
WASv6_NamingAdvanced.ppt Page 1 of 26

®

IBM Software Group

© 2004, 2006 IBM Corporation

Updated August 14, 2006

IBM WebSphere® Application Server V6

WebSphere Naming Advanced Usage

This presentation will explore advanced usage of Naming in WebSphere Application
Server V6.

WASv6_NamingAdvanced.ppt Page 2 of 26

IBM Software Group

2

Advanced Naming Usage © 2004, 2006 IBM Corporation

Goals

� Architectural view of Java™ 2 Enterprise Edition (J2EE) requirements and V6
extensions

� From a multiple application and multiple server perspective

� Provide advanced understanding of how to use Naming
� Approach from Network Deployment configured environment

� Understand characteristics of the global name space
� Use of fully-qualified names

� Host and port usage for bootstrapping

� Understand which server to connect to for naming
� Simple versus fully-qualified names

� Node agent bootstrapping

� Clustered server bootstrapping

� Topology Dependent Name issue
� Understand the problem

� Best practices to avoid the problem

The goal of this presentation is to present the in-depth knowledge required by developers
and administrators regarding the use of Java™ Naming and Directory Interface (JNDI)
names and naming functionality in a multi-server Network Deployment environment. It
approaches this by first reviewing both the J2EE and WebSphere Application Server
architecture that applies to performing naming lookups of Enterprise JavaBean (EJB)
Homes across server processes. Knowledge of the architecture of the global name space
is an important foundation to understanding this topic, so the information about the global
name space from the Naming Introduction presentation is reviewed and expanded upon.
When dealing with naming in the Network Deployment environment, the concepts of fully-
qualified names and also bootstrap host and port need to be considered. These topics are
examined in detail. When designing your use of naming for performing EJB Home

lookups, an important consideration is which server you plan to bootstrap to when
connecting to the global name space. The factors involved in this consideration are
examined. Finally, the issue of how topology dependent names can hamper your ability to
easily reconfigure your environment is explained along with some suggested best
practices to avoid this issue.

WASv6_NamingAdvanced.ppt Page 3 of 26

IBM Software Group

3

Advanced Naming Usage © 2004, 2006 IBM Corporation

Advanced EJB Lookup Advanced EJB Lookup –– ArchitectureArchitecture

J2EE Perspective

�Limited ability for indirection in EJB Home lookups

� “java:comp/env/<ejbname>” and EJB Reference limited to same application

�Direct look up of an EJB Home in another application

� Must use Object Management Group (OMG) Interoperable Naming Service URLs

– Example � “corbaname::myHost.ibm.com:9829#ejb/com/ibm/ne/HelloHome”

– Requires specific knowledge of configuration (host/port)

� J2EE does not define how client gets this string

– Could be hard-coded in source, properties file, parameter, etc

� WebSphere Application Server V6 Perspective

�“java:comp/env/<ejbname>” can be used for all lookups

� Maintains a level of indirection between code and target EJB Home

�Server-to-server and client-to-server processes require configuration
knowledge

� Fully-qualified name or host and port or both

�Configuration knowledge needs to be known at:

� Deployment or install time (clients running in a server)

� Deployment, install or runtime (true clients)

J2EE defines a programming model for accessing EJB Homes which are not in the same
application, possibly not even within the same server process. The level of indirection
provided by use of “java:comp/env” names defined by J2EE for accessing EJBs in the
same application does not apply in this case. Rather, the J2EE specification makes use of
the OMG Interoperable Naming Service defined “corbaname:” URL strings. Using this
mechanism requires knowledge of host and port information for contacting the global
name space. The URL needs to be used directly in the JNDI lookup, and the J2EE
specification provides no guidance on how that string is to be provided. Therefore, it is up
to the user to determine how to isolate the source code from the host and port
configuration information.

WebSphere Application Server extends this model to allow the use of “java:comp/env”
names which maintains the same programming model as is used in the single application
case, thus maintaining the same use of indirection and isolating the source code from
potential changes. However, this does not totally eliminate the need to understand the
configuration. The JNDI name used in the EJB Reference must either contain a fully-
qualified name or host and port information. This information can be supplied at

deployment of the application or during installation of the deployed application.

WASv6_NamingAdvanced.ppt Page 4 of 26

IBM Software Group

4

Advanced Naming Usage © 2004, 2006 IBM Corporation

Understanding FullyUnderstanding Fully--Qualified NamesQualified Names

Section

The following slides discuss the global name space structure and the use of fully-qualified
names to look up EJBs in the global name space.

WASv6_NamingAdvanced.ppt Page 5 of 26

IBM Software Group

5

Advanced Naming Usage © 2004, 2006 IBM Corporation

Global Name SpaceGlobal Name Space

� WebSphere has a cell-wide global name space

�Presents a single logical view throughout the cell

�The cell root context is the root

� Entire name space can be traversed when starting at the cell root

�The structure is based on the configuration

� Node names, Server names, Cluster names

�Every server in the cell provides naming services

� Physical name space is distributed and partially replicated across servers

� Can connect to name space through any server in the cell (using unique host and

port)

�Every server provides access to the same logical cell-wide view

� Starting location (Initial Context) is dependent upon to which server you connected

� Doing a look up of “cell” from the InitialContext places you in the cell root

� From the cell root, the full logical view is available

The architecture and concepts of the global name space were presented in the Naming
Introduction presentation, but due to the importance in understanding these concepts they
will be reviewed in the next couple of slides.

In WebSphere Application Server, there is no separate Name Server process. Rather,
every server in the environment provides the functionality for the global name space,
including all application servers, the node agents, and the deployment manager. From the
perspective of a WebSphere Application Server Network Deployment cell, these servers

work together to provide you with a single logical view of the name space although the
physical representation of the name space is not fully contained in any one server. The
physical representation of the name space is partially replicated across the server

processes and partially distributed across the server processes.

When a WebSphere Application Server starts, the subset of the logical name space which

will be physically represented within that server is built in the server’s memory. When
accessing the global name space, any server can be used as a starting point. Each server
in the cell has a unique host and port combination which can be used to connect

(bootstrap) into the name space in that server. For code already running in a server, by
default it will be connected to the name space within the same server.

Once connected to the name space, any portion of the logical name space can be

traversed without regard to which server or servers host that part of the name space.
There is a cell root context from which the entire name space is accessible. However, by
default, when bootstrapping to the name space, the JNDI InitialContext will be positioned

at the server root context for the server you bootstrap into. From this location, a look up of

WASv6_NamingAdvanced.ppt Page 6 of 26

IBM Software Group

6

Advanced Naming Usage © 2004, 2006 IBM Corporation

Global Name Space

cell
root

nodes

cells

foreign cells

node
root

X
Y

Z

nodes

node persistent
root

X
Y

Z

<node-name>

persistent

node servers
X

Y
Z

servers

server
root

A
B

C

clusters

clusters
<cluster-name>

cell persistent root

persistent

<user-created-bindings>

<system-artifacts>
<user-created-bindings><foreign-cell-names>

<user-created-bindings>

<server-name>

user persistent
sub-ctxs & objs

X
Y

Z

system artifact
sub-ctxs & objs

A
B

C

user transient
sub-ctxs & objs

A
B

C

user persistent
sub-ctxs & objs

cell root
of foreign cell

M
N

L

Read/Write

Persistent

Read/Write

Persistent

Read/Write

Transient

Read Only

cell

Initial
Context
location

nodes

Root of
full name

space

This is a pictorial representation of the global name space. This picture is rather
extensively described in the Naming Introduction presentation. At this point it is useful to
review some of the highlights and important points which will serve as a basis for
understanding the use of fully-qualified names in WebSphere Application Server Network
Deployment environments.

The light blue rectangles represent naming contexts in the name space. The text within a
rectangle is a label which describes the purpose of the context. The arrows represent
bindings in the name space and the text by an arrow is the name of the binding. This
would be the actual name used when traversing the name space. The logical name space
starts at the context in the center of the left-hand side of the picture, with the label “cell
root”. Starting from the cell root context, the entire logical name space can be traversed.
The structure of the name space is based on the topology of the WebSphere Application
Server cell. There is a context for each node in the cell (the “node root” shown in the upper
center). There is also a context for each server in the cell (the “server root” shown in the
lower right). For example, if there was a “server1” on “nodeA”, from the cell root context
the name “nodes/nodeA/servers/server1” would be used to traverse to the server root
context for server1. Another example would be a cluster named “clusterX” with cluster
members “x1” and “x2”. From the cell root context, a look up of “clusters/clusterX” would
be used to traverse to the server root context for one of the cluster members, either “x1” or
“x2”.

Examine the portion of the name space within the yellow background. As you can see, the
contexts within this area all pertain to the topology of the cell, reflecting information about
the cell, its nodes, clusters, and servers. This yellow part of the name space is replicated
in every server in the cell and is built using configuration data from the system
management repository. Now examine the portion of the name space with the brown
background in the lower right-hand corner of the picture. This shows the “server root”
context. There is a unique server root context for every server in the cell. The server root
context is contained in the server that it represents, and it is not replicated in any other
server. The context labeled “system artifact sub-ctxs & objs” refers to the EJB Homes and
Resources for the server.

WASv6_NamingAdvanced.ppt Page 7 of 26

IBM Software Group

7

Advanced Naming Usage © 2004, 2006 IBM Corporation

FullyFully--Qualified Names Qualified Names -- IntroductionIntroduction

� When can simple names be used?

�Lookups within the same server

�When connected directly to the name space of the server containing

the target of the lookup

� When can fully-qualified names be used?

�Server to server within a cell

�When connected to the name space of any server in the cell

�Fully-qualified names can also be used in the simple name scenarios

� If you are not sure, using a fully-qualified name will work

� A fully-qualified name starts at the cell root context

�“cell/…….” from the Initial Context

In the WebSphere Network Deployment environment, there are times when simple names
can still be used, such as is done with a stand-alone application server. For example, code
running in a server which is looking up an EJB Home which is installed in the same server,
can use a simple name. Also, client code in a different process can use a simple name if
bootstrapped directly into the server which contains the EJB Home being looked up.

Fully-qualified names must be used when doing a lookup of an EJB Home that is in
another server from the one where the lookup was initiated. Also, a client process that

bootstraps into a different server than the one where the target EJB Home is located must
use a fully-qualified name. An example of this would be a client that chooses to use a
default bootstrap port assignment. This client will bootstrap into a node agent, and then

the fully-qualified name must be used to look up the EJB Home in an Application Server.
As discussed in the previous slide, starting a name with “cell” will position you in the name
space for use of a fully-qualified name.

It should be noted that even in cases where simple names will work, fully-qualified names
will also work.

WASv6_NamingAdvanced.ppt Page 8 of 26

IBM Software Group

8

Advanced Naming Usage © 2004, 2006 IBM Corporation

Fully-Qualified Names - Examples

cell/clusters/cluster5/ejb/com/ibm/ne/HelloHome
Application installed on

cluster5

cell/nodes/rlnt40/servers/server1/ejb/com/ibm/ne/HelloHome
Application installed on
server1 on node rlnt40

ejb/com/ibm/ne/HelloHome
JNDI name in EJBs

deployment descriptor

Application installed on
server1 on node rlnt40

This slide shows an example of a fully-qualified name. There is an EJB whose deployment
descriptor defines the JNDI name for the EJB to be “ejb/com/ibm/ne/HelloHome”.
Assuming that this gets installed on a server named “server1” on the node “rlnt40”, a fully-
qualified name for this would be
“cell/nodes/rlnt40/servers/server1/ejb/com/ibm/ne/HelloHome”. The screen capture at the
bottom of the slide further illustrates this example. Alternatively, assume that the EJB has
been installed into a cluster named “cluster5”; the fully-qualified name would be
“cell/clusters/cluster5/ejb/com/ibm/ne/HelloHome”.

WASv6_NamingAdvanced.ppt Page 9 of 26

IBM Software Group

9

Advanced Naming Usage © 2004, 2006 IBM Corporation

Fully-Qualified Names

Typically only the EJB name
will be specified in the
deployment descriptor

At install time, the fully
qualified name needs to

be provided

In most cases, a deployed application EAR will have an EJB Reference in the deployment
descriptor that only specifies the target EJB’s simple JNDI name. It would normally be
during the installation of the application that the administrator would modify this to be a
fully-qualified name, as that is when it is most likely known where the target EJB has been
installed.

WASv6_NamingAdvanced.ppt Page 10 of 26

IBM Software Group

10

Advanced Naming Usage © 2004, 2006 IBM Corporation

Understanding Host and Port UsageUnderstanding Host and Port Usage

Section

The following set of slides will consider the specification of host and port information for
bootstrapping into the global name space.

WASv6_NamingAdvanced.ppt Page 11 of 26

IBM Software Group

11

Advanced Naming Usage © 2004, 2006 IBM Corporation

Host and Port

�When are host and port needed?

� When outside the cell of the target EJB, such as from a:

� J2EE Client

� Pure Java client

� stand-alone server

� Server in another cell

�Exception:

� Not needed if server is at default host and port � “localhost:2809”

This slide discusses when you are required to specify a host and port to connect to the
global name space. If you are running any code that is outside of the target cell you need
host and port information to identify where you would like to connect to the global name
space. This would be true for client processes such as a J2EE client or a pure Java client.
It also applies when connecting to a cell from a stand-alone Application Server or an
Application Server running in a different cell.

The default host and port are localhost and 2809. When the target satisfies these, they are
implicit and do not have to be explicitly specified.

WASv6_NamingAdvanced.ppt Page 12 of 26

IBM Software Group

12

Advanced Naming Usage © 2004, 2006 IBM Corporation

Host and Port
Finding the
Assigned Port

Server Panel
in

Administrative Console

The Administrative Console can be used to find the host and port used for bootstrapping
to a particular server. From the server panel, opening “Posts” displays a panel which
contains the “BOOTSTRAP_ADDRESS”, as is illustrated in these screen captures.

WASv6_NamingAdvanced.ppt Page 13 of 26

IBM Software Group

13

Advanced Naming Usage © 2004, 2006 IBM Corporation

Host and Port – Example Cell

� corbaloc::rlnt30 – connect to node agent for node rlnt30

� corbaloc::rlnt40:9810 – connect to application server in node rlnt40a

� corbaloc::rlnt40:9811 – connect to cluster2 member on node rlnt40b

� corbaloc::rlnt40:9811,:rlnt30:9811 – connect to cluster2, try member on node rlnt40b first, if not try member on node rlnt30

� corbaloc::rlnt40:9812,:rlnt40:9813 – connect to cluster1, try member on node rlnt40b first, if not try member on node rlnt40b

� corbaloc::rlnt40,:rlnt30 – connect to node agent on node rlnt40a first, if not try node agent on node rlnt30

NODE=rlnt40b

9809

9812 9811

NODE=rlnt40a

2809

9810 9813

NODE=rlnt30

2809

9811 9810

NODE=rlnt30Manager

9809

CELL=rlnt30Network

HOST=rlnt30.ibm.comHOST=rlnt40.ibm.com

cluster1 cluster2

This slide shows an example configuration. The example “corbaloc:” URL strings illustrate
different ways to bootstrap into the global name space for this cell.

In the example there are two host machines, “rlnt40.ibm.com” and “rlnt30.ibm.com”. There
is a cell named “rlnt30Network” with nodes “rlnt30Manager” and “rlnt30” on host
“rlnt30.ibm.com” and nodes “rlnt40a” and “rlnt40b” on host machine “rlnt40.ibm.com”.
There are two non-clustered Application Servers in the cell and two clusters, each with two
cluster members. The bootstrap ports for each of the Servers is shown with each Server.

The example URL strings are:

“corbaloc::rlnt30” – In this URL, the host is specified but the port is not, and therefore the
default port of 2809 is implied. This identifies the node agent in node “rlnt30”.

“corbaloc::rlnt40:9810” – In this URL, both host and port are specified. This identifies the
non-clustered application server on node “rlnt40a”.

“corbaloc::rlnt40:9811” – This URL also identifies both host and port. This identifies the
cluster member of “cluster2” which is running on node “rlnt40b”. Note that clustering does
not come into play for the bootstrapping operation, so this will only attempt to connect to
that specific cluster member.

“corbaloc::rlnt40:9811,:rlnt30:9811” – This URL specifies two host and port pairs. This
identifies the two cluster members of “cluster2”. An attempt will be made to bootstrap into
the first one specified which is on node ”rlnt40b”, and if not successful will attempt to
bootstrap into the one on node “rlnt30”.

“corbaloc::rlnt40:9812,:rlnt40:9813” – This URL also specifies two host and port pairs
which identify the members of “cluster1”. An attempt will be made to bootstrap into the first
one specified which is on node “rlnt40b”, and if not successful will attempt to bootstrap into

WASv6_NamingAdvanced.ppt Page 14 of 26

IBM Software Group

14

Advanced Naming Usage © 2004, 2006 IBM Corporation

Host and Port - Example
Usage

Used in Code

Launching a J2EE Client

Launching a pure java client

In an EJB Reference

Visually truncated, field value is ���� corbaname::rlnt40.ibm.com:9811#cell/clusters/c1/ejb/com/ibm/ne/HelloHome

This slide illustrates the different ways that the host and port can come into play.

The first example shows a “corbaloc:” URL being used as the provider URL directly in the
code when obtaining a JNDI InitialContext.

The second example shows how to pass host and port information to a J2EE client. There
are two ways to do this, the first being the use of the “providerURL” parameter which takes
a “corbaloc:” formatted URL string. The second way is to pass the host and port using the

“BootstrapHost” and “BootstrapPort” parameters.

The third example is for a pure Java client. In this case, the environment variable

“java.naming.provider.url” must be set to a “corbaloc:” formatted URL string.

Lastly, the JNDI name in an EJB Reference can be set to a “corbaloc:” formatted URL

string as an alternative to using a fully-qualified name. Normally this would only be done if
the target EJB was in another cell.

WASv6_NamingAdvanced.ppt Page 15 of 26

IBM Software Group

15

Advanced Naming Usage © 2004, 2006 IBM Corporation

Considerations for DecidingConsiderations for Deciding
Where to Bootstrap into the Name SpaceWhere to Bootstrap into the Name Space

Section

There are multiple options for where to bootstrap into a WebSphere Application Server
Network Deployment cell. This section takes a look at some of the things to consider when
determining which is the best approach for your application and configuration.

WASv6_NamingAdvanced.ppt Page 16 of 26

IBM Software Group

16

Advanced Naming Usage © 2004, 2006 IBM Corporation

Which Server to Connect To?

� Things to consider:

�Coming from client process or server process in the same cell

�Simple names versus fully-qualified names

� Can use simple names when connecting to server containing target EJB Home

� Illustrated in an upcoming slide

�Knowing versus not needing to know port assignments

� Can connect to Node Agent as normally assigned default port (2809)

�Only one server involved when connecting to server containing target

EJB Home

�Do you want to have failover?

� Multiple host and port pairs in corbaloc URL

� Connecting to a cluster versus connecting to a node agent

– Issues addressed in two upcoming slides

Although not an all inclusive list, these are the factors to consider when determining your
strategy for bootstrapping into the global name space.

When the client code is running within an Application Server in the same cell as the target,
fully-qualified names are almost always the best route to take. This bypasses the need
for any host and port information and provides for failover when the target is in a
cluster.

When the client code is in a client process or in a server in a different cell, the decision is
more complicated. The questions basically are:

1) Would you rather deal with knowing host and port information so you can use simple
names, or would fully- qualified names without having to know host and port be more

appropriate?

2) Is it worth having to deal with host and port information so that you can optimize the

lookup by connecting directly to the server containing the target?

3) Do you want to enable failover?

The following slides will provide information to help with understanding these decision
points.

WASv6_NamingAdvanced.ppt Page 17 of 26

IBM Software Group

17

Advanced Naming Usage © 2004, 2006 IBM Corporation

Fully-Qualified versus Simple Names

hostname=h01

CustomerHome

CustomerHome

9812

server2 9811

server1

2809

nodeagent

NodeAgent

AppServer

AppServer

J2EE Client
Provider URL: corbaloc::h01:9812
Name used in code:

java:comp/env/theCustomers
ejb-ref in deployment:

NAME=theCustomers
JNDINAME=CustomerHome

J2EE Client
Provider URL: corbaloc::h01
Name used in code:

java:comp/env/theCustomers
ejb-ref in deployment:

NAME=theCustomers
JNDINAME=

cell/nodes/h01Node/servers/server1/CustomerHome

J2EE Client
Provider URL: corbaloc::h01:9811
Name used in code:
java:comp/env/theCustomers

ejb-ref in deployment:
NAME=theCustomers
JNDINAME=

cell/nodes/h01Node/servers/server2/CustomerHome

Namespace

nodes

cell
root

CustomerHomeh01Node
server1

servers
nodes

node
root

node
servers

server
root

CustomerHome

server2

server
root

node
agent

nodeagent

cell

cell

cell

This slide is not quite as complicated as it appears at first glance. It’s purpose is to
illustrate different scenarios for clients and how fully-qualified names and host and port
specifications come into play.

The picture illustrates a WebSphere Application Server Network Deployment node which
contains a Node Agent and two Application Servers. The Node Agent is listening on port
2809, server1 on port 9811 and server2 on port 9812. Both server1 and server2 contain
the Customer application with the associated CustomerHome. The picture at the lower

right is an illustration of the global name space. There are three different client scenarios
illustrated that show the providerURL (and therefore host and port specified), the
“java:comp/env” names used in the client code, and the contents of the EJB Reference in

the client deployment descriptor. You will notice that the “java:comp/env” names are all the
same, so the variable factors in the scenarios are the provider URL and the JNDI Name
found in the EJB Reference. The scenarios use the dashed blue arrow to indicate
bootstrapping and the solid black arrow to indicate the target CustomerHome EJB
accessed.

First, look at the client in the lower left side of the slide. Notice that the provider URL used
both host and port so that the bootstrapping occurs directly to server2. By using the simple

name CustomerHome, the client accesses the CustomerHome in server2.

Next, notice the client in the middle. There is only a host specification but no port
specification which implies the use of port 2809, and the bootstrapping occurs to the node
agent. Using the fully-qualified name in the EJB Reference, the CustomerHome accessed

is the one from server1.

WASv6_NamingAdvanced.ppt Page 18 of 26

IBM Software Group

18

Advanced Naming Usage © 2004, 2006 IBM Corporation

Node Agent Bootstrapping

� URL used to bootstrap:

�corbaloc::rlnt40,:rlnt30

� Target EJB (fully qualified name)

�cell/clusters/cluster2/ejb/myEJB

� Beware:

�JNDI Cache may have already saved
a CORBA IOR to NamingContext for
one of the Node Agents

�Node Agents are not WLM enabled

�Having two node agents in URL will
only failover on first attempt

�Subsequent attempt will get JNDI
cache hit

� Use only for client making one
connection

NODE=rlnt40

2809

9811

NODE=rlnt30

2809

9811

cluster2

Bootstrapping
Using EJB

This slide illustrates achieving some level of failover by having a provider URL that points
to multiple node agents. The picture shows two nodes, each with a node agent and a
cluster member from “cluster2”. The URL used points to the two node agents, and the
target EJB is identified using a fully-qualified name. With this configuration, even if one
of the node agents is down, the bootstrapping will attempt to contact the other node
agent and the look up of the EJB Home can proceed. When using this approach to
obtain bootstrapping failover, you need to be aware of the following limitations:

1) On the client side, there is a JNDI cache which will cache information about the global
name space.

2) Node agents themselves are not Workload Management enabled, and therefore do
not display any clustering behavior

3) By having the two node agents in the URL, both will be attempted only if there is no
JNDI cache hit

4) Subsequent lookups will most likely get a JNDI cache hit which will cause the
bootstrapping to occur to the same node agent contacted previously. If that node agent
has failed but the other is still active, there will be no failover of the bootstrapping
operation.

As a guideline, bootstrapping into multiple node agents to get failover behavior should only
be done when making a single connection from the client to the global name space.

WASv6_NamingAdvanced.ppt Page 19 of 26

IBM Software Group

19

Advanced Naming Usage © 2004, 2006 IBM Corporation

Cluster Member Bootstrapping

� URL used to bootstrap:

�corbaloc::rlnt40:9811,:rlnt30:9811

� Target EJB (simple name)

�ejb/myEJB

� Safest for failover:

�CORBA IOR to NamingContext is
WLM enabled

�Having two cluster members in
URL will failover on first attempt

�WLM enabled IOR in JNDI cache
allows failover on subsequent
attempts

NODE=rlnt40

2809

9811

NODE=rlnt30

2809

9811

cluster2

BootstrappingUsing EJB

This slide illustrates achieving a high level of failover by having a provider URL that points
to multiple cluster members. This is the same configuration as the previous slide. The
target EJB can be looked up using simple names because the bootstrapping occurs
directly into the cluster member. The bootstrapping operation itself will failover if the
first cluster member is not running. In addition, the JNDI cache will contain a global
name space reference which is Workload Management enabled, so on subsequent
attempts to access the global name space there will be failover and load balancing
between the two cluster members.

This is the recommended scenario to use for any client that is long running and making
multiple accesses to the global name space.

WASv6_NamingAdvanced.ppt Page 20 of 26

IBM Software Group

20

Advanced Naming Usage © 2004, 2006 IBM Corporation

Topology Dependent NamesTopology Dependent Names
Potential Problem and Proposed SolutionPotential Problem and Proposed Solution

Section

It may be clear to you by now that having to deal with fully-qualified names that contain
node, server, or cluster information and having to deal with specific host-port pairs has the
potential to lead to difficulties in managing an environment. This section gets more specific
about this issue and looks at a best practice to address this.

WASv6_NamingAdvanced.ppt Page 21 of 26

IBM Software Group

21

Advanced Naming Usage © 2004, 2006 IBM Corporation

Topology Dependent Names – Define the
Problem
� A scenario illustrating the problem
�“VeryPopularEJB” is installed in “cluster1”

�There are numerous other applications using this EJB

�Every using application is installed with an EJB Reference that has a
fully-qualified name
� “cell/clusters/cluster1/ejb/VeryPopularEJBHome”

�There is a need to move this EJB to “cluster2”

�Every using application must be updated
� Change name to � “cell/clusters/cluster2/ejb/VeryPopularEJBHome”

� Must be able to identify all using applications

� Must be done simultaneously with VeryPopularEJB being moved

� Depending upon your application deployment model
�Topology dependent names could cause serious issues

�It is better addressed up front before facing a crisis

Here is an outline of a specific scenario which illustrates the kind of problems using a
topology based fully-qualified name can create. To make the scenario concrete, assume
there is a “Very Popular EJB” which has been installed into “cluster1”. Because this EJB
is very popular, there are many other applications which use it, and each have EJB
References containing its fully-qualified name of
“cell/clusters/cluster1/ejb/VeryPopularEJBHome”. Everything is fine until it is decided that
it would be better for this very popular EJB to be installed into “cluster2” which would
change its fully-qualified name to “cell/clusters/cluster2/ejb/VeryPopularEJBHome”. Now
you must be able to identify every single application using this EJB, and modify the EJB
Reference in every one simultaneous with moving the EJB. This could be a difficult, and in
some cases, impossible task to accomplish.

WASv6_NamingAdvanced.ppt Page 22 of 26

IBM Software Group

22

Advanced Naming Usage © 2004, 2006 IBM Corporation

Topology Dependent Names – A Solution

� Problem:
�java:comp/env/<ejbname> lookups

� Provide a level of indirection

� Protects code from having to change

�Topology dependent names
� Are embedded in installed application EJB References

� Require the application to change when configuration changes

� Solution:
�Add another level of indirection

�Remove topology dependent names from the application

� How? � Name Space Bindings
�Administratively defined bindings can isolate topology dependence

�Create an associated Name Space Binding for each EJB

�EJB References point to the Name Space Binding

�When the EJB needs to move, only the associated Name Space Binding
needs to change

Although the “java:comp/env” names provide a level of indirection that protects the source
code from having to change when the target changes location, the name embedded in the
EJB Reference may still have to change when the configuration changes. To address this
issue, another level of indirection is needed to protect the JNDI name specified in the EJB
Reference from having to change. This can be done using the Name Space Bindings
which were discussed in the Naming Introduction presentation. Basically, by using an EJB
Name Space Binding for each EJB, it can provide the level of indirection needed and hide
the topology dependent information so the EJB References do not need to contain
topology dependent names. The next few slides illustrate this.

WASv6_NamingAdvanced.ppt Page 23 of 26

IBM Software Group

23

Advanced Naming Usage © 2004, 2006 IBM Corporation

Topology Dependent Names – Example

Found
here

Ensure scope set to cell so binding
will be created at the cell level

Hit “New” to create one

This is a screen capture of the Administrative Console. You will see that under
“Environment” and “Naming” there is a Name Space Bindings panel. To make use of this
you need to make sure you have the scope set to “Cell” so that there is no topology
information needed to traverse to this binding. Then select “New”.

WASv6_NamingAdvanced.ppt Page 24 of 26

IBM Software Group

24

Advanced Naming Usage © 2004, 2006 IBM Corporation

Topology Dependent Names – Example

Name added to name space

Specify Binding Type as EJB

JNDI Name of the EJB

Server name or cluster name where installed

Needed if installed in server

Fully qualified name will be:
“cell/persistent/HelloHome1”

Use this name as target in your
EJB Reference

You are then presented with a panel that asks what kind of Name Space Binding you want
to configure, which would be “EJB” in this case. You are then presented with a panel in
which you can define the EJB Name Space Binding. The “Name in Name Space” value is
the name by which this binding will be looked up, in this example it is set to “HelloHome1”.
Since the scope is set to cell, this will create a binding whose fully-qualified name will be
“cell/persistent/HelloHome1”. Next, specify the node and server name or cluster name on
which the target EJB is actually installed, in this example being “cluster1”. There is also a
need to specify the JNDI name by which the target EJB is bound into the global name
space, in this example “ejb/com/ibm/ne/HelloHome”.

Having defined this EJB Name Space Binding, you can now use the name

“cell/persistent/HelloHome1” rather than having to use
“cell/clusters/cluster1/ejb/com/ibm/ne/HelloHome”. This removes the topology information
from the EJB References. When moving the Hello EJB from cluster1 to cluster2, all that is
needed is to update the EJB Name Space Binding at the same time the application is
uninstalled from cluster1 and installed on cluster2. All the EJB References in the using
applications can remain unchanged.

As a best practice, it is recommended that this technique be used for most production

Network Deployment environments that make use of topology dependent names.

WASv6_NamingAdvanced.ppt Page 25 of 26

IBM Software Group

25

Advanced Naming Usage © 2004, 2006 IBM Corporation

Summary

� Addressed Naming in Network Deployment Environment

� Understand characteristics of the global name space

�Use of fully-qualified names

�Host and port considerations

� Determine where to bootstrap

�Examined the trade offs

� Topology Dependent Name issue

�Define the problem

�Define best practices to avoid the problem

This presentation took an in-depth look at Naming in the WebSphere Network Deployment
environment. This was done by looking at the global name space and learning about fully-
qualified names and host and port considerations. It also looked at how to make decisions
about what scenario you want to use for your application clients to connect to the name
space. Lastly, this presentation looked at best practices for avoiding the use of topology
dependent names and thus making the environment more manageable.

WASv6_NamingAdvanced.ppt Page 26 of 26

26

IBM Software Group

Advanced Naming Usage © 2004, 2006 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

