

© 2012 IBM Corporation

WebSphere Application Server V8.5

Modular and dynamic OSGi applications
Part 1: Motivations and specifications

This presentation covers modular and dynamic OSGi applications in WebSphere
Application Server. This is Part 1 - motivations and specifications.

WASV85_OSGi_part1.ppt Page 1 of 23

Agenda

� Part 1
– Why does complexity tend to increase?
– Introduction to OSGi

� Part 2
– OSGi application support in WebSphere
– Using OSGi to develop and manage enterprise applications

• Modular
• Dynamic
• Extensible

2 Part 1: Motivations and specifications © 2012 IBM Corporation

This is the first part of a two part series that covers the WebSphere Application Server
OSGi Applications feature, introduced in version 7 and extended in version 8.

Part 1 describes some common problems experienced with Java Enterprise Edition (or
Java EE for short) application deployments to understand what problems this feature
solves.

Then it describes how OSGi and Java Enterprise Edition have come together over the last
two years in standards and in open-source. The second part looks at how this is
implemented in WebSphere Application Server.

WASV85_OSGi_part1.ppt Page 2 of 23

In a software system, entanglement is the primary cause of decay

© 2012 IBM Corporation3 Part 1: Motivations and specifications3

Complexity and system rot

Source:

http://adaptevolve.blogspot.com/2009/10/osgi-value-proposition-in-recent-blog.html

C
om

pl
ex

ity

Time

Traditional
system

Modular
system

Time

K
no

w
le

dg
e

A
bo

ut
 S

ys
te

m

Traditional
system

Modular
system

Why does it happen?
How do you prevent it?

In a software system, entanglement is the primary cause of decay

Source:

http://www.tensegrity.hellblazer.com/2009/10/all-we-need-to-do-is-take-these-lies-and-make-them-true-somehow.html

Systems evolve over time to fix problems and meet new and changing requirements. As a result, systems
become complex. If the system was well-architected to start with then the complexity can be better managed
and is more likely to grow in a linear fashion because first, changes to module internals are isolated only to
that module, and second, the impact on the system of a change to one module is well understood and so
testing can be more easily targeted.

“Entangled” systems that lack structure evolve in a more uncontrolled fashion such that with each release,
changes of a particular scale become increasingly expensive to perform. This is due to the “compound
interest” of the entangled growth of previous releases. The impact of any change subsequently becomes
difficult to estimate and targeting the testing of that change becomes more of an art than a science.

There is an up-front cost to designing and implementing a modular system. There are some concepts and
processes that support the strictly modular behavior that developers have to understand; in contrast, the
initial costs at the beginning of the life cycle of a traditional system are lower and initial progress will likely be
faster. But as time passes and additional subsystems are introduced, the initial investment pays off and
keeps on giving.

Another way at looking at the benefit of a well modularized system is in terms of how well structural
knowledge about the system is retained over time. The problem faced with many complex systems is that
they become subject to “system rot”. Over time, structural knowledge is lost as key developers and architects
leave the organization. These key people were relied upon when documentation was inadequate or missing.
It then becomes increasingly difficult to effectively re-factor the system in response to changing business
requirements and accidental complexity is introduced over time as non-optimal changes are made.

Structural knowledge is not lost from a modular system even as the systems grows over time because the
relationships between the system modules are well-defined and module internals are fully encapsulated and
do not leak out.

The common theme here is that software systems have a tendency to decay. The primary cause of that
decay is the increasing entanglement of the components that make up that system.

WASV85_OSGi_part1.ppt Page 3 of 23

ClassClass
ClassClass

ClassClass
ClassClass

ClassClass
ClassClass

#1 – Java Needs Help

� Java unit of modularity = JAR*

� Enterprise applications are collections of JARs

But a JAR lacks the primary characteristics of modularity

� It does NOT hide its internals

� It does NOT declare its externals

� The global Java class path does NOT support version
handling

Jar

Package

ClassClass

Package

ClassClass

Package

ClassClass

* JAR is an acronym for Java Archive

4 Part 1: Motivations and specifications	 © 2012 IBM Corporation

In the Java programming language there are three primary areas to reduce the occurrence of software

entanglement and to increase the ability of developers and operations staff to deliver and maintain agile,

dynamic systems.

The first is Java itself.

This is where most of the problems start. Object oriented languages like Java provide for modularity at the

instance data level, which is a good foundation, but stops short where it really matters. The currency of

modularity in any system is the “unit of deployment” and in Java the JAR is the module of deployment: the

ideal granularity at which to consider module reuse. But JARs have no modularity characteristics.

There is no “jar scoped” access modifier alongside public, protected and private.

Most JARs consist of multiple packages and, if the JAR represents a cohesive function, there is typically a

need for classes in one package to access classes in another which, as a consequence is required to have

public accessibility. Immediately that makes these classes visible to classes in any other JAR due to JARs

providing no level of visibility control. Even well-behaved applications that only use the classes a JAR

provider expects to be used externally are at the mercy of the global Java class path because the required

class can be contained by multiple jars and the one loaded is the first on the global class path.

Not only do JARs lack the capacity to scope the visibility of what they contain, they also lack the capacity to

declare their own dependencies. Many jars have implicit dependencies on other jars that means these jars

cannot be installed or moved around independently. If they are installed without dependencies being present

then the first time there is any indication of a problem is at runtime.

Another problem with the global Java class path is its inability to accommodate multiple versions of a class.

There can be multiple versions available on the class path but only the first will ever be loaded.

WASV85_OSGi_part1.ppt	 Page 4 of 23

#2 - Java developers need help

� Patterns like SOA* and DI** are helpful but Java EE tools have provided limited assistance
for enabling the development of truly re-usable software modules

� Developers need more that just a set of patterns and good design practice to produce re
usable software

� Developers need tools to encourage and enforce modular characteristics during
development

– It is not enough that the code compiles cleanly
– Need dev-time warnings and quick fixes to indicate when code is getting entangled

* Service Oriented Architecture

** Dependency Injection

5 Part 1: Motivations and specifications	 © 2012 IBM Corporation

Java is a good starting point. Developers can further apply patterns like:

Service Oriented Architecture, which helps by defining external contracts and policies
while hiding the implementation, and

Dependency injection, which helps by more loosely coupling fine-grained components and
simplifying the testing of these components in isolation from one another, and the
enterprise environments to which they are deployed.

But historically, while Java development tools have enabled and simplified the use of such
patterns, they have done little to really encourage or enforce modular characteristics
during development. Today, it is easy to build an enterprise application from a set of
projects which represent the modules in the application. Integrated Development
Environments tools quickly show developers where compilation errors have occurred and
often suggest candidate fixes for those errors. What the tools are not so focused on is
distinguishing between the internals, and externals of a project or providing warnings if
project internals “bleed out.” Traditional Java tools build a project-specific Java class path
such that if Project A needs a public class from Project B then Project B is part of the build
path of Project A. In which case everything from Project B is part of the build path of
Project A. It is all or nothing.

WASV85_OSGi_part1.ppt	 Page 5 of 23

webA.war

WEB INF/classes/servletA.class

WEB INF/lib/json4j.jar

WEB INF/lib/commons logging.jar

WEB INF/lib/junit.jar…
NF/lib/junit.jar…

webB.war

WEB INF/classes/servletB.class

WEB INF/lib/json4j.jar

WEB INF/lib/commons logging.jar

WEB INF/lib/junit.jar…
/lib/junit.jar…
webC.war

WEB INF/classes/servletC.class

WEB INF/lib/json4j.jar

WEB INF/lib/commons logging.jar

WEB INF/lib/junit.jar…

© 2012 IBM Corporation 6 Part 1: Motivations and specifications

#3 – Global class path and oversized EARs*

� For enterprise applications, no matter how modular the
Application is, the EAR deployment process is lacking

� Across applications - each archive typically contains all
the libraries required by the application

– Common libraries/frameworks get installed
with each application

– Multiple copies of libraries in memory

� Within applications - vendor libraries consume other
vendor libraries leading to conflicting versions on the
application class path

-

-

- -

-

webA.war

WEB-INF/classes/servletA.class

WEB-INF/lib/json4j.jar

WEB-INF/lib/commons-logging.jar

WEB-I

-

-

- -

-

webB.war

WEB-INF/classes/servletB.class

WEB-INF/lib/json4j.jar

WEB-INF/lib/commons-logging.jar

WEB-INF

-

-

- -

-

webC.war

WEB-INF/classes/servletC.class

WEB-INF/lib/json4j.jar

WEB-INF/lib/commons-logging.jar

WEB-INF/lib/junit.jar…

plankton.v1

plankton.v2

* EAR is an acronym for Enterprise application archive
For reference on ObjectWeb ASM, see: http://weblogs.java.net/blog/kohsuke/archive/2010/02/12/asm-incompatible-changes

And finally there is Java Enterprise Edition where the deployer, more than anyone else,
really needs help. You can follow all the design best practices in the world when
developing an enterprise application but the JEE deployer has EARs to work with.

Enterprise applications often make use of vendor Java libraries, either from open source
or from an Independent Software Vendor who provides the application. Common
examples are Apache Commons libraries, Spring, Hibernate and so on. The simplest way
to ensure the coherency of each application is to include all the libraries each application
needs in each EAR (or Enterprise Archive). While this makes it easier for EARs to be
moved around from one system to another, it also makes for big EARs and multiple copies
of the same library in memory for each application.

In addition, within an application you can still only have one version of each class, which
can easily become problematic when multiple vendor libraries have dependencies on
incompatible versions of some common utility class. The “ObjectWeb ASM” project is a
good example of this kind of problem. ASM is a Java byte code manipulation and analysis
framework used by many Java frameworks and has made non-compatible changes during
its history. The result is, if you have a web application using two Java frameworks both of
which need different versions of ASM then your application will not run even though it
makes no direct use itself of ASM.

WASV85_OSGi_part1.ppt Page 6 of 23

ClassClass
ClassClass

ClassClass
ClassClass

ClassClass
ClassClass

ClassClass
ClassClass

© 2012 IBM Corporation7 Part 1: Motivations and specifications

� “The dynamic module system for Java”
– Mature 10-year old technology
– Governed by OSGi Alliance: http://www.osgi.org
– Used inside just about all Java-based middleware

• IBM WebSphere, Oracle WebLogic, Red Hat JBoss, Sun GlassFish, Paremus
Service Fabric, Eclipse Platform, Apache Geronimo, (non-exhaustive list)
http://www.osgi.org/wiki/uploads/News/2008_09_16_worldwide_market.pdf

What is OSGi?

JARJAR

Package

ClassClass

Package

ClassClass

Package

ClassClass

Package

ClassClass

Explicit dependencies

Explicit exports

Solving the Java shortcomings is very straightforward. If you look inside Java client
platforms like IBM Lotus Expeditor or the Eclipse platform, or server-side middleware like
the WebSphere platform, you will see that all these runtimes do not just run on a raw JRE,
they all run inside an OSGi framework running on the Java Runtime Environment. OSGi is
the dynamic module system for Java, governed by the OSGi Alliance, and has been in
existence for over 10 years. It solves the Java problems by adding additional metadata to
the JARs to first, explicitly declare what should be exposed from a JAR, and at what
version, ensuring anything not explicitly mentioned is not visible outside the JAR, and
second, explicitly declare what is required by the JAR in order for the JAR to run, and at
what version.

A JAR augmented by such metadata is still a valid JAR, but in an OSGi runtime the class
loaders respect the metadata. Such augmented JARs are referred to as OSGi bundles
and possess the modular qualities raw JARs lack. A bundle’s internals cannot be seen by
other bundles and it only starts if all its declared dependencies can be satisfied by other
bundles.

A key aspect of modularity is the ability to replace one provider of an API (an Application
Programming Interface) with another provider without the consumer needing to care. In
practical terms, this means that bundles require a dynamic life cycle that is not tied to the
life cycle of the Java Virtual Machine (or JVM) in which they run. OSGi provides explicit
bundle life cycle management that paves the way for true in-JVM continuous availability.

WASV85_OSGi_part1.ppt Page 7 of 23

ClassClass
ClassClass

ClassClass
ClassClass

ClassClass
ClassClass

ClassClass
ClassClass

© 2012 IBM Corporation8 Part 1: Motivations and specifications

How does OSGi help reduce cost?

� Enforces architecture and simplifies maintenance

� Enables modular deployment

� Enables co-existence of multiple versions of libraries
– Simplifies independent evolution of applications
– Better separation of concern between application and middleware

� Enables truly dynamic update of modules within applications

BundleBundle

Package

ClassClass

Package

ClassClass

Package

ClassClass

Package

ClassClass

Explicit exports

Explicit dependencies

Because the dependencies are explicitly defined, the wiring between modules is all by
design rather than by opportunity. It becomes easier to scrutinize any new dependencies
because you need to explicitly update the module metadata.

The declaration of explicit dependencies can be used by a deployment system to enable
more modular deployment, vastly simplifying the operational management of large suites
of applications. Moreover, the explicit wiring of specific versions of dependencies simplifies
both the testing of applications, which can be tested in isolation and still achieve the same
results as in a production server environment; and the management of application suites,
giving the operations team the freedom to update common dependencies at a pace they
can afford to test at.

Finally, the dynamic life cycle of OSGi enables truly dynamic update of modules within an
application.

WASV85_OSGi_part1.ppt Page 8 of 23

© 2012 IBM Corporation 9 Part 1: Motivations and specifications

OSGi Bundles and Class Loading

� OSGi Bundle – A jar containing:
– Classes and resources
– OSGi Bundle manifest

� What’s in the manifest:
– Bundle-Version: Multiple versions of bundles

can live concurrently
– Import-Package: What packages from other

bundles does this bundle depend upon?
– Export-Package: What packages from this

bundle are visible and reusable outside of the
bundle?

� Class loading
– Each bundle has its own loader

– No flat or monolithic class path

– Class sharing and visibility decided by

declarative dependencies, not by class

loader hierarchies

– OSGi framework works out the

dependencies including versions Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: MyService bundle

Bundle-SymbolicName: com.sample.myservice

Bundle-Version: 1.0.0

Bundle-Activator: com.sample.myservice.Activator

Import-Package:
com.something.i.need;version=1.1.2

Export-Package: com.myservice.api;version=1.0.0

OSGi defines a dynamic module system for Java. It introduces some simple and yet powerful concepts to

Java which eliminate each of the shortcomings just discussed.

The key notion introduced is the “bundle,” as the modular unit. The OSGi platform architecture is based upon

bundles as the unit of deployment.

A bundle is just a JAR archive with a JAR manifest but the manifest contains additional OSGi metadata that

is processed by the OSGi module layer. This metadata describes all the modularity aspects of the bundle.

Some notable metadata in the manifest includes the bundle version header, import package header, and

export package header.

The Bundle-Version header is used to qualify the version of the bundle and enables multiple versions of the

bundle to be concurrently active.

The Import-Package header declares the external dependencies of the bundle. Specific versions or version

ranges can be declared here. In the example, the imported package is required at version 1.1.2 or later.

The Export-Package header declares the packages that are visible outside the bundle.

Any package not declared in the manifest has visibility only inside the bundle.

Eclipse and IBM Rational Application Developer tools provide a convenient editor for this manifest.

This metadata is used by the OSGi class loader. There is no global class path in OSGi – the OSGi

framework determines the dependencies and calculates the independent class path for each bundle.

Thereby, each of the shortcomings of plain Java class loading are eliminated. Only declared exports are

visible outside the bundle, dependencies are resolved to specific versions and multiple versions of packages

can be available concurrently for different client bundles, and dependencies are explicit so that bundles will

not start if any dependencies cannot be fulfilled.

WASV85_OSGi_part1.ppt Page 9 of 23

© 2012 IBM Corporation 10 Part 1: Motivations and specifications

Dynamic life cycle

� Bundles have a dynamic life cycle

� Can come and go independently

� APIs enable graceful reaction to changes

Bundle

In the OSGi Service Platform, bundles have a dynamic life cycle. A bundle is first
‘installed’ into the OSGi framework. A process called “resolution” determines whether all
the bundles dependencies can be satisfied. If successful the bundle moves to the
“resolved” state and can be started. In this state classes and resources in the bundle can
be used by other bundles. From this state the bundle can be started. It briefly goes
through the “starting” state where the bundle’s startup class, called an Activator is
executed, then the bundle transitions into the “active” state.

Bundles can be installed, started, stopped, and uninstalled independently of each other.

WASV85_OSGi_part1.ppt Page 10 of 23

© 2012 IBM Corporation 11 Part 1: Motivations and specifications

OSGi services

� Publish/find/bind service model
– Fully dynamic
– Local
– Non-durable

� POJO* advertised with properties or interface or class

� Primary mechanism for bundle collaboration

service
Provider
bundle

Consumer
bundle

register get

listen

* POJO is an acronym for Plain Old Java Object

The OSGi Service Platform provides a fully dynamic publish, find, bind service model
locally within the context of an OSGi framework running in a JVM. Provider bundles can
be stopped and started causing POJO services to be registered and deregistered,
independently of the life cycle of the consuming bundles.

The Service Registry is the primary mechanism within OSGi by which bundles collaborate.

WASV85_OSGi_part1.ppt Page 11 of 23

© 2012 IBM Corporation 12 Part 1: Motivations and specifications

Bundle and service dynamics (1 of 6)

service
Consumer

Bundle

listen

Consumer ‘listens’ for required service

For example, a bundle that wants to consume a service listens for that service to become
available in the Service Registry. Initially there are no services available.

WASV85_OSGi_part1.ppt Page 12 of 23

© 2012 IBM Corporation 13 Part 1: Motivations and specifications

Bundle and service dynamics (2 of 6)

service

listen

register

Consumer
Bundle

Provider
Bundle A

Provider bundle started
- registers service
- consumer notified

Then when a provider bundle is started and a service it provides is registered in the OSGi
Service Registry, the consumer bundle is notified.

WASV85_OSGi_part1.ppt Page 13 of 23

© 2012 IBM Corporation 14 Part 1: Motivations and specifications

Bundle and service dynamics (3 of 6)

service

listen

register

get Consumer
Bundle

Provider
Bundle A

Consumer bundle gets and calls provider service

The consumer bundle gets an instance of the service and uses it.

WASV85_OSGi_part1.ppt Page 14 of 23

© 2012 IBM Corporation 15 Part 1: Motivations and specifications

Bundle and service dynamics (4 of 6)

service

listen

Consumer
Bundle

Provider bundle stopped
- unregisters service
- consumer notified

While the consumer is using the service, the bundle providing the service can be stopped,
causing the service to be unregistered from the service registry. The consuming bundle is
notified and from this point on, the consuming bundle can no longer use that service.

WASV85_OSGi_part1.ppt Page 15 of 23

© 2012 IBM Corporation 16 Part 1: Motivations and specifications

Bundle and service dynamics (5 of 6)

service

listen
register

Consumer
Bundle

Provider
Bundle B

New provider bundle started
- registers service
- consumer notified

Subsequently a new bundle can be started and register an alternative implementation of
the service interface being listened by the consumer. The consumer bundle is notified of
this new registration.

WASV85_OSGi_part1.ppt Page 16 of 23

© 2012 IBM Corporation 17 Part 1: Motivations and specifications

Bundle and service dynamics (6 of 6)

service

listen
register

get Consumer
Bundle

Provider
Bundle B

Consumer bundle gets and calls provider service

The consumer bundle can then get an instance of the service and one is provided by the
new provider.

WASV85_OSGi_part1.ppt Page 17 of 23

Declarative OSGi services using blueprint

blueprint bundle

dependencies injected

publishes
service consumes

service

A static assembly and
configuration of

components (POJOs)

OSGI-INF/blueprint/
blueprint.xml

� XML Blueprint definition describes component configuration and scope
– Optionally publish and consume components to/from OSGi service registry
– Standardizes established Spring conventions

� Simplifies unit test outside either Java EE or OSGi runtime

� In WebSphere Application Server, the Blueprint DI container is a part of the server
runtime (compared to the Spring container which is part of the application)

18 Part 1: Motivations and specifications	 © 2012 IBM Corporation

One of the significant features of the OSGi Release 4, Version 4.2 specification is its introduction of the
Blueprint component model. This is the result of the standardization activity around the Spring Framework in
the OSGi Alliance. A sizeable portion of web applications use the Spring framework today for its POJO
component model and dependency injection container. Spring provides a convenient way for business logic
to be encapsulated into POJO components, which have all their dependencies injected into them by the
Spring container. Since the POJO components have no Java dependencies on the application server it is
very simple to unit test the business logic in plain Java Standard Edition or Eclipse environment.

The Spring framework is a container that is packaged as a library with the application. In a Java EE
environment the Spring container delegates to the underlying Application server for the management of
resources such as database connections and for the application of qualities of service such as transactions
and security. In a Java EE environment, Spring is essentially a proxy container to the native web container
provided by the Application server and can add a significant amount of path-length.

By standardizing the Spring XML configuration format in the OSGi Alliance and delivering the container as an
OSGi bundle, it has become possible to pull the dependency injection container out of the application and
into the middleware. The standards-based evolution of the DI container is called the Blueprint container and
WebSphere Application Server V8 integrates this container as part of the Application server, delivered and
supported by IBM.

The Blueprint XML configuration file has the same structure as the Spring XML configuration file but in an
OSGi namespace. The Blueprint XML is a bean definition file for all the beans provided by a single bundle. In
addition to the bean definitions that is familiar to Spring developers, the Blueprint model adds new ‘service’
and ‘reference’ elements as part of the integration with the OSGi environment. Service elements direct the
Blueprint container to publish a bean as a service implementation through its service interface class into the
OSGi Service Registry. A reference element directs the Blueprint container to locate a service that can be
consumed from outside the bundle. The yellow arrows in the figure indicate OSGi services that are published
to and discovered from the OSGi Service Registry by the blueprint container. Blueprint provides a declarative
way of interacting with the Service Registry. In this manner, Some of the dynamic aspects of that interaction,
for example listening to service life cycle events, can be devolved to the Blueprint container.

Ultimately, the Blueprint container manages the life cycle and dependencies of the POJO beans that contain
the application logic and the services and references each bundle provides, and ensures references are
wired to available services.

WASV85_OSGi_part1.ppt	 Page 18 of 23

Blueprint simplifies service dynamism

<blueprint>

<bean id=”shop” class=”org.example.ecomm.ShopImpl”>

<property name=”billingService” ref=”billingService”
e-Commerce

/>

Billing

</bean>
<reference id=”billingService”

interface=”org.example.bill.BillingService” />

</blueprint>

<blueprint>

<service ref=”service” interface =

”org.example.bill.BillingService” />

<bean id=”biller” scope=”prototype”

class=”org.example.bill.impl.BillingServiceImpl” />

</blueprint>

� Dynamic service life cycle is managed by the Blueprint container

� Service reference injected by container
– service can change over time
– can be temporarily absent without impacting the runtime operation of the bundle

19 Part 1: Motivations and specifications © 2012 IBM Corporation

Here is a simple example of an eCommerce bundle that contains a “shop” bean that uses
a BillingService provided by another bundle. The Blueprint container locates the Billing
Service provider and injects it into the shop bean at runtime.

OSGi services are dynamic, so if the service provider is changed then the blueprint
container dynamically rewires the reference to a new service without impacting the shop
bean instance.

On the provider side, the BillingServiceImpl is another POJO implementing a Java
interface for which a service is registered by the Blueprint container when the Billing
bundle is started.

By default beans are created with “singleton” scope which means only a single instance is
created by the container. If the bean maintains any state then it can be declared with
“prototype” scope so that the container creates a new instance each time it needs to inject
the dependency into a client.

WASV85_OSGi_part1.ppt Page 19 of 23

How do enterprise applications use OSGi?

� Enterprise OSGi focuses on application concerns including web

technologies, fine-grained component assembly and access to

persistence frameworks

– through exploitation of familiar Java EE technologies
– in a manner suitable for a dynamic OSGi environment
– using standards defined by the JCP and OSGi Alliance
– introduces a multi-bundle application archive

� Enables enterprise application containers and deployment systems to

provide better support for:

– Sharing modules between applications
– Multiple concurrent versions of modules
– Dynamic update and extensions of applications

� Find out more in part 2

Application

Entities

Blueprint

Web components

<web.xml />

<persistence.xml/>

<blueprint.xml/>

20 Part 1: Motivations and specifications	 © 2012 IBM Corporation

An application that uses OSGi looks a lot like a standard web application using all the
familiar technologies and standards that web apps are used to. The focus of the OSGi R4
V4.2 Enterprise specification, published in 2010, was how to augment existing Java SE
and EE technologies to make them suitable for a dynamic OSGi environment. For the
most part, this means making Java EE services available as OSGi services so their
availability can be tracked dynamically. But at its simplest, an OSGi application can be no
different from a Java EE application beyond having additional OSGi metadata describing
bundles’ internal and external dependencies.

A multi-bundle Enterprise application provides a way to group bundles together to form an
application that can be deployed to a suitable runtime environment providing support for
Java Enterprise Edition technology, such as IBM WebSphere Application Server V8.
Modules can be shared between applications. Multiple versions of modules can be running
concurrently. Applications can have their constituent bundles updated dynamically, and
applications can be extended dynamically, and without restarting the application. Find out
more in part 2.

WASV85_OSGi_part1.ppt	 Page 20 of 23

Summary

� Software systems have a tendency to decay

� OSGi is a mature modularity system for Java that:
– enforces application architecture
– simplifies maintenance
– enables co-existence of multiple versions of libraries
– simplifies independent evolution of applications
– enables truly dynamic update of application modules.

� The Blueprint Container OSGi specification brings a standardized Dependency Injection
mechanism to the platform, greatly simplifying development and unit testing.

� Enterprise Applications use JEE technology, can share application content and be

dynamically updated at runtime

21 Part 1: Motivations and specifications	 © 2012 IBM Corporation

Software systems have a tendency to decay. Changes of a particular scale become
increasingly expensive to perform. The primary cause of that decay is the increasing
entanglement of the components that make up that system.

OSGi is a mature modularity system for Java that has been used inside tools and runtime
infrastructure for many years. The OSGi platform dramatically improves on system
entanglement. It enforces application architecture and simplifies maintenance; it enables
modular deployment; it enables co-existence of multiple versions of libraries, simplifying
independent evolution of applications and better separating application concerns and
middleware concerns; and it enables truly dynamic update of modules within applications
achieved through the dynamic bundle life cycle and the Service Registry.

The OSGi Blueprint Container model brings a standardized Dependency Injection
mechanism to the platform greatly simplifying development and unit testing of applications.

Enterprise applications made up of bundles exploit existing JEE technology for persistence
transactions processing, can share application content for improved memory footprint, and
can be dynamically updated at runtime.

WASV85_OSGi_part1.ppt	 Page 21 of 23

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV85_OSGi_part1.ppt

This module is also available in PDF format at: ../WASV85_OSGi_part1.pdf

22 Part 1: Motivations and specifications © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV85_OSGi_part1.ppt Page 22 of 23

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, B, Lotus, Rational, and WebSphere are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other
IBM trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

23 © 2012 IBM Corporation

WASV85_OSGi_part1.ppt Page 23 of 23

