMO errors are caught at compile time

Manipulating SMOs – Java Code Examples

This slide compares the use of the DataObject APIs to the SMO APIs using example code
that accesses the MessageUUID field that is in the SMOHeader. The first code example
uses the loosely typed DataObject APIs and a fully qualified XPath expression to identify
the field. The XPath expression headers/SMOHeader/MessageUUID is used to obtain
the MessageUUID string from the SMO DataObject. The second code example also uses
the loosely typed DataObject APIs but in this case traverses down accessing a property at
a time. First, the headers DataObject is obtained from the SMO DataObject, then the
SMOHeader DataObject is obtained from headers DataObject, and then the
MessageUUID string is obtained from SMOHeader DataObject. In the third code
example, the strongly typed SMO APIs are used. In this case the first thing that must be
done is to cast the input from the DataObject to ServiceMessageObject type, after which
the getHeaders operation can be used to obtain the headers from the SMO and the

getSMOHeader operation can be used to obtain the SMOHeader from the headers.

Lastly, the getMessageUUID operation is used to get the MessageUUID string from the
SMOHeader. Contrasting these two approaches with respect to coding errors, the loosely
typed DataObject APIs generally have coding errors surface at runtime, whereas the

strongly typed SMO APIs tend to have coding errors caught at compile time. Therefore,
the SMO APIs might be preferred over the DataObject APIs for ease in development and
debugging.

WPIv601_ESB_AccessingSMOs.ppt Page 15 of 17

IBM Software Group

15

Accessing Service Message Objects © 2006 IBM Corporation

Summary

Section

The following slide presents a summary of this presentation.

WPIv601_ESB_AccessingSMOs.ppt Page 16 of 17

IBM Software Group

16

Accessing Service Message Objects © 2006 IBM Corporation

Summary

�Examined Service Message Objects in terms of:

�Access and manipulation of SMO content

�Manipulation of message type

�Approaches used

�XPath

�XSL Transformations (XSL Stylesheets)

�Java code

This presentation presented details about accessing Service Message Objects, including
modifying their content and changing their message type. The use of XPath expressions,
XSL Transformations using XSL stylesheets and the use of Java code in Custom
Mediations was also examined.

WPIv601_ESB_AccessingSMOs.ppt Page 17 of 17

17

IBM Software Group

© 2006 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004,2005. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 7/18/2005 4:30 PM

Accessing Service Message Objects

