

®

IBM Software Group

© 2009 IBM Corporation

Updated November 11, 2009

IBM WebSphere Application Server V7.0 Feature
Pack for Service Component Architecture V1.0.1

JMS binding wire formats

This presentation will discuss JMS binding wire formats.

WASv7SCA101_JMSbinding_wireformats.ppt Page 1 of 21

IBM Software Group

2

JMS binding wire formats © 2009 IBM Corporation

JMS and wire formatsJMS and wire formats

Section

This section will look at JMS and wire formats.

WASv7SCA101_JMSbinding_wireformats.ppt Page 2 of 21

IBM Software Group

3

JMS binding wire formats © 2009 IBM Corporation

SCA JMS binding wire formats

�Wire format
�format of the data in the JMS message that flows through

the JMS provider

�Scenarios for wire format configurations:
�For an SCA service when the wire format is

predetermined

�For an SCA reference when the wire format is
predetermined

�For SCA services/references when the wire format is not
predetermined

�Request/response wire formats

Wire format describes the format of the data that is on the wire. For the SCA JMS binding,
the wire format is the format of the data in the JMS message that flows through the JMS
provider. Because of the variety of message types and formats, SCA services and
references that are configured with a JMS binding might require additional configuration.
This is to enable the runtime environment to perform the marshalling and unmarshalling
required to translate between application data formats and the format of the JMS message
on the wire. The additional configuration of message types is the specification of the wire
format for message handling.

Before you configure the wire format, JMS binding on an SCA application has to be
already enabled.

When configuring an SCA service or reference, it is important to recognize whether the
wire format is previously established by your existing messaging application infrastructure.
Also, it is important to recognize whether you are selecting the wire format along with your
SCA application. If you are starting with an application with a preexisting messaging
infrastructure and you are adding your SCA application to this environment, the wire
format is likely already determined by the messaging infrastructure. If you are starting with
an SCA application and you intend for this application to interact with JMS message
producers or consumers, you can specify the wire format within your SCA application.

Scenarios for configuring wire formats include:

Configuring the JMS binding for an SCA service when the wire format is predetermined.

Configuring the JMS binding for an SCA reference when the wire format is predetermined.

Configuring request and response wire formats.

Configuring the JMS binding for an SCA services and reference when the wire format is
not predetermined.

WASv7SCA101_JMSbinding_wireformats.ppt Page 3 of 21

IBM Software Group

4

JMS binding wire formats © 2009 IBM Corporation

SCA service - wire format predetermined

� JMS binding is added to an SCA service to
consume messages that are produced according to
a predetermined format

�Supported message types: TextMessage or
BytesMessage wire format
�To specify default wire format add the to SCDL:

{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsdefault

�To specify TextMessage wire format add to SCDL:
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsTextXML

�To specify ObjectMessage wire format add to SCDL:
:{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsObject

In this scenario, you are adding the JMS binding to an SCA service to consume messages
that are produced according to a predetermined format. The supported message types are
described for this scenario.

The TextMessage or BytesMessage wire format uses JAXB technology to marshal and
unmarshal data into XML. This wire format is the default wire format. Thus, this wire
format applies if no wire format element is specified in the composite definition file. To
specify this wire format, add this wire format element to the composite definition
file:{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsdefault.

To specify specifically TextMessage wire format add this to the SCDL;
{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsTextXML.

The ObjectMessage wire format uses serialized Java™ objects. It maps to the
java.lang.Object.class. To specify this wire format, add this wire format element to the
composition definition file:{http://tuscany.apache.org/xmlns/sca/1.0}wireFormat.jmsObject.

WASv7SCA101_JMSbinding_wireformats.ppt Page 4 of 21

IBM Software Group

5

JMS binding wire formats © 2009 IBM Corporation

Configuring request /response wire formats

�Each wire format can map to the service or
reference side, and into serialization and
deserialization
�most cases, the response/request wire formats can be

the same

�service or reference request and response can use
different wire formats

�Override the request wire format by
�explicitly configure the response wire format with a

wireformat element as a child on the binding.jms response
element

In general, each wire format can map to the service or reference side, and even into
serialization and deserialization. As a result, you can configure each service or reference
request and response to use different wire formats.

In most cases, the response wire format can be the same as the request wire format for a
messaging application. However, in certain scenarios this might not be reasonable, such
as when the inputs and outputs of an operation cannot use the same wire format. In this
situation, you can override the request wire format by explicitly configuring the response
wire format with a wireformat element as a child on the binding.jms response element.

WASv7SCA101_JMSbinding_wireformats.ppt Page 5 of 21

IBM Software Group

6

JMS binding wire formats © 2009 IBM Corporation

Example: reference-side wire format
<component name="JAXBJMSFrontendReqRespWFComponent">

<implementation.java
class="com.ibm.test.soa.sca.frontend.HelloWorldJAXBFrontendImpl"/>

<reference name="hwJAXBService"> <interface.java
interface="com.ibm.test.soa.sca.HelloWorldJAXBService"/>
<binding.jms>

<destination name="jms/SCA_JMS_Request1"/>
<connectionFactory name="jms/SCA_JMS_CF"/>

<response>

<destination name="jms/SCA_JMS_Response1"/>

<connectionFactory name="jms/SCA_JMS_CF"/>
<ts:wireFormat.jmsObject />

</response>

</binding.jms>

</reference>

</component>

In the above component configuration example, the binding level wire format is the default
because no wire format is specified. However, the response wire format is overridden by
the jmsObject wire format.

WASv7SCA101_JMSbinding_wireformats.ppt Page 6 of 21

IBM Software Group

7

JMS binding wire formats © 2009 IBM Corporation

Example: service-side wire format
<component name="JAXBJMSBackendReqRespWFComponent">

<implementation.java
class="com.ibm.test.soa.sca.backend.HelloWorldJAXBBackendImpl"/>

<service name="HelloWorldJAXBService"> <interface.java `
interface="com.ibm.test.soa.sca.HelloWorldJAXBService"/>

<binding.jms>

<destination name="jms/SCA_JMS_Response1"/>
<activationSpec name="jms/SCA_JMS_AS1"/>

<response>

<destination name="jms/SCA_JMS_Response1"/>
<connectionFactory name="jms/SCA_JMS_CF"/>
<ts:wireFormat.jmsObject />

</response>

</binding.jms>

</service>

</component>

After you configure the reference-side wire formats, similarly configure the service-side
wire format. Here is an example of what the service-side format looks like.

WASv7SCA101_JMSbinding_wireformats.ppt Page 7 of 21

IBM Software Group

8

JMS binding wire formats © 2009 IBM Corporation

Wire format NOT predetermined

� JMS binding added to an SCA service/reference
and there is not a predetermined wire format
�Use the JAXB programming model with the top-down

approach to develop SCA applications

�ObjectMessage wire format used when JAXB
marshalling and unmarshalling does not
satisfactorily preserve the data over the wire

Wire format is not predetermined. In this scenario, you are adding the JMS binding to an
SCA service or reference to produce messages that are consumed by a JMS producer or
consumer, and there is not a predetermined wire format. It is a best practice to use the
default wire format when starting with the SCA application. Use the JAXB programming
model with the top-down approach to developing SCA applications as these service
implementations and clients are easily used with the SCA default binding, the SCA Web
service binding, and the SCA JMS binding. Adopting an XML-centric view of your business
data provides maximum portability across diverse platforms and technologies, and takes
advantage of the design goals of a typical SOA environment.

If you have business data that is described within Java classes that implement the Java
serialization interface, java.io.Serializable, you can use the ObjectMessage wire format.
This is in the scenario where JAXB marshalling and unmarshalling does not satisfactorily
preserve the data over the wire.

WASv7SCA101_JMSbinding_wireformats.ppt Page 8 of 21

IBM Software Group

9

JMS binding wire formats © 2009 IBM Corporation

Default wire format

�Maps between a JMSMessage and the object
expected by the component implementation
�Exposure of JMS APIs to component implementations

should be avoided

� JMSMessage passed as is for a single
parameter\value that is a JMSMessage
�Otherwise, the JMSMessage must be a JMS text or bytes

message containing XML

�JMS text or bytes XML payload is the XML serialization of
that parameter

The default data binding behavior maps between a JMSMessage and the object expected
by the component implementation. Component implementers are encouraged to avoid
exposure of JMS APIs to component implementations, however in the case of an existing
implementation that expects a JMSMessage, this provides for simple reuse of that as an
SCA component.

The message body is mapped to the parameters or return value of the target operation if
there is a single parameter or return value that is a JMSMessage, then the JMSMessage
is passed as is. Otherwise, the JMSMessage must be a JMS text or bytes message
containing XML.

If there is a single parameter, or for the return value, the JMS text XML payload is the XML
serialization of that parameter according to the WSDL schema for the message. If there
are multiple parameters, then they are encoded in XML using the document wrapped
style, according to the WSDL schema for the message.

WASv7SCA101_JMSbinding_wireformats.ppt Page 9 of 21

IBM Software Group

10

JMS binding wire formats © 2009 IBM Corporation

Custom wire format

� To be used when wire format handler support is
needed outside of the built in wire formats

� The custom wire format can be used to create a
user defined mapping from any JMS message type
to an operations parameters.

�User must define a custom handler class that
implements the wire format handler API.
�<wireformat.jmsCustom

class =“com.ibm.example.CustomWireFormatHandler”/>

Custom wire format is used when wire format handler support is needed outside of the
built in wire formats.

The custom wire format can be used to create a user defined mapping from any JMS
message type to an operations parameters. With this type of format, user must define a
custom handler class that implements the wire format handler API as shown.

WASv7SCA101_JMSbinding_wireformats.ppt Page 10 of 21

IBM Software Group

11

JMS binding wire formats © 2009 IBM Corporation

Configuring messaging data format

Wire format
Predetermined?

Yes

Wire format element - Ex
<ts:wireFormat.jmsObject/>

SCDL

No

SCA application

SCDL

Wire format element - Ex
<ts:wireFormat.jmsdefaullt />

Existing messaging structure Starting with an SCA application –
no existing messaging structure

A B

add

add

In general you can configure messaging format under two circumstances. If you are
starting with an application with a preexisting messaging infrastructure, as shown above in
example B, the wire format is likely already determined by the messaging infrastructure.
Note that in this case, you are adding your SCA application to this environment. If you are
starting with an SCA application, shown in example A, and you intend for this application
to interact with some JMS message producers or consumers, you can specify the wire
format within your SCA application.

General steps for configuring meesaging data format are:

First, determine if you are using a wire format that is predetermined by your existing
messaging infrastructure or if you are starting with an SCA application and defining the
message wire format.

Second, if you are using a wire format predetermined by your existing messaging
infrastructure, add the corresponding wire format element into the composition definition
file.

Third, ensure that your SCA service and service client implementation and interfaces map
appropriately for the specific wire format that you selected.

Forth, optionally, if you want exception checking to occur over the JMS binding, ensure
that the JMS producer and consumer that is interoperating with your SCA application
follows the SCA JMS binding exception handling procedures described previously.

Fifth, If you are starting with an SCA application and defining the message infrastructure,
add the appropriate wire format element into the composition definition file. Ensure that
your JMS producer or consumer applications understand how to interoperate with this
message data format.

WASv7SCA101_JMSbinding_wireformats.ppt Page 11 of 21

IBM Software Group

12

JMS binding wire formats © 2009 IBM Corporation

Wire formats and operation selection

�No built-in concept of “operation” that corresponds
to that defined in a WSDL port type

�No standard means for service providers and
consumers to declare and exchange
messageformat information is provided

�Operation selection
�process of identifying the operation to be invoked

�Wire format
�Process of mapping message information to the required

runtime form

In general messaging providers deal with message formats and destinations. There is not
a typically built-in concept of “operation” that corresponds to that defined in a WSDL port
type. Messages have a format which corresponds in some way to the schema of an input
or output message of an operation in the interface of a service or reference. However
some means is required in order to identify the specific operation and map the message
information into the required form.

No standard means for service providers and consumers to declare and exchange
messageformat information is provided. The process of identifying the operation to be
invoked is operation selection; that of mapping message information to the required
runtime form is data binding. The JMS binding defines default operation selection and
data binding behavior; SCA providers provide extensions for custom behavior.

WASv7SCA101_JMSbinding_wireformats.ppt Page 12 of 21

IBM Software Group

13

JMS binding wire formats © 2009 IBM Corporation

Default operation selection
One operation

Interface operation name scaOperationName

Interface operation name

onMessage

value

Interface operation name

1

2

4

3 JMS text or
bytes (xml)

Interface operation name

local name from the
XML payload

Example:
<binding.jms>

<operationProperties name=”intendedValueOf_scaOperationName”
nativeOperation=”proxyMethodName”/>

</binding.jms>

The JMS binding defines a String message property called scaOperationName, that is
used by the JMS binding to map the message to the intended operation on the service.
When receiving a request at a service, or a callback at a reference, the JMS binding uses
this algorithm to determine the operation name:

If there is only one operation on the service interface, it is assumed that this operation is
the operation name for the request.

Otherwise, if the JMS property scaOperationName is set, the value of this property is used
as the operation name.

Otherwise, if the message is a JMS text or bytes message containing XML, then the
selected operation name is taken from the local name of the root element of the XML
payload. This operation selection behavior is only supported over the jmsdefault,
jmsTextXML, and jmsBytesXML wire formats.

Otherwise, it is assumed that the operation name is onMessage.

When sending a request from a reference, or a callback from a service, the JMS reference
binding sets the scaOperationName message property to the name of the operation that is
invoked. By default, this is the name of the operation invoked on the client proxy; however,
you can override the operation by using the @nativeOperation attribute within the
operationProperties element.

For example:

<binding.jms> <operationProperties name=”intendedValueOf_scaOperationName”
nativeOperation=”proxyMethodName”/> </binding.jms>

WASv7SCA101_JMSbinding_wireformats.ppt Page 13 of 21

IBM Software Group

14

JMS binding wire formats © 2009 IBM Corporation

JMS user property operation selector

�Predefined operation selector which determines
the target operation from the value of a given JMS
user property (service side).
�<operationSelector.jmsUserProp

propertyName="jmsTestUserProp“/>

� The reference side or client must set the expected
JMS user property on the JMS message

JMS User Property operation selector requires a JMS user property to be set to the target
operation name. If the property is not set or there is no matching operation it will NOT
default to any other value as is the case with the default operation selector.

WASv7SCA101_JMSbinding_wireformats.ppt Page 14 of 21

IBM Software Group

15

JMS binding wire formats © 2009 IBM Corporation

Custom operation selector

�Provided to be used when the predefined operation
selectors are not suitable.

� The user must define a class that implements the
operation selector API
�<binding.jms>

…

<operationSelector.jmsCustom class ="hello.test.SimpleOpSel" />

</binding.jms>

In cases where the predefined operation selectors are not suitable to determine the target
operation the ability to provide a customer operation selector has been included. In
general, your application only contains business logic. This helps to increase the portability
of the application. The custom operation selector provides a way to configure a user
defined operation selector through the SCDL without any changes to the application layer.

The operation selector API exposes an instance of javax.jms.Message to you and allows
interaction with the JMS user properties and message body.

WASv7SCA101_JMSbinding_wireformats.ppt Page 15 of 21

IBM Software Group

16

JMS binding wire formats © 2009 IBM Corporation

Built in wire formats

User defined mapping from any JMS
message type.

wireFormat.jmsCustom

Maps TextMessages to JAXB
serializable parameters

wireFormat.jmsTextXML

Maps TextMessage to String
paramater

wireFormat.jmsText

Maps ObjectMessage to Java
serializable objects

wireFormat.jmsObject

Maps TextMessage to BytesMessage
to JAXB serializable parameters

wireFormat.jmsdefault

Maps BytesMessage to JAXB
serializable parameters

wireFormat.jmsByteXML

Maps BytesMessage to byte array
parameter (byte[])

wireFormat.jmsBytes

Here is a chart of built in wire formats that you can reference. This is mostly for your own
reference.

WASv7SCA101_JMSbinding_wireformats.ppt Page 16 of 21

IBM Software Group

17

JMS binding wire formats © 2009 IBM Corporation

Summary/ReferencesSummary/References

Section

The next section provides a summary and references for this presentation.

WASv7SCA101_JMSbinding_wireformats.ppt Page 17 of 21

IBM Software Group

18

JMS binding wire formats © 2009 IBM Corporation

Summary

�Variety of message types and formats requires
SCA references/services to have additional
configuration

�Additional configuration of message types is the
specification of the wire format for message
handling

SCA services and references that are configured with a JMS binding require additional
configuration because of the variety of message types and formats. This is to enable the
runtime environment to perform the marshalling and unmarshalling required to translate
between application data formats and the format of the JMS message on the wire. The
additional configuration of message types is the specification of the wire format for
message handling.

WASv7SCA101_JMSbinding_wireformats.ppt Page 18 of 21

IBM Software Group

19

JMS binding wire formats © 2009 IBM Corporation

References

�SCA JMS Binding V1.0.0
http://www.osoa.org/download/attachments/35/SCA_JMSBinding_V100.pdf?version=2

� IBM Education Assistant
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpsca/plugin_coverpage.html

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.wasfpsca/wasfpsca/1.0/Bindings.html?dmuid=20081216225737946040

�SCA white papers
http://www.ibm.com/developerworks/websphere/library/techarticles/0812_beck/0812_beck.html

�SCA feature pack information center
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.soafep.multiplatform.doc/info/welcome_nd.html

WASv7SCA101_JMSbinding_wireformats.ppt Page 19 of 21

IBM Software Group

20

JMS binding wire formats © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_WASv7SCA101_JMSbinding_wireformats.ppt

This module is also available in PDF format at: ../WASv7SCA101_JMSbinding_wireformats.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv7SCA101_JMSbinding_wireformats.ppt Page 20 of 21

IBM Software Group

21

JMS binding wire formats © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WASv7SCA101_JMSbinding_wireformats.ppt Page 21 of 21

