
WASv6_WPM_Architecture.ppt Page 1 of 31

®

IBM Software Group

© 2005 IBM Corporation

Updated March 2, 2005

IBM® WebSphere® Application Server V6

Service Integration Technologies: Architecture

This presentation will focus on the architecture of the IBM Service Integration
Technologies.

WASv6_WPM_Architecture.ppt Page 2 of 31

IBM Software Group

2

Service Integration Technologies: Architecture © 2005 IBM Corporation

Goals

�Describe the core components of IBM Service
Integration Technologies

�Focus on Java™ Messaging Service (JMS)
messaging using Service Integration Bus

�Covered in another presentation:

�Web Services integration with Service Integration
Technologies

WASv6_WPM_Architecture.ppt Page 3 of 31

IBM Software Group

3

Service Integration Technologies: Architecture © 2005 IBM Corporation

Agenda

� Service Integration Technologies architecture

� Service Integration Bus

� Bus Member

� Messaging Engine

� Destinations

� Message Store

� Mediation

� Quality of service

� High Availability and scalability

� Topologies

� Interoperability

� Summary

WASv6_WPM_Architecture.ppt Page 4 of 31

IBM Software Group

4

Service Integration Technologies: Architecture © 2005 IBM Corporation

Service Integration Bus Service Integration Bus

Architecture and ComponentsArchitecture and Components

Section

WASv6_WPM_Architecture.ppt Page 5 of 31

IBM Software Group

5

Service Integration Technologies: Architecture © 2005 IBM Corporation

Basic Message Flow

�Destinations are points of communication for
messaging
�Example: JMS Queues, topics, Web Service endpoints

�Producers send messages to destinations

�Consumers get messages from destinations

ConsumerProducer MessageMessage
Destination

WASv6_WPM_Architecture.ppt Page 6 of 31

IBM Software Group

6

Service Integration Technologies: Architecture © 2005 IBM Corporation

Service Integration Bus

� A bus is a shared communication channel

� A Service Integration Bus provides the bus-based messaging

infrastructure in WebSphere Application Server

� A bus is totally contained within a cell

� You can have multiple buses in a cell

� Links can be created to other buses or to a WebSphere MQ queue

manager

� Service Integration Bus-related concepts:

�Bus members

�Messaging Engines

�Destinations

The following capabilities are provided by the bus:

•Any application can exchange messages with any other application by using a destination

to which one application sends, and from which the other application receives.

•A message-producing application, that is, a producer, can produce messages for a
destination regardless of which messaging engine the producer uses to connect to the

bus.

•A message-consuming application, that is, a consumer, can consume messages from a
destination (whenever that destination is available) regardless of which messaging engine

the consumer uses to connect to the bus

The bus supports the following types of messaging:

•Sending messages synchronously (this requires the consuming application to be running

and reachable). This is not supported by the JMS API.

•Sending messages asynchronously (possible whether the consuming application is

running or not and whether or not the destination is reachable). Both point-to-point and
publish/subscribe messaging are supported

•Publishing events or other notifications. Notification messages can also be generated by
the bus itself

WASv6_WPM_Architecture.ppt Page 7 of 31

IBM Software Group

7

Service Integration Technologies: Architecture © 2005 IBM Corporation

Bus Members

�Adding a bus member associates a cluster or
Application Server with a Service Integration Bus

�When a new Bus Member is defined, one
Messaging Engine is automatically created on the
corresponding Application Server or Cluster

WASv6_WPM_Architecture.ppt Page 8 of 31

IBM Software Group

8

Service Integration Technologies: Architecture © 2005 IBM Corporation

Bus

Messaging Engines

� An ME runs inside an Application
Server and manages messaging
resources

� Messaging Engines are transparent
to application code

� Each server or cluster has at least
one ME for each Bus with which it is
associated

� The ME has an associated data store
for message persistence and
overflow

v6 Application Server

Messaging
Engine

Destination

Data
Store

One Messaging Engine is automatically created for the application server or the cluster
when defining a new bus member (Application Server or Cluster)

Can have multiple Messaging Engines running within the same cluster

Within a bus, each Messaging Engine has a unique identity

The data store preserves messages, subscriptions, and so on, so that they survive if the

server or messaging engine is stopped and restarted. It is also used for the overflow of the
non-persistent messages in some Quality of Service options

WASv6_WPM_Architecture.ppt Page 9 of 31

IBM Software Group

9

Service Integration Technologies: Architecture © 2005 IBM Corporation

Buses and Messaging Engines in a Cell

� WebSphere Application Server topology can have multiple buses
� Each bus can have servers or clusters or both as bus members
� When a server or cluster is made a bus member, a Messaging Engine
is created

Bus

Server 1

Messaging
Engine

Bus-2

Bus-1

Server A

Server C

Server B

Stand-alone Application Server Network Deployment Cell

Messaging
Engine

Messaging
Engine

Messaging
Engine

Old notes here were pretty inaccurate – ignore for script and rewrite.

WASv6_WPM_Architecture.ppt Page 10 of 31

IBM Software Group

10

Service Integration Technologies: Architecture © 2005 IBM Corporation

Bus Destinations

�A destination is a point of communication

�Types of destinations

�Queue - for point-to-point messaging

�Topicspace - for publish-subscribe messaging

�Alias - destination that is an alias for another target

destination

�Foreign - destination that identifies a destination on

another bus

�Destinations are created administratively

Temporary destinations are bus destinations that are created and deleted automatically for
API-specific temporary destinations. Temporary destinations appear on the list of
destinations for a service integration bus, but normally need no administration.

A topicspace is a hierarchy of topics used for publish/subscribe messaging. Topics with

the same name can exist in multiple topicspaces.

Alias destinations provide a level of abstraction between applications and the underlying
target bus destinations that hold messages. Applications interact with the alias destination,
so the target bus destination can be changed without changing the application. Each alias

destination identifies a target bus destination and target service integration bus.

Applications can use an alias destination to route messages to a target destination in the

same bus or to another (foreign) bus (including across an MQLink to a queue provided by
WebSphere MQ).

Each messaging engine has a default exception destination,
_SYSTEM.Exception.Destination.<messaging_engine_name>, that is used to handle

undeliverable messages for all bus destinations that are localized to the messaging engine

The foreign destination identifies a destination on another bus, and provides a mechanism
for overriding system default for a particular destination.

WASv6_WPM_Architecture.ppt Page 11 of 31

IBM Software Group

11

Service Integration Technologies: Architecture © 2005 IBM Corporation

Destinations and Buses

� WebSphere Application Server topology can have multiple buses

� Each bus can have servers or clusters or both as bus members

� When a server/cluster is made a bus member, a Messaging Engine is created

� Destinations are created on the bus and hosted on a Messaging Engine

� A queue is hosted by a single Messaging Engine

� TopicSpaces are hosted by all Messaging Engines on a bus

Bus

Server 1

Bus-2

Bus-1

Server A

Server C

Server B

Stand-alone Application Server Network Deployment Cell

Messaging
Engine

Messaging
Engine

Messaging
Engine

Messaging
Engine

Messaging
Engine

WASv6_WPM_Architecture.ppt Page 12 of 31

IBM Software Group

12

Service Integration Technologies: Architecture © 2005 IBM Corporation

Bus-2

Bus-1

Server A

Data Store

Server C

Server B

� A Messaging Engine requires a persistent data store
�WebSphere Application Server uses JDBC for this

� Messaging Engines can share a database, but each Messaging Engine has its
own schema within the database (which results in different tables)

� Each Messaging Engine
has its own data store for
storing messages,
transactions states and
delivery records

Messaging
Engine

Messaging
Engine

Messaging
Engine

Messaging
Engine

The Data Store is used to buffer in-flight messages and hold a number of other pieces of
information (for example records of message delivery when delivering multiple copies of a
single message).

A Messaging Engine requires a persistent back end data store, even for non-persistent
messages (e.g., for message overflow).

Out of the box support for persistence using any supported database.

WASv6_WPM_Architecture.ppt Page 13 of 31

IBM Software Group

13

Service Integration Technologies: Architecture © 2005 IBM Corporation

Mediation

�The ability to manipulate a message at a
destination

�Transform or reroute the message

�Send copies of the message to additional destinations

�Allow interaction with non-messaging resource managers

(e.g. databases)

�Mediation attached administratively to a
Destination

Mediation Handler List

Destination
Messages Messages

WASv6_WPM_Architecture.ppt Page 14 of 31

IBM Software Group

14

Service Integration Technologies: Architecture © 2005 IBM Corporation

Quality of ServiceQuality of Service

Section

WASv6_WPM_Architecture.ppt Page 15 of 31

IBM Software Group

15

Service Integration Technologies: Architecture © 2005 IBM Corporation

Destination Quality of Service for Reliability
� BEST_EFFORT_NONPERSISTENT

�Messages are never written to disk

�Throw away messages if memory cache over-runs

� EXPRESS_NONPERSISTENT
�Messages are written asynchronously to persistent storage if memory

cache overruns, but are not kept over server restarts

�No acknowledgement that the ME has received the message

� RELIABLE_NONPERSISTENT
�Same as Express_Nonpersistent, except, there is a low level

acknowledgement message that the client code waits for, before
returning to the application with an OK or not OK response

� RELIABLE_PERSISTENT
�Messages are written asynchronously to persistent storage during

normal processing, and stay persisted over server restarts

� If the server fails, messages are lost if they are held in the cache at the
time of failure

� ASSURED_PERSISTENT
�Highest degree of reliability where assured delivery is supported

High

Low

P
e

rf
o

rm
a

n
c
e

Low

High

R
e

lia
b

ili
ty

Express non-persistent and reliable-persistent are defaults for non-persistent and
persistent.

In express non-persistent, messages are sent from a producer to the ME, but there is
never an acknowledgement flow (at the low level communications layer) to indicate that
the ME has the message. The application resumes immediately and assumes that all is

well. In the reliable non-persistent there is a low level acknowledgement message that the
client code waits for before returning to the application with an OK, Not OK response. So
- express runs faster, but with a slightly lower level of reliability

WASv6_WPM_Architecture.ppt Page 16 of 31

IBM Software Group

16

Service Integration Technologies: Architecture © 2005 IBM Corporation

Quality of Service (QOS) specification

�QOS can be specified on

�A Destination

� Maximum QOS can be defined on a Destination (for example, a Destination

that can only accept non-persistent messages)

�A message

� By individual Producers, typically under application control via a

combination of API calls (e.g. JMS Persistent or Non-persistent) and the

Connection Factory used (which defines the Persistent/NonPersistent

Mapping)

WASv6_WPM_Architecture.ppt Page 17 of 31

IBM Software Group

17

Service Integration Technologies: Architecture © 2005 IBM Corporation

High Availability and ScalabilityHigh Availability and Scalability

Section

WASv6_WPM_Architecture.ppt Page 18 of 31

IBM Software Group

18

Service Integration Technologies: Architecture © 2005 IBM Corporation

High Availability

� Destinations can be

associated with a Bus
Member of type “cluster”

� An ME can failover to another

cluster member

� For messaging to continue,
the message store must be

accessible from the server to
which the ME fails over

�Ensure that the message store

is accessible from all cluster

members

Bus

Cluster

Server2Server1

Messaging
Store

Bus
Destination

Messaging
Engine

Messaging
Engine

WASv6_WPM_Architecture.ppt Page 19 of 31

IBM Software Group

19

Service Integration Technologies: Architecture © 2005 IBM Corporation

BusScalability

� Scalability is achieved by deploying

multiple messaging engines per bus to

a cluster

� With this flexibility, there are one or

more concurrently active messaging

engines running in a cluster on the

same bus

�When a destination is hosted on such a

cluster, then the destination is
partitioned

� Failover is handled by the HAManager

� Message order not preserved

Cluster

Server2Server1

Q1 Q1

Bus Destination
(Partitioned
destination)

Application Application

Messaging
Engine

Messaging
Engine

This case provides scalability. The destination has been localized to a Cluster ME.
It is therefore partitioned across the Messaging Engines within the cluster. With a
partitioned Destination, the recoverable objects associated with the destination are

split between separate Data Stores and hence separate Data stores. This
configuration has the disadvantage that message order cannot be preserved, but
has advantages. One is that multiple consumers (or producers) can be deployed

across the same Cluster to provide high messaging bandwidth. Messaging
operations would always be locally fulfilled.

Scalability can be increased by adding additional cluster members to run additional

messaging engines.

WASv6_WPM_Architecture.ppt Page 20 of 31

IBM Software Group

20

Service Integration Technologies: Architecture © 2005 IBM Corporation

TopologiesTopologies

Section

WASv6_WPM_Architecture.ppt Page 21 of 31

IBM Software Group

21

Service Integration Technologies: Architecture © 2005 IBM Corporation

Messaging Engine Topology

�One messaging engine per bus member is
adequate for many applications

�This is the default behavior when adding a bus
member

�Advantages of deploying more than one
messaging engine:

�Spreading messaging workload across multiple

servers

�Performance is better when a messaging
engine is hosted in the same server as the
applications that access it

WASv6_WPM_Architecture.ppt Page 22 of 31

IBM Software Group

22

Service Integration Technologies: Architecture © 2005 IBM Corporation

Bus Topology

� An enterprise might deploy
multiple interconnected
messaging buses for
organizational reasons

�For example, separately
administered buses for each
department

� A bus can connect to other
buses which are known as
foreign buses

�By way of a gateway link

�Gateway links are created
administratively

Bus B

Gateway link

Bus-1

Server A

ME

Bus A

Bus-2

Server D

ME

Server C

ME

Server B

ME

A bus can connect to other buses, which are referred to as foreign buses.

The inter-bus links might reflect the distribution of buses across organizations, or across
departments within organizations.

To create a link to a foreign bus, the administrator first creates a virtual link from the local
bus to the foreign bus, then creates a physical gateway link from a messaging engine in

the local bus to the foreign bus.

WASv6_WPM_Architecture.ppt Page 23 of 31

IBM Software Group

23

Service Integration Technologies: Architecture © 2005 IBM Corporation

InteroperabilityInteroperability

Section

WASv6_WPM_Architecture.ppt Page 24 of 31

IBM Software Group

24

Service Integration Technologies: Architecture © 2005 IBM Corporation

Interoperability

�Full interoperability with other Buses in the same
or different Cell or Stand-alone Application Server

�WebSphere Application Server V5 Embedded JMS
Server interoperation

�v5 embedded JMS clients can connect to V6 destinations

by way of an MQ Client Link

� MQ Client Link is created administratively

�A JMS 1.0 application running in a V6 server can connect

to a V5 server

� v5 does not support JMS 1.1

WASv6_WPM_Architecture.ppt Page 25 of 31

IBM Software Group

25

Service Integration Technologies: Architecture © 2005 IBM Corporation

v6 Server

ME

Interoperability with WebSphere MQ

� Tight integration between V6 Buses and WebSphere MQ

� WebSphere MQ thinks that the V6 Messaging Engine (ME)
is another Queue Manager

� WebSphere MQ applications can send messages to queues
hosted on V6 Bus

� v6 Messaging clients can send messages to WebSphere
MQ queues

WMQ
App.

WMQ
Queue

Manager

WMQ
Queue

Manager

WMQI
App.

v6
JMS
App.

Web
Services

Protocol
MQ Link

MQ Channel

You can have multiple MQLinks out of a bus, but each link goes to a different queue
manager, and further these queue managers should not be interconnected. The link
engine can be part of a cluster, but the issue is in handling failover. The ME hosting the

MQLink must keep a fixed host and port because that is what MQ expects, and so you
have to marry the new WebSphere Application Server HA support with more traditional
HACMP® like HA solutions.

WASv6_WPM_Architecture.ppt Page 26 of 31

IBM Software Group

26

Service Integration Technologies: Architecture © 2005 IBM Corporation

SummarySummary

Section

WASv6_WPM_Architecture.ppt Page 27 of 31

IBM Software Group

27

Service Integration Technologies: Architecture © 2005 IBM Corporation

Summary

� IBM Service Integration Technologies provide a integrated

messaging infrastructure for WebSphere Application Server

�Fully integrated with runtime services such as HA Manager

� The “Default Messaging Provider” is implemented using

Service Integration Technologies

�JMS 1.1 compliant

� Messaging Engines manage messaging resources

� Messaging destination types include queues, topics

� Gateway Links connect multiple buses

WASv6_WPM_Architecture.ppt Page 28 of 31

IBM Software Group

28

Service Integration Technologies: Architecture © 2005 IBM Corporation

Appendix: Appendix:
Service Integration TechnologiesService Integration Technologies

ProtocolsProtocols

Section

WASv6_WPM_Architecture.ppt Page 29 of 31

IBM Software Group

29

Service Integration Technologies: Architecture © 2005 IBM Corporation

Messaging Transport Options

� Between Messaging Engines

�Proprietary inter-engine protocol is based on TCP/IP

� Can be transported natively, or wrapped in SSL, HTTP or HTTPS

� Application-to-Messaging Engine protocols

�Inbound Basic Messaging

� Connection-oriented protocol using TCP connection

�Inbound Secure Messaging

� Inbound Basic Messaging protocol wrapped in SSL

�MQ Inbound Link

� To communicate with an MQ application in an MQ network or a V5 Embedded
Messaging client

�MQ Inbound Link Secure

� MQ inbound link wrapped in SSL

Formats and Protocols (FAP) :The WebSphere MQ FAPs define how queue managers
communicate with one another, and also how WebSphere MQ clients communicate with
server queue managers.

JFAP :The formats and protocols used to communicate between messaging engines in
WebSphere Application Server V6.

Messaging Engines communicate with each other using an efficient proprietary protocol.
This carries the actual message data, along with control information that allows the work of
the bus to be distributed across the various engines that make it up.

InboundBasicMessaging

This is a connection-oriented protocol, using a standard TCP/IP connection (JFAP-
TCP/IP). It includes support for two-phase transactional (remote XA) flows, so that
a message producer or consumer, running on a client or server system, can
participate in a global transaction managed on that client or server system. The
specific use for the XA flows is to support access from an application running in one
server to a messaging engine on second server, perhaps because the first server
does not have a suitable messaging engine. If the remote XA flows are used, a
transaction coordinator must be available local to the application.

InboundSecureMessaging

This is the InboundBasicMessaging protocol wrapped in SSL.

InboundBasic and Secure Messaging settings are made when creating the
connection factory

MQ Inbound Link

WASv6_WPM_Architecture.ppt Page 30 of 31

IBM Software Group

30

Service Integration Technologies: Architecture © 2005 IBM Corporation

Messaging
Engine

Protocol

JMS
API

JAX
RPC

Messaging Engine is
embedded in the

WebSphere Application

Server Java process

Application
Client App

Client Library Client Protocol
(TCP/IP, SSL,
HTTP, HTTPS)

Persistent
Data Store

From MQ
Network

From another ME

From SOAP
requestor

From V5

MQ FAP

JFAP

SOAP/HTTP(S)

MQ Client FAP

JDBC

MQ FAP
To MQ

Network

To another
ME

To AppServer
hosting SOAP
web service

Client
Application

SOAP/HTTP(S)

JFAP

WebSphere Application Server

FAP: Formats and Protocols
JFAP: Proprietary Format and Protocol used by IBM Service Integration Technologies

SOAP/JMS
SOAP/JMS

or
or

Applications can attach to a bus using the JMS API. IBM Service Integration Technologies
provide API libraries that connect the application to a messaging engine, either via an in-
process call, or across a network using a remote client. A remote client may run in the

J2EE Application Client environment and the J2EE Application Server environment.

WASv6_WPM_Architecture.ppt Page 31 of 31

31

IBM Software Group

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

Service Integration Technologies: Architecture © 2005 IBM Corporation

