
J2EEMDB.ppt Page 1 of 17

WebSphere Technology and Training

© 2002, 2003 IBM Corporation

J2EE 1.3 Overview

Part 4: Message-Driven Beans

Updated 5/16/2003

J2EEMDB.ppt Page 2 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation2

Objectives

�Describe the new type of bean – Message-
Driven Bean

�Understand the importance of Messaging in an
N-tier environment

�Compare the different Messaging Models (Point
to Point and Pub/Sub)

J2EEMDB.ppt Page 3 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation3

� J2EE 1.3 Packaging
� EJB 2.0:

•EJB 2.0 Interoperability

•New type of Interface: Local Interfaces

•New Persistence Manager to handle Container-Managed

Persistence and Relationships

•EJB Query Language (EJB QL)

•New type of bean: Message-driven Bean

•EJB Home Methods

•Dependent Values

� Value-Add Features beyond EJB 2.0 specification

� J2EE 1.3 aspects of Web Components
•Servlets 2.3

•HTTP Session Topics

•JSP 1.2

J2EE 1.3 Topics

J2EEMDB.ppt Page 4 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation4

Messaging in an N-tier environment

Messaging is a method of communication between software components or applications.
A messaging system is a peer-to-peer facility: a messaging client can send messages to,
and receive messages from, any other client. Each client connects to a messaging agent
that provides facilities for creating, sending, and receiving messages. Servlets and EJBs
can send and receive messages to/from a messaging vendor. Messaging technologies
provide an additional means of communicating with Server Side Components. Messaging
enables distributed communication that is loosely coupled - You just need to know the
Message format and the destination to use.

JMS (Java Message Service) is a Java API that allows applications to create, send,

receive and read messages.

J2EEMDB.ppt Page 5 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation5

JMS Support in J2EE 1.3

� JMS/XA support is
mandatory part of the J2EE
1.3 specification

• Message processing
becomes part of an extended
transaction

• However, transaction
context should not flow
with the message itself

– Message production and
message consumption's
part of two separate
transactions

� Message Driven Beans
• Special Enterprise Beans

oriented to processing
messages

• Listen on JMS destinations

WebSphere

EJBEJB

EJB Container

ServletServlet

JSPJSP

Servlet Container

J
N

D
I

J
T

A

R
M

I/
II
O

P

J
D

B
CJava

Mail

JAF
J2EE Server Core

Client Program

Message PUT Message GET

Message GET
Message PUT

Inbound

Outbound

For compliance of J2EE 1.2 JMS support was mandatory, but JMS/XA was not.
However, WebSphere 4.0 Advanced Edition had supported JMS/XA as a value-add
feature.

J2EE 1.3 introduced mandatory support for JMS/XA - the XA support makes it possible to
protect both the message processing (put or get) and the business logic under the
"umbrella" of an individual XA transaction. It has to be clearly understood that the
transaction that produces an inbound message and the transaction that consumes that
same message are two separate transactions.

J2EE 1.3 introduced a new type of bean called Message driven bean. A message-driven
bean is an enterprise bean that allows J2EE applications to process messages
asynchronously. An MDB consumes messages from queues and topics that are sent by a

JMS Client.

J2EEMDB.ppt Page 6 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation6

Benefits of Message Driven Beans

�Automatic consumption
of messages

•No polling needed in the

application code

�Reduce application code
�Leave JMS resource

management to the
container

•Configuration of JMS

destinations and providers

RMI/IIOP

Business

Bean

EJB Container

J2EE Server Core

J
N

D
I

J
T

A

R
M

I/IIO
P

J
D

B
C

Java

Mail

JAF

Queue

Message

Driven B

Message-Driven Beans offer a standard way to create a message consumer that is fully
managed by the container. The bean provider only needs to concentrate on writing the
logic that performs the parsing and processing of the message. Typically, the MDB will
delegate the execution of business logic to some other EJB - a Session EJB in most
cases. However, no coding needs to be done to retrieve the message or poll the JMS
destination - no specific coding is needed to provide quality of service (failover, parallel
sessions, etc.) - all this is up to the container to implement and provide.

J2EEMDB.ppt Page 7 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation7

Message Processing and Business Logic

�Provide separation between message
processing and business logic

Message
Driven
Bean

Business

Logic

Session

Bean

"Inbound"

JMS Destination

Entity
Bean

Entity
Bean

Parses
message

Does work

By providing a clear separation between message and business processing, it is easier to
implement the Message-Driven Beans. Ideally, the Message-driven bean parses the
message and then delegates the work to be done to a business logic session bean. This
design pattern promotes components reusability because the business logic session bean
can be used by a variety of other clients. This programming model also reinforces the
concepts that the Message-driven bean acts as an interface to the application.

J2EEMDB.ppt Page 8 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation8

Message-Driven Beans: Programming Model

� MDB Basics:
• Stateless enterprise beans, server side components
• No remote interface, no remote home

– Container activates MDBs as needed
• Transactional
• Point-to-point and Pub/Sub supported

� Bean Provider responsibilities
• Implement javax.jms.MessageListener interface

– onMessage(msg) method performs necessary message processing
actions

� Application Deployer responsibilities
• Associate bean with JMS destinations at deployment

– Deployment descriptor holds association information

Message-driven beans (MDBs) are stateless, server-side, transaction-aware components
for processing asynchronous JMS messages. It supports the two messaging models
namely, Point-to-Point and Publish/Subscribe.

A message-driven bean is a complete enterprise bean, just like a session or entity bean,
but there are some important differences. While a message-driven bean has a bean class
and XML deployment descriptor, it does not have component interfaces. The component
interfaces are absent because the message-driven bean is not accessible via the Java
RMI API; it responds only to asynchronous messages.

It's important to understand that MDBs are not for "client use". Therefore they have no
interface and no home, they cannot be "looked up" by a client.

The Bean Provider writes the application code for the Message Driven Bean. All Message
driven beans must implement the javax.jms.MessageListener interface. The onMessage

method contains the business logic that handles the processing of the messages. This
method is called by the container when a message has arrived for the bean to service.

It is the Application Deployer's responsibility to associate the Message driven bean with

the appropriate JMS destinations. This association is done at deployment time.

J2EEMDB.ppt Page 9 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation9

MDB onMessage() method

public void onMessage(javax.jms.Message msg)

{

try

{

System.out.println("Input message = "

 + ((TextMessage) msg).getText.());

MyEJBHome home = (MyEJBHome)PortableRemoteObject.narrow

 (ic.lookup("com/mycom/MyEJBHome"),MyEJBHome.class);

MyEJBHome obj = home.create();

parm1 = parseMsg(msg);

parm2 = parseMsg(msg);

obj.myBusinessMethod(parm1, parm2);

}

catch(Exception err) {

.....

}

}

Gets hold of business

logic EJB

Extracts parameters from message

Delegates execution to business method

This is an example of a Message-Driven Bean's onMessage method. The message
driven bean parses the message and then delegates the work to a business logic
Enterprise Bean.

J2EEMDB.ppt Page 10 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation10

Message Driven Beans - Tooling Support

�New EJB type in EJB Creation Wizard:

WebSphere Studio Application Developer provides tooling support for the creation of the
code and deployment descriptors for Message-Driven Beans. To create a new Message
driven bean, click File->New->Enterprise Bean. To create a Message Driven bean select
Message-driven bean in the Create a 2.0 Enterprise bean wizard. Select the appropriate
destination and other configuration options. Most of these fields are used as information
for the deployer to correctly find the Message driven bean to the appropriate JMS
destination. If the values are not specified at creation time, they can be specified in the
deployment descriptors. The ListenerPort name is the most important value and it can be
specified at creation time or later in the deployment descriptor. The ListenerPort name is
the resource on the EJB Container which monitors the JMS destinations for messages
and passes these messages onto any Message-driven beans which have been bound to
the listener.

J2EEMDB.ppt Page 11 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation11

MDB Transactional Support

�Transaction Type
• Specified by the Bean Provider

• <transaction-type> element in the Deployment Descriptor

• Bean Managed transaction or Container Managed Transaction

�Transaction Attributes
• May be specified either by the bean provider or by the

Application Assembler

• Specify the transactional attribute for the bean's onMessage

method

• For MDBs, only the Required and NotSupported transaction

attributes may be used

The bean provider of an MDB must use the transaction-type element to declare whether
the MDB is of the bean-managed or container-managed transaction demarcation type.
There is no mechanism for an Application Assembler to affect enterprise beans with bean-
managed transaction demarcation. The Application Assembler must not define transaction
attributes for an enterprise bean with bean-managed transaction demarcation.

The Application Assembler can use the Transaction Attribute to manage transaction
demarcation for enterprise beans using container-manager transaction demarcation.

The transaction attribute for the MDB's onMessage method specifies how the container
must manage transactions for the method when the method is invoked as a result of the
arrival of a JMS message.

Only the NotSupported and Required transaction attributes may be specified for the MDB

because there can be no preexisting transaction context (RequiresNew, Supports) and no

client to handle exceptions (Mandatory, Never). The Container invokes a message-driven
Bean method whose transaction attribute is set to NotSupported with an unspecified
transaction context. If the onMessage method invokes other enterprise beans, the

Container passes no transaction context

with the invocation. The Container must invoke a message-driven bean method whose

transaction attribute is set to Required with a valid transaction context.

J2EEMDB.ppt Page 12 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation12

Message Driven Beans - Point to Point Example

Transfer

Session
Bean

Account

Entity
Bean

Transfer Funds

Servlet

Create Account

Servlet
Web Browser

DB2 Tables

ATM Client

MyBank

Listener
MDB

Queue

Customer

Entity
Bean

Here is a point-to-point example built on top of the banking sample. The transfer may
occur via the Web, or be initiated by a Java client, or be initiated by a message. The
message is processed and taken apart by an MDB which calls the same Transfer Session
EJB as the two other clients. In effect, the MDB access as another interface into the
application just as the servlet and Java client are interfaces into the business logic of the
application.

J2EEMDB.ppt Page 13 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation13

Message Driven Beans - Pub/Sub Example

Customer

History

Topic
"ORDER/CHECKS"

Topic
"ORDER/CARD"

Order

Checks
MDB
(sub)

Order

Card
MDB
(sub)

Order

Logger
MDB
(sub)

Place

Checks
Order

Session
Bean

Place
Card
Order

Session
Bean

Update
History

Session
Bean

Web Browser

Home Banking App

We can also accommodate pub/sub technology with MDBs.

In this case, we have one topic with two subtopics (one for ordering checks, one for
ordering ATM cards) - and we have two different MDBs listening to the two different
subtopics (one to initiate the processing of a card order, the other for the processing of the
checks order) But, we also have a third MDB which has subscribed for all the subtopics of
the ORDER topic and will log all of the ordering activity.

J2EEMDB.ppt Page 14 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation14

Message Selector

� JMS concept, allows
filtering on message
headers

•Selection criteria defined at

the Deployment Descriptor

level

� Based subset of the

SQL92 standard syntax
� Example:

"Inbound"

JMS Destination

(Incoming Orders)

<message-selector>

deliveryType = "Urgent" OR customerStatus="Gold"

</message-selector>

<message-selector>

deliveryType = "Normal" AND customerStatus <> "Gold"

</message-selector>

Process
Urgent
Orders
MDB

Process
Regular
Orders
MDB

An MDB can also declare a <message-selector> element, which is unique to message-
driven beans. Message selectors allow an MDB to be more selective about the messages
it receives from a particular topic or queue. Message selectors use Message properties as
criteria in conditional expressions. Message properties, upon which message selectors are
based, are additional headers that can be assigned to a message. They give the
application developer or JMS vendor the ability to attach more information to a message.

The message selector is similar to a WHERE clause that you can specify in the
Deployment Descriptor. It will define which messages will be passed down to the MDB. In
our example, one of the two MDBs only gets messages for urgent orders, the other one

will get all the other messages.

J2EEMDB.ppt Page 15 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation15

MDBs & Extended Messaging Support in EE 4.x

�WAS EE 4.x, supports Message Beans
• Special kind of Session Beans

�Migrating EE 4.x Message Beans to EJB 2.0
Message Driven Beans a very simple task

• Few trivial changes to the code are needed

• No home and interface needed

• Create EJB 2.0 Deployment Descriptor and redeploy

• Create JMS resources and reinstall application on WAS 5.0

• Tool provided - discussed in the JMS Administration module

In Enterprise Edition 4.x we had Extended Messaging support, which is very similar to
Message-Driven Beans

Migration is not a big deal, although some code changes are needed (primarily because
the Extended Messaging was implemented through session EJBs). A migration tool called
mb2mdb has been provided with WebSphere 5.0 that can be used to do the migration
from EE 4.x Message-Beans to Message-Driven Beans.

J2EEMDB.ppt Page 16 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation16

Summary

�Message-Driven Beans a powerful way to
process inbound messages

• Asynchronous interface to Business Logic
• Loosely coupled application integration
• Container takes care of Quality of Service

– Transaction, lifecycle, scalability, etc.

�Point-to-point and pub/sub patterns are both
supported

�Simple programming model
• Flexibility provided through Message Selector support

J2EEMDB.ppt Page 17 of 17

WebSphere Technology and Training

Message-Driven Beans © 2002, 2003 IBM Corporation17

Trademarks and Disclaimers
© Copyright International Business Machines Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country. The following terms are trademarks
or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries DB2 DB2 Universal Database CICS
Netfinity zSeries OS/390 IMS

Lotus, Domino, Freelance Graphics, and Word Pro are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and
the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. ActionMedia, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other
countries. Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from
publicly available information, including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your
local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to
specific levels of performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements.
The information is presented here to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future
planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Copyright International Business Machines Corporation 2003. All Rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

