
WASv6_RequestMetrics.ppt Page 1 of 21

This presentation will focus on WebSphere Application Server’s request metrics.

WASv6_RequestMetrics.ppt Page 2 of 21

The goals for this presentation are to introduce the request metrics functionality that is

provided with the WebSphere Application Server. The presentation will also introduce the

Application Response Measurement or ARM standard and explain the part that it plays

with request metrics. The goal is also to point out any differences between version 5 and

version 6 along the way.

WASv6_RequestMetrics.ppt Page 3 of 21

This presentation discusses request metrics, its configuration options and the Application

Response Measurement standard.

WASv6_RequestMetrics.ppt Page 4 of 21

This section will discuss what the request metrics functionality provides to WebSphere

Application Server.

WASv6_RequestMetrics.ppt Page 5 of 21

Request metrics allows you to monitor transactions as they move through the different

components in an Application Server environment. Request metrics allows you to not only

see the amount of time spent executing the whole request, but also the time spent

executing the request in each of the supported Application Server components. The

Application Server components that support request metrics functionality are the HTTP

server plug-in, Web container, Web Services engine, EJB container, JDBC calls, Java™

Messaging Service and AsyncBeans. Additionally request metrics is not limited to

monitoring transactions that occur on just one Application Server. Request metrics is

capable of monitoring transactions as they fan out across a Application Server

environment.

It is important to note that the request metrics data differs from Performance Monitoring

Infrastructure or PMI data, in that request metrics data is transaction aware and PMI data

is not. The PMI service collects performance data across all currently executing

transactions, while request metrics collects performance data for individual transactions.

WASv6_RequestMetrics.ppt Page 6 of 21

Request metrics provide valuable hierarchical data on transactions in your application. Because request
metrics tracks response times across individual Application Server components or the whole application, it
allows you to see if your application is executing according to design. The ability to view which components
are involved with a transaction, also allows you to quickly determine which portion of your application may be
to blame for poor performance. The example at the bottom of the slide represents what you may see when
viewing request metrics data from your application. From the example, you can see exactly which
components within your environment were involved with the request. Additionally you can see the amount of
time spent in each one of these components and the amount of time overall spent responding to the request.
Lastly, note that the response times at each level include the response times for the lower levels as well. This
means that the time spent processing the request at the HTTP server was actually 75 milliseconds (200
minus 125).

Request metrics can be used to monitor the health and performance of your application through the use of
synthetic transactions and appropriate application monitoring software. Synthetic transactions are
transactions that are initiated from a known source (usually a system within your network designed to submit
requests against your application) with the purpose of monitoring specific transactions. Synthetic transactions
allow you to monitor your application’s responsiveness and health. Along with system monitoring software,
such as IBM Tivoli® Monitoring for Transaction Performance, a system administrator can use synthetic
transactions and request metrics to alert them when response times are too low or transactions are failing.

Request metrics also provide valuable measurements for determining whether Service Level Agreements
(SLAs) are being achieved. Because request metrics can show performance data for specific transactions in
the system, it is an invaluable tool in determining whether your SLA targets are being met. In addition,
request metrics can be paired with other tools, such as IBM Enterprise Workload Management (EWLM),
which define business goals based on the performance data retrieved from request metrics. These business
goals are then used when routing work in a business application environment.

WASv6_RequestMetrics.ppt Page 7 of 21

This slide depicts an architectural picture for the request metrics functionality. An example will be used to
visualize what happens when a request enters a WebSphere Application Server. Note that in the diagram,
dashed vertical lines represent filters that can be set in your Application Server environment. Request Metric
filters control the types of incoming transactions that will be monitored. Request Metric filters will be
discussed in detail in an upcoming section.

As a Web request enters the system, it will be examined by the filter settings in the web server plug-in. If the
request matches one of the associated filters, an ARM transaction will be started and a correlator will be
assigned in the web server plug-in. When the request moves into the Web container, another ARM
transaction will be started and a correlator value will be assigned to the transaction. Additionally, the
correlator value that was passed from the upstream container will be assigned as the ARM transaction’s
parent correlator – this allows the two separate transactions to later be correlated together. This behavior
continues until the last point in the transactional chain is reached.

As the response leaves the system, it will stop the ARM transaction timers in each of the containers and
record the appropriate transaction information and time in each of the activated logging mechanisms. Note
that there are two possible options when logging request metrics data. You can either send it to the
Application Server’s logs and do the correlation yourself or you can send the data to an Application
Response Measurement or ARM agent which will in turn externalize it to its management software. The
Application Response Measurement standard will be discussed in an upcoming section.

In addition to what is shown in the picture above, WebSphere Application Server is also capable of passing
the correlator from a request metrics transaction to a downstream ARM-enabled application that is not
directly controlled by Application Server. This allows downstream non-WebSphere Application Server sub-
transactions to be added to the currently in-flight request metrics transaction that took place within the
Application Server. An example of this would be a transaction executing within the Application Server moving
to an ARM-enabled backend, such as a CICS® server. The transaction correlator could be passed
downstream so that non-WebSphere Application Server sub-transactions could be figured into the overall
transaction’s time.

WASv6_RequestMetrics.ppt Page 8 of 21

Request metrics was first introduced in WebSphere Application Server V5.0. Since then
there have been minor enhancements with each release of WebSphere. In V6, request
metrics support has been added to three new WebSphere Application Server components.
These components are the Web Services engine, Java Messaging Service and
AsyncBeans.

WASv6_RequestMetrics.ppt Page 9 of 21

The next section discusses what configuration options are available for request metrics.

WASv6_RequestMetrics.ppt Page 10 of 21

Request metrics filters are used to limit the number of incoming requests that are

monitored. In order for an incoming request to generate request metrics performance data

it has to match one of the defined filters. If you do not define filters within the Application

Server, all incoming requests will be monitored. An example of when you would want to

use request metrics filters is monitoring synthetic transactions. In this example an IP

address filter would be defined for the system that is used to generate synthetic

transactions against your environment. This would result in the Application Server only

monitoring requests that come from this system.

There are several types of request metrics filters available. Filters can be set for incoming

HTTP requests, remote EJB requests, Web Services requests, and Java Messaging

Service or JMS requests. HTTP requests can be filtered by IP address, URI or both.

Remote EJB requests are filtered by EJB name and optionally the method name. JMS

requests are filtered according to the specified destination and topic name. Web Services

requests are filtered according to the specified WSDL port name, operation name, and

name space.

The request metrics settings can be viewed and modified by navigating to Request Metrics

under Monitoring and Tuning in the Administrative Console.

WASv6_RequestMetrics.ppt Page 11 of 21

Trace levels are used to limit the depth of request metrics data that are collected. It is

important to note that the higher the trace level that you set the greater the performance

hit on your WebSphere Application Server.

There are four trace levels that are available. The trace level setting of “None” results in no

data being captured. This has the same effect of disabling request metrics on the server.

The trace level setting of “Hops” captures requests when they move between processes.

This will not collect request metrics data for a servlet calling an EJB residing in the same

JVM. The trace level setting of “Performance Debug” captures the same amount of data

as Hops plus it captures one level of intra-process calls. This will collect the request

metrics data for a servlet calling an EJB in same JVM, but won’t capture the EJB calling

another EJB in same JVM. The trace level setting of “Debug” results in all cross process

and intra-process calls being captured. This should only be used in extreme cases. In

most cases Hops or Performance Debug should capture sufficient data.

The request metrics settings can be viewed and modified by navigating to Request Metrics

under Monitoring and Tuning in the Administrative Console.

WASv6_RequestMetrics.ppt Page 12 of 21

Request metrics data can be output to two different locations. The first location is the
Application Server’s log files. If the request is a Web request and it matches the defined
filters, request metric data is placed in the HTTP plug-in log. The rest of the components
that support request metrics, output their data to the server’s SystemOut.log file. After the
data is output it is up to you to correlate the sub-transactions together to visualize the
whole transaction.

The second location that request metric data can be output is an Application Response
Measurement agent. Once data is written to the ARM agent it externalizes it to its
associated ARM management software. It is the responsibility of the ARM management
software to analyze and visualize the collected data into an understandable format. It is
important to note that WebSphere Application Server does not provide an ARM agent, this
is the responsibility of the tool vendors that utilize the ARM agent. Examples of IBM
products that have implemented the ARM standard and that can be used with request
metrics are IBM Tivoli Monitoring for Transaction Performance and IBM Enterprise
Workload Management.

It is important to note that you can output request metric data to either of the locations at
the same time. It is, however, recommended that when outputting data to an ARM agent
that you disable request metric logging. This should be done to minimize the amount of
disk I/O that is encountered when writing request metric data to the disk.

WASv6_RequestMetrics.ppt Page 13 of 21

The graphic on this slide displays what is output to the Application Server’s logs when

request metric logging is enabled. The important thing to note in this slide is how the

correlator identifier is passed as the request moves from the HTTP plug-in to the Web

container to EJB container to the backend JDBC calls. The passed correlator allows you to

view not only the whole transaction but the sub-transactions that make up the whole

transaction.

WASv6_RequestMetrics.ppt Page 14 of 21

The performance impact of enabling request metrics on your Application Server has been

improved in V6. The performance impact on the server is less than approximately five

percent when no filters have been enabled and a trace level of “Hops” has been set. This

is a significant improvement over V5.

To further reduce the performance impact incurred by your Application Server, additional

steps can be taken. It is recommended that you enable filters for only the transactions that

you want to monitor. Additionally, set the trace level to a setting that allows you to trace

performance data to the depth required. Lastly, log request metrics data to an ARM agent.

Logging data to the ARM agent is the recommended practice when using request metrics

and is also less expensive than request metrics logging. Remember request metrics

logging is expensive due to the amount of disk I/O necessary to write the request metrics

data to the Application Server’s logs.

WASv6_RequestMetrics.ppt Page 15 of 21

Application Response Measurement is an Open group standard. ARM defines a

specification and set of APIs that should be used for per-transaction performance

monitoring. The ARM APIs are used when request metrics are configured to output data

using the ARM agent. If you want to learn more about the ARM standard and its API visit

the link specified in the slide.

WASv6_RequestMetrics.ppt Page 16 of 21

Request metrics supports two different ARM specifications. It currently supports the Open
Group ARM 4.0 standard within all of its components that support request metrics
collection. It also contains support for Tivoli ARM 2.0 within all of its components that
support request metrics collection except for the Web server plug-ins.

Additionally the request metrics correlator can be extracted from a currently in-flight
request metrics transaction and passed to a non-WebSphere Application Server container.
This allows you to receive accurate time for the whole transaction even as it moves across
application boundaries. In order for this to work, however, the downstream application has
to be ARM-enabled. An example of where this would be useful is a business application
with a WebSphere Application Server front end and a proprietary ARM-enabled backend.
As the transaction prepares to leave your Application Server environment you would
extract the correlator ID from the request metrics transaction and pass it to the proprietary
backend. The proprietary backend would then continue its processing of the request,
continuing to pass the correlator along to subsequent sub-transactions. After the
transaction has finished being processed, the ARM management software would then be
able to combine the sub-transactions taken from both the Application Server and the
proprietary backend and draw a complete picture.

WASv6_RequestMetrics.ppt Page 17 of 21

The demonstration that is available on this slide takes you through the different

configuration options and where they are located within the Administrative Console. To

access the demonstration, pause this presentation and click the Show Me icon.

WASv6_RequestMetrics.ppt Page 18 of 21

The next section will summarize the points discussed in this lecture.

WASv6_RequestMetrics.ppt Page 19 of 21

In summary, this presentation has focused on the request metrics functionality provided

with WebSphere Application Server. Request metrics allows you to track individual

transaction’s performance as they move through the Application Server environment.

Request metrics is most effective when used in conjunction with an ARM application.

Lastly, filters and trace levels should be used to minimize the performance impact that

request metrics has on your Application Server.

WASv6_RequestMetrics.ppt Page 20 of 21

WASv6_RequestMetrics.ppt Page 21 of 21

