
J2EEEJBQL.ppt Page 1 of 20

Updated 3/08/2003 © 2002, 2003 IBM Corporation

J2EE 1.3 – Introduction

Part 2 - EJB Query Language, Home Methods, 
Dependent Values, WebSphere Extensions to the 
EJB Specs



J2EEEJBQL.ppt Page 2 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation2

� J2EE 1.3 Packaging
� EJB 2.0:

•EJB 2.0 Interoperability
•New type of Interface: Local Interfaces
•New Persistence Manager to handle Container-Managed   
Persistence and Relationships
•EJB Query Language (EJB QL)
•New type of bean: Message-driven Bean
•EJB Home Methods
•Dependent Values

� Value-Add Features beyond EJB 2.0 specification
� J2EE 1.3 aspects of Web Components

•Servlets 2.3
•HTTP Session Topics
•JSP 1.2

J2EE 1.3 Topics

This presentation will be focused on the EJB 2.0 topics highlighted in yellow below which 
are EJB QL, EJB Home Methods, Dependent Values and the benefit of additional features 
that exceed the EJB 2.0 specification.



J2EEEJBQL.ppt Page 3 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation3

EJB Query Language



J2EEEJBQL.ppt Page 4 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation4

EJB Query Language (EJB QL)

� EJB QL is a portable object query specification language 
• Similar to SQL, applies to CMP entity EJBs
• Allows querying on CMP and CMR fields
• Applies to finder and select methods of CMP Entity beans

� EJB QL can be used for two types of methods:
• Finder methods 

– Defined in local and remote homes
– Return EJB  local or remote interfaces or collections of those
– There is no need to provide EJB QL for findByPrimaryKey() method

• Select methods
– Not for client use, they are meant to be called by the bean class itself
– Can return interfaces, but also individual CMP fields (or collections)

� Bean developers defines abstract finder and/or select methods
• Specifies EJB QL query statement in the deployment descriptor

– Container tools to generate query implementation

•EJB QL queries can be used in two different ways:

•as queries for selecting entity objects through finder methods defined in the 
home interface. Finder methods allow the results of an EJB QL query to be 
used by the clients of the entity bean

•as queries for selecting entity objects or other values derived from an entity 
bean’s abstract schema type through select methods defined on the entity 
bean class. Select methods allow the Bean Provider to use EJB QL to find 
objects or values related to the state of an entity bean without exposing the 
results to the client.

•Select methods can return an individual CMP field or collection thereof. 
Finder methods can only return EJB Interfaces or collections thereof.

•Definition uses a language based on SQL that allows searches on the 
persistent attributes of an EJB and associated bean attributes.

•EJB QL uses the abstract persistence schemas of Entity beans, including 
their relationships, defined in the deployment descriptors, for its data model

•Defines operators and expressions based on this data model.

•The path expressions of EJB QL allow the Bean Provider to navigate over 
relationships defined by the CMR-fields of the abstract schema types of 
entity beans.



J2EEEJBQL.ppt Page 5 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation5

EJB QL - Standard Syntax

� EJB QL query is a string with a SQL-like syntax. It contains:
•SELECT clause that specifies the EJB object or CMP field to return
•a FROM clause that names the bean collections 
•an optional WHERE clause that contains search predicates over the 
collections 
•Can also contains input parameters that correspond to the arguments of the 
finder method

•SELECT <object or ejb field>

FROM <ejb abstract schema, navigational expression>

WHERE <conditions for selection> 

Contains conditional expressions involving CMP/CMR fields

Supports navigation

Predicates similar to SQL (including LIKE, IN, BETWEEN, etc.)

Allows inclusion of substitution parameters

Designates an EJB or a CMP or 
CMR field

Supports DISTINCT selections
Designates an EJB abstract 
schema

In addition, supports 
navigation to any reachable 
EJB

•The most simple query wouldn't contain a WHERE clause.  For example Select 
OBJECT(a) FROM Customer AS a.

•Though the WHERE clause is optional in EJB QL most queries have a WHERE clause.

•Note that this syntax is the standard and that WebSphere has source extensions that will 
be discussed later in the presentation.



J2EEEJBQL.ppt Page 6 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation6

EJB QL: Examples

SELECT OBJECT(o)

FROM Order AS o

WHERE o.grandTotal > 1000

Selects all orders worth 
more than $ 1000

SELECT DISTINCT OBJECT(o)

FROM Order AS o, IN(o.lineItems) as detail

WHERE o.grandTotal > 1000 AND

detail.shipped = FALSE

Selects all orders worth 
more than $ 1000 with 
line items still pending

Navigation is used in 
FROM clause

SELECT DISTINCT OBJECT(o)

FROM Order AS o, IN(o.lineItems) as detail

WHERE detail.product.name = "Red Ballpoint Pen"

Selects all orders where 
"Red Ballpoint Pens" 
have been ordered

Navigation used in FROM 

and WHERE clauses

•The first example selects all orders worth more that $1000.  You begin by the SELECT 
clause which names the object as "o" just in terms of the query. Then the FROM clause 
denotes that you are querying the Order EJB.  Order, being the abstract schema name of 
the Order EJB.  The AS o part of the clause assigns o as the identifier of the Order EJB.  
The query would return the same thing if the AS o clause was left out.  Finally in the 
WHERE clause you see that the return value is limited to all orders where grandTotal 
which is a CMP field of the Order EJB are greater than 1000.

•In the next example the DISTINCT keyword prevents the query from returning duplicates 
which is helpful because find methods in CMP 2.0 can return java.util.Collection which 
possibly could contain duplicates.  The DISTINCT keyword would prevent this.  However if 
the method returns a java.util.Set, the DISTINCT keyword is redundant because a 
java.util.Set may not contain duplicates. 

•In the third example the note how the EJB QL statement can navigate across the  to the 
Product bean's CMP field.



J2EEEJBQL.ppt Page 7 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation7

<query id="Query_1">
<description>Query to obtain the accounts exceeding a certain   balance.</description>
<query-method id="QueryMethod_1">

<method-name>ejbSelectAccountsByBalance</method-name>
<method-params>

<method-param>float</method-param>
<method-param>long</method-param>

</method-params>
</query-method>
<ejb-ql>

SELECT a.accountNumber FROM Customer c, IN(c.accounts) a WHERE a.balance > ?1 and 
c.customerNumber = ?2

</ejb-ql>
</query>

EJB QL in the Deployment Descriptor

� EJB QL specification goes in the EJB Deployment 
Descriptor (ejb-jar.xml)

• A bean provider's responsibility, not an assembly/deployment task
• Support for parameters (similar to SQL "host variables")

� WebSphere 4.x provides support similar to EJB QL
• Differences, and potential migration effort

Example: EJB QL as shown in EJB Deployment Descriptor

•Notice that the EJB QL query goes in the deployment descriptor for the EJB - therefore, 
the definition of the query is a responsibility of the bean provider - NOT a responsibility of 
the deployer. In other words, it's up to who writes the code to define the EJB QL query -
and that query should not be modified at deployment time.



J2EEEJBQL.ppt Page 8 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation8

Using EJB QL

� Queries are not specific to an instance
•Domain of queries is all instances referred to by the Abstract 
Schema Name
•Abstract schema name is scoped at the EJB jar file level
•Example: 

•This query will take into account all the instances of the EJB that has 
"Order" as its abstract schema name, regardless of where the finder 
or select method is defined 

� Positional parameters
•Parametric queries are supported
•Parameters are positional
•Example:

SELECT OBJECT(o) FROM Order AS o WHERE o.grandTotal > 1000

SELECT OBJECT(o) FROM Order AS o WHERE o.grandTotal > ?1 and o.customerNumber = ?2

public abstract Collection ejbSelectOrderForCustomerByTotal(float total, long customerNumber);

•Input parameters allow method arguments to be mapped to EJB QL statements in the 
WHERE clause where the scope of the query is implemented.  These input parameters 
are denoted with a ? prefix and then followed by the argument's position in the query 
method's parameters.  In the example here you see that the  ?1 refers to the total 
argument, and the ?2 refers to the customerNumber argument.



J2EEEJBQL.ppt Page 9 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation9

EJB 2.0 New Home Methods



J2EEEJBQL.ppt Page 10 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation10

New EJB 2.0 Home Methods

� EJB’s  home interface  may define methods that provide business 
logic that is not specific to an entity bean instance

• Remote or Local Home
• Home methods can have arbitrary names
• Must not start with “create”, “find”, or “remove”

� Examples of Home methods that is not specific to an instance
• Method adds a bonus to all of the employees based on a company profit 

sharing index 
• Method returns a living index depending on the state and the base salary of 

an employee the method is not specific to an instance

� Exceptions and return types
• The throws clause of home method on the remote home interface must 

include the java.rmi.RemoteException - Home method on the local home 
interface must not throw java.rmi.RemoteException

• The throws clause may include additional application-level exceptions
• The method arguments and return value types of a remote home method 

must be legal types for RMI-IIOP

•Home methods are business methods that can be invoked from the Local Home interface 
or the Remote Home interface.

•Originally only find and create methods were allowed.

•The Logic of home methods does not operate on an individual instance.

•Clients can use home methods from the enterprise bean home interface with out getting a 
reference to a specific EJB object.



J2EEEJBQL.ppt Page 11 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation11

EJB 2.0:  Dependent Values



J2EEEJBQL.ppt Page 12 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation12

Dependent Values

�Allow any serializable Java class to be used 
in CMP fields

•But not for CMR fields

�Structure not described in Deployment 
Descriptor

custNumber -> String

custName -> String

shippingAddress-> Address

billingAddress -> Address

street -> String

city -> String

zipCode -> String

...

Customer EJB 

Address class 

....

abstract String getCustNumber();

abstract String getCustName();

abstract Address getShippingAddress();

abstract Address getBillingAddress();

....

<cmp-field id="Customer_number">

<field-name>custNumber</field-name>

</cmp-field>

<cmp-field id="Customer_name">

<field-name>custName</field-name>

</cmp-field>

<cmp-field id="Customer_billingAddress">

<field-name>billingAddress</field-name>

</cmp-field>

<cmp-field id="Customer_shippingAddress">

<field-name>shippingAddress</field-name>

</cmp-field>

•With EJB 2.0 any serializable class can become part of the state of an EJB. However -
you cannot have dependent values as a CMR field.

•Dependent value classes are custom serializable objects that can be used as persistent 
fields often in remote interfaces to separate the remote client's view of the entity bean 
from the abstract persistence model.

•The structure of the dependent values is not defined in the deployment descriptor.



J2EEEJBQL.ppt Page 13 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation13

EJB 2.0 WebSphere Value Add



J2EEEJBQL.ppt Page 14 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation14

WebSphere 5.0 - Beyond J2EE 1.3

�Numerous extensions and additional features
•Available right in the "base" application server

�Examples include:
•EJB QL Extensions

–Subqueries, grouping, scalar functions, EXISTS predicate, more...
•Access Intent

–Specify how you intend to perform data access
–Influence container in its decisions about locking (optimistic, 
pessimistic), isolation level, read-ahead, caching, .....

•Schema Mapping
–Support for relationship mappings, inheritance, mapping of dependent 
values, ...

•More....

Covered in the 
Persistence 

Manager

module

•These value add of these extensions is robust and will be addressed in the next couple of 
foils.



J2EEEJBQL.ppt Page 15 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation15

WebSphere EJB QL Extensions

�Expanded flexibility and function thanks to 
WebSphere EJB QL extensions:

Item EJB 2.0 
Query

WAS Query
Extensions

Select clause required optional
Delimited identifiers no yes

String comparisons = and <> only = <>  >  < 

Scalar functions yes yes 
Calendar comparisons yes yes
Order by no yes

Subqueries, aggregation , 
group by and having clauses

no yes

SQL Date/time expressions no yes
Inheritance no yes
EXISTS predicate no yes

•As you can see in the chart through the addition of WebSphere EJB QL extensions you 
will be able to create more robust applications by using the  Order by clause, subqueries, 
date and time expressions, inheritance and the EXISTS predicate.

•Delimited identifiers allow you to specify composite names for your tokens, including 
multiple words separated by blanks ('customer balance', for example).



J2EEEJBQL.ppt Page 16 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation16

Extensions: Ordering & Subquery

�Ordering Example:
•Find all employees earning less than $30,000 and sort 
by descending order

•NOTE: OrderBy is likely to be supported with EJB 2.1

�Subquery and scalar function (MAX) example:
•Find the employee with the highest salary

SELECT OBJECT(emp) FROM Employee AS emp WHERE emp.salary < 
30000  ORDER BY emp.salary DESC

SELECT OBJECT(emp) FROM Employee AS emp WHERE emp.salary = 
(SELECT MAX(e.salary) from Employee AS e)

The ORDER BY clause also included in SQL is important in query languages because it 
allows the ejb developer to state exactly how a collection should be ordered based on 
attributes in ascending or descending order.  Though the ORDER BY clause is not in the 
specification it very beneficial and only therefore is welcomed as a nonstandard extension.



J2EEEJBQL.ppt Page 17 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation17

Extensions: Date Time and Value Objects

�Date Time Example:
•Find all employees who resigned with less than 2 years 
on the job

�Dependent Values Example:
•Find all employees living in Gilroy, California

– homeAddress is supposed to be of type Address (value object in the 
Employee EJB)
– For this query to work, a composer must be used to map the fields of 
the Address class into the database columns during the EJB 
deployment

SELECT OBJECT(e) FROM EmployeeAS e WHERE years( e.termDate - e.startDate) < 2

SELECT OBJECT(e) FROM Employee AS e WHERE e.homeAddress.state = 'CA' and 
e.homeAddress.city = 'Gilroy'

•EJB QL as defined in the specification doesn't provide support for java.util.Date but this is 
supported in WebSphere Studio Application Developer as an extension.  This allows for 
comparisons of Date CMP fields as well as literal and input parameters using comparison 
operators such as less than, greater than, equal to, etc.

•As you can see in the Date Time Example where two dates are subtracted from each 
other and then converted to years.



J2EEEJBQL.ppt Page 18 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation18

Extensions: Inheritance & Exists Predicate

� Inheritance Example:
•Find all employees with a salary > 200,000

•This query returns all instances of EmpBean, 
MgrBean and ExecBean that have salaries > 
$200,000.  
•Inheritance pattern can be root-leaf or single 
table
•To only find instances of ExecBean

� Exists Predicate Example : 
•Return departments that have at least one 
employee earning more than $100,000 

Employee

MgrBean

ExecBean

SELECT OBJECT(emp) FROM Employee AS emp 

   WHERE emp.salary > 200000

SELECT OBJECT(emp) FROM Employee AS emp 

   WHERE emp is of type (ExecBean)

SELECT OBJECT(d) FROM Department AS d 

   WHERE EXISTS (select 1 from IN (d.employees) AS 
e WHERE e.salary > 100000)

SELECT OBJECT(emp) FROM ExecBeanAS emp 

•In the  Inheritance example we see that if you query the Employee Bean that because of 
the inheritance feature added as an extension to EJB QL the query will return all instances 
of employees including managers and executives (not just regular employees ) that have 
salaries greater than $200,000 dollars.  In this case the Inheritance pattern can be single 
table which means that the attributes for the Employee, MgrBean, and ExecBean would all 
be held in a single table.  The Inheritance pattern can also be root-leaf which means that 
you have 3 separate tables in which the Employee table contains the attributes that would 
general to the employee, managers, and executives, while the Exec table contains 
attributes specific to executives and the Mgr. table contains attributes specific to the 
managers.

•In the second example you can see how the addition of the EXISTS predicate which is 
common in SQL returns TRUE in the WHERE clause if the subquery that follows it returns 
at least one row where an employee's salary is greater than $100,000. 



J2EEEJBQL.ppt Page 19 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation19

Summary

� EJB QL is a query language similar to SQL
� Used to declare the behavior of custom find methods 

and select methods
� It is tailored to work with the abstract persistence 

schema of entity beans in EJB 2.0
� EJB QL queries are defined in terms of the  abstract 

persistence schema of entity beans and not the 
underlying data which in turn makes them portable 
across databases

� EJB QL is simple enough that it makes it easier for 
bean developers to define the behavior for query 
methods in an abstract way

� Through extensions like Ordering, Subqueries, Date 
and Time Objects, and  Inheritance WebSphere 
Studio Application Developer makes up for 
shortcomings in EJB QL



J2EEEJBQL.ppt Page 20 of 20

EJB Query Language, Home Methods, and Dependent Values © 2002, 2003  IBM Corporation20

Trademarks and Disclaimers
© Copyright International Business Machines Corporation 1994-2003.  All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country. The following terms are trademarks
or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries DB2 DB2 Universal Database CICS
Netfinity zSeries OS/390 IMS

Lotus, Domino, Freelance Graphics, and Word Pro are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and
the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. ActionMedia, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other
countries. Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved.  Actual
environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products by IBM.  Sources for non-IBM list prices and performance numbers are taken from
publicly available information, including vendor announcements and vendor worldwide homepages.  IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products.  Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.  Contact your
local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities.  Such information is not intended as a definitive statement of a commitment to
specific levels of performance, function or delivery schedules with respect to any future products.  Such commitments are only made in IBM product announcements.
The information is presented here to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future
planning. 

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment.  The actual throughput or performance that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed.  Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Copyright International Business Machines Corporation 2003.  All Rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.


