

© 2011 IBM Corporation

Troubleshooting Crashes

This unit looks at how to detect and troubleshoot a crash.

WA5721G07_Crashes_edited.PPT Page 1 of 31

Unit objectives

After completing this unit, you should be able to:

• Define what a crash is

• Detect a crash

• Analyze a Java core file for a crash

• Analyze system core files

• Describe the tools available for troubleshooting a crash

• Describe and use the IBM Monitoring and Diagnostic Tools for Java – Dump Analyzer tool

Troubleshooting Crashes © 2011 IBM Corporation

After completing this presentation on crashes, you should be able to define and detect a
crash, analyze thread dump and system core files, and also describe the tools available for
you to use to troubleshoot a crash.

WA5721G07_Crashes_edited.PPT Page 2 of 31

JVM process crash defined

� Not the same as thread hang

� Symptoms
– Process terminated with Java exception or native signal

� Usual causes
– Bad JNI call or library problem
– Segmentation violations while executing native code
– Out-of-memory exception
– Call stack overflow
– Unexpected exception (for example, out of disk space)
– Optimizer failure (for example, JIT)

Troubleshooting Crashes © 2011 IBM Corporation

A Java Virtual Machine crash is not the same as a thread hang. Crash symptoms include a
process which terminates with a Java exception or native signal. Usual causes are an out of
memory exception, call stack overflow, an unexpected exception such as out of disk space,
optimizer failures such as a Just In Time Compiler failures, or a bad Java Native Interface
call or library problem.

WA5721G07_Crashes_edited.PPT Page 3 of 31

Crash problem determination: Data to collect

� Javacore files
– Also known as javadump or thread dump files
– Text file created by an application server during a failure

• Can also be triggered manually
– Error condition will be given at top of dump

� Core files
– Also known as process dumps or system core files
– Created by underlying operating system
– Complete dump of the virtual memory for the process
– Can be quite large
– Tools available to parse files into readable formats

� Steps to collect data
– Look for a javacore file automatically created during a crash.
– If no javacore was generated, look for a system core dump.

Troubleshooting Crashes © 2011 IBM Corporation

A process dump, or core dump, is a complete dump of the process memory space in binary
format. A thread dump, also known as a javacore, or javadump, is a text file which is
sometimes created by an application server during a failure. Typically thread dumps can be
collected without ending the Java process, however generating a core dump typically
results in the Java process being terminated (the exception being when the gencore tool is
used to get the dump).

WA5721G07_Crashes_edited.PPT Page 4 of 31

Make sure full core dump is enabled

� Underlying operating system may have settings that prevent creation of a full core dump
when a process crashes.

– For example, the ulimit on UNIX systems may specify a limit on the size of core file that
is too small and the core dump is truncated

– Some operating systems have a parameter to control the type of core files.
• On AIX, use the command “lsattr -Elsys0|grep full” to check whether fullcore is

enabled or not.

� Make sure that a full core dump can be created before a problem occurs.
– Avoid recreation of problem, especially in a production environment.

Troubleshooting Crashes	 © 2011 IBM Corporation

To create a full core dump, you will need to check your system settings because the default
system settings can prevent full core dump creation when the process crashes.

- Each operating system is different. For example, the ulimit on UNIX systems may specify
a limit on file sizes that is too small for a full core dump to be created resulting in truncated
and largely useless dumps.

WA5721G07_Crashes_edited.PPT	 Page 5 of 31

-Xdump JVM command-line argument

� Introduced in IBM JDK V5, the -Xdump option controls the way you use dump agents to
create dumps (types include system, Java, and heap)

� The -Xdump option allows you to:
– Add and remove dump agents for various JVM events
– Update default dump agent settings
– Limit the number of dumps produced
– Show dump agent help

� Preferred way to control dump agent behavior moving forward (JDK V5 and on).
– Use of variables to affect dump behavior is still supported (although use is being

deprecated).

� For detailed description of –Xdump usage:
– http://www.ibm.com/support/docview.wss?uid=swg21242497

Troubleshooting Crashes	 © 2011 IBM Corporation

The Xdump option controls the way you use dump agents to create dumps like system
cores, thread dumps, and heap dumps. This method allows for very customizable
configurations for creating dumps for problem determination.

WA5721G07_Crashes_edited.PPT	 Page 6 of 31

© 2011 IBM Corporation Troubleshooting Crashes

JVM dump initiation: Events

EXCEPTION Unexpected synchronous terminating signal; that is, unrecoverable storage
violation.

ERROR Controlled end due to an error detected internally; for example, JVM raised
SIGABRT signal.

INTERRUPT Asynchronous terminating signal; for example, you pressed Ctrl+C.

DUMP This can be caused if you press Ctrl+Break on Windows, Ctrl+V on z/OS, or
Ctrl+\ on AIX or Linux.

OUTOFMEMORY The JVM cannot satisfy a request for storage.

The Java Virtual Machine can produce dump files in response to specific event depending
on the setting of the environment variables JAVADUMPOPTS and JAVADUMPTOOL.
Several examples are shown on this slide.

WA5721G07_Crashes_edited.PPT Page 7 of 31

© 2011 IBM Corporation Troubleshooting Crashes

JVM dump initiation: types

SYSDUMP Extensive dump of the entire contents of the address space, similar to operating
system core dump

User specified Whatever the JAVA_DUMP_TOOL variable specifies

HEAPDUMP An internally generated dump of the objects that are on the Java heap

JAVADUMP An internally generated and formatted analysis of the JVM

The types of dumps that can be produced are a system dump, a heap dump, and a Java
dump. A system dump is an unformatted dump that the operating system generated,
basically, a core file.

A heap dump is an internally-generated dump of the objects that are on the Java heap, and
a JavaDump, as mentioned before, is a thread dump of the Java Virtual Machine with some
additional data like loaded classes and memory consumption statistics (in IBM Virtual
Machine for Java Platformss – Oracle JVMs produce thread dump data only).

WA5721G07_Crashes_edited.PPT Page 8 of 31

JAVA_DUMP_OPTS variable (now deprecated)

� Which dumps are produced for which condition is determined by the JAVA_DUMP_OPTS
environment variable as follows:

JAVA_DUMP_OPTS="ONcondition(dumptype[count],dumptype[count]),ONcondi

tion(dumptype[count],...)"

• condition can be: ANYSIGNAL, DUMP, ERROR, INTERRUPT, EXCEPTION, and
OUTOFMEMORY.

• dumptype can be: ALL, NONE, JAVADUMP, SYSDUMP, and HEAPDUMP.
• count is the maximum number of dumps of this type to produce.

� For example:
– ONERROR(SYSDUMP,JAVADUMP) creates system dumps and javacores for error

conditions.
– ONEXCEPTION(JAVADUMP,SYSDUMP) creates javacores and system dumps when

exceptions are thrown.

Troubleshooting Crashes	 © 2011 IBM Corporation

The JavaDumpOpts variable describes the conditions under which to take the dump, the
type of dump to be taken and the maximum number of dumps of this type to produce. For
example, one can setup the JVM to provide system dumps and thread dumps when a
certain error is encountered.

WA5721G07_Crashes_edited.PPT	 Page 9 of 31

Diagnostic collector

� You can configure the JVM to use the Diagnostic Collector to gather documentation and
diagnostic data automatically after detecting a runtime problem.

– Java dumps, heap dumps, verbose GC log

� The Diagnostics Collector gathers system dumps, Javadumps, heap dumps, verbose GC log
(if present) and JVM trace files that match the timestamp for the Java problem that caused
the collector to start.

– Outputs a single .zip file
– java.gpf.<time_stamp>.<event_ID>.<pid>.zip

� Available on IBM JDK 1.5 and 1.6

� Download and installation instructions on IBM support website
– http://www.ibm.com/support/docview.wss?uid=swg24019419

Troubleshooting Crashes	 © 2011 IBM Corporation

The Diagnostic Collector gathers documentation and diagnostic data associated with Java
Virtual Machine (JVM) problems, which includes system dumps, Java dumps, heap dumps,
verbose GC logs (if present), and JVM trace files that match the time stamp for the Java
problem that caused the collector to start.

The Diagnostic Collector copies the diagnostic files it finds into a single output archive file.
The output file is named using the type of problem that occurred, the time stamp of the
problem event and the process ID of the Java application.

The Diagnostic Collector is available on IBM JDK for Java version 5.0 and version 6.0 and
can be downloaded at the URL displayed on this slide.

WA5721G07_Crashes_edited.PPT	 Page 10 of 31

UNIX operating system common signals

� SIGQUIT (kill -3)
– Indicates a command was issued to generate a thread dump
– Typically does not end the JVM process

� SIGILL (kill -4)
– Means an illegal instruction was executed.

• This can mean a corruption of the code segment or a branch that is not valid within
the native code.

– This signal often indicates a problem caused by JIT-compiled code.

� SIGSEGV (kill -11)
– Indicates an operation that is not valid in a program.

• Example: Accessing an illegal memory address
– This is typically indicative of a programming problem in one of the native libraries

Troubleshooting Crashes © 2011 IBM Corporation

Common signals on UNIX operating systems include SIGQUIT, SIGILL, and SIGSEGV.
SIGQUIT can be produced with a “kill -3” command and generally produces a thread dump
from the JVM. A SIGILL signal indicates that the process encountered an illegal instruction
and likely a corruption of the code segment being executed. This signal often leads to a
crash of the process. Finally, a SIGSEGV indicates a critical error, such as an attempt to
address illegal memory addresses, has been encountered in the process. A SIGSEGV
signal can also be raised by using a “kill -11” command. When a SIGSEGV signal is raised
in the JVM, it almost certainly is followed by a crash.

WA5721G07_Crashes_edited.PPT Page 11 of 31

Windows operating system common signals

� Memory access error
– Invalid memory address
– JVM action: javacore file and abort

� Illegal access error
– JVM action: javacore file and abort

Troubleshooting Crashes © 2011 IBM Corporation

Windows operating system also commonly gives not valid memory address access error,
and illegal access error, both of which should create a thread dump, and potentially a
minidump (Windows core file) and result in a JVM crash or abort.

WA5721G07_Crashes_edited.PPT Page 12 of 31

© 2011 IBM Corporation Troubleshooting Crashes

Javacore subcomponents helpful for crash debug

TITLE Shows basic information about the event that caused the generation of the Javadump, the
time it was taken, and the file name.

GPINFO Shows some general information about the operating system. If the dump was caused by a
general protection fault (GPF), information about the failure is provided. Namely the fault
module is identified.

ENVINFO Shows information about the JRE level, details about the command line that launched the
JVM process and the JVM environment.

THREADS Identifies the current thread and provides a stack trace.

IBM thread dumps contains general JVM information such as environment variables in use,
the signal that generated the dump, and garbage collection information and including the
current stack for every thread in the Java Virtual Machine, and the current thread details for
the thread that was running when the signal was raised.

WA5721G07_Crashes_edited.PPT Page 13 of 31

© 2011 IBM Corporation Troubleshooting Crashes

NULL -------------------------------------­
0SECTION TITLE subcomponent dump routine
NULL ===============================
1TISIGINFO Dump Event "gpf" (00002000) received
1TIDATETIME Date: 2007/09/25 at 15:26:44
1TIFILENAME Javacore filename: C:\dev\jnitest\javacore.20070925.152644.11800.txt
NULL ----------------------------------­
0SECTION GPINFO subcomponent dump routine
NULL ================================
2XHOSLEVEL OS Level : Windows XP 5.1 build 2600 Service Pa
2XHCPUS Processors ­
3XHCPUARCH Architecture : x86
3XHNUMCPUS How Many : 2
1XHEXCPMODULE Module: C:\WINDOWS\system32\msvcrt.dll
1XHEXCPMODULE Module_base_address: 77C10000
1XHEXCPMODULE Offset_in_DLL: 000378C0
……..
{deleted lines}
……..
0SECTION THREADS subcomponent dump routine
NULL =================================
NULL
1XMCURTHDINFO Current Thread Details
NULL ---------------------­
3XMTHREADINFO "Thread-1514" (TID:0x57BAD300, sys_thread_t:0x429853AC, state:R, native ID:0x000037D0)
prio=5
4XESTACKTRACE at com/ibm/wa571/test/JniTest.setMessages(Native Method)
4XESTACKTRACE at com/ibm/wa571/test/JniTest.run(JniTest.java:115(Compiled Code))
4XESTACKTRACE at java/lang/Thread.run(Thread.java:799(Compiled Code))
NULL

Javacore example showing a crash

C++ runtime
library

Current thread
is running
JNI code

This slide shows an example thread dump depicting a crash in the Microsoft Visual C
Runtime library. Note that the dump also provides details on the current executing thread
and the call stack for that thread. This information can be invaluable for determining what
operations were taking place that led to the crash.

WA5721G07_Crashes_edited.PPT Page 14 of 31

Steps if crash cause not identified

� Frequently, the javacore file does not clearly identify the cause of the signal. Often the native
stack will show the this message:

----- Native Stack ----­
unable to backtrace through native code - iar 0x3062e73c not in text

area (sp is 0x2ff21748)

� Steps you can take:
– Upgrading to a more recent JDK can sometimes resolve a problem.
– Use the core file (on UNIX) or user.dmp file (on Windows) to see if this provides more

information.
– Sometimes a bad Java SDK installation can cause problems

Troubleshooting Crashes	 © 2011 IBM Corporation

Sometimes the data in a thread dump does not provide enough conclusive evidence to
clearly point to the root cause so it can be necessary to review the native stack of the
current thread to get more details.

If you still find yourself without enough data to determine the cause of the lock up you can
try a few alternate avenues such as disabling Just In Time compilation, upgrading to a more
recent Java Development Kit, obtaining a full core of the JVM, or re-installing the Java
Development Kit.

WA5721G07_Crashes_edited.PPT	 Page 15 of 31

Tools for troubleshooting crashes

• After completing this topic, you should be able to:

• Describe Diagnostic Tools Framework for Java (DTFJ)

• Analyze system core files using the Dump Analyzer tool

Troubleshooting Crashes © 2011 IBM Corporation

After completing this topic on Tools for troubleshooting crashes, you should be able to
describe Diagnostic Tools Framework for Java (DTFJ). Tool and analyze a system core file
using Dump Analyzer tool.

WA5721G07_Crashes_edited.PPT Page 16 of 31

What is DTFJ?

� DTFJ (Diagnostic Tools Framework for Java) is a new technology within the IBM JDK to
analyze and diagnose problems in Java applications.

– Read RAS artifacts from a JVM (for example, a core file) and extract all kinds of useful
information from that dump.

� Not just one tool: an extensible framework for building many different tools.

� By providing common tools, the use of specific tools for specific JVM artifacts is avoided

Troubleshooting Crashes	 © 2011 IBM Corporation

The Diagnostic Toolkit and Framework for Java API, or DTFJ, is a Java-based interface for
accessing postmortem information from the system dump of a Java process.

It is a new technology within the IBM JDK to analyze and diagnose problems in Java
applications.

WA5721G07_Crashes_edited.PPT	 Page 17 of 31

Components of the DTFJ family

• jextract: A tool to capture information from a JVM system dump (for example, core file)
and package it into a platform-independent format

• DTFJ library proper or core library: A library that parses the contents of the system dump file
packaged by jextract, and provides access to its contents in a standardized manner, through
a standard API

• DTFJ-based tools: A collection of tools that call the DTFJ library through the DTFJ API, to
present and analyze information in various ways useful to the users

Troubleshooting Crashes © 2011 IBM Corporation

The DTFJ framework is composed of jextract, the DTFJ library proper (also called the core

library), and DTFJ-based tools.

jextract is a tool provided in the IBM SDK that is used to capture information from a JVM

system dump and package it into a platform-independent format. jextract is is found in the

IBM SDK installation in <java_home>/jre/bin.

DTFJ library is a Java library that parses the contents of the system dump file packaged by

jextract, and provides access to its contents through a standardized API.

DTFJ-based tools are tools that call the DTFJ library through the DTFJ API, to present and

analyze information in various ways useful to the users.

WA5721G07_Crashes_edited.PPT Page 18 of 31

© 2011 IBM Corporation Troubleshooting Crashes

DTFJ core
library

System dump
or “core”

Platform­
independent

dump file (.zip)

Intentionally
triggered

dump
or

crash

Should be run on the same system
where the dump is generated

Can be run on any
platform

An example of using the DTFJ components

JVM
WebSphere
Application

Server

Jextract
tool

Your tool
here

C
o
m

m
o
n

 D
T
F
J

A
P
I

DTFJ
Extensible
Analysis

tools

Dump
Analyzer

DTFJ View
tool

1

2

3

1. Jextract
(same
machine)

2. DTFJ library

3. User tools

This slide depicts the relationship between the DTFJ components.

WA5721G07_Crashes_edited.PPT Page 19 of 31

Where is DTFJ supported?

• jextract + the main DTFJ runtime library are now shipped and supported with the standard
IBM JDK.

– IBM JDK 1.4.2 SR4 and beyond — WebSphere Application Server 5.1, 6.0
– IBM JDK 1.4.2 SR4 for 64-bit platforms — WebSphere Application Server 6.0.2
– IBM JDK 1.5.0 SR1 and beyond — WebSphere Application Server 6.1
– IBM JDK 1.6.0
– On all IBM JDK platforms: AIX, Linux, Windows, z/OS, iSeries

• Including 32-bit and 64-bit

• Tools must be obtained separately within IBM Support Assistant.

• You can be able to process dumps generated on an older JDK version.
– Within the same JDK family (that is, use 1.4.2 DTFJ to process any dumps from 1.4.2;

use 1.5.0 DTFJ to process any dumps from 1.5.0).
– The more recent the JDK version, the more information jextract+DTFJ is able to extract

from that dump.

• Not currently supported for non-IBM JDKs such as Sun and HP

Troubleshooting Crashes © 2011 IBM Corporation

The jextract tool and the main DTFJ runtime library are now shipped and supported with
the standard IBM JDK beginning with version 1.4.2, service release 4. This includes IBM
JVM version 5 and 6 which is used by WebSphere Application Server version 6.1 and 7.0.

The available DTFJ tools from IBM can be used from the IBM Support Assistant (ISA)
platform.

Note: non-IBM JDKs such as Oracle and HP are not currently supported for DTFJ tool
usage.

WA5721G07_Crashes_edited.PPT Page 20 of 31

Using the Dump Analyzer tool

• Distributed within IBM Support Assistant

• Distributed and accessed through IBM Support Assistant

• Based on DTFJ providing cross platform support

• Built-in analysis modules
– Analyze the dump
– Answer simple questions:

• Did you run out of memory?
• Is the JIT active?
• Is this a WebSphere dump?

Troubleshooting Crashes © 2011 IBM Corporation

The DTFJ Dump Analyzer tool is a tool aimed to provide automated core dump analysis.
Dump Analyzer is available by way of the IBM Support Assistant workbench. Dump
Analyzer contains analysis modules that can help answer questions like: did the JVM run
out of memory? Is the JIT compiler active? Is this a dump from a JVM running WebSphere?

WA5721G07_Crashes_edited.PPT Page 21 of 31

Dump Analyzer features

• Attempts to diagnose common JVM problems
– Deadlock in Java code

• Report thread names, locations, and so on
– Out-of-memory condition

• Report populations and large collections, and so on
• Summarize the native memory usage

– Internal error (gpf, and so on)
• Is failure in non-IBM native code?

– Probably use coding error, report location, and so on
– If using JDK V5 or later, it might recommend running with -Xcheck:jni

• Otherwise, call IBM Support

• Otherwise, generates a default summary report
– Recommended action is to call IBM Support and provide the output

Troubleshooting Crashes © 2011 IBM Corporation

Dump Analyzer tool runs a general-purpose script that attempts to automatically diagnose
common problems in the dump such as internal JVM error, deadlocks, and Out of memory
conditions. If it fails to identify any of these conditions, it will generate a default summary
report.

WA5721G07_Crashes_edited.PPT Page 22 of 31

Dump Analyzer default report contents

• Basic information about the JVM process
– Processor type, process ID, command line, JVM version, and so on

• JVM initialization arguments
– System class path, heap tuning parameters, and so on

• Environment variables

• Native libraries loaded in this process

• Threads (both Java threads and native threads)
– Java thread ID, WebSphere Application Server thread ID, java.lang.Thread object,

priority, and so on
– Java stack, native stack

• Heap memory layout

• Plus additional information

Troubleshooting Crashes © 2011 IBM Corporation

The Dump Analyzer tool’s default report contents includes basic information about the JVM
process such as processor type and process identifier, JVM initialization arguments,
environment variables in use, native libraries loaded by the JVM, Java heap memory layout,
and Java and native thread information,

WA5721G07_Crashes_edited.PPT Page 23 of 31

© 2011 IBM Corporation Troubleshooting Crashes

Dump Analyzer: Initialization

This slide shows a sample screen of the Dump Analyzer tool from the IBM Support
Assistant workbench just before launching an analysis run.

WA5721G07_Crashes_edited.PPT Page 24 of 31

© 2011 IBM Corporation Troubleshooting Crashes

Dump Analyzer: General purpose analysis

This slide shows a sample general summary output created by the Dump Analyzer tool.

WA5721G07_Crashes_edited.PPT Page 25 of 31

Dump Analyzer deadlock example detail

• Deadlock cycle detected 0 monitor: (un-named monitor @0x355c718 for object @0x355c718) ID=0x0355C718

(java/lang/Object@0x0355C718) is owned by thread: WebContainer : 0

(com/ibm/ws/util/ThreadPool$Worker@0x0342CEB8) which is waiting on ... 1 monitor: (un-named monitor

@0x355c728 for object @0x355c728) ID=0x0355C728 (java/lang/Object@0x0355C728) is owned by thread:

WebContainer : 1 (com/ibm/ws/util/ThreadPool$Worker@0x034302D8) which is waiting on ... 2 monitor: (un­
named monitor @0x355c718 for object @0x355c718) ID=0x0355C718 (java/lang/Object@0x0355C718) is owned by

thread: WebContainer : 0 (com/ibm/ws/util/ThreadPool$Worker@0x0342CEB8) which is waiting on ...

• Deadlock cycle detected 0 monitor: (un-named monitor @0x355c728 for object @0x355c728) ID=0x0355C728

(java/lang/Object@0x0355C728) is owned by thread: WebContainer : 1

(com/ibm/ws/util/ThreadPool$Worker@0x034302D8) which is waiting on ... 1 monitor: (un-named monitor

@0x355c718 for object @0x355c718) ID=0x0355C718 (java/lang/Object@0x0355C718) is owned by thread:

WebContainer : 0 (com/ibm/ws/util/ThreadPool$Worker@0x0342CEB8) which is waiting on ... 2 monitor: (un­
named monitor @0x355c728 for object @0x355c728) ID=0x0355C728 (java/lang/Object@0x0355C728) is owned by

thread: WebContainer : 1 (com/ibm/ws/util/ThreadPool$Worker@0x034302D8) which is waiting on ...

• Thread: WebContainer : 0 (com/ibm/ws/util/ThreadPool$Worker@0x0342CEB8) owned monitors and top 2 frames on

stack owns: (un-named monitor @0x355c718 for object @0x355c718) ID=0x0355C718

(java/lang/Object@0x0355C718) frame: 1 com/ibm/issf/atjolin/badapp/BadAppServlet.dopeyMethod()V line:

320 frame:

2 com/ibm/issf/atjolin/badapp/BadAppServlet.doPost(Ljavax/servlet/http/HttpServletRequest;Ljavax/servlet/htt

p/HttpServletResponse;)V line: 257

•	 Thread: WebContainer : 1 (com/ibm/ws/util/ThreadPool$Worker@0x034302D8) owned monitors and top 2 frames
on stack owns: (un-named monitor @0x355c728 for object @0x355c728) ID=0x0355C728
(java/lang/Object@0x0355C728) frame: 1 com/ibm/issf/atjolin/badapp/BadAppServlet.sneezyMethod()V line:
337 frame:
2 com/ibm/issf/atjolin/badapp/BadAppServlet.doPost(Ljavax/servlet/http/HttpServletRequest;Ljavax/servlet/htt
p/HttpServletResponse;)V line: 259

• Total monitors: 266

• Total owned monitors: 10

•	 Lowest number of threads waiting on monitors: 0 Highest number of threads waiting on monitors: 1 Average

number of threads waiting on monitors: 1 Lowest number of threads waiting for notification: 0 Highest

number of threads waiting for notification: 4 Average number of threads waiting for notification: 1

Troubleshooting Crashes	 © 2011 IBM Corporation

The above example shows some of the detailed information provided in the Analysis section
of the report. The example indicates that a deadlock was detected and provides details
about the deadlocked threads.

WA5721G07_Crashes_edited.PPT	 Page 26 of 31

© 2011 IBM Corporation Troubleshooting Crashes

Dump Analyzer: Observations and errors

The Dump Analyzer tool will also give you output of observations and errors, if there are
any. An example of this is shown on this slide.

WA5721G07_Crashes_edited.PPT Page 27 of 31

Dump Analyzer crash example detail

Java Thread: WebContainer : 0

(com/ibm/ws/util/ThreadPool$Worker@0x0342CEB8)

System thread ID: 2760 JNI: 0x160BA100

State: 0x00000401 (ALIVE,BLOCKED_ON_MONITOR_ENTER)

Priority: 5

WAS thread-ID: 0x00000033

Java Stack Area: 0x164453F4-0x16449C0F (18 KB) "JavaStackSection for

JavaThread:

WebContainer : 0" WebContainer : 0

(com/ibm/ws/util/ThreadPool$Worker@0x0342CEB8)

Combined stack (Java and native frames interleaved):

(native): ip=0x7F0C23B2/sp=0x00000040:

C:\WebSphere\AppServer\java\jre\bin\J9THR23.dll::j9thread_monitor_try_

enter_using_threadId+0x5e2

---- > OBSERVATION: Possible stack overflow - sp not in range for the

native stack

(java): ip=0x1641478F/sp=0x1644963C:

com.ibm.issf.atjolin.badapp.BadAppServlet.dopeyMethod(BadAppServlet.ja

va:320)

(java): ip=0x16414699/sp=0x1644965C:

com.ibm.issf.atjolin.badapp.BadAppServlet.doPost

Troubleshooting Crashes © 2011 IBM Corporation

This example shows some of the detailed information provided in the Analysis section of the
Crash report. The example indicates a possible stack overflow and shows the application
component which might be the source of the problem.

WA5721G07_Crashes_edited.PPT Page 28 of 31

Unit summary

• Now that you have completed this unit, you should be able to:

• Define what a crash is

• Detect a crash

• Analyze a Java core file for a crash

• Analyze system core files

• Describe the tools available for troubleshooting a crash

• Describe and use the IBM Monitoring and Diagnostic Tools for Java – Dump Analyzer tool

Troubleshooting Crashes © 2011 IBM Corporation

Now that you have completed this unit, you should be able to define and detect a crash,
analyze a thread dump and system core files, and describe the tools available for you to
use to troubleshoot a crash.

WA5721G07_Crashes_edited.PPT Page 29 of 31

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WA5721G07_Crashes_edited.PPT

This module is also available in PDF format at: ../WA5721G07_Crashes_edited.pdf

Troubleshooting Crashes © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WA5721G07_Crashes_edited.PPT Page 30 of 31

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, AIX, Current, iSeries, WebSphere, and z/OS are trademarks or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of
other IBM trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

Microsoft, Windows, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java, and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE

MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED

"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT

PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR

ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR

REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT

OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

© 2011 IBM Corporation

WA5721G07_Crashes_edited.PPT Page 31 of 31

