© Copyright IBM Corporation 2009 All rights reserved

IBM® WebSphere® Commerce Feature Pack 5 — Lab exercise

Store customization 2

What thiS @XEICISE IS ADOULuiiiiiiiiiii ettt e s a et e st b et e e st e e e ssne e e e s annneeas 2
What you Should DE @bl 10 GOttt ettt e e e e e e e st e e e e e e e e e e e annbeteeaeaaeaeanns 2
Yoo (8ot o T o RO O SOU PP RRPRRPI 2
LR CTo [T 1= 0 L= o] £ SR P USSR 2
Part 1: Add the Order Cancel DULEON ...ttt s 4
Part 2: DEfiNe The SEIVICE......o et b et b e 7
Part 3: TESE L@ SEIVICE. ... ittt ettt et bt e s et e e et e sbe e eaeesaeeemeeanbeeaaeeaneeaneeas 10
Part 4: Create the refresh CONTrOIIEro e 11
Part 5: Create the FeffE@SH I8coi it e et e e e s e e e e neee 12
Part 6: Define the JSP that will generate the refresh CoNteNnt............c.ovvvviiie i 14
Part 7: TESEthe reffe@Sh @rEacoi it 16
Part 8: What YOU did iN thiS @XEITISE.......cciiiiiiiiiiiii ittt e e s b e e e b e e e neee 17
2009 May, 29 IBM SWG WebSphere Commerce Feature Pack 5 — Lab exercise Page 1 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

What this exercise is about
In this tutorial, you will make use of the WebSphere Commerce Ajax framework to call an existing
command using Ajax. Your requirement is to add an OrderCancel button to the Order Status page to allow

registered shoppers to cancel an order they've placed. Once the order has been canceled it should
disappear from the order list without requiring a page refresh.

What you should be able to do

After completing this exercise, you should be able to:

. Define and invoke an Ajax service

. Define a refresh controller

. Use the RefreshArea widget on a page

. Create a JSP that generates the response to an Ajax data request

Introduction

The following naming conventions are used in the exercises:

Reference Variable Description
<WCDE_INSTALL_DIR> WebSphere Commerce Developer installation
directory
<WCDE_HOST> Host name for WebSphere Commerce Developer
<LAB_DIR> Directory of the lab files

The .zip file provided with this lab contains all the new and modified files necessary to complete this lab.
There is also a snippets file provided which contains just the text to be typed in. In a few cases, such as
access control policies, you will be instructed to use the file provided. For the majority of the lab, you
should type in the code provided. If you find this is too much typing or need assistance solving a problem,
the solution files and snippets file are available.

Requirements
Before beginning this lab, ensure you have:

e Installed WebSphere Commerce Developer 6.0
e Installed fix pack 7, fix LI74128
e Installed Feature Pack 4 and fix 1241934

e Installed Feature Pack 5
e Enabled following features :
0 management-center

o0 madisons-starterstore

2009 May, 29 IBM WebSphere Commerce Feature Pack 5 — Lab exercise Page 2 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

e Published the Madisons starter store

e Reviewed WCS6005_MadisonsStarterStoreCustomization to familiarize yourself with the
WebSphere Commerce Ajax framework

e Downloaded the lab files

< Installed and enabled Firebug

é\: Inspect Clear = |Q G

Console HTML (S5 Script DOM | Met~ | Options

“

,# Net panel is disabled

Use this page to enable or disable following panels. Enabling these panels will reduce performance and will cause a page reload.

¥ Console Support for Consale logging. Disabled &lways
¥ Script Suppart for JavaScript debugging. Disabled Always
¥} Net Support for Metwork rmonitoring. Dizabled &lways

Apply settings for localhost

2009 May, 29 IBM WebSphere Commerce Feature Pack 4 — Lab exercise Page 3 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

Part 1: Add the Order Cancel button

The first step in this lab is to locate the file that displays the Re-Order button and extend it to include an Order
Cancel button. You will start by using Firebug to identify which file to modify.

1. Launch the Madisons starter store
http://[<WCDE_HOST>/webapp/wcs/stores/serviet/Madisons/index.jsp and register a new user.

The Order Status page is only available for registered customers.

2. Add any product to your cart and complete an order. This will give you some test data when you
view the Order Status page.

3. Click on Order Status in the page header. You should see a page similar to the screen capture
below which shows the order you just placed. You are now ready to begin customization.

My Orders

DRDER NUMBER DRDER DATE STATUS TOTAL PRICE

11001 March 4, 2009 Pending payment approval $17.99 h Or-d i
Details

4. Locate the file you need to customize.

___a. Right click the Re-Order button and select Inspect Element. This will open Firebug to the
location in the HTML where the button is defined.

My Orders

ORDER HUMBER ORDER DATE STATUS TOTAL PRICE |

11001 March 4, 2009 Fending payment approval $17.99 “._.__J

Details Bookmark This Link.
Copy Link Location
Properties

B

___b. Notice the value of the ID attribute, WC_OrderStatusTableDisplay Link 4 1. This tells
you that the button is defined in the file OrderStatusTableDisplay.jsp. You can use this
technique throughout the Madisons starter store to easily locate the file where a page
component is defined.

2009 May, 29 IBM WebSphere Commerce Feature Pack 5 — Lab exercise Page 4 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

ﬁ* Inspect Edit | ag#WC_Order..y_Link_4_1 < span.button_bottom < span,button_top < span.button_bg < span.butta,.._
Console | HTML | [55 Script DOM MNet Cpkions *

Fear —re P g ey ey e

=] <span class="button bg"=

=l <span class="button top"=

=

Kl

5. Navigate to Madisons > Snippets > Order > Cart and open OrderStatusTableDisplay.jsp.
Search for WC_OrderStatusDisplay Link 4 to find the section of the file that defines the Re-
Order button. Do not include the _1 in your search or you will not get any results. This second digit
is automatically generated as you will see by viewing the JSP.

Tip: You can click an attribute name to select it in Firebug and right click to copy it.

6. Add the Order Cancel button.

___a. Add the following code under the line that defines the Re-Order button. You will notice that this
button definition is a little simpler that the Re-Order button. The code that automatically
generates element ID values has been removed and the id values simplified. What remains are
the style class names that will provide the look and feel for the button.

<p>

<a href="javaScript:prepareOrderCancel ("<c:out
value="${0OrderCancelUrl}"/>");" width="100%"
id="Ext_Lab2 Link 1'">Cancel

</p>

___b. Save your changes and reload the Order Status page in your browser. You should see a new

Cancel button below the Re-Order button.

My Orders

ORDER NUMBER ORDER DATE STATUS TOTAL FRICE

10507 March 25, 2009 Pending payment approval $323,99 m
Details

2009 May, 29 IBM WebSphere Commerce Feature Pack 4 — Lab exercise Page 5 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

___c. Define the OrderCancelURL variable used above in the call to prepareOrderCancel ()
Scroll up in the file slightly until you see the definition of the OrderCopyURL variable. Add the
following code below the OrderCopyURL definition:

<wcf:url value="AjaxOrderCancel” var="0OrderCancelUrl”>

<wcf:param

name=""order 1d”

value="${order .orderldentifier._.uniquelD}’/>

<wcf:param
<wcf:param
<wcf:param
<wcf:param
</wcf:url>

name="URL” value=""/>

name="storeld” value="${WCParam.storeld}”/>
name="catalogld” value="${WCParam.catalogld}”/>
name="langld” value="${WCParam. langld}’/>

The <wcf:url> tag is new in Feature Pack 5. It simplifies URL creation by taking care of which
protocol to use (HTTP or HTTPS) and building SEO compliant URLs if needed.

2009 May, 29 IBM WebSphere Commerce Feature Pack 5 — Lab exercise Page 6 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

Part 2: Define the service

In Part 1 you added a new button to the Order Status page that calls the JavaScript function
prepareOrderCancel. In this part you will define that function and create the Dojo service that the function will
call.

1. Create a new directory structure for your custom code
___a. Open WebSphere Commerce Developer and navigate to the Stores project.

___b. Expand the Stores project directory until you reach the Madisons directory as shown below.
Right click the Madisons folder and select New > Folder.

__C. Create a folder named Lab2. All of your custom files will be stored under this directory.

___d. Right click the Lab2 folder and select New > JavaScript file. Name the file AjaxOrderStatus.js
and click Finish.

2. Add the prepareOrderCancel function. This function accepts the service URL as an input variable
then updates and invokes the service. Notice the call to the cursor_wait() function. This function
displays a visual cue to the shopper to indicate the service is running. It also prevents the shopper
from sending a second request by clicking the button twice. Add the following code to your
JavaScript file:

function prepareOrderCancel (OrderCancelURL){
cursor_wait(Q);

wc.service.getServiceByld(*'OrderCancel™) .url=0rderCancelURL;
wc.service.invoke(*'OrderCancel™);

};

3. Now itis time to define the service that will be invoked by the prepareOrderCancel function you
just defined. Notice that the success handler has two main responsibilities beyond logging the
serviceResponse properties. The first is to display a message to the shopper that their order has
successfully been canceled and the second is to return the cursor to its normal state. Add the
following code to your JavaScript file:

wc.service.declare({

id: "OrderCancel™,
actionld: "OrderCancel",
url: "AjaxOrderCancel",
formld: "

,successHandler: function(serviceResponse) {
MessageHelper._.displayStatusMessage(*'Your order has been
canceled™);
cursor_clear();

}

,FailureHandler: function(serviceResponse) {
if (serviceResponse.errorMessage) {
MessageHelper._displayErrorMessage(
serviceResponse.errorMessage);

else {
iT (serviceResponse.errorMessageKey) {

MessageHelper._displayErrorMessage(

2009 May, 29 IBM WebSphere Commerce Feature Pack 4 — Lab exercise Page 7 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

serviceResponse.errorMessageKey) ;

}

cursor_clear();

}
D;
4. Navigate to Madisons > UserArea > AccountSection and open the file MyAccountDisplay.jsp.
This is the top level JSP that includes the OrderStatusTableDisplay.jsp snippet. All of the JavaScript
includes for the page are at the top of MyAccountDisplay.

___a. Within MyAccountDisplay.jsp, navigate to the script include area as shown in the screen capture
below.

<acript types"text/javascript®™ sre="<o:out walue="ji{jspStorelmglir} javascript/Cataloglireas/Ca
<acript types"text/javascript®™ sre="<o:iout walue="ji{jspStorelmglDir} javascript/CataloglireasCo
<acript types"text/javascript®™ sre="<oiout walue="ji{jsp3torelmglir} javascript/UserireasMyloo

___b. Add the following JavaScript include:

<script type="text/javascript'” src="'<c:out
value=""${jspStorelmgDir}Lab2/AjaxOrderStatus. js'/>"></script>

___Cc. Save the file.

5. Update the struts configuration file with the new action AjaxOrderCancel.

___a. Navigate to Stores > WebContent > WEB-INF and open the file struts-config-ext.xml. Select
the Source tab.

___b. Search for AjaxOrderCopy to locate the action entry for the Re-Order button. Copy the
AjaxOrderCopy definition and paste it at the bottom of the action-mappings section. It should
look similar to this, the store id (11301) may be different:

<action parameter="com.ibm_.commerce.order.commands.OrderCopyCmd"
path="/Ajax0OrderCopy" type="‘com.ibm.commerce.struts.AjaxAction'>
<set-property property="authenticate" value="11301:0,11301:0"/>
<set-property property="https"” value="11301:1,11301:1"/>
</action>

c. Update the new action with the values shown in blue below. The parameter attribute is changed
to call the OrderCancelCmd command and the path attribute is changed to AjaxOrderCancel.
The Struts type AjaxAction causes the command to redirect to a predefined JSP when it
completes. The JSP formats the response properties as JSON and that becomes the response
to the browser Ajax call.

<action parameter="'com.ibm.commerce.order.commands.OrderCancelCmd"
path=""/AjaxOrderCancel' type="com.ibm.commerce.struts.AjaxAction'>
<set-property property="authenticate" value="11301:0,11301:0"/>
<set-property property="https"” value="11301:1,11301:1"/>
</action>

___d. Save the file.

6. Update the access control policies to allow registered shoppers to cancel orders. The current
access policies for the store do not allow orders to be canceled once they have been submitted. For
the purpose of this lab you will allow OrderCancel to be called on any order. For a full solution
additional logic would be needed to provide some restrictions but for simplicity this lab will not
provide any additional constraints.

___a. Stop your test server.

2009 May, 29 IBM WebSphere Commerce Feature Pack 5 — Lab exercise Page 8 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

b. Copy the file <LAB_DIR>\OrderCancelAccessControlPolicies.xml into the directory
<WCDE_INSTALL_DIR>\xml\policies\xml

c. Open a DOS prompt and change to the directory <WCDE_INSTALL_DIR>\bin

d. Run the command acpload
“<WCDE__ INSRALL_DIR>\xmI\policies\xmI\OrderCancelAccessControlPolicies.x
ml”” and ensure it completes correctly.

e. Restart your test server.

2009 May, 29 IBM WebSphere Commerce Feature Pack 4 — Lab exercise Page 9 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

Part 3: Test the service

You should now be able to invoke your service using the Cancel button you added in Part 1. Clicking on the
button will initiate an asynchronous call to the server to cancel the order and when the service returns a
message will be displayed at the top of the screen. You will still be able to see the order because you have not
added any code yet to update the order list.

1. Ensure your test server is started and launch the Madisons starter store.

2. Log into the test account you created earlier and select Order Status from the page header. You
should see the same order you created in Part 1.

3. Click the Cancel button. You should see a message appear at the top of the screen indicating the
order has been canceled. The order will still be visible in the list because you have not added a
refresh area yet to update the list. If you reload the page you should see the order has been
removed from the list.

four order has been canceled:

Settings My Orders

Fersonal Infarmation

My Address Book

Guick Checkout Profile ORDER HNUMBER ORDER DATE STATUS TOTAL FRICE

10507 March 25, 2009 Pending payment approval $323.99 m

Wish Lists Details

Fersonal Wish List E
2009 May, 29 IBM WebSphere Commerce Feature Pack 5 — Lab exercise Page 10 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

Part 4: Create the refresh controller

Now that the cancel service is working it is time to add a new refresh controller to listen for the event generated
when an order is canceled. This event will be used to trigger an update of a refresh area. You will create the
refresh area in the next part. In this part of the lab, you will define a refresh controller and the methods it will

use to evaluate incoming events.

1. Navigate to the Lab2 folder and open the AjaxOrderStatus.js file you created in Part 2.

2. Declare arender context. Each refresh controller must have an associated render context when it is
defined. Add the following render context definition to the bottom of your JavaScript file.

wc.render._declareContext(*'OrderStatusDisplay_Context",null,'™);

3. Declare the refresh controller. Notice how the render context is used in the definition of the refresh
controller. Create the mode IChangedHandler function as specified below. When the OrderCancel
Actionld is received, the function sets some display properties specific to each refresh area. Once
the properties are set, the refresh function is called to update the content in the refresh area. Add

the following code to the bottom of your file:

wc.render .declareRefreshController({
id: "OrderStatusDisplay_Controller",
renderContext:
wc.render.getContextByld(*'OrderStatusDisplay_Context'™),
url: ",
formld: "

,modelChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;

if(message.actionld == "OrderCancel "){
if (widget.id ==
"Ext_OrderStatusCommonPage Widget®) {
wc . render .updateContext(
"OrderStatusDisplay Context",
{maLandingPage:"false", allOrders:"true'});

}

else if (widget.id ==
"Ext_MyAccountOrderStatusDisplay Widget®) {
wc . render .updateContext(
"OrderStatusDisplay Context",
{maLandingPage:"true', allOrders:"false'"});

}
widget.refresh(renderContext.properties);

}

DE
4, Save the file.

2009 May, 29 IBM WebSphere Commerce Feature Pack 4 — Lab exercise Page 11 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

Part 5: Create the refresh area

Now it is time to add a new refresh area to update the list of orders when one is canceled. A refresh area is a
portion of a web page where the content displayed will be affected by a shopper’s actions, in this case
canceling an order.

1. Create a new refresh area around the order status table. Using Firebug, you can determine that the
file OrderStatusTableDisplay.jsp, where you added the cancel button, is contained within another
file, OrderStatusCommonPage.jsp.

%*r* Inspect Edit | divg#WC_Ord...div_6.body = div#WwC_Ord...my_account = divibox < div#Myhcco, . ontentPane = divg
Console | HTML | £S5 Script DOM Net Cptions

= =div id="WC_ OrderitatusCommonPage div 1" class="my account">

+ <diw id="WC OrderStatusComnmonPage div 2" class="wmain header"=

DS Bl <div id="WC_ OrderS3tatusCommonPage div 6" class="body"=
=l <table id="order details" height="100%" width="100%" cellspacing="0" cellpadding
= “thaody=
L N
= <tr=
=th id="WC_Order3tatusDisplay TableCell 21" class="align left">0FDER
NIMEEER = fthi

a. Navigate to Madisons > UserArea > ServiceSection > TrackOrderStatusSubsection and
open the file OrderStatusCommonPage.jsp.

b. Search for “WC_OrderStatusCommonPage_div_6", shown in the above screen capture. This is
the ID of the div element that contains the order status table.

c. Underneath this line, create a new refresh area to update the order status. Add the following
code:
<div dojoType="wc.widget.RefreshArea"
id="Ext_OrderStatusCommonPage_ Widget"
controllerld="0OrderStatusDisplay_Controller™ role="wairole:region”
waistate:live="polite" waistate:atomic="false"
waistate:relevant="all">
d. Add a matching end </div> tag immediately after the closing </table> tag. It should look like
this:
</table>
</div>

e. The refresh area you just created makes use of several accessibility attributes to assist screen
readers in handling portions of the page that change dynamically. This table reviews the
attributes and their meanings.

Accessibility attribute Meaning

role="wairole:region” Declares the <div> structure as a “live region”. This
informs assistive technology that the content within
the region can change.

waistate:live="polite” Specifies when to inform the user that live region
content has changed. The value “polite” signals to

2009 May, 29 IBM WebSphere Commerce Feature Pack 5 — Lab exercise Page 12 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

wait until the user is idle.

waistate:atomic="false” Signals that the user needs to hear only the portion of
the live region that has changed, not the whole area.

waistate:relevant="all” Specifies which types of changes need to be heard.
This can be limited to additions, removals or text. In
this example all changes will be heard.

2. Create a matching refresh area around the order status portion of the My Account page.

___a. Navigate to Madisons > UserArea > AccountSection and open the file
MyAccountCenterLinkDisplay.jsp. Firebug can be used to determine this is the file to edit.

b. Search for "WC_MyAccountCenterLinkDisplay _div_16" (also found using Firebug). This is the ID
of the div element that contains the order status table.

c. Underneath this line, create a new refresh area to update the order status. Add the following
code noting that the id value is different than the previous step:

<div dojoType="'wc.widget.RefreshArea"
id="Ext_MyAccountOrderStatusDisplay Widget"
controllerld="0OrderStatusDisplay_Controller™ role="wairole:region"
waistate:live="polite" waistate:atomic="false"
waistate:relevant="all">

d. Add a matching end </div> tag just before the “WC_MyAccountCenterLinkDisplay_div_16"
closing tag. It should look like this:

</table>
</div>

e. One additional step is needed for the MyAccount page. Navigate to Madisons > UserArea >
AccountSection and open the file MyAccountDisplay.jsp. This is the same file you edited in
Part 2 to add the JavaScript include. Locate the <script> block that contains the line
parseWidget("'MyAccountCenterLinkDisplay Widget'); Add the following line below
the line you located:

parseWidget("'Ext_MyAccountOrderStatusDisplay Widget');

This line causes the refresh area to be parsed by the Dojo parser. This step is needed to create
an instance of the RefreshArea object. You did not need to perform this step for the order status
page because it is loaded as the result of another Ajax call and the HTML returned is
automatically parsed by the WebSphere Commerce Ajax framework.

2009 May, 29 IBM WebSphere Commerce Feature Pack 4 — Lab exercise Page 13 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

Part 6: Define the JSP that will generate the refresh content

In this part of the lab, you will define the JSP that will generate the HTML fragment used to update the order
status list when an order is canceled. You will also register the new View in the Struts extension file and add
access control for it.

1. Navigate to Madisons > Lab2 and create a new file called AjaxOrderStatusView.jsp.

2. The HTML generated by this JSP will replace the <table> definition that is inside the two refresh
areas you created in Part 5. Add the following code to the new file:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"” prefix="c" %>
<%@ taglib uri="http://java.sun.con/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://commerce.ibm.com/base" prefix="wchase" %>
<%@ include file="__/include/nocache.jspf" %>

<%@ include file="_._/include/JSTLEnvironmentSetup. jspf" %>

<table id="order_details" cellpadding="0" cellspacing="0" border="0"
width="100%" height=""100%"">
<% out.flushQ; %>

<c:import
url="${jspStoreDir}Snippets/Order/Cart/OrderStatusTableDisplay.jsp" >
<c:param name= "'showScheduledOrders' value="false'/>
<c:param name= "‘showOrdersAwaitingApproval"
value=""false'/>
<c:param name= "'showPONumber' value="false"/>
<c:param name="‘malLandingPage"’
value=""${WCParam.maLandingPage}"/>
<c:param name="allOrders" value="${WCParam.allOrders}"/>
</c:import>

<% out.flush();%>
</table>

3. Set the refresh controller URL to call your new page. Rather than hard coding the URL into the
refresh controller definition it is advisable to create the URL using the <wcf:url> tag so that the
appropriate protocol (http or https is used for the request).

___a. Navigate to Madisons > Snippets > Order > Cart and open OrderStatusTableDisplay.jsp.
This is the page you modified in Part 1 to add the cancel button. Locate the section of the page
where you used the <wcF:url> tag to define the service URL AjaxOrderCancel . Add a
definition for the AjaxOrderStatusView URL:

<wcf:url value="AjaxOrderStatusView" var="AjaxOrderStatusURL"

type="Ajax’">
<wcf:param name="storeld"” value="${WCParam.storeld}" />
<wcf:param name="catalogld"” value="${WCParam.catalogld}"/>
<wcf:param name="langld” value="${langld}" />

</wcf:url>

___b. Update the refresh controller with the new URL when the Cancel button is clicked. Add the
following JavaScript statement ahead of the call to prepareOrderCancel() in the Cancel button
declaration:

CommonControllersDeclarationJS.setControllerURL("OrderStatusDisplay C
ontroller”,"<c:out value="${AjaxOrderStatusURL}"/>");

___¢. When you are done the link definition should look like this:

<a
href="javaScript:CommonControllersDeclarationJS.setControllerURL("Ord

2009 May, 29 IBM WebSphere Commerce Feature Pack 5 — Lab exercise Page 14 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

erStatusDisplay_Controller®,"<c:out
value="${AjaxOrderStatusURL}"/>") ;prepareOrderCancel ("<c:out
value="${0OrderCancelUrl}"/>");" width="100%"

i1d="Ext_Lab2_ Link_1">Cancel

4. Update the struts configuration file with the new view AjaxOrderStatusView.

__a. Navigate to Stores > WebContent > WEB-INF and open the file struts-config-ext.xml. Select
the Source tab.

__b. Within the <global-forwards> tag add the following definition:

<forward className="'com. ibm.commerce.struts.ECActionForward"
name=""AjaxOrderStatusView" path="/Lab2/AjaxOrderStatusView. jsp'/>

___¢. Within the <action-mappings> tag add the following definition:

<action path="/AjaxOrderStatusView"
type="‘com. ibm.commerce.struts.BaseAction'/>

___d. Save the file.

5. Update the access control policies to allow registered shoppers to call the new View.

a. Stop your test server.

b. Copy the file <LAB_DIR>\OrderStatusPolicies.xml into the directory
<WCDE_INSTALL_DIR>\xml\policies\xml.

¢. Open a DOS prompt and change to the directory <WCDE_INSTALL_DIR>\bin.

d. Run the command acpload
“<WCDE_ INSTALL_DIR>\xmI\policies\xmI\OrderStatusPolicies.xml” and ensure it

completes correctly.

e. Restart your test server.

2009 May, 29 IBM WebSphere Commerce Feature Pack 4 — Lab exercise Page 15 of 17

Store customization 2

© Copyright IBM Corporation 2009. All rights reserved

Part 7:

Test the refresh area

Now that you have defined a refresh area and created the JSP that will generate the refresh content you
should see the canceled order disappear from the order list.

Store customization 2

1. Launch the Madisons starter store
http://[<WCDE_HOST>/webapp/wcs/stores/servlet/Madisons/index.jsp and log into the account
you created earlier. If your My Account page shows you have no orders, create additional orders
for testing purposes.

Optional: To speed up testing you can retrieve canceled orders by resetting their status in the
database. Launch http://<WCDE_HOST>/webapp/wcs/admin/servlet/db.jsp and enter the SQL
statement update orders set locked="1",status="M" where status="X"; Refresh the
store page and you will see your previously canceled orders.

2. Click the Cancel button. You should see a message appear at the top of the screen indicating the
order has been canceled. The canceled order should also disappear from the list of orders.

3. If the order does not disappear from the list, open Firebug to the Console tab and check for any
error messages. Messages output by the WebSphere Commerce Ajax framework do not trigger the
red x symbol in Firebug so you need to read through the console messages. You can also use the
Net tab and XHR filter to look at the Ajax requests. You should see one for the order being canceled
(AjaxOrderCancel) and another one for refreshing the order list on the page (AjaxOrderStatusView)
ﬁ‘r Inspect Clear | gl HTML C55 15 | HR. Images Flash
Console HTML CS% Script DOM | MNet~

+ POST AjaxTrackOrderst 200 localbiost 7
+ POST AjaxOrderCancel?| 200 lacalhost ? 43ms
+ POST AjaxOrderStatusy 200 QK localhost ?
+ POST AjaxOrderCancel?| 200 QK localhost 7 Sims
+ POST AjaxOrderStatusy 200 QK localhost 7
0 requesks 0B
This screen capture shows the XHR view after two orders were canceled.
2009 May, 29 IBM WebSphere Commerce Feature Pack 5 — Lab exercise Page 16 of 17

© Copyright IBM Corporation 2009. All rights reserved

Part 8: What you did in this exercise
In this tutorial you created an end to end Ajax update using the WebSphere Commerce Ajax framework.

The four main tasks covered in the exercise were:

. Defining and invoking a new Ajax service
. Defining a refresh controller
. Defining a portion of a page as a refresh area
. Creating JSP to generate the HTML for the refresh area
2009 May, 29 IBM WebSphere Commerce Feature Pack 4 — Lab exercise Page 17 of 17

Store customization 2

