
DynamicAssembler_BusinessServiceRepository.ppt

This presentation looks deeper into the foundation pack, providing details about the

dynamic assembler and business services repository.

Page 1 of 28

DynamicAssembler_BusinessServiceRepository.ppt

This presentation is focused on providing a basic understanding of the dynamic

assembler, business polices and business services repository. First you will get an

introduction to the dynamic assembler. Second you will look into context, content and

contract and how they help define business policies and assertions. Next you will learn the

basic concepts about the business services repository. In the end there is a walk through

of dynamic assembly business scenario.

Page 2 of 28

DynamicAssembler_BusinessServiceRepository.ppt

What does dynamic assembly mean? Lets look into the first the meaning of assembly.

Assembly can be defined as the creation of bindings based on the process

implementation’s requirement to create a meaningful solution. It is the creation of bindings

for a service request to a service provider based on a predefined process implementation.

Therefore, it can be said that the binding between the service request and service provider

is static and inflexible to change depending upon the business scenario. If the assembly

was done at runtime, it is then called dynamic assembly.

This ability to assemble dynamically at runtime makes the business process flexible to

adapt to different business scenarios. It further enables easier maintenance, loose

coupling and extracts the various decision points into business policies. The WebSphere

Business Services Fabric uses the Dynamic Assembler component to provide this

dynamic assembly.

Page 3 of 28

DynamicAssembler_BusinessServiceRepository.ppt

The WebSphere Business Services Dynamic Assembler determines the best service

provider or endpoint that is to be used at runtime based on the incoming business request,

business environment and context of the request. It analyzes the incoming business

service request and the related relevant policies as per the operating context and from that

assembles one composite policy or selection policy. Once the selection policy has been

determined, candidate endpoints are chosen that match the criteria established by the

selection policy. These candidates are then ranked and tiered. The most appropriate

endpoint candidate is selected as the binding for the current request. The business service

request is then sent to that particular endpoint or service provider to be processed.

The Business Dynamic Assembler extends the WebSphere Process Server runtime by

introducing a metadata driven dynamic service assembly engine. The Dynamic Assembler

is packaged as a Service Component Architecture (SCA) component and is managed by

the SCA runtime within the WebSphere Process Server.

There are extensions available for the dynamic assembler component giving users more

visibility and control in the dynamic selection process run by this engine.

Page 4 of 28

DynamicAssembler_BusinessServiceRepository.ppt

This chart gives a more pictorial high level view of the dynamic assembler workflow. On

the left side are listed the service providers that connect or invoke the business process

through various channels like portals and mobiles. The dynamic assembler upon receiving

the business request takes into account the model dimensions and the content dimensions

along with the request to identify all applicable business policies in the business service

repository. It consolidates these policies into selection policy and establishes a contract

based on this policy. The dynamic assembler then looks at the capabilities of the set of

available endpoints and chooses the endpoint or service provider that best satisfies that

particular business request. The business request is then transmitted to the selected

service provider to complete the transaction; thereby completing an end to end execution

of the workflow.

Page 5 of 28

DynamicAssembler_BusinessServiceRepository.ppt

This chart describes how the dynamic assembler applies business policies and selects an

endpoint. The first step in the process is to build a selection context for the incoming

request. This means it assembles personalized information about the service request such

as the channel, user, group, role or organization. Once the dynamic assembler defines a

selection context it looks into the business service repository for the all the business

policies that apply to the selection context. The policies are then processed on the context

and the content of the incoming request which results in selection contract. Next the

dynamic assembler looks into the business service repository to find all the candidate

endpoints that can satisfy this contract. The candidate endpoints are then tiered and

ranked and the most suitable endpoint is selected that satisfies that business scenario.

The SOAP message is then sent to that selected endpoint to complete the transaction.

Page 6 of 28

DynamicAssembler_BusinessServiceRepository.ppt

The last slide walked through the end point selection process. In that process you came

across concepts like context, content, contract and policies. In the next few slides, you will

look deeper into these concepts in terms of what they mean in WebSphere Business

Services Fabric. First let’s look at context.

Context is extra data about a request which gives the dynamic assembler information to

make intelligent decisions on handling the request. It uses this information to look into the

Business Service Repository to identify all the policies that are applicable to a particular

request. The context includes information such as the context identifier, which is the WS-

Context identifier. The service interface which is the interface name universal resource

identifier or URI of the interface which needs to be invoked. The subscription identifier is

the subscription identifier URI of the user's subscription of the Business Service. This

identifier can be seen in the Business Services Subscriber Manager during subscription

time. The debug flag which is a boolean flag that clients can use to request the endpoint

computation. This is only for SOAP requests. Lastly, additional content properties which

are additional context properties can be specified by using properties of content based

assertions extensions. Examples of context information are the application, business

service interface, user, role or organization associated with the request.

Page 7 of 28

DynamicAssembler_BusinessServiceRepository.ppt

Next you look into content. By definition it is information housed in the payload from the

requester. This includes both the header and body of the request message. The dynamic

assembler uses this information in the selection of endpoints and execution of business

policies. WebSphere Business Services Fabric provides the ability to the add content into

the requesters message that is then for routing the message appropriately by the dynamic

assembler. This is called content- based routing. The addition or extension to content can

be done through the fabric modeling tool or through business space. Examples of content

are claim value, line of business and account limit.

Page 8 of 28

DynamicAssembler_BusinessServiceRepository.ppt

You have now covered context and content. Next you look into contract. This will give the

three C’s or the basics of creating business policies. Contract is defined as a set of

requirements or assertions that have to be met by service provider at runtime based on

the context and content. It describes the capabilities, restrictions and preferences for a

composite business application or business service. The contract is defined at runtime and

is a combination of the metadata and policies that are relevant for the particular

circumstances. If a service provider or endpoint satisfies this set of requirements or

contract it is eligible to process the incoming request. The contract can be defined

explicitly or implicitly through endpoint assertions. Examples of contract is hours of

operation.

Next you shall look into the basics of a business policy and how content, context and

contract help define business policies.

Page 9 of 28

DynamicAssembler_BusinessServiceRepository.ppt

A policy in the fabric represents a key piece of domain knowledge that must be

represented well, that is, it is easily understood while also having the ability to be applied

directly to a given situation that has to be met when a consumer requests a service. A

policy is a set of assertions that represent requirements, constraints or capabilities for a

business service. For example, "a business service must cost less than five dollars per

transaction," is the example of a policy. At run time, dynamic assembler determines the set

of policies that are relevant for the request, and then locates the best endpoints that meet

these requirements. A policy consists of three sections; the context of service request, the

request payload and the requirements that have to be met. Further, each policy is targeted

to a model dimension much as application suites, applications, business services,

interfaces and other types of resources. These policies are authored in composition studio.

Page 10 of 28

DynamicAssembler_BusinessServiceRepository.ppt

"For" and "When" and "then" are often used as programming commands. So "A policy can

be thought of as a "For, when, and then" condition. That is, for a particular target, 'when'

the policy conditions are satisfied, 'then' establish this contract." Now the target for the

policy can be any model dimension.

Page 11 of 28

DynamicAssembler_BusinessServiceRepository.ppt

Composition studio provides a simple wizard approach to creating policies. The screen

capture provided is the create policy screen. Here you define the project, name,

namespace and target this policy is associated with. Optionally effective dates can be

established for the policy. The dynamic assembler takes all this information into account

when determining which policies applies to a given business request.

Page 12 of 28

DynamicAssembler_BusinessServiceRepository.ppt

You have now seen what a policy is and the role assertions play in creating policies. Next

you shall take a deeper look into assertions. Assertions describe the capabilities of an

endpoint or a contract of a policy. At run time, the Business Services Dynamic Assembler

uses these characteristics to find the best suited endpoint or service realization for a

consumer based on their business requirements or policies. Assertions can be attached to

endpoints to specify a particular characteristic of an endpoint, for example, maximum

transaction time available. Assertions are also used in policy contract. During run time, if a

policy is applicable then the contract is applied. When the policy target, context, and

content conditions are satisfied, the contract is enforced. Assertions on a policy can either

be used for endpoint selection during run time or for other non-endpoint selection

purposes, like transformation assertion or data format assertion. WebSphere Business

Services Fabric provides further flexibility in using assertions. The fill from context option

enables an assertion’s properties to be filled from property values in the context. The

assertion acts like a template on a policy and has its values supplied dynamically from the

context at run time. It is a recommended best practice to use a context specification to

ensure that an assertion with fill from context option checked and has its value supplied in

the context at run time.

Page 13 of 28

DynamicAssembler_BusinessServiceRepository.ppt

You can define these assertions or capabilities along five dimensions: performance,

reliability, interoperability, security, and manageability. The most common type of assertion

that can be extended is the Content Based Assertion. It allows assertions based on

service request message content to be defined naturally in terms of the content.

Assertions in the core Business Service Model belong to the namespace

http://www.webifysolutions.com/2005/10/catalog/assertion#.

Page 14 of 28

DynamicAssembler_BusinessServiceRepository.ppt

Content based assertions as you saw is the most commonly used type of assertion. It

provides the ability to use information from the incoming message to make selection

decision in the dynamic assembler. It extends the content based assertion class. These

extensions are done by extending the fabric business model using the fabric modeling

tool. From version 6.2 business users can use the business space widgets to accomplish

the same task. Content based assertions can be used in different ways to influence

endpoint selection such as: First, a policy condition can include expressions involving

asserted properties of the assertion, for example, AccountSize is greater than one million.

Second, a content-based assertion can be used in a policy contract like any other

assertion with fixed values for its assertion properties. And lastly a content-based

assertion can appear in the selection policy with the values injected at run time from the

message content.

Page 15 of 28

DynamicAssembler_BusinessServiceRepository.ppt

Certain assertions can only be used for endpoint selection or in policy but not both.

Endpoint assertions are hours of operation and propagate policy assertion. Policy

assertions is a reject always assertion. The exact usage for each assertions can be found

in the composition studio description of the assertion in the assertion explorer. Usage can

be endpoint, policy or both.

Page 16 of 28

DynamicAssembler_BusinessServiceRepository.ppt

This presentation begins with providing insight into the business services repository.

Page 17 of 28

DynamicAssembler_BusinessServiceRepository.ppt

The WebSphere Business Services Fabric Business Services Repository is a standards-

based, enterprise SOA metadata repository for business service descriptions, subscribers

and policies. It enables the rich description, discovery and federation of data across

universal description, discovery and integration registries, repositories and Lightweight

Directory Access Protocol systems. This module provides version control, ability to

segment business services meta-data by namespace, automated rule based validation on

client and server, ability to do fine-grained roll-backs, conflict detection during collaborative

development, powerful search, dependency, and impact analysis.

Page 18 of 28

DynamicAssembler_BusinessServiceRepository.ppt

The Business Service Repository should not be confused or substituted for the

WebSphere Service Registry and Repository. The Business Service Repository is local to

the WebSphere Business Services Fabric and stores business related policies, semantics,

metadata and subscriptions. It is not exposed publically. The WebSphere Service Registry

and Repository alternatively is a central repository that is publically accessible and stores

technical metadata associated with infrastructure implementation like WSDL, XSD and

WS-Policy. As stated earlier the data from WebSphere Service Registry and Repository

can be federated into the Business Service Repository and used while creating business

policies in composition studio.

Page 19 of 28

DynamicAssembler_BusinessServiceRepository.ppt

The Web tools in Web Sphere Business Services Fabric provides users the ability to

search Business Services Repository and view the details of resources, subscribers and

policies through powerful filtering options. After the search results are retrieved, you can

view the details of any given policy, subscriber, or resource by clicking the name link in the

results table. The details page helps provide you with detailed information on the

repository entities that is the resources, subscribers and policies. The details page also

contains the list of the objects linked to the chosen resource, subscriber or policy. From

the details page, you can click links to view the author’s information, or information on

other projects that are associated with the selected resource, subscriber or policy.

Page 20 of 28

DynamicAssembler_BusinessServiceRepository.ppt

The next set of slides will put together all the concepts that have been covered so far and

apply them into a real business scenario.

Page 21 of 28

DynamicAssembler_BusinessServiceRepository.ppt

The business scenario being discussed deals with a loan application solution in the
banking industry. Let’s examine the landscape for assembling this SOA solution. To start
off with, there needs to be some services for your discussion. Let’s say there are a couple
of account inquiry service endpoints, a couple of endpoints that deliver loan application
status, and a couple of endpoints that provide credit report information.

One of the things with enterprise software is that services almost always come with some
constraints around their use. Let’s talk about some example constraints. Let’s say the
account inquiry service runs on a system that needs to go down a portion of the day for
maintenance, and yet the business requires 24 hours a day seven days a week
operations. How is that dealt with? The account inquiry service is mirrored, and by doing
so – there is one service available from 9am – 5pm and another available from 5pm –
9am. That’s one example of a constraint – Hours of Operation.

Another example of a constraint might be the product type that you’re dealing with. You
will almost certainly deliver your loan application status differently depending on whether
you are dealing with you’re auto or home loan product. So that is another example –
Product Line or Product Type.

Finally, you can have some constraints around business level Performance. Let’s say you
have one credit report service that responds in less than 30 seconds and another that
responds in less than 90 seconds. Maybe you add cost in there as well. Therefore the
service responding in less than 30 seconds costs you five dollars a transaction, whereas
the other costs just one dollar.

All of these are examples of constraints. For the discussion here, there is only one
constraint type per service shown, but in practice you can have multiple constraints per
service.

Page 22 of 28

DynamicAssembler_BusinessServiceRepository.ppt

Next let’s look at the potential consumers of this SOA solution. Again, this is a banking

example, so let’s look at some roles that make sense for a banking solution. Let’s say

there is a Customer role, a Branch role, and a corporate Customer Service Representative

role.

The roles can also be duplicated. Let’s say that there are branch users in different

geographies; that should be treated differently, in that case you need a variety of different

branch roles to account for that variability.

Page 23 of 28

DynamicAssembler_BusinessServiceRepository.ppt

This lays out the solution consumers. The next thing that needs to be considered is the

channels that the solution is delivered through. A simple application might only need to be

delivered through for example a portal channel. Other examples of channels might be an

Integrated Voice Response channel, a paper or fax or electronic document channel.

Maybe there is a business partner gateway setup for interactions with the partner network

that might have a proprietary data format channel. Last, there can be a channel for

wireless interactions from a smart phone.

So, now the landscape has been laid out and there is quite a bit of variability to deal with.

How does one implement a SOA solution so that it can respond to and operate against all

of this variability? And what if things change over time, then how does the solution deal

with that?

Page 24 of 28

DynamicAssembler_BusinessServiceRepository.ppt

That is where you can use dynamic assembly. With the business services approach, you’ll be collecting
information about all of this variability and modeling it in your Business Services Repository. You can then
use this information to understand how the business services are being used and which operational
capabilities should be used based on different invocation contexts.

Back to the scenario, the first thing you’ll want to do is gain an appraisal of all of the technical services that
you’re going to use in your solution. You do this by federating technical service details from WebSphere
Service Registry and Repository into the Business Services Repository. Next, you want to add metadata
around these technical service capabilities to describe their business level usage. Let’s start by adding the
constraints that were talked about earlier. Therefore you can add hours of operation for each of the account
inquiry services, the line of business for each of the loan application status services and the response time
for each of the credit report services. You can also add some constraints around the different channels and
roles that have access to these services. Next you want to associate each fine grained end point with a
higher level coarse grain business service without going in to the metadata level details. For example you
have just one loan application status business service with out going into the line of business details. Another
example is just one account inquiry business service without differentiating between two different hours of
operations for each of the endpoints.

In addition to associating the endpoints to the business service you need to establish business policies also.
For example, if you need to establish an elite access system for the branches such that certain branches can
have a gold status, silver status or bronze status. Now for gold level branch that serves the high profile client
you can want to provide a faster response time at a higher cost while providing a slower less expensive
response time to the silver and bronze level branches. These business policies are created in the business
service repository.

If you had to create a business process for the loan application status you now have the ability to create
simpler business process by leveraging the metadata and business policies. The business decision points
have now been abstracted and so the process will not need separate paths for example the type of loan
application or the response time for the credit report service. Instead you can create a simple step business
process that leverages the higher level business services with dynamic assembler binding the service
endpoint based on the business policies at runtime. This is not a complete solution but it is sufficient for the
discussion. Finally, you’re ready to deploy and use this business process. The solution is deployed on
WebSphere Process Server that contains the dynamic assembler.

Page 25 of 28

DynamicAssembler_BusinessServiceRepository.ppt

Next you will observe this simpler business process at runtime and get an understanding

of how the business services with the underlying dynamic assembler help adapt each

business request to the right endpoint. Let’s say the gold branch invokes the business

process for a loan application through the portal. The first step of the request is handled by

account inquiry business service. The context of this business service that is the service

identifier, gold access level and the portal channel are sent to the dynamic assembler. The

dynamic assembler then scans the business service repository for business policies

associated with this context. It will discover the hours of operation business policy and

apply that. The next step is to scan the business service repository for possible endpoints.

The dynamic assembler will find two endpoints, however because of the hours of

operation business policy will select only one depending on the time of the day. Hence the

actual endpoint invocation is abstracted from the business process which makes the

process more flexible and loosely coupled. Similarly in the next step the dynamic

assembler will set the line of business metadata to auto or home from the incoming

content or request payload and then invoke the appropriate endpoint.

Page 26 of 28

DynamicAssembler_BusinessServiceRepository.ppt

In the end, let’s take a look at how powerful this can be as things change over time. Let’s

take the example of a new service endpoint being added for the credit report service. This

endpoint performs just the same as the existing endpoint that costs five dollars a

transaction, but comes at a cost of just one dollar a transaction. Unfortunately, this service

endpoint is only available for transactions that originate in Pennsylvania and New York.

With the business services fabric, you can add this new endpoint to the business services

repository and describe its constraints. Once published, the endpoint is considered in

invocations that are processed by the dynamic assembler. Notice you did not have to add

new workflow in the business process, change code or even redeploy the business

process in order to add this new endpoint and establish it’s constraints.

At runtime when a branch from new york will invoke the credit report business service the

dynamic assembler will route the message to this new endpoint based on the fact that it

met the state constraint. You should now have a high level understanding of dynamic

assembler.

Page 27 of 28

DynamicAssembler_BusinessServiceRepository.ppt Page 28 of 28

