
WASv6_ClassLoader_Overview.ppt Page 1 of 10

®

IBM Software Group

© 2004 IBM Corporation

Updated May 11, 2005

IBM® WebSphere® Application Server V6

Application Server Java™ Class Loader

Overview

This presentation will provide an overview of the Java class loader in WebSphere
Application Server V6.

WASv6_ClassLoader_Overview.ppt Page 2 of 10

IBM Software Group

2

Class Loader Overview © 2004 IBM Corporation

Goals

�Understand an overview of the class loaders in
WebSphere Application Server V6

�Following topics are covered in other presentations

�Class loader - Details

�Class loader - Examples

�Class loader - Problem Determination

�Class loader - Dynamic Reload and Preload classes

The goal of this presentation is to provide an overview of the class loaders in WebSphere
Application Server V6. Other presentations cover details and examples on the class
loaders, as well as similarities of the WebSphere Application Server V5 and V6 class

loaders.

WASv6_ClassLoader_Overview.ppt Page 3 of 10

IBM Software Group

3

Class Loader Overview © 2004 IBM Corporation

Agenda

�Class loader

�Overview and hierarchy

�Shared library

�Loading native library

�Summary and References

The agenda for this presentation is to discuss the Application Server class loader,
including hierarchy, shared library, and native library.

WASv6_ClassLoader_Overview.ppt Page 4 of 10

IBM Software Group

4

Class Loader Overview © 2004 IBM Corporation

Class Loader Overview

� Class loaders are part of the Java virtual machine (JVM)
code and are responsible for finding and loading class files
�WebSphere Java classes and User application classes

� Class loaders affect the packaging of applications and the
runtime behavior of packaged applications deployed on
application servers

� WebSphere Application Server provides several class
loader hierarchy and options to allow more flexible
packaging of your applications
�During server startup, the class loader hierarchy is created

�Class loaders have a parent class loader - except the Root class
loader

�Requests to load a class can only go to a parent class loader -
cannot load classes from a child class loader

A class loader is an inherent part of the JVM and is used to find and load all Java classes
and native libraries. The class loader in V6 is unchanged from V5.

There are several different class loaders provided by the JVM and WebSphere Application

Server, forming a class loader hierarchy with class loaders having a parent class loader.
The root class loader has no parent class loader.

In the class loader hierarchy, a request to load a class can go from a child class loader to
a parent class loader but never from a parent class loader to a child class loader.

If a class is not found by a specific class loader or any of its parent class loaders, then a

class not found exception will result.

WASv6_ClassLoader_Overview.ppt Page 5 of 10

IBM Software Group

5

Class Loader Overview © 2004 IBM Corporation

Class Loader Overview (cont.)

� Each class loader has a delegation (search) mode that may or may not
be configurable

�When searching for a class, a class loader can search the parent class loader
before it looks inside its own loader or it can look at its own loader before
searching the parent class loader

�Delegation algorithm does not apply to native libraries (*.dll, *.so , etc.)

� Delegation values are:

��PARENT_FIRSTPARENT_FIRST - Delegate the search to the parent class loader FIRST
before attempting to load the class from the local class loader

��PARENT_LASTPARENT_LAST - First attempt to load classes from the local class path
before delegating the class loading to the parent class loader

� Allows an application class loader to override and provide its own version of a class that exists in
the parent class loader

� Whenever a class successfully loads, the JVM caches the class and
associates the class to its class loader

Java class loading allows for a search mode that lets a class loader search its own class
path before requesting a parent class loader or search via the parent class loader before
its local class path. These searches, or delegation modes, are PARENT_LAST and

PARENT_FIRST respectively.

The JVM will cache the class on a successful load and will associate the class with its
specific class loader.

WASv6_ClassLoader_Overview.ppt Page 6 of 10

IBM Software Group

6

Class Loader Overview © 2004 IBM Corporation

•BootStrap: loaded from by jre/lib

•Extensions: Defined by java.ext.dirs

•JVM Classpath

WebSphere Ext.: Defined by ws.ext.dirs

•%WAS_ROOT% classes, lib and ext
directories

•Resource classes (explained in detail later)

Application Class loader – loads application

artifacts - Various combinations possible
based on ClassLoading Policies (discussed
in details presentation)

Class Loader Hierarchy – At a Glance
C

la
s
s
 S

e
a

rc
h

 O
rd

e
r

JVM Class loader

JVM Bootstrap, JVM extensions, Classpath

WebSphere Extensions Classloader

Loads WebSphere Runtime and Resource classes

Application Module Class loader

EJBs,, RARs, Utility JARs, Application Shared libraries

Optional: Web Module based on Web Module class-
loader Policy

Web Module Class loader (OPTIONAL)

For Web Modules only

WebSphere lib/app Class loader

For compatibility with V4, loads classes in “lib/app” dir.

WebSphere “Server” Class loader

Loads Server-scoped Shared Libraries

User-defined one or more class loaders within
a server configuration to specify server-

scoped Shared Libraries

Load application artifacts from the
<WAS_HOME>/lib/app path - NOT

RECOMMENDED

Class loaders are organized in a hierarchy. This means that a child class loader can
delegate class finding and loading to its parent, should it fail to load a class.

The root of the hierarchy is occupied by the JVM class loader and its Bootstrap class

loader that loads the JVM classes. The JVM class loader loads the JVM classes, the JVM
extension classes, and the classes defined in the classpath environment variable.

Next in the hierarchy is the WebSphere Extension class loader. This loads all WebSphere
Application Server classes, resource adapters, and other classes.

Next is the WebSphere Application Server application class loader. This loads classes

from the WebSphere Application Server library application directory. In V4, this was used
to specify classes shared by all applications. Beginning with V5, the shared library

function provides a better option to share classes across one or more applications.
Therefore, this class loader is provided mainly for backward compatibility.

Next is the WebSphere Application Server Server class loader. This loads shared
libraries that are defined at the server level and can be accessed by all applications.

The last class loader is the Application class loader that loads the J2EE applications. It
has several options and class loading policies.

Providing this hierarchy allows for the flexibility that may be required by a set of

applications. In most cases, use of the default class loader and options are sufficient.

WASv6_ClassLoader_Overview.ppt Page 7 of 10

IBM Software Group

7

Class Loader Overview © 2004 IBM Corporation

Shared Libraries - Overview

� Shared libraries provide a way to use common Java or
native code and share across one or more J2EE
applications running within the server

�Example: Dependency (“utility”) JARs, and native libraries

� Benefits

�Shared libraries support versioning of application artifacts

�Allows deployment of application artifacts without repackaging and
reinstalling the EAR or WAR files

� Shared libraries are defined by the administrator and
associated with one or more applications

�This is called an “application-associated” shared library, compared
to a “server-associated” shared library loaded by the “Server” class
loader

In WebSphere Application Server V4 if you required JARs to be shared by more than one
application, you would put them in the Install_Root/lib/app directory. The drawback to this
is that the JARs in this directory are exposed to all the applications. In WebSphere

Application Server V5 and V6, shared libraries provide a better mechanism where only
applications that need the JARs are exposed to them. Other applications are not affected
by the shared libraries. The administrator defines the shared libraries by assigning a

name and specifying the file or directories that contain the code to be shared. These
defined shared libraries can then be associated with one or more applications running
within the Application Server.

The advantage of using an application-scoped shared library, is the capability of using

different versions of common application artifacts by different applications. A unique
shared library can be defined for each version of a particular artifact, for example, a utility

JAR.

If a native library loaded by shared library requires a second native library, then it must not
be specified in the shared library path. Rather, it must be specified in the JVM native

library path and will be loaded by the JVM class loader.

WASv6_ClassLoader_Overview.ppt Page 8 of 10

IBM Software Group

8

Class Loader Overview © 2004 IBM Corporation

Native Libraries - Overview

� Native libraries are non-Java code used by Java via the
Java Native Interface (JNI). They are platform specific files,
for example: ‘.dll’ in Windows™, ‘.so’ and ‘.a’ in Unix

� Java applications use the System.loadLibrary(libName)
method to load the native library. It is loaded at the time of
the System.loadLibrary(…) call.

� The JVM uses the caller’s class loader to load the native
library. If that fails, it then uses the JVM System class
loader
�If both fail to load, an UnsatisfiedLinkError will result

� Native libraries are located on the native library paths of the
JVM class loader and the WebSphere Application Server
(Extensions, Server, and Application module) class loaders

Native libraries are loaded by Java using the System load library method. They are
loaded on demand, when needed. Native libraries could be located in the JVM class
loader or one of the WebSphere Application Server class loaders; namely, the Extension,

Server, or the Application module class loader.

WebSphere Application Server Extensions, Server, and Application module class loaders
define a local native library path, similar to the java.library.path supported by the JVM

class loader.

WASv6_ClassLoader_Overview.ppt Page 9 of 10

IBM Software Group

9

Class Loader Overview © 2004 IBM Corporation

Summary

� Class loaders are part of the Java virtual machine (JVM)

and are responsible for finding and loading class files:

�JVM Classloaders

�WebSphere Application Server: Extensions Class loader

�WebSphere Application Server: Server Class loader

�WebSphere Application Server: Module Class loader

�WebSphere Application Server: Web Module Class loader

� Additional presentations cover details, examples, problem
determination, and Best Practices

In summary, this presentation has provided an overview of class loaders. Class loaders
are a part of the java virtual machine and are responsible for finding and loading class
files. Other presentations provide a more detailed discussion, providing examples,

problem determination, and best practices information.

WASv6_ClassLoader_Overview.ppt Page 10 of 10

10

IBM Software Group

Class Loader Overview © 2004 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

