
WASv61_Java5.ppt Page 1 of 24

This presentation focuses on the new features in the Java™ 5.0 SDK.

WASv61_Java5.ppt Page 2 of 24

WebSphere® Application Server Version 6.1 is the first release to support Java 5.0, which

is a major Java release from Sun. It incorporates many new features and APIs, including

generics, autoboxing of primitives, and the enhanced for loop syntax, which you can use

together to write clean, concise code. Also new in 5.0, the Java language includes built-in

support for enumerations and a new metadata facility called annotations. This release

also includes several new Java APIs.

WASv61_Java5.ppt Page 3 of 24

This section focuses on the changes to the Java language and APIs for J2SE 5.0.

WASv61_Java5.ppt Page 4 of 24

Generics allow abstracting over types. Generics are particularly useful when you are

working with container classes, like those in the Java Collection hierarchy, because they

offer type safety and so you no longer need to typecast your Objects to specific types. For

example, when you are pulling an item out of an ArrayList of Strings, you will no longer

need to cast it from a Java Object to a Java String. One of the major benefits from using

generics is that the compiler will have the capability to verify type-correctness at compile-

time, and this, in turn, offers you additional run-time protection and will reduce your

number of ClassCastExceptions. By using generics, you will be able to improve the

overall robustness and readability of your code, especially in large programs.

WASv61_Java5.ppt Page 5 of 24

In the SDK 5.0 example on the bottom of the slide, you can see the syntax for creating a

LinkedList of Integers. The type of object that you will be storing in the container is

enclosed in brackets, and you include it both in the variable declaration and in the

constructor call. Notice that, in the last line of the example, when you are pulling a value

out of the LinkedList, you do not have to cast it to an Integer type.

If you ever tried to add an Object to the LinkedList, you would get a warning at compile

time since this might cause type safety problems. On the other hand, if you tried to add a

String to the LinkedList, your source would not compile – you would get a compile-time

error.

WASv61_Java5.ppt Page 6 of 24

Two additional language features in Java 5.0 that work well in conjunction with generics

are autoboxing and the new enhanced for loop syntax.

Autoboxing automatically wraps a primitive type in its Object-based counterpart for certain

method calls. So, for example, when you want to add an element to Collection of Integers,

you no longer have to create an intermediate Integer object with the appropriate value –

you can just add the primitive int to the Collection directly. The necessary wrapping is all

done for you. The same thing will happen when you are removing an Integer from a

collection; you can assign the value directly to a primitive int type. This feature allows you

to get rid of several extra steps and write code that is clean and concise and easy to

follow.

While autoboxing is very useful in conjunction with Collections, it can also be used in other

circumstances, such as:

Integer two = new Integer(2);

int four = two + two;

The enhanced for loop syntax provides a mechanism for sequential navigation, like a for

each loop. You can use this new syntax to walk through a Collection without using an

Iterator and also to walk through an array without using an index.

WASv61_Java5.ppt Page 7 of 24

The examples on the top and the bottom of this slide are doing exactly the same thing:

stepping through an ArrayList and providing a sum of all of the integers that it contains.

Note that, in that second example, the ArrayList has been created using generics, so it is

an ArrayList of Integers. By creating the ArrayList in this way, you guarantee that

everything going into and coming out of it is going to be of type Integer. In the first

example, look at the first line inside the for loop, where the Integer is being grabbed out of

the ArrayList. It is entirely possible that, at that point, someone might have thrown a String

or a HashMap or something else into the ArrayList. There is no way to guarantee that the

cast to type Integer will actually be successful, and you might end up with a run-time

ClassCastException. In the second example, using Generics, it is not possible to have

that error.

Also in the second example, you can see the enhanced for loop syntax. It uses a colon,

and you only provide two arguments: an index variable to hold the values that you will be

sequencing through and the list that you will be accessing.

When combined into a single example, the power of these new language features

becomes more apparent. Using generics, in conjunction with autoboxing and the

enhanced for loop syntax, greatly simplifies the code and makes it clean and

straightforward.

WASv61_Java5.ppt Page 8 of 24

Java 5.0 is the first Java release to have native support for enumerated types.

Enumerated types in Java are richer and more powerful than in other languages such as

C++; they are typesafe, robust, and offer namespace support.

Enumerated types in Java also provide meaningful printed values. If, for example, you

have a set of static integer constants in your code, you can give them long, descriptive

names in the actual source, but if you print them out, you are only going to see a number.

Java enumerated types address that issue by providing meaningful printed values.

The example at the bottom of the slide shows how to create a simple enumerated type to

represent the days of the week. You use the keyword enum, followed by the name that

you would like your enumerated type to have, and then the content is enclosed in braces.

Notice that there is no semi-colon after the closing brace for the enum. You reference

values from the enum using standard dot syntax, and when you print the example

sentence out, it is going to read “Thank goodness it is Friday” and not “Thank goodness it

is 5.”

WASv61_Java5.ppt Page 9 of 24

As of Java 5.0, enum is now a registered keyword, so if you have previously used it in

your code, you are going to have to adjust your source. This is probably the most

common change required when migrating to 5.0 from previous Java versions. Enums

should be used whenever you are working with a set of static constants. The new static

import functionality makes it easier to access static class fields in code. By importing a

class as static, you do not have to inherit from it to use its fields. For instance, in the

example, you can directly reference the field CENTER without having to use

BorderLayout.CENTER.

WASv61_Java5.ppt Page 10 of 24

Java 5.0 provides a new metadata facility, called annotations, that allow you to embed

data directly into your Java code. This data can then be read by the compiler or other

tools so that they can perform some specific tasks or generate artifacts for you

automatically. Some annotated information is also available at runtime using the Java

reflection APIs. There are several good reasons to use annotations. They allow you to

perform code level documentation in addition to comment level documentation

(annotations are a part of your Java code and not your comments). The Java compiler will

look at your annotations and can guarantee that the behavior that you specify is actually

happening. Code analysis tools can also use annotations to automate things for you, from

code generation to code analysis.

WASv61_Java5.ppt Page 11 of 24

Anything in Java can be annotated, including annotations themselves, and the language

provides three built-in annotation types. The Override annotation indicates that the

annotated method is overriding a method in a superclass. The Deprecated annotation

indicates that a field or method should not be used anymore. This is different than the

previous method of indicating deprecation using javadoc comments. You can also use the

SuppressWarnings annotation to suppress compile-time warnings. This can be useful if

you are compiling 1.4 code with a 5.0 compiler. Since generics were not supported in 1.4,

you will probably get lots of compiler warnings about performing non-typesafe operations.

You can use the SuppressWarnings annotation to turn those warnings off. Some other

meta-annotation types, or annotations for annotations, are also built into the language. In

addition to these, you can create your own custom annotation types.

WASv61_Java5.ppt Page 12 of 24

This slide has a few examples of what annotations look like. Notice that annotations are

introduced by the @ symbol and can have associated values.

There are three main categories of annotations, which are annotations with no values,

annotations with a single value, and annotations with more than one value. The

categories are straightforward, but you may see annotations referred to using these terms

in documentation and other reference materials.

WASv61_Java5.ppt Page 13 of 24

JDK 5.0 incorporates some additional ease of development changes. There are some I/O

enhancements which support printf formatted output, and new Scanner APIs that simplify

the process of reading data in from a stream. In order to facilitate the printf functionality,

you can now also create functions with a variable number of arguments, and you can see

an example of that syntax on the slide. This release also features some new concurrency

utilities, including thread safe queues, timers, locks, and other synchronization primitives.

These were previously available from a third-party source, so you may already be familiar

with them or have used them. They have been incorporated into the base JDK in this

release.

WASv61_Java5.ppt Page 14 of 24

JDK 5.0 includes some manageability and tool enhancements. The JMX specification

from J2EE 1.4 is now included in the standard J2SE specification for 5.0. These statistics

gathering and investigative tools are now a part of the base JDK. The other major change

is the deprecation of JVMPI and JVMDI which are being replaced with JVMTI, the Java

Virtual Machine Tool Interface. This is a new profiling framework that supports a variety of

debugging, monitoring, and code analysis tasks.

WASv61_Java5.ppt Page 15 of 24

Some other API changes have been introduced in this release. Core Java XML support

has been changed and updated to XML version 1.1, including namespace and schema

support. Support has been added for some supplementary 32-bit Unicode characters, and

the JDBC RowSet classes have been enhanced to have better support for working with

data without maintaining a live connection to the data source. This release also features a

new, more compact network transfer format for JAR files, which can significantly reduce

the amount of bandwidth consumed and download time.

WASv61_Java5.ppt Page 16 of 24

The most common compatibility issue when migrating to Java 5.0 is that your code can no

longer use enum as a variable name since it has been added as a registered Java

keyword. Some other commonly used names – Proxy and Queue – are now included in

the Java API, and you should use fully qualified class names on imports to avoid any

naming conflicts. If you do not want to take advantage of any of the new Java 5.0

features, you can use compiler options to compile your source targeted at JDK 1.4. The

new 5.0 JVM is compatible with previous Java versions, so, for example, Java code

compiled SDK 1.4.2 should run unchanged. That code will not, of course, be able to take

advantage of any of the new 5.0 features. The J2EE 1.4 specification has no knowledge

of the new Java 5.0 features. So, to avoid issues there, do not use any of the new

interfaces or features with any of your public J2EE interfaces. Also, JMX has been

consumed into the base JDK effective this release.

WASv61_Java5.ppt Page 17 of 24

The last portion of the presentation contains a summary and references.

WASv61_Java5.ppt Page 18 of 24

WebSphere Application Server Version 6.1 is the first release that supports Java 5.0. The

Java 5.0 SDK includes many new language features. Generics allow abstracting over

types, and autoboxing allows you to use primitive types without wrapping them in Java

Objects. Use these features in conjunction with the enhanced for loop syntax to write

concise, uncluttered Java code. J2SE 5.0 also has built-in support for enumerated types

and the new annotations metadata facility. Several new APIs have been introduced,

including many ease of development changes and the new Java Virtual Machine Tool

Interface.

WASv61_Java5.ppt Page 19 of 24

This slide contains references for more information on the new features in Java 5.0. Sun’s

Java website contains helpful articles on J2SE 5.0 features, including a nice generics

tutorial that helps explain more of the details of how to use generics in your code. The

Java 5.0 Diagnostics Guide provides information on IBM’s Virtual Machine for Java

Platforms and how to troubleshoot Java problems.

WASv61_Java5.ppt Page 20 of 24

WASv61_Java5.ppt Page 21 of 24

WASv61_Java5.ppt Page 22 of 24

WASv61_Java5.ppt Page 23 of 24

WASv61_Java5.ppt Page 24 of 24

