

®

IBM Software Group

© 2008 IBM Corporation

Updated April 29, 2008

WebSphere ® Commerce V6.0 Feature Pack 3

Component services

This presentation describes the component services architecture and customization
points.

WCS6003_ComponentServices.ppt Page 1 of 30

IBM Software Group

2

Component services © 2008 IBM Corporation

Agenda

�Business component service
�Review from feature pack 2

�New functions in feature pack 3
� Business logic layer

� Data service layer

The agenda for this presentation is to discuss the business component service module,
which controls communication between the business logic and data service layers. The
functions introduced in feature pack 2 are reviewed. The new functions introduced in
feature pack 3 - the business logic and data service layers - are then discussed.

WCS6003_ComponentServices.ppt Page 2 of 30

IBM Software Group

3

Component services © 2008 IBM Corporation

Recap of Feature Pack 2

�A runtime supporting the OAGIS message format
�Standardize approach on how to represent request and

response

�Developing protocol independent service modules
�Consists of a set of request and response Business

Object Documents

�Deployed as an Enterprise Java™ Bean

�Command processing pattern

�Design pattern toolkit
�Simplify developing a new service module

In Feature Pack 2, focus was placed on how OAGIS can be used to represent services to
retrieve data, update data or run business processes. You should already be familiar with
the OAGIS message architecture. If you are not, you should first view the presentation on
OAGIS message architecture.

Feature Pack 2 also continued the transition to a protocol independent SOA architecture.
Services use request and response business object documents to transfer information
about WebSphere Commerce objects between different clients, such as Web and portal,
and the server. On the WebSphere Commerce Server side, service requests are mapped
back to existing Commands and Enterprise Java Beans, allowing business logic to be
reused.

The design pattern toolkit was introduced to simplify developing new service modules by
providing a pattern to generate much of the necessary configuration.

WCS6003_ComponentServices.ppt Page 3 of 30

BOD
cmd

Task
cmd
Task
cmd

IBM Software Group

4

Component services © 2008 IBM Corporation

WebSphere Commerce Application

Component
Façade

Implementation

WebSphere Commerce service binding

Identity and Business Context

<HTML>

<SOAP
XML>

Web
Services

Web
(Struts)

Data

Tag
Library

<JSP>

Identity
&

C
ontext

Identity
&

C
ontext

Client
library

Get / Show

Process / Acknowledge

Change / Response

Sync / Confirm

Task
commands

BOD
commads

This diagram recaps service binding in Feature Pack 2.

The service binding resides between the client library and the services. It provides the
transport mechanism to pass data, using SDOs, between the client and the service. There
are two types of binding between the client library and the component facade
implementation, Enterprise Java Beans and Web services.

The local enterprise bean connects the client to the component facade implementation in
the local JVM. When the client and component facade implementation are deployed within
the same application, such as for a Web interface, the client should communicate with the
component facade implementation though a local EJB call. The client uses the component
facade's local enterprise bean to invoke the method that matches the intended service.

The Web service connects the client to the component facade implementation remotely.
When the client and component facade implementation are deployed in separate
applications, such as with a portal interface, the client sends the service request using
Web services as the transport layer. Because the client and component facade
implementation are distinct applications, the Web service security is used for authorization.

WCS6003_ComponentServices.ppt Page 4 of 30

IBM Software Group

5

Component services © 2008 IBM Corporation

Get request design pattern using existing data beans

Client

XSD / WSDL / SDO

Java façade

Get service
controller command

Fetch
command

Compose All
command

Compose Detail
command

Compose Summary
command

�Get service is divided into two tasks
�Fetch the data
�Compose the data into the logical model

�One fetch interface, multiple implementations
•Fetch implementation to call out to return databeans based on the
given expression

�Compose commands to populate the logical
model with information based on access profile

•Compose implementation per supported access profile.

�Programming pattern to reduce cost of
customization to add a new search expression

Feature Pack 2 introduced a Get request pattern that allows existing WebSphere
Commerce artifacts such as data beans to be accessed through a service. Details on this
pattern can be found in the Feature Pack 2 presentation on Business Component
Services.

WCS6003_ComponentServices.ppt Page 5 of 30

IBM Software Group

6

Component services © 2008 IBM Corporation

Process or Change request using existing
controller commands

Client

XSD / WSDL / SDO

Java façade

Message mapping
service command

WebSphere Commerce
controller command

Task commands

Acknowledge or respond
command

� Generic Message Mapping command to use message
mapping feature to reuse existing controller commands

�New Message Mapping configuration defined called
“component-services”
�Configure service command to
com.ibm.commerce.foundation.server.command.soi
. MessageMappingCmdImpl

� The message mapping command invokes the classic
commerce controller command and return the response
Map
� A new acknowledge/respond for creating the response

Feature Pack 2 also exposed existing controller commands as services by introducing a
message mapping command that can delegate structured service requests to the
controller commands. The BOD request is converted into a set of name-value pairs that
the controller command can process. Further information on the message mapping
command can also be found in the Feature Pack 2 presentation on Business Component
Services.

WCS6003_ComponentServices.ppt Page 6 of 30

IBM Software Group

7

Component services © 2008 IBM Corporation

Feature Pack 3 improvements

� Abstract business object document commands
�Commands to support the OAGIS processing model

�Designed to support more complex requests

� Data service layer
�Isolates the business logic from dealing with the persistence layer

�Business object mediator

�Persistence layer service

� Developer tools
�Improvements on the design pattern toolkit pattern

�WebSphere Commerce Developer plug-in to help with configuration
and implementation assets

Introduced in Feature Pack 3, abstract business object document (BOD) commands give
you two advantages over the message mapping command in Feature Pack 2. First, SDOs
can be used directly by the business logic rather than mapping to name-value pairs as is
necessary for controller commands. Second, complex requests representing multiple
changes can be sent in a single BOD request. In Feature Pack 2 BOD requests were
limited to a single action.

The new Data Service Layer encapsulates all interaction with the persistence layer. This
decreases the cost of changing persistence technologies because the business logic no
longer has ties to the persistence implementation. The Business Object Mediator and
Persistence Service assist in the communication between the business logic and
persistence layers. They are discussed in more detail in the coming slides.

Developer tools have been extended in Feature Pack 3. The improvements are an
enhanced Design Pattern Toolkit and a new plug-in for WebSphere Commerce Developer.
The plug-in assists in generating some of the artifacts required for the data service layer.

WCS6003_ComponentServices.ppt Page 7 of 30

IBM Software Group

8

Component services © 2008 IBM Corporation

Presentation
layer

Business logic
layer

Data service
layer

Architectural layers

Component
Facade

Data Service
Facade

OAGIS
BODs

OAGIS
Nouns

+
Physical
Objects

Struts Portal

CMC Web
services

… other Sales
Center

JPA

DAS

XML Hibernate

… other

JDBC Mediator

JDBC

Application
Area

Data
Area

Get

Change

Process

Sync

Tasks

Business context service

This slide shows a summary of the architectural layers in Feature Pack 3. This
architecture removes implementation dependencies between the presentation layer,
business logic layer and persistence (or data service) layer.
The presentation layer interacts with the business logic through the OAGIS defined
services and does not contain any business logic directly. Retrieving business data or
executing any business logic must be done through the OAGIS defined services of a
service module.

The business logic layer contains the business components that provide OAGIS services
to return data or invoke business processes. The Business Object Document processing
patterns for OAGIS requests use the data service layer to accept structured objects called
service data objects (SDOs) and perform the mapping between these logical structured
objects and how they are persisted. The business logic never needs to interact with the
technology used to persist the data.

The data service layer accepts SDOs, which are transformed (mediated) into objects
called Physical SDOs before being passed to the persistence implementation to perform
the data retrieval or updates. All persistence-specific assets such as SQL queries are
isolated within the data service layer. SQL is stored in a query template file for easy
maintenance.

WCS6003_ComponentServices.ppt Page 8 of 30

IBM Software Group

9

Component services © 2008 IBM Corporation

Data service
facade

Advanced Get processing pattern

* Optional

Get noun
controller

Physical
object

persistence
service

Business
object

mediators

3. Execute()

5. Execute()*

3.1 getBusinessObjects() Fetch noun
task

Insert more noun
data task

4. Access Control Filter*

2. Access control check

Not authorized to retrieve
that amount of data

1. Parse Get verb

6. BuildShowBOD

The Business Object Document Get processing pattern describes the design pattern used
to perform searching for and retrieving of data. The flow of the Get processing pattern is
as follows:
In step 1, the GetNoun controller command parses the expression from the Get request
into a search expression. In step 2, an access control check is performed to ensure the
current user is allowed to use the access profile. The GetNoun command then delegates
to the fetch command in step 3 to retrieve the list of nouns that match the search
expression. The GetNoun command uses the XPath selector approach to choose the
appropriate fetch command implementation to retrieve the data. Although the default
implementation is used in most cases, the extension allows for additional business logic to
be added for particular search expressions. The default fetch implementation uses a
persistence object called the Business Object Mediator, passing the search expression
extracted from the Get verb. This search expression includes the XPath, access profile
and paging information. The Business Object Mediator in turn uses the logical mediators
and data service to retrieve the data and convert it to its logical representation. The result
is paging information and logical SDOs matching the expression.
In step 4, the list of nouns returned by the fetch command is filtered to ensure the current
user only views those nouns that they are allowed to see. This additional filtering is
optional.
Step 5 , also optional, is for access profiles that need additional information based on
business logic or from an external system. The GetNoun controller can instantiate an
instance of an InsertMoreNounData task command for a particular access profile to
populate more data. The InsertMoreNounData command should only be used when the
information cannot be retrieved from the persistence layer.
Finally, in step 6, the nouns and the show verb are packaged in the ShowNoun response
and returned.

WCS6003_ComponentServices.ppt Page 9 of 30

IBM Software Group

10

Component services © 2008 IBM Corporation

Access control policy for an access profile
<Policies >

<!-- Define the action for the Access Profile: BOD.<AccessProfile> -->

<Action Name="GetCatalogEntry.Details" CommandName="GetCatalogEntry.IBM_Details" />

<!-- The resource category for all Access Profiles -->

<ResourceCategory

Name="com.ibm.commerce.foundation.server.authorization.policymanager.AccessProfileResourceCategory"

ResourceBeanClass ="com.ibm.commerce.foundation.server.authorization.policymanager.AccessProfileProtectableProxy" />

<!-- Include the access profile as part of the action group -->

<ActionGroup Name="Catalog-CatalogEntry-AllUsers-AccessProfileActionGroup"

OwnerID ="RootOrganization" >

<ActionGroupAction Name="GetCatalogEntry.Details" />

</ ActionGroup >

<!-- The access profile resource group -->

<ResourceGroup Name="AccessProfileResourceGroup" OwnerID ="RootOrganization" >

<ResourceGroupResource
Name="com.ibm.commerce.foundation.server.authorization.policymanager.AccessProfileResourceCategory" />

</ ResourceGroup >

<!-- Define a policy for the action group -->

<Policy Name="Catalog-CatalogEntry-AllUsers-AccessProfilePolicy"

OwnerID ="RootOrganization"

UserGroup ="AllUsers"

ActionGroupName ="Catalog-CatalogEntry-AllUsers-AccessProfileActionGroup"

ResourceGroupName ="AccessProfileResourceGroup"

PolicyType ="groupableStandard" />

<!-- Add the policy to a policy group -->

<PolicyGroup Name="ManagementAndAdministrationPolicyGroup" OwnerID ="RootOrganization" >

<PolicyGroupPolicy

Name="Catalog-CatalogEntry-AllUsers-AccessProfilePolicy"

PolicyOwnerID ="RootOrganization" />

</ PolicyGroup >

</ Policies >

Should you have
access to this

view of the
Noun?

This slide shows an example of an access control policy that allows the WebSphere
Commerce server to answer the question “should you have access to this view of the
noun?” when processing a Get request.

The policy has six distinct parts: action, resource category, action group, resource group,
policy and policy group. The action command name is based on the name of the BOD and
the access profile. Next, the resource category is constant across all policies. If you are
creating your own policy you can just copy and paste this portion. The
AccessProfileProtectableProxy interface is part of a bridge layer that allows the generated
SDOs to make use of the existing WebSphere Commerce access control engine. The
action group allows you to specify multiple actions that are controlled by the same policy.
Only one action is shown in this example. Resource group performs a similar function for
resource categories as action group does for actions. However, since there is only one
resource category for all profiles, the resource group definition is also constant across all
profiles. Next is the policy, which brings all the parts together to define who is allowed to
do what. This policy specifies that all users are allowed to perform the actions listed in the
action group Catalog-CatalogEntry-AllUsers-AccessProfileActionGroup defined above.
Policies can define broad access, such as this example for all users, or can be used to
create very specific access profiles such as a catalog managers group that can access
catalog authoring commands. Finally, the policy is registered in the global policy group for
WebSphere Commerce.

WCS6003_ComponentServices.ppt Page 10 of 30

IBM Software Group

11

Component services © 2008 IBM Corporation

Access control policy to read a noun
<Policies >

<!-- The command to read the noun is always display -->

<Action Name="DisplayResourceAction" CommandName="Display" />

<!-- Registering the resource category for the Protectable object that represents the noun -->

<ResourceCategory

Name="com.ibm.commerce.catalog.facade.datatypes.CatalogEntryTypeResourceCategory"

ResourceBeanClass ="com.ibm.commerce.catalog.facade.server.authorization.CatalogEntryTypeProtectableProxy" />

<!-- Defining an action group to read the noun -->

<ActionGroup Name="Catalog-CatalogEntry-AllUsers-ActionGroup"

OwnerID ="RootOrganization" >

<ActionGroupAction Name="DisplayResourceAction" />

</ ActionGroup >

<!-- Defining a resource group that contains the resource category of the noun -->

<ResourceGroup Name="Catalog-CatalogEntry-ResourceGroup" OwnerID ="RootOrganization" >

<ResourceGroupResource Name="com.ibm.commerce.catalog.facade.datatypes.CatalogEntryTypeResourceCategory" />

</ ResourceGroup >

<!-- Defining the policy that controls who can read the noun -->

<Policy Name="Catalog-CatalogEntry-AllUsers-Policy"

OwnerID ="RootOrganization" UserGroup ="AllUsers"

ActionGroupName ="Catalog-CatalogEntry-AllUsers-ActionGroup"

ResourceGroupName ="Catalog-CatalogEntry-ResourceGroup"

PolicyType ="groupableStandard" />

<!-- Registering the policy -->

<PolicyGroup Name="ManagementAndAdministrationPolicyGroup"

OwnerID ="RootOrganization" >

<PolicyGroupPolicy Name="Catalog-CatalogEntry-AllUsers-Policy"

PolicyOwnerID ="RootOrganization" />

</ PolicyGroup >

</ Policies >

Should you be
able to read this
particular Noun?

You can also define an access control policy that answers the question “should you be
able to read this particular noun?”.

For each noun that is returned by the FetchNounCmd, a Display access control check is
performed. This is similar to previous versions of WebSphere Commerce where the
Display command was used for data beans. The action here is hard coded to be Display.
The resource category is the protectable proxy object of the returned noun. As in the
previous example, the protectable proxy allows the generated SDO objects to use the
WebSphere Commerce access control engine. The action group and resource group are
defined followed by the policy. In this example, the policy says that all users are allowed to
perform the actions contained in the Catalog-CatalogEntry-AllUsers-ActionGroup. In this
case, all users can display any catalog entry. The policy can also be used to enforce
relationships. For example, a creator relationship can be defined such that only the creator
of an order is allowed to view the order. As a final step, the policy is registered in a policy
group.

WCS6003_ComponentServices.ppt Page 11 of 30

IBM Software Group

12

Component services © 2008 IBM Corporation

Advanced Get pattern customization points

� New XPath expression
�Expression represents an SQL statement

�Business logic computes the result

� Access profile update
�Return more data from the database

�Return more data from an external system

� New access profile
�Return a logical model that has a different amount of
data populated

The new Get pattern allows for customization at several points.

The first type of customization is to add a new XPath expression that can represent either
an SQL statement or a computation that should be performed by the business logic. To
add an XPath expression that represents an SQL statement, you need to update the data
service layer template to register the XPath to SQL mapping. You can introduce a new
XPath expression that is computed by the business logic, but you should do so only if
really needed. To add this type of expression, you need to implement a new FetchNoun
task command to handle retrieving the data and update the command configuration to
associate the XPath key with your FetchNoun task command.

The second type of customization is updating the access profile. You need to update the
access profile if you want to return more data from the database or from an external
system for an existing Get request. When the additional data is coming from the database,
you need to update the data service layer template to return more data for the access
profile. You also need to update the business object mediator to handle the association of
the new data in the logical model. To support returning data from an external system you
need to create an InsertMoreNounData command to access the external system, retrieve
the data and add it in the logical model. The command configuration then needs to be
updated to associate this access profile with the InsertMoreNounData command.

The final type of customization is to create a new access profile. This is required if you
need to return a logical model that has a different amount of data populated. The first step
in this customization is to update the access control policies to register who can use the
access profile. Next, you need to update the data service layer configuration to register the
data contained in the new access profile. An optional third step is to create and register an
InsertMoreNounData command as just described.

WCS6003_ComponentServices.ppt Page 12 of 30

IBM Software Group

13

Component services © 2008 IBM Corporation

Data Service
Facade

Process processing pattern

Process Noun
Controller

Process Noun
Action Task Physical

Object
Persistence

Service

Business
Object

Mediators

1. Read()

2. Validate()

1.1 resolveObjects()

3. Resource Access Control

4. Validate()

5. Execute()

4.1 findObjects()

5.1 applyChanges()

5.2 saveObject()

6. Save() 6.1 saveObject()

7. BuildAcknowledgeBOD()

Data does not exist or not
authorized to perform action

Client input is not valid
based on business rules

The Business Object Document Process pattern is similar to the Change design pattern, except that the

Process pattern includes a Process controller. This Process controller reads common data across the

actions within the request, instantiates the task command implementations for those actions, and runs them.

This pattern is a simplified version of the pattern required for processing the Change request. The key

difference between Process and Change is the rule that the Process action must act upon the entire noun.

The information within that noun controls the actions of the business logic.

Because the Feature Pack 2 implementation mapped an action to a controller command, the Process pattern

was limited to one action per request. For the BOD Process pattern, the restriction of one actionCode per

request is lifted.

The flow of the BOD Process processing pattern is shown in this diagram.

Step 1. The Process noun controller command breaks down the BOD and calls the read() to resolve the root

object of the nouns to change.

Step 2. The validate() method is called to perform any common validation required.

Step 3. An access control check is performed to ensure the current user has permission to perform the action

on the specified noun.

Step 4. The Process noun action task commands are instantiated and for each command, the validate

method is called to report potential errors that can occur during processing. The Process noun action

command reads any information required and validates whether the input is valid for the operation.

Step 5. The Process noun action task commands are invoked to apply the changes and save any changes

made to data objects retrieved in the current instance of the command.

Step 6. The root object retrieved in step 1 is saved.

Step 7. The response is created and returned.

WCS6003_ComponentServices.ppt Page 13 of 30

 izatio

 anag

IBM Software Group

14

Component services © 2008 IBM Corporation

Access control policy for process actions
<Policies >

<!-- Register the possible process actions as CommandName that can be performed on the Noun -->

<Action Name="AddResourceAction" CommandName="Add" />

<Action Name="DeleteResourceAction" CommandName="Delete" />

<Action Name="CreateResourceAction" CommandName="Create" />

<!-- Registering the resource category for the Protectable object that represents the noun -->

<ResourceCategory Name="com.ibm.commerce.catalog.facade.datatypes.CatalogEntryTypeResourceCategory"

ResourceBeanClass ="com.ibm.commerce.catalog.facade.server.authorization.CatalogEntryTypeProtectableProxy" />

<!-- Defining an action group that includes the process actions -->

<ActionGroup Name="Catalog-CatalogEntry-CatalogEntryManagers-ActionGroup“ OwnerID ="RootOrganization" >

<ActionGroupAction Name="AddResourceAction" />

<ActionGroupAction Name="DeleteResourceAction" />

<ActionGroupAction Name="CreateResourceAction" />

</ ActionGroup >

<!-- Defining a resource group that contains the resource category of the noun -->

<ResourceGroup Name="Catalog-CatalogEntry-ResourceGroup"

OwnerID ="RootOrganization" >

<ResourceGroupResource Name="com.ibm.commerce.catalog.facade.datatypes.CatalogEntryTypeResourceCategory" />

</ ResourceGroup >

<!-- Defining the policy that controls who can run the action group that contains the process actions -->

<Policy Name="Catalog-CatalogEntry-CatalogEntryManagers-Policy"

OwnerID ="RootOrganization" UserGroup ="CatalogEntryManagersForOrg"

ActionGroupName ="Catalog-CatalogEntry-CatalogEntryManagers-ActionGroup"

ResourceGroupName ="Catalog-CatalogEntry-ResourceGroup"

PolicyType ="groupableTemplate" />

<!-- Registering the policy -->

<PolicyGroup Name="ManagementAndAdministrationPolicyGroup“ OwnerID ="RootOrgan n" >

<PolicyGroupPolicy Name="Catalog-CatalogEntry-CatalogEntryM ers-Policy"

PolicyOwnerID ="RootOrganization" />

</ PolicyGroup >

</ Policies >

Should you be
able perform the
Process action
on the Noun?

Here is an example of an access control policy for Process services, which determines
whether the current user has permission to perform the action on the noun. It is very
similar to the access control policy for Get requests, the main difference is in the action
definition. In the Get access control policy, the action is the Display command. For
Process requests, the action is the action code found in the Process verb in the BOD. The
resource category is the same Protectable proxy object used in the Get policy. This
example also shows multiple actions being registered in the action group. The policy
defines who is allowed to perform the actions. In this example, catalog entry managers
are allowed to perform the add, delete and create actions on catalog entries.

WCS6003_ComponentServices.ppt Page 14 of 30

IBM Software Group

15

Component services © 2008 IBM Corporation

Data Service
Facade

Change (and Sync) processing pattern

Change Noun
Controller

Change Noun
Part Task

Post
Change Noun

Part Task

Physical
Object

Persistence
Service

Business
Object

Mediators

1. Read()

2. Validate()

1.1 resolveObjects()

3. Resource Access Control

4. Validate()

5. Execute()

6. Execute()*

4.1 findObjects()

5.1 applyChanges()

5.2 saveObject()

6.1 findObjects()

6.2 applyChanges()

6.3 saveObject()

7. Save() 7.1 saveObject()

8. BuildRespondBOD() * Optional

Data does not exist or not
authorized to perform action

Client input is not valid
based on business rules

The Business Object Document Change processing pattern is used to add, change, or
delete a business object. The BOD Sync processing pattern is used by systems that
contain master data records to push out notifications when their data has changed.
In step 1, the Change noun controller command breaks down the BOD and calls the read
method to resolve the root objects of the nouns to change. The controller fetches the
required data for the request up-front and passes this data to the other task commands so
that the command uses and updates common data elements. In step 2, the validate
method is called to perform any common validation that is required. This is followed in step
3 by an access control check to ensure the current user has permission to change the
specified noun.

Once the access control check is complete, the request is split into smaller Change-
noun-part task commands that act upon parts of the noun instead of the entire noun. In
step 4, these commands are instantiated, and for each command, the validate method is
called to report potential errors that can occur during processing. In step 5, the change
noun part tasks are invoked to deal with a specific part of the noun. These tasks are
passed the action to perform, the part of the noun that has changed and the original
request noun along with the data that was retrieved by the controller. The controller can
have many instances of these task commands which act upon the many noun parts that
are being changed as part of the message.

Step 6 is optional. The post change noun part command is instantiated and run if
additional business logic processing is required because of a change of that part of the
noun – for example, auditing or logging.

Once all the tasks have been run, the data read up-front is persisted in step 7 so the
changes are committed in the database. Finally, the response is created and returned in
step 8.

WCS6003_ComponentServices.ppt Page 15 of 30

nage

IBM Software Group

16

Component services © 2008 IBM Corporation

Access control policy for change and sync actions
<Policies >

<!-- Register the Change action as CommandName that can be performed on the Noun -->

<Action Name="ChangeResourceAction" CommandName="Change" />

<!-- Registering the resource category for the Protectable object that represents the noun -->

<ResourceCategory

Name="com.ibm.commerce.catalog.facade.datatypes.CatalogEntryTypeResourceCategory"

ResourceBeanClass ="com.ibm.commerce.catalog.facade.server.authorization.CatalogEntryTypeProtectableProxy" />

<!-- Defining an action group that includes the change action -->

<ActionGroup

Name="Catalog-CatalogEntry-CatalogEntryManagers-ActionGroup"

OwnerID ="RootOrganization" >

<ActionGroupAction Name="ChangeResourceAction" />

</ ActionGroup >

<!-- Defining a resource group that contains the resource category of the noun -->

<ResourceGroup Name="Catalog-CatalogEntry-ResourceGroup"

OwnerID ="RootOrganization" >

<ResourceGroupResource Name="com.ibm.commerce.catalog.facade.datatypes.CatalogEntryTypeResourceCategory" />

</ ResourceGroup >

<!-- Defining the policy that controls who can run the action group that contains the process actions -->

<Policy Name="Catalog-CatalogEntry-CatalogEntryManagers-Policy"

OwnerID ="RootOrganization" UserGroup ="CatalogEntryManagersForOrg"

ActionGroupName ="Catalog-CatalogEntry-CatalogEntryManagers-ActionGroup"

ResourceGroupName ="Catalog-CatalogEntry-ResourceGroup"

PolicyType ="groupableTemplate" />

<!-- Registering the policy -->

<PolicyGroup Name="ManagementAndAdministrationPolicyGroup"

OwnerID ="RootOrganization" >

<PolicyGroupPolicy Name="Catalog-CatalogEntry-CatalogEntryMa rs-Policy"

PolicyOwnerID ="RootOrganization" />

</ PolicyGroup >

</ Policies >

Should you be
able change the

Noun?

The access control policies for Change and Sync services determine whether the current
user under the current context can perform the change actions on the specified noun. This
policy is very similar to the Process access control policy. The only difference is there is a
single action, Change, specified in this policy.

The default access control policies provided with WebSphere Commerce support access
checking at the noun level. It is possible to extend the default policies to provide access
control at the noun changeable part level if you need that in your application. For example,
the default WebSphere Commerce policy checks whether the current user can change a
catalog entry. You can extend the policy to check whether the current user can change the
description or price for a catalog entry.

WCS6003_ComponentServices.ppt Page 16 of 30

IBM Software Group

17

Component services © 2008 IBM Corporation

Data service layer

Key Features

� Layer of abstraction for data access
�Abstract object-relational mapping frameworks (which transform

database tables to Java)
�Transform between physical SDOs and logical SDOs (OAGIS nouns)

� Create, read, update, and delete operations on both
physical and logical data

� XPath:
�Convert extended XPath query (logical schema) to SQL (physical

schema)

�Generate SQL statements from Query Template (business context
aware)

�Access profile

The purpose of the data service layer is to provide a neutral interface for accessing data,
independent of the object-relational mapping framework. Examples of such frameworks
are EJB, Data Access Service (DAS) from WebSphere Application Server, or Java
Persistence API. In its turn, the abstracted mapping framework is used to transform the
data retrieved from the database into a collection of Java objects. Internally, these objects
are implemented by the data service layer as physical SDOs.
They are essentially a Java representation of the database schema and are different from
the logical SDOs which were discussed earlier. Logical SDOs represent the OAGIS nouns,
which are the external view of the business objects, as exposed by the components.

The data service layer performs bi-directional transformations between physical SDOs and
logical SDOs. You do create, read, update and delete operations on the logical SDOs by
plugging component-specific code into the data service layer. The data service layer also
lets you do these operations directly on the physical data, bypassing the logical schema
altogether.

XPath is used as a query language on the logical schema. The data service layer maps
XPath queries to templates of SQL statements. These templates are used to generate
actual SQL statements, which access the database. The templates can contain business
context variables, which get substituted when the SQL statements are generated. The
XPath queries sent in by the client can result in different actual SQL queries, depending on
the property values of the business context. The statements are stored in a separate
query template file, which isolates the runtime logic from the SQL query code. Finally, the
data service layer implements the access profile, by which the client can provide a hint on
the amount of data it wants to receive.

WCS6003_ComponentServices.ppt Page 17 of 30

IBM Software Group

18

Component services © 2008 IBM Corporation

Data service layer overview

RDB

create & load

XPath exp. +
access profile

DDL
&

Data

Component
provided

Read Mediators,
Physical SDO

Business logic
layer

Business context
service

data context

Data service layer
Data service

layer

Data Service

Facade

Physical
Object
Persistence
Service

Business
Object

Mediators
(Read/Change)

Business
Object

Mediation
configuration

Business Object
Mediation
Service Business Objects

(OAGIS Nouns)

Change
Mediators

Create
Update
Delete

Read

Query
Templates

Object-
relational
metadata

Data service
configuration

The Data service layer consists of three pieces: the data service façade, the business object mediation
service, and the physical persistence service.

The data service façade is a thin layer that provides a single entry point into the data service layer. It
provides interfaces to work with both physical and logical data. It delegates to the business object mediation
service or to the physical persistence service. It also allows each component to register with the data service
layer and loads the component-specific configuration files.

The business object mediation service initializes mediators. These are classes that transform between the
logical and physical representations of the domain model. This allows the business logic layer to deal only
with the logical representation of the data. Each component provides its own mediators. There are two kinds:
read and change mediators. They are listed in the business object mediation configuration file. Read
mediators are used to process the OAGIS Get requests.

In a read scenario, the facade receives a query from the business logic layer. The query consists of an
XPath expression plus an access profile, which are extracted from the OAGIS Get verb. The facade
forwards this query to the business object mediation service which, in turn, passes it to the persistence
service. That service looks up the right SQL template for the query, and uses it to generate one or more SQL
statements. It then runs these statements, and maps their result sets into physical SDOs. The persistence
service returns the physical SDOs to the business object mediation service where its configuration describes
how to instantiate the necessary mediators. These are returned to the business logic layer.

The update scenario is different. The facade receives the OAGIS nouns as input, and passes them to the
business object mediation service, which instantiates the appropriate change mediators. The mediators
fetch the physical representation of the nouns from the persistence service, which fetches them from the
database. The business object mediation service then returns the mediators to the business logic layer.
There, they are called with specific actions to create, update, or delete nouns and noun parts. After making
all its changes, the business logic layer instructs the change noun mediator to save the updated physical
SDOs. The mediator calls the physical object mediation service to update the database.

WCS6003_ComponentServices.ppt Page 18 of 30

IBM Software Group

19

Component services © 2008 IBM Corporation

Data service layer customization

RDB

create & load

XPath exp. +
access profile

DDL
&

Data

Component
provided

Read Mediators,
Physical SDO

Business logic
layer

Business context
service

data context

Data service layer
Data service

layer

Data Service

Facade

Physical
Object
Persistence
Service

Business
Object

Mediators
(Read/Change)

Business Object
Mediation
Service Business Objects

(OAGIS Nouns)

Change
Mediators

Create
Update
Delete

Read

Data service
configuration

Business
Object

Mediation
configuration

Query
Templates

Object-
relational
metadata

1

2

3

4

Consider a customization scenario where you add new information to the logical model,
such as warranty information for products. You want the new data to be stored in the
database and to provide it to the client on demand. In this case, you can use your noun's
UserData element to make this information available to the client. This does not require
any changes to the logical model.
You store the new data in a new table that has a foreign key relationship to the table
representing your noun. For example, if you are adding warranty information for a product,
you create a warranty table that references the CATENTRY table. You can do this without
writing any Java code. You only need to change the configuration and add SQL
statements that fetch the new information.
The circled components on the slide indicate where changes are needed. First, a DDL
script must be written to add the new tables. Next, the object-relational metadata file must
be updated to describe the new tables and how they map to the physical Java objects.
This metadata is also used to generate the physical SDO Java classes. These classes
represent tables in the WebSphere Commerce schema. Third, the business object
mediation configuration must be updated to map from physical SDOs to the logical model.
The physical data properties are represented as name-value pairs in the UserData area of
the noun. Finally, in the query template file, new queries must be added to fetch the new
data (from the database).
Based on the DDL created manually in step 1, WebSphere Commerce Developer provides
a wizard that performs steps 2 and 3, generating the object-relational metadata and the
business object mediation configuration. After running the wizard, you must manually add
queries to the query template file.
The next series of slides will talk about the query template files in more detail.

WCS6003_ComponentServices.ppt Page 19 of 30

IBM Software Group

20

Component services © 2008 IBM Corporation

Query template file: Purpose

�Map XPath extended query to SQL statements

� Isolate SQL statements from Java code

The query template file provides a mechanism to easily map from the query on your logical
model, that is, your XPath query, to one or more SQL statements. These statements
retrieve the physical data from the database. Later slides will show how this mapping
actually happens.

The file also isolates the SQL statements from the runtime Java code. This makes the
code easier to maintain. It is also useful to database administrators when they want to
locate and analyze queries. Changes to the SQL queries do not require Java re-
compilation.

WCS6003_ComponentServices.ppt Page 20 of 30

IBM Software Group

21

Component services © 2008 IBM Corporation

Query template file: Structure

Five sections
�Column symbol definitions

�XPath to SQL statements (defines name, template)

�Association SQL statements (defines name, template)

�Profile (references name, graph composer)

�SQL statement (defines name, template)

The query template file has five main sections. Column symbol definitions define symbols
that are used in your SQL template statements. XPath to SQL and association SQL
templates are used to generate the queries to be run. A profile section defines the access
control for the queries and the SQL statement section contains ad-hoc SQL statements.
The next slide shows an example query template file and describes each section in more
detail.

WCS6003_ComponentServices.ppt Page 21 of 30

IBM Software Group

22

Component services © 2008 IBM Corporation

BEGIN_SYMBOL_DEFINITIONS

COLS:CATENTRY_ID=CATENTRY:CATENTRY_ID

COLS:CATENTRY=CATENTRY:*

COLS:CATENTDESC=CATENTDESC:CATENTRY_ID,SHORTDESCRIPTION

END_SYMBOL_DEFINITIONS

BEGIN_XPATH_TO_SQL_STATEMENT

name=/CatalogEntry[(PartNumber=)]

base_table=CATENTRY

sql=

SELECT

CATENTRY.$COLS:CATENTRY_ID$

FROM

CATENTRY, STORECENT

WHERE

CATENTRY.CATENTRY_ID = STORECENT.CATENTRY_ID AND

STORECENT.STOREENT_ID = $CTX:STORE_ID$ AND

CATENTRY.PARTNUMBER IN (?PartNumber?)

END_XPATH_TO_SQL_STATEMENT

Column symbol
definitions
section

XPath to SQL
statements
section

BEGIN_ASSOCIATION_SQL_STATEMENT

name=IBM_CatalogEntryWithDescription

base_table=CATENTRY

sql=

SELECT

CATENTRY.$COLS:CATENTRY$,

CATENTDESC.$COLS:CATENTDESC$

FROM

CATENTRY

LEFT OUTER JOIN CATENTDESC ON

(CATENTDESC.CATENTRY_ID = CATENTRY.CATENTRY_ID AND

CATENTDESC.LANGUAGE_ID IN ($CONTROL:LANGUAGES$))

WHERE

CATENTRY.CATENTRY_ID IN ($ENTITY_PKS$)

END_ASSOCIATION_SQL_STATEMENT

BEGIN_PROFILE

name=IBM_Summary

BEGIN_ENTITY

base_table=CATENTRY

associated_sql_statement=IBM_CatalogEntryWithDescription

END_ENTITY

END_PROFILE

Association
SQLs
section

Access
profile
section

Query template file: Example

Here is an example of a query template file. The first section defines columns used in the
select list of the SQL statements defined in the file. Symbol definitions are similar in
concept to constants in Java. The idea is to allow the information to be defined once and
used in multiple places. This not only helps localize where to update if changes are
required, it also clearly identifies the intended usage with meaningful symbol names.
Queries that use these definitions select the new columns. You can define the value of the
column symbol to be a list of columns that are selected from a table. In addition, wildcards
('*') can be defined in the symbol definition. Then, the actual column names are retrieved
from the object-relational metadata. In this case, adding a new column to the select clause
is done automatically once the column information is added to the object-relational
metadata.
The sections for XPath to SQL statements and association SQL statements each define a
list of template SQL statements. Each SQL template has a unique name and a base table
name. The base table refers to the main table in the query, which is typically the table
representing your noun. Each XPath to SQL template, when used in combination with the
association SQL statements, returns a list of primary keys satisfying a search criteria. For
example, a search criteria might be to select a list of product IDs given the category name.
The profile section defines access profiles that make use of association SQL statements.
If needed, more than one association SQL statement can be used by a profile. In that
case, each associated SQL statement is performed in turn and the results of the different
associated SQL statements are merged together.
At the conceptual level, XPath to SQL statements locate the objects that are of interest
based on primary keys; but the association SQL statements, scoped by profile name,
retrieve the information about those objects.

WCS6003_ComponentServices.ppt Page 22 of 30

IBM Software Group

23

Component services © 2008 IBM Corporation

Query template file: 2-step query

BEGIN_SYMBOL_DEFINITIONS

COLS:CATENTRY_ID=CATENTRY:CATENTRY_ID

COLS:CATENTRY=CATENTRY:*

COLS:CATENTDESC=CATENTDESC:CATENTRY_ID,SHORTDESCRIPTION

END_SYMBOL_DEFINITIONS

BEGIN_XPATH_TO_SQL_STATEMENT

name=/CatalogEntry[(PartNumber=)]

base_table=CATENTRY

sql=

SELECT

CATENTRY.$COLS:CATENTRY_ID$

FROM

CATENTRY, STORECENT

WHERE

CATENTRY.CATENTRY_ID = STORECENT.CATENTRY_ID AND

STORECENT.STOREENT_ID = $CTX:STORE_ID$ AND

CATENTRY.PARTNUMBER IN (?PartNumber?)

END_XPATH_TO_SQL_STATEMENT

Column symbol
definitions
section

XPath to SQL
statements
section

BEGIN_ASSOCIATION_SQL_STATEMENT

name=IBM_CatalogEntryWithDescription

base_table=CATENTRY

sql=

SELECT

CATENTRY.$COLS:CATENTRY$,

CATENTDESC.$COLS:CATENTDESC$

FROM

CATENTRY

LEFT OUTER JOIN CATENTDESC ON

(CATENTDESC.CATENTRY_ID = CATENTRY.CATENTRY_ID AND

CATENTDESC.LANGUAGE_ID IN ($CONTROL:LANGUAGES$))

WHERE

CATENTRY.CATENTRY_ID IN ($ENTITY_PKS$)

END_ASSOCIATION_SQL_STATEMENT

BEGIN_PROFILE

name=IBM_Summary

BEGIN_ENTITY

base_table=CATENTRY

associated_sql_statement=IBM_CatalogEntryWithDescription

END_ENTITY

END_PROFILE

Association
SQLs
section

Access
profile
section

{ _w c f . a p = IBM_Summary ; _ w c f . l a n g u a g e s = ‘ - 1 , - 2 ' } / C a t a l o g E n t r y [(PartNumber = ‘P01’ o r PartNumber = ‘P02’)]

Query

Control parameters XPath query

Access profile Other Values

At the top of this slide is an example of a query. It consists of the XPath query and control

parameters. The XPath query is a string from the slash to the end of the string. The control

parameters come before it, between the braces. The names of the predefined control

parameters are prefixed with '_wcf'. The first parameter is the access profile. The profile’s

name is IBM_Summary. You can have many control parameters, but the access profile is

always needed. In this example, there is one extra control parameter, the languages,

specifying languages with ids -1 and -2 (English and French). The XPath query asks for

catalog entries with part numbers 'P01' and 'P02'.

When the query arrives, the XPath query portion is isolated and split into a key and values.

The key is used to find an XPath to SQL statement entry by the same name in the file.

This is the one that fetches the primary keys. The values, 'P01' and 'P02', are substituted

into the template, replacing the 'PartNumber‘ parameter.

Next, the name of the access profile is used to lookup its definition. The profile points to

the definition of an association SQL statement. The other control parameters are then

substituted into both queries. In this example, there is no subsitution variable for

languages in the XPath to SQL template, but there is one in the association SQL template.

Once all substitutions are made, the XPath to SQL query is run to fetch the primary key

values. These values are injected into the associated SQL statement replacing the

$ENTITY_PKS$ tag. Finally, this statement is run to retrieve all the data requested by the

original query.

WCS6003_ComponentServices.ppt Page 23 of 30

IBM Software Group

24

Component services © 2008 IBM Corporation

Query template file: 1-step query

BEGIN_SYMBOL_DEFINITIONS

COLS:CATENTRY_ID=CATENTRY:CATENTRY_ID

COLS:CATENTRY=CATENTRY:*

COLS:CATENTDESC=CATENTDESC:CATENTRY_ID,SHORTDESCRIPTION

END_SYMBOL_DEFINITIONS

BEGIN_XPATH_TO_SQL_STATEMENT

name=/CatalogEntry[(PartNumber=)]+IBM_Summary

base_table=CATENTRY

sql=

SELECT

CATENTRY.$COLS:CATENTRY$,

CATENTDESC.$COLS:CATENTDESC$

FROM

CATENTRY

LEFT OUTER JOIN CATENTDESC ON

(CATENTDESC.CATENTRY_ID = CATENTRY.CATENTRY_ID AND

CATENTDESC.LANGUAGE_ID IN ($CONTROL:LANGUAGES$)),

STORECENT

WHERE

CATENTRY.CATENTRY_ID = STORECENT.CATENTRY_ID AND

STORECENT.STOREENT_ID = $CTX:STORE_ID$ AND

CATENTRY.PARTNUMBER IN (?PartNumber?)

END_XPATH_TO_SQL_STATEMENT

{ _w c f . a p = IBM_Summary ; _ w c f . l a n g u a g e s = ‘ - 1 , - 2 ' } / C a t a l o g E n t r y [(PartNumber = ‘P01’ o r PartNumber = ‘P02’)]

Query

Control parameters XPath query

Access profile Other Values

Column symbol
definitions
section

XPath to SQL
statements
section

Here is a template file with a single-step SQL statement. In this example the two templates
have been combined into one.

Similar to the last example, there is an XPath query, an access profile and other control
parameters. This time the access profile and XPath query are combined into a single
name, which selects a single template in the file.

You should use single-step queries if possible. However, in some cases it is not possible
to fetch all the data in a single query or such a query needs to join a very large number of
tables and might not perform well. In this case a 2-step query should be used.

Another reason to use a 2-step query is when paging is requested by the client. Paging on
the result of a 1-step query is not possible if it returns multiple records for each base table
record. A 2-step query allows you to page on the result set returned by the first statement
(the primary keys) rather than on the result set of the second statement.

WCS6003_ComponentServices.ppt Page 24 of 30

IBM Software Group

25

Component services © 2008 IBM Corporation

BEGIN_XPATH_TO_SQL_STATEMENT

name=/CatalogEntry[(PartNumber=)]

base_table=CATENTRY

sql=

SELECT CATENTRY.$COLS:CATENTRY_ID$

FROM CATENTRY, STORECENT

WHERE

CATENTRY.CATENTRY_ID = STORECENT.CATENTRY_ID AND

STORECENT.STOREENT_ID = $CTX:STORE_ID$ AND

CATENTRY.PARTNUMBER IN (?PartNumber?)

END_XPATH_TO_SQL_STATEMENT

BEGIN_ASSOCIATION_SQL_STATEMENT

name=IBM_CatalogEntryWithDescription

base_table=CATENTRY

sql=

SELECT CATENTRY.$COLS:CATENTRY$,

CATENTDESC.$COLS:CATENTDESC$

FROM

CATENTRY

LEFT OUTER JOIN CATENTDESC ON

(CATENTDESC.CATENTRY_ID = CATENTRY.CATENTRY_ID AND

CATENTDESC.LANGUAGE_ID IN ($CONTROL:LANGUAGES$))

WHERE CATENTRY.CATENTRY_ID IN ($ENTITY_PKS$)

END_ASSOCIATION_SQL_STATEMENT

BEGIN_PROFILE

name=IBM_Summary

BEGIN_ENTITY

base_table=CATENTRY

associated_sql_statement=IBM_CatalogEntryWithDescription

END_ENTITY

END_PROFILE

BEGIN_ASSOCIATION_SQL_STATEMENT

name=MyAssociatedQuery

base_table=CATENTRY

sql=

SELECT CATENTRY.$COLS:CATENTRY$,

XWARRANTY.$COLS:XWARRANTY$

FROM

CATENTRY

LEFT OUTER JOIN XWARRANTY ON

(CATENTRY.CATENTRY_ID = XWARRANTY.CATENTRY_ID)

WHERE

CATENTRY.CATENTRY_ID IN ($ENTITY_PKS$)

END_ASSOCIATION_SQL_STATEMENT

BEGIN_PROFILE

name=MyProfile

extends = IBM_Summary

BEGIN_ENTITY

<!– base table inherited �

associated_sql_statement=MyAssociatedQuery

END_ENTITY

END_PROFILE

Extending 2-step query
WebSphere Commerce template file Custom template file

extends

For example, you have added a new table to the WebSphere Commerce schema and you
want your client to receive the new data along with the regular data. For a 2-step query,
you must add a new access profile. This profile extends from the standard one. It adds a
new association SQL template to fetch the new data. This slide shows an example of this
configuration.

The new association SQL statement is fetching the data from the new table,
XWARRANTY. The new profile, MyProfile, references this association statement. It also
extends from the predefined profile, IBM_Summary, which continues to fetch all the
regular data. Finally, the client hooks into this new functionality by sending a modified
query, which contains the new profile instead of the standard one.

WCS6003_ComponentServices.ppt Page 25 of 30

IBM Software Group

26

Component services © 2008 IBM Corporation

BEGIN_SYMBOL_DEFINITIONS

COLS:CATENTRY_ID=CATENTRY:CATENTRY_ID

COLS:CATENTRY=CATENTRY:*

COLS:CATENTDESC=CATENTDESC:CATENTRY_ID,SHORTDESCRIPTION

END_SYMBOL_DEFINITIONS

BEGIN_XPATH_TO_SQL_STATEMENT

name=/CatalogEntry[(PartNumber=)]+IBM_CatalogEntryWithDescription

base_table=CATENTRY

sql=

SELECT

CATENTRY.$COLS:CATENTRY$,

CATENTDESC.$COLS:CATENTDESC$

FROM

CATENTRY

LEFT OUTER JOIN CATENTDESC ON

(CATENTDESC.CATENTRY_ID = CATENTRY.CATENTRY_ID AND

CATENTDESC.LANGUAGE_ID IN ($CONTROL:LANGUAGES$)),

STORECENT

WHERE

CATENTRY.CATENTRY_ID = STORECENT.CATENTRY_ID AND

STORECENT.STOREENT_ID = $CTX:STORE_ID$ AND

CATENTRY.PARTNUMBER IN (?PartNumber?)

END_XPATH_TO_SQL_STATEMENT

BEGIN_SYMBOL_DEFINITIONS

COLS:CATENTRY_ID=CATENTRY:CATENTRY_ID

COLS:CATENTRY=CATENTRY:*

COLS:CATENTDESC=CATENTDESC:CATENTRY_ID,SHORTDESCRIPTION

COLS:XWARRANTY=XWARRANTY:*

END_SYMBOL_DEFINITIONS

BEGIN_XPATH_TO_SQL_STATEMENT

name=/CatalogEntry[(PartNumber=)]+MyProfile

base_table=CATENTRY

sql=

SELECT

CATENTRY.$COLS:CATENTRY$,

CATENTDESC.$COLS:CATENTDESC$,

XWARRANTY.$COLS:XWARRANTY$

FROM

CATENTRY

LEFT OUTER JOIN CATENTDESC ON

(CATENTDESC.CATENTRY_ID = CATENTRY.CATENTRY_ID AND

CATENTDESC.LANGUAGE_ID IN ($CONTROL:LANGUAGES$)),

STORECENT

LEFT OUTER JOIN XWARRANTY ON

(CATENTRY.CATENTRY_ID = XWARRANTY.CATENTRY_ID)

WHERE

CATENTRY.CATENTRY_ID = STORECENT.CATENTRY_ID AND

STORECENT.STOREENT_ID = $CTX:STORE_ID$ AND

CATENTRY.PARTNUMBER IN (?PartNumber?)

END_XPATH_TO_SQL_STATEMENT

Extending 1-step query
WebSphere Commerce template file Custom template file

This slide shows an example of extending a 1-step configuration. Note that for a 2-step
query you created a new association template and used it in conjunction with an existing
XPath to SQL template. For a 1-step query, you instead create a new XPath to SQL
template, not an association template.

The name of the query is a combination of the new access profile and the XPath key from
the default 1-step query. Extending a 1-step query is similar to adding a new finder method
to an Enterprise Java Bean.

WCS6003_ComponentServices.ppt Page 26 of 30

IBM Software Group

27

Component services © 2008 IBM Corporation

Developing
Component project pattern

Data service layer physical data objects wizard

WebSphere Commerce Developer provides tools that simplify the customization process.

The Design Pattern Toolkit is an Eclipse-enabled template engine for generating
applications based on customizable, model-driven architecture transformations.
WebSphere Commerce uses the Design Pattern Toolkit plug-in for creating WebSphere
Commerce service modules from a simple XML file. By describing the service module in a
specialized XML syntax, the service modules can be generated. This allows you to start
directly with the service module implementation without having to spend time on the setup
and configuration of a service module.

The WebSphere Commerce Physical Service Data Objects Wizard has been added to
WebSphere Commerce Developer to simplify data service layer customization by
automatically generating configuration information. The wizard generates the physical
SDO Java classes for your customizations, along with the required object-relational
metadata and physical to logical business object mediator mappings. These steps are
required if the database schema has changed (new table, new relationships between
existing tables, new columns, changed column types) and for any new service modules
you develop. XML assets that are generated are stored in the component configuration
extension directories and custom physical SDOs are stored inside the
WebSphereCommerceServerExtensionsLogic project.

WCS6003_ComponentServices.ppt Page 27 of 30

IBM Software Group

28

Component services © 2008 IBM Corporation

Problem determination

� Tracing is controlled at a Java package level
�Tracing can be much more granular

�Noteworthy tracing components
�Data service layer

� com.ibm.commerce.foundation.server.services.dataaccess.*

�Command framework

� com.ibm.commerce.foundation.server.command.*

�Client

� com.ibm.commerce.foundation.client.*

Beginning in Feature Pack 2 you now have the ability to enable trace at the Java package
level. This provides you with the ability to trace only the areas of the code you need and
speeds up problem determination by reducing unneeded information in the trace file.

Tracing can be enabled at different points throughout the Java package hierarchy as
shown here. You can enable data service layer tracing for diagnosing configuration issues
with the data service layer. Command Framework tracing is useful for diagnosing the
processing of the request (including the request and response BODs). Client tracing is
used to diagnose configuration issues when the client sends the request to the server.

Tracing is enabled through the WebSphere Application Server administration console.

WCS6003_ComponentServices.ppt Page 28 of 30

IBM Software Group

29

Component services © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WCS6003_ComponentServices.ppt

This module is also available in PDF format at: ../WCS6003_ComponentServices.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WCS6003_ComponentServices.ppt Page 29 of 30

IBM Software Group

30

Component services © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Java, JDBC, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WCS6003_ComponentServices.ppt Page 30 of 30

