

IBM Software Group

®

WebSphere ® MQ V7

Publish/Subscribe with the MQ API

© 2008 IBM Corporation

Updated August 29, 2008

This presentation covers the MQ API (or MQI) changes in WebSphere MQ version 7.0 that
cover Publish and Subscribe.

This extends the support for publish subscribe that is available in JMS to users of the MQI
with straight forward verbs and options without using the broker.

These features are also available for MQ on z/OS®.

This unit assumes a reasonable understanding of the existing WebSphere MQ API for
putting and getting messages to and from queues.

This unit also assumes a reasonable understanding of Pub/Sub and the administration of
Topic Objects by MQ Explorer. This understanding can be gained from other
presentations in this series.

iea_310_wmqv7_API_1_PubSub.ppt Page 1 of 30

After you complete this unit, you should be able to:

�Publish using the MQI

�Subscribe using the MQI

�Understand the different ways to subscribe to
publications

�Use the new variable length string data type in
MQI applications

IBM Software Group

2

Publish/Subscribe with the MQ API © 2008 IBM Corporation

After you complete this unit, you should be able to:

�Publish using the MQI

�Subscribe using the MQI

�Understand the different ways to subscribe to
publications

�Use the new variable length string data type in
MQI applications

Unit objectives

After completing this unit you should understand how to code applications using the MQI
that will allow you to “ Publish” messages on a specific topic for other applications to
consume.

You will see what needs to be done in a program in order to publish messages.

You will also understand and see what a program needs to do to set up a subscription to a
topic, and to consume the messages it receives as a result of that subscription.

Subscription has a much wider range of options controlling how and to what messages
you subscribe to than publishing has. On completing the unit you should be able to
describe what these options are.

Additionally this session discusses the new “variable length string” data type introduced in
version 7.0 specifically to deal with topic strings. The JMS specification defines these as
being of unlimited length, but are limited to ten thousand characters in the MQI .

And remember this session does not attempt to cover all the options in detail; you should
use this presentation together with the information in the product information center.

iea_310_wmqv7_API_1_PubSub.ppt Page 2 of 30

IBM Software Group

3

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Introduction

� In WebSphere MQ V7:
�New verbs allow MQI applications to easily

perform publish/subscribe.

�Publications and subscriptions can be handled
by both MQI and JMS applications.

�Publish/subscribe functionality is now available
on z/OS without needing Message Broker.

This presentation covers the MQ Application Programming Interface extensions introduced
into WebSphere MQ version 7.0.

The new verbs and options allow MQI application to perform publish/subscribe operations
in a simple straight forward manner, using MQ verbs to publish messages to topics and to
establishing subscriptions to topics. This is in contrast to the level of indirection required in
version six to set up headers and send messages to broker queues.

Publication and subscription is, broadly, functionally equivalent for JMS applications and
MQI applications and the two APIs can interact directly. That is to say; messages
published by JMS applications can be consumed by MQI subscribers and vice versa.

Also for the first time WebSphere MQ for z/OS has publish and subscribe capabilities
without the need for WebSphere Message Broker.

iea_310_wmqv7_API_1_PubSub.ppt Page 3 of 30

Subscribin
applicatio

Subscribin
applicatioPublishing

App

Publishin
App

IBM Software Group

4

Publish/Subscribe with the MQ API © 2008 IBM Corporation

g
n

g
n

g

Publish / subscribe applications

Subscribing
application

Topic string
Lo

ca
l Q

M
gr

Local Q
M

gr

� Applications connect to local queue manager

� Publish/Subscribe asymmetry compared to Put/Get

� Can use JMS or any MQI language

� Can also interact with MQ V6 queued Pub/Sub command messages

Publishing
application

Topic string QM QM Publish/Subscribe
Network

Publish/Subscribe
Network

Shown here is a general publish / subscribe application.

What is shown here are one or more publishing applications which are publishing
messages. These messages are published to a topic string. Also shown are one or more
subscribing applications which are being sent those messages which match the topic
strings they are subscribing to. Also valid is the fairly uninteresting cases where there are
zero publishing applications, in which case subscribers are listening to nothing. Or the
case where there is zero subscribing applications in which case publishers might be
shouting into the void. Or of course the very special case of zero publishers and zero
subscribers.

Look a little more closely and you will see that each publishing or subscribing application is
connected to some local queue manager. These connections might be local binding, or
over a network by way of the client code. The participating queue managers are
connected together by the network cloud. It is an important element of publish subscribe
applications that the logical connection between the programs involved is the topic strings
they are publishing to and subscribing from and the nature of the network connectivity is
irrelevant.

The wider application can be made up of a mix of JMS and MQI publishers and
subscribers as appropriate. It might be that mainframe COBOL applications are publishing
data that JMS subscribers on WebSphere Application Server are consuming. Equally
older queue managers with the “queued” publish subscribe interface can also be
connected to the network and freely exchange messages with V7.0 publish/subscribe
applications.

iea_310_wmqv7_API_1_PubSub.ppt Page 4 of 30

IBM Software Group

5

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Publication explanation

�Publication is MQPUT to a topic string

� Topic string can be identified in three ways
�Specify whole topic string in application.

�Pre-defined topic object contains the topic string.

�Concatenation of pre-defined string from topic object plus
partial topic string from application.

The first thing to see is that NO NEW VERB is introduced for publishing. Messages are published by using

the existing MQPUT verb, but instead of the object descriptor in the MQPUT identifying a QUEUE the Object

descriptor resolves to a topic string.

So publishing is merely putting, but to a topic string instead of a queue.

What is new and somewhat different is how the topic string is identified:

Three choices are available:

The first is to specify the whole topic string in the object descriptor. The application supplies the whole topic

string.

Example: “usa/share/price/ibm” is specified as a topic string (using a new field of data type varying length

string).

The second is equally simple an MQ administrative TOPIC object has been predefined, by an administrator)

that contains the whole topic string. And the application specifies this administrative topic object in the same

way a QUEUE is specified. The administrator supplies the whole topic string.

Example: MQSC is used to “DEFINE TOPIC(IBM_PRICE) topicstring(‘usa/share/price/ibm/’)”, and the object

descriptor specifies “IBM_PRICE” as a topic object.

The third way is a little more interesting, and less obvious. You can create an administrative Topic Object

that contains a “stem”, or beginning part, of the full topic string and supply in the object descriptor the final

part of the string. The application and administrator cooperate to supply the whole string.

Example: MQSC is used to DEFINE TOPIC(PRICES) topicstring(‘usa/share/price) and the object descriptor

specifies this PRICE object descriptor and the additional (partial) topic string ‘ibm’ which resolves to

“usa/share/price/ibm” .

This might be useful to allow you to administratively change where in the topic hierarchy the application was

operating. Or if this was a package application which needed to be configured to fit into a topic structure a

particular enterprise was using.

The next slides show how this is done in code …. Or at least pseudocode.

iea_310_wmqv7_API_1_PubSub.ppt Page 5 of 30

Publishing App

Set up MQOD and Open Options

Set up MQPMO

IBM Software Group

6

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Publishing applications

Publishing App

Lo
ca

l Q
M

gr

� Connect to the queue
manager

MQCONN(MyQmgr,Hconn,CC,RC)

Set up MQOD and Open Options

Set up MQPMO

MQOPEN(Hconn,OD,OpenOpts,
Hobj,CC,RC)

� Open a topic

MQPUT(Hconn,Hobj,MD,PMO,
BuffLen,Buffer,CC,RC) � Put publications to

that topic

This program flow should look familiar to any MQI programmer, and essentially looks like

the put to a queue.

The application first connects to a queue manager – no change here.

Setting up the Object descriptor and Open options are where the topic string being opened

is identified.

The MQOPEN itself is just as before.

Setting up the Put Message Options is shown in a later slide; the MQPMO has new

options relating to publishing.

The actual MQPUT call then publishes the message to the topics string and all subscribers

are delivered a copy.

Now for a look in more detail.

iea_310_wmqv7_API_1_PubSub.ppt Page 6 of 30

Publishing application

IBM Software Group

7

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Set up MQOD and open options

sports/football/hursley/results

Publishing application

ObjDesc.ObjectString.VSPtr =
“sports/football/hursley

/results”;
DEF TOPIC(MY.TOPIC)
TOPICSTR(sports/football/hursley/results)

ObjDesc.Version =
MQOD_VERSION_4

ObjDesc.ObjectType =
MQOT_TOPIC;

strncpy(ObjDesc.ObjectName,
“MY.TOPIC”,
MQ_TOPIC_NAME_LENGTH);

2

1

3

DEF TOPIC(MY.ROOT)
TOPICSTR(sports/football/hursley)

strncpy(ObjDesc.ObjectName,
“MY.ROOT”,
MQ_TOPIC_NAME_LENGTH);
ObjDesc.ObjectString.VSPtr

= “results”;

OpenOpts = MQOO_OUTPUT;
� Open for output

� Object type

� Fill in topic or topic string

4a

4b

4c

This slide shows how to set up the object descriptor to open the ‘sports/football/hursley/results/’ topic string.

The first three key things (shown by bullets one to three) are:

One, the object must be opened for output when it is used for publishing.

Two, the MQOD version must be four as new MQOD fields are introduced in version 7.

Three, the Object Type is set to the new symbol for a topic, MQOT_TOPIC.

The last thing to do is to identify the topic string that publishing is to occur to – as mentioned earlier there are three

alternatives shown as 4a, 4b and 4c.
4a) Specifying the whole topic string in the program, done here by setting object descriptor “ObjectString.VSPtr” to point

to the string.
While NOT specifying and “ObjectName”.
This results in the resolved topic string being the one supplied in the program.
Note: this is a use of the new varying length string data type details of which are discussed later.

4b) Specifying ONLY an ObjectName in the Object Descriptor.
While not specifying and ObjectString.
This results in the resolved topic string being the one specified in the administrative definition of the TOPIC Object.

In this case MQSC commands or MQ Explorer must have been used to create a topic object named “MY.TOPIC”
which had the topic string
“sport/football/hursley/results” as an attribute.

4c) Here BOTH ObjectName and ObjectString are specified.
This results in the resolved string being from a concatenation of a string from and administrative topic together with
the string supplied by the program.
In this case MQSC commands or MQ Explorer must have been used to create a topic object named “MY.ROOT”
which had the topic string
“sport/football/hursley” as an attribute. The object string “results” specified by the program is concatenated together
with a connecting slash symbol by this root to give the final resolved string “sport/football/hursley/results”.

This choice of ways to identify a topic string applies to all cases where a topic sting is needed.
The next slide looks in more detail at changes to the object descriptor.

iea_310_wmqv7_API_1_PubSub.ppt Page 7 of 30

IBM Software Group

8

Publish/Subscribe with the MQ API © 2008 IBM Corporation

MQOD C declaration with new fields
struct tagMQOD {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ObjectType; /* Object type */
MQCHAR48 ObjectName; /* Object name */

----- Part Omitted -----
MQCHARV ObjectString; /* Object long name */
MQCHARV SelectionString; /* Message Selector */
MQCHARV ResObjectString; /* Resolved long object name*/
MQLONG ResolvedType; /* Alias queue resolved object type */
/* Ver:4 */

struct tagMQCHARV {

MQPTR VSPtr; /* Address of variable length string */

MQLONG VSOffset; /* Offset of variable length string */

MQLONG VSBufSize; /* Size of buffer */

MQLONG VSLength; /* Length of variable length string */

MQLONG VSCCSID; /* CCSID of variable length string */

This slide illustrates two control blocks in the C programming language.

First, the new fields added to the Object Descriptor in version 7.0. These include:

ObjectString, which is used to identify the topic string to be opened.

SelectionString is used for specifying selection string – see the presentation on selectors.

ResObjectString is a returned value giving the resolved name of the object (topic) string that was actually
used.

These new variables are varying length strings, of up to ten thousand characters, and are of the new

MQCHARV data type.

This is illustrated in the second part of the slide.

The MQCHARV data type describes a variable length string by either a pointer, or offset into a buffer

together with a length and a Coded Character Set ID.

Either a pointer or an offset can be used to specify the buffer containing the variable length string. It is

expected that a pointer will be used in most cases but some languages do not support pointers in which case

an offset must be used. The offset is a positive or negative number and measures the offset from the

beginning of the containing structure being used as a parameter on a call. So for ObjectString,

SelectionString and ResObjectString in the MQOD the offset in each case is measured from the beginning of

the MQOD structure.

When an MQCHARV data type is used to return data from an MQI call (for example, ResObjectString) the

length of the string is always returned in VSLength. When passing data into an MQI call (for example,

ObjectString) the caller might specify the string length in VSLength, or set VSLength to

MQVS_NULL_TERMINATED and of course terminate the string with a null character.

iea_310_wmqv7_API_1_PubSub.ppt Page 8 of 30

IBM Software Group

9

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Set up MQPMO
� MQPMO_RETAIN

�The publication being sent is to be retained by the queue manager.

�No more than one publication is retained at each node of the topic tree.

� MQPMO_SUPPRESS_REPLYTO
�ReplyToQ and ReplyToQMgr fields are not passed on to the subscribers.

� MQPMO_NOT_OWN_SUBS
�Tells the queue manager that the application does not want to send any of its

publications to subscriptions it owns.

� MQPMO_SCOPE_QMGR
�Publications are not forwarded to any remote publish/subscribe queue

manager.

The last thing to talk about from a publishing point of view is the new Put Message

Options that are added in support of publish / subscribe.

It is possible for each unique topic string to have at most one, so either one or zero,

retained publications. Retained publications are the publications that are “held” by the

queue manager and delivered either immediately a new subscriber connects, or on

request using the special SUBRQ Call. Setting the MQPMO_RETAIN option when

putting a message will make the put message the current retained publication for that topic

string.

The MQPMO_SUPPRESS_REPLYTO option can be used to suppress the ReplyTo fields

on messages passed to subscribers.

MQPMO_NOT_OWN_SUBS and MQPMO_SCOPE_QMGR are used to limit which

subscribers might get this message. The first means that subscriptions with the same

connection handle will not receive the publication. The second. that only subscribers

connected to the same queue manager will receive the publication.

That completes the description of publishing using the MQI.

MQOPEN is extended to allow topic strings to be opened for output. MQPUT is extended

to allow messages to be put to these topics with new options related to publishing.

iea_310_wmqv7_API_1_PubSub.ppt Page 9 of 30

IBM Software Group

10

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Subscription explanation

� Subscription
�A subscription involves two key elements

1) Identifying the topic string, including wildcards, being subscribed to.

2) Identifying the destination that qualifying messages are to be placed on.

�Note the subscription call MQSUB does not get any
messages. These must be read from the destination
queue with an MQGET call.

Subscription is more of a new concept in the MQ API.

The new MQSUB call sets up, or registers, a subscription which requires two key pieces of

data.

The topic string being subscribed to which makes the link to publishing applications; the

subscription can be to a specific string or can involve wildcards.

Example: Subscribing to “shares/newyork/prices/#” causes messages to be delivered for

any publications such as “shares/newyork/prices/IBM” and

“shares/newyork/prices/Microsoft”.

The other piece of data is the destination the subscribed messages are to be placed on.

This is a queue. The queue can be specified in two ways.

The first way is that the application has already opened a queue, in which case the queue

handle can be passed into the call – this is referred to as an unmanaged destination.

The alternate is to specify a null handle, in which case a queue is created by the queue

manager and the handle is returned from the call – this is referred to as a managed

destination.

It is worth stressing here that the MQSUB call does not “get” any messages for the

application. MQSUB merely sets up a subscription in the queue manager which causes

appropriate messages to be placed on the destination. These messages still need to be

read by an application using an MQGET (for example).

iea_310_wmqv7_API_1_PubSub.ppt Page 10 of 30

IBM Software Group

11

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Subscription explanation

�Subscription choices
�Non-durable subscription - subscribe, receive pubs, and

unsubscribe in a single program

�Durable subscription – subscribe, go away, return later to
retrieve publications, needs subscription name.

�Selection Criteria – In addition to the topic string.
� A SQL expression can be supplied that “filters” the messages based on

message

The main choices for a subscription are whether the subscription is durable or non
durable.

The non-durable is the simpler case. A non durable subscription starts with the MQSUB
call and ends when the application closes the handle or disconnects.

So the subscription is relatively short-lived.

A durable subscription can continue beyond the life of the application that starts the
subscription. When no application is connected to the subscription, messages are still
delivered to the destination specified.
An application can start a subscription; disconnect; and return later to collect all the
messages delivered while it was “away”. Because of the need to reconnect all durable
subscriptions must be identified by a unique subscription name.

The reconnecting “application” might be a completely different program, even running
under another user ID.

Another major option for a subscription is whether you want to receive all the messages
published to a topic (possibly with wildcard) or only certain messages that satisfy a
selection criterion made in a selector. The selector is a SQL expression that selects using
the Message Properties of a Message.

Example: Select only messages with the user property “DollarValue” Greater-or-equal-to”
10,000.

Selectors and Message Properties are covered in more detail in other presentations.

iea_310_wmqv7_API_1_PubSub.ppt Page 11 of 30

IBM Software Group

12

Publish/Subscribe with the MQ API © 2008 IBM Corporation

New API call for subscription registration

�MQSUB – register subscription
�Hconn – connection handle

�SubDesc – MQSD – subscription descriptor structure

�Hobj – object handle from destination queue

�Hsub – object handle returned for subscription

�CompCode – completion code

�Reason – reason code

Here is what an MQSUB call looks like.

In the main it looks like most MQI calls with a Subscription Descriptor block introduced to
encapsulate the options for the subscription.

The thing that makes this call somewhat different from most MQ API calls is the presence
of two object handle parameters.

The first is the object handle representing the destination queue where qualifying
messages are placed by the queue manager. This can be an input parameter – the
unmanaged destination case – where a queue handle is supplied by the application or an
output parameter – the managed case – where the queue manager creates a destination
for the applications use. In either case after a successful call this parameter contains the
handle of a destination that is suitable for use to read the subscribed messages from.

The second is a handle representing the subscription itself and is an output parameter.

Next the subscription descriptor is looked at in more detail.

iea_310_wmqv7_API_1_PubSub.ppt Page 12 of 30

IBM Software Group

13

Publish/Subscribe with the MQ API © 2008 IBM Corporation

New structure for subscription
� MQSD – subscription description

……

�SubUserData

�SubCorrelId

�PubPriority

�PubAccountingToken

�PubAppIdentityData

�SelectionString

�SubLevel

�ResObjString

�StrucId

�Version

�Options

�ObjectName

�AlternateUserId

�AlternateSecurityId

�SubExpiry

�ObjectString

�SubName

The MQSD – Subscription descriptor is a new control block for specifying the details of a

subscription. It has several fields; details of all these fields can be found in the information

center.

Looking at some key fields: Objectname and ObjectString are alternate ways of specifying

the topic to be subscribed to in just the same way a topic string was identified in the

MQOD when publishing.

SubName is the unique name for this subscription and can be used to reconnect to a

durable subscription.

SelectionString is the SQL selection string that filters the messages to be received.

Sublevel introduces the concept of subscription level. This is to allow the interception of

publications by an intercept application which needs an opportunity to modify publications

before passing them on to the eventual subscribers.

Original publishers (all standard applications will publish at publevel=9 (maximum), all final

subscribers will subscribe at sublevel=1 (minimum).

An intercepting publication should subscribe at some intermediate level (say 6) and

publish at that level minus one (so perhaps 5).

This is not a feature expected to be used by “application” programs but by system or utility

programs.

iea_310_wmqv7_API_1_PubSub.ppt Page 13 of 30

Subscribing App

Set up MQSD

Set up Close Options

IBM Software Group

14

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Non-durable subscription application
Subscribing App

Lo
ca

l Q
M

gr

� Connect to a queue manager MQCONN(MyQmgr,Hconn,CC,RC)

Set up MQSD

MQSUB(Hconn,SD,Hobj,Hsub,
CC,RC)

� Subscribe to a topic

MQGET(Hconn,Hobj,MD,GMO,
BuffLen,Buffer,
DataLength,CC,RC)

� Get publications published to
that topic

MQCLOSE(Hconn,Hsub,
CloseSubOpts,CC,RC)

MQCLOSE(Hconn,Hobj,CloseOpts,
CC,RC)

� Close subscription to
unsubscribe

� Close queue

Set up Close Options

Here is the “code” for a non durable subscription.

Note the order of operations.

Like all applications the first operation is to connect.

Before subscribing a Subscription Descriptor Block specifying the topic string, selectors

etcetera for the subscription must be set up.

In this case a destination object has NOT been opened and passed. So this is a managed

subscription with the destination created by the queue manager.

After the MQSUB call a standard MQGET call is used to receive the subscribed

messages, with whatever waits, loops and business logic you require.

At the end TWO MQCLOSE commands are required. One on the handle for the

subscription itself, and one on the destination handle.

As this is a non durable subscription closing it will terminate the subscription and delete

any unread messages from the managed queue.

iea_310_wmqv7_API_1_PubSub.ppt Page 14 of 30

Subscribing App

IBM Software Group

15

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Set up MQSD – subscription description

Subscribing App

MQSUB(Hconn,SD,
CC,RC)

� Fill in topic object name SubDesc.ObjectName =
“SPORTS.RESULTS”;

Topic Object: SPORTS.RESULTS

� Choose to Create a subscription

SubDesc.Options = MQSO_CREATE

| MQSO_MANAGED
| MQSO_NON_DURABLE

| MQSO_FAIL_IF_QUIESCING; � Choose for the queue manager to
create the queue

Hobj,Hsub,

� Select durability

� Any other options

� Call returns you a subscription handle.

Here is a little more detail on setting up a subscription descriptor.

In this case the topic string to be subscribed to is identified by by naming a TOPIC

OBJECT (which will have the topic string as one of its properties).

The MQSD options field is a field that is likely to need to be specified.

In this case a New; Non durable; Managed; subscription is being set up.

Additionally, the subscription should not start if the queue manager is already quiescing.

After the call completes the Hobj handle is open ready for reading messages delivered to
the managed queue as a result of the subscription.

iea_310_wmqv7_API_1_PubSub.ppt Page 15 of 30

Subscribing App

Set up MQSD

Set up Close Options

IBM Software Group

16

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Durable subscription application
Subscribing App

Lo
ca

l Q
M

gr

� Connect to a queue manager MQCONN(MyQmgr,Hconn,CC,RC)

Set up MQSD

MQSUB(Hconn,SD,Hobj,Hsub,
CC,RC)

� Subscribe to a topic

MQGET(Hconn,Hobj,MD,GMO,
BuffLen,Buffer,
DataLength,CC,RC)

� Get publications published to
that topic

MQCLOSE(Hconn,Hsub,
CloseSubOpts,CC,RC)

MQCLOSE(Hconn,Hobj,CloseOpts,
CC,RC)

� Close subscription with
MQCO_KEEP_SUB

� Close queue

Set up Close Options

MQOPEN(Hconn,OD,OpenOpts,Hobj,
CC,RC) � (Optionally) open a destination

queue

In this second example creation of a durable subscription is shown.

This is essentially the same as the non durable case, but note the MQCLOSE option of
MQCO_KEEP_SUB which causes the subscription to be maintained after the MQCLOSE.
Note that for durable subscriptions this is the default but is specified here for clarity.

Any messages published to the topic subscribed to will continue to be delivered.

iea_310_wmqv7_API_1_PubSub.ppt Page 16 of 30

Subscribing App

IBM Software Group

17

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Set up MQSD – subscription description

Subscribing App

MQSUB(Hconn,SD,
CC,RC)

� Fill in topic string
SubDesc.ObjectString.VSPtr =
“sports/football/results/#”;

Topic String: sports/football/results/#

SubDesc.SubName.VSPtr =
“MoragsSub”;

� Fill in subscription name
� Choose to Create, Resume or Alter a

subscription SubDesc.Options = MQSO_CREATE

| MQSO_NEW_PUBLICATIONS_ONLY
| MQSO_DURABLE

| MQSO_FAIL_IF_QUIESCING; � Choose not to receive retained
publications

Hobj,Hsub,

� Select durability

� Any other options

� Call returns you a subscription handle.

This time the subscription descriptor has different options.

In this case the topic string to be subscribed to is identified by by naming the topic sting
directly using the MQSD.ObjectString field, which is an instance of the new MQ varying
length string data type.

Because this is a durable subscription and might be reconnected to it must be given a
(unique) name.

Also slightly different options are chosen for this subscription.

iea_310_wmqv7_API_1_PubSub.ppt Page 17 of 30

Subscribing App

Set up MQSD

Set up Close Options

IBM Software Group

18

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Return to the durable subscription

Subscribing App

Lo
ca

l Q
M

gr

� Connect to a queue manager MQCONN(MyQmgr,Hconn,CC,RC)

Set up MQSD

MQSUB(Hconn,SD,Hobj,Hsub
CC,RC)

� Subscribe to same topic with
MQSO_RESUME

MQGET(Hconn,Hobj,MD,GMO,
BuffLen,Buffer,
DataLength,CC,RC)

MQCLOSE(Hconn,Hsub,
CloseSubOpts,CC,RC)

MQCLOSE(Hconn,Hobj,CloseOpts,
CC,RC)

� Close subscription with
MQCO_REMOVE_SUB

� Close queue

Set up Close Options

MQOPEN(Hconn,OD,OpenOpts,Hobj,
CC,RC) � (Optionally) open a destination

queue

Returning to a durable subscription, the code looks just like creating a subscription.

Differences are in the options.

You subscribe using the MQSO_RESUME option in order to reconnect to an existing

subscription.

And you might optionally close with the MQCO_REMOVE_SUB option which causes the

durable subscription to be ended permanently.

iea_310_wmqv7_API_1_PubSub.ppt Page 18 of 30

IBM Software Group

19

Publish/Subscribe with the MQ API © 2008 IBM Corporation

MQSD -- subscription options 1

� Mandatory choice
�MQSO_CREATE for a new subscription

�MQSO_RESUME to continue existing subscription by name

�MQSO_ALTER to change existing subscription by name

� You can combine options
�MQSO_CREATE + MQSO_RESUME

� Create if it doesn’t exist

� Resume if it does exist

�MQSO_CREATE + MQSO_ALTER
� Create if it doesn’t exist

� Alter if it does exist

Looking a little more closely at the subscription options that can be set; the first options

choice that must be made concerns the “newness” of a subscription.

MQSO_CREATE indicates that creating a new subscription is allowed.

MQSO_RESUME indicates that resuming an existing (named) subscription is allowed

MQSO_ALTER indicates that an existing subscription can have its properties altered.

These options can be combined so CREATE and RESUME means use existing if it exists

and create if it does not. Without the CREATE option the MQSD call fails if the named

subscription did not already exist.

iea_310_wmqv7_API_1_PubSub.ppt Page 19 of 30

IBM Software Group

20

Publish/Subscribe with the MQ API © 2008 IBM Corporation

MQSD -- subscription options 2

� Durability options
�MQSO_DURABLE for a subscription that will last beyond the end

of the application connection

�MQSO_NON_DURABLE for a subscription that ends with the close
of the subscription

� Destination options
�MQSO_MANAGED if you want the queue manager to create and

manage the queue where the publications are stored

The options are also where the durability is specified.

The subscription is either DURABLE – can continue after subscription is MQCLOSE’d
(with the right close options) or it is not.

Additionally the choice of managed or unmanaged destination is made here.
MQSO_MANAGED asks the queue manager to create a destination, otherwise the
application must supply a queue handle.

iea_310_wmqv7_API_1_PubSub.ppt Page 20 of 30

IBM Software Group

21

Publish/Subscribe with the MQ API © 2008 IBM Corporation

MQSD -- subscription options 3
� MQSO_SCOPE_QMGR – this subscription is made only on the local

queue manager

� MQSO_NEW_PUBLICATIONS_ONLY – only receive new publications,
not previously created retained publications

� MQSO_PUBLICATIONS_ON_REQUEST – only receive retained
publications using MQSUBRQ, no new publications

Additional subscription options include; the MQSO_SCOPE_QMGR subscription is made
only on the local queue manager, and is not propagated to any adjacent queue managers.
Only messages published on this queue manager delivered. The default is to receive all
publications from clustered or hierarchically connected queue managers.

Setting MQSO_NEW_PUBLICATIONS_ONLY means that no currently retained
publications are to be sent, when this subscription is created, only new publications. This
option only applies when MQSO_CREATE is specified.

The MQSO_PUBLICATIONS_ON_REQUEST option radically changes the nature of the
subscription. Setting this option indicates that no messages are to be placed on the
destination as a result of this MQSUB call. The MQSUB call identifies the destination and
what messages qualify but no messages are delivered UNTIL an MQSUBRQ call is
issued. The MQSUBRQ call causes all the appropriate retained publications to be
delivered to the destination.

The MQSO_PUBLICATIONS_ON_REQUEST and MQSO_NEW_PUBLICATIONS_ONLY
cannot both be specified.

iea_310_wmqv7_API_1_PubSub.ppt Page 21 of 30

IBM Software Group

22

Publish/Subscribe with the MQ API © 2008 IBM Corporation

MQSD -- subscription options 4

� MQSO_WILDCARD_CHAR – wildcards are specified with characters
without reference to the topic hierarchy

� / No significance, just another character

� * Wildcard, zero or more characters

� ? Wildcard, exactly one character

� % Escape character
Example: “%*’ stands for and asterisk in a topic
Example: the string “hot%?cold%?” matches only with the nine
character string h-o-t-?-c-o-l-d-?.

The final subscription options to be considered is the alternate wildcard matching.

MQSO_WILDCARD_CHAR
This option specifies that the alternate (compatible with the older MQRFH1 not MQRFH2 headers) wildcard

matching for topic strings should apply.

Wildcards only operate on characters without reference to the topic hierarchy within the topic string.

The / (slash) has no significance, it is just another character.

The * (asterisk) is a wildcard standing for zero or more characters.

The ? (question mark) is a wildcard standing for exactly one character.

The % (percent symbol) is an escape character. When used before a slash, asterisk, or question mark, it

means that the character is literal.

Compare this to the default behavior specified by MQSO_WILDCARD_TOPIC, where wildcards only operate

on topic elements within the topic string.

The / (slash) is the separator between levels in the hierarchy.

The # (pound sign or hash mark) stands for zero or more levels in the hierarchy.

The + (plus sign) stands for exactly one level in the hierarchy.

Note that this use of wildcards supplies exactly the meaning provided in WebSphere Message Broker V6

when using MQRFH2 formatted messages for Publish/Subscribe.

This is not a complete list of the available options, but only the key ones for understanding MQ Pub/Sub.

You should refer to the information center for complete information on all options.

iea_310_wmqv7_API_1_PubSub.ppt Page 22 of 30

IBM Software Group

23

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Set up close options

� MQCO_KEEP_SUB
�Subscription is kept

�Only valid for durable

�Default for durable

� MQCO_REMOVE_SUB
�Subscription is closed

�Any publications not yet consumed from a managed destination are
removed when the subscription is closed.

�Default for non-durable

Close options are fairly straight forward.

MQCO_KEEP_SUB only applies to durable subscriptions and is then the default. It
means that after the close messages continue to be delivered to the destination ready for
the time when the subscription is resumed.

On the other hand The MQCO_REMOVE_SUB permanently closes the subscription. Any
managed destination is deleted along with any unread publications on that destination.

iea_310_wmqv7_API_1_PubSub.ppt Page 23 of 30

Subscribing App

Set up MQSD

IBM Software Group

24

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Publications on request only

Subscribing App

Lo
ca

l Q
M

gr

� Connect to the queue manager MQCONN(MyQmgr,Hconn,CC,RC)

Set up MQSD

MQSUB(Hconn,SD,Hobj,Hsub,
CC,RC)

� Subscribe to a topic using
MQSO_PUBLICATIONS_ON_
REQUEST

� No MQGETs after

MQGET(Hconn,Hobj,MD,GMO,
BuffLen,Buffer,
DataLength,CC,RC)

� Get publications published to
that topic

MQSUBRQ(Hconn,Hsub,SRO,CC,RC)� Request the retained
publications

The MQSO_PUBLICATIONS_ON_REQUEST option and the MQSUBRQ call were
mentioned earlier in the subscription options section.

Here you see how it might be coded.

The MQSUB call sets up the parameters of the subscription – topics – destinations – but
does not begin the placing of messages on the destination, so no MQGET

At some time later the application issues an MQSUBRQ, at which point the appropriate
retained publications are delivered to the destination and can be got by the application.

This option allows the retained publications to be delivered on demand.

iea_310_wmqv7_API_1_PubSub.ppt Page 24 of 30

IBM Software Group

25

Publish/Subscribe with the MQ API © 2008 IBM Corporation

New API call for subscription requests

�MQSUBRQ – subscription request options
�Hconn – connection handle

�Hsub – subscription handle

�Action – action requested on this subscription
� MQSR_ACTION_PUBLICATION

�SubRqOpts – MQSRO – subscription request options

�CompCode – completion code

�Reason – reason code

Having set up the subscription with the MQSO_PUBLICATIONS_ON_REQUEST option

the MQSUBRQ call causes the qualifying messages to be delivered.

It is a very simple call passing in the subscription handle and the only valid action of

MQSR_ACTION_PUBLICATION.

Although a MQSRO – Subscription on Request Options field is passed a very limited set

of options can be specified.

In fact the only choice is whether to code the MQSRO_FAIL_IF_QUIESCING option.

Note: Since the topic in the existing subscription represented by the Hsub parameter might

contain wildcards, the subscriber might receive multiple retained publications.

iea_310_wmqv7_API_1_PubSub.ppt Page 25 of 30

IBM Software Group

26

Publish/Subscribe with the MQ API © 2008 IBM Corporation

New data type

� Variable length string – MQCHARV

� Language support
�C and C++, COBOL,PL/I, RPG, S/390 assembler

� Not supported
�Visual basic®, ActiveX®

� Complex data type
�Uses pointer or offset, buffer, buffer length and data length

� Used by pub / sub in these control blocks
MQOD

•ObjectString
•ResObjectString
•SelectionString

MQSD
•ObjectString
•ResObjectString
•SubUserData
•SubName

One last item before leaving the publish/subscribe API.

The new MQ data type MQCHARV to handle varying length strings was illustrated earlier.

Here is a recap.

It is supported in most MQI languages, but not Visual Basic and ActiveX where the APIs

have not been extended in V7.

It is a complex data type using a pointer or offset to locate a varying length string in a
buffer.

And is used for topic strings, selector strings, subscription names and for the user data
passed in a subscription.

iea_310_wmqv7_API_1_PubSub.ppt Page 26 of 30

IBM Software Group

27

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Publish/subscribe using MQI - summary

� The verbs used are:
�MQOPEN

�MQPUT

�MQSUB

�MQGET

�MQSUBRQ

�MQCLOSE

� New structures to accompany new verbs
�MQSUB – MQSD – Subscription Descriptor

�MQSUBRQ – MQSRO – Subscription Request Options

In summary, MQOpen and MQClose are extended.

MQPut is used to publish by putting to a topic.

MQSUB verb is new and used to specify a subscription. Messages are actually got using

a standard MQGET call.

New call MQSUBRQ can be used to get all the retained publications available at a point in

time.

New structures and options are introduced.

And to repeat that this is very much an overview – detail on the MQI options and coding

can be found in the information center.

iea_310_wmqv7_API_1_PubSub.ppt Page 27 of 30

Now that you have completed this unit, you should
be able to:

�Publish using the MQI

�Subscribe using the MQI

�Understand the different ways to subscribe to
publications

�Use the new variable string data type in MQI
applications

IBM Software Group

28

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Now that you have completed this unit, you should
be able to:

�Publish using the MQI

�Subscribe using the MQI

�Understand the different ways to subscribe to
publications

�Use the new variable string data type in MQI
applications

Unit summary

Now that you have completed this unit, you should understand how to: Publish using the
MQI, Subscribe using the MQI, Understand the different ways to subscribe to publications
and use the new variable string data type in MQI applications.

iea_310_wmqv7_API_1_PubSub.ppt Page 28 of 30

IBM Software Group

29

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_iea_310_wmqv7_API_1_PubSub.ppt

This module is also available in PDF format at: ../iea_310_wmqv7_API_1_PubSub.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

iea_310_wmqv7_API_1_PubSub.ppt Page 29 of 30

IBM Software Group

30

Publish/Subscribe with the MQ API © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere z/OS

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

ActiveX, and Visual Basic are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

iea_310_wmqv7_API_1_PubSub.ppt Page 30 of 30

