IBM Software Group

IBM WebSphere Application Server V6

Request Metrics

(@business on demand.

© 2004, 2006 IBM Corporation
Converted to video May 13, 2015

This presentation will focus on WebSphere Application Server’s request metrics.

WASV6_RequestMetrics.ppt Page 1 of 21

IBM Software Group Eﬁ

Goals

* Introduce request metrics functionality that is
provided with WebSphere Application Server

= OQutline enhancements introduced in V6
= Describe request metrics settings

= Introduce Application Response Measurement
(ARM) standard

© 2004, 2006 I1BM Corporation

The goals for this presentation are to introduce the request metrics functionality that is
provided with the WebSphere Application Server. The presentation will also introduce the
Application Response Measurement or ARM standard and explain the part that it plays
with request metrics. The goal is also to point out any differences between version 5 and
version 6 along the way.

WASV6_RequestMetrics.ppt Page 2 of 21

IBM Software Group EE

Agenda

= Qverview
= Configuration Options
= Application Response Measurement (ARM)

= Configuring Request Metrics

© 2004, 2006 I1BM Corporation

This presentation discusses request metrics, its configuration options and the Application
Response Measurement standard.

WASV6_RequestMetrics.ppt Page 3 of 21

=
IBM Software Group iﬁg

Section

Overview

%
Request Metrics © 2004, 2006 IBM Corporation

This section will discuss what the request metrics functionality provides to WebSphere
Application Server.

WASV6_RequestMetrics.ppt Page 4 of 21

IBM Software Group BH

Request Metrics

= Request metrics track individual transactions, recording and correlating
process time in each of the major components

» Components supported: Web server plug-ins, Web container, EJB
container, JDBC calls, Web Services engine, JMS messaging engine,

AsyncBeans
Time spent Time spent Time spent Time spent
in Web in Web in EJB making
Server Container Container JDBC call
e.g. Response
Transaction A 4 tlng\e forp

Transaction A

e.g. Response
time for
Transaction B

v

Transaction B+

e.g.Resp
time for
TransactionC

v

Transaction C+

© 2004, 2006 I1BM Corporation

Request metrics allows you to monitor transactions as they move through the different
components in an Application Server environment. Request metrics allows you to not only
see the amount of time spent executing the whole request, but also the time spent
executing the request in each of the supported Application Server components. The
Application Server components that support request metrics functionality are the HTTP
server plug-in, Web container, Web Services engine, EJB container, JDBC calls, Java™
Messaging Service and AsyncBeans. Additionally request metrics is not limited to
monitoring transactions that occur on just one Application Server. Request metrics is
capable of monitoring transactions as they fan out across a Application Server
environment.

It is important to note that the request metrics data differs from Performance Monitoring
Infrastructure or PMI data, in that request metrics data is transaction aware and PMI data
is not. The PMI service collects performance data across all currently executing
transactions, while request metrics collects performance data for individual transactions.

WASV6_RequestMetrics.ppt Page 5 of 21

|BM Software Group mﬂ

Why Use?

~\
What performance area should be
focused on?

\

J

= Allows hierarchal view for each individual
transaction by response time

» Provides data for debuggingresource constraints

* Provides filtering mechanisms to monitor 7 —
synthetic transactions or specific transactions How/dalldetenmine ¥ 16SpONSs|ies

for transactions are meeting their
» Users can exclusively track artificial transactions to goals?

measure performance

= Provides response time on individual
transactions, helping determine if Service Level
Agreements are being met

» EWLM tracks and identifies when SLA targets are
not met

,
Is there too much time being spent on
any given area?

|

J

LY

J

~
How can | validate SLA agreements

are being met?

i

HTTP Request: /lexampleApp/exampleServiet

» 200ms
Servlet: /lexampleApp/exampleServiet > 125ms
EJB: ExampleEJB.getExampleData s 45ms
JDBC Call: SELECT statement > 5ms

Request metrics provide valuable hierarchical data on transactions in your application. Because request
metrics tracks response times across individual Application Server components or the whole application, it
allows you to see if your application is executing according to design. The ability to view which components
are involved with a transaction, also allows you to quickly determine which portion of your application may be
to blame for poor performance. The example at the bottom of the slide represents what you may see when
viewing request metrics data from your application. From the example, you can see exactly which
components within your environment were involved with the request. Additionally you can see the amount of
time spent in each one of these components and the amount of time overall spent responding to the request.
Lastly, note that the response times at each level include the response times for the lower levels as well. This
means that the time spent processing the request at the HTTP server was actually 75 milliseconds (200
minus 125).

Request metrics can be used to monitor the health and performance of your application through the use of
synthetic transactions and appropriate application monitoring software. Synthetic transactions are
transactions that are initiated from a known source (usually a system within your network designed to submit
requests against your application) with the purpose of monitoring specific transactions. Synthetic transactions
allow you to monitor your application’s responsiveness and health. Along with system monitoring software,
such as IBM Tivoli® Monitoring for Transaction Performance, a system administrator can use synthetic
transactions and request metrics to alert them when response times are too low or transactions are failing.

Request metrics also provide valuable measurements for determining whether Service Level Agreements
(SLAs) are being achieved. Because request metrics can show performance data for specific transactions in
the system, it is an invaluable tool in determining whether your SLA targets are being met. In addition,
request metrics can be paired with other tools, such as IBM Enterprise Workload Management (EWLM),
which define business goals based on the performance data retrieved from request metrics. These business
goals are then used when routing work in a business application environment.

WASV6_RequestMetrics.ppt Page 6 of 21

|BM Software Group m

Architecture

&

JDBC call

Correlator

Correlator Correlator

Request JMS call

Correlator

Entry/Exit

Entry/Exit Entry/Exit

-~ N
Gl =~ - - o - - A .
WebSphere Anpllcatlon Server Mgs ARM Management Tooling
.. Nogs\http_| plugln log '..o' =|BM® Tivoli® Monitoring for Transaction Performance
=..\logs\${SERVER_NAME}\SystemOut.log *IBMEWLM
=3 Party Tooling

© 2004, 2006 I1BM Corporation

This slide depicts an architectural picture for the request metrics functionality. An example will be used to
visualize what happens when a request enters a WebSphere Application Server. Note that in the diagram,
dashed vertical lines represent filters that can be set in your Application Server environment. Request Metric
filters control the types of incoming transactions that will be monitored. Request Metric filters will be
discussed in detail in an upcoming section.

As a Web request enters the system, it will be examined by the filter settings in the web server plug-in. If the
request matches one of the associated filters, an ARM transaction will be started and a correlator will be
assigned in the web server plug-in. When the request moves into the Web container, another ARM
transaction will be started and a correlator value will be assigned to the transaction. Additionally, the
correlator value that was passed from the upstream container will be assigned as the ARM transaction’s
parent correlator — this allows the two separate transactions to later be correlated together. This behavior
continues until the last point in the transactional chain is reached.

As the response leaves the system, it will stop the ARM transaction timers in each of the containers and
record the appropriate transaction information and time in each of the activated logging mechanisms. Note
that there are two possible options when logging request metrics data. You can either send it to the
Application Server’s logs and do the correlation yourself or you can send the data to an Application
Response Measurement or ARM agent which will in turn externalize it to its management software. The
Application Response Measurement standard will be discussed in an upcoming section.

In addition to what is shown in the picture above, WebSphere Application Server is also capable of passing
the correlator from a request metrics transaction to a downstream ARM-enabled application that is not
directly controlled by Application Server. This allows downstream non-WebSphere Application Server sub-
transactions to be added to the currently in-flight request metrics transaction that took place within the
Application Server. An example of this would be a transaction executing within the Application Server moving
to an ARM-enabled backend, such as a CICS® server. The transaction correlator could be passed
downstream so that non-WebSphere Application Server sub-transactions could be figured into the overall
transaction’s time.

WASV6_RequestMetrics.ppt Page 7 of 21

IBM Software Group

Enhancements: Through The Releases

Intra-process calls

(M)

) ARM 4.0 Support

V5§

=Captures process time for EJBs (using IIOP), Servlets, and JDBC calls

=Outputs data to the Application Server’s logs or ARM agents (Tivoli ARM 2.0 and EWLM DE)
V5.0.2

=Captures process time for web server plug-ins and provides data in plug-in logs
V56.1.1

*ARM interface updated to ARM 4.0

=Captures process time for intra-process serviets and EJBs

*Provides ARM interface for web server plug-ins

=Opens correlation mechanism to plug-in other response time measurements needed by customer
Vé

=*New request metrics data added for: Web Services, JMS, AsyncBeans

i

WASV6_RequestMetrics.ppt

" Reduest Metrics ©2004, 2006 IBM Corporation

Request metrics was first introduced in WebSphere Application Server V5.0. Since then
there have been minor enhancements with each release of WebSphere. In V6, request
metrics support has been added to three new WebSphere Application Server components.
These components are the Web Services engine, Java Messaging Service and
AsyncBeans.

Page 8 of 21

IBM Software Group

Section

Configuration Options

5
Request Metrics

© 2004, 2006 IBM Corporation

The next section discusses what configuration options are available for request metrics.

WASV6_RequestMetrics.ppt

Page 9 of 21

Request Filtering

= Use filters to limit the amount of transactions that are traced
» Example: Use IP address filters to monitor synthetic transactions

= Available filters
» HTTP requests —filtered by IP address, URI or both

» Enterprise Bean requests — filtered by EJB name and optional
method name

» JMS requests — filtered by destination name and topic name

» Web Services requests — filtered by WSDL port name, operation
name, and name space

= Administrative Console path: Monitoring and Tuning >
Request Metrics

Request metrics filters are used to limit the number of incoming requests that are
monitored. In order for an incoming request to generate request metrics performance data
it has to match one of the defined filters. If you do not define filters within the Application
Server, all incoming requests will be monitored. An example of when you would want to
use request metrics filters is monitoring synthetic transactions. In this example an IP
address filter would be defined for the system that is used to generate synthetic
transactions against your environment. This would result in the Application Server only
monitoring requests that come from this system.

There are several types of request metrics filters available. Filters can be set for incoming
HTTP requests, remote EJB requests, Web Services requests, and Java Messaging
Service or JMS requests. HTTP requests can be filtered by IP address, URI or both.
Remote EJB requests are filtered by EJB name and optionally the method name. JMS
requests are filtered according to the specified destination and topic name. Web Services
requests are filtered according to the specified WSDL port name, operation name, and
name space.

The request metrics settings can be viewed and modified by navigating to Request Metrics
under Monitoring and Tuning in the Administrative Console.

WASV6_RequestMetrics.ppt Page 10 of 21

|BM Software Group EH

Trace Levels

= Use trace levels to limit the depth of a transaction
that is logged

» Higher trace level = greater performance hit

= Available trace levels
= None — No data captured
= Hops — Process boundaries (web server, servlet, EJB over RMI-IIOP)
= Performance Debug — Hops + 1 level of intra-process calls
= Debug - Full capture (all cross-process/intra-process calls)

= Administrative Console path: Monitoring and
Tuning > Request Metrics

Trace levels are used to limit the depth of request metrics data that are collected. It is
important to note that the higher the trace level that you set the greater the performance
hit on your WebSphere Application Server.

There are four trace levels that are available. The trace level setting of “None” results in no
data being captured. This has the same effect of disabling request metrics on the server.
The trace level setting of “Hops” captures requests when they move between processes.
This will not collect request metrics data for a servlet calling an EJB residing in the same
JVM. The trace level setting of “Performance Debug” captures the same amount of data
as Hops plus it captures one level of intra-process calls. This will collect the request
metrics data for a servlet calling an EJB in same JVM, but won'’t capture the EJB calling
another EJB in same JVM. The trace level setting of “Debug” results in all cross process
and intra-process calls being captured. This should only be used in extreme cases. In
most cases Hops or Performance Debug should capture sufficient data.

The request metrics settings can be viewed and modified by navigating to Request Metrics
under Monitoring and Tuning in the Administrative Console.

WASV6_RequestMetrics.ppt Page 11 of 21

Request Metrics Output

= Qutput to the Application Server’s logs
» HTTP requests output to http_plugin.log

» Servlet/Web Services/EJB/JDBC/JMS requests output to
SystemOut.log

= Qutput to Application Response Measurement (ARM) agent
and visualized using ARM management software

» IBM Tivoli Monitoring for Transaction Performance (TMTP)
» IBM Enterprise Workload Management (EWLM)
» Other 3rd party tools

» Output can be directed to either location or both at the
same time

» Recommended practice — disable request metric logging when
implementing an ARM agent to reduce disk I/O

Request metrics data can be output to two different locations. The first location is the
Application Server’s log files. If the request is a Web request and it matches the defined
filters, request metric data is placed in the HTTP plug-in log. The rest of the components
that support request metrics, output their data to the server’s SystemOut.log file. After the
data is output it is up to you to correlate the sub-transactions together to visualize the
whole transaction.

The second location that request metric data can be output is an Application Response
Measurement agent. Once data is written to the ARM agent it externalizes it to its
associated ARM management software. It is the responsibility of the ARM management
software to analyze and visualize the collected data into an understandable format. It is
important to note that WebSphere Application Server does not provide an ARM agent, this
is the responsibility of the tool vendors that utilize the ARM agent. Examples of IBM
products that have implemented the ARM standard and that can be used with request
metrics are IBM Tivoli Monitoring for Transaction Performance and IBM Enterprise
Workload Management.

It is important to note that you can output request metric data to either of the locations at
the same time. It is, however, recommended that when outputting data to an ARM agent
that you disable request metric logging. This should be done to minimize the amount of
disk I/O that is encountered when writing request metric data to the disk.

WASV6_RequestMetrics.ppt Page 12 of 21

IBM Software Group Eﬁ

Example: Request Metrics Logging

Portion of ${PATH_TO_PROFILE}/logs/http_plugin.log
PLUGIN: parent:ver=1,ip=192.168.0.1 time=1016556185102, pid=796.reqid=40,event=1
- current:ver=1,ip=192.168.0.1 time=1016556 185102, pid=79¢ Q
type=HTTP detail=/hitcount elapsed=60 bytesin=0 bytesOut=2252

(Correlates request in HTTP
plug-in to Web Container

AY
Portion of ${(PATH_TO_PROFILE}/logs/${WEB_CONJAINER_SERVER}/SystemOut.log |

PMRMO0003I: parent:ver=1,ip=192.168.0.1,time=1016556 185102, pid= 79<veqxd—40 ev}\t 1
- current:-ver=1,ip=192.168.0.1,time=1016556 186 102, pid=884(reqid=40 e Ypats 1
type=URI detail=/hitcount elapsed=60

~

Correlates request in Web

Container to EJB
Container

\
Portion of ${(PATH_TO_PROFILE}/logs/${EJB_CONTAINER_SERVER}/SystemOut.log

PMRMO003I: parent:ver=1,ip=192.168.0 1.t:me=1016556186102.pid=88<req|d=40.e>nt=1
- current-ver=1,ip=192.168.0.2 time=1016556 122505, pid=932 =1
type=EJB detail=com.ibm.defaultapplication.Concretelncrement_501gb i

~
Correlates request in EJB
Container to JDBC call

PMRMO0003I: parent:ver=1,ip=192.168.0.2 time=1016556122505,pid49321
- current:ver=1,ip=192.168.0.2 time=1016556 122505,pid=9321.reqid=
type=JDBC detail=SELECT T1.PRIMARYKEY, T1.THEVALUE FROMYNCREMENT T1 WHERE T1.PRIMARYKEY = ? elapsed=0

(eqid=100 eyent=1

01,event=1

PMRMO003I: parent:ver=1,ip=192.168.0.2 time=10165561225 05, pid=9321
- current-ver=1,ip=192.168.0.2 time=1016556 122505, pid=9321, re qid=102 event=1
type=JDBC detail=UPDATE INCREMENT SET THEVALUE = ? WHERE PRIMARYKEY = ? elapsed=0

Container to JDBC call

Correlates request in EJB]

© 2004, 2006 I1BM Corporation

The graphic on this slide displays what is output to the Application Server’s logs when
request metric logging is enabled. The important thing to note in this slide is how the
correlator identifier is passed as the request moves from the HTTP plug-in to the Web
container to EJB container to the backend JDBC calls. The passed correlator allows you to
view not only the whole transaction but the sub-transactions that make up the whole
transaction.

WASV6_RequestMetrics.ppt Page 13 of 21

IBM Software Group EH

Performance Impacts

= Performance impact < ~5% when no filters are
enabled and trace level is set to “Hops”

= Performance impact can be reduced by

» Setting proper filters — only monitor transactions that you
are interested in

» Setting proper trace levels — only collect data to the depth
needed

» Log request metrics data to an ARM agent
= Recommended practice

= Request metrics logging could be expensive due to the large amount of
disk I/O required to write data to the Application Server’s logs

The performance impact of enabling request metrics on your Application Server has been
improved in V6. The performance impact on the server is less than approximately five
percent when no filters have been enabled and a trace level of “Hops” has been set. This
is a significant improvement over V5.

To further reduce the performance impact incurred by your Application Server, additional
steps can be taken. It is recommended that you enable filters for only the transactions that
you want to monitor. Additionally, set the trace level to a setting that allows you to trace
performance data to the depth required. Lastly, log request metrics data to an ARM agent.
Logging data to the ARM agent is the recommended practice when using request metrics
and is also less expensive than request metrics logging. Remember request metrics
logging is expensive due to the amount of disk I/O necessary to write the request metrics
data to the Application Server’s logs.

WASV6_RequestMetrics.ppt Page 14 of 21

IBM Software Group EH

Application Response Measurement (ARM)

= Open Group standard

= Defines the specification and APls for per-
transaction performance monitoring

» When request metrics is configured to use ARM — calls
are made using ARM APls

* For more information see:

© 2004, 2006 I1BM Corporation

Application Response Measurement is an Open group standard. ARM defines a
specification and set of APIs that should be used for per-transaction performance
monitoring. The ARM APIs are used when request metrics are configured to output data

using the ARM agent. If you want to learn more about the ARM standard and its API visit
the link specified in the slide.

WASV6_RequestMetrics.ppt Page 15 of 21

Request Metrics and ARM

= Supports following ARM interfaces
» Open Group ARM 4.0 standard

= Supportedin all components
» Tivoli ARM 2.0

= Supportedin all components except web server plug-ins

= Correlator can be extracted from request metrics
transaction and passed to sub-transactions taking
place in non-Application Server containers

» Allows a complete transaction call graph by plugging into
the request flow

HTTP Request: /exampleApp/exampleServiet

» 200 ms
» 125ms
» 45ms

Servlet: /lexampleApp/exampleServiet
${CALL_TO_UNIQUE_BACKEND}

Request metrics supports two different ARM specifications. It currently supports the Open
Group ARM 4.0 standard within all of its components that support request metrics
collection. It also contains support for Tivoli ARM 2.0 within all of its components that
support request metrics collection except for the Web server plug-ins.

Additionally the request metrics correlator can be extracted from a currently in-flight
request metrics transaction and passed to a non-WebSphere Application Server container.
This allows you to receive accurate time for the whole transaction even as it moves across
application boundaries. In order for this to work, however, the downstream application has
to be ARM-enabled. An example of where this would be useful is a business application
with a WebSphere Application Server front end and a proprietary ARM-enabled backend.
As the transaction prepares to leave your Application Server environment you would
extract the correlator ID from the request metrics transaction and pass it to the proprietary
backend. The proprietary backend would then continue its processing of the request,
continuing to pass the correlator along to subsequent sub-transactions. After the
transaction has finished being processed, the ARM management software would then be
able to combine the sub-transactions taken from both the Application Server and the
proprietary backend and draw a complete picture.

WASV6_RequestMetrics.ppt Page 16 of 21

IBM Software Group EH

Configuring Request Metrics

= Configured through Administrative Console
(Monitoring and Tuning > Request Metrics)

» Enable request metrics

» Select components to collect data on
» Specify trace level

» Select output method

» Set filter values

© 2004, 2006 IBM Corporation

The demonstration that is available on this slide takes you through the different
configuration options and where they are located within the Administrative Console. To
access the demonstration, pause this presentation and click the Show Me icon.

WASV6_RequestMetrics.ppt Page 17 of 21

=
IBM Software Group iﬁg

Section

Summary and Reference

%
Request Metrics © 2004, 2006 IBM Corporation

The next section will summarize the points discussed in this lecture.

WASV6_RequestMetrics.ppt Page 18 of 21

IBM Software Group EM

Summary

= Request metrics track transactions, recording and
correlating the process time in each Application
Server component

= Use with ARM applications to monitor status and
response times of key transactions in your
business applications

= Set filters and trace levels to minimize performance
degradation

© 2004, 2006 I1BM Corporation

In summary, this presentation has focused on the request metrics functionality provided
with WebSphere Application Server. Request metrics allows you to track individual
transaction’s performance as they move through the Application Server environment.
Request metrics is most effective when used in conjunction with an ARM application.
Lastly, filters and trace levels should be used to minimize the performance impact that
request metrics has on your Application Server.

WASV6_RequestMetrics.ppt Page 19 of 21

IBM Software Group Eg
Reference

= To review the ARM 4.0 specification see
4

= For more information on the ARM standard see
1 4

= For more information on IBM Tivoli Monitoring for
Transaction Performance (TMTP) see
4

.
hequest Metrics © 2004, 2006 IBM Corporation

WASV6_RequestMetrics.ppt Page 20 of 21

IBM Software Group

Template Revision: 11/02/2004 5:50

Trademarks, Copyrights, and Disclaimers

The following or regi of c in the United States, other countries, or both:
BH(Iu gs&&uu :fimix ggg;ges wgswere
S B2 nversinbose - = =
Java and allJ are of Sun Mi Inc. in the United States, other countries, or both.

i ,and the logo are regi of ion in the United States, other countries, or both.
Intel, ActionMedia, LANDesk, MMX, Pentium and are ofintel C ion in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvakis.
Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracyas of the date of initial publication. Product data is subjectto change without notice. Th or
raphical errors. IBM may make improvements and/or mm the produu(s)md/of prof %s)mabed herein alany!lne whom nohoe anstatevr\ems reoardng BM s
redrecuon and intent are subjectto change or windrml nohee. represen objectives only. References in this document to
ices does not that IBM intends to make such serv:eenvain in all countriesin which IBM operates or does business. An: mmenmtonnlsh Program
Broduct i this document s not ntended to state or mply tat onbmat program product may be used. Any functionally equivalent program, that does not infringe IBM's int
property rights, may be used instead.

Information is provided "AS IS™ wmomwumsgcoun kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRBUTED "AS IS" WITHOUT ANY WARRANTY El
EXPRESS Of PLED B LAI) WARRANTES OF MERCHANTABILITY, FITNESS FOR APARTICULAR PURPOSE OR NONINFRINGEMENT. BM shal
have no respo is information. 1BM odum are warranted, if atal, according to the terms and conditions of the Agreetwgnts (eg, gl.l Customer A}reement <

ofthose products, their published announcement avalable sources. 1M nas not tesied ose products in connection with this pubiuuon and cannot conﬁrmthe

Statement of Limted lrra htemaﬁoul Program LmseA eement, etc. iundcr which they are pro
or other pub:%’y

accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and

services.

The provision ofthe i g ined herein is not intended to, and does int any right or license under any IBM nts L iries regarding patent or
licenses should be made, in writing, to: ot g Lo ¥ petsnts.or ey ™
Bii Cormoratan
ration

Castie Drive
Armonk, NY 10504-1785
USA
Performance is based on measurements and projections ushg standard IBM benc ina i D as illus of
how those customers have used B products and the results they may have . The actual that any user will vary depending upon
considerations wcnnmenmum of multip g in the user's job stre the VO g , the uorageconguuhn andthe , N0
can be given that an i ghput or per D! to the ratios stat
© Copyright i ines C 2004, 2006. All rights reserved.
Note to U.S. Users- ion related to i i Use, or di is subjectto i set forth in GSA ADP Schedule Contract and IBM Corp.

Request Metrics

WASV6_RequestMetrics.ppt Page 21 of 21

