
WAS50_Naming.ppt Page 1 of 26

Updated 3/08/2003 © 2002, 2003 IBM Corporation

Naming - Overview and Examples

WebSphere Application Server V5.0

WAS50_Naming.ppt Page 2 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation2

Agenda

�What has changed in Naming?
• CosNaming functionality changes
• Limited JNDI exposure of underlying changes

�Interoperable Naming Service (INS)
• Improves interoperability with other App Servers and with
CORBA servers

�Distributed CosNaming
• Removes single name server bottleneck

�Administratively configured bindings
• Increased ability to add objects to name space through
admin interfaces

WAS50_Naming.ppt Page 3 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation3

Naming Enhancements - Overview

� Interoperable Naming Service (INS)
• INS CosNaming Required for J2EE 1.3

– corbaloc and corbaname URLs supported in addition to iiop URLs
– change in default bootstrap port assignment (from 900 to 2809)

�Distributed CosNaming
• Multiple CosNaming Servers (DeploymentManager, NodeAgent,

Application Servers)
– Objects are bound into contexts within same process
– Typically, lookups start in local process, end in process where target

object is
• Mostly transient, built from configuration data

– Persistent roots at cell and nodes (xml docs in SM repository on local file
system)

• Single logical name space across a cell
– Includes context for each server cluster and each non-clustered server

• Multiple bootstrap ports per node (one per server)
�Administratively configured bindings

• Added administratively rather than writing code
• Can be used for federation of name spaces, v4.0 interoperability

Servers to deal and understand names formulated according to the CORBA naming
scheme (corbaloc designates an end-point, such as a host and corbaname designates an
object's name) Notice that the port name has also changed (the standard requires it to be
2809).

The naming architecture uses the CORBA CosNaming as a foundation. In WebSphere 5.0
we have multiple CosNaming servers and this reduces the dependency of the WebSphere
Application Server network on a single name server.

Objects are bound locally - a certain server is "responsible" for managing the names of the
objects that are bound locally.

There is still a concept of single logical name space, accessible at the cell manager level.
You will be able to navigate to specific sub contexts - each server or cluster of servers
having its own context.

An interesting enhancement is the concept of "administratively configured bindings" In a
nutshell, these offer the ability to configure an "alias" for names through the admin
console. That way, you can create an additional level of indirection around your V5

names. That can be very useful in order to make v4 names compatible with the V5 naming
structure.

WAS50_Naming.ppt Page 4 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation4

User's View of System Name Space

cell
root

nodes

cells

foreign cells

node
root

X
Y

Z

nodes

node persistent
root

X
Y

Z

<node-name>

persistent

node servers
X

Y
Z

servers

server
root

A
B

C

clusters

clusters
<cluster-name>

cell persistent root

persistent

<user-created-bindings>

<system-artifacts>
<user-created-bindings><foreign-cell-names>

<user-created-bindings>

<server-name>

user persistent
sub-ctxs & objs

X
Y

Z

system artifact
sub-ctxs & objs

A
B

C

user transient
sub-ctxs & objs

A
B

C

user persistent
sub-ctxs & objs

cell root
of foreign cell

M
N

L

Read Only

Read/Write

Transient

Read/Write

Persistent

Read/Write

Persistent

This chart gives you a map of the naming architecture in WebSphere Application Server
5.0

The yellow portion of the naming is basically a reflection of the topology - it's therefore
read-only (can't be modified programmatically) and it is persistence - its persistent state
resides in the xml repository that contains the topological information.

The green areas are meant to store configuration information primarily about resources,
such as data sources, JMS destinations, etc. This data can be modified using the JNDI
APIs (the admin interfaces will do that for us) and it is persistent - being stored in some
other group of xml files out of the repository.

The remaining area is also updateable through APIs and it is meant to contain information
such as the EJB bindings and JNDI names and so on. This part of the name space is
transient, in that changes made through the JNDI APIs will not be persisted anywhere. In

practice, this area of the name space gets created at server's startup - for instance, as the
EJB deployment descriptors are processed.

WAS50_Naming.ppt Page 5 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation5

Single Application Server

Svr1
EJB=Customer

JNDINAME=CustomerHome

EJB=Account

JNDINAME=AccountHome

HOSTNAME= h01

PORT=2809

Servlet

Provider URL:
not needed
Name used in code:
java:comp/env/AccountHome
ejb-ref in deployment:
NAME=AccountHome
JNDINAME=AccountHome

J2EE Client
Provider URL:
corbaloc::h01

Name used in code:
java:comp/env/ejb/Cust

ejb-ref in deployment:
NAME=ejb/Cust

JNDINAME=CustomerHome

Account EJB
Provider URL:
not needed
Name used in code:
java:comp/env/ejb/OwningCust
ejb-ref in deployment:
NAME=ejb/OwningCust
JNDINAME=CustomerHome

nodes
cell
root

CustomerHome

AccountHome

nodes node
root

h01Node
node

servers

server
root

Svr1servers

Namespace

In the single server environment, the naming works exactly the same way as it used to do
in Version 4. There is only one root context - no ambiguity on the location of the named
object - since there is only one server.

WAS50_Naming.ppt Page 6 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation6

Single Application Server, Non-Default Port

JNDINAME=CustomerHome

hostname=h01

server1

port= 9811

EJB or servlet

Provider URL: not needed

Name used in code:

java:comp/env/ejb/myCust

ejb-ref in deployment:

NAME= ejb/myCust

JNDINAME= CustomerHome

Customer EJB

servlet or
ejb

J2EE Client

Provider URL: corbaloc::h01:9811

Name used in code:

java:comp/env/theCustomers

ejb-ref in deployment:

NAME= theCustomers

JNDINAME= CustomerHome

nodescell
root

CustomerHome

nodes
node
root

h01Node node

servers

server

root

server1servers

Namespace

You may still configure the single server to use a different naming port - for instance if you
need to have multiple instances of the server running on the same box

The chart illustrates how to get to that particular server. The only component really
impacted is the J2EE client. Servlets and EJBs will by default look objects up in the same
server as they are running - unless you specifically instruct them to look elsewhere.

Notice the provider URL expressed by means of a corbaloc name.

WAS50_Naming.ppt Page 7 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation7

Two Single Application Servers on Same Box

server1

port= 9811

Customer EJB

server2
port= 9812

EJB or servlet
Provider URL: corbaloc::h01:9811
Name used in code:

java:comp/env/ejb/myCust
ejb-ref in deployment:

NAME= ejb/myCust
JNDINAME= CustomerHome

servlet or
ejb

Customer EJB

JNDINAME=CustomerHome
JNDINAME=CustomerHome

J2EE Client
Provider URL: corbaloc::h01:9812

Name used in code:
java:comp/env/theCustomers

ejb-ref in deployment:
NAME= theCustomers

JNDINAME=CustomerHome

EJB or servlet
Provider URL: not needed
Name used in code:

java:comp/env/ejb/myCust
ejb-ref in deployment:

NAME= ejb/myCust

JNDINAME= CustomerHome

servlet or
ejb

hostname=h01

nodescell
root

CustomerHome

nodes node
root

h01Node node
servers

server
root

server1servers

Namespace for server1

nodes
cell
root

CustomerHome

nodes node
root

h01Node node
servers

server
root

server2servers

Namespace for server2

As we mentioned in the previous chart - you may have multiple instances of the single
server coexisting and interoperating on the same box - in this case you must configure
them with different bootstrap ports. The chart illustrates several combinations and lookup
possibilities - including a J2EE component running on one instance of the single server
looking up objects on the other instance.

WAS50_Naming.ppt Page 8 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation8

Two ND Application Servers on Same Box

hostname= h01

Customer EJBCustomer EJB

JNDINAME=CustomerHome
JNDINAME=CustomerHome

J2EE Client
Provider URL:

corbaloc::h01:9812
Name used in code:
java:comp/env/theCustomers

ejb-ref in deployment:
NAME= theCustomers

JNDINAME= CustomerHome

port=9812
server2

port=9811
server1

port=2809
h01

NodeAgent AppServer AppServer

J2EE Client
Provider URL: corbaloc::h01
Name used in code:
java:comp/env/theCustomers

ejb-ref in deployment:
NAME= theCustomers
JNDINAME=

cell/nodes/h01/servers/server1/CustomerHome

J2EE Client

Provider URL: corbaloc::h01:9811
Name used in code:
java:comp/env/theCustomers

ejb-ref in deployment:
NAME= theCustomers
JNDINAME=

cell/nodes/h01/servers/server2/CustomerHome

node
servers

server
root

cell

root

server1 CustomerHome
Namespace

server
root

server2
CustomerHome

nodes
nodes

node

root

servers
cell
root

nodes
nodes

node

root

h01Node

Things become more complex as we move to network deployment. Here every server has
its own sub context (every app server is a Provider URL) - including the node agent.

The node agent is going to be the default provider URL for a J2EE client running on that
node. Therefore, unless a client specifies a certain appserver as a provider URL, the
lookup will occur on the node agent. In order for the lookup to succeed, the bindings have
to specify the correct fully qualified name of the object (cell/servers/<server>/<name of the
obj>) - in other words, the client needs to specify WHERE the objects is located (big
difference with the 4.0 situation).

WAS50_Naming.ppt Page 9 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation9

Cluster of Two Application Servers

hostname=h01

Customer EJB

Customer EJB

JNDINAME=CustomerHome

J2EE Client

Provider URL: corbaloc::h01,:h02

Name used in code:

java:comp/env/theCustomers

ejb-ref in deployment:

NAME= theCustomers

JNDINAME=

cell/clusters/clusterA/CustomerHome

port=9811
server1

port=9811
server2

port=2809
h02

NodeAgent

AppServer

AppServer

node

servers

server

root

cell
root

server1

CustomerHome

Namespace

server2

nodes

nodes

node

root

servers
node
root

h01Node

port=2809
h01

NodeAgent

hostname=h02

clusterA contains

server1 & server2

node
root

h02Node

node
servers

servers

clusters

clusterA

clusters

JNDINAME=CustomerHome

Things become more complex as we move to network deployment. Here every server has
its own sub context (every app server is a Provider URL) - including the node agent.

The node agent is going to be the default provider URL for a J2EE client running on that
node. Therefore, unless a client specifies a certain appserver as a provider URL, the
lookup will occur on the node agent. In order for the lookup to succeed, the bindings have
to specify the correct fully qualified name of the object (cell/servers/<server>/<name of the
obj>) - in other words, the client needs to specify WHERE the objects is located (big
difference with the 4.0 situation).

WAS50_Naming.ppt Page 10 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation10

v4.0 Client Compatibility - Configured Bindings

hostname=h01

Customer EJBCustomer EJB

JNDINAME= CustomerHome JNDINAME= CustomerHome

v4.0 J2EE Client
Provider URL:
iiop://h01:2809
Name used in code:
java:comp/env/theCustomers
ejb-ref in deployment:
NAME= theCustomers
JNDINAME= CustHome

port= 9812
server2

port=9811
server1

port=2809
h01

NodeAgent AppServer AppServer

servers node
servers

server
root

server1 CustomerHome
Namespace

server
root

server2 CustomerHome

cell
persistent

root

persistent

CustHome

Configured Binding

Type: EJB

Scope: Cell

NameInNamespace: CustHome

Node: h01Node

Server: Server2

JNDI Name: CustomerHome

node
rootcell

root

nodes
nodes

h01Node

In 4.0 - there was no need to specify a path to the object - and while this feature was
convenient, it also lent itself to producing naming conflicts.

However - in order to preserve the 4.0 naming structure, you may want to create
configured bindings that map the 4.0 style into a fully qualified name in the 5.0 name
space.

WAS50_Naming.ppt Page 11 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation11

Bootstrap Ports, CORBA URLs

�Every process has a bootstrap server/port
assignment

• Unique port assignment per server on a given node
• Default port assignments

–Single server environment- default to 2809

–Managed environment - NodeAgent defaults 2809

–Administrators make explicit assignments for others (defaults 9810,

9811, ...)

�JNDI and CORBA URLs
• used for providerurl on InitialContext - generally a corbaloc

• used for direct URL lookup - ic.lookup("urlstring"); -
generally a corbaname

This chart summarizes the changes that involved the bootstrap port in 5.0.

WAS50_Naming.ppt Page 12 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation12

CORBA URLs – Syntax and Examples

�CORBA URL Syntax is also supported
• corbaloc:<protocol>:<addresslist>/<Key>

• corbaname:<protocol>:<addresslist>/<key>#<INS-string-formated-

name>

�CORBA URL Examples
• corbaloc::myhost

• corbaloc:iiop:1.2@myhost.austin.ibm.com:9344/NameServiceCellRoot

• corbaloc::myhost1:9333,:myhost2:9333,:myhost2:9334/NameService

ServerRoot

• corbaname::myhost:9333#nodes/myNode1/servers/server5/someEjb

• corbaname::myhost1:9333,:myhost2:9333#clusters/myCluster2/some

Ejb

• corbaname::myhost:9333/NameServiceServerRoot/someEjb

This slide provides some examples of CORBA names.

WAS50_Naming.ppt Page 13 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation13

Binding JNDI References: Options

�Various options:
• simple name - use only in same server

–"ejb/MyBank/Account"

• corbaname always OK
–"corbaname::myhost1:9812/NameServiceServerRoot#ejb/MyBank/

Account"

• Compound name always OK
–"cell/nodes/myNode/servers/myServer/ejb/MyBank/Account"

–This is the recommended usage

�Apply to both the <ejb-ref> and to the
<resource-ref> bindings

What are then the options available to the J2EE developer for object names?

The simple bindings (4.0 style) is guaranteed to succeed only in the single server case.
You may use it in a servlet or EJB if you are sure the object you are looking up is going to
be located on the same app server.

Alternatively the corbaname is always going to succeed. Of course you need to know the
correct path to the object.

Similarly - the fully qualified JNDI name is also always successful.

WAS50_Naming.ppt Page 14 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation14

Binding JNDI References: Options

�Controlled by property
com.ibm.websphere.naming.namespaceroot

• cellroot

• cellpersistentroot (also legacydomainroot for v4.0 compatibility)

• bootstrapnoderoot (also bootstraphostroot for v4.0 compatibility)

• treeinfrastructureroot (naming implementation internal usage only)

• bootstrapserverroot (this is the default)

�From default position of bootstrapserverroot:
• from within a server, EJBs / resources can be treated as simple names

• bootstrapping to specific server or cluster, EJBs/resources can be

treated as simple names

If you do not specify a fully qualified name or a corbaname, a property allows you to
control which root context is going to be assumed. The default is that the name is going to
be resolved based on the context associated with the server whose bootstrap port you are
connected to.

WAS50_Naming.ppt Page 15 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation15

Configured Bindings

�Administrators can configure bindings to exist in name
space

�Types of objects which can be bound:
• EJB in a server in the same cell

• CORBA Object that can be identified with a corbaname URL
– must be bound into some INS compliant CosNaming server

• Any object bound in WebSphere name space accessible with JNDI
– uses IndirectJndiLookup object

• String constant

�Configured bindings can be relative to:
• server root

• node persistent root

• cell persistent root

There are four types of configured bindings

EJB located in an app server within the same cell

CORBA object identified by a corbaname

Another JNDI name

A string

The configured binding allows for yet another level of indirection when it comes to name

resolution - they can be very effective when migrating 4.0 clients to the V5 platform.

WAS50_Naming.ppt Page 16 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation16

How to Enter Configured Bindings

�EjbNameSpaceBinding
• name in name space relative to configured root
• jndiName of EJB
• node & server or cluster where EJB is deployed

�CORBAObjectNameSpaceBinding
• name in name space relative to configured root
• corbaname URL
• indicator if target object is federated context

or leaf node object
� IndirectLookupNameSpaceBinding

• name in name space relative to configured root
• provider URL
• JNDI name of object

�StringNameSpaceBinding
• name in name space relative to configured root
• constant string value

The information required to create a configured binding in WebSphere 5.0 varies based on
the type of the binding itself.

For EJB Name Space Bindings, you need to specify the name of the EJB relative to the
configured root sub context. This will be the name used by the programs to look up the
EJB. You then need to specify the real JNDI name of the EJB and the server or cluster
where the EJB is installed. By creating an EJB configured binding, you allow applications
to look up EJBs using a name that is not dependent on the topology of the WebSphere
cell. We will talk about the importance of EJB configured bindings later on in this
presentation.

If you want to configure a CORBA Object Name Space binding, you need to specify its

name relative to the configured root context. You then need to specify the corbaname URL
that indicates the actual location of the name. Last - you need to specify an indicator that
tells whether the binding refers to a sub context or to an actual leaf object.

For the indirect lookup name space binding, you need to specify its name relative to the
root sub context. Next you need to enter the provider URL and the JNDI name by which

that object is known at the provider URL.

Finally, for a String name space binding, you need to specify its name and the

correspondent string value.

WAS50_Naming.ppt Page 17 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation17

Issues with V5 "Topology-dependent" Naming

Customer EJB

port= 9812
server2

port=9811
server1

port= 2809
h01

NodeAgent AppServer AppServer

Customer EJB

JNDINAME=CustomerHome

port= 9812
server2

port= 9811
server1port= 2809

h01

NodeAgent AppServer AppServer

Provider URL: corbaloc::h01

Name used in code: java:comp/env/theCustomers

Bindings: JNDINAME=

cell/nodes/h01/servers/server2/CustomerHome

Redeploying applications on a different server affects the bindings!

Provider URL: corbaloc::h01

Name used in code: java:comp/env/theCustomers

Bindings: JNDINAME=
cell/nodes/h01/servers/server1/CustomerHome

JNDINAME=CustomerHome

The new structure of the name space allows for increased flexibility. However - if you bind
your EJB references directly to the compound names of resources and EJBs, you expose
client applications to potential maintenance issues.

In this chart, we illustrate an application where a client is using the Customer EJB. Initially,
the Customer EJB was installed on server1. The client exposes an EJB reference that is
bound using the Version 5 compound name for that EJB. As we have discussed, the
compound name is "topology-dependent", because it includes the name of the node and
the name of the server where the EJB is installed.

This implies that if the EJB is "moved" from server1 to server2 (for instance, as part of
reorganizing an existing application environment) we have to update the bindings of the

J2EE client to have them reflect the new application topology. In large multi-tiered
applications, this may be a significant maintenance issue.

WAS50_Naming.ppt Page 18 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation18

Reducing Topology Dependence

�Create configured bindings for your EJBs
• Configured bindings point to the topology-dependent
name

�Specify names of configured bindings to bind
clients' EJB references

• If EJB is moved to a different server, you only need to
update the configured binding, rather than EJB references
in all the EJB clients

The impact of topology-dependent names on application maintenance can be strongly
reduced by using configured bindings.

WAS50_Naming.ppt Page 19 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation19

Configured Bindings - Illustration

Customer EJB

JNDINAME=CustomerHome

port= 9812
server2

port= 9811
server1

port=2809
h01

NodeAgent AppServer AppServer

Provider URL: corbaloc::h01

Name used in code: java:comp/env/theCustomers

Bindings: JNDINAME=

cell/persistent/MyConfiguredCustomerHome

Configured Binding

Type: EJB

Scope: Cell

NameInNamespace: CustomerHome

Node: h01

Server: Server1

JNDI
Name:MyConfiguredCustomerHome

This chart illustrates how you could make the application client described in the previous
chart completely resilient to changes in the application configuration.

The client's EJB reference is bound to a configured binding
(cell/persistent/MyConfiguredCustomerHome) instead of being bound to the topology-
based name.

The configured binding, in turn, points to the topology dependent name. This solution
makes it a lot easier to redeploy the Customer EJB on a different server or on a cluster:
the only place that needs updating is the configured binding - the client wouldn't have to
change.

WAS50_Naming.ppt Page 20 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation20

Naming Security

�Allows you to
associate user
and user groups
with "roles"
�Roles determine
what a user or a
group is allowed
to do

Allows performing lookups

Allows binding or removing leaf objects

Allows creating new subcontexts

Allows deleting subcontexts

In WebSphere Version 5, you can secure naming operations.

There are four different roles that can be assigned to each user or user group - the same
user can be assigned multiple roles if necessary.

CosNamingRead is the role that enables a user to perform lookup operations on the name
space

CosNamingWrite allows the users to add or remove bindings, but only for leaf objects -
sub contexts cannot be manipulated.

CosNamingCreate allows the users to add sub contexts

CosNamingDelete allows the users to remove sub contexts.

Naming security was introduced back in Version 4.0.2 and it was carried over into Version

5. Currently, the level of granularity of naming security does not allow you to protect
specific sub contexts or specific leaf objects - if you authorize a user to perform lookups,
that user will be able to perform lookups anywhere in the name space.

By default, all users are assigned to a group called Everyone which has Cos Naming
Read authority. Also - all authenticated users can perform all operations if security is on.

WAS50_Naming.ppt Page 21 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation21

Compatibility Options: Version 4 and 5

�v4.0 clients by default get an InitialContext at the
legacyRoot

• equivalent to cell persistent root in V5.0

�Options for EJB lookup
• Redeploy v4.0 client -- ejb-ref updated with V5.0

compatible jndiName
• In V5.0, configure EjbNameSpaceBinding

–same name as v4.0 client will lookup

– identify jndiName and Node/Server or Cluster of target EJB

–configure binding in cell persistent root

In WebSphere Version 5, interoperability with prior releases has been given a lot of focus.

Version 4 clients are bootstrapped at a special initial context - the "cell persistent root" sub
context. That way, Version 4 clients will be presented with a monolithic namespace that
resembles the V4 name space. In other words, they will not be directly exposed to the V5
topology-dependent name space.

If your Version 4 client needs to look up EJBs, you could choose between two alternatives:

You could redeploy the client and bind it using the new topology-dependent names

or - you could create EJB configured bindings under the cell persistent root. The migration
tooling will create those bindings during the migration process.

WAS50_Naming.ppt Page 22 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation22

Compatibility Options: Version 4 and 5

�Options for Resources bound in external name
space

• Redeploy v4.0 client -- resource-ref updated with V5.0
compatible jndiName

• In V5.0, run program to bind resource in V5.0 cell
persistent root

• In V5.0, configure IndirectLookupNameSpaceBinding
–same name as v4.0 client will lookup

–specify provider URL & jndi name of name space where resource is

already bound (some v4.0 name space)

–configure binding in cell persistent root

If your Version 4 client looks up resources that are bound to an external name space
outside of WebSphere, you have three alternatives:

You can redeploy the client to use the Version 5 naming conventions

or, you could write and run a utility program that rebinds those external resources under
the cell persistent root

or, you could create valid indirect lookup name space bindings for those resources.

WAS50_Naming.ppt Page 23 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation23

dumpNameSpace - You Can't Live Without It

�Extremely helpful for debugging any name
space related problems
�Dump contents of name space for a single
server

• does not present the full logical view of the name

space
• shows CORBA URLs where name space transitions to
another server

�Need to use correct host/port to dump the

server you are interested in

The dumpNameSpace utility is also updated. You can run it against any bootstrap port
and get a listing of the names bound with that Provider URL.

The dumpNameSpace will indicate that a certain name points to a context which is
external to the current server - showing the transitions that are necessary to perform a
look up. In other words you won't be able to have a dump of the entire name space with
one single command.

WAS50_Naming.ppt Page 24 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation24

dumpNameSpace - Examples

�Get help on options:
• dumpNameSpace -?

�Dump server on localhost:2809 from cell root
• dumpNameSpace

�Dump server on localhost:2806 from cell root
• dumpNameSpace -port 2806

�Dump server on yourhost.ibm.com:2811 from
cell root

• dumpNameSpace -port 2811 -host yourhost.ibm.com

�Dump server on localhost:2809 from server root
• dumpNameSpace -root server

WAS50_Naming.ppt Page 25 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation25

Summary

�WebSphere Version 5 naming improves:
• Interoperability with other providers of J2EE and CORBA
servers

• Independence of individual WebSphere processes
–No dependency on a single, central name server

�Administrative bindings are also supported
�New format for formulating bindings

• Variety of options for migrating or interoperating with

Version 4 clients

WAS50_Naming.ppt Page 26 of 26

Naming – Overview and Examples © 2002, 2003 IBM Corporation26

Trademarks and Disclaimers
© Copyright International Business Machines Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country. The following terms are trademarks
or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries DB2 DB2 Universal Database CICS
Netfinity zSeries OS/390 IMS

Lotus, Domino, Freelance Graphics, and Word Pro are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and
the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. ActionMedia, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other
countries. Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from
publicly available information, including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your
local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to
specific levels of performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements.
The information is presented here to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future
planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Copyright International Business Machines Corporation 2003. All Rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

