

© 2010 IBM Corporation

IBM WebSphere Application Server
Feature Pack for XML

V1.0.0.3 updates

This presentation will go through the Feature Pack for XML V1.0.0.3 updates.

XMLFEP_v1003_updates.ppt Page 1 of 38

Table of contents

� XML schema

� XQuery schema import feature

� XQuery schema validation feature

� Related API

2 V1.0.0.3 updates © 2010 IBM Corporation

Here is the agenda for this presentation.

XMLFEP_v1003_updates.ppt Page 2 of 38

Feature Pack for XML support for XQuery

� The IBM WebSphere Application Server for XML has minimal conformance based on the
XQuery 1.0 specification

� It supports the data model conformance based on XQuery 1.0 and XPath 2.0 Data Model
(XDM)

� Version 1.0 of the feature pack offered the XQuery specific optional features:
– Full axis feature
– Serialization feature

� Version 1.0.0.3 of the feature pack supports the optional features of V1.0 and adds
XQuery optional features of schema awareness which includes:

– Schema import feature
– Schema validation feature

� Note: XSLT already supported schema awareness in version 1.0 of the feature pack

3 V1.0.0.3 updates	 © 2010 IBM Corporation

The Feature Pack for XML delivers critical technology that enables adoption of key XML
standards and principles. The Feature Pack for XML provides application developers with
support for the W3C XML standards XSLT 2.0, XPath 2.0, and XQuery 1.0. The Feature
Pack for XML also provides the IBM XML API in support of these standards. The API
invokes a runtime engine that is capable of executing XPath 2.0, XSLT 2.0, and XQuery
1.0 and manipulating the returned XML data. The XML API across the XML programming
model family of languages offers consistent execution and data navigation while allowing
access to existing Java logic.

The IBM WebSphere Application Server for XML has minimal conformance based on the
XQuery 1.0 specification. It supports the data model conformance based on XQuery 1.0
and XPath 2.0 Data Model (XDM). XQuery specification includes optional features. The
Feature Pack for XML V1.0 includes the optional features of Full Axis and Serialization.
The feature pack V1.0.0.3 supports the optional features of V1.0 and includes the XQuery
optional features Schema Awareness which includes Schema Import Feature, and
Schema Validation Feature. Schema Awareness for XSLT is already supported in V1.0 of
the feature pack.

XMLFEP_v1003_updates.ppt	 Page 3 of 38

© 2010 IBM Corporation4 V1.0.0.3 updates

XML schemaXML schema

Section

The next few slides will go over XML Schema.

XMLFEP_v1003_updates.ppt Page 4 of 38

XML schema

� An XML schema consists of components such as type definitions and element declarations

� Can be used to assess the validity of well-formed element and attribute information items

� Augmented infoset called post-schema-validation infoset, or PSVI

5 V1.0.0.3 updates © 2010 IBM Corporation

A schema is an XML document that defines the content and structure of one or more XML
documents. XML Schema Definition (XSD) can be used to express a set of rules to which
an XML document must conform in order to be considered 'valid' according to that
schema. An XML schema consists of a set of schema components element, attribute
declarations, complex and simple type definitions.

An XML Schema consists of components such as type definitions and element
declarations. An XML schema can define data types for elements and attributes such as
integer, date, decimal, string and user defined Types and complex Element Types. XML
schema also allows the definition of length and patterns for string values, and supports
type inheritance and derived data types. These can be used to assess the validity of well-
formed element and attribute information items, and furthermore can specify
augmentations to those items and their descendants. This augmentation makes explicit
information which might have been implicit in the original document, such as normalized or
default values for attributes and elements and the types of element and attribute
information items. You refer to the augmented infoset which results from conformant
processing as defined in this specification as the post-schema-validation infoset, or PSVI.

Schema-validity assessment has two aspects:

One is determining local schema-validity, that is whether an element or attribute
information item satisfies the constraints embodied in the relevant components of an XML
Schema;

The second is synthesizing an overall validation outcome for the item, combining local
schema-validity with the results of schema-validity assessments of its descendants, if any,
and adding appropriate augmentations to the infoset to record this outcome.

XMLFEP_v1003_updates.ppt Page 5 of 38

XML schema languages

� DTDs and XML schema
– With similar goals to define

• Types of literal (terminal) data
• Names of elements and attribute
• “Vertical” and “horizontal” structure of elements

� Example:

<xs:element name="book" type="Book"/>

<xs:complexType name="Book">

<xs:sequence>

<xs:element name="title" type="xs:string"/>

<xs:element name="author" type="xs:string"/>

<xs:element name="price" type="Price"/>

</xs:sequence>

<xs:attribute name="isbn" type="ISBN"/>

</xs:complexType>

6 V1.0.0.3 updates © 2010 IBM Corporation

An XML schema or type describes the grammar for a class of XML documents and serves
as a contract between applications that produce and consume XML data. Typically, an
XML schema specifies the grammar for XML documents in a particular application
domain. There are a variety of XML schema languages such as DTDs and XML Schema.
Interfaces provide varying support for accessing schema information. The schema
typically specifies the types of literal data in the documents, the names of elements and
attributes, and the permissible vertical (ancestor) and horizontal (sibling) structure
between elements.

Schemas are critical for validation as they check that a given document corresponds to
some expected structure. Schemas are useful to help humans to understand the structure
of XML documents. They are like a map to make the navigation easier. Schemas provide
information about the structure of the document (nesting relationships, nature of the
element data, and so on.). This information can be used to store the data more efficiently.
This slide shows an example of an XML schema. You can see the constructs that reveal
the permissible structure of a book element. The operators ‘sequence’, ‘choice’ and
repeated sequences are used to construct complex structures. Attributes are implicitly
unordered. They typically follow the definition of an element’s children elements and
instances of attributes can occur in any order in a document.

XMLFEP_v1003_updates.ppt Page 6 of 38

Validated XML

� Validation : Document and Schema -> PSVI
– Elements and attributes “annotated” with types
– PSVI input to XQuery 1.0, XPath 2.0, XSLT 2.0
– Well-formed, un-validated documents annotated with default types

� Example:
<book[Book] isbn[ISBN]="ISBN 1565114302">

<title[xs:string]>No Such Thing as a Bad Day</title>

<author[xs:string]>Hamilton Jordan</author>

<price[Price] currency[Currency] ="USD">17.60</price>

</book>

7 V1.0.0.3 updates © 2010 IBM Corporation

XQuery 1.0, XPath 2.0, and XSLT 2.0 are all “type-aware” query languages, meaning the
languages can observe, preserve and respect the types associated with input and output
documents. Validation is the process that takes an (untyped) input document and an
associated schema, and checks that the document conforms to the specified schema. A
more formal definition is that the document is an instance of the languages denoted by the
grammar of the schema. As output, validation produces a “post-schema validated infoset”
or PSVI.A PSVI is an instance of the document in which each element and attribute node
has been annotated with the Schema type against which it was successfully validated. The
XPath 2.0 data model (which is also the data model of XQuery 1.0 and XSLT 2.0) is
defined in terms of the PSVI.

The type annotations in red are not visible in the XML document – they are used here and
in the rest of the presentation to denote the types that are associated with the
corresponding values after validation.

Well-formed documents with no corresponding schemas can also be queried. These
documents are labeled with default types – well-formed elements are labeled with
xs:untyped and well-formed attributes are labeled with xs:untypedAtomic, which indicate
that the elements (attributes) contain unvalidated content(text).

XMLFEP_v1003_updates.ppt Page 7 of 38

Extend schema

� Define and extend industry standard schemas

� XQuery is a superset of XPath 2.0 and benefits from the same types of schema-aware

expressions as in XPath 2.0:

– In XPath 1.0,	 search for every possible substitution in the group and every possible
complex type derivation type

– In XPath 2.0, due to its schema awareness you can search for the substitution group
head and complex type base type

– Example:
• //element(*, tns:AddressType)/postalCode returns the postalCode of any

elements with a type of AddressType
• If the document had both BillingAddress and MailingAddress, both are returned
• With XPath 1.0, you have to look for both //tns:BillingAddress and

//tns:MailingAddress

8 V1.0.0.3 updates	 © 2010 IBM Corporation

It is common to define and extend industry standard schemas through XML schema
constructs of substitution groups and complex type derivation by extension. Since XQuery
is a superset of XPath 2.0 it benefits from the same types of schema-aware expressions
as in XPath 2.0. In XPath 1.0, you have to search for every possible substitution in the
group and every possible complex type derivation type. This is impossible if you’re writing
an application that processes data on the group and base types without knowledge of how
eventual users might extend the groups and types. In XPath 2.0, due to its schema
awareness you can search for the substitution group head and complex type base type.
This will work even if users later add to the substitution group and extend the base
complex type. An example of this is shown above.

XMLFEP_v1003_updates.ppt	 Page 8 of 38

© 2010 IBM Corporation9 V1.0.0.3 updates

XQuery schema import featureXQuery schema import feature

Section

The next few slides will go over the XQuery schema import feature.

XMLFEP_v1003_updates.ppt Page 9 of 38

XQuery schema import feature

� Permits a schema import to be included in the prolog of a query

� Allows the query to refer to types, elements, and attributes declared in imported schemas

� In Feature Pack for XML V1.0, attempting to prepare a query with a schema import in its
prolog raises error:

–	 IXJXE0862E: [ERR XQ10415][ERR XQST0009] The processor does not support
schema import

� Including a schema import is optional (alternatively, it can be registered with the XFactory)
but recommended for portability

10 V1.0.0.3 updates	 © 2010 IBM Corporation

A query consists of a prolog followed by a query body. A prolog is an optional section that
is a series of declarations and imports that define the processing environment. A prolog is
organized into two parts. The first part of the prolog consists of setters, imports,
namespace declarations, and default namespace declarations. The Feature Pack for XML
V1.0.0.3 supports imports of schemas. The second part of the prolog consists of
declarations of variables, functions, and options. These declarations appear at the end of
the prolog because they can be affected by declarations and imports in the first part of the
prolog. In V1.0 of the feature pack a query with a schema import in the prolog raises an
error. In version 1.0.0.3 of the feature pack, schema import is supported. This allows the
query to refer to types, elements and attributes that are declared in the imported schemas.
Including a schema import is optional. You can also register the schema with the
XFactory.

XMLFEP_v1003_updates.ppt	 Page 10 of 38

XML file needed for examples

<?xml version="1.0" encoding="UTF-8"?>

<lib:mycollection

xmlns:lib="http://www.example.org/library"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/library library.xsd ">

<lib:book title="The Complete Works of William Shakespeare">

<lib:author>William Shakespeare</lib:author>

<lib:editor>Jonathan Bate</lib:editor>

</lib:book>

<lib:dvd title="Hamlet">

<lib:actor>Judi Dench</lib:actor>

<lib:actor>Kenneth Branagh</lib:actor>

<lib:director>Kenneth Branagh</lib:director>

<lib:writer>William Shakespeare</lib:writer>

<lib:writer>Kenneth Branagh</lib:writer>

</lib:dvd>

</lib:mycollection>

borrowed_items.xml

11 V1.0.0.3 updates © 2010 IBM Corporation

Here is an XML file. It lists a library collection that includes both books and DVDs. The
book element includes child elements such as author and editor and a title attribute. The
DVD element includes child elements such as actor, director, and writer and a title
attribute.

XMLFEP_v1003_updates.ppt Page 11 of 38

Schema file needed for examples

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/library"

elementFormDefault="qualified" xmlns:lib="http://www.example.org/library">

<element name=“mycollection">

<complexType>

<sequence maxOccurs="unbounded">

<choice>

<element name="book" type="lib:resourceType" />

<element name="dvd" type="lib:resourceType" />

</choice>

</sequence>

</complexType>

</element>

<complexType name="resourceType">

<sequence maxOccurs="unbounded">

<element ref="lib:contributor" />

</sequence>

<attribute name="title" type="string" />

</complexType>

<element name="contributor" type="string" />

<element name="author" type="string" substitutionGroup="lib:contributor" />

<element name="actor" type="string" substitutionGroup="lib:contributor" />

<element name="editor" type="string" substitutionGroup="lib:contributor" />

<element name="writer" type="string" substitutionGroup="lib:contributor" />

<element name="director" type="string" substitutionGroup="lib:contributor" />

</schema>

library.xsd

12 V1.0.0.3 updates © 2010 IBM Corporation

Here is the schema file associated with the XML file on the previous slide. Notice the
declaration of the mycollection and resourceType. The mycollection element can have
child elements of book or DVD that are type resourceType. The resourceType will have an
attribute title and contributor child elements such as author, actor, editor, writer and
director.

XMLFEP_v1003_updates.ppt Page 12 of 38

© 2010 IBM Corporation 13 V1.0.0.3 updates

get_titles.out

Example 1: Schema import in XQuery and result

<?xml version="1.0" encoding="UTF-8"?>

<title type="dvd">Hamlet</title>

<title type="book">The Complete Works of William Shakespeare</title>

get_titles.xq

import schema namespace lib="http://www.example.org/library" at "library.xsd";

for $title in lib:mycollection/element(*,lib:resourceType)/@title

order by $title

return <title type="{ local-name($title/..) }">{ string($title) }</title>

This slide shows the query and result. The query includes the import schema of the
schema on the last slide. The query uses a type from the imported schema to select
lib:resourceType elements. This is useful in case types of resources other than books or
DVDs are added to the schema later. The schema import sets up the prefix “lib” for use in
the query and specifies a location hint to help the processor locate the schema. Notice
that both the titles of the DVD and book are in the output.

XMLFEP_v1003_updates.ppt Page 13 of 38

Example 2: Schema import in XQuery

import schema default element namespace "http://www.example.org/library";

for $contribName in distinct-values(mycollection/element(*,resourceType)/schema
element(contributor))

let $contrib := mycollection/element(*,resourceType)/schema
element(contributor)[.=$contribName]

order by $contribName

return

<contributor name="{ $contribName }">

{

for $resource in $contrib/..

return

element { local-name($resource) }

{

$resource/@*,

for $contribution in $resource/schema-element(contributor)

where $contribution = $contribName

return

<role type="{ local-name($contribution) }"/>

}

}

</contributor>

group_contributors.xq

14 V1.0.0.3 updates © 2010 IBM Corporation

Here is another example of a query that shows the use of import schema. In this case, the
query uses an element declaration from the imported schema to select any elements that
belong to its substitution group. The schema import sets up the schema namespace as
default so that no prefix is required in the query (this is necessary for schemas that have
no target namespace). The schema import does not provide a location hint, so the schema
must be registered or supplied by an XSchemaResolver. This will later be explained in the
API section of this presentation.

XMLFEP_v1003_updates.ppt Page 14 of 38

Example 2: Output

<?xml version="1.0" encoding="UTF-8"?>

<contributor xmlns="http://www.example.org/library" name="Jonathan Bate">

<book title="The Complete Works of William Shakespeare">

<role type="editor"/>

</book>

</contributor>

<contributor xmlns="http://www.example.org/library" name="Judi Dench">

<dvd title="Hamlet">

<role type="actor"/>

</dvd>

</contributor>

<contributor xmlns="http://www.example.org/library" name="Kenneth Branagh">

<dvd title="Hamlet">

<role type="actor"/>

<role type="director"/>

<role type="writer"/>

</dvd>

</contributor>

<contributor xmlns="http://www.example.org/library" name="William Shakespeare">

<book title="The Complete Works of William Shakespeare">

<role type="author"/>

</book>

<dvd title="Hamlet">

<role type="writer"/>

</dvd>

</contributor>

group_contributors.out

15 V1.0.0.3 updates © 2010 IBM Corporation

The result of the query on the last slide using the XML and schema earlier in the
presentation is shown. (pause for time to review)

XMLFEP_v1003_updates.ppt Page 15 of 38

© 2010 IBM Corporation16 V1.0.0.3 updates

XQuery schema validation featureXQuery schema validation feature

Section

The next few slides will go over the XQuery Schema Validation Feature.

XMLFEP_v1003_updates.ppt Page 16 of 38

XQuery schema validation feature

� Permits a validate expression to appear in a query, which allows validation of document and
element nodes

� In Feature Pack for XML V1.0, attempting to prepare a query that includes a validate
expression raises error:

– IXJXE0863E: [ERR XQ10415][ERR XQST0075] The processor does not support
schema validation

17 V1.0.0.3 updates	 © 2010 IBM Corporation

In V1.0 of the feature pack a query that attempted to use the validation feature raises an
error. In version 1.0.0.3 of the feature pack schema validation for XQuery is supported.
This allows a validate expression to appear in a query, which in turn allows validation of
document and element nodes.

XMLFEP_v1003_updates.ppt	 Page 17 of 38

XML file needed for examples

<?xml version="1.0" encoding="UTF-8"?>

<lib:mycollection

xmlns:lib="http://www.example.org/library"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/library library.xsd ">

<lib:book title="The Complete Works of William Shakespeare">

<lib:author>William Shakespeare</lib:author>

<lib:editor>Jonathan Bate</lib:editor>

</lib:book>

<lib:dvd title="Hamlet">

<lib:actor>Judi Dench</lib:actor>

<lib:actor>Kenneth Branagh</lib:actor>

<lib:director>Kenneth Branagh</lib:director>

<lib:writer>William Shakespeare</lib:writer>

<lib:writer>Kenneth Branagh</lib:writer>

</lib:dvd>

</lib:mycollection>

borrowed_items.xml

18 V1.0.0.3 updates © 2010 IBM Corporation

Here is an XML file. It lists a library collection that includes both books and DVDs. The
book element includes child elements such as author and editor and a title attribute. The
DVD element includes child elements such as actor, director, and writer and a title
attribute.

XMLFEP_v1003_updates.ppt Page 18 of 38

Schema file needed for examples

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/library"

elementFormDefault="qualified" xmlns:lib="http://www.example.org/library">

<element name=“mycollection">

<complexType>

<sequence maxOccurs="unbounded">

<choice>

<element name="book" type="lib:resourceType" />

<element name="dvd" type="lib:resourceType" />

</choice>

</sequence>

</complexType>

</element>

<complexType name="resourceType">

<sequence maxOccurs="unbounded">

<element ref="lib:contributor" />

</sequence>

<attribute name="title" type="string" />

</complexType>

<element name="contributor" type="string" />

<element name="author" type="string" substitutionGroup="lib:contributor" />

<element name="actor" type="string" substitutionGroup="lib:contributor" />

<element name="editor" type="string" substitutionGroup="lib:contributor" />

<element name="writer" type="string" substitutionGroup="lib:contributor" />

<element name="director" type="string" substitutionGroup="lib:contributor" />

</schema>

library.xsd

19 V1.0.0.3 updates © 2010 IBM Corporation

Here is the schema file associated with the XML file on the previous slide. Notice the
declaration of the mycollection and resourceType. The mycollection element can have
child elements of book or DVD that are type resourceType. The resourceType will have an
attribute title and contributor child elements such as author, actor, editor, writer and
director.

XMLFEP_v1003_updates.ppt Page 19 of 38

Example: Schema validation in XQuery – Validate entire output
document

import schema namespace lib="http://www.example.org/library" at "library.xsd";

declare variable $resourceType external;

declare variable $resourceTitle external;

declare variable $contributorType external;

declare variable $contributorName external;

validate strict

{

element lib:mycollection

{

element { concat("lib:", $resourceType) }

{

attribute title { $resourceTitle },

element { concat("lib:", $contributorType) } { $contributorName }

}

}

}

group_contributors.xq

20 V1.0.0.3 updates © 2010 IBM Corporation

The example here will validate the entire output document. The query here creates a
lib:mycollection element and its content and validates it against the schema file on the
previous slide. It assumes that variables resourceType, resourceTitle, contributorType,
contributorName are bound in the dynamic context. If resourceType is not one of “book” or
“dvd” or contributorType is not the local name of one of the elements defined to be in the
substitution group of lib:contributor, an error is raised.IXJXE1005E: [ERR 0770][ERR
XQDY0027]. The 'validate' expression has the mode 'strict', and schema validity
assessment concludes that the validity of the element is not valid or unknown.

XMLFEP_v1003_updates.ppt Page 20 of 38

Variable values bound in the dynamic context

Variable Value Type

resourceType book xs:string

resourceTitle The Complete Works of William
Shakespeare

xs:string

contributorType author xs:string

contributorName William Shakespeare xs:string

21 V1.0.0.3 updates © 2010 IBM Corporation

If you bind these variable values in the dynamic context: resourceType="book",
resourceTitle="War and Peace", contributorType=author, contributorName="Leo Tolstoy,
you will get the result on the next slide from running the query on the pervious slide.

XMLFEP_v1003_updates.ppt Page 21 of 38

© 2010 IBM Corporation 22 V1.0.0.3 updates

Example: Output

create_valid_collection.out

<?xml version="1.0" encoding="UTF-8"?>

<lib:mycollection xmlns:lib="http://www.example.org/library">

<lib:book title="War and Peace">

<lib:author>Leo Tolstoy</lib:author>

</lib:book>

</lib:mycollection>

Here is the result based on the variables, query, schema and XML on the previous slides.

XMLFEP_v1003_updates.ppt Page 22 of 38

Example: Schema validation in XQuery – Validate element

import schema namespace lib="http://www.example.org/library" at "library.xsd";

element lib:mycollection

{

element { concat("lib:", "book") }

{

attribute title {"The Complete Works of William Shakespeare" },

validate strict {element concat("lib:", “author") } {"William

Shakespeare" }

}

}

group_contributors.xq

23 V1.0.0.3 updates © 2010 IBM Corporation

The example here will validate an element. The query here creates a lib:mycollection
element and its content and validates it against the schema file. If there is not an author
element with the value of William Shakespeare, an error is raised.IXJXE1005E: [ERR
0770][ERR XQDY0027] The 'validate' expression has the mode 'strict', and schema
validity assessment concludes that the validity of the element is not valid or unknown.

XMLFEP_v1003_updates.ppt Page 23 of 38

© 2010 IBM Corporation24 V1.0.0.3 updates

Related APIRelated API

Section

The next section talks about the related API that you can use with the Schema Import and
Schema Validation Features.

XMLFEP_v1003_updates.ppt Page 24 of 38

setValidating and registerSchema

� XFactory.setValidating(int)
– if set to XFactory.FULL_VALIDATION, input documents are validated against registered

schemas

� XFactory.registerSchema(Source) and XFactory.registerSchemas(List<? extends Source>)
– makes the schema available for use in validating input documents (including those

without xsi:schemaLocation attributes)

25 V1.0.0.3 updates © 2010 IBM Corporation

In order to set validation on the input documents against registered schemas you need to
set the setValidating method of XFactor to XFactory.FULL_VALIDATION. A validating
factory produces schema-aware executable objects and ensures that source documents
get validated against the set of registered schemas before they are processed.

Resolve imports for schemas that are registered with the XFactory using the
registerSchema method. XFactory.registerSchema makes the schema available for use to
validate input documents. Register a schema has no effect if validating is not enabled.
Valid Source types are StreamSource, SAXSource, DOMSource, and StAXSource.

XMLFEP_v1003_updates.ppt Page 25 of 38

setSchemaResolver

� XFactory.setSchemaResolver(XSchemaResolver)
– used at preparation and execution time to locate schemas imported into a query using a

schema import
– if a schema import does not include a location hint, you must either

• make the schema available through your XSchemaResolver or
• register it directly on the XFactory instance

26 V1.0.0.3 updates © 2010 IBM Corporation

XFactory.setSchemaResolver(XSchemaResolver) can implement the XSchemaResolver
interface to help the processor locate schemas. It is used at preparation and execution
time to locate schemas imported into a query using a schema import. It is used at
execution time to locate schemas applied to an XML document using xsi:schemaLocation
or imported into other schemas. If a schema import does not include a location hint, you
must either make the schema available through your XSchemaResolver or register it
directly on the XFactory instance. Pass in a schema resolver implementation or null to
revert to the default schema resolution behavior.

XMLFEP_v1003_updates.ppt Page 26 of 38

registerImportedSchemas

� XQueryExecutable.registerImportedSchemas
– registers schemas referenced in schema imports in the query
– Performance consideration:

• Call if the XQueryExecutable is used repeatedly and the input documents should be
validated against the imported schemas

� Schemas imported into the query are not used for validating the input document by default
– Use registerImportedSchemas method to register schemas imported so that the types in

schemas imported into the query are used for the validation

27 V1.0.0.3 updates © 2010 IBM Corporation

XQueryExecutable.registerImportedSchemas, registers schemas referenced in schema
imports in the query. The schema must be locatable through a location hint or
XSchemaResolver. If the XQueryExecutable is used repeatedly and the input documents
should be validated against the imported schemas, it is advisable to register the imported
schema, otherwise the schema is loaded on each execution. By default, schemas
imported into the query are not used for validating the input document, the input document
will still be validated but the types in schemas imported into the query are not used for the
validation. You must use the registerImportedSchemas method to register schemas
imported in the query so that they are used for validating the input document. This also
relates to the performance because if registerImportedSchemas is not called then the
imported schemas are reprocessed on each execution.

XMLFEP_v1003_updates.ppt Page 27 of 38

Preparing and executing an interpreted XQuery expression with
schema awareness

// Create the factory

XFactory factory = XFactory.newInstance();

// Enable validation

factory.setValidating(XFactory.FULL_VALIDATION);

// Register the schema, if necessary

factory.registerSchema(new StreamSource("library.xsd"));

// Set up an XSchemaResolver, if necessary

factory.setSchemaResolver(...);

// Create the query source

StreamSource query = new StreamSource("query.xq");

// Create an XQuery executable object for the query

XQueryExecutable queryExec = factory.prepareXQuery(query);

// Register imported schemas (recommended for performance)

queryExec.registerImportedSchemas();

// Create the input source

StreamSource input = new StreamSource("schema.xml");

// Create the result

StreamResult result = new StreamResult(System.out);

// Execute the query

queryExec.execute(input, result);

Java file

28 V1.0.0.3 updates © 2010 IBM Corporation

Here is an example showing off how to prepare and execute an interpreted XQuery
expression with schema awareness. Notice the enabling of validation, registering the
schema, setting the schema resolver, and registering the imported schema.

XMLFEP_v1003_updates.ppt Page 28 of 38

Register schema

� The XML file does not have a schema location so it must be registered with the XFactory:

In XML file:

<lib:mycollection

xmlns:lib="http://www.example.org/library">

In Java file:

XFactory factory = XFactory.newInstance();

factory.setValidating(XFactory.FULL_VALIDATION);

factory.registerSchema(new StreamSource("library.xsd"));

In XQuery file:

import schema default element namespace "http://www.example.org/library";

29 V1.0.0.3 updates © 2010 IBM Corporation

Here is an example of using the registerSchema method. The XML file does not have a
schema location. The import in the query does not list the location, so the registerSchema
method is used to register the schema to be used for validation.

XMLFEP_v1003_updates.ppt Page 29 of 38

XML file has schema location

� The XML has a schema location so it does not need to be registered with the XFactory:

In XML file:

<?xml version="1.0" encoding="UTF-8"?>

<lib:mycollection

xmlns:lib="http://www.example.org/library"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/library library.xsd ">

In Java file:

XFactory factory = XFactory.newInstance();

factory.setValidating(XFactory.FULL_VALIDATION);

In XQuery file:

import schema default element namespace "http://www.example.org/library" at "library.xsd";

30 V1.0.0.3 updates © 2010 IBM Corporation

Here is an example where the XML file has a schema location, so no extra method is
needed. Remember that you still need to set validating to FULL_VALIDATION..

XMLFEP_v1003_updates.ppt Page 30 of 38

Register imported schemas

� Use registerImportedSchemas to register the schema imported into the query so it can be used for input
validation

– The XML does not have a schema
– The query imports the schema

In XML file:

<?xml version="1.0" encoding="UTF-8"?>

<lib:mycollection xmlns:lib="http://www.example.org/library">

In Java File:

XFactory factory = XFactory.newInstance();

factory.setValidating(XFactory.FULL_VALIDATION);

XQueryExecutable executable = factory.prepareXQuery(new StreamSource("library2.xq"));

executable.registerImportedSchemas();

In XQuery file:

import schema default element namespace "http://www.example.org/library" at "library.xsd";

31 V1.0.0.3 updates	 © 2010 IBM Corporation

Here is an example of using the registerImportedSchemas method. The XML file does not
have a schema location, but the schema is imported into the XQuery file. The
registerImportedSchemas method is used to register the imported schema to be used for
input validation.

XMLFEP_v1003_updates.ppt	 Page 31 of 38

© 2010 IBM Corporation32 V1.0.0.3 updates

--validating flag on commandvalidating flag on command--line execution toolsline execution tools

Section

The next section provides a summary of the -validate flag on the command-line execution
tools that is added in the Feature Pack for XML V1.0.0.3

XMLFEP_v1003_updates.ppt Page 32 of 38

-validating option

� -validating option for the ExecuteXPath, ExecuteXQuery, and ExecuteXSLT command line
tools is added in the V1.0.0.3 of the feature pack

– Allows users to enable schema aware processing and validation when an schema is
imported and a schema location is specified

– For the XPath there is no way to import a schema in the XPath expression itself
• -schema option must still be used at compile time

� Valid values are
– "full“ - turns on schema aware processing and validation
– "none“ - turns off validation

33 V1.0.0.3 updates	 © 2010 IBM Corporation

The Feature Pack for XML V1.0.0.3 includes a -validating option for the ExecuteXPath,
ExecuteXQuery, and ExecuteXSLT command line tools. The –validating option allows
users who have imported the necessary schemas into their stylesheet or query and who
have a schema location specified in their input documents to enable schema aware
processing and validation. For the XPath case there is no way to import a schema in the
XPath expression itself so the -schema option must still be used at compile time if the
expression references user defined schema types. Valid values are "full" and "none".
Where "full" turns on schema aware processing and validation and "none" turns it off.

XMLFEP_v1003_updates.ppt	 Page 33 of 38

© 2010 IBM Corporation34 V1.0.0.3 updates

Summary and referencesSummary and references

Section

The next section provides a summary and references.

XMLFEP_v1003_updates.ppt Page 34 of 38

Summary

� Version 1.0.0.3 of the feature pack includes the XQuery specific optional features:
– Schema import feature

• Permits a schema import to be included in the prolog of a query
• Allows the query to refer to types, elements, and attributes declared in

imported schemas
• Including a schema import is optional (alternatively, it can be registered

with the XFactory) but recommended for portability
– Schema validation feature

• Permits a validate expression to appear in a query, which allows validation
of document and element nodes

35 V1.0.0.3 updates © 2010 IBM Corporation

The Feature Pack for XML Version 1.0.0.3 includes the optional XQuery features Schema
Import and Schema Validation. These permit a schema import to be included in the prolog
of the query and permits a validate expression to appear in the query, allowing validation
of document and element nodes.

XMLFEP_v1003_updates.ppt Page 35 of 38

References

� WebSphere Application Server Feature Pack for XML
http://www.ibm.com/software/webservers/appserv/was/featurepacks/xml/

� Information center
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v700xml&product=was-nd-mp

� Primary specifications
http://www.w3.org/TR/xpath20/

http://www.w3.org/TR/xslt20/

http://www.w3.org/TR/xquery/

36 V1.0.0.3 updates © 2010 IBM Corporation

Here are some useful links.

XMLFEP_v1003_updates.ppt Page 36 of 38

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_XMLFEP_v1003_updates.ppt

This module is also available in PDF format at: ../XMLFEP_v1003_updates.pdf

37 V1.0.0.3 updates © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

XMLFEP_v1003_updates.ppt Page 37 of 38

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. in the United States, other
countries, or both.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

38 © 2010 IBM Corporation

XMLFEP_v1003_updates.ppt Page 38 of 38

