
WASv6_ClassLoader_Details.ppt Page 1 of 35

®

IBM Software Group

© 2005 IBM Corporation

Updated May 11, 2005

IBM® WebSphere® Application Server V6

Application Server Java™ Class Loader

Details

This presentation will focus on the details of the Application Server Java Class Loader.

WASv6_ClassLoader_Details.ppt Page 2 of 35

IBM Software Group

2

Class Loader Details © 2005 IBM Corporation

Goals

�Understand the details of the class loaders and
different class loading options in WebSphere
Application Server V6.

�Other presentations cover examples, Problem
Determination, and Dynamic Reload and Preload
classes

�Pre-requisite:

�Class loader - Overview

The goal of this presentation is to help you understand the details of the class loaders and
different class loading options in WebSphere Application Server V6. An understanding of
the Class loader from the overview presentation will be helpful in understanding these

details.

WASv6_ClassLoader_Details.ppt Page 3 of 35

IBM Software Group

3

Class Loader Details © 2005 IBM Corporation

Agenda

�Class loader hierarchy - recap

�Class loader details and options

�Shared Libraries

� Loading Native Libraries

�Advanced Class loader topics

�Preloading of classes

�Summary and References

The agenda for this presentation is to cover:

Class loader hierarchy

Class loader details and options

Shared libraries

Native libraries

Advanced class loader topics

Preloading of classes

Summary and references

WASv6_ClassLoader_Details.ppt Page 4 of 35

IBM Software Group

4

Class Loader Details © 2005 IBM Corporation

Class Loader HierarchyClass Loader Hierarchy

Section

This section will cover class loader hierarchy.

WASv6_ClassLoader_Details.ppt Page 5 of 35

IBM Software Group

5

Class Loader Details © 2005 IBM Corporation

•BootStrap: loaded from by jre/lib

•Extensions: Defined by java.ext.dirs

•JVM Classpath

WebSphere Ext.: Defined by ws.ext.dirs

•%WAS_ROOT classes, lib and ext directories

•Resource classes (explained in detail later)

Application Class loader – loads application

artifacts - Various combination possible based
on ClassLoading Policies (discussed later)

Class Loader Hierarchy – Recap
C

la
s
s
 S

e
a

rc
h

 O
rd

e
r

JVM Class loader

JVM Bootstrap, JVM extensions, Classpath

WebSphere Extensions Classloader

Loads WebSphere Runtime and Resource classes

Application Module Class loader

EJBs,, RARs, Utility JARs, Application Shared libraries

Optional: Web Module based on Web Module class-
loader Policy

Web Module Class loader (OPTIONAL)

For Web Modules only

WebSphere lib/app Class loader

For compatibility with v4, loads classes in “lib/app” dir.

WebSphere “Server” Class loader

Loads Server-scoped Shared Libraries

User defined one or more class loaders within
a server configuration to specify server

scoped Shared Libraries

Load application artifacts from the
<WAS_HOME>/lib/app path - NOT

RECOMMNEDED

Class loaders are organized in a hierarchy. This means that a child class loader can
delegate class finding and loading to its parent, should it fail to load a class.

This flow was discussed in detail in the overview presentation.

Most of this presentation will discuss the details of each of these class loader hierarchies,
along with the class loader options and policies.

WASv6_ClassLoader_Details.ppt Page 6 of 35

IBM Software Group

6

Class Loader Details © 2005 IBM Corporation

Class Loader DetailsClass Loader Details

Section

This section will discuss the details of the class loader.

WASv6_ClassLoader_Details.ppt Page 7 of 35

IBM Software Group

7

Class Loader Details © 2005 IBM Corporation

JVM Class loader

� Additional Classpath and Bootclasspath can be configured using administrative
console or wsadmin
�Using Administrative Console: Server � Application Server � <Server> � Java and

Process Management � Process Definition � Java Virtual Machine

PARENT_FIRST

�JAVA_HOME>/jre/ext/lib

�Any directory specified by the java.ext.dirs system
property

JVM Extension
libraries

PARENT_FIRST

�CLASSPATH environment variable.

�Command-line options “–classpath” or “–cp”

�If a JAR file on the class path has a manifest with the
Class-Path attribute, JAR files specified by the Class-
Path attribute will also be searched

JVM System
Class loader

Not applicable<JAVA_HOME>/jre/lib
JVM Bootstrap
Libraries

DelegationDirectories/Files loadedClass loader

JVM Class loader

JVM Bootstrap, JVM extensions, Classpath

Not Recommended to add to the JVM classpath – there are better ways to add classes

Life cycle of classes: Exists for the duration of the server

At the root of the class loader hierarchy is the JVM class loader. This class loader loads
the JVM Boot strap libraries, JVM extension libraries and the JVM System class loader in
that order. In this class loader, there is no choice of delegation or search mode.

These classes get unloaded when the Application server is stopped.

Although it is possible to add your own classes to the JVM class path for classes that are
used across multiple applications, it is not recommended that you do so. There are better
solutions, such as using Shared libraries, which will be discussed later in this presentation.

WASv6_ClassLoader_Details.ppt Page 8 of 35

IBM Software Group

8

Class Loader Details © 2005 IBM Corporation

WebSphere Extension Class
loader

PARENT_FIRST
<WAS_HOME>\lib

Contains the core application server runtime files

Runtime Library (RL)
directory

PARENT_FIRST

<WAS_HOME>\lib\ext

Contains extensions to the core application server
runtime – Not used currently

Runtime Extensions
(RE) directory

PARENT_FIRST

<WAS_HOME>\classes

�Intended for temporary fixes that are applied to the
application server runtime

�These patches override identical classes and resources

that may appear in the RL and RE directories

Runtime Patches
(RP) directory

PARENT_FIRSTResource classes (like JDBC) and native paths
and Standalone Resource adapters, specified in
the server configuration

Runtime appended
class paths

Not applicable<JAVA_HOME>\libJava tools directory

DelegationDirectories/Files loadedClass loaders

WebSphere Extensions Class loader

Loads WebSphere Runtime and Resource
provider classes

Life cycle of classes: Exists for the duration of the server

Next in the class loader hierarchy is the WebSphere Extension class loader, whose
primary responsibility is to load the WebSphere classes. Within the WebSphere extension
class loader, there is a hierarchy of class loaders that are used, as shown in the table. In

addition to this, the runtime appends certain class paths, including resource classes,
native paths, and Custom Service classes.

WASv6_ClassLoader_Details.ppt Page 9 of 35

IBM Software Group

9

Class Loader Details © 2005 IBM Corporation

WebSphere lib/app Class
loader

�Used for backward compatibility for v4 that was
used to load application artifacts that are common
across all applications

� Load classes from <WAS_HOME>/lib/app directory

�Delegation: PARENT_LAST

� Life cycle of classes: Exists for the duration of the
server

WebSphere lib/app Class loader

For compatibility with v4, loads classes in “lib/app” dir.

Not Recommended - There are better solutions than using this class loader

Better Option: Use Shared Library to load application artifacts that provides
application level isolation, if needed

Use of the WebSphere lib/app class loader is not recommended. It is supported in V6 only
for backward compatibility. It was used in v4 as a means to place classes that are shared
by all the applications running in the server. For V5 and V6, use of Shared libraries is a

better option.

WASv6_ClassLoader_Details.ppt Page 10 of 35

IBM Software Group

10

Class Loader Details © 2005 IBM Corporation

WebSphere “Server” Class loaders

� Used to create server-scoped shared libraries

�Shared libraries that need to be available for all the applications running on
that application server

�You do not have to associate the shared library per application

� User can define one or more “server” class loaders within the server
configuration

�Order in which these are multiple “Server” class loaders are as they appear in
the Administrative Console

�Each Server class loader is linked as the immediate child of the “Server” class
loader previously created server class loader

� Delegation Mode: PARENT_FIRST (default) or PARENT_LAST –
Configurable

� Life cycle of classes: Exists for the duration of the server

� Configuration: Using the Administrative Console or wsadmin

The WebSphere Server class loader is used when creating server scoped shared
libraries. The concept of a shared library is explained later in the presentation. Briefly,
shared libraries is a mechanism to specify class libraries and native libraries that are

needed by one or more applications in a server.

Once the shared library is defined, you can then associate one or more applications with
the Shared library. If you would like to associate the shared libraries with all the

applications in a server, that can be done by defining the shared library under the Server
class loader.

Multiple Server class loaders can be defined, forming a hierarchy of server class loaders,
as it appears in the Administrative console. You can set the delegation mode for each of

the Server class loaders to be parent first or parent last.

WASv6_ClassLoader_Details.ppt Page 11 of 35

IBM Software Group

11

Class Loader Details © 2005 IBM Corporation

Creating WebSphere “Server” Class loader

Specify Shared
library to be

loaded by this
classloader

PARENT_FIRST
or

PARENT_LAST

Define New “Server” Class loader

Edit “Server” Class loader

Servers ���� Application Server ���� <Server>

The Administrative console panels shown here describe how to create and configure the
WebSphere Server class loaders.

WASv6_ClassLoader_Details.ppt Page 12 of 35

IBM Software Group

12

Class Loader Details © 2005 IBM Corporation

WebSphere Application Class loader

� Responsible for loading
WebSphere J2EE application
artifacts contained in an EAR

� Composed of 2 class loaders
to provide options for isolating
applications and modules:

�Application Module Class loader

�Web Module Class loader

� Delegation Mode: Configurable

�PARENT_FIRST (default) or
PARENT_LAST

Application Class Loader

Application Module Class loader

EJBs, Embedded RARs, Utility JARs,

Application Shared libraries

Optional: Web Module based on Web

Module class-loader Policy

Web Module Class loader

(OPTIONAL)

For Web Modules for that

Application

Parent

The Application class loader, which is responsible for loading the J2EE applications, have
two sub class loaders.

The first one is the Application Module class loader, responsible for loading all application

modules, with the potential exception of the Web Modules. The second one is the Web
Module class loader that is lower in the class loader hierarchy and is responsible for
loading the Web modules.

The Web Module class loader is optional and is created for an application only in certain
configurations, as described in the next few pages.

In both these class loaders, the search or delegation mode can be configured to be parent
first or parent last.

WASv6_ClassLoader_Details.ppt Page 13 of 35

IBM Software Group

13

Class Loader Details © 2005 IBM Corporation

Application Class Loader Isolation Policies
� Application Module class-loader

policy options – defined globally at
Application Server level
�Single - All applications share a single

application module class loader – No
application isolation

�Multiple (default) - Each application gets
its own application module class loader –
provides application isolation

� Web Module class-loader policy –
defined on per Application
�Application – All application Web

modules are loaded by the Application
Module class-loader

�Module (default) - Each application Web
module will have its own class-loader,
and they are children of the Application
Module class-loader

Application Class Loader

Application Module Class loader

For EJBs, Embedded RARs, Utility

JARs, Application Shared libraries,

and Web Modulesand Web Modules

Application Class Loader

Application Module Class loader

For EJBs, Embedded RARs, Utility

JARs, Application Shared libraries

(No Web Modules)(No Web Modules)

Web Module Classloader

Web Modules for that ApplicationWeb Modules for that Application

Parent

� Life Cycle: Application start and stop

This page describes the options of the Application Class loader, known as the class loader
isolation policies.

There are 2 options:

The first one defines whether there will be a single Application module class loader for the
entire Application Server that will serve all the applications or a separate Application

Module class loader for each application within the server. These are defined at the
Application Server level, as Single or Multiple.

As discussed in the previous page, a Web module of the application can have its own
separate class loader at a lower hierarchy than the application Module class loader. This

option is defined for each application. The first option is Application, indicating that for
that application, there should not a separate Web module class loader, and that the Web

modules be loaded by the application module class loader. This example is shown in the
picture at the top left side of the page.

The second option is Module, meaning for that application, the Web modules are loaded

by their own separate Web module class loader, and that the application module class

loader will not load the web modules for that application. This is the default value. This
example is shown in the picture at the bottom left side of the page.

These options help in situations where you need isolation for your own packaged Jar files,
like Xerces, and require a different delegation mode.

Examples of both these options, presented in a separate presentation, will help further

WASv6_ClassLoader_Details.ppt Page 14 of 35

IBM Software Group

14

Class Loader Details © 2005 IBM Corporation

Class loader Policy UI

Multiple
or Single

Module
or

Applications

Delegation
PARENT_FIRST

or
PARENT_LAST

Delegation
PARENT_FIRST

or
PARENT_LAST

Application Module Class Loader Policy

Web Module Class Loader Policy

Need to go down the application settings

The Administrative console can be used to set the Application class loader policies and
delegation, as shown on this page.

The left panel shows the Single or Multiple Application module class loader policy. It also

shows whether the search for the application module class loader will be parent first or
parent last. Parent first means search the parent class loader in the hierarchy before
searching locally.

The right panel shows the setting of the Web module class loader. This is configured
separately for each application. It determines where the Web modules of the application

will be loaded. If the policy is Module, it will be loaded by a new Web module class loader.
If the policy is Application, it will be loaded by the Application module class loader. If the
Web module class loader must be created, the delegation can be specified to be parent

first or parent last.

WASv6_ClassLoader_Details.ppt Page 15 of 35

IBM Software Group

15

Class Loader Details © 2005 IBM Corporation

Shared LibrariesShared Libraries

Section

This section will discuss shared libraries.

WASv6_ClassLoader_Details.ppt Page 16 of 35

IBM Software Group

16

Class Loader Details © 2005 IBM Corporation

Shared Libraries - Overview

� Shared libraries provide a way to use common java or native code and
share them across one or more J2EE applications running within the
server

� Example: Dependency (“utility”) JARs, and native libraries

� Shared libraries are defined by the administrator, and then associated
with one or more applications

� These are called “application-associated” shared library, compared to
“server-associated” shared library loaded by the “Server” class loader

� Shared libraries can be:

� Directory that contains collection of JAR files or native libraries

� Specific JAR file

� Native libraries

� Dependent Native libraries required by native library specified in Shared
library will not loaded by the Application class loader – Should specify
them in the JVM Native library path

In WebSphere Application Server v4, if you had JAR files that needed to be shared by
more than one application, you would place them in the %WAS_ROOT%/lib/app directory.
The drawback is that the JARs in the %WAS_ROOT%/lib/app directory are exposed to all

the applications.

Shared Libraries is a better mechanism, where only applications that need the JARs use
them. Other applications are not affected by the shared libraries.

The process consists of defining the Shared libraries, naming them and specifying the file

or directories that contain Java code and native code.

After that, these defined shared libraries can be associated with one or more applications

running within the server.

The difference between creating Shared libraries this way is that these can be specified

for use by just the applications that need them. In comparison, libraries defined when

creating “Server” class loaders are available to all the applications. There is no granularity

provided by the server class loader, whereas the shared libraries defined here provide a
level of granularity in terms of association with one or more applications as needed.

The advantage of using application scoped shared library is the capability of using

different versions of common application artifacts by different applications. A unique

shared library can be defined for each version of a particular artifact, such as a utility JAR

If a native library loaded by shared library requires a second native library, then it must not
be specified in the shared library path, but rather in the JVM native library path and will be

loaded by the JVM class loader.

WASv6_ClassLoader_Details.ppt Page 17 of 35

IBM Software Group

17

Class Loader Details © 2005 IBM Corporation

Defining Shared Library

� Environment -> Shared

Library

� Can define at Cell, Node or

Server scopes

� Each shared library will have

associated Java, Native

libraries, or both, defined

� Adding new Shared library

definition requires a server

restart to be used by

applications

Shared
Library Name

– used by
applications

Java Shared
Libraries –

JARs or
directory

(separated by
ENTER)

Native lib path (dir.)
that contains “.dll”

or “.a” or “.so”
files

Shared libraries can be defined using the Administrative console panel shown here.

After defining a new shared library and associating it with an application, the Application
Server must be restarted.

WASv6_ClassLoader_Details.ppt Page 18 of 35

IBM Software Group

18

Class Loader Details © 2005 IBM Corporation

Applications Using Defined Shared Library

� Select Application ->

Additional Properties ->
Libraries

� You can add one or

more defined shared
libraries that will be used
by the application code

Choose the
defined

Shared library

Once the shared libraries are defined, they can then be associated with the application.
This slide shows the Administrative console panels used to make the association.

WASv6_ClassLoader_Details.ppt Page 19 of 35

IBM Software Group

19

Class Loader Details © 2005 IBM Corporation

Class loading of different filesClass loading of different files

Section

This section will cover class loading of different files.

WASv6_ClassLoader_Details.ppt Page 20 of 35

IBM Software Group

20

Class Loader Details © 2005 IBM Corporation

Class Loading of Non-application Files

WebSphere Extension

WebSphere Runtime classes

�<JAVA_HOME>\lib

�<WAS_HOME>\classes

�<WAS_HOME>\lib

�<WAS_HOME>\lib\ext

�Users should not place Custom Service
implementation in JVM classpath – it
needs reference to <WAS_HOME>/lib

files

�Custom Service classes will persist in

the JVM cache for duration of the
Application Server

WebSphere Extension

Custom Service class

�It is a pluggable extension of the

server runtime that allows users to
plug in their own classes

�Implements CustomService

interface

�Not possible to have multiple copies of

the same Resource class

�Classes are loaded on demand

WebSphere Extension
Resource files

�Like JDBC, JMS, Resources, etc

JVM

JVM Classes

�<JAVA_HOME>/jre/lib

�<JAVA_HOME>/jre/ext/lib

�Classpath

CommentsClass loaderArtifact / Classes

The table shows the loading of the non-application classes like the JVM classes,
WebSphere runtime classes, Resources, and Custom Service class.

Custom Service is a pluggable extension of the server runtime that allows you to plug in
your own classes

Custom Service classes are loaded by the WebSphere Extensions class loader, which is
the parent of every Application class loader. Therefore, Custom Services are visible to all
applications hosted by an Application Server. Custom Service classes cannot have any

dependencies on application classes

WASv6_ClassLoader_Details.ppt Page 21 of 35

IBM Software Group

21

Class Loader Details © 2005 IBM Corporation

Class Loading of Application Files

WebSphere runtime requires this class –
hence should not be placed in a location that
is loaded by class loaders below the
Extension class loader hierarchy

Should be placed in the WebSphere
Extension class loader path

Custom User Registry
implementation Java

class

WebSphere Server
Server scoped Shared
libraries

Application Module
Application associated

Shared Libraries

Application Module (If Web Module
class loader policy = APPLICATION)Web Module Files:

�WEB-INF/classes

�WEB-INF/lib

Application ModuleEJB modules

Application Module
Embedded Resource
Adapters

Web Module (If Web Module class

loader policy = MODULE)

Dependency paths specified in the

manifest Class-Path attribute of the

EJB JARs and Web Modules.

Important: Classpath attributes are

relative to the EAR directory path

Application Module
Dependent JARs (Utility

JARs)

WebSphere Extension
Standalone Resource
Adapters

CommentsClass loaderArtifact / Classes

This table shows the loading of the application related classes.

The Stand-alone resource adapters are loaded by the WebSphere extension class loader,
whereas the embedded resource adapter is loaded by the Application Module class

loader.

The Server scoped shared library is loaded by the “Server” class loader, and therefore is

available to all the applications, whereas the shared libraries associated with the
application are loaded by the application module class loader, and available only to the
application.

WASv6_ClassLoader_Details.ppt Page 22 of 35

IBM Software Group

22

Class Loader Details © 2005 IBM Corporation

Loading Native LibrariesLoading Native Libraries

Section

This section will cover loading native libraries.

WASv6_ClassLoader_Details.ppt Page 23 of 35

IBM Software Group

23

Class Loader Details © 2005 IBM Corporation

Native Libraries - Overview

� Native libraries are platform specific non-Java code used by
Java via JNI (Java Native Interface) – like ‘.dll’ in
Windows™, ‘.so’ and ‘.a’ in Unix

� Java applications use System.loadLibrary(libName) method
to load the native library

�It is loaded at the time of System.loadLibrary(…) call

� JVM uses the caller’s classloader to load the native library
and if that fails, it then uses the JVM System class loader

�If both fail to load, you will see UnsatisfiedLinkError

� Native libraries are located on the native library paths of the
JVM class loader and the WebSphere (Extensions, Server,
and Application module) class loaders

Native libraries are loaded by Java using the System load library when they are needed.
Native libraries could be located in the JVM class loader or one of the WebSphere class
loaders such as the Extensions, Server or the Application module class loader.

WebSphere Extensions, Server, and Application module class loaders define a local
native library path, similar to java.library.path supported by the JVM class loader

WASv6_ClassLoader_Details.ppt Page 24 of 35

IBM Software Group

24

Class Loader Details © 2005 IBM Corporation

Native Libraries – Overview (cont.)

� JVM native library: java.library.path setting - path for
different systems

�Windows: PATH environment variable, current working directory, and
system directories

�AIX®: LIBPATH environment variable

�Solaris, Linux®: LD_LIBRARY_PATH environment variable

�HP-UX: SHLIB_PATH environment variable

� JVM native library path can also be specified in the
Administrative Console by specifying the appropriate OS
string (like LIBPATH, PATH, etc.) and the value

�Servers � Application Server � <Server> � Java process and
Management � Process Definition � Environment Entries

The JVM native library path settings for different platforms are shown here. In addition,
the native library path can also be configured using the Administrative console or wsadmin
scripting.

WASv6_ClassLoader_Details.ppt Page 25 of 35

IBM Software Group

25

Class Loader Details © 2005 IBM Corporation

Native Libraries – Errors

� If a different class loader already loaded the nativelibrary, the JVM
throws an UnsatisfiedLinkError and indicates the problem

� JVM also throws UnsatisfiedLinkError whenever a dependent native
library cannot be resolved

�Native library specified in Shared library needs to load another dependent
Native library and the dependent native lib. is not in the JVM Native lib path

� JVM will load only one instance of a particular native library per class
loader

� Good Practice:

�Call System.loadLibrary() within a static block of exactly one class within an
application

�If possible, load native library from the code that has life cycle of the server
like WebSphere “Server” class loader

When loading a native library, the JVM can throw an exception if the library was already
loaded or if the library is not found. Therefore, it is a good practice to load the native
library from a static block within the Java code using class loaders that have the life cycle

of the server, if you are using WebSphere class loaders to load the native library.

WASv6_ClassLoader_Details.ppt Page 26 of 35

IBM Software Group

26

Class Loader Details © 2005 IBM Corporation

Native libraries loaded by WebSphere Class
loader

Application Module

WebSphere Server

Application Module

WebSphere Extension

WebSphere Extension

Native Class loader

NLP of Shared Library

NLP of Shared Library

NLP of the Resource

Adapter

NLP of the Resource

Adapter

NLP for every JDBC

provider defined in the

server configuration

Appended Native

Library Path (NLP)

Server scoped Shared
libraries

Standalone Resource
Adapters

Application associated
Shared libraries

Embedded Resource
Adapters

Resources – JDBC,
Generic JMS, etc.

Artifact

This table shows the different WebSphere class loaders that are used for the native code
in different artifacts.

WASv6_ClassLoader_Details.ppt Page 27 of 35

IBM Software Group

27

Class Loader Details © 2005 IBM Corporation

Class LoaderClass Loader

Some Advanced TopicsSome Advanced Topics

Section

This section will cover advanced class loader topics.

WASv6_ClassLoader_Details.ppt Page 28 of 35

IBM Software Group

28

Class Loader Details © 2005 IBM Corporation

JVM Class loading – Dependent classes

�Dependent classes must be visible on the local
class path of the object’s class loader, or one its
parent class loaders.

�Violations will cause the JVM to throw
ClassNotFoundException and
NoClassDefFoundError whenever the dependent
class cannot be located

If a class being loaded needs to load another class, the dependent class must be visible in
the current class loader or any of its parent class loaders. The search or delegation mode
of the current class loader will decide whether to search parent first or parent last.

If the class is not found in the current or the parent class loaders, an exception will be
thrown.

WASv6_ClassLoader_Details.ppt Page 29 of 35

IBM Software Group

29

Class Loader Details © 2005 IBM Corporation

JVM Class loading – Multiple Definitions and
Cache
� JVM can maintain multiple definitions of classes having the same fully-

qualified name

�JVM recognizes a class definition as unique using the couplet <class-loader,
class-name>, not <class-name>,

� JVM will cache several class definitions having the same name, so long
as each definition is loaded by a different class loader

� Can otherwise cause confusing class loading anomalies in multiple
environments

� Example: If a class loaded by a child class loader depends on a class
that is inadvertently loaded by a parent class loader, and the two
classes are binary incompatible (e.g., the dependent class was built
with a different JDK or contains an interface change), the JVM will throw
a linkage error, such as an InvalidClassChangeError

The JVM can load multiple definitions of classes by different class loaders. For example,
the Xerces parser will be loaded by the WebSphere Extension class loader, and if the
application has bundled the Xerces class, the application module class loader could load

the local Xerces class. Situations like these can cause anomalies that may have side
effects, as shown in this example.

WASv6_ClassLoader_Details.ppt Page 30 of 35

IBM Software Group

30

Class Loader Details © 2005 IBM Corporation

Class PreClass Pre--loadingloading

(Introduced in WebSphere V5.1.1)(Introduced in WebSphere V5.1.1)

Section

This section will discuss class preloading.

WASv6_ClassLoader_Details.ppt Page 31 of 35

IBM Software Group

31

Class Loader Details © 2005 IBM Corporation

Class Pre-loading Overview

� Preloading classes speeds up the startup of the Application
Server process

�Class loader will not have to search for the classes when needed –
they will already be available

� How is it done:

�The 1st time the Application Server process starts up, the name of
each class loaded and the name of the JAR file containing the class
are written to a preload file

�Subsequent startups of the process use the preload file to start the
process more quickly

�New classes required during startup of a process are added to the
preload file

�Any classes removed from a process are ignored during subsequent
startups

Pre loading classes improves performance during server startup.

A preload file is created when the server first starts up. The file contains the name of each
class loaded and the JAR file containing the class. The preload file is used for subsequent

server startups.

New files that might have been loaded during the server startup are added to the preload

file. This could occur if a fix pack was applied, which caused addition of new classes.

WASv6_ClassLoader_Details.ppt Page 32 of 35

IBM Software Group

32

Class Loader Details © 2005 IBM Corporation

Class Pre-loading – Administrative Tasks

� Administration Tasks: None required

�No configuration is needed

�By default, class preloading is ON

� To disable class preloading

�Add the Generic JVM property to the Application Server -
Dibm.websphere.preload.classes=false

� To Regenerate the preload file

�Delete the preload file – the next startup of the server will recreate the file

� File name and directory for the preload file:

�Directory: <%WAS_INSTALL%>/logs/preload directory

�File name:

� Application Server: cell_name.node_name.server_name.preload

� startserver: WsServerLauncher.preload

� launchClient: launchClient.preload

By default, class preloading is enabled. The Dibm.websphere.preload.classes JVM
property allows you to disable preloading.

If the preload file is deleted, a new one will be generated. Absence of a preload file does

not affect the running of the Server.

The preload files are saved in the logs directory. There are separate preload files for

Application server startup, start server and launch client.

WASv6_ClassLoader_Details.ppt Page 33 of 35

IBM Software Group

33

Class Loader Details © 2005 IBM Corporation

Summary and ReferencesSummary and References

Section

This section will provide a summary of the concepts discussed in this presentation.

WASv6_ClassLoader_Details.ppt Page 34 of 35

IBM Software Group

34

Class Loader Details © 2005 IBM Corporation

Summary

� Class-loaders are part of the Java virtual machine (JVM)

and are responsible for finding and loading class files:

�JVM Classloaders

�WebSphere Extensions Classloader

�WebSphere Server Classloader

�Application Module Classloader

�Web Module Classloader

� Few policy options to control your class loader scheme to

suit your application needs

� Follow-on presentations on class loader will cover
Examples, problem determination and Best Practice, etc.

In summary, this presentation focused on class loaders, which are a part of the JVM and
are responsible for finding and loading class files. It also gave a few policy options to
control your class loader scheme to suit your application needs.

WASv6_ClassLoader_Details.ppt Page 35 of 35

35

IBM Software Group

Class Loader Details © 2005 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

