
WAS50_WebServices.ppt Page 1 of 35

© 2002, 2003 IBM Corporation

Web Services

WebSphere® Application Server Version 5

Updated 5/16/2003

WAS50_WebServices.ppt Page 2 of 35

Web Services © 2002, 2003 IBM Corporation2

Objectives

�Web Services Overview
• What are Web Services?
• Roles and Functions of Web Services

�Web Services Runtime
• Base Support
• IBM WebSphere UDDI Registry (Private UDDI)
• Web Services Gateway (WSGW)

�Problem Determination

�Web Services Security
�Technical Previews
�Summary

WAS50_WebServices.ppt Page 3 of 35

Web Services © 2002, 2003 IBM Corporation3

What are Web Services?

�WSDL described interface that defines a
collection of network accessible operations

• Shared, open, emerging technology standards - SOAP,
UDDI, WSDL, WSIL etc.

• Modular
• Self-described
• Published
• Independently deployable
• Loosely coupled
• Simple
• Business driven
• Provide access to business services

So, what is a Web Service? Definitions will vary, but here is ours. Simply, an "Interface
that describes a collection of networked accessible operations". For developers, one way
to think of Web Services is as a component model. A fairly coarse grained component
model that gives us a building block from which to build solutions from. It's not a
subroutine library or replacing Java collection classes or C++ libraries or anything else you
use. It's function. Could be a stock quote service, could be something more complicated
like a credit authorization, or perhaps an entire business process like loan authorization, a
service composed of other nested services.

The other way to think about Web Services is how most people talk about them, that is the
mechanism itself..., XML messages sent over the HTTP transport protocol.

Modular by design because inherently they are interface oriented.

Described using a service description language. WSDL (Web Services Description
Language).

Published by making its description available to potential users.

Found by sending queries to that registry and receiving the binding details of the
service(s) that fit the parameters of the query.

Bound by using the information contained in the service description to customize the
connection to be created.

Invoked over a network by using the information contained in the binding details of the
service description and possibly composed with other services into new services.

WAS50_WebServices.ppt Page 4 of 35

Web Services © 2002, 2003 IBM Corporation4

Business and Technical Benefits

� Revenue benefits
• Improved relationships with customers/partners
• Work force productivity
• Innovation and reduced cycle times
• Share processes without sharing technology

� Cost reduction
• Deliver new business solutions faster
• Better information flow and knowledge
• Consistent infrastructure
• Based on industry standards avoiding costly proprietary implementation
• Standards hide underlying implementation allowing for more efficient

debugging/testing

� Unification of applications
• New ways of accessing old applications
• Applications can be integrated without regard to implementation details
• Applications can dynamically navigate, discover, and interact over the Internet

(loosely coupled)

� Organized information
• Targeted, more relevant

There are many benefits of Web Services.

WAS50_WebServices.ppt Page 5 of 35

Web Services © 2002, 2003 IBM Corporation5

Roles and Functions

Service Provider

Provides applications as Web Services

Publishes their services to registries

Service Requester

A client needs a service

Searches registry for available services

Service Registry

A searchable repository of service descriptions

Service Providers publish their services

Service Requesters find services

P
u
b
lishBind

Service

Registry

Service

Requester

Service

Provider

FindPublish

The functional enhancements and the commitment to open standards that characterize
the WebSphere V5.0 release go well beyond mere support of J2EE 1.3. In fact, IBM
believes that the market of information technologies is mature enough to move on to the
next step in terms of distributed, Internet-enabled applications. That's where Web Services
play a key role.

The Service Registry role owns a directory of all of the services available. The Service
Registry represents a new, potentially very lucrative business model. The Registry owner
could charge a fee for the use of their directory. Service Providers lists (or advertise) the
Service offering in the registry. Service Requesters on the other hand query the Service

Registry about the services available. Once Service Registry provides the binding
information to the requester, it is no longer involved in the communications between the
provider and requester.

The Service Provider has developed services that they make available as Web Service.

These services will be hosted on their Application Server. A service is invoked by a
requester through an XML message. These XML messages are generally carried across
the Internet through a network-neutral standard protocol called Simple Object Access
Protocol (SOAP). The Service Provider describes the service they are making available

with a standard encoding called Web Services Description Language (WSDL).

The Service Requester is the business that requires a certain business function to be

fulfilled. From an architectural perspective, this is the application that is looking for
(queries the Service Registry) and then binds to and invokes the service. The requester
has to find the service before invoking it - this process of discovery involves accessing a

directory where the services are published. The access occurs through a set of standard

APIs defined in the UDDI standard. UDDI stands for Universal Description, Discovery and
Integration specification.

WAS50_WebServices.ppt Page 6 of 35

Web Services © 2002, 2003 IBM Corporation6

WebSphere v5.0 Web Services Summary

Client

Public
UDDI

Web
Services
Gateway

UDDI
Registry

Service
Requester

Service
ProviderSOAP/HTTP

SOAP/HTTPService
Provider SOAP/HTTP

SOAP/JMS
SOAP/HTTP

RMI-IIOP

publish
query

publish

query

Dynamic
Proxy

Dynamic
Proxy

WSDL1

WSDL1'

WSDL2

WSDL2'SOAP
Support

(rpcrouter)
Service

Requester

DB2®

Stored Procedures

EJB
Session bean

Java™ bean

WebSphere v5.0

SOAP/HTTP

Web Services in WebSphere v5.0 have been enhanced with the addition of WebSphere
UDDI Registry and the Web Services Gateway. The WebSphere Application Server can
act as both a Service Provider as well as a Service Requester for Web Services. Some of
those scenarios are shown.

The other new addition the WebSphere Web Service tooling is the UDDI Registry. The
UDDI Registry provides a means of storing and categorizing information on Web Services
available privately or publicly.

Web Services Gateway, which is installed into WebSphere v5.0, allows for Web Services

to be exposed and available as services not bound to SOAP. Through the Gateway a
service can be accessed from the client through SOAP over HTTP and actually called by
SOAP over JMS. There are other protocol conversions that also can take place with the

Web Service Gateway. The Gateway can also be used to expose Web Services to internal
clients over different bindings from SOAP.

WAS50_WebServices.ppt Page 7 of 35

Web Services © 2002, 2003 IBM Corporation7

Web Services Base Support

� Rich support for SOAP based Web Service hosting and
invocation

� Web Service support for SOAP/HTTP as service
provider

� Application Server can act as a Web Service requester
using SOAP/xxx, for example, SOAP/JMS

� Supported Levels
• Web Services Definition Language (WSDL) Version 1.1

– XML format for describing Web Services
• SOAP Version 2.3
• UDDI Version 2.0

– Java APIs for UDDI actions (e.g. retrieve, process results, query, send,
publish, etc.)

• WSIL 1.0

WSDL defines an XML format for describing network services as a set of endpoints that
operate on messages. WSDL documents allow developers to expose their applications as
network-accessible services. By using UDDI and WSIL, other applications can discover
WSDL documents and bind with them to execute the business processed defined.

SOAP is the Simple Object Access Protocol. IBM's implementation of SOAP builds upon
Apache SOAP.

WSDL allows a service provider to specify the following for a Web Service:

The name of the Web Service and addressing information

The protocol and encoding style to be used when access the Web Service

The type information like the methods, parameters, and data types describing the
interface of the Web Service.

WAS50_WebServices.ppt Page 8 of 35

Web Services © 2002, 2003 IBM Corporation8

Web Services Base Support

� SOAP supports 2 types of exchanges
• Remote procedure call (RPC)

– Access SOAP-available services as if they were local procedures

– Mechanism:
– Marshall/unmarshall datatypes to/from XML

– Package them up into a SOAP envelope
– Send the envelope across HTTP as a POST to the server
– Server performs the requested operation and Transmits result back as the

response to the POST operation
– Synchronous messaging

� Document-oriented messaging
– Used where synchronous messaging is not desired

– Allows for the transmission of an arbitrary XML document within the

body of the SOAP envelope.

– No semantics associated with this method of use

Web Services need a neutral and structured way to represent business information. XML
provides an ideal framework for describing what a service can do and how to invoke it -
and even for actually invoking a service, passing parameters, and getting responses back.

Service providers and service requesters interact by exchanging XML messages. XML
has become the standard mechanism for exchanging messages in the Web Services
arena.

There are two types of message exchanging with SOAP. The first is a remote procedure
call where a method is executed on the service provider's system. A response is expected

for this type of message

Style (RPC vs. Document) is orthogonal to invocation mode (e.g. request/response vs.
one-way messaging vs. solicit/response vs. notify).

WAS50_WebServices.ppt Page 9 of 35

Web Services © 2002, 2003 IBM Corporation9

UDDI in Practice

A unique identifier is assigned
programmatically to each service and
business registration

3.

UDDI Registry

Service Type
Registrations

Business
Registrations

SW companies,
standards bodies, and
programmers
populate the registry
with descriptions of
different types of
services

1.

Businesses populate
the registry with
descriptions of the
services they
support

2.

Marketplaces, search
engines, and business
apps query the registry
to discover services at
other companies

4.

Business obtain the locations
and implementation details of
other business' services from
their registry entries and use
this data to facilitate
e-business integration with
each other over the Web

5.

The Unit Test UDDI Registry is a value-add function to the Web Services picture for
Version 5. With the test (or private) registry, you can publish and test your internal
applications in a secure, private environment.

IBM's private registry is called the IBM WebSphere UDDI Registry.

The IBM WebSphere UDDI Registry is an implementation of the SOAP-based APIs, as
defined by Version 2 of the UDDI specification that allow publish and query functions
programmatically.

Additional information on the IBM WebSphere UDDI Registry can be found in the
InfoCenter for WebSphere Version 5 and other UDDI information can be found at

http://www.uddi.org.

Businesses populate the registry with descriptions of the services that they support. The
registry assigns a unique identifier to each service description and business registration,
storing the identifiers in the registry. Service requesters can query the registry to discover

services.

WAS50_WebServices.ppt Page 10 of 35

Web Services © 2002, 2003 IBM Corporation10

UDDI Registries - Public vs. Private

�Public Registry
• The UDDI Business Registry (UBR)
• Anyone in the world can register with a UBR node and

publish their business and services
• Anyone can search for other businesses and services
• No validity checking of the Web Service

�Private Registry
• Control and access confined within strictly defined limits
• Provided by installing and running a UDDI Registry

product rather than by using the UBR
• More control of the administration and content in the

Registry
• WebSphere Studio Application Developer V5 has tooling

to make use easy

Public Registry

is an implementation of the UDDI specification

UBR nodes (the "cloud") are run by UBR operators (currently (12/02) IBM, Microsoft®,
NTT.com, and SAP)

data is automatically replicated across the nodes

Positive side is universality and global nature, but it is not so good for ensuring privacy
and validity of information

Private Registry

May be confined to:

a department

a company

a consortia of companies

an industry group

etc.

WAS50_WebServices.ppt Page 11 of 35

Web Services © 2002, 2003 IBM Corporation11

UDDI Example Scenarios

A mid-sized manufacturer
needs to create 400 online
relationships with customers,
each with their own set of
standards and protocols

A flower shop in Australia
wants to be “plugged in” to
every marketplace in the
world, but doesn’t know how

A B2B marketplace can get
catalog data for relevant
suppliers in its industry,
along with connections to
shippers, insurers, etc.

WAS50_WebServices.ppt Page 12 of 35

Web Services © 2002, 2003 IBM Corporation12

Unit Test UDDI Registry Details

� Installing and Configuring the Registry - Runtime and
Tooling

• An optional install component with WebSphere Application Server:
Network Deployment

• Automatic file deployment, database creation and uddi.ear file
installation with scripts

• Pre-configured for Cloudscape-based UDDI Registry
• Configurable for DB2
• Configuration performed through a properties file called

uddi.properties
• Unit Test UDDI Registry available with the WebSphere Studio

Application Developer
� Accessing the Registry

• SOAP Interface
• UDDI4J
• EJB Interface
• Browser-based User Console

– http://localhost:9080/uddigui
• WebSphere Studio Application Developer's Web Services Explorer

Installation creates a UDDIReg directory under the WebSphere Network Deployment
Install Directory

Cloudscape is intended for development or testing use only. DB2 is used for production
environments.

Cloudscape is the default database backend.

Configuring for DB2 requires running database creation scripts and modifying the
properties file

The properties file resides in WebSphere's properties directory

The Unit Test Registry is also available to be installed within the Application Developer -

more on this later in this presentation.

UDDI4J is a Java API which simplifies the process by hiding the SOAP XML messages
and HTTP connection implementation

The user console is accessed via http://hostname/uddigui or https://hostname/uddigui

Using the WebSphere Studio Application Developer V5 Web Services Explorer, you can
access the private (or any v2 compliant) UDDI Registry.

WAS50_WebServices.ppt Page 13 of 35

Web Services © 2002, 2003 IBM Corporation13

Developing Application to provide a Service

1. Design and implement the application that represents the Web Service

3. Define and
publish the Service
Implementation
Definition

Web Service
Application

2. Define and
publish the WSDL
Service Interface
Definition

Service
Type

Service Interface
Definition WSDL

Document

URL Location

UDDI Registry

bindingTemplate

URL Location

Step 1

This involves the design and coding required to implement the Web Service

Step 2

The WSDL Service Interface Definition document defines the interface and mechanics of
the service interaction (e.g. message structures, data types)

This step involves publishing a Service Type definition to the UDDI Registry (stored in a
tModel structure). The tModel contains an element called overviewDoc which references a
URL at which the WSDL Service Interface Definition document is located (the WSDL file is
not stored in the Registry directly). Note that this step might not necessarily be performed
by the service provider. For example, a standards body may publish a Service Type

representing a standard web service interface (a hotel booking interface for example).

Step 3 involves publishing a Service to the UDDI Registry (stored in a businessService

structure within a businessEntity structure). The Service registry entry contains a
bindingTemplate structure whose tModelInstanceInfo element references the Service
Type created in Step 2.

WAS50_WebServices.ppt Page 14 of 35

Web Services © 2002, 2003 IBM Corporation14

Developing an Application to access a Service

UDDI Registry

bindingTemplate

Web Service

Application

Service

Type

Service Interface
Definition WSDL

Document

2. Generate and deploy the

Service Proxy

Service Proxy

3. Invoke
the Web
Service

1. Find and reference the
Implementation and Service

Interface Definitions

Step 1

The developer interrogates the UDDI Registry to find:

the Service entry

the associated WSDL Service Interface definition (via the referenced Service Type)

the network location of the service (this is contained in the accessPoint element within the
bindingTemplate)

Step 2

The Service Proxy contains all of the code that is required to access and invoke a Web
Service. Typically, the development tooling will generate this automatically

The Service Proxy is deployed with a client application

Step 3

The client application is run and uses the Service Proxy to invoke the Web Service

Note: It is possible that the service interface definition is located at run time (called
Runtime Dynamic Binding) rather than at build time as above (Static Binding)

WAS50_WebServices.ppt Page 15 of 35

Web Services © 2002, 2003 IBM Corporation15

Web Services Gateway

� Middleware component that provides framework
between Internet and intranet environment during Web
Services invocations

• Securely enable Web Services across administrative boundaries

� Can be used to subset exposure of Enterprise Web
Services to Internet (proxy gateway)

� Enables consistent deployment of WebSphere and
non-WebSphere Web Services

• Security and trace/logging

� Support integrated in WebSphere Network Deployment
� Support for multiple transports and protocols

• Export Services for invocation
– SOAP/HTTP

• Onward invocation
– SOAP/HTTP, SOAP/JMS, Direct Java via RMI-IIOP, Java over JMS

The Web Services Gateway itself if a J2EE application.

The Web Services Gateway allows interaction with public and private UDDI registries.
External services can be exposed as internal services. Likewise, internal services can be
exposed externally.

The gateway provides a bridge between the Internet and Intranet and therefore between
services located in those two environments

The gateway handles conversion between protocols. For example, external services can
be invoked with SOAP/HTTP and SOAP/JMS or RMI/IIOP can be used for internal
services.

Code-free configuration of services through the gateway. There is no development
involved.

A SOAP/HTTP channel is supported (two channels are shipped - one for external
customers the other for internal).

Single deployment to multiple channels

Support for multiple target service types - e.g. SOAP/HTTP, SOAP/JMS, EJB, and Java

Configurable intermediation through filters

Support for discovery through WSDL and UDDI

Support for publication through WSDL, WSIL and UDDI

Authentication and authorization support (configurable for each service and/or operation)

WAS50_WebServices.ppt Page 16 of 35

Web Services © 2002, 2003 IBM Corporation16

Web Services Gateway

Client

Public

UDDI

WSGW

UDDI
Registry

Internet

(red zone)

DMZ

(yellow)

Intranet

(blue)

Services

Client

Internal
Service
Provider

firewall firewall

SOAP/HTTP

SOAP/HTTP

External
Service
Provider

SOAP/HTTP

SOAP/JMS

publish

query (lookup)

publish

WSDL1

WSDL1'

WSDL2

WSDL2'

deploy

deploy

query (lookup)

Channel

WSIF

WSIF

Channel

This chart shows the final result of deploying your binding information to the Web Services
Gateway.

In the top half of the chart, you have created a Web Service internally and have deployed
the binding information to the Web Services Gateway. The gateway in turn creates a
service proxy and a description file that is made available in a public UDDI. When the
client (external in this case) requests that specific service, it retrieves the binding
information from the public UDDI registry and invokes the service based on the
description. The client does not have to be concerned with the implementation details as
the Web Services Gateway hides the implementation.

The gateway handles the Security aspects of this call. There are three primary

authentication mechanisms: HTTP(S) based authentication, servlet-based authentication,
and SOAP authentication done by document signing and verification.

The bottom half of the charts illustrates how an external service could be exposed as an
internal service.

Here is a brief description of the protocols illustrated:

1) SOAP/JMS: The JMS message body is a text message, whose text contains a SOAP

message which encodes the input and output messages for the service invocation.

2) Java/JMS: The JMS message body is an object message, and the input and output
messages for the service invocation are written into the message body as serialized Java
objects.

The Web Services Gateway is configured with a number of transport channels. A transport
channel is the underlying transport mechanism for Web Service invocation. These

channels provide the provider a choice of transports on which to make the Web Service
available. When you map (deploy) a service through the Gateway, you can configure

WAS50_WebServices.ppt Page 17 of 35

Web Services © 2002, 2003 IBM Corporation17

Web Services Gateway

� Benefits of using the Gateway
• Deployed as J2EE application
• Leveraging existing infrastructure
• Application server hosts the service proxy
• Provides centralized management of Web Services (including 3rd

party Web Services)
• Handles protocol translation
• Faster return on investment / rapid business integration

� Deploying a Web Service to the Gateway
• The Web Service definition must exist
• Deploy existing binding information for Web Service and deploy to

Web Services Gateway
• Gateway acts as a dynamic proxy for the service and a new WSDL

file is created
• Web Services client utilizes new WSDL binding to access

The Web Service Gateway includes a web-based console for the management of services
(deployment, undeployment, viewing deployed services etc.) The gateway currently
handles only incoming SOAP/HTTP requests, but support for more channels will be added
in the future. Requests passing through the gateway may be sent to a Java class, an EJB,
or a SOAP server (including another gateway.)

Additional information on the Web Services Gateway can be found on DeveloperWorks.
Here's an introduction article to get started: http://www-
106.ibm.com/developerworks/webservices/library/ws-gateway. The InfoCenter is also a
good resource for information.

WAS50_WebServices.ppt Page 18 of 35

Web Services © 2002, 2003 IBM Corporation18

Web Services Gateway Technical Details

� Issues solved the Web Services Gateway
• Decoupling of deployment from invocation

– Inbound requests, outbound requests, process abstraction, flexibility,

protocol transformation

� Features of the Web Services Gateway
• Transformation of Web Service request

• UDDI publication and discovery

• Centralized for management and security of all Web Services

• Built upon the IBM Web Services Invocation Framework (WSIF)

• Configurable runtime component

• Maps WSDL documents
– Target service maps to Gateway service

– Target bindings replaced by Gateway bindings

– Target service port replaced by Gateway service port

The Web Services Gateway separates the actual implementation of a service from how it
is accessed. This provides for the higher level of abstraction and flexibility results. The
deployment infrastructure can be modified without notifying all of the service requesters.

Web Services Invocation Framework (WSIF) invoke Web Services defined using WSDL
directly, hiding the complexities of the underlying protocols.

The Web Services Gateway forwards incoming requests to the target service and then
sends the responses back to the originator.

WAS50_WebServices.ppt Page 19 of 35

Web Services © 2002, 2003 IBM Corporation19

Web Services Gateway Technical Details

� Target service end point mapped to gateway
• "Channels" in gateway provide end point listeners

� Target service bindings regenerated
• Each channel generates its own bindings

� Exported WSDL generated on demand
• Cached copy held in memory

� Channels
• Provide end point listeners

– Encapsulates transport/protocol specifics
– SOAP/HTTP uses servlet
– SOAP/JMS uses JMS queue

• Generate WSDL bindings
• Receive Web Service requests
• Send responses
• Handle asynchronous responses (JMS)
• Configurable for each gateway service

A request to the Web services Gateway arrives through a channel, is translated into an
internal form, then passed through any filters that are registered for the requested service,
and finally sent on to the service implementation. Responses follow the same path in
reverse.

A deployed Gateway service, channel, filter, etc. information is stored in a file called
wsgw.cfg (a serialized Java object). The Gateway version of the WSDL service definition
(implementation and interface) files are generated as needed from the target service
WSDL and cached. If the target service WSDL becomes unavailable, then so does the
Gateway version (at least temporarily).

WAS50_WebServices.ppt Page 20 of 35

Web Services © 2002, 2003 IBM Corporation20

Web Services Gateway Technical Details

� Uses Web Services Invocation Framework (WSIF) integrated with
base WebSphere Application Server
API that provides binding independence to any Web Service

� Allows complete dynamic invocation of Web Services
Updated implementation of a binding can be plugged into WSIF at
runtime

� New bindings can be plugged in at runtime
� Binding can be deferred until runtime

� Solves the following issues:
• Web Services aren't just SOAP services

– Framework provides binding independence for service invocation
• Client code specific to implementation protocol is limiting

– New version of SOAP, have to update client code - difficult, time consuming
• Incorporating new bindings into client code more easily

– Can define new bindings with WSDL, previously you had to generate stubs

WSIF enables the Web service developer, to move away from the usual Web services
programming model of working directly with the SOAP APIs, towards a model where you
interact with representations of the services. So you can work with the same programming
model regardless of how the service is implemented and accessed.

WSIF is a runtime architecture for Service-Oriented Applications

The Gateway deals internally with WSIFMessage object that the Channel converts to/from
the wire format.

With the interface and binding information moved out of the application code, it is possible
to use other protocols using same client model.

WSIF allows a binding-independent mechanism for Web service invocation.

WSIF free client code from the complexities of any particular protocol used to access a
Web service.

WSIF enables dynamic selection between multiple bindings to a Web service and helps
the development of Web service intermediaries.

WAS50_WebServices.ppt Page 21 of 35

Web Services © 2002, 2003 IBM Corporation21

Web Services Gateway Technical Details

�Filters
• Provide a plug-in point to enable per-invocation

processing
– Metering
– Monitoring
– Contracts

�Definable as pre or post invocation of the Web
Service

�Configurable for each Gateway service
�Customer written filters possible with

Enterprise Extensions

Filters are used to intercept service invocations which come into the Web services
Gateway, and the responses coming out of the Gateway. Filters can perform a wide range
of tasks, from logging messages, to transforming their content, to terminating an incoming
request. Filters are deployed to the Web services Gateway, however, they are not used
until they are registered for used with a deployed Web Service.

To install a filter, Click Filters on the main administration page. Then click Deploy. A form
is displayed for you to specify the filter deployment details. Fill in the Filter name – this is
the name by which the filter is known within the Web Services Gateway. This name must
be unique within the Web Services Gateway.

Filter samples will be available with the WebSphere Programming Model Extensions.

WAS50_WebServices.ppt Page 22 of 35

Web Services © 2002, 2003 IBM Corporation22

Web Services Gateway

The Web Services Gateway, a J2EE Application, has a browser-based interfaced. It is
located at the URL shown in the Address bar of the browser window. You can specify
information about the Gateway instance, configure channels, filters, UDDI references, and
work with services (list, deploy, undeploy, etc.). D

WAS50_WebServices.ppt Page 23 of 35

Web Services © 2002, 2003 IBM Corporation23

Web Services Gateway - Outline View

� Internal service (Target Service) has been developed -
published to WebSphere UDDI Registry

� After internal use and testing, want to make the service

available to partners or others

internal

WSDL

Target Service

Internal user

company

boundary

firewall

Test
UDDI

This chart illustrates the current environment largely as it exists today. Now with the
WebSphere UDDI Registry, internal services can be tested and when desired,
externalized to other parties. This externalization is done through configuring the Web
Service using the Web Services Gateway.

WAS50_WebServices.ppt Page 24 of 35

Web Services © 2002, 2003 IBM Corporation24

Web Services Gateway - Installation

� Install Gateway
� Configure Gateway with channels (e.g. SOAP)
� Configure Gateway with public UDDI Registry details

internal

WSDL

Target Service

InternetPublic
UDDI

Gateway

The WebServices Gateway is an installable option on the WebSphere Network
Deployment package. The InfoCenter contains excellent documentation on how to
complete the installation.

WAS50_WebServices.ppt Page 25 of 35

Web Services © 2002, 2003 IBM Corporation25

Web Services Gateway - Configure Service

� Point Gateway at internal WSDL (URL or UDDI)
� Choose which channels to make service available over
� Gateway publishes "external" WSDL to URL, UDDI and

WSIL

internal

WSDL

Target Service

InternetPublic
UDDI

Gatewayexternal
(GW)
WSDL

To configure a service on the Gateway, you use a web browser, and bring up the Web
Services Gateway GUI console. It is then you choose to deploy a service to the Gateway.
There are several choices to make for each Web Service you deploy (e.g. authorization,
filters, the channels to make available over, etc.)

WAS50_WebServices.ppt Page 26 of 35

Web Services © 2002, 2003 IBM Corporation26

Web Services Gateway - Configure Service...

This graphic shows how you would configure a service. Each service is configurable - for
example, you may use filters on some services and not on others. You can deploy a web
service to multiple channels with a single deployment.

WAS50_WebServices.ppt Page 27 of 35

Web Services © 2002, 2003 IBM Corporation27

Web Services Gateway - Runtime

� Partner queries UDDI (or URL, WSIL)
� Partner calls service
� Gateway authenticates, authorizes, and audits

� Gateway forwards request to target service

internal

WSDL

Target Service

Internet

Public
UDDI

Gateway

Log

Partner

Once the service has been deployed, the third party calls the service and the Web Service
Gateway handles passing the request to the target service.

WAS50_WebServices.ppt Page 28 of 35

Web Services © 2002, 2003 IBM Corporation28

Web Services Gateway - Intermediation

� For intermediation - e.g. metering, custom authorization,
load-balancing, routing - the administrator deploys a
"filter" (stateless session bean)

� The Gateway calls out to filter before and/or after every
request

internal

WSDL

Target Service

Internet

Public
UDDI

Gateway

Partner

Filter

(user-written
or off the

shelf)

WAS50_WebServices.ppt Page 29 of 35

Web Services © 2002, 2003 IBM Corporation29

Problem Determination

� TCP/IP Monitoring View
• Available through the server tooling within WebSphere Studio

Application Developer

• Simple server that monitors all the requests/responses between a

Web browser and an Application Server

� WSDL and DADX validators

� Use "normal" debugging techniques in WebSphere

Application Server Environment
• Log files, traces, etc.

� Check WebSphere Studio Application Developer

README for known limitations

Problem Determination and Debugging is a large topic that is extremely important
especially when your application is not working as designed. As you create and/or
consume a Web Service, the Web Services tooling wizard has validators that help prevent
problems from occurring.

Typically, you would employ the 'normal' WebSphere Application debugging techniques.
The log files generally provide good clues as to what may be occurring. Enabling tracing is
probably the next step if you cannot determine the problem.

Specifically for Web Services, there is a TCP/IP Monitoring View within WebSphere Studio
Application Developer that serves as an point where all requests between a Web browser
and Application Server pass through. By using the TCP/IP Monitor, you can view the

traffic that is flowing across the network.

Java debug can be used too....as most web services parts are implemented in Java with

the exception of DADX and URL.

WAS50_WebServices.ppt Page 30 of 35

Web Services © 2002, 2003 IBM Corporation30

Web Services Security

� There is no such thing as absolute security
� There are risks and steps to minimize those risks
� Aspects of security

•Identity, authentication, authorization, integrity, confidentiality,

auditing, non-repudiation
T

im
e

Seven Aspects of Security

1. Identification: who are you?

2. Authentication: how do I know your identity is true?

3. Authorization: are you allowed to perform this transaction?

4. Integrity: is the data you sent the same as the data I received?

5. Confidentiality: are we sure that nobody read the data you sent.

6. Auditing: record of all transactions so we can look for security problems after the fact.

7. Non-repudiation: both sender and receiver can provide legal proof to a third party that
the sender did send the transaction, and the receiver received the identical transaction.

The Web Services security model introduces a set of individual interrelated specifications

to form a layering approach to security.

The WS-Security specification (co-developed by IBM, Microsoft, and VeriSign, Inc.)
provides the basic elements to add message integrity and confidentiality to Web Services.
WS-Security is at the foundation of the Web Services security model that is being
proposed.

WAS50_WebServices.ppt Page 31 of 35

Web Services © 2002, 2003 IBM Corporation31

Web Services Security

� WS-Security - describes how to attach signature and encryption
headers to SOAP messages. In addition, it describes how to attach
security tokens to messages.

� WS-Policy - will describe the capabilities and constraints of the security
(and other business) policies on intermediaries and endpoints (e.g.
required security tokens, supported encryption algorithms, privacy rules).

� WS-Trust - will describe a framework for trust models that enables Web
services to securely interoperate.

� WS-Privacy - will describe a model for how Web services and
requesters state privacy preferences and organizational privacy practice
statements.

� WS-SecureConversation - will describe how to manage and
authenticate message exchanges between parties including security
context exchange and establishing and deriving session keys.

� WS-Federation - will describe how to manage and broker the trust
relationships in a heterogeneous federated environment including
support for federated identities.

� WS-Authorization - will describe how to manage authorization data and
authorization policies.

There is a download available on alphaWorks (http://www.alphaWorks.ibm.com) that
provides an implementation of SOAP Security Tokens and Digital Security components of
the WS-Security specification. This specification was co-developed by IBM (other
participant was Microsoft) to help companies build secure, interoperable Web Service
applications. The SOAP Security Token indicates the message sender's properties: name,
identity, credentials, and capabilities. It helps identify the message sender to the Web
Service provider. WS-Security describes enhancements to SOAP messaging to provide
quality of protection through message integrity and message confidentiality.

To learn more about Web Services security, please visit:

http://www.ibm.com/developerWorks/webservices/libray/ws-secure

WAS50_WebServices.ppt Page 32 of 35

Web Services © 2002, 2003 IBM Corporation32

Web Services Technical Previews - Runtime

� JSR 101 (JAX-RPC) and JSR 109 (Web Services for J2EE)
• Goal is to enable upcoming J2EE 1.4 Web Services with WebSphere

Version 5.0
– JSR 101

– Standard programming model
– XML-based RPC
– Client stub generation and programming model
– Standard mappings from WSDL to Java and from Java to WSDL

– JSR 109
– J2EE standard implementation and deployment model for Web Services
– Web Services as resources, J2EE client access
– Axis runtime - Stateless Session EJB or Servlet endpoint

– Standard programming model
– portable Web Services applications
– clients: EJB, servlet, application client as client to Web Service
– server: Stateless Session Bean and Java Bean in a Web Container as implementation

of Web Service

� JSR 101 and 109 now finalized
� Tech Preview is the IBM first standards-compliant release with

regard to the programming model

IBM continues to demonstrate strong leadership in the area of Web Services and the
driving evolving open standards

WebSphere Application Server V5 has the following support for Web Services:

- Apache SOAP 2.3 runtime

- DOM-based parsing

- Relies on Web Services Toolkit or WSAD for emitters (no tooling in the
runtime to help write stubs)

- Proprietary programming model

Web Services Technical Preview

- Based on Apache Axis

- SAX-based parsing

- Includes command line tooling

- Conforms to Java Web Services standards

- Standards-based programming model

- Applications portable across Application Servers

WAS50_WebServices.ppt Page 33 of 35

Web Services © 2002, 2003 IBM Corporation33

Web Services Technical Previews - Runtime

�Security for Web Services
• Standards still under development
• Preview will provide

– Authentication and Authorization via usual J2EE security

mechanisms

– Authentication via WS-Security

– Digital Signature support via WS-Security

�Ships with the Web Services Technical Preview
as a web download to augment Version 5.0

Security via normal J2EE security mechanisms is accomplished by using J2EE Role-
based security, using BasicAuth to collect Authentication data

WS-Security has three possible ways to authenticate

Basic Authorization (user token, userid and password) flows from the client to the server
and it is authenticated and the identity is used to invoke the service.

Binary Security Token for X509 Certificate

Identity Assertion (after the signature of the signer certificate is validated, the Identity is
used to invoke the service.

WAS50_WebServices.ppt Page 34 of 35

Web Services © 2002, 2003 IBM Corporation34

Summary
� Web Services offer many benefits

� Industry standards used - XML, SOAP, WSDL, UDDI

� Tools for working with all Web Service Roles (Service Provider,
Service Broker, and Service Requester)

� UDDI provides a mechanism for Service Providers to register their
services and for Service Requesters to discover them

� The WebSphere UDDI Registry allows a variety of means of access:
• SOAP API, UDDI4J, EJB interface, Web-based console

� Web Services Gateway allows sharing internal Web Services across
administrative boundaries

� Web Services Security - security models not standardized

� Technical Previews demonstrate early J2EE 1.4 support

WAS50_WebServices.ppt Page 35 of 35

Web Services © 2002, 2003 IBM Corporation35

Trademarks and Disclaimers
© Copyright International Business Machines Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country. The following terms are trademarks
or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries DB2 DB2 Universal Database CICS
Netfinity zSeries OS/390 IMS

Lotus, Domino, Freelance Graphics, and Word Pro are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and
the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. ActionMedia, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other
countries. Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from
publicly available information, including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your
local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to
specific levels of performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements.
The information is presented here to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future
planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Copyright International Business Machines Corporation 2003. All Rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

