

®

IBM Software Group

© 2008 IBM Corporation

Updated January 6, 2009

Request timeouts

WebSphere ® Application Server for z/OS ® V7

This presentation covers the request timeout functions available in WebSphere Application
Server for z/OS.

WASv7zOS_ThreadTimeouts.ppt Page 1 of 14

IBM Software Group

2

Request timeouts © 2008 IBM Corporation

Agenda

� Introduction

� Timeout configuration

� Timeout operational enhancements

In looking at timeout processing in WebSphere Application Server for z/OS, you will start
with an introduction and some background information. Once you understand the need for
timeouts, you will look at how to configure timeouts and then finally how to monitor threads
for timeouts, if needed.

WASv7zOS_ThreadTimeouts.ppt Page 2 of 14

IBM Software Group

3

Request timeouts © 2008 IBM Corporation

Timeout introduction

�Background (http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101233)

�Applications have bugs, network connections hang,
needed resources are unavailable…

�Architecture of WebSphere Application Server for
z/OS
�Server split into a controller region and one or more

servant regions

�Extra reliability and availability provided by identifying a
misbehaving application request and, if necessary, ending
it

�Timeout values control amount of time allowed for
request completion

In a perfect world, applications all behave, network connections never have problems and
all the resources you need are always available. In the real world though, you know this is
a pipe dream. Applications hang because of bugs introduced in their development, needed
network connections go down, and database resources become unavailable. These
problems can cause applications to take longer than expected, holding up other work. For
instance, the application can be holding locks needed by other applications or might be in
a loop, causing it to consume excessive amounts of processor time. Timeout processing
allows the misbehaving servant to be dealt with. In the next few slides you will see the
different possible actions available to deal with the problem, configurable by you.

WASv7zOS_ThreadTimeouts.ppt Page 3 of 14

IBM Software Group

4

Request timeouts © 2008 IBM Corporation

Currently…

�Request takes ‘too long’ to process
�ABEND the servant region, responding to all clients with

a failure -- DEFAULT
� Generates a dump of the servant

� Penalizes work that was not having any problems

� Throughput in the server can be affected waiting for servant restart

�Allow the request to continue, responding to the client
with a failure (SESSION)
� Possibly allows the request to run to completion

� If request is truly hung, the servant has one less thread for processing work

� Problem can end up tying up multiple threads, eventually affecting
throughput in the servant

Currently if a request is deemed to be taking ‘too long’ to process, the server assumes that
the request must be hung and starts processing to rectify the situation. Depending on how
you have the server configured, the servant where the request is running will either be
terminated
(protocol_< http(s)/sip(s)>_timeout_output_recovery=SERVANT) or the
server will respond to the client and allow the request to continue processing
(protocol_< http(s)/sip(s)>_timeout_output_recovery=SESSION).

In the case where the servant region is terminated, a dump of the servant can be
generated and all work that was running in the servant is stopped as well. This option can
end up penalizing work that was not having any problems. In addition, server throughput is
affected while the dump is being taken and a new servant is started. This processing can
take quite a while.

You can choose the option where the request is allowed to continue so that only the
problem thread is affected when a hang is detected. This option assumes that there was
an unusual event that caused the timeout and so the request will eventually complete
successfully. If this assumption is a bad one, however, and the request is truly hung, the
servant is left with one less thread for processing incoming work. In addition, by allowing
the request to continue, deadlocks can occur because the request is holding locks or other
resources. If this problem continues to happen on subsequent requests, multiple threads
become tied up and the throughput of the servant is affected; possibly to the point where it
has no threads available to process work.

WASv7zOS_ThreadTimeouts.ppt Page 4 of 14

IBM Software Group

5

Request timeouts © 2008 IBM Corporation

Request timeouts, V7

�Encourage requests taking ‘too long’ to complete
before considering them hung
�Attempt to interrupt the work in progress (for instance, by

using Java APIs to break out of java blocks)
� If all goes as planned, the dispatched thread is freed and then

either records the ‘event’ or turns it into an exception, or both

� If attempt fails, servant eventually takes some doc and notifies the
controller that the thread is hung

�Registry of ‘interruptible objects’ introduced
�Blocking code can register so that it can be called to

‘unblock’ when thread becomes unresponsive

�A java interruptible object always exists

In order to minimize the disruption to throughput, some new functionality has been added
in Version 7.0 that tries to help the ‘hung’ dispatch thread to completion. If the servant
notices that a request is hung, it will attempt to interrupt it so as to free the dispatched
thread. If the servant is successful, it with either record the interrupt as an event or turn it
into an exception of its own to be sent back to the client, or both. Before Version 7,
depending on the configuration, the client will receive an exception and the request MAY
eventually finish but it also may have been truly hung. If it was truly hung, this leaves one
less thread to process work in the servant. The other option before Version 7.0 was to
ABEND the servant. This affects throughput while a dump is taken and the servant is
restarted.

To allow the servant to try to interrupt a request, a new registry of ‘Interruptible Objects’ is
introduced. Certain blocking code can register so that if too much time passes, the servant
can call the ‘interruptible object’ in order for it to attempt to unblock the thread. A Java
interruptible object will always be registered so the servant will try to have Java help
interrupt the thread if all else fails.

WASv7zOS_ThreadTimeouts.ppt Page 5 of 14

IBM Software Group

6

Request timeouts © 2008 IBM Corporation

Request timeouts, V7…

�After some configurable threshold of hung threads
is reached, ABEND the servant
�Allows you to determine percentage of threads that are

affected before terminating the servant

Variables
protocol_http_timeout_output_recovery
protocol_https_timeout_output_recovery
protocol_sip_timeout_output_recovery, or
protocol_sips_timeout_output_recovery

must be set to SERVANT

Since it is possible that the servant may not be able to interrupt the work in progress
successfully, there is still the possibility that the servant may need to be restarted. The
difference in Version 7.0 though, is that now there is a configurable threshold of hung
threads that needs to be reached before ABENDing the servant. This allows you to
determine the percentage of threads that are considered hung, or non-working, before the
servant is ABENDed and restarted.

If a thread that was reported to the controller as ‘hung’ finishes, the controller is notified of
that so that it is no longer considered in the threshold determination.

In order to take advantage of this new function in version 7, the appropriate protocol
timeout output recovery variable must be set to ‘SERVANT’, which
is the default. If it is set to ‘SESSION’, a response is sent to
the client and nothing else is done.

WASv7zOS_ThreadTimeouts.ppt Page 6 of 14

IBM Software Group

7

Request timeouts © 2008 IBM Corporation

Thread timeouts, properties

�New configurable properties
�server_region_stalled_thread_threshold_percent

� Default, 0

� Percentage of threads that can become unresponsive before the controller
terminates the servant

�server_region_<type>_stalled_thread_dump_action

� Where <type> is http(s), iiop, mdb, sip(s)

� Default, TRACEBACK

� Type of documentation to take when a stalled thread is found

� Valid values: NONE, SVCDUMP, JAVACORE, JAVATDUMP, HEAPDUMP,
and TRACEBACK

To take advantage of this new request timeout function, there are a few new custom
property variables you need to be aware of. The first one is the
server_region_stalled_thread_threshold_percent variable. It tells the
controller what percentage of threads should be considered hung before terminating the
servant. If you leave the default value of zero, it will behave as it did in prior versions. It will
either terminate the servant when it discovers that a thread is taking too long OR it will
respond to the thread’s client and allow the thread to keep running. The
server_region_<type>_stalled_thread_dump_action variable tells the
application server what documentation you want taken when a thread is unable to be freed
and a notification of a stalled thread is sent to the controller.

WASv7zOS_ThreadTimeouts.ppt Page 7 of 14

IBM Software Group

8

Request timeouts © 2008 IBM Corporation

Thread timeouts, properties…
�server_region_request_cputimeused_limit

� Default, 0

� Specifies, in milliseconds, the amount of processor time that an application
request can consume before the servant will attempt to take action

�server_region_cputimeused_dump_action

� Default, TRACEBACK

� Type of documentation to take when a request has consumed too much
processor time

� Valid values: NONE, SVCDUMP, JAVACORE, JAVATDUMP,HEAPDUMP,
and TRACEBACK

To set:

Application servers > <serverName>

The last two custom properties you need to be aware of are
server_region_request_cputimeused_limit and
server_region_cputimeused_dump_action . These properties allow you to
determine how much processor time you are willing to allow one request to consume. If
the request exceeds the specified amount of time, UNIX Systems Services generates a
signal that may or may not get delivered to the rogue request. The signal may not get
delivered immediately if the thread has invoked a native PC routine, for instance. In that
case, the signal will not get delivered until the PC routine returns to the thread. When and
if the signal gets delivered, a BBOO0327 message is output, doc is gathered according to
what you specified for the server_region_cputimeused_dump_action property and
the controller is notified that a thread is hung. The default for the
server_region_cputimeused_dump_action property is TRACEBACK. After
delivery of the signal to the request, the WLM enclave token is quiesced, which results in
the dispatch priority being lowered so that the thread should only be able to use the
processor when the system is experiencing a light workload. If the hung-thread-threshold
is hit, WebSphere will ABEND the servant as usual.

WASv7zOS_ThreadTimeouts.ppt Page 8 of 14

IBM Software Group

9

Request timeouts © 2008 IBM Corporation

Thread timeouts, operational enhancements

�New command
�f server,display,threads,<parameters>

� Where parameters are:
– ALL

– TIMEDOUT

– REQUEST=<value>

– ASID=<value>

– AGE=<value>

� Can further qualify with
– SUMMARY (default, except for REQUEST=<value>)

– DETAILS

� Information also available by way of a new
InterruptibleThreadInfrastructure MBean

There is a new command to display the dispatch threads that are currently active. The
DISPLAY,THREADS command will display information about every dispatch thread in
every servant region associated with the specified controller. By default, it will give you
SUMMARY information but you can also specify that you want DETAILS. In the case of
the REQUEST=<value> parameter, the default is DETAILS.

The information is also available by way of a new InterruptibleThreadInfrastructure MBean.

WASv7zOS_ThreadTimeouts.ppt Page 9 of 14

IBM Software Group

10

Request timeouts © 2008 IBM Corporation

Thread timeouts, operational enhancements…

F S7SR01A,DISPLAY,THREADS,ALL
BBOJ0111I: REQUEST ASID JW TO RE DISPATCH TIME

BBOJ0112I: ffffe453 0X0041 Y N N 2008/08/23 18:38:12.391628

BBOJ0112I: ffffe452 0X0041 N N N 2008/08/23 18:38:27.473191

BBOJ0112I: ffffe454 0X0041 Y N N 2008/08/23 18:38:12.319306

BBOJ0112I: ffffe451 0X003C N N N 2008/08/23 18:38:27.485103

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,THREADS,ALL

Where JW = ‘request is in a Java Wait’

TO = ‘Timed Out’

RE = ‘Retry count Exceeded’

Here you see an example of the default dispatch thread display. There are four threads
currently dispatched and two of them are currently in a Java Wait. If you want more
information about a particular one, you can use the REQUEST=<value> option for that
request. None of the requests shown have timed out as shown by the ‘TO’ heading. When
the controller is informed that the attempt to ‘free the dispatch thread’ has failed, the ‘RE’
column is changed to ‘Y’. The last column, dispatch time, shows the time when the
request arrived in the servant region to be dispatched. The time shown is local time if
ras_time_local is set to 1, otherwise the time shown is GMT.

WASv7zOS_ThreadTimeouts.ppt Page 10 of 14

IBM Software Group

11

Request timeouts © 2008 IBM Corporation

Thread timeouts, operational enhancements…
F S7SR01A,DISPLAY,THREADS,DETAILS

BBOJ0106I: REQUEST ffffe453 ASID 0X0041 TCB 0X008CAE88

BBOJ0119I: CONTROLLER RECEIVED REQUEST AT 2008/04/14 18:38:12.391478

BBOJ0120I: CONTROLLER QUEUED REQUEST TO WLM AT 2008/04/14 18:38:12.391522

BBOJ0107I: SERVANT DISPATCHED REQUEST AT 2008/04/14 18:38:12.391628

BBOJ0108I: JVM THD IS HUNG: ITI INACTIVE

BBOJ0110I: DETAILS FOR JVM INTERRUPTIBLE THREAD: Monitor ACTIVE

BBOJ0106I: REQUEST ffffe450 ASID 0X0041 TCB 0X008CA0B8

BBOJ0119I: CONTROLLER RECEIVED REQUEST AT 2008/04/14 18:42:27.170745

BBOJ0120I: CONTROLLER QUEUED REQUEST TO WLM AT 2008/04/14 18:42:27.170851

BBOJ0107I: SERVANT DISPATCHED REQUEST AT 2008/04/14 18:42:27.170899

BBOJ0108I: JVM THD IS NOT HUNG: ITI INACTIVE

BBOJ0110I: DETAILS FOR JVM INTERRUPTIBLE THREAD: Monitor ACTIVE

BBOJ0106I: REQUEST ffffe454 ASID 0X0041 TCB 0X008C9A48

BBOJ0119I: CONTROLLER RECEIVED REQUEST AT 2008/04/14 18:38:12.319285

BBOJ0120I: CONTROLLER QUEUED REQUEST TO WLM AT 2008/04/14 18:38:12.319302

BBOJ0107I: SERVANT DISPATCHED REQUEST AT 2008/04/14 18:38:12.319306

BBOJ0108I: JVM THD IS HUNG: ITI INACTIVE

BBOJ0110I: DETAILS FOR JVM INTERRUPTIBLE THREAD: Monitor ACTIVE

BBOJ0106I: REQUEST ffffe44f ASID 0X003C TCB 0X008CA1E0

BBOJ0119I: CONTROLLER RECEIVED REQUEST AT 2008/04/14 18:42:27.178812

BBOJ0120I: CONTROLLER QUEUED REQUEST TO WLM AT 2008/04/14 18:42:27.178956

BBOJ0107I: SERVANT DISPATCHED REQUEST AT 2008/04/14 18:42:27.178964

BBOJ0108I: JVM THD IS NOT HUNG: ITI INACTIVE

BBOJ0110I: DETAILS FOR JVM INTERRUPTIBLE THREAD: Monitor ACTIVE

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,THREADS,DETAILS

Just to get an idea of what the DETAILS option shows, here are the same four dispatch
threads a bit later. Notice that two of the threads are now considered hung. The ‘ITI
Inactive’ message refers to the ‘Interruptible Thread Infrastructure’ and indicates that it is
not presently trying to interrupt the hung request. The BBOJ0110I message is printed out
for each registered ‘interruptible object’. Note each of these just shows the default JVM
interruptible object. The ‘Monitor Active’ tells you that the interruptible object was
successfully registered. Other interruptible objects can provide different information about
what blocking activity they are registered to handle.

WASv7zOS_ThreadTimeouts.ppt Page 11 of 14

IBM Software Group

12

Request timeouts © 2008 IBM Corporation

Summary

� Threads sometimes take too long to process
�Timeout configuration can help

�Thread monitoring available

In summary, unforeseen circumstances can cause problems in a production environment
where threads can take too long to process the work they were dispatched to do.
Timeouts are helpful in guarding your system against these unforeseen circumstances.
Timeouts allow actions to be taken in order to free threads that may be hung. This
presentation showed you the different ways to configure your system in order to best deal
with problems that occur.

WASv7zOS_ThreadTimeouts.ppt Page 12 of 14

IBM Software Group

13

Request timeouts © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASv7zOS_ThreadTimeouts.ppt

This module is also available in PDF format at: ../WASv7zOS_ThreadTimeouts.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv7zOS_ThreadTimeouts.ppt Page 13 of 14

IBM Software Group

14

Request timeouts © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere z/OS

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

JVM and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WASv7zOS_ThreadTimeouts.ppt Page 14 of 14

