
WAS50_J2EEWeb.ppt Page 1 of 24

Updated 3/08/2003 © 2002, 2003 IBM Corporation

J2EE™ 1.3 – Introduction

Part 3 - Web Components: Servlet 2.3, JSP 1.2

WAS50_J2EEWeb.ppt Page 2 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation2

� J2EE 1.3 Packaging
� EJB 2.0:

•EJB 2.0 Interoperability
•New type of Interface: Local Interfaces
•New Persistence Manager to handle Container-Managed
Persistence and Relationships
•EJB Query Language (EJB QL)
•New type of bean: Message-driven Bean
•EJB Home Methods
•Dependent Values

� Value-Add Features beyond EJB 2.0 specification
� J2EE 1.3 aspects of Web Components

•Servlets 2.3
•HTTP Session Topics
•JSP 1.2

J2EE 1.3 Topics

WAS50_J2EEWeb.ppt Page 3 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation3

Servlet 2.3

WAS50_J2EEWeb.ppt Page 4 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation4

New Features

�Servlet Filtering
�Application Lifecycle Listeners and Events
�Enhanced Internationalization Support
�API changes

There are a few interesting additions to the web container specifications.

Definitely the major addition is represented by the introduction of filters.

Also, a new range of listeners can be defined on web applications allowing the developer
better control over the events that occur in the web container.

Internationalization is also an area where some enhancements were introduced as well as
a number of API changes.

WAS50_J2EEWeb.ppt Page 5 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation5

Filters

� Allows developer to:
• Intercept a request before it reaches a servlet
• Modify the response after the servlet has processed the request and before

the client receives the response
• Send the response directly without sending to the next filter or the servlet

� Downside
• If any filters fail, the request is not completed

� When to use filters:
• Authentication, logging and auditing, encryption
• Image conversion, data compression, tokenizing filters
• Filters that trigger resource access events
• XSL/T filters that transform XML content
• MIME-type chain filters
• Caching filters
•

� Advantage
• Filters can be developed independently of the rest of the application
• Just plug them into your Web module

All filters implement the javax.filter.filter interface, which contains the following methods:

init(FilterConfig): Called by the Web container when the filter initializes. Only one instance
per filter declaration in the deployment descriptor

destroy(): Called by the Web container when the filter closes. Allows filter to free
resources obtained in init()

getConfig()

setFilterConfig()

doFilter(): Represents the main function that can modify the request and the response.
This filter can implement the following pattern, or a subset of this pattern:

•Create customized implementation of the Request object (ServletRequest or

HttpServletRequest) to modify the request and header

•Invoke the next entity in the filter chain, which can include the next filter, or the target

Web resource (if this is the last filter, as defined in the deployment descriptor). Calling the
doFilter method on the FilterChain affects the invocation of the next entity object, passing
in the request and response it was called with, or wrapped versions it created. The filter
can block the request, by not calling the doFilter method and sending the response back
instead.

•Examine the response and wrap the Response object passed in to its doFilter method,
with a customized implementation of ServletResponse or HttpServletResponse, to modify
response headers or data.

WAS50_J2EEWeb.ppt Page 6 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation6

Filter Mechanism Example

Request

Response

...

Request

Response

Process
Request

Process
Response

Block

Request

Filter-1

Process
Request

Process
Response

Block

Request

Filter-2

Process
Request

Process
Response

Block

Request

Filter-N
Web Container

Web Client Servlet

PDA BrowserCell PhoneClient Example

Filter can do the following:
•Modify the request or response
•Block the request and send the response directly
•Modify the response

This chart shows how filters can be chained to provide for a cascaded processing of the
HTTP request and response.

The chart also shows that a software provider may customize the application by adding
filters depending on the clients that are going to be used.

For example, when installing the application at a customer's site where the web browser is
going to be used, only the right-most filter is going to be needed.

When installing the application for a customer that needs access through a cell phone, we
may configure additional filters - but the logic of the application doesn't change and the
filters can be developed and configured independently.

WAS50_J2EEWeb.ppt Page 7 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation7

Definition in Deployment Descriptor

� Filters are defined in Web Deployment Descriptors (web.xml) in the

WAR file
•Specify filter name, filter class and optional initialization parameters

� For each filter, define the filter mapping
•This specifies on which resource(s) to associate the filter

•Can be associated with a single Web resource (Servlet, JSP, Static

resource), or a group of Web resources (via URI)

� Filters are invoked in the same sequence as defined in the DD

<filter-mapping>

<filter-name>Image Filter</filter-name>

<servlet-name>ImageServlet</servlet-name>

</filter-mapping>

<filter-mapping>

<filter-name>Logging Filter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

Example: Filter Definition Example: Corresponding Filter Mappings

<filter>

<filter-name>Image Filter</filter-name>

<filter-class>com.acme.ImageFilter</filter-class>

</filter>

<filter>

<filter-name>Logging Filter</filter-name>

<filter-class>com.sample.LoggingFilter</filter-class>

</filter>

Define filter configuration in a Web application in the deployment descriptor, using the filter
element, specifying the filter name, class and initialization parameters

Associate filters with a single Web resource (servlet, JSP, static resource), or a group of
Web resources. Make this association using the servlet name, or using the URL-pattern.
This approach uses a filter-mapping element in the deployment descriptor.

WAS50_J2EEWeb.ppt Page 8 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation8

Create Filters in Application Developer

WebSphere Studio App Developer facilitates the creation of filters thanks to a wizard that
creates a skeleton for you and configures the filter in the Web Application deployment
descriptor(web.xml).

WAS50_J2EEWeb.ppt Page 9 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation9

Application and Event Listener

� Application and Event Listener
• Let listener objects monitor for state changes (lifecycle changes and

attribute changes) in the ServletContext and HttpSession objects
– Create, destroy, add/delete/modify attributes

• Developer provides a list of these listeners (class files) in the Web
module (WAR)

• Listeners apply to the entire Web module
– ServletContext and HttpSession apply to the entire Web module

� Advantages
• Allows greater control over interactions with the ServletContext and

HttpSession objects
• Web developer can monitor the state of the Web application and

perform functions
– Example: Monitor start/stop of web module, create/deletion of sessions,

provide logging facilities,…

The Web container instantiates and registers these listeners at the time of Web
application deployment, prior to the start of the first request into the Web application.

You can use these listener to provide a very close control over the events that occur in the
web container, such as the activation or deactivation of a web application, or events
occurring to the http session.

The listeners can implement a number of actions, that may include initialization, cleanup,
logging, auditing, and so on.

WAS50_J2EEWeb.ppt Page 10 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation10

Application and Event Listener Types

� Listener interfaces to monitor events associated with
the ServletContext objects:

•javax.servlet.ServletContextListener
–Monitor the creation of and shutdown of ServletContext events

(Lifecycle events)

•javax.servlet.ServletContextAttributesListener
–Monitor changes in ServletContext attributes (add, delete, replace)

Event Type Interface Method

Create new servlet context (at
start of web module)

javax.servlet.ServletContextListener contextInitialized()

Shut down servlet context (Stop
the web module)

javax.servlet.ServletContextListener contextDestroyed()

Add servlet context attribute javax.servlet.ServletContextAttributesListenerattributeAdded()

Remove attribute javax.servlet.ServletContextAttributesListenerattributeRemoved()

Replace attribute javax.servlet.ServletContextAttributesListenerattributeReplaced()

These are the interfaces that can be implemented by an Application/Event listener. You
may create a listener that implements a number of these.

WAS50_J2EEWeb.ppt Page 11 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation11

HttpSession Listener Types

� Listener interfaces to monitor events associated with
the HttpSession objects:

•javax.servlet.HttpSessionListener
–Monitor creation and destroy (invalidation or timeout) of HttpSession

(Lifecycle events)

•javax.servlet.HttpSessionAttributesListener
–Monitor changes in HttpSession attributes (add, delete, replace)

Event Type Interface Method

Create new Http Session javax.servlet.http.HttpSessionListener sessionCreated()

Destroy Http Session javax.servlet.http.HttpSessionListener sessionDestroyed()

Add HttpSession attribute javax.servlet.http.HttpSessionAttributeListener attributeAdded()

Remove attribute javax.servlet.http.HttpSessionAttributeListener attributeRemoved()

Replace attribute javax.servlet.http.HttpSessionAttributeListener attributeReplaced()

These interfaces are available for monitoring the events associated to the HTTP session.

WAS50_J2EEWeb.ppt Page 12 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation12

Application and Event Listener Packaging

� Listener classes
•Packaged as part of the Web archive,

–Either in the WEB-INF/classes directory, or in a JAR file in the WEB-

INF/lib directory

� Listener information added in the Web Deployment

Descriptor (web.xml)

<web-app>

<display-name>MyListeningApplication</display-name>

<listener>

<listener-class>mySample.SampleContext.Listener</listener-class>

</listener>

<listener>

<listener-class>mySample.SampleSession.Listener</listener-class>

</listener>

...

</web-app>

Example: Listener Definition

Listeners are defined in Deployment Descriptor using "listener" elements. The Listeners
can have multiple listeners defined in a Web module. The web container handles the
instantiation and registration of the listeners, prior to the start of the first request into the
Web application.

WAS50_J2EEWeb.ppt Page 13 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation13

HttpSession Bound Objects as Listeners

� Objects bound to the HttpSession can be event
listeners by implementing these interfaces:

•javax.servlet.HttpSessionActivationListener
–Notify events of passivation prior to serialization of a session, and of

activation after deserialization of a session to objects that are bound to

the session.

•javax.servlet.HttpSessionBindingListener (Included in Servlet 2.2)
–Causes an object to be notified when it is bound to or unbound from a

session
Event Type Interface Method

Activate Session javax.servlet.http.HttpSessionActivationListener sessionDidActivate()

Passivate Session javax.servlet.http.HttpSessionActivationListener sessionWillPassivate()

Object Bound to the session javax.servlet.http.HttpSessionBindingListener valueBound()

Object unbound to the

session

javax.servlet.http.HttpSessionBindingListener valueUnBound()

javax.servlet.http.HttpSessionActivationListener

Objects that are bound to a session may listen to container events notifying them
that sessions will be passivated and that session will be activated. A container that
migrates session between VMs or persists sessions is required to notify all
attributes bound to sessions implementing HttpSessionActivationListener

javax.servlet.http.HttpSessionBindingListener

Causes an object to be notified when it is bound to or unbound from a session. The
object is notified by an HttpSessionBindingEvent object. This may be as a result of
a servlet programmer explicitly unbinding an attribute from a session, due to a

session being invalidated, or due to a session timing out.

In both the above cases, the Object that is bound to the HttpSession is the one
implementing the interface.

When an application stores an object in or removes an object from a session, the session
checks whether the object implements HttpSessionBindingListener. If it does, the servlet
notifies the object that it has been bound to or unbound from the session. Notifications are

sent after the binding methods complete. For session that are invalidated or expire,
notifications are sent after the session has been invalidated or expired.

When container migrates a session between VMs in a distributed container setting, all
session attributes implementing the HttpSessionActivationListener interface are notified.

WAS50_J2EEWeb.ppt Page 14 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation14

Create Listeners Application Developer

WebSphere Studio Application Developer provides a wizard for the lifecycle listeners that
creates a skeleton of the desired listener and adds the listener, if needed, to the
deployment descriptor of the web application.

WAS50_J2EEWeb.ppt Page 15 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation15

Internationalization Enhancements

�Specification enhancements:
• ServletRequest.setCharacterEncoding(String

encoding)
– Set the character encoding to be used for reading a

request's parameters and post data

• ISO-8859-1 is default encoding for request and
response objects unless otherwise specified

� IBM extension:
• New deployment descriptor <request-encoding>

– Allows a deployer to instruct the Web container to attempt to
automatically determine a request's character encoding
before reading parameters or POST data and to attempt to
automatically determine a response's character encoding

Request Encoding allows to control the encoding scheme to be used to interpret the
character strings in an HTTP request. The ISO-8859-1 (Latin-1) encoding scheme covers
most of the Western European languages, including English and it's the most commonly
used scheme in the Western world. That's why it's chosen as the default to fall back to.

Here are the steps that the container follows:

• if <request-encoding=j2ee>

Request's character encoding will be set according to the
Servlet 2.3 specification (a default encoding of ISO-8859-1 if none specified)

• if <request-encoding=automatic> and the client does not set the character
encoding in the request header and that the servlet writer does not invoke the

setCharacterEncoding(String) method before accessing request parameters, then Web
Container will perform the following steps in order to ascertain the correct character
encoding for the request parameters and data:

Look for the charset in the Content-Type header

Failing the above, try to map the server's locale to a character

set using defined properties

Failing the above, try to use the
DEFAULT_CLIENT_ENCODING system property, if set

Finally, use the ISO-8859-1 character encoding

WAS50_J2EEWeb.ppt Page 16 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation16

Some API changes

� HTTPUtils Deprecated
• Replaced by methods on the request interfaces

� New response and context methods
• ServletContext.getServletContextName -- returns Web application name for

context - useful for context listeners
• ServletContext.getResourcePaths -- returns path
• ServletResponse.resetBuffer -- resets the response buffer without resetting

headers or status codes
• HttpSession.getServletContext -- returns servlet context for this session

� New error and security attributes
• Support for two new error attributes in the "request" object

– javax.servlet.error.exception -- the actual exception thrown
– javax.servlet.error.request_uri -- the resource causing the problem

• Support for two new security attributes in the "request" object:
– javax.servlet.request.cipher_suite -- cipher suite negotiated by HTTPS
– javax.servlet.request.key_size -- encryption key bit-size

� Other minor changes
• getAuthType() method to return one of the following

– HttpServletRequest.BASIC_AUTH
– HttpServletRequest.DIGEST_AUTH
– HttpServletRequest.CLIENT_CERT_AUTH
– HttpServletRequest.FORM_AUTH

WAS50_J2EEWeb.ppt Page 17 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation17

JSP 1.2

WAS50_J2EEWeb.ppt Page 18 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation18

JSP 1.2: Changes/Additions

�XML Views of JSP Pages
• New Classes for Tag Library Validation

�Enhanced Tag support
• New Tag Support for Iteration

• Tag Library Support for Application Lifecycle Events
• Tag Library Lifecycle Improvements

The major change for the JSP 1.2 spec is the ability to encode the JSP in pure XML
format. There are also additional classes for the validation of tag libraries and new tags
that facilitate iteration, and handling lifecycle events.

WAS50_J2EEWeb.ppt Page 19 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation19

JSP 1.2: XML Views of JSP Pages

� JSP 1.2 now allows a JSP page to be an XML
document

• In addition to the standard JSP syntax that JSP 1.1 allows
• "JSP document" is the term used to define the JSP page in

XML form
• Uses the same file extension (.jsp) as a JSP page
• JSP document must have jsp:root as the top element

– jsp:root cannot appear in a regular JSP page
– It is not valid to mix standard syntax and XML syntax in the same

jsp file
• JSP documents can pass directly to the Web container

� Advantages to coding using a JSP document:
• XML view of a JSP page can be used to validate the JSP page

against some DTD, XSD
• XML aware tools can manipulate JSP documents
• A textual representation can generate a JSP document by

applying an XML transformation, such as XSLT
• Will become more important as more and more content is

authored as XML

A synonym for JSP document is XML view of a JSP page.

The main benefit here is that every tool that is capable of manipulating XML can now be
used with JSPs. Also, you can easily validate a JSP against a DTD or an XSD.

Another interesting possibility is provided by the ability to perform code transformation
through XSL/T.

WAS50_J2EEWeb.ppt Page 20 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation20

JSP 1.2: XML Syntax Example

<html>

<title>positiveTagLib</title>

<body>

<%@ taglib uri="http://java.apache.org/tomcat/examples-taglib" prefix="eg" %>

<%@ taglib uri="/tomcat/taglib" prefix="test" %>

<%@ taglib uri="WEB-INF/tlds/my.tld" prefix="temp" %>

<eg:test toBrowser="true" att1="Working">

Positive Test taglib directive </eg:test>

</body>

</html>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:eg="http://java.apache.org/tomcat/examples-taglib"

xmlns:test="urn:jsptld:/tomcat/taglib"

xmlns:temp="urn:jsptld:/WEB-INF/tlds/my.tld"

version="1.2">

<jsp:text><![CDATA[<html>

<title>positiveTagLig</title>

<body>

]]</jsp:text>

<eg:test toBrowser="true" att1="Working>

<jsp:text>Positive test taglib directive</jsp:text>

</eg:test>

<jsp:text><![CDATA[

</body>

</html>

]]</jsp:text>

</jsp:root>

Example:

Equivalent JSP
document

Example:

Standard JSP page

Here is an example of a JSP "old style" and of the corresponding version in XML.

WAS50_J2EEWeb.ppt Page 21 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation21

JSP 1.2: New Tag Support

� New Classes for Tag Library Validation
• Added in the tag libraries to support validation phase introduced with

the support of XML syntax
� Support for Application Lifecycle Events

• To support application events support in Servlet 2.3
– Tag libraries can define an event listener object

• When processing the web application deployment descriptor at
application start time, take specific note of each included directive

– For each directive, find and parse the corresponding tag library descriptor,
and register application event listeners in the same manner that listeners in
web.xml are registered

� Tag Library Lifecycle Improvements
• Add a resetCustomAttributes() method to the Tag interface

– Allows reuse of tag instances where their invocations do not set the same
attributes

� New Tag Support for Iteration
• Supports iteration without BodyContent

� New TryCatchFinally Interface

The JSP 1.2 specifications include support for validating tag libraries - as part of the
validation process that is introduced by the new XML syntax.

Tags can also be defined to include event listener objects as per the Servlet 2.3 specs.
Conceptually, these special directives work the same as the corresponding entries in the
web.xml deployment descriptor. It's up to the container to process these directives at
application startup and to register the listeners.

WAS50_J2EEWeb.ppt Page 22 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation22

Summary

�WebSphere Application Server v5.0 fully
supports Servlet 2.3 and JSP 1.2

�Value-add features included
• Session Scoping (discussed in a separate module)

• Internationalization extensions

WebSphere fully supports the new specs and in the WebSphere Enterprise product
extends the specifications to provide broader support in areas such Internationalization.

Also Session Scoping is an important part of the specifications. The J2EE 1.3 specs
mandate that the container scopes the HTTP Session at the servlet context level (in
practice, session information cannot span multiple WAR files).

But WebSphere Application Server extends the specs allowing more flexible forms of
session sharing - see the module on HTTP Session Management.

WAS50_J2EEWeb.ppt Page 23 of 24

Web Components: Servlet 2.3 and JSP 1.2 © 2002, 2003 IBM Corporation23

Trademarks and Disclaimers
© Copyright International Business Machines Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country. The following terms are trademarks
or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries DB2 DB2 Universal Database CICS
Netfinity zSeries OS/390 IMS

Lotus, Domino, Freelance Graphics, and Word Pro are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and
the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. ActionMedia, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other
countries. Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from
publicly available information, including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your
local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to
specific levels of performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements.
The information is presented here to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future
planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Copyright International Business Machines Corporation 2003. All Rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

