
WA5721G10_ConnectionPool_edited.PPT Page 1 of 38

This unit describes how to troubleshoot connection pool tuning and management problems

in WebSphere Application Server V7.

WA5721G10_ConnectionPool_edited.PPT Page 2 of 38

After you complete this unit, you are able to identify problems in connection pools, know

how to use Tivoli Performance Viewer, to monitor a connection pool, understand connection

pool tracing data, and perform the problem determination tasks to troubleshoot a connection

pool problem.

WA5721G10_ConnectionPool_edited.PPT Page 3 of 38

Applications need to acquire a connection to a data store each time it wants to retrieve

information from the store. The average connection object is one to two megabytes in size

and contains a great deal of information about the connection context.

Creating and terminating those connections is actually a very time consuming operation and

so it can easily slow down the application. To fix this problem, WebSphere Application

Server uses a pool of connections that can be reused by applications.

This allows the cost of establishing each connection to be spread out across several

requests and can significantly improve performance. An application that needs to access

the data store will request a connection from the pool and return the connection when it is

finished. An example of this work flow is illustrated on the slide.

WA5721G10_ConnectionPool_edited.PPT Page 4 of 38

WebSphere Application Sever implements connection pooling by following the Java EE

Connection Architecture version 1.5 specifications.

There are several objects involved in pooling connections but they can be grouped into two

basic components, the JCA connection manager and the Relational Resource Adapter.

An application that needs a database connection will go to the Resource Adapter to retrieve

a Connection Factory. The Connection Factory will delegate the request to the correct JCA

Connection Manager. The connection manager is responsible for either returning an existing

connection from the pool of available connections or creating a new one if none are

available. The application releases the connection when it is finished interacting with the

database and the DB connection pool will return it to the pool.

WA5721G10_ConnectionPool_edited.PPT Page 5 of 38

WebSphere Application Server uses a J2C connection pool manager to maintain three

different connection pools.

The JDBC connection pool is used to manage connections to relational databases such as

DB2. This pool can be adjusted by navigating to the JDBC Providers panel of the

WebSphere administrative console.

There is also a JMS pool for managing requests for connections to Service Integration Bus

messaging engines or WebSphere MQ Queue Managers. This pool is maintained in the

JMS Providers panel of the administrative console.

Finally, WebSphere provides an EIS connection pool that manages connections to CICS

and legacy back-end systems such as IMS. This connection pool is controlled through the

administrative console under the Resource Adapters panel.

WA5721G10_ConnectionPool_edited.PPT Page 6 of 38

A ManagedConnection object is always in one of three states: DoesNotExist, InFreePool, or

InUse.

Before a connection is created, it must be in the DoesNotExist state. After a connection is

created, it can be in either the InUse or the InFreePool state, depending on whether it is

allocated to an application.

Between these three states are transitions. These transitions are controlled by guarding

conditions. A guarding condition is one in which true indicates when you can take the

transition into another legal state.

For example, you can make the transition from the InFreePool state to InUse state only if:

 - the application has called the data source or connection factory getConnection() method

(the getConnection condition)

 - a free connection is available in the pool with matching properties (the

freeConnectionAvailable condition)

Applications should explicitly close connections by calling close() on the connection object.

After a connection is closed with the close() method, it is either returned to the free pool or

destroyed.

WA5721G10_ConnectionPool_edited.PPT Page 7 of 38

Java Connector Architecture (JCA) manages the connection pooling and it enables the use

of shareable or unshareable connections.

In WebSphere Application Server, connections are shareable by default. The use of

shareable connections allows for greater scalability. Instead of creating new physical

connections on every getConnection() invocation, the physical connection (that is, managed

connection) is shared through multiple connection handles, as long as each getConnection

request has the same connection properties

When the application closes a shareable connection it is not returned to the free pool.

Rather, it remains ready for another request within the same transaction for a connection to

the same resource.

Shareable connections obtained by an application within a local transaction containment are

kept reserved in the shared pool for use within that local transaction containment until the it

ends, even if the application explicitly closes the connection.

The benefits of this are improved performance and a reduction in the number of physical

connections that need to be managed.

This behavior is beneficial to many applications, but can have unintended consequences for

others.

WA5721G10_ConnectionPool_edited.PPT Page 8 of 38

An unshareable connection is not shared with other components in the application. Each

getConnection() call results in a connection being allocated from the connection pool, so

your application always maintains a direct link with a physical connection (managed

connection).

The connection always has a one-to-one relationship between the connection handle and

the managed connection.

In most cases, the connection does not close until the application closes it, and you can use

a cached unshared connection handle across multiple transactions.

Some possible drawbacks of using unshared connections :

Inefficient use of your connection resources. For example, if within a single transaction you

get more than one connection (with the same properties) using the same data source or

connection factory (same resource-ref) then you use multiple physical connections when

you use unshareable connections, which can cause you to exhaust the connection pool.

Wasted connections. It is important not to keep the connection handle open (that is, your

application does not call the close() method) any longer then it is needed. As long as an

unshareable connection is open, the physical connection is unavailable to any other

component, even if your application is not currently using that connection. Unlike a

shareable connection, an ushareable connection is not closed at the end of a transaction or

servlet call.

WA5721G10_ConnectionPool_edited.PPT Page 9 of 38

If you are experiencing connection related problems, have a look at the SystemOut and

SystemErr logs in the appropriates profile‘s log directory.

WebSphere Application Server maintains connection pools for multiple connection types, so

in the logs you will see various message prefixes are listed on this slide along with the

connection types.

The best way to determine if you are experiencing connection problems is to search the

logs for any of the message prefixes then correlate them to the appropriate message

source.

WA5721G10_ConnectionPool_edited.PPT Page 10 of 38

Most people find out they are experiencing a connection pool problem by noticing

symptoms in their application‘s behavior instead of noticing events in the SystemOut and

SystemErr logs.

There is typically a problem with a connection pool when an application experiences

sporadic failures when trying to connect to a data source. This means the application was

able to connect to the data source and work normally but then started to see intermittent

failures or a increase in user response time. In either case, the next step is to check the log

files to help narrow down the possible cause for the sporadic behavior.

There are several possible outcomes from checking the log files.

One outcome is that you do not find connection exceptions. In this case, the problem is

likely due to something other than the connection pool.

Another outcome is you find ConnectionWaitTimeoutException message in the log files then

there are two probable causes. You either need to change the connection pool settings or

there is a connection leak somewhere in the system.

Finally, if you find StaleConnectionException in the log then, as the exception indicates,

there is probably a problem with connections going stale.

WA5721G10_ConnectionPool_edited.PPT Page 11 of 38

If it helps, you can think of troubleshooting a connection pool problem in terms of a decision

tree.

The tree starts with the assumption that you are seeing sporadic behavior from your

application or you have another reason to believe there is a problem in the connection pool.

From there, you review the logs and look for Stale Connection Exceptions. If you find any

the next step is to begin troubleshooting a stale connection problem. Otherwise, it is best to

review the connection pool configuration and make sure it is not causing the problem. If the

configuration checks out then you should begin troubleshooting a possible connection leak

in the connection pool.

From here, you will take a detailed look at each of the three troubleshooting steps.

WA5721G10_ConnectionPool_edited.PPT Page 12 of 38

In the case where the symptom for a connection pool problem is not accompanied by a

StaleConnectionException in the WebSphere logs, start your problem determination effort

by looking at the connection pool configuration to rule out any performance tuning issues.

WA5721G10_ConnectionPool_edited.PPT Page 13 of 38

Connection pools allow you to set a range for the number of connections that will

maintained by WebSphere Application Server. It is important to get the tuning parameters

right otherwise you might cause problems for the application.

Setting the pool size too small can slow down the application because it will have constantly

wait for free connections. Setting it too large will waste resources and possibly impact the

server's throughput.

In general, you want to try and tune a connection pool to achieve three goals.

First, you want to maximize the chance that connections are available when needed. This

means setting the connection pool size so that it is big enough to have free connections

when they are needed.

Second, you want to minimize the number of idle connections because connections that are

not being used are overhead that reduces the server‘s throughput.

Finally, you want to set the connection timeout so that it minimizes the number of orphaned

connections but does not interfere with connections that are operating normally.

WA5721G10_ConnectionPool_edited.PPT Page 14 of 38

There are a few of the connection pool parameters that play a significant role in achieving

the goal of an optimized connection pool.

The first of these parameters is the maximum connections count. This value governs the

maximum size of the connection pool. If the pool has already reached the maximum size it

will not allow a new connection to be created and will instead force a request to wait for an

existing connection to free up. However, you can set the maximum value to 0 and allow the

pool to grow without constraint. This will also cause the Connection Timeout value to be

ignored.

The connection timeout is how long a connection request will wait for a free connection

before it quits and creates a ConnectionWaitTimeoutException. You can also disable the

connection timeout by setting it to 0 and allowing a request to wait as long as it takes to

receive a connection. Setting the connection pool to 0 in and allowing unconstrained growth

can be a bad idea.

Resources should be load tested in order to find the best value and should always be

bounded. Failure to do so can lead to memory exhaustion and worse, overloading the

resources that are being connected to.

WA5721G10_ConnectionPool_edited.PPT Page 15 of 38

There are several other connection pool properties that can be configured in the

WebSphere AdminConsole.

Minimum Connections, for example, specifies the number of physical connections that

should be maintained. Note, this does not mean the connection pool will start with the

minimum number of connections but that it will not go beneath that value once it reaches it.

Many of the connection properties interact with each other. For example, the Reap time

specifies, in seconds, the interval between runs of the connection pool’s maintenance

thread. This value will affect the accuracy of both the Unused timeout and the Aged timeout.

WA5721G10_ConnectionPool_edited.PPT Page 16 of 38

Performance tuning, in general, is an iterative and incremental process consisting of

multiple Monitor-Tune-Test cycles. Having the right tools, including a load generation tool to

simulate real-world users for load testing, is critical to ensure successful results.

The art of performance tuning is a mixture of documentation, test data, and experience.

There are some tools that can assist with this practice such as the Tivoli Performance

Advisor provided in WebSphere Application Server V7 by way of the AdminConsole, but the

suggestions/help that it offers, still need to be verified through load testing.

The general method for getting the correct value is to increase the timeout and connection

parameters until the timeout issue disappears and then backing them off until any wasted

resources are recovered.

Note that the Performance Monitoring Infrastructure (PMI) is enabled by default in

WebSphere V7 and can used to measure performance metrics during the testing.

WA5721G10_ConnectionPool_edited.PPT Page 17 of 38

Here are some of the key metrics that WebSphere Application Server monitors in the PMI.

These metrics are displayed in TPV under the JDBC Connection Pools and JCA Connection

Pools modules.

Monitoring the PoolSize metric will allow you to examine how the application uses

connections from the pool and note trends and behaviors.

The WaitingThreadCount metric is a good way to determine if your pool is sized too small.

This metric tracks the number of threads that are having to wait for a connection to become

available before completing their requested operations.

Finally, the PercentMaxed value is a key point for determining if your pool size is too small.

It is ok to hover in the high percentages for short periods of time however, a pool that is

100% used for long periods of time is bound to have waiting threads and long response

times that will adversely affect the application performance.

WA5721G10_ConnectionPool_edited.PPT Page 18 of 38

This is a screen capture of the Tivoli Performance Viewer displaying information on the

JDBC Connection Pools.

The cyan colored graph plots the PercentUsed metric. The dark green graph plots the

FreePoolSize metric. And the green graph plots the CreateCount metric.

In this example, ten connections have been created, reaching the default maximum

connections value for the pool. Notice that, as expected, when the FreePoolSize is zero

indicating no connection available in the pool, the PercentUsed value is at 100%.

WA5721G10_ConnectionPool_edited.PPT Page 19 of 38

TPV Performance Advisor is one of the ways that WebSphere Application Server can

provide tuning advice.TPV Performance Advisor runs on demand and outputs

recommendations to a graphical interface in the administrative console.

It‘s recommendations are based on collected PMI data over the last one-minute interval. For

example, if it observes that the number of connections is continuously low then it will

recommend that you lower the size of the connection pool.

The TPV Performance Advisor can be accessed and configured in the AdminConsole.

WA5721G10_ConnectionPool_edited.PPT Page 20 of 38

This slide shows an example of connection pool tuning advice generated by the Runtime

Performance Advisor.

From the screen capture you can see a tuning recommendation stating that the minimum

size of the TradeData source pool should be reduced to zero and the maximum size of the

pool should be three based on the data collected by the advisor component.

The User action explains where to go in the AdminConsole, and the Node and Server name

to make the property change on, if you choose to do so.

Note that the threshold for the message adjusts automatically to prevent the system from

issuing multiple, redundant messages for the same values.

WA5721G10_ConnectionPool_edited.PPT Page 21 of 38

When tuning, the correct parameter values can only be discovered through trial and error. In

particular, the two parameters that will have the greatest effect on correcting connection

pool configuration errors are the connection timeout and maximum connections.

If the time taken to complete a database operation is greater than the amount of time a

thread is willing to wait for a resource, then increasing the number of available connections

will not solve the problem. Conversely, if the connections are short-lived, then increasing

their number can lead to the application server being overloaded in other areas during a

peak in requests because the extra connections are unnecessarily consuming resources.

Also, the number of idle connections during off peak periods should be weighed against the

pool ramp up time when a peak occurs. By understanding the nature of these parameters

and the nature of the database operations that will occur during a peak load, an optimal

configuration can be achieved leading to optimal performance with the lowest possible

overhead.

WA5721G10_ConnectionPool_edited.PPT Page 22 of 38

The database connection pool Minimum and Maximum connections values are often misunderstood. If you

set a maximum of 40 connections and a minimum of 10 connections, the pool will not start with 10

connections. The value of 10 connections minimum, is actually a low water mark. Until there are 10

connections required concurrently, the pool will only contain the maximum amount of concurrent connections

required up to that point. Therefore, if the number of concurrent connections has only ever reached six, then

the pool will contain six connections. Once the number of connections needed exceeds 10, the number of

connections in the pool will not drop below 10 until the pool is cleaned out.

For example, after the reap time expires, all unused connections are destroyed until the Minimum

connections threshold is reached. Configuring a data sources should be done in consultation with the

database administrator.

Connection timeout setting is in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

This value indicates the number of seconds that a connection request waits when there are no connections

available in the free pool and no new connections can be created. This typically occurs because the

maximum value of connections in the particular connection pool has been reached. For example, if

Connection Timeout is set to 300, and the maximum number of connections are all in use, the pool manager

waits for 300 seconds for a physical connection to become available. If a physical connection is not available

within this time, the pool manager initiates a ConnectionWaitTimeout exception.

The connection pool size should not be larger than the number of agents or connections allowed on the

database server. This can become an issue, especially in a cluster, because each application server will

allocate its own pool. To compute the maximum connections the database must support, multiply the

connection pool size by the size of the cluster.

WA5721G10_ConnectionPool_edited.PPT Page 23 of 38

After you have ruled out the possibility of a stale connection and connection pool tuning

problem, consider the possibility of a connection leak.

WA5721G10_ConnectionPool_edited.PPT Page 24 of 38

A connection leak is typically identified by a ConnectionWaitTimeoutException in the

WebSphere logs.

WebSphere Application Server is smart enough to eventually time-out orphaned

connections and return them to the pool, but for an application that makes frequent use of

database connections, this might not be enough corrective action to maintain throughput

levels. New connections can get queued up waiting for the database while old connections

are waiting to be timed out. This can cause user response time to increase, and eventually

system lock-up of all worker threads that are waiting for a connection which in turn will bring

the application server to a grinding halt.

WA5721G10_ConnectionPool_edited.PPT Page 25 of 38

The most common reason for a connection leak is when an application does not defensively

manage the connections it requests from WebSphere Application Server.

This often happens because the application does not properly close connections. The

connections should be called in the finally code block of a try/catch/finally construct to

ensure that connections are closed properly.

Unfortunately, connection leaks have traditionally been hard to diagnose because the error

messages do not typically provide specific enough information about the source of the

problem. A source code review is typically needed to find where the connections are not

being properly closed.

WA5721G10_ConnectionPool_edited.PPT Page 26 of 38

To assist in locating the cause of a connection leak, there are tools built into WebSphere

Application Server that can help narrow down the search. The most useful of which is the

connection leak trace facility.

Connection leak tracing will allow you to gather more detailed information about the leak

when a ConnectionWaitTimeoutExceptions occur. Also the trace utility can help you

determine if connections are not being closed or if the application should be redesigned to

use fewer connections.

WA5721G10_ConnectionPool_edited.PPT Page 27 of 38

When a thread times out waiting on connection from a full connection pool, it will create a

ConnectionWaitTimeoutException. When this exception is thrown, the connection leak

tracer will print out the stack traces for every open connection. It does so only when a

problem has occurred, providing instant recognition of when it occurred and incurs reduced

overhead when compared to the full WebSphere tracing mechanism.

This feature is useful because it shows you the call stacks for all open connections at the

time of the exception. This enables you to significantly narrow your search area when you

look at the application’s source code to try and find the responsible code. It is also helpful to

IBM support, because it will help distinguish between application problems and WebSphere

defects.

When you enable the connection leak trace facility, for every time interval, the WebSphere

Application Server connection pool manager checks how long a connection has been in use

and prints the stack trace to the trace log file. Currently the default time interval is

unchangeable and defaults to ten seconds. If you have a need to change the default value,

contact IBM technical support to obtain an iFix that allows you to add a custom property to

the data source configuration.

WA5721G10_ConnectionPool_edited.PPT Page 28 of 38

The connection leak trace facility is enabled through the AdminConsole.

To enable the facility, start by navigating to Troubleshooting, then Logs and Trace. Select

the application server you want to trace on and then select Diagnostic Trace, where you can

enable standard connection pool trace string WAS.j2c=finest

Make sure logging is enabled and then click the Change log detail levels link. You can then

specify the required trace level under the ConnLeakLogic category.

WA5721G10_ConnectionPool_edited.PPT Page 29 of 38

The connection pool trace (WAS.j2c=finest), that you enabled before, will create a log file

called trace.log by default. There are a few key lines to look for when you start evaluating

the trace files.

You will first want to look for a line that contains the string Connection Leak Logic

Information, followed by a colon. This indicates the start of the connection leak logic output.

From there, you should check the time in use and the stack trace for each of the

connections.

In this example trace, there are connections that have been in use for more than10 seconds

and is therefore a good suspect for a source of a leaking connection.

WA5721G10_ConnectionPool_edited.PPT Page 30 of 38

If you find StaleConnectionExceptions in the the WebSphere Application Server logs then

your choices are clear; start looking for stale connection problems

WA5721G10_ConnectionPool_edited.PPT Page 31 of 38

A stale connection is essentially a connection that is held by a client but is no longer a valid

connection.

One way this can happen is if the application tries to get a connection and fails, because the

database is not started or for some reason is no longer available.

Stale connections can also occur in Version 4.0 data sources when the connection is closed

by the connection cleanup feature but the client is still trying to use it. This will happen if the

connection has not been in use at least twice the unused timeout value. At this point, the

connection is orphaned and the client will error if it tries to use the connection again.

WA5721G10_ConnectionPool_edited.PPT Page 32 of 38

An individual connection cannot be recovered once it creates a StaleConnectionException.

Instead, the best way to recover from this type of exception is by explicitly catching it.

Catching a StaleConnectionException while running within the context of a transaction will

allow you the avoid having to repeat the entire transaction.

One option is to try and complete the pending transaction with a new connection. It is

important to note that the application server will also take actions to recover from a

StaleConnectionException depending on the PurgePolicy setting. It can either clear the

entire connection pool, assuming that if one connection went bad then all other connections

will likely have the same problem, or just clear the stale connection.

WA5721G10_ConnectionPool_edited.PPT Page 33 of 38

There are several other reasons why a connection might become stale, many of which exist

beyond the control of WebSphere Application Server.

One common reason is a discrepancy between the firewall timeout settings and the

connection timeout settings. It is generally a good practice to make sure the connection pool

aged timeout is less than the firewall‘s timeout and that both are less than the database

timeout.

It is also possible that you are experiencing a StaleConnectionException because the

returned SQLCode maps to a StaleConnection. If you aren‘t able to find the source of the

problem by taking a quick look at the various components involved in the connection then

your best bet is to turn on tracing and gather more information. This is can be very useful

when a connection is unusable because of a SQLException that did not immediately map to

a StaleConnectionException but eventually resulted in one being thrown.

WA5721G10_ConnectionPool_edited.PPT Page 34 of 38

The infrastructure for implementing diagnostic providers was first introduced in WebSphere

Application Server V6.1. Based on that infrastructure, each individual component of the

system can implement its own diagnostic provider, tailored to that particular component.

Connection manager (ConnMgrDP) provides configuration and state information about data

sources and connection factories. This includes information about managed connections,

active transactions, connection pool information, and other useful data.

WA5721G10_ConnectionPool_edited.PPT Page 35 of 38

The IBM Database Connection Pool Analyzer tool employs a heuristic analysis engine to

help you resolve problems related to Java Database Connectivity (JDBC) connection pools

and find JDBC connection leaks.

First, you must enable traces (database, RRA, and j2c) for WebSphere to create a log file

that outputs diagnostic information about the connection pool, which in turn is uploaded to

the tool for data analysis.

The tool performs operations like parsing trace files for th eJDBC connection pool manager,

detecting available JDBC data sources and configurations, counting the number of waiters

for connections and number of connections in use, finding the Java stack traces associated

with JDBC connections, and providing charts of JDBC connections for each JDBC data

source.

WA5721G10_ConnectionPool_edited.PPT Page 36 of 38

Now that you have completed this unit, you should be able to identify connection pool

problems, describe what to look for in the WebSphere Application Server logs, enable

tracing for connection manager components, interpret and analyze the trace data, and

describe how to use PMI to monitor connections.

WA5721G10_ConnectionPool_edited.PPT Page 37 of 38

You can help improve the quality of IBM Education Assistant content by providing

feedback.

WA5721G10_ConnectionPool_edited.PPT Page 38 of 38

