
WASv6_Sec_J2EE_Security.ppt Page 1 of 21

®

IBM Software Group

© 2006 IBM Corporation

Updated June 8, 2006

IBM WebSphere® Application Server V6

Java™ 2 Enterprise Edition (J2EE)

Application Security

This presentation will focus on the J2EE Application Security.

WASv6_Sec_J2EE_Security.ppt Page 2 of 21

IBM Software Group

2

J2EE Application Security © 2006 IBM Corporation

Goals

�Understand Application level J2EE security in
WebSphere Application Server

�Understand IBM extensions to the specification

The goal of this presentation is to help you understand the J2EE Security at the
Application level. Some of the IBM extensions are also discussed here.

WASv6_Sec_J2EE_Security.ppt Page 3 of 21

IBM Software Group

3

J2EE Application Security © 2006 IBM Corporation

Agenda

� J2EE Application Security overview

� J2EE Application Security of EJB components

�Run-As options

� J2EE Application Security of Web components

�Application Security Tasks and Roles

The agenda for this presentation is to provide an overview of J2EE Security, discuss
application security as it relates to EJB and Web components, and discuss tasks and
roles.

WASv6_Sec_J2EE_Security.ppt Page 4 of 21

IBM Software Group

4

J2EE Application Security © 2006 IBM Corporation

J2EE application security:J2EE application security:
Specifying authorization Specifying authorization

Section

This section will cover how to specify authorization information for your applications.

WASv6_Sec_J2EE_Security.ppt Page 5 of 21

IBM Software Group

5

J2EE Application Security © 2006 IBM Corporation

Creating secure J2EE applications: Overview

� J2EE application level security is specified using security
roles

� Security roles allow developers to specify security at an
abstract level

� Security roles are applied to the Web and EJB application
components
�EJB methods or Web URIs

� Security can be specified in the following ways:
�Declaratively at assembly time, through the deployment descriptors

�Programmatically using standard APIs at development time

� Binding of users and groups to J2EE security roles is
usually done at the application deploy (install) time

An application developer may not know the actual users and groups that need access to
the application. J2EE defines Security Roles that developers can use to provide
authorization information. Developers provide access permission to the Security Roles for
different parts of the application. They can do this Declaratively or Programmatically. This
will be explained in the next few slides.

The binding or association of the roles to the actual users, groups or both is done by the
System Administrator during application deployment on the Application Server, or after the
application has been deployed.

J2EE Security roles apply to the entire application and all its modules. This information is

saved in the Application and in the module deployment descriptors.

WASv6_Sec_J2EE_Security.ppt Page 6 of 21

IBM Software Group

6

J2EE Application Security © 2006 IBM Corporation

Actual
User/Groups

J2EE
Security

Roles

Securing J2EE application artifacts

Enterprise Java
Bean (EJB)

Web Components

HTML,

GIFs, …

EJB

Method

EJB

Method

EJB

Method
Jack

Bob

Mary

Clients

Manager

Teller

Customer

Servlet

JSP

Usually
performed by
Assembler or

Developer

Usually
performed by

Deployer

Security
Binding

Security
Permissions

This page shows the relevant part of the security process. The Developer or the
Assembler will define the J2EE Security roles and specify what application artifacts can be
accessed by these roles. The Deployer then binds the J2EE Security roles to the users or
groups.

WASv6_Sec_J2EE_Security.ppt Page 7 of 21

IBM Software Group

7

J2EE Application Security © 2006 IBM Corporation

J2EE application security:J2EE application security:
EJB componentsEJB components

Section

The next section will discuss how to specify authorization information for EJB components.

WASv6_Sec_J2EE_Security.ppt Page 8 of 21

IBM Software Group

8

J2EE Application Security © 2006 IBM Corporation

Customer

Teller

Manager

getBalanceMethod

setBalanceMethod

createMethod

Bank EJB

public int getBalance(…) {
if (isCallerInRole(“Supervisor”)) {

Perform Some Function
}

}

By Developer

3

Security Role Binding

(Administrator)

5

2
Specify Security roles

(Assembler)
4

Assign Method permissions
(Assembler)

Specify Security Role
Reference (Developer)

create()Manager

getBalance(),
setBalance()

Teller,
Manager

getBalance()Customer

MethodsRoles

Mary, BobManager

MaryTeller

Clients, JackCustomer

Users and/or GroupsRoles

ManagerSupervisor

Security RoleInternal name

J2EE security: EJB role based authorization

Jack Bob Mary

Clients

Implementation

USERS/GROUPS

1

The goal is to enable a developer or an assembler to specify who can access the methods
within an EJB.

In some cases, the developer may not be the same person as the application Assembler.

A developer may not know the actual Security roles that can be defined later by an
Assembler. In that case, the developer can use an internal security role name when
making programmatic API calls to check for security, as shown in Step 1. It will be up to
the Assembler to tie the internal role name to the actual security role by defining a security
role reference, as shown in step 3.

In the example, “Supervisor” is the internal local name. Later, the Assembler will have to
map the internal name to the Role defined by the Assembler.

In the life cycle of the application, step 2 shows an Assembler defining a set of J2EE
Security Roles for the application.

Now that the real Security Roles have been defined, the assembler must map any internal
Role name used by the Developer to the Security Role reference, as shown in Step 3.

The Assembler can assign EJB method permissions, as shown in step 4. This is
associating the methods to the Security roles. Once done, any user or group that is
mapped to the Security role will have permission to access the method. You can use wild
cards to specify multiple methods.

The application is now ready for deployment into an Application Server. During
deployment, as shown in step 5, the System Administrator can bind the security roles to
the users or groups that are in the Security User Registry for the Application Server. The
Administrator can change the role to “user” or “group” binding at any time after the install.

With J2EE applications, you have the ability to use a role based security model

WASv6_Sec_J2EE_Security.ppt Page 9 of 21

IBM Software Group

9

J2EE Application Security © 2006 IBM Corporation

EJB applications programmatic APIs

�� IsCallerInRoleIsCallerInRole (String role-name)
�Returns true if the bean caller is granted the specified security role

� If the caller is not granted the specified role, or if the caller is not authenticated, it
returns false

� If the specified role is granted Everyone access, it always returns true

�Must have security role reference defined in the deployment descriptor

�� getCallerPrincipalgetCallerPrincipal():
�Returns the java.security.Principal object containing the bean caller name

� If the caller is not authenticated, it returns a principal containing UNAUTHENTICATED
name

Example:
public void myEJBmethod() {

…
// to get bean's caller using getCallerPrincipal() java.security.Principal principal =
context.getCallerPrincipal();
String callerId= principal.getName();

// to check if bean's caller is granted Mgr role
boolean isMgr = context.isCallerInRole("Mgr");
…

}

J2EE Security defines two APIs that can be used by EJB developer:

The IsCallerInRoleIsCallerInRole() method is used to determine if the authenticated caller is in a
specific Role defined by the application. This allows the developer to make decisions
where they might want a certain part of the code to be allowed to run only for a user in a
specific Role.

The getCallerPrincipal() getCallerPrincipal() method is used to return the authenticated caller. method is used to return the authenticated caller.

The example provided shows how the developer could use these APIThe example provided shows how the developer could use these APIs.s.

WASv6_Sec_J2EE_Security.ppt Page 10 of 21

IBM Software Group

10

J2EE Application Security © 2006 IBM Corporation

Changing identity: “Run-As” option

� EJB methods have the ability to change identity when calling downstream
processes or EJBs

� There are several different “Run-As” identities that you can choose from

� Run-As speciation applies to all the methods of the EJB

�With IBM extension, you can specify different “Run-As” options for different
methods within the same EJB

�Bean takes on the same identity as the callerClient Identity

�Bean takes on identity of a specified user within the specified role

�The specified role is part of the deployment descriptor and performed by
the assembler

�The specific user in the “Run-As” role is usually specified at deploy time

Another Specified Role

�Bean takes on the identity of the user under which the server is running

�This is an IBM extension to the specificationServer Identity

Description“Run As” options

The “Run-As” option is a way to change the identity of the caller from an EJB when calling
a downstream EJB.

An example of this idea is where a client cannot directly call a downstream EJB, but can
call an upstream EJB, which can call a downstream EJB by changing its identity.

There are three “Run as” options, as shown in the table. The downstream EJB can be
called as the same identity as the original client identity, or can be called as the Server

identity, which is the user ID under which WebSphere Application Server is running. The
last option is to run as another specified role.

The Server Identity “Run as” option is an IBM extension, carried forward from Version 4
and Version 5.

WASv6_Sec_J2EE_Security.ppt Page 11 of 21

IBM Software Group

11

J2EE Application Security © 2006 IBM Corporation

Security for Message Driven Bean (MDB)

�Messages arriving at MDB have no client
credentials

�However, when MDB needs to call a secure EJB, it needs
security credentials

�Provide “Run-As” identity for the MDB

Msg.
Queue

Message Driven Bean
with

“Run-As” identity = Bob

Session EJB
“myMethod”

User = “Bob”

Will be authorized if Bob is in
the security role assigned for

myMethod()

Message Driven EJBs, or MDBs, are called by the EJB container when there is a
message in the queue. As such, there is no client identity. So if a MDB needs to call
another downstream EJB that needs authentication, providing “Run-As” on the MDB
allows the Assembler to send an identity to the downstream EJB, as shown in the
example.

WASv6_Sec_J2EE_Security.ppt Page 12 of 21

IBM Software Group

12

J2EE Application Security © 2006 IBM Corporation

J2EE application security:J2EE application security:
Web components (Servlets/JSPs/HTML)Web components (Servlets/JSPs/HTML)

Section

The next section will discuss how to specify authorization information for Web
components.

WASv6_Sec_J2EE_Security.ppt Page 13 of 21

IBM Software Group

13

J2EE Application Security © 2006 IBM Corporation

Configuring Web components security

� Authentication method – specify how to obtain authentication
information for the Web module

�Basic authentication, Client certificate authentication and Form-based
authentication

� Data constraints – allows you to specify the required transport
guarantee that defines the communication between the client and the
Web application

�None – no transport guarantee requires

�Integral – ensures data cannot be changed in transit – SSL used

�Confidential – ensures data cannot be viewed in transit – SSL used

� Web resource collection to be protected

�Web resources is a set of URL patterns and HTTP methods

�For static resources (HTMLs), valid HTTP methods are GET and POST

�For dynamic resources (Servlet or JSP), valid HTTP methods are GET,
POST, PUT, DELETE, HEAD, OPTION, TRACE

Configuring Web Component security is a little more involved than EJB components.

The Web component needs to let the server know how the Web client should provide
authentication: with basic authentication, client certificate or form based custom login.

Next, the Web component Developer needs to specify whether integrity or confidentiality is
required. This is specified by the Data constraints.

Finally, the Assembler need to specify who has access to the set of Web resources within
the component. The Web resource is a set of URLs and the HTTP method. Note that a
Web resource is accessed using a URL and one of the six methods specified.

The Assembler can then authorize the different J2EE Security roles to have permission to

the Web resource

All this information is stored in the Web Deployment descriptor.

WASv6_Sec_J2EE_Security.ppt Page 14 of 21

IBM Software Group

14

J2EE Application Security © 2006 IBM Corporation

Customer

Teller

Manager

Bank Servlet

public doGet(…) {
if (isUserInRole(“Supervisor”))

Perform Some Function
else

Throw Security Exception
}

By Developer

3

Security Role Binding

(Administrator)

5

2
Specify Security roles

(Assembler)

4
Assign Security constraints

(Assembler)

Specify Security Role
Reference (Developer)

Mary, BobManager

MaryTeller

Clients, JackCustomer

Users and/or GroupsRoles

ManagerSupervisor

Security RoleInternal name

J2EE Security: Servlet, JSP Role Based Authorization

Jack Bob Mary

Clients

Implementation

doGet()Method

doPut()Method

doPost()Method

Post, Delete,

Put

Post, Put

Post

Methods

/Bank/*Manager

/Bank/Balance
/*.jsp

Teller

/Bank/Welcome/*
Customer

Teller

URIRoles

USERS/GROUPS

1

Pause this presentation and click the Show Me icon for a demonstration on how to add
J2EE security roles for Web applications using the tools.

Applying J2EE Security to Web components is very similar to EJBs.

So, steps 1, 2 and 3 are similar to what was explained for the EJB methods.

The difference is step 4. For EJB, the permission is on EJB methods, whereas for Web

components, it is on the Web resource. As indicated in the previous slide, the Web
resource is the collection of the URL and the HTTP methods. Once Web resources are
defined, the J2EE Security Roles can then be assigned to the Web resource collection,

thereby creating the security constraints.

Again, step 5 of binding the J2EE security roles to the users or groups is similar to EJBs.

WASv6_Sec_J2EE_Security.ppt Page 15 of 21

IBM Software Group

15

J2EE Application Security © 2006 IBM Corporation

Web applications programmatic APIs

� isUserInRole (String role-name): Returns true if the remote user is granted the
specified security role. Returns false, if the remote user is not granted the specified role,
or no user is authenticated

� getUserPrincipal(): Returns the java.security.Principal object containing the remote
user name

� getRemoteUser(): Returns the user name the client used for authentication.

Example:
public void doGet(HttpServletRequest request, HttpServletResponse response) {

// to get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUser = principal.getName();

// to get remote user using getRemoteUser()
remoteUser = request.getRemoteUser();

// to check if remote user is granted Manager role, using isUserInRole
boolean isMgr = request.isUserInRole("Manager");

}

J2EE Security defines two APIs that can be used by Web developer. Note that these are
similar to the APIs used by EJB developers, but not the same.

The IsUserInRoleIsUserInRole() method is used to determine if the authenticated caller is in a specific
Role defined by the application. This allows the Developer to make decisions where they
might want a certain part of the code to be allowed to run only for a user in a specific Role.

The getUserPrincipal() getUserPrincipal() method is used to return the Principal of the authenticated callmethod is used to return the Principal of the authenticated caller. er.

The getRemoteUserl() getRemoteUserl() method is used to return the remote web client user. method is used to return the remote web client user.

The example on this page shows how developers can use these APIThe example on this page shows how developers can use these APIs.s.

WASv6_Sec_J2EE_Security.ppt Page 16 of 21

IBM Software Group

16

J2EE Application Security © 2006 IBM Corporation

Types of authentication for web applications

�Basic

�Application server sends back a 501 challenge to the
Web client (browser) allowing the client to pop up user ID,

password dialog to the client

�Form based

�Allows Web developer to provide a custom form login for

the authentication challenge

�Client certificate

�The client certificate is sent to the Application server

using SSL secured connection

There are three types of authentication that a Web client can perform to access the Web
applications. It is the Assembler that specifies the authentication method that is to be used
by the Web client.

This information is stored in the Web module deployment descriptor. It is used by the Web
container to challenge the Web client for authentication.

WASv6_Sec_J2EE_Security.ppt Page 17 of 21

IBM Software Group

17

J2EE Application Security © 2006 IBM Corporation

Changing Identity: Run-As

� The Web application Servlet or JSP has ability to change identity
when calling downstream processes or EJBs

�This is similar to the function provided in EJB methods

� This is called “Run-As” identity

� The following are the 2 “Run-As” options

�Bean takes on the same identity as the callerClient Identity

�Bean takes on identity of a specified user within the specified role

�The specified role is part of the deployment descriptor and performed by
the assembler

�The specific user in the “Run-As” role is usually specified at deploy time

Another Specified Role

DescriptionRun-As options

“Run As” is a way to change the identity of the caller from a servlet or JSP when calling a
downstream EJB.

An example is where a client cannot directly call a downstream EJB, but can call a servlet,
which can call a downstream EJB by changing its identity.

There are two “Run As” options, as shown in the table. The downstream EJB can be
called as the same identity as the original Web client identity that called the Servlet, or the

identity can be changed by the Servlet Assembler by providing “Run As” as another
specified role.

WASv6_Sec_J2EE_Security.ppt Page 18 of 21

IBM Software Group

18

J2EE Application Security © 2006 IBM Corporation

Application Security Tasks and Roles

Server security.xml file
(production) or

ibm-application-bnd.xml (for
development) or JACC
provider

Application Server
(production) or

Rational tool (dev.),
AST

Administrator
Specify Security Role
binding to users, groups
or both

Module level IBM Binding
files:

ibm-ejb-jar-bnd.xmi

Ibm-web-bnd.xmi

Rational Tools,

AST
Assembler

Specify Security Role
Reference

Server security.xml fileApplication ServerAdministrator
Specifying Authentication
type

ejb-jar.xml

web.xml

Rational Tools,

AST
Assembler

Specifying Security
permission or constraints

Java code
Rational Tools,

AST
Developer

Security check using
programmatic API

Application Deployment.
Descriptor, application.xml

Rational Tools,

AST
Assembler

Define J2EE Security
Roles

Files modifiedTools usedRoleTasks

The table provides the summary of different tasks related to the J2EE Security Roles, the
role that typically performs the task, the tools used to performs the task, and the files that
get modified.

WASv6_Sec_J2EE_Security.ppt Page 19 of 21

IBM Software Group

19

J2EE Application Security © 2006 IBM Corporation

Summary and ReferenceSummary and Reference

Section

Next section will provide the Summary.

WASv6_Sec_J2EE_Security.ppt Page 20 of 21

IBM Software Group

20

J2EE Application Security © 2006 IBM Corporation

Summary

�Using J2EE Application level security, users can
provide access control to who can access the
application components

�Method level for EJBs, URI level for Web components

�Can be defined at a programmatic or declarative level

� J2EE Security roles provide a developer an
abstract way of specifying the authorization

In summary, this presentation has focused on J2EE Security roles and how they are used
to authorize the J2EE Application artifacts: EJBs and Web applications.

WASv6_Sec_J2EE_Security.ppt Page 21 of 21

21

IBM Software Group

J2EE Application Security © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

