

®

IBM Software Group

© 2009 IBM Corporation

Updated June 10, 2009

WebSphere Commerce V6.0 Feature Pack 5

Madisons starter store customization

This presentation introduces store front customization in feature pack 5 using the new
Madisons starter store as a starting point.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 1 of 40

IBM Software Group

2

© 2009 IBM Corporation Madisons starter store customization

Goals

�Understand different customization options
available and when to use each

�Understand Web 2.0 customization with Ajax and
Dojo

�Understand how to make customizations
accessible using Accessible Rich Internet
Applications (ARIA) standards

�Understand customization best practices

There are four main goals for this presentation. The first is to understand the different
ways you can customize a store front and when to use each. The second goal is to
understand the overall Web 2.0 customization method for WebSphere® Commerce and
how to work with Ajax and Dojo. The third is to understand how the ARIA standards can
be used to make Web 2.0 customizations accessible. The final goal is to understand the
best practices for store customization.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 2 of 40

IBM Software Group

3

© 2009 IBM Corporation Madisons starter store customization

Agenda

� Types of customization

�Web 2.0 Programming model

�Adding Web 2.0 to an existing store

�Migration

�Best practices

The first half of this presentation focuses on the types of customization available in the
Madisons starter store. Changes specific to feature pack 5 are highlighted in each section.
The second half of the presentation addresses several customization topics. These
include the Web 2.0 programming model, tips for adding Web 2.0 function to an existing
store, migrating from the feature pack 2 Web 2.0 sample store and reviewing best
practices for customization.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 3 of 40

IBM Software Group

4

© 2009 IBM CorporationMadisons starter store customization

Types of customizationTypes of customization

Section

This section covers types of customization

WCS6005_MadisonsStarterStoreCustomization.ppt Page 4 of 40

IBM Software Group

5

© 2009 IBM Corporation Madisons starter store customization

Types of customization

�Page design
�Colors, fonts, page layout

�Content
�Business or personal information displayed on page load

�Web 2.0 content
�Business or personal information displayed in partial

screen refresh

�User interaction
�Data selection / entry widgets, accessibility

The first section of this presentation reviews the common methods of storefront
customization and highlight feature pack 5 specific changes in each.

Page design customization includes changes to colors, fonts, and the overall organization
of your page.

Content customization involves adding or changing the information a shopper can access.
This includes both business and personal information.

Web 2.0 content customization addresses content customization scenarios where the
information is being loaded into a portion of an existing page rather than on initial page
load.

User interaction customization covers the shoppers interaction with the Web site including
data entry widgets and Web site accessibility.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 5 of 40

IBM Software Group

6

© 2009 IBM Corporation Madisons starter store customization

Page design

�Changes in feature pack 5
�Page layout using <div> tags and styling using CSS

�Previously
�<table cellpadding="0" cellspacing="0" width="768" …

�Now
�<div class=“”> or <div id=“”>

� Impact
�Easier to make quick changes

�Easier to reuse sample code

One of the significant changes in the Madisons starter store that addresses total cost of
implementation is the introduction of page layout using div tags. Stylesheets have been
used in the past put primarily in conjunction with table tags for layout. The new store has
been brought up to date in terms of Web design by leaving all styling decisions, including
page layout to the stylesheet.

This makes pages easier to change for demonstration purposes and makes code reuse
easier.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 6 of 40

IBM Software Group

7

© 2009 IBM Corporation Madisons starter store customization

Madisons starter store layout

div id=“page”

div id=“header”

div id=“header_nav”

div id=“breadcrumb”

div
id=“main_content
_wrapper”

div id=“footer”

This page shows the high-level div structure of the Madisons starter store home page. On
the left side, the page div represents the entire area shown. The red boxes around
portions of the page show how it is further divided into smaller div areas. These areas are
listed on the right side. Each area is again divided into multiple smaller div areas making it
easy to move or replace a section of the page.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 7 of 40

IBM Software Group

8

© 2009 IBM Corporation Madisons starter store customization

<div> basics

<div id=“MyContainer” class=“header”>

� div
�A container element representing a portion of a page

� id
�Uniquely identifies the element within the document

�Assists in code readability and maintenance
�Can be used for styling

� class
�Defines the ‘type’ of the element

�An element can belong to more than one class

The underlying structure of the Madisons starter store pages is now a series of nested div
tags where it used to be nested tables. This structure is a lot easier to read and maintain
than a table based layout. Div tags have no default HTML styling, all styling is applied
through CSS. There are two attributes that you will see a lot throughout the Madisons
starter store code but which are particularly important when used with div tags.

The first is the ID attribute. An ID uniquely identifies an element within an HTML
document. This identification both improves the readability of the code and makes the
element easily accessible in JavaScript™ where it can be looked up by ID. IDs can also be
used to apply styling to a page. In the Madisons starter store the div IDs contain the name
of the file they are defined in. When you look at the source for a page composed of
several fragments it is easy to see which file each portion of the page is defined in.

The second attribute to pay attention to is the class attribute. When looking at something
as generic as a div tag, the class attribute can give you a hint about the actual usage of
the element. For example a class value of ‘header’ tells you that the div is defining the top
of a section and you can expect to find a content area below it. Class names are defined
by the page developer and, except for a few restrictions, can be any name. Having
meaningful class names can greatly improve the readability of your code. The primary use
for classes is styling. The class name is defined in a stylesheet and specifies the styling
and layout properties to be applied to the portion of the page contained within the div.
More than one class can be applied to a single div.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 8 of 40

IBM Software Group

9

© 2009 IBM Corporation Madisons starter store customization

Styling basics

� Three ways to apply a style
�To an HTML element

h1 {font-size:14px; color: #404040;}

�To a class

.my_account {width:788px; float:left;}

�To an ID

#header_nav {z-index:2; backgroundimage:url("nav.png");}

�Context based styles
�div.dark_button {…}

�#wishlist .contents{…}

Each style defined in a style sheet can be thought of as a CSS rule. A single rule applies
to specific subset of HTML elements on a page and describes how those elements should
look and behave. The way a style is defined determines how it is applied to the page. The
first way to apply a style is to a specific HTML element. In this case you add the style
declaration following the HTML tag name. The second way to apply a style is to a class.
Class names are prefixed by a period. Any time the class name is used by and HTML
element the style is applied. The third way to apply a style is to an ID. IDs are prefixed by
the pound sign. If the specified ID occurs in the current page, the style is applied.

It is also possible to create context based styling rules by combining HTML element
names, class names and IDs. Two examples are shown on the slide. The first style is
applied to instances of the dark_button class that occur within a div tag. The second style
is applied to instances of the contents class that occurs within an element that has the ID
value wishlist.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 9 of 40

IBM Software Group

10

© 2009 IBM Corporation Madisons starter store customization

Working with styles

This screen capture is a picture of the Firebug tool, an add-on for the Firefox browser.
Here you see an example of the styling applied to the breadcrumb area of the page. The
breadcrumb_links class is applied within the context of the breadcrumb ID. Note that
Firebug also shows you which other styles are being applied and which have been
overwritten.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 10 of 40

IBM Software Group

11

© 2009 IBM Corporation Madisons starter store customization

Content

�Changes in feature pack 5
�Services used to retrieve data instead of data beans

�Previously
<wcbase:useBean id="orderBean1"

classname="com.ibm.commerce.order.beans.OrderDataBean" scope="page">

<c:set property="orderId" value="${WCParam.orderId}" target="${orderBean1}" />

</wcbase:useBean>

The Madisons starter store now includes many examples of using the getData tag to
invoke a get service rather than the previous useBean tag. The sample shown here is
loading data using the order data bean.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 11 of 40

IBM Software Group

12

© 2009 IBM Corporation Madisons starter store customization

Content - continued

�Now
<wcf:getData type="com.ibm.commerce.order.facade.datatypes.OrderType" var="order"

expressionBuilder="findByOrderId">

<wcf:param name="accessProfile" value="IBM_Details" />

<wcf:param name="orderId" value="${WCParam.orderId}" />

</wcf:getData>

�Databeans still used where services not available

� Impact
�Continued adoption of new SOA architecture

�Access to newer tables that do not have data bean
support

On this page, you see a corresponding example of loading data using the get service and
findOrderById query.

Data beans are still used where Web services don’t exist or where the data beans provide
convenience methods the services don’t have. The move towards using more services is a
continuation of the SOA architecture adoption and in some cases is required to access
data from new tables that do not have an associated data bean. Using the getData tag is
recommended where possible.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 12 of 40

IBM Software Group

13

© 2009 IBM Corporation Madisons starter store customization

Storefront services

�Available
�Order

�Member

�E-Marketing spot

�Not yet available
�Catalog

�Wish list

�Content spot

�Promotion

The Madisons starter store makes use of services for accessing order, member and e-
marketing spot data. Catalog, wish list, content spot and promotion storefront services are
not available in feature pack 5.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 13 of 40

IBM Software Group

14

© 2009 IBM Corporation Madisons starter store customization

Web 2.0 content

�Changes in feature pack 5
�Direct JavaScript declarations of Ajax Framework Dojo

classes

�Previously
�wcf:declareService

�wcf:declareRenderContext

�wcf:declareRefreshController

Before feature pack 5, the WebSphere Commerce Ajax framework JavaScript classes
were instantiated using taglib tags. The wcf tag library still contains the tags for declaring
the service, render context and refresh controller classes but they generate JavaScript
code compatible with Dojo 0.4.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 14 of 40

IBM Software Group

15

© 2009 IBM Corporation Madisons starter store customization

Web 2.0 content

�Now
�wc.service.declare

�wc.render.declareContext

�wc.render.declareRefreshController

� Impact
�Promotes better understanding of the framework

�JavaScript can be kept in separate files

Services, render contexts and refresh controllers are now instantiated using JavaScript.
This promotes a better understanding of the framework and facilitates separation of
JavaScript into separate files.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 15 of 40

IBM Software Group

16

© 2009 IBM Corporation Madisons starter store customization

User interaction

� Changes in feature pack 5
�New Dojo toolkit

�Accessibility enhancements

�New custom widgets

� Previously
�RangeSlider

�RefreshArea

�Scrollable Pane

�ToolTipContent

�ProductQuickView

�WCAccordionContainer

�WCAccordionPane

�WCHtmlDropTarget

The Dojo toolkit, introduced in feature pack 2, is still used to provide richer JavaScript
widgets however it has been upgraded to a newer version. Dojo 1.0.2, included in feature
pack 5, provides improved accessibility support for both widgets and dynamically updated
page areas. Along with the new version of Dojo, WebSphere Commerce has introduced
some new custom widgets that are demonstrated in the Madisons starter store.

Some of the custom WebSphere Commerce widgets introduced in feature pack 2 have
been migrated to the new version of Dojo. Others, highlighted in red on the slide, are not
included in feature pack 5. These widgets are not used in the Madisons starter store. If
you are using one of these widgets and want to migrate to Dojo 1.0.2 the recommendation
is to switch to using the corresponding Dojo toolkit widget that the custom widget is based
on.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 16 of 40

IBM Software Group

17

© 2009 IBM Corporation Madisons starter store customization

User interaction

�Now
�RangeSlider

�RefreshArea

�ScrollablePane

�Tooltip

� Impact
�Dojo migration required for existing Web 2.0 stores

�Dynamic page updates are available to some
screen readers

�WCDialog

�WCDropDownButton

�WCMenu

Three new custom Dojo widgets have been added in feature pack 5. They are highlighted
in green on the slide. These new widgets are demonstrated in the Madisons starter store.

The most significant impact of these changes to the existing Web 2.0 sample store is the
need to migrate Dojo widgets to the new version. Significant changes were made ahead of
the 1.0 release of Dojo that impact widget packaging and APIs. You will find that both
require statements and widget declarations need to change. Some more migration
information is provided near the end of this presentation. The other significant impact of
the feature pack 5 changes is the progress towards making rich internet applications
accessible to screen readers. With traditional Web applications a page does change much
after it is loaded by the browser. This means a screen reader can read the loaded page
and the shopper can understand how to interact with it. The introduction of dynamic page
updates and partial page refreshes makes Web pages unusable to screen readers since
they are unable to detect any changes after initial page load. By implementing the
Accessible Rich Internet Applications (ARIA) specification, Dojo 1.0.2 provides
accessibility support for partial page updates in newer screen readers.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 17 of 40

IBM Software Group

18

© 2009 IBM Corporation Madisons starter store customization

Accessible refresh areas
<div dojoType="wc.widget.RefreshArea" id=“WidgetId1"

controllerId=“ControllerId1" role="wairole:region" waistate:live="polite"
waistate:atomic="false" waistate:relevant="all“>

� What is the object?
�role=wairole:region

� Should the shopper be notified of a change?
�waistate:live (off, polite, assertive, rude)

� How much context is needed?
�waistate:atomic (true, false)

� What types of changes are relevant?
�waistate:relevant (additions, removals, text, all)

At the top of this slide is a declaration of a refresh area. The highlighted attributes are
those associated with providing accessibility support for the refresh area. The attributes
provide information to the screen reader about how it should handle dynamically updated
content.

The first attribute, role, answers the question “what is the object?”. The ARIA specification
calls dynamically updated areas live regions so the value of role is wairole:region. The
second attribute, waistate:live, answers the question “how should a user be notified of a
change to a live region?”. There are four possible values that can be used to answer this
question. The Madisons starter store uses the value polite. This means the shopper is
notified of the change as soon as they have completed any in progress UI tasks. The third
attribute, waistate:atomic, answers the question “how much context is needed when
reading the change?”. A value of true means the entire live region is read and a value of
false means just the changes are read. Finally, the waistate:relevant attribute answers the
question “what types of changes are relevant to the shopper?”. There are four possible
values for this attribute but the Madisons starter store chooses to declare all changes are
relevant.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 18 of 40

IBM Software Group

19

© 2009 IBM Corporation Madisons starter store customization

Accessible widgets

�Add accessibility attributes to your template
�What is the object?

� wairole (dialog, alert, button, …)

�What meaningful properties does the object have?
� waistate:<property> = “value”

� waistate:disabled = “true”

� waistate:pressed = “false”

� waistate:labelledby = “myLabel”

�Update states as they change

Dojo 1.0.2 defines accessibility attributes for all widgets. If you are defining custom Dojo
widgets for your store you need to consider what accessibility attributes to include. The
attributes are added to your widget template. You can begin by considering two high level
questions. The first is “what is the object?”. The purpose of the widget, or its role, is
defined by the wairole attribute. You can use one of the many predefined roles or define
one of your own. Dialog, alert and button are some common widget roles.

The second question to consider is “what meaningful properties does the object have?”.
You define widget state using the attribute format waistate:<propertyName> =
“propertyValue”. Some examples of widget states include disabled, pressed and
labelledBy. As the shopper interacts with your custom widget you can use JavaScript to
update the values of the states as they change.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 19 of 40

IBM Software Group

20

© 2009 IBM CorporationMadisons starter store customization

Web 2.0 programming modelWeb 2.0 programming model

Section

This section covers the Web 2.0 programming model for WebSphere Commerce.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 20 of 40

IBM Software Group

21

© 2009 IBM Corporation Madisons starter store customization

Anatomy of an Ajax request

� Differences from HTTP request
�How the call is initiated: from the JavaScript interpreter rather than

the browser

�How the response is built: XML, HTML, text or JSON.

�How response is handled: callback to JavaScript function

You might notice that this does not look like a typical WebSphere Commerce diagram and
it is not. There is nothing WebSphere Commerce specific about this picture. Before looking
at how the WebSphere Commerce Ajax framework works, it is important to understand
what is going on when you make an Ajax request. This diagram highlights three key
differences to keep in mind as you add Ajax functionality to a Web site.

The first is that an Ajax request is initiated by the JavaScript interpreter within the browser
rather than by the browser itself as a regular page request is. A JavaScript object named
XMLHttpRequest is instantiated and initialized with the properties for a given request. The
request itself is a standard HTTP request. It looks the same to the Web server as a
request coming directly from the browser.

This is where you see the second main difference. You do not want the application server
to regenerate the entire page so you need a way to differentiate an Ajax request from a full
page request. You can do this by specifying the return type of the request to be something
other than HTML, such as JSON. Or, you can direct the request to a servlet that knows
what response is expected. The response to an Ajax request can be a variety of data
formats including XML, HTML, JSON or even plain text. There needs to be an
understanding between the client and the server about what format is being returned.

The final key difference between browser-initiated HTTP requests and Ajax requests is
how the response from the server is handled. Since the request was initiated by the
JavaScript interpreter, that is where the response is received using a callback function that
was specified when the XMLHttpRequest object was initialized. The callback function is
responsible for performing post-processing on the response, such as updating an area of
the current page.

One very important thing to remember when designing Ajax requests for your Web site:
JavaScript interpreters are single threaded. If you add large amounts of client side
JavaScript processing, it will block the shopper from performing other UI actions that
require JavaScript until the processing completes.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 21 of 40

IBM Software Group

22

© 2009 IBM Corporation Madisons starter store customization

WebSphere Commerce Ajax framework

Now that you know how Ajax requests are structured, it is time to look at the WebSphere
Commerce Ajax framework. Frameworks can make working with Ajax requests easier, but
they do not change the underlying implementation. The WebSphere Commerce Ajax
framework is not the only way to make an Ajax request, but it does provide some
advantages that might be useful depending on your requirements.

The flow in this diagram begins with an update request from the browser. Although not
shown explicitly here, this request comes from the JavaScript interpreter. Using the Struts
configuration file, the Ajax request is mapped to an Ajax-specific Struts action. The Struts
action is able to invoke an existing WebSphere Commerce command or service to update
the server. Instead of the update forwarding on a view that re-generates the full page, the
Struts action forwards to a generic response Java Server Pages (JSP) that generates a
JSON response from the command or service response properties. This JSON response
typically does not provide enough data for the browser to be updated in response to the
change made on the server. In order to update the browser, a second Ajax request is
made known as a Get request. The Get request calls a JSP that is specifically designed to
return exactly the data the client expects. This can be an HTML fragment representing the
portion of the page that changed, or it can be JSON formatted data that the browser will
then process.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 22 of 40

IBM Software Group

23

© 2009 IBM Corporation Madisons starter store customization

Ajax framework flow

Shopper

Change UI

Render context updated

Event fired: render
context changed

Change business object

“Service” called

Event fired: model
changed

Refresh controller listens for event

If needed, update refresh area

This diagram shows how the Ajax framework manages page updates. There are two
different scenarios. On the left side, the shopper requests a change to the UI, such as
paging through a list of items, or clicking the browser forward or back button. This action
causes the render context to be updated. A render context update might include an Ajax
call to update the server. It also causes a Dojo “render context changed” event to be fired.
The event is heard by all refresh controllers that specify the same render context. Each
refresh controller will notify the refresh areas it manages and they will be updated, if
needed. A refresh area update involves another Ajax call.

If the shopper updates a business object, such as adding an item to their cart, the right
path is taken. The change to the business object causes the JavaScript service object’s
invoke method to be called. The service launches an Ajax update to the server and then
fires a model changed event. Model changed events are received by all refresh
controllers. Once again the refresh controllers notify their registered refresh areas and any
affected areas are updated by making another Ajax call to get updated data to display.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 23 of 40

IBM Software Group

24

© 2009 IBM Corporation Madisons starter store customization

Ajax requests using Dojo

�Reduces server traffic

�Requires a deeper understanding of Dojo and
JavaScript

The WebSphere Commerce Ajax framework provides a very modular way of managing
Ajax requests. The one side effect of this is an increase in server traffic when making
updates. If you recall from the last slide, two Ajax calls are required to refresh a page as a
result of a business object update. If the required page updates are returned as a
response to the initial update request, only one Ajax call is required. It is possible to
bypass the WebSphere Commerce Ajax framework and use the Dojo API directly to make
Ajax calls. Using this method requires a deeper understanding of both Dojo and
JavaScript. You will need to process the response data yourself to make any necessary
page updates. You will also need to keep track of which page elements need to be
updated, since you will not have the benefit of the Dojo event system notifying interested
refresh areas.

On the bottom half of the screen you can see the Dojo API for making an Ajax call using
POST. There is a similar method for making GET requests.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 24 of 40

IBM Software Group

25

© 2009 IBM Corporation Madisons starter store customization

Customization example

�New requirement: A shopper can cancel an order

�Page design: When an order is canceled it
disappears from the order history and a
confirmation message is displayed on the screen

Now that you have seen the basics of how the WebSphere Commerce Ajax framework
works, it is time to look at an example of how to use it to add a new Ajax function to a
page. The new requirement is to support registered shoppers cancelling an order. The
cancellation is processed as an Ajax request so that the order disappears from the
shopper’s list of orders and a confirmation message is displayed on the screen.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 25 of 40

IBM Software Group

26

© 2009 IBM Corporation Madisons starter store customization

Ajax framework in action

Shopper

Order canceled

OrderCancel “Service” called

Event fired: model changed

Refresh controller listens for event

Update refresh area with new order list

The customization example follows the right side of the Ajax framework flow discussed
earlier. When the shopper cancels the order, a service is called to invoke the existing
OrderCancel command using Ajax. Once the update has completed, a model changed
event is fired and is received by the refresh controller. The refresh controller then notifies
the refresh area responsible for updating the order list, and another Ajax call is made to
get the new order list.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 26 of 40

IBM Software Group

27

© 2009 IBM Corporation Madisons starter store customization

Invoking a service

Shopper

Business object changed

“Service” called

Action: Order Canceled
wc.service.invoke("OrderCancel");

Task 1: Define the service
wc.service.declare

Event fired: model changed

ModelChanged
ModelChanged/OrderCancel

The next two slides break the customization down into more detail and look at the main
tasks required to complete the change. This slide focuses on the first step, which is calling
the service to update the business object on the server. When a business object is
changed by a shopper, and you want to update the server using Ajax, you set up the UI to
call the JavaScript function wc.service.invoke() with the name of a predefined service. The
first task in the customization is to define the service using the wc.service.declare API. As
part of defining the service, you also need to update the Struts configuration extension file
to map the service name to an actual WebSphere Commerce command of service by
using the Struts AjaxAction.

When the shopper clicks on the order cancel button, the OrderCancel service you define is
invoked. Once it returns, two Dojo events are fired. The first is a general model changed
event and the second specifies the action ID representing the specific change. In this
case, the action ID is OrderCancel, which you define when you declare the service.

At this point, the server is being updated when the shopper clicks on the order cancel
button, but the change is not reflected in the UI.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 27 of 40

IBM Software Group

28

© 2009 IBM Corporation Madisons starter store customization

Updating the display

Refresh controller listens
for event

Update refresh area

Task 2: Define refresh controller
wc.render.declareRefreshController

Task 3: Define refresh area
<div dojoType=“wc.widget.RefreshArea”…

Task 4: Define JSP to generate new
refresh area content

AjaxOrderStatusView.jsp

The last slide left off with the OrderCancel service firing a model changed event. In order
to listen for this event and take action, you need to define a refresh controller. You do this
using the wc.render.declareRefreshController API. As part of declaring a refresh controller,
you can specify what happens when model changed events are received. In your new
refresh controller, you want to update the refresh area containing the order list when an
OrderCancel event is received. This brings you to the next task, creating a refresh area.
The refresh area is the portion of the screen you want to redraw when an order is
canceled. You do this by wrapping the area in a <div> tag and specifying the attribute
dojoType=wc.widget.RefreshArea. When the refresh controller receives the OrderCancel
event, it will tell the refresh area to update, triggering an Ajax call to get the modified
contents of the area. Your final task is to create the JSP that will render the changed
portion of the page. You also need to add this new view to the Struts configuration
extension file.

There are a few other sub tasks, such as adding access control, needed to complete this
customization. You can find these outlined in the lab StoreCustomization2 or in the
Information Center .

WCS6005_MadisonsStarterStoreCustomization.ppt Page 28 of 40

IBM Software Group

29

© 2009 IBM CorporationMadisons starter store customization

Adding Web 2.0 to an existing storeAdding Web 2.0 to an existing store

Section

This section covers some tips for adding Web 2.0 functionality to an existing store.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 29 of 40

IBM Software Group

30

© 2009 IBM Corporation Madisons starter store customization

Updating an existing storefront

�Know your customers

�Know your non-functional requirements
�Page load times

�JavaScript support

� Identify high value changes
�Improved UI widgets

�More interactivity

�Start slowly

An important consideration when adding Web 2.0 features to an existing store is how your
customers will react. Once they have learned how to use your Web site, they will have
acquired a comfort level with using it. How much are you asking them to re-learn with the
new features? Make sure adequate information is provided and consider providing an
option to disable the new features and use the traditional version of your site.

Understand what your non-functional requirements are. Adding Web 2.0 functionality is not
free. It increases page download time and can put more load on the client machine. Are
the new features worth the extra wait? Web 2.0 functions are also useless without
JavaScript enabled. Do you need to support shoppers who have JavaScript disabled?

Examine your existing page flow and identify areas that will most benefit from Web 2.0
capability. Start there. It might be that replacing a standard HTML widget with a Dojo
widget makes it easier for the shopper to enter valid information. If you want to improve
interactivity, look for a page that is reloaded multiple times as the shopper interacts with it,
such as paging or adding information to a form. Concentrating Web 2.0 functions in high
value areas provides a better tradeoff between cost and functionality.

If you are working with Ajax and Dojo for the first time, start slowly. Make sure you
understand how each new Ajax call affects the page before you add the next one. This
can simplify debugging and help to avoid unexpected side effects. Debugging JavaScript
is a challenge. Plan accordingly.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 30 of 40

IBM Software Group

31

© 2009 IBM Corporation Madisons starter store customization

Tips for adding Web 2.0 function

�Reuse existing assets where possible
�Plan Ajax updates to use existing commands or services

�Use JSP fragments to contain page sections that change

�Configure Dojo using djConfig
�Parser settings

� parseOnLoad

�Debug settings
� isDebug

� debugAtAllCosts

The WebSphere Commerce Ajax framework is designed to make it easy to call your
existing commands and services using Ajax. Where possible, replace an existing update
call with an Ajax update rather than splitting or combining functions so that a new
command or service needs to be created. Also, consider creating a JSP fragment for the
portion of you page that is going to change. This can avoid code duplication if you are
providing both a Web 2.0 and Web 1.0 flow option.

When you are including the Dojo library for the first time you will need to decide what
values you want to use for the configuration settings. The first configuration parameters to
consider is parseOnLoad which tells Dojo whether it should parse each page it loads
looking for the DojoType attribute in an HTML tag. In the Madisons starter store,
parseOnLoad is set to false. This results in better performance but it means if you forget to
manually invoke the parser for a widget Dojo will not recognize it.

The next thing to consider is the debug settings. The isDebug parameter, when set to true,
displays a debug area at the bottom of your browser if you are using Firebug Lite. This
gives you access to the Firebug console messages and provides an area where you can
type console commands. The debugAtAllCosts parameter provides greater accuracy in
locating errors within Dojo widgets. If you are extending or creating new Dojo widgets you
might want to turn this on during development. The Web 2.0 sample store sets both debug
parameters to false by default.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 31 of 40

IBM Software Group

32

© 2009 IBM CorporationMadisons starter store customization

MigrationMigration

Section

This section covers some tips for migrating a store based on the feature pack 2 Web 2.0
sample store to feature pack 5.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 32 of 40

IBM Software Group

33

© 2009 IBM Corporation Madisons starter store customization

Migration

�Significant Dojo API and packaging changes
�http://dojotoolkit.org/book/dojo-porting-guide-0-4-x-0-9

�http://dojotoolkit.org/book/dojo-porting-guide-0-9-x-1-0

�WebSphere Commerce widget migration
�Ajax framework widget API has not changed

� Need to replace Java Server Pages Tag Library (JSTL) tags with
JavaScript

�For custom widgets that were removed, use Dojo
equivalent

There is no official migration path between the Web 2.0 sample store in feature pack 2 and
the Madisons starter store in feature pack 5. If you have made use of Dojo functionality
beyond that used in the Web 2.0 sample store, you should read the Dojo porting guides
available on the Dojo Web site. There are significant changes between the 0.4 and 0.9
releases.

Custom WebSphere Commerce widgets have been migrated to the new version of Dojo,
but some APIs have changed. You will need to update your storefront pages to work with
the new APIs. Some custom widgets from feature pack 2 have been discontinued and are
not used in the Madisons starter store. If you want to continue using the discontinued
widgets, you can switch to the Dojo version of the widget that the custom widget is based
on.

The WebSphere Commerce Ajax framework APIs have not changed from feature pack 2,
so less effort is need to migrate refresh areas. The one change you do need to make is to
switch from using the JSTL tags for object creation to the corresponding JavaScript APIs.
To simplify this process, you can copy the generated JavaScript out of your storefront
page and replace the tag with the JavaScript code. To take the migration one step further,
you can use this opportunity to create a separate JavaScript file for the definition of
services, render contexts and refresh controllers.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 33 of 40

IBM Software Group

34

© 2009 IBM CorporationMadisons starter store customization

Best practicesBest practices

Section

This section covers some best practices for Web 2.0 application development in
WebSphere Commerce.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 34 of 40

IBM Software Group

35

© 2009 IBM Corporation Madisons starter store customization

Best practices - general

�Treat Web 2.0 as a tool

�Be predictable

�Be accessible

�Be efficient

�Be secure

�Recommended reading
�http://www.redbooks.ibm.com/redpieces/abstracts/sg247647.html?Open

There is little doubt that Ajax and Web 2.0 have changed the face of the internet in the last
five years. If you are introducing Web 2.0 technologies into your store for the first time, it is
very important to resist the temptation to add every type of feature all at once. Take the
time to understand where your site will most benefit from improved interactivity or more
usable interface widgets. Used as one tool among many, Web 2.0 functionality can
provide some very powerful benefits for your users. Consider that some of the highest
impact applications of Ajax might barely be noticeable to the shopper except to reduce the
interruptions to their shopping experience.

Rather than looking at a detailed list of rules for creating a Web 2.0 applications, it is
helpful to consider best practices as principles that should guide your design, development
and testing choices.

The first is be predictable. This might sound boring, but there is nothing more frustrating to
a user than a Web site that does not behave the way they expect. This includes providing
support for browser forward and back buttons on pages updated by Ajax requests. It also
means designing interactive page updates that do not disorient the shopper.

Next is be accessible. Many Web accessibility best practices have been around for years
and apply to Web 2.0 applications just as much as they did to Web 1.0 applications. On
top of basics like keyboard accessibility and alt tags come the new Web accessibility
initiatives from the W3C. The ARIA specification provides a way of specifying context on a
page beyond what HTML tag names can provide. It also introduces a method of making
dynamic page updates visible to assistive technologies. Adding accessibility support as
you go is a lot less work than retrofitting an application once it is complete.

Next, be efficient. Some specific performance guidelines are given on the next slide, but in
general, you need to consider the cost of Web 2.0 functions and spend your network and
JavaScript processing time wisely. The fewer times you contact the server, the smaller the
amount of data downloaded to the browser, the faster your application will run. The more WCS6005_MadisonsStarterStoreCustomization.ppt Page 35 of 40
dynamic functionality you want to provide, the more you have to be efficient in how you do

it.

IBM Software Group

36

© 2009 IBM Corporation Madisons starter store customization

Best practices - performance

This picture comes from the RedBook on best practices for Web 2.0 store development.
There is an excellent chapter on performance optimizations that contains more detail and
tips than are covered here. The purpose of including this picture is to motivate you to
create a Web application that performs well by considering many performance aspects,
from the client’s Web browser through to the application server.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 36 of 40

IBM Software Group

37

© 2009 IBM Corporation Madisons starter store customization

Summary

�Madisons starter store has implemented several
best practices

�WebSphere Commerce Ajax framework provides
modular approach to asynchronous reads and
updates

The Madisons starter store has implemented many best practices for store development
that were outlined in the first half of this presentation. The second half of the presentation
focused on a review of the WebSphere Commerce Ajax framework and adding Web 2.0
functionality to a store.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 37 of 40

IBM Software Group

38

© 2009 IBM Corporation Madisons starter store customization

References

� Madisons starter store
� https://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.madisons-starterstore.doc/concepts/csmmadisonintro.htm

� ARIA
�http://esw.w3.org/topic/PF/ARIA/BestPractices/LiveRegion

�http://www.w3.org/TR/2007/WD-aria-state-20070601/
� Section 4.1

This slide contains some useful references for store development in feature pack 5.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 38 of 40

IBM Software Group

39

© 2009 IBM Corporation Madisons starter store customization

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WCS6005_StoreCustomization.ppt

This module is also available in PDF format at: ../WCS6005_StoreCustomization.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 39 of 40

IBM Software Group

40

© 2009 IBM Corporation Madisons starter store customization

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States,
other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in
other countries. A current list of other IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, JavaScript, JSP, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY
DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to
update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained
from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this
publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WCS6005_MadisonsStarterStoreCustomization.ppt Page 40 of 40

