

IBM WebSphere Application Server
Feature Pack for OSGi Applications and
Java Persistence API 2.0

OSGi feature overview

© 2010 IBM Corporation

This presentation is an introduction to the OSGI Applications feature of the IBM
WebSphere® Applications Server Feature Pack for OSGi Applications and Java™

Persistence API 2.0.

wasosgijpafep_OSGi_overview.ppt Page 1 of 26

ClassClass
ClassClass

ClassClass
ClassClass

ClassClass
ClassClass

Modularization in Java – Problems with jars

� Java platform modularity
– Classes encapsulate data
– Packages contain classes
– Jars contain packages

� Class visibility:
– private, package private, protected,

public

� No “jar scoped” access modifiers

� No means for a jar to declare its dependencies

� No version handling

� Jars have no modularization

characteristics

– At runtime there is just a collection of classes on a global class path

JarJar

PackagePackage

ClassClass

PackagePackage

ClC asa sl ss

PaP ckc aga ea k ge

ClC asa sl ss

2 OSGi feature overview	 © 2010 IBM Corporation

22 In complex software engineering projects a properly modularized system enables: parallel
development of modules by teams who need no understanding of the internals of other
modules, reuse of modules by different applications, and maintenance of one module
without affecting others.

Properly modularized systems are easier to maintain and extend.

Object oriented languages like Java help but their focus is on encapsulation of instance
variables, they only help at the object and class level, and they offer no higher forms of
modularity.

In particular JARs, as the module of deployment and therefore the ideal granularity at
which to consider module reuse, have no modularity characteristics.

There is no “jar scoped” access modifier alongside public, protected and private.

Most JARs consist of multiple packages and, if the JAR represents a cohesive function,
there is typically a need for classes in one package to access classes in another which
then requires public accessibility. Immediately that makes these classes visible to classes
in any other JAR. JARs provide no level of visibility control. Even well-behaved
applications that only use the classes a jar-provider expects to be used externally are at
the mercy of the global Java class path because the required class could be contained by
multiple jars and the one loaded is the first on the global class path.

Not only do JARs lack the capacity to scope the visibility of what they contain, they also
lack the capacity to declare their own dependencies. Many JARs have implicit
dependencies on other JARs that means these JARs cannot be installed or moved around
independently. If they are installed without dependencies being present then the first time
there is any indication of a problem is at runtime.

Another problem with the global Java class path is its inability to accommodate multiple
versions of a class. There can be multiple versions available on the class path but only the
first will ever be loaded.
wasosgijpafep_OSGi_overview.ppt	 Page 2 of 26

-

_

-

© 2010 IBM Corporation3 OSGi feature overview

Problems with global Java class path

Class
Not

Found
Exception

Java VM

log4j

barcode4j

axis

batik

commons

derby

fop

ezmorph

freemarker

httpunit

jakarta

jcl

json

jdbm

jdom

jenks

jpos18

jython

looks

lucene

mail

mx4j

naming

jetty

poi

resolver

rome

serializer

servlets

tomcat

velocity

ws commons

xalan

wsdl4j

xerces

xmlgraphics

xmlrpc

xmlapis

..

geronimo

bsh

bsf

guiapp

hhfacility

manufact.

marketing

minerva

accounting

assetmaint

base

bi

catalina

common

oagis

order

ebay

content

datafile

ecommerce

entity

googlebase

ofbiz

widget

minilang

party

pos.

product

workeffort

workflow

…

sunjce prov.

plug in

jsse

jce

rt

dnsns

..

…

BeginBegin
HereHere

These last three problems are a consequence of the global Java classpath.

Java class-loading works by scanning the Java classpath and looking inside each jar in
turn to find the required class. The choice of which jar a class is loaded from, and which
version of a class is loaded, is entirely dependent on classpath order.

Classes whose dependencies cannot be resolved from the classpath are a potential
problem; you do not find out until the “Class not found” exception at run time.

wasosgijpafep_OSGi_overview.ppt Page 3 of 26

webA.war

WEB INF/classes/servletA.class

WEB INF/lib/spring.jar

WEB INF/lib/commons logging.jar

WEB INF/lib/junit.jar…
INF/lib/junit.jar…

webB.war

WEB INF/classes/servletB.class

WEB INF/lib/spring.jar

WEB INF/lib/commons logging.jar

WEB INF/lib/junit.jar…

commons ogg ng. ar

/lib/junit.jar…
webC.war

WEB INF/classes/servletC.class

WEB INF/lib/spring.jar

WEB INF/lib/commons logging.jar

WEB INF/lib/junit.jar…

© 2010 IBM Corporation 4 OSGi feature overview

Problems with EARs/WARs

� Enterprise applications have isolated
class paths but…

� Across applications - each archive typically
contains all the libraries required by the
application

– Common libraries/frameworks get installed
with each application

– Multiple copies of libraries in memory

� Within applications – third party libraries consume
other third party libraries leading to version
conflicts

-

-

- -

-

webA.war

WEB-INF/classes/servletA.class

WEB-INF/lib/spring.jar

WEB-INF/lib/commons-logging.jar

WEB

-

-

- -

-

webB.war

WEB-INF/classes/servletB.class

WEB-INF/lib/spring.jar

WEB-INF/lib/ -l i j

WEB-INF

-

-

- -

-

webC.war

WEB-INF/classes/servletC.class

WEB-INF/lib/spring.jar

WEB-INF/lib/commons-logging.jar

WEB-INF/lib/junit.jar…

plankton.v1

plankton.v2

Java EE helps a little by isolating each enterprise application with its own class path. But
even here there are some problems experienced in many Java EE deployments.

Enterprise applications often make use of third party Java libraries, either from open
source or from an ISVs who provides the application. Common example are Apache
Commons libraries, Spring, Hibernate and so on. The simplest way to ensure the
coherency of each application is to include all the libraries each application needs in each
EAR. While this makes it easier for EARs to be moved around from one system to
another, it also makes for big ears and multiple copies of the same library in memory for
each application.

Within an application you can still only have one version of each class, which can easily
become problematic when multiple third party libraries have dependencies on
incompatible versions of some common utility class. “ObjectWeb ASM” is a good example
of this kind of problem. ASM is a Java byte code manipulation and analysis framework
used by many Java frameworks and has made non-compatible changes during its history.
The effect of this is that if you have a web application using two frameworks both needing
different versions of ASM then your application will not run even though it makes no direct
use itself of ASM.

What is needed is a module system that can be used with Java to address these
shortcomings and make it easier for Application Developers and Systems Administrators
to build, deploy, and manage suites of applications consisting of reusable, versioned,
modules. Which leads in to OSGi.

wasosgijpafep_OSGi_overview.ppt Page 4 of 26

© 2010 IBM Corporation 5 OSGi feature overview

OSGi bundles and class loading

� OSGi bundle – A jar containing:
– Classes and resources.
– OSGi bundle manifest.

� What is in the manifest:
– Bundle-Version: Multiple versions of

bundles can live concurrently.
– Import-Package: What packages from

other bundles does this bundle
depend upon?

– Export-Package: What packages from
this bundle are visible and reusable
outside of the bundle?

� Class loading
– Each bundle has its own loader.
– No flat or monolithic classpath.
– Class sharing and visibility decided by

declarative dependencies, not by class
loader hierarchies.

– OSGi framework works out the
dependencies including versions.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: MyService bundle

Bundle-SymbolicName: com.sample.myservice

Bundle-Version: 1.0.0

Bundle-Activator: com.sample.myservice.Activator

Import-Package: com.something.i.need;version="1.1.2"

Export-Package: com.myservice.api;version="1.0.0"

OSGi defines a dynamic module for Java. It introduces some simple and yet powerful concepts to Java
which eliminate each of the shortcomings we just discussed.

The key notion introduced is the “bundle” as the modular unit and the platform architecture is based upon
bundles as the unit of deployment.

A bundle is just a JAR archive with a JAR manifest but the manifest contains additional OSGi metadata that
is processed by the OSGi module layer. This metadata describes all the modularity aspects of the bundle.

Some notable metadata in the manifest are: the Bundle-Version: This is used to qualify the version of the
bundle and enables multiple versions of the bundle to be concurrently active. The Import-Package header
declares the external dependencies of the bundle that are used by the OSGi framework for bundle resolution.
Specific versions or version ranges can be declared here. In the example, the imported package is required
at version 1.1.2 or later. The Export-Package header declares the packages that are visible outside the
bundle. Any package not declared here is only visible to classes inside the bundle.

Eclipse and Rational® Application Developer tools that are in a beta at this writing, as you will see later,
provides a convenient GUI editor for this manifest.

How is this metadata exploited? It is used by the OSGi class loader. There is no global class path in OSGi –
when bundles are installed into the OSGi framework their metadata is processed by the framework resolver
and their declared external dependencies are reconciled against the versioned exports declared by the other
installed bundles. The OSGi framework works out all the dependencies and calculates the independent class
path for each bundle.

Each of the shortcomings of plain Java class loading are eliminated:

Firstly, only declared exports are visible outside the bundle

Secondly, dependencies are resolved to specific versions and multiple versions of packages can be available
concurrently for different client bundles.

Finally, dependencies are explicit so that bundles will not start if all dependencies cannot be resolved

wasosgijpafep_OSGi_overview.ppt Page 5 of 26

OSGi enterprise specification

� Released 22 March 2010
– The product of the OSGi Enterprise Expert Group (EEG)

� Brings Enterprise technologies and OSGi together

� Using existing Java SE/EE specifications:
– JTA, JPA, JNDI, JMX, web applications…

� Adds Spring-derived Blueprint component model and DI container

� Java EE provides the core enterprise application programming model

� Deploying modules as OSGi bundles simplifies reuse between applications, provides version
handling, encourages (and enforces) modular design and enables dynamic module updates.

6 OSGi feature overview	 © 2010 IBM Corporation

Having seen how OSGi can solve some of the common problems in Java and provide a
modularity system for applications, we need to look at how this can be of practical benefit
to applications developed for commercial enterprise Java runtimes like WebSphere. An
obvious question to ask is – how does an enterprise Java application take advantage of
any of these benefits? We have years of investment in Java EE with tools, runtimes and
administrative processes to support it.

And this has been the primary concern of the OSGi Alliance Enterprise Expert Group,
since 2007, and which released the first OSGi Enterprise Specification in March 2010. The
Enterprise Expert Group is made up of platform and software vendors who have
significant investment in Java EE, including IBM and Oracle in addition to SpringSource,
Redhat and others. The resulting specification describes how Java SE/EE technologies
like JTA, JPA, JNDI, JMX, and web applications run in an OSGi environment. There is no
significant invention of new programming models, only the adaptation of what is already
familiar into a more modular and dynamic runtime environment. The one extension beyond
pure Java EE is the specification of the Blueprint component model and dependency
injection container, an evolution of the Spring framework as an OSGi standard which we’ll
talk more about later.

wasosgijpafep_OSGi_overview.ppt	 Page 6 of 26

Enterprise OSGi in Open Source

� Apache “Aries” created as a new Apache
incubator project in Sep 2009:

– to provide enterprise OSGi spec implementations
http://incubator.apache.org/aries/

– to provide an environment to collaborate and experiment with new technologies to inform
further EEG standardization.

• In particular the programming model aspects of OSGi applications in an enterprise
environment such as the Blueprint container and multi-bundle composites.

– to build a broad development community to encourage implementation and adoption of
EEG specs

� Aries components supporting an enterprise OSGi programming model are being integrated
into both Geronimo and WebSphere Application Server.

– Including Apache Felix Karaf, JBossOSGi, and others

7 OSGi feature overview	 © 2010 IBM Corporation

Open source activities can often be a barometer on the success of new technologies and
there are several open source projects with a focus on Enterprise OSGi. The most
complete is the Apache Aries project, formed in September 2009. The objectives of Apace
Aries are; to provide free, open source implementation of the enterprise OSGi
technologies, to provide an environment to collaborate and experiment with new
technologies to inform EEG standardization, in particular around those technologies that
affect the application programming model such as the Blueprint container and multi-bundle
composites, and to establish a broad and open community with an interest in enterprise
OSGi to encourage implementation and adoption of OSGi in enterprise applications.

In seven months the Apache Aries project has grown to 43 contributors from companies
including IBM, Progress, SAP, Redhat, Ericsson, LinkedIn, and others, including individual
contributors.

Aries does not intend to provide a server runtime environment for enterprise OSGi but
rather components that can be used in such an environment. The Apache Aries project
provides implementations of Blueprint container, JPA integration, JTA integration, JMX
integration, JNDI integration, Application assembly and deployment, Samples,
documentation and an integrator’s guide.

These have been integrated into Apache Geronimo and WebSphere Application Server as
well as a number of other projects and products including Apache Felix Karaf, and
JBossOSGi.

wasosgijpafep_OSGi_overview.ppt	 Page 7 of 26

Application exploitation of OSGi in WebSphere

� OSGi has been used internally in WebSphere Application Server since V6.1 and in Eclipse
since R3.

� Application-level exploitation is introduced in the WebSphere Application Server Feature
Pack for OSGi Applications and Java Persistence API (JPA) 2.0

– http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/
– Generally available May 2010

� Early Program available since Nov 2009
– https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/wasfposgiajp
– More downloads in a shorter period of time than any previous

WebSphere Application Server V7 feature pack open beta program

� Two installable features:
– OSGi Application feature simplifies the development, assembly, and deploy of enterprise

applications
– JPA 2.0 feature introduces Java EE 6 JPA 2.0 enhancements to object-relational

persistence to simplify data access and optimize performance

8 OSGi feature overview	 © 2010 IBM Corporation

WebSphere Application Server 6.1 introduced OSGi internally in 2005 and shipped in May
2006. IBM is now making it available for customer applications in a feature pack being
released for Version 7.

The feature pack integrates the Apache Aries and OpenJPA projects with the WebSphere
Application Server and extends the Application Server to provide an end-to-end
development, deployment and administrative integration for OSGi Applications.

The feature pack consists of two installable features that can be used separately or
together. One introduces JPA 2.0 capability to WebSphere to further simplify and improve
the performance of data access. The other feature is the OSGi Application feature which
includes the Blueprint component model for POJO-based component assembly and
deployment of applications as OSGi bundles. When used together, these features provide
a simplified POJO-based component model, high-performance persistence framework and
modular deployment system that simplifies the development and unit test of web
applications. The OSGi application deployment model also greatly simplifies module reuse
across applications.

wasosgijpafep_OSGi_overview.ppt	 Page 8 of 26

Getting started: Bundlizing vanilla JEE

No Java code changes; war modules -> bundles
Common library jars may be easily factored out of the WARs and used at specific versions

webA.war
webA.war

WEB-INF/classes/servletA.class
WEB-INF/classes/servletA.class

WEB-INF/lib/json4j.jar
WEB-INF/lib/json4j.jar

WEB-INF/lib/commons-logging.jar
WEB-INF/lib/commons-logging.jar

WEB-INF/lib/junit.jar…
WEB-INF/lib/junit.jar…webB.war

webB.war
WEB-INF/classes/servletB.class

WEB-INF/classes/servletB.class
WEB-INF/lib/json4j.jar

WEB-INF/lib/json4j.jar
WEB-INF/lib/commons-logging.jar

WEB-INF/lib/commons-logging.jar
WEB-INF/lib/junit.jar…

webC.war WEB-INF/lib/junit.jar…
webC.war

WEB-INF/classes/servletC.class
WEB-INF/classes/servletC.class

WEB-INF/lib/json4j.jar
WEB-INF/lib/json4j.jar

WEB-INF/lib/commons-logging.jar
WEB-INF/lib/commons-logging.jar

WEB-INF/lib/junit.jar…
WEB-INF/lib/junit.jar…

9 OSGi feature overview

webA.war
webA.war

WEB-INF/classes/servletA.class
WEB-INF/classes/servletA.class

META-INF/MANIFEST.MF
META-INF/MANIFEST.MF

webB.war Web-ContextPath: … webB.war Web-ContextPath: …
WEB-INF/classes/servletB.class

WEB-INF/classes/servletB.class
META-INF/MANIFEST.MF

META-INF/MANIFEST.MF
webC.war Web-ContextPath: …webC.war Web-ContextPath: …
WEB-INF/classes/servletC.class

WEB-INF/classes/servletC.class
META-INF/MANIFEST.MF

META-INF/MANIFEST.MF
Web-ContextPath: …

Web-ContextPath: …

Import-Package

Bundle Repository Bundle Repository
WEB-INF/lib/json4j.jar;version=“a.b.c” WEB-INF/lib/json4j.jar;version=“a.b.c”
WEB-INF/lib/commons-logging.jar;version=… WEB-INF/lib/commons-logging.jar;version=…

WEB-INF/lib/junit.jar…WEB-INF/lib/junit.jar…

© 2010 IBM Corporation

Getting started with OSGi application support in WebSphere Application Server is made
very simple with no need to make any changes to Web application implementation.

WAR modules can be deployed to WebSphere Application Server as web application
bundles with no change of runtime behavior. On its own this is not all that interesting but it
becomes interesting when you have multiple applications that use common libraries. What
we can do now is place versioned, common libraries in an OSGi bundle repository so that
each application using these libraries delivers only their unique modules.

Remember- a bundle is just a jar with additional OSGi metadata and a class loader which
respects that metadata. Throughout this presentation a bundle symbol is used to indicate
a jar that is actually a bundle. In the illustration here we can take three web application
archives which include several common libraries and refactor these as three web
application bundles containing only the unique content with the common libraries installed
once into an OSGi bundle repository. It is the presence of the Web-ContextPath manifest
header that causes the bundle to be recognized as a web application bundle.

wasosgijpafep_OSGi_overview.ppt Page 9 of 26

© 2010 IBM Corporation 10 OSGi feature overview

New: Bundle repository configuration in WebSphere Application
Server

The WebSphere Application Server Feature Pack for OSGi Applications and Java
Persistence API 2.0 introduces administrative support for using OSGI bundle repositories
to simplify the deployment of applications which use common libraries. WebSphere
Application Server can be configured either with the locations of external bundle
repositories or can use the new internal bundle repository included with the feature pack.
External bundle repositories provide their own tools for populating them and maintaining
their content; the WebSphere Application Server internal OSGi bundle repository is
managed by a WebSphere administrator using the administrative console or wsadmin
scripting.

Common bundles can be installed once into the configured OSGi Bundle repository and
used by many applications, reducing both disk usage and memory footprint.

wasosgijpafep_OSGi_overview.ppt Page 10 of 26

Blueprint components and services

dependencies injected

publishes
service consumes

service

A static assembly and
configuration of

components (POJOs)
Blueprint bundle

OSGI-INF/blueprint/
blueprint.xml

� Specifies a Dependency Injection container, standardizing established Spring conventions

� Configuration and dependencies declared in XML “module blueprint”, which is a

standardization of Spring “application context” XML.

– Extended for OSGi: publishes and consumes components as OSGi services

� Simplifies unit test outside either Java EE or OSGi r/t.

� The Blueprint DI container is a part of the server runtime (compared to the Spring container
which is part of the application.)

11 OSGi feature overview	 © 2010 IBM Corporation

One of the significant features of the WebSphere OSGi Application feature is its introduction of the Blueprint
component model. This is the result of the standardization activity around the Spring framework in the OSGi
Alliance.

A sizeable portion of web applications use the Spring framework today for its POJO component model and
dependency injection container. Spring provides a convenient way for business logic to be encapsulated into
POJO components, which have all their dependencies injected into them by the Spring container. Since the
POJO components have no Java dependencies on the application server it is very simple to unit test the
business logic in a plain Java SE or Eclipse environment.

The Spring framework is a container that is packaged as a library with the application. In a Java EE
environment, the Spring container delegates to the underlying application server for the management of
resources such as database connections and for the application of qualities of service such as transactions
and security. In a Java EE environment, Spring is essentially a proxy container to the native web container
provided by the application server and can add a significant amount of path length.

By standardizing the Spring XML configuration format in the OSGi Alliance and delivering the container as an
OSGi bundle, it has become possible to pull the dependency injection container out of the application and
into the middleware. The standards-based evolution of the DI container is called the Blueprint container and
the WebSphere OSGi feature pack integrates this container as part of the Application sever.

The Blueprint XML configuration file has the same structure as the Spring XML configuration file but in an
OSGi namespace. The Blueprint XML is a bean definition file for all the beans provided by a single bundle. In
addition to the bean definitions that are familiar to Spring developers, the Blueprint model adds new service
and reference elements as part of the integration with the OSGi environment. Service elements direct the
Blueprint container to expose a service interface for a component outside the bundle and a reference
element directs the Blueprint container to locate a service that can be consumed from outside the bundle.

The yellow arrows in the figure indicate OSGi services that are published to and discovered from the OSGi
service registry by the blueprint container. The OSGi service registry is a standard part of OSGi and provides
a mechanism akin to JNDI for the publication of OSGi services, although the underlying use of the service
registry is abstracted from application developers by the Blueprint container.

Ultimately, the Blueprint container manages the life cycle and dependencies of the POJO beans that contain
the application logic in addition to the services and references each bundle provides, and ensures references
are wired to available services.

wasosgijpafep_OSGi_overview.ppt	 Page 11 of 26

Exploiting blueprint components and Services (1 of 2)

e-Commerce bundle

<blueprint>

<bean id=”shop” class=”org.example.ecomm.ShopImpl”>

<property name=”billingService” ref=”billingService” />

</bean>

<reference id=”billingService”

interface=”org.example.bill.BillingService” />

</blueprint>

public class ShopImpl {

private BillingService billingService;

void setBillingService(BillingService srv) {

billingService = srv;

}

void process(Order o) {

billingService.bill(o);

}

}

e-Commerce

-injected service reference
-service can change over time
-can be temporarily absent

without the bundle caring
-managed by Blueprint container

12 OSGi feature overview © 2010 IBM Corporation

Here is a simple example of an eCommerce bundle which contains a “shop” bean which uses
a BillingService service provided by another bundle. The Blueprint container locates the
provider of BillingService and injects it into the shop bean at runtime.

OSGi services are dynamic so if the service provider can be changed then the blueprint
container is able to dynamically rewire the reference to a new service without impacting the
shop bean instance.

wasosgijpafep_OSGi_overview.ppt Page 12 of 26

Exploiting blueprint components and Services (2 of 2)

Billing service bundle

Billing

<blueprint>
<service ref=”service” interface =

”org.example.bill.BillingService” />
<bean id=”service” scope=”prototype”

class=”org.example.bill.impl.BillingServiceImpl” />
</blueprint>

-“prototype” scope indicates a
new instance is created by the
container for each use.

public interface BillingService {
 -“singleton” scope is the default.
void bill(Order o);

}

13 OSGi feature overview © 2010 IBM Corporation

On the provider side, the BillingServiceImpl is another POJO implementing a Java interface
for which a service is registered by the Blueprint container when the Billing bundle is started.

By default beans are created with “singleton” scope which means only a single instance is
created by the container. If the bean maintains any state then it can be declared with
“prototype” scope so that the container creates a new instance each time it needs to inject
the dependency into a client.

wasosgijpafep_OSGi_overview.ppt Page 13 of 26

Blueprint persistence and transactions

� OpenJPA is default persistence provider in WebSphere

� Container managed JPA support integrated into Blueprint container:
– @PersistenceUnit or @PersistenceContext (managed)

– or <jpa:unit>, <jpa:context> bean property injection

– Familiar development experience for JPA developers
– Load-time enhancement of Entity classes

� Same container managed transaction attributes as EJBs:
– Required, RequiresNew, Mandatory, NotSupported, Supports, Never

<blueprint>

<bean id=”shop” class=”org.example.ecomm.ShopImpl”>

<jpa:context property="em" unitname="myUnit"/>

<tx:transaction method="*" value="Required"/>

</bean>

</blueprint>

14 OSGi feature overview © 2010 IBM Corporation

The WebSphere Blueprint container does a lot more than the spring framework for
managing JPA contexts. It understands standard JPA annotations in the blueprint
components it manages and will inject an EntityManagerFactory or EntityManager into
annotated components or components whose bean definition contains a “jpa” element as
illustrated in the example here. Moreover, for the managed JPA case, the Blueprint
container will manage the association between the EntityManager and the transaction
context so the application does not have to. The WebSphere Blueprint container also
provides full declarative transaction support using the same container-managed
transaction attributes as EJBs.

You do not need to use Blueprint components in your OSGi applications just like you do
not need Spring in Java EE, but the Blueprint container model provides significant ease of
use benefits to developers, is based on an OSGi industry standard, is well-integrated with
the server runtime, and has development tool support built into Rational Application
Developer.

wasosgijpafep_OSGi_overview.ppt Page 14 of 26

OSGi service registry and JNDI

� OSGi services are published to and looked up from OSGi service registry.
– From declarations in Blueprint XML

� Simplify integrating with existing JEE components:
– OSGi Services registered in the OSGi Service Registry are also available in JNDI using

the osgi:service URL scheme
– Administered resources bound to JNDI are also published as services in the OSGi the

Service Registry. The JNDI name is published as a service property called
“osgi.jndi.service.name”

15 OSGi feature overview © 2010 IBM Corporation

The OSGi Service Registry is a standard part of OSGi and is where services are
registered by service providers for consumption by other bundles and how Blueprint
services and reference use this mechanism. Existing web components are not aware of
the OSGi service registry and use JNDI for service lookup. To enable existing Java EE
mechanisms to interact with OSGi services, and vice versa, the Enterprise OSGi
integration of JNDI defines a mechanism for OSGi services to be made available through
JNDI and vice versa.

In the WebSphere OSGi Application feature, services published in the service registry are
available to JNDI clients using the osgi:service URL scheme for the lookup. This is the
primary method by which web applications discover Blueprint services. Equally,
administered resources bound to JNDI are also published as services in the OSGi service
registry with the JNDI name contained in a service property called osgi.jndi.service.name.

wasosgijpafep_OSGi_overview.ppt Page 15 of 26

Bundle Repository

© 2010 IBM Corporation 16 OSGi feature overview

New: “Enterprise bundle archive” (EBA)

– An isolated, cohesive application consisting of a collection of bundles, is deployed as a
logical unit in a “.eba” archive

• An “OSGi Application”
– Constituent bundles may be contained (“by-value”) or referenced from a bundle

repository
– Services provided by the application are isolated to the application unless explicitly

exposed through EBA-level application manifest
– Configuration by exception - absence of APPLICATION.MF means:

• application content is the set of bundles contained by-value plus any repository-
hosted dependencies identified during deployment

Application Manifest

Enumerates constituent bundles

Declares Application “externals”

blog.eba

blog-persistence.jar

blog.jar

blog-servlet.jar

Bundle Repository

json4j.jar

OSGi applications are deployed to WebSphere Application Server through wsadmin or the
administrative console just like any other application, but are packaged in a new type of
archive called an “enterprise bundle archive” or “EBA” archive. This is similar to an EAR
but its modules are deployed as bundles to the required target servers.

An EBA archive represents a single isolated OSGi application consisting of one of more
modules and is the unit of deployment for an enterprise OSGi application. Like an EAR
file, an EBA archive may contain all the constituent modules/bundles that make up the
application but it may just contain the metadata required to locate those bundles from a
configured bundle repository. The metadata is in the form of an EBA-level “APPLICATION
MANIFEST” file that describes the content of the application and whether the application
exposes any external services and references. Just like a bundle manifest describes the
modularity characteristics of a bundle, the application manifest describes the modularity
characteristics of the application and the deployable content of the application.

The example here shows an OSGi Application packaged in a blog.eba archive, which
contains three application bundles, and an APPLICATION MANIFEST, which refers to a
fourth “json4j.jar” bundle. When the application is deployed, the json4j.jar is obtained from
the configured bundle repository and does not have to be packaged inside the EBA.

Configuration is by exception – the absence of an APPLICATION MANIFEST indicates
that all application content is contained within the archive and the application exposes no
services or references externally.

wasosgijpafep_OSGi_overview.ppt Page 16 of 26

Bundle Repository
Bundle
cache

blog.eba

 Installed
EBAs

© 2010 IBM Corporation 17 OSGi feature overview

Resolving and “freezing” the deployment

blog.persistence.jar

Application Manifest

Enumerates constituent bundles

Declares Application “externals”

blog.eba

Bundle Repository
Bundle
cache

blog.eba
blog.persistence.jar

blog.jar

blog.web.jar

json4j.jar

Install (with administrative console or wsadmin):

blog.jar

blog.web.jar

Installed
EBAs

Resolved against
configured repository

json4j.jar

Deployment Manifest

“Fixed” Deployed Result.

Deployed result

When present, the Application.mf is authored by the assembler (for example using
Rational Application Developer). It does not need to contain a transitively-closed list of all
the bundle dependencies determined for the application – these are figured out at
deployment time and any missing package dependencies are reported as errors. Any
resolution errors are caught early at deployment time – if the application deploys
successfully then it should always be able to fully resolve and should never fail at runtime
with a ClassNotFoundException.

Once an OSGi application has been successfully deployed then all its constituent bundles
are pushed out to the appropriate target servers and the application can be
administratively started. Starting the application causes its constituent bundles to go
through the OSGi life cycle states “installed”, “resolved” and “active”.

Since other applications, deployed at a later date to the same servers could contribute
shared bundles whose Java packages influence the dependency resolution that occurs
when the application is started, WebSphere generates a “deployment manifest” that
“freezes” the deployment of an application. This means that each time the application is
restarted, the resolution process always calculates the same result regardless of other
applications. Unlike the authored application manifest, the generated deployment manifest
does contain the transitively closed content – the result of the deploy-time resolution. The
deployment manifest is the description of the deployed application. This can be exported
from one deployment to another to ensure that an application moving from a test system
to a production system continues to resolve in exactly the same way it did during testing.

wasosgijpafep_OSGi_overview.ppt Page 17 of 26

© 2010 IBM Corporation 18 OSGi feature overview

Details: Isolated and shared Bundles (1 of 2)

� In Java EE, modules are isolated within an application and applications are isolated from
one another.

– Makes sharing modules difficult

� OSGi 4.2 all bundles have shared visibility to the externals of all others bundles within an
OSGi framework (JVM)

– Makes isolating applications difficult

Java EE App Server

Everything isolated Everything shared

EAR 1

Module A

Module B

Module C

EAR 2

Module A

Module G

Module C

OSGi v4.2 Framework

Isolation

Sharing

Application isolation is an important consideration. At one extreme, Java EE provides no
portable notion of module sharing between enterprise applications – everything is isolated
and sharing libraries is difficult. At the other extreme, OSGi bundles have shared visibility
to the externals of all other bundles within an OSGi framework, which typically means
within a JVM. This makes isolating applications difficult.

Something in between is required.

wasosgijpafep_OSGi_overview.ppt Page 18 of 26

© 2010 IBM Corporation 19 OSGi feature overview

Details: Isolated and shared Bundles (2 of 2)

Everything shared

OSGi v4.2 Framework WAS V7 OSGi App FeP

EBA 1

Bundle A

Bundle B

Bundle C

EBA 2

Bundle A

Bundle G

Isolated
framework

Isolated
framework

Shared framework

Java EE App Server

EAR 1

Module A

Module B

Module C

EAR 2

Module A

Module G

Module C

Everything isolated

� Equinox 3.5 “nested framework” support enables “composite bundles” to run in isolated child
frameworks

– WebSphere installs each OSGi Application into an isolated child framework
– Shared bundles are installed into the (single) parent framework

The current version of Equinox, which is used inside WebSphere Application Server and is
the reference implementation of OSGi 4.2, supports the notion of nested frameworks
whereby multiple peer frameworks are isolated from one another but may share a
common parent framework. The WebSphere OSGi Application feature exploits this by
deploying the isolated content of each OSGi Application into its own isolated child
framework. Any libraries deployed from the OSGi bundle repository that are intended to be
shared between applications are deployed into the single parent framework.

wasosgijpafep_OSGi_overview.ppt Page 19 of 26

.0

Example “Blog” application architecture

Blogging
Service

Blog
Persistence

Service
blog-servlet

Web application bundle

META-INF/
persistence.xml

WEB-INF/

web.xml OSGI-INF/blueprint/
blueprint.xml

OSGI-INF/blueprint/
blueprint.xml

JNDI EM

blog.eba
blog

blog-persistence

blog-api

Manifest-Version: 1.0

Application-ManifestVersion: 1.0

Application-Name: Aries Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

Application-Content:

com.ibm.ws.eba.example.blog.api;version=1.0.0,

com.ibm.ws.eba.example.blog.persistence;version=1.0.0,

com.ibm.ws.eba.example.blog.web;version=1.0.0,

com.ibm.ws.eba.example.blog;version=1.0

Use-Bundle:

com.ibm.json.java;version="[1.0.0,2.0.0)"

isolated content

shared content

20 OSGi feature overview © 2010 IBM Corporation

The APPLICATION MANIFEST here shows how isolated content is defined by the
Application-Content header and how shared content can be defined by the Use-Bundle
header.

The figure describes one of the sample applications shipped with the OSGi Application
feature pack. It is a web application that provides a Blog.

The sample application consists of four bundles.

It has a web bundle to provide the user interface using standard servlets and dojo
elements.

It has a blueprint bundle containing three beans which encapsulate the business logic. The
entry point is a Blogging Service which is accessed through JNDI by the web application.

It has a persistence bundle containing a standard persistence.xml and entities
representing the persistent data.

Finally, it has a database where blog entries and author information are read from and
written to through JPA.

The brief demonstration shows how this OSGi application is deployed as a set of bundles
to WebSphere Application Server. It also illustrates the isolated and shared frameworks
and the placement of bundles in each.

wasosgijpafep_OSGi_overview.ppt Page 20 of 26

© 2010 IBM Corporation 21 OSGi feature overview

Application-centric bundle management

In the WebSphere Application Server administrative console, you can see the version of
each bundle used by the application. Initially these are the only versions of the bundles
available.

To update one of the bundles in this application, replace the persistence bundle with a 1.1
version. You can do this by adding version 1.1 of the bundle to the bundle repository. The
administrator who looks at the available bundles will now see that the persistence bundle
is available at versions 1.0 and 1.1. If the administrator wants to move to version 1.1 he
can preview the changes to make sure the new version would still enable the application
to be fully resolved. In this case it is a safe change to make, so the administrator goes
ahead and commits the change. The next time the application is restarted it will use
version 1.1 of the persistence bundle.

wasosgijpafep_OSGi_overview.ppt Page 21 of 26

© 2010 IBM Corporation 22 OSGi feature overview

OSGi applications and SCA: The assembly food chain

Application

SCA Composite

Bundle Bundle

Bundle

POJO
POJOs assembled using a Blueprint
context and scoped by an OSGi Bundle

OSGi Bundles assembled in an OSGi
Application and integrated through
services in the OSGi service registry

SCA Composite assembled from
heterogeneous components including an

OSGi Application component, and
integrated through SCA services with

configurable bindings (JMS, web
services…).

POJO

POJO

Component Warehouse
Component
(JEE)

Customer
Component

(POJO)
Application

JMS

You have seen how POJO beans can be assembled and configured in a blueprint bundle
and how multiple bundles - including web and persistence bundles - can be assembled
into an isolated OSGi Application.

There is a further level of assembly available to OSGi applications into an SCA composite
to provide an SOA abstraction. Within an SCA composite the OSGi Application is a
component that can be wired to other components with different implementation types. For
example, an SCA composite could contain an osgi-application component, a JEE
component containing EJBs, a BPEL component, and so on. Each component within an
SCA composite declares abstract services and references to which concrete bindings can
be applied and it is through these services and references that the components of an SCA
composite are wired together. The OSGi Application architecture was designed with this
form of assembly in mind so that the services and references declared in a blueprint XML
configuration can be exposed through the application manifest to be visible outside the
application. Such exposed services and references can then be mapped to SCA services
and references with the full range of available SCA bindings applied to them.

This enables OSGi applications to participate in two new scenarios: the assembly into
heterogeneous composites of OSGi and non-OSGi components and remote use of OSGi
application services through SCA services with a variety of bindings including JMS,
SOAP/HTTP, IIOP and JSON-RPC.

wasosgijpafep_OSGi_overview.ppt Page 22 of 26

Rational Application Developer beta OSGi application project
support

WWe bb SpSp hhere AA pp pplication SeServer
 i e test environ ent

e ere lication rver
V7V7 OO SGSGi FFe PP test environ mment

Publish and run

WWe bb SS pp hheree ere
EEn hhance ddn ance

AA pp pplication SServerlication erver vali ddationvali ation
VV7 server su pp pport7 server su ort

DDevelo pper ppro dductivityevelo er ro uctivity
(example: content assist, validation, re-factoring)(example: content assist, validation, re-factoring)

GGra pp hhical TTutorials an dd
a pp pplication e dditora lication e itor ocumentation

ra ical utorials an
ddocumentation

GGra pp hhical creation CCreation / im pport /
wizar s ex ort tools

ra ical creation reation / im ort /
wizar dds ex pport tools

WW TT PP PP DD EE

Eclipse

OSGi application plug-in

Rational Application Developer beta tools

23 OSGi feature overview

Free Eclipse plug-in for OSGi Applications
�Graphical tools to develop OSGi applications and
bundles

� Includes features that increase developer productivity
� Creates OSGi Applications for any Aries-based server
runtime.

� Eclipse WTP 3.6 (Helios) M6 or later required

http://www.ibm.com/developerworks/rational/downloads
/10/rationaldevtoolsforosgiapplications.html

OSGi application support in Rational
Application Developer beta code

� Provide integrated development and test of
OSGi Applications on the WebSphere platform

� Integrated with web tools, JEE productivity tools, and
other capabilities in Rational Application Developer

� Supports deployment to WebSphere Application Server
OSGi FeP and includes the FeP in the WebSphere
Application Server test environment

�Enhanced validation

https://www14.software.ibm.com/iwm/web/cc/

earlyprograms/rational/radob/index.shtml

© 2010 IBM Corporation

Tool support for OSGi Applications is available in the Rational Application Developer beta
code that was published on April 16, 2010. The new tools are structured so that server-
independent development and assembly tools can be installed as a plug-in into any
Eclipse WTP 3.6 environment. While this is pre-integrated in the Rational Application
Developer beta code, the availability of the new tools in Eclipse WTP configurations other
than Rational Application Developer better enables these common tools to be used to
develop OSGi Applications for deployment to Geronimo and, in the future, other non-
WebSphere Application Server servers that integrate the Apache Aries runtime
components.

The common development tools include new project type for OSGi Applications, the ability
to import and export .eba archives, form-based editors for bundle manifests, application
manifests and Blueprint configuration files in addition to tutorials and documentation.

Additionally integrated into the Rational Application Developer beta code are WebSphere
deployment tools, a WebSphere Application Server test environment augmented with the
OSGi application pack, enhanced validation tools, and integration with web and JEE
productivity tools.

wasosgijpafep_OSGi_overview.ppt Page 23 of 26

© 2010 IBM Corporation 24 OSGi feature overview

In summary you have seen some of the common problems experienced with Enterprise
Java.

You have seen how the design, development, and maintenance of complex applications
can be improved and simplified by a model that enforced real modularity at the level of the
unit of deployment. When the coherent, reusable module is the thing that is actually
deployed, rather than something within it like a class, then the barriers to module reuse
are lowered as far as they can go, improving the likelihood of really achieving reuse and
therefore reducing cost. The feature pack delivers support for modular OSGi applications,
provides a fully integrated administrative model to support their deployment and
management and, with the Rational Application Developer beta code, provides tools to
improve developer productivity.

You have seen how sharing common libraries between isolated Java EE applications is
greatly simplified by the integration of a bundle repository for common libraries with the
application deployment process.

You have seen how multiple versions of classes can be accommodated within and across
applications through OSGi bundles versioning.

You have also seen how the OSGi application feature pack supports a standardized
evolution of Spring bean configuration and tightly integrates the DI bean container with the
runtime to ensure the proper management of JPA and JTA contexts

Finally, you have seen how OSGi applications can be composed into larger SCA
composites with services exposed remotely over a standard set of protocol bindings.

wasosgijpafep_OSGi_overview.ppt Page 24 of 26

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_wasosgijpafep_OSGi_overview.ppt

This module is also available in PDF format at: ../wasosgijpafep_OSGi_overview.pdf

25 OSGi feature overview © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

wasosgijpafep_OSGi_overview.ppt Page 25 of 26

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, Rational, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. in the United States, other
countries, or both.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

26 © 2010 IBM Corporation

wasosgijpafep_OSGi_overview.ppt Page 26 of 26

