IBM Software Group

IBM WebSphere Application Server V6.1
Java 5.0 SDK

(@business on demand.

© 2006 I1BM Corporation

Updated May 15, 2015
This presentation focuses on the new features in the Java™ 5.0 SDK.

WASV61 Java5.ppt

Page 1 of 24

|BM Software Group H

Agenda

= Java language enhancements
» Generics, autoboxing, enhanced for loop syntax
» Enumerations
» Annotations (metadata)

* New Java APls

" 1BM Java 5.0 SDK ©2006 IBM Corporation

WebSphere® Application Server Version 6.1 is the first release to support Java 5.0, which
is a major Java release from Sun. It incorporates many new features and APIs, including
generics, autoboxing of primitives, and the enhanced for loop syntax, which you can use
together to write clean, concise code. Also new in 5.0, the Java language includes built-in
support for enumerations and a new metadata facility called annotations. This release
also includes several new Java APIs.

WASvV61 Javab.ppt Page 2 of 24

=
IBM Software Group iﬁg

Section

Java language and API changes

= IBM Java 5.0 SDK © 2006 IBM Corporation

This section focuses on the changes to the Java language and APIs for J2SE 5.0.

WASvV61 Javab.ppt Page 3 of 24

|BM Software Group m

Generics

= Generics allow abstracting over types, getting rid of a lot of
typecasting

» This is particularly useful on container classes, like those in Java’'s
Collection hierarchy

= java.lang.Class has also been generified in JDK 5.0

» The compiler can verify type-correctness at compile-time
= This offers run-time protection, reduces ClassCastExceptions

= People often compare generics to C++ templates, however,
there are subtle differences

= Use generics wherever you can to add robustness and
readability, especially in large programs

1BM Java 5.0 SDK © 2006 IBM Corporation

Generics allow abstracting over types. Generics are particularly useful when you are
working with container classes, like those in the Java Collection hierarchy, because they
offer type safety and so you no longer need to typecast your Objects to specific types. For
example, when you are pulling an item out of an ArrayList of Strings, you will no longer
need to cast it from a Java Object to a Java String. One of the major benefits from using
generics is that the compiler will have the capability to verify type-correctness at compile-
time, and this, in turn, offers you additional run-time protection and will reduce your
number of ClassCastExceptions. By using generics, you will be able to improve the
overall robustness and readability of your code, especially in large programs.

WASvV61 Javab.ppt Page 4 of 24

IBM Software Group EH

Generics

» Example: Using a Collection in SDK 1.4.2

LinkedList intList = new LinkedList();
intList.add(new Integer(l));

Integer iobj = (Integer) intList.getFirst();
int iPrim = iobj.intvalue(Q;

» Example: Using a Collection in SDK 5.0

» Notice that the element coming out of the array does not require a
cast

» This example also illustrates autoboxing and auto-unboxing

LinkedList<Integer> intList =
new LinkedList<Integer>Q);

intList.add(1);

int iPrim = intList.getFirst();

In the SDK 5.0 example on the bottom of the slide, you can see the syntax for creating a
LinkedList of Integers. The type of object that you will be storing in the container is
enclosed in brackets, and you include it both in the variable declaration and in the
constructor call. Notice that, in the last line of the example, when you are pulling a value
out of the LinkedList, you do not have to cast it to an Integer type.

If you ever tried to add an Object to the LinkedList, you would get a warning at compile
time since this might cause type safety problems. On the other hand, if you tried to add a
String to the LinkedList, your source would not compile — you would get a compile-time
error.

WASvV61 Javab.ppt Page 5 of 24

IBM Software Group EH

Autoboxing and enhanced for loop syntax

» Autoboxing and auto-unboxing automatically wraps
primitives in their Object-based counterparts for certain
method calls

» Very useful for working with Collections
» Produces code that is concise and easy to follow

» Example: Integer two = new Integer(2);
int four = two + two;

* New for loop syntax provides a mechanism for sequential
navigation

» Like a for each loop

» Step through a Collection without using an Iterator
» Step through arrays without using an index

Two additional language features in Java 5.0 that work well in conjunction with generics
are autoboxing and the new enhanced for loop syntax.

Autoboxing automatically wraps a primitive type in its Object-based counterpart for certain
method calls. So, for example, when you want to add an element to Collection of Integers,
you no longer have to create an intermediate Integer object with the appropriate value —
you can just add the primitive int to the Collection directly. The necessary wrapping is all
done for you. The same thing will happen when you are removing an Integer from a
collection; you can assign the value directly to a primitive int type. This feature allows you
to get rid of several extra steps and write code that is clean and concise and easy to
follow.

While autoboxing is very useful in conjunction with Collections, it can also be used in other
circumstances, such as:

Integer two = new Integer(2);
int four = two + two;

The enhanced for loop syntax provides a mechanism for sequential navigation, like a for
each loop. You can use this new syntax to walk through a Collection without using an
Iterator and also to walk through an array without using an index.

WASvV61 Javab.ppt Page 6 of 24

|BM Software Group Il:!‘

Autoboxing and enhanced for loop syntax

» Example: Navigating a Collection in SDK 1.4

ArrayList Tist = new ArrayList();

// Fill the ArrayList with values here...

int sum = 0;

for(Iterator i = list.iterator(); i.hasNext();){
Integer value = (Integer)i.next();
sum += value.intvalue();

» Example: Navigating a Collection in SDK 5.0

ArrayList<Integer> list = new ArrayList<Integer>();
// Fill the ArrayList with values here...
int sum = 0;
for(Integer i : list)
sum += 1;

The examples on the top and the bottom of this slide are doing exactly the same thing:
stepping through an ArrayList and providing a sum of all of the integers that it contains.

Note that, in that second example, the ArrayList has been created using generics, so it is
an ArrayList of Integers. By creating the ArrayList in this way, you guarantee that
everything going into and coming out of it is going to be of type Integer. In the first
example, look at the first line inside the for loop, where the Integer is being grabbed out of
the ArrayList. It is entirely possible that, at that point, someone might have thrown a String
or a HashMap or something else into the ArrayList. There is no way to guarantee that the
cast to type Integer will actually be successful, and you might end up with a run-time
ClassCastException. In the second example, using Generics, it is not possible to have
that error.

Also in the second example, you can see the enhanced for loop syntax. It uses a colon,
and you only provide two arguments: an index variable to hold the values that you will be
sequencing through and the list that you will be accessing.

When combined into a single example, the power of these new language features
becomes more apparent. Using generics, in conjunction with autoboxing and the
enhanced for loop syntax, greatly simplifies the code and makes it clean and
straightforward.

WASvV61 Javab.ppt Page 7 of 24

|BM Software Group m

Enumerations

= Java now natively supports enumerated types that:
» Are typesafe and robust
» Offer namespace support
» Provide meaningful printed values

» Can have associated fields and methods, implement interfaces, and
more

* Example: Using a simple enum

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY }
system.out.println(“Thank goodness it is " + Day.FRIDAY);

IBM Java 5.0 SDK

Java 5.0 is the first Java release to have native support for enumerated types.
Enumerated types in Java are richer and more powerful than in other languages such as
C++; they are typesafe, robust, and offer namespace support.

Enumerated types in Java also provide meaningful printed values. If, for example, you
have a set of static integer constants in your code, you can give them long, descriptive
names in the actual source, but if you print them out, you are only going to see a number.
Java enumerated types address that issue by providing meaningful printed values.

The example at the bottom of the slide shows how to create a simple enumerated type to
represent the days of the week. You use the keyword enum, followed by the name that
you would like your enumerated type to have, and then the content is enclosed in braces.
Notice that there is no semi-colon after the closing brace for the enum. You reference
values from the enum using standard dot syntax, and when you print the example
sentence out, it is going to read “Thank goodness it is Friday” and not “Thank goodness it
is 5.”

WASvV61 Javab.ppt Page 8 of 24

IBM Software Group EM

Enumerations (cont.)

= |If you have previously used the identifier enum, you will need
to adjust your source

= Use enums whenever you need a fixed set of constants

= Still need to access static fields in legacy code? Now you
can use static import

» Refer to static constants in a class without needing to inherit from it
» Example:

import static java.awt.BorderLayout.*;
getContentPane().add(new JPanel(), CENTER);

IBM Java5.0 SDK ©2006 IBM Corporation

As of Java 5.0, enum is now a registered keyword, so if you have previously used it in
your code, you are going to have to adjust your source. This is probably the most
common change required when migrating to 5.0 from previous Java versions. Enums
should be used whenever you are working with a set of static constants. The new static
import functionality makes it easier to access static class fields in code. By importing a
class as static, you do not have to inherit from it to use its fields. For instance, in the

example, you can directly reference the field CENTER without having to use
BorderLayout. CENTER.

WASvV61 Javab.ppt Page 9 of 24

IBM Software Group EH

Annotations

* A new metadata facility — embed data into Java code
» This embedded data can be read by the javac compiler or other tools
» Depending on configuration, annotated information can be stored in
the class file and accessed at runtime through the reflection APls
* Why annotate?

» Code level documentation — indicate dependencies, aspects
required for completeness, and other features

» Compilerchecking - the Java compiler will guarantee that the
behavior you specify is actually happening (Override), will process
deprecation information, and more

» Code analysis — tools can create accurate code catalogs,
automatically generate configuration files, analyze dependencies, and

SO on.

Java 5.0 provides a new metadata facility, called annotations, that allow you to embed
data directly into your Java code. This data can then be read by the compiler or other
tools so that they can perform some specific tasks or generate artifacts for you
automatically. Some annotated information is also available at runtime using the Java
reflection APIs. There are several good reasons to use annotations. They allow you to
perform code level documentation in addition to comment level documentation
(annotations are a part of your Java code and not your comments). The Java compiler will
look at your annotations and can guarantee that the behavior that you specify is actually
happening. Code analysis tools can also use annotations to automate things for you, from
code generation to code analysis.

WASvV61 Javab.ppt Page 10 of 24

IBM Software Group EH

Annotations (cont.)

= Anything in Java can be annotated
» Package, class, interface, field, method, constructor, parameter,
enum, local variable — even another annotation
= The SDK provides three built-in annotation types
» Override: the annotated method overrides a method in a superclass
» Deprecated: the annotated field or method should no longer be used

» SuppressWarnings: suppress specified types of compile-time
warnings

= You can also create your own custom annotation types

Anything in Java can be annotated, including annotations themselves, and the language
provides three built-in annotation types. The Override annotation indicates that the
annotated method is overriding a method in a superclass. The Deprecated annotation
indicates that a field or method should not be used anymore. This is different than the
previous method of indicating deprecation using javadoc comments. You can also use the
SuppressWarnings annotation to suppress compile-time warnings. This can be useful if
you are compiling 1.4 code with a 5.0 compiler. Since generics were not supported in 1.4,
you will probably get lots of compiler warnings about performing non-typesafe operations.
You can use the SuppressWarnings annotation to turn those warnings off. Some other
meta-annotation types, or annotations for annotations, are also built into the language. In
addition to these, you can create your own custom annotation types.

WASvV61 Javab.ppt Page 11 of 24

IBM Software Group EH

Annotation types

= There are three major categories of annotation types

» Marker annotations have no variables — they simply appear, identified by
name, with no other information supplied

* Example: |@Deprecated public void deprecatedMethod() {..} |

» Single-value annotations are like markers, but they only have one value, so
a special syntax can be used

* Example: [@suppresswarnings(value={“unchecked”})
public void nonGenericsMethod() {
List stringList = new ArrayList();
stringList.add(“foo”); // causes warning

» Full annotations have multiple data members

* Example: |@rullannotation(varl=“data value 1”,
var2="“data value 2",
var3=“data value 3”)

» £ !
IBM Java 5.0 SDK © 2006 IBM Corporation

This slide has a few examples of what annotations look like. Notice that annotations are
introduced by the @ symbol and can have associated values.

There are three main categories of annotations, which are annotations with no values,
annotations with a single value, and annotations with more than one value. The
categories are straightforward, but you may see annotations referred to using these terms
in documentation and other reference materials.

WASvV61 Javab.ppt Page 12 of 24

IBM Software Group EM

Other ease of development changes

* Formatted input and output
» Use printf-type functionality to generate formatted output
* Example: | system.out.printf(“%s %5d%n”, user, total); |

» The scanner API provides basic input functionality for reading from a data
stream

* Example: [scanner s = new Scanner(System.in);
int value = s.nextInt();
s.close();

= Variable arguments
» A variable number of arguments can be passed as parameters to a method

* Example: [yoid argtest(object ... args) {
for(int i=0; i < args.length; i++) {...}

= Concurrency utilities

» A set of powerful, high-level thread constructs, contained in the
java.util.concurrent package

IBM Java5.0 SDK ©2006 IBM Corporation

JDK 5.0 incorporates some additional ease of development changes. There are some I/O
enhancements which support printf formatted output, and new Scanner APIs that simplify
the process of reading data in from a stream. In order to facilitate the printf functionality,
you can now also create functions with a variable number of arguments, and you can see
an example of that syntax on the slide. This release also features some new concurrency
utilities, including thread safe queues, timers, locks, and other synchronization primitives.
These were previously available from a third-party source, so you may already be familiar
with them or have used them. They have been incorporated into the base JDK in this
release.

WASvV61 Javab.ppt Page 13 of 24

|BM Software Group H
Monitoring, manageability and tools

= A new local and remote API, based on the JMX framework, allows the
internals of a running JVM to be monitored

» Class load/unload statistics
» Memory allocation statistics
» JIT statistics
» Heap introspection
= A new native profiling framework, the Java Virtual Machine Tool
Interface (JVMTI), offers support for a variety of tools
» Profiling
» Debugging
» Monitoring
» Thread analysis
» Bytecode instrumentation (JPLIS)

= JVMTI replaces JVMPI and JVMDI, both of which are being deprecated

" 1BM Java 5.0 SDK ©2006 IBM Corporation

JDK 5.0 includes some manageability and tool enhancements. The JMX specification
from J2EE 1.4 is now included in the standard J2SE specification for 5.0. These statistics
gathering and investigative tools are now a part of the base JDK. The other major change
is the deprecation of JVMPI and JVMDI which are being replaced with JVMTI, the Java
Virtual Machine Tool Interface. This is a new profiling framework that supports a variety of
debugging, monitoring, and code analysis tasks.

WASvV61 Javab.ppt Page 14 of 24

IBM Software Group EM

Other miscellaneous features

= Core XML support
» Includes core support for XML 1.1 with Namespaces, XML Schema,
SAX 2.0.2, DOM Level 3 Support, and XSLT with a fast XLSTC
compiler
= Supplementary character support

» Additional support for 32-bit Unicode characters, including changes to
methods that take a char as a parameter and changes to the
Character class

» JDBC Rowsets
» Most notable additions are the CachedRowSet and webRowSet

» Network transfer format for Java archives

» Produces highly compact JARs, which can be directly deployed,
saving bandwidth and reducing download time

IBM Java5.0 SDK ©2006 IBM Corporation

Some other API changes have been introduced in this release. Core Java XML support
has been changed and updated to XML version 1.1, including namespace and schema
support. Support has been added for some supplementary 32-bit Unicode characters, and
the JDBC RowSet classes have been enhanced to have better support for working with
data without maintaining a live connection to the data source. This release also features a
new, more compact network transfer format for JAR files, which can significantly reduce
the amount of bandwidth consumed and download time.

WASvV61 Javab.ppt Page 15 of 24

Compatibility issues

= Code can no longer use enum as a variable name

= Some commonly used class names, such as Proxy and Queue are
now included in the Java API
» Use fully qualified class names on imports to avoid naming conflicts

= |If you do not want to bother with these updates:
» Compile your source with option ‘-source 1.4’
» The new JVM can run code compiled for previous JDK versions, butit cannot
take advantage of any new 5.0 features
= Note: The J2EE 1.4 specification does not take into account the new
5.0 language features!
» Do not use new interfaces or features with public J2EE interfaces
» JMX has been moved from J2EE 1.4 into the base JDK for 5.0

1BM Java 5.0 SDK © 2006 IBM Corporation

The most common compatibility issue when migrating to Java 5.0 is that your code can no
longer use enum as a variable name since it has been added as a registered Java
keyword. Some other commonly used names — Proxy and Queue — are now included in
the Java API, and you should use fully qualified class names on imports to avoid any
naming conflicts. If you do not want to take advantage of any of the new Java 5.0
features, you can use compiler options to compile your source targeted at JDK 1.4. The
new 5.0 JVM is compatible with previous Java versions, so, for example, Java code
compiled SDK 1.4.2 should run unchanged. That code will not, of course, be able to take
advantage of any of the new 5.0 features. The J2EE 1.4 specification has no knowledge
of the new Java 5.0 features. So, to avoid issues there, do not use any of the new
interfaces or features with any of your public J2EE interfaces. Also, JMX has been
consumed into the base JDK effective this release.

WASvV61 Javab.ppt Page 16 of 24

IBM Software Group

Section

Summary and reference

" IBM Java 5.0 SDK

© 2006 IBM Corporation

The last portion of the presentation contains a summary and references.

WASvV61_ Javab5.ppt

Page 17 of 24

IBM Software Group EK

Summary

» Changes to the Java language and API
» Generics, autoboxing, enhanced for loop syntax
» Enumerations
» Annotations (metadata)
» Many other Java language and API enhancements

~_IBM Java 5.0 SDK : © 2006 IBM Corporation

WebSphere Application Server Version 6.1 is the first release that supports Java 5.0. The
Java 5.0 SDK includes many new language features. Generics allow abstracting over
types, and autoboxing allows you to use primitive types without wrapping them in Java
Objects. Use these features in conjunction with the enhanced for loop syntax to write
concise, uncluttered Java code. J2SE 5.0 also has built-in support for enumerated types
and the new annotations metadata facility. Several new APIs have been introduced,

including many ease of development changes and the new Java Virtual Machine Tool
Interface.

WASvV61 Javab.ppt Page 18 of 24

|BM Software Group i:

Reference

= More information on Java 5.0 features
>

4

» Generics tutorial

»

= Java 5.0 Diagnostics Guide

4

© 2006 IBM Corporation

This slide contains references for more information on the new features in Java 5.0. Sun’s
Java website contains helpful articles on J2SE 5.0 features, including a nice generics
tutorial that helps explain more of the details of how to use generics in your code. The
Java 5.0 Diagnostics Guide provides information on IBM’s Virtual Machine for Java
Platforms and how to troubleshoot Java problems.

WASvV61 Javab.ppt Page 19 of 24

IBM Software Group

Section

Appendix

'.',.‘ o
IBM Java 5.0 SDK © 2006 IBM Corporation

WASvV61 Javab.ppt Page 20 of 24

IBM Software Group igg

Generics: interacting with legacy code

* In legacy code, a parameterized type (like
Collection<String>) can be assigned to a raw type
(such as a Collection with no parameter type)

» This results in an unchecked warning at compile time and could result
in a run-time error

= Calling legacy code from code that supports generics is
also possible, but dangerous
» You lose all of the safety guarantees of the generic type system

v
: IBM Java 5.0 SDK © 2006 IBM Corporation

WASvV61 Javab.ppt Page 21 of 24

T

IBM Software Group

Generics: wildcards

= Use wildcards to specify hierarchical relationships between
generics
» Note: AcCollection<Object>is NOT a supertype of all kinds of
collections
= Example
» Write a method that can be used on any kind of collection

void printCollection(Collection<?> c) {
for (Object e : ¢) {
system.out.printin(e);

0 IBM Java 5.0 SDK © 2006 IBM Corporation

WASvV61 Javab.ppt Page 22 of 24

=
IBM Software Group iﬁg

Generics: wildcards (cont.)

= Examples
» Restrict allowable objects using an upper bound

public void printHosts
(List<? extends InetAddress> addresses) {...}

» Restrict allowable objects using a lower bound

public static <T extends Comparable<? super T>>
T max(Collection<T> coll) {...}

» Give a type parameter multiple bounds

public static <T extends Object &
Comparable<? super T>>
T max(Collection<T> coll) {...}

Ees

= IBM Java 5.0 SDK © 2006 IBM Corporation

WASvV61 Javab.ppt Page 23 of 24

IBM Software Group

Template Revision: 11/22/2005 12:10 PM

Trademarks, Copyrights, and Disclaimers

The following or regi of c in the United States, other countries, or both:
BH(Iu gs&&uu :fimix ggg;ges wgswere
S B2 nversinbose - = =
Java and allJ are of Sun Mi Inc. in the United States, other countries, or both.

i ,and the logo are regi of ion in the United States, other countries, or both.
Intel, ActionMedia, LANDesk, MMX, Pentium and are ofintel C ion in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvakis.
Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracyas of the date of initial publication. Product data is subjectto change without notice. Th or
raphical errors. IBM may make improvements and/or mm the produu(s)md/of prof %s)mabed herein alany!lne whom nohoe anstatevr\ems reoardng BM s
redrecuon and intent are subjectto change or windrml nohee. represen objectives only. References in this document to
ices does not that IBM intends to make such serv:eenvain in all countriesin which IBM operates or does business. An: mmenmtonnlsh Program
Broduct i this document s not ntended to state or mply tat onbmat program product may be used. Any functionally equivalent program, that does not infringe IBM's int
property rights, may be used instead.

Information is provided "AS IS™ wmomwumsgcoun kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRBUTED "AS IS" WITHOUT ANY WARRANTY El
EXPRESS Of PLED B LAI) WARRANTES OF MERCHANTABILITY, FITNESS FOR APARTICULAR PURPOSE OR NONINFRINGEMENT. BM shal
have no respo is information. 1BM odum are warranted, if atal, according to the terms and conditions of the Agreetwgnts (eg, gl.l Customer A}reement <

ofthose products, their published announcement avalable sources. 1M nas not tesied ose products in connection with this pubiuuon and cannot conﬁrmthe

Statement of Limted lrra htemaﬁoul Program LmseA eement, etc. iundcr which they are pro
or other pub:%’y

accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and

services.

The provision ofthe i g ined herein is not intended to, and does int any right or license under any IBM patents L iries regarding patent or
licenses should be made, in writing, to: ot gre Y . o s i
B Corsaragon
ration

Castie Drive
Armonk, NY 10504-1785
USA
Performance is based on measurements and projections ushg standard IBM benc ina i D as illus of
how those customers have used B products and the results they may have . The actual that any user will vary depending upon
considerations wcnnmenmum of multip g in the user's job stre the VO gl , the uoragecomm andthe , N0
can be given that an i ghput or per D! to the ratios stat
© Copyright i ines Ci 2005,2006. Al rights reserved.
Note to U.S. Users- ion related to i i Use, or di is subjectto i set forth in GSA ADP Schedule Contract and IBM Corp.

IBM Java 5.

WASvV61 Javab.ppt Page 24 of 24

