
J2EECMPLICMR.ppt Page 1 of 24

© 2002, 2003 IBM Corporation

J2EE™ 1.3 – Introduction

Part 1 - Packaging, EJB 2.0 Local Interfaces and CMP

Updated 5/9/2003

J2EECMPLICMR.ppt Page 2 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation2

� J2EE 1.3 Packaging
� EJB 2.0:

•EJB 2.0 Interoperability
•New type of Interface: Local Interfaces
•New Persistence Manager to handle Container-Managed
Persistence and Relationships
•EJB Query Language (EJB QL)
•New type of bean: Message-driven Bean
•EJB Home Methods
•Dependent Values

� Value-Add Features beyond EJB 2.0 specification
� J2EE 1.3 aspects of Web Components

•Servlets 2.3
•HTTP Session Topics
•JSP 1.2

J2EE 1.3 Topics

J2EECMPLICMR.ppt Page 3 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation3

J2EE 1.3 Packaging and
EJB Interoperability

J2EECMPLICMR.ppt Page 4 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation4

J2EE 1.3 Enterprise Application Packaging

EJB
DD

Web
DD

Client
DD

HTML,
GIF, etc.

Application
DD

Enterprise
Bean

Client
Class

Servlet JSP

EJB
Module
.JAR file

Web
Module

.WAR file

Client
Module
.JAR file

DD = Deployment Descriptor

J2EE
Application

.EAR fileInstalled
RAR

New in J2EE1.3

A J2EE application is packaged in an Enterprise Archive, a file with a .EAR extension.

The application has a Deployment Descriptor, shown here as DD, allowing configuration to
a specific container’s environment when deployed.

The application can include one or more modules.

J2EE components are grouped in modules, and each module has its own deployment
descriptor.

EJB modules group related EJBs in a single module, and are packaged in Java Archive
(JAR) files.

Note that there is only one deployment descriptor for all of the EJBs in the module.

Previously, in WebSphere® 3.5, each Enterprise bean had its own deployment descriptor.

Web modules group Servlet class files, JSPs, HTML files and images.

They are packaged in Web Application Archive (WAR) files.

Application client modules are packaged in Java Archive (JAR) files.

New to J2EE 1.3 is the packaging of Resource Adapters (RAR) as part of the EAR file.

RARs only being used by these applications can now be packaged with the EAR file.

In J2EE 1.2, the developer would have to send the EAR file and RAR separate.

Will still need to install the RAR on the Node.

J2EECMPLICMR.ppt Page 5 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation5

WebSphere J2EE 1.3 Application Packaging

Enterprise

Bean

Client

Class

Web

DD
Client

DD
Servlet

EJB

Module
.JAR file

Web
Module

.WAR file

Client

Module
.JAR file

J2EE
Application

.EAR file

IBM IBM

BindingsBindings
IBM IBM

ExtensionsExtensions
IBM IBM

BindingsBindings
IBM IBM

BindingsBindings
IBMIBM

ExtensionsExtensions

Schema Schema

MapMap

Schema Schema

AttributesAttributes

Application

DD

JSP
HTML,

GIF, etc.

Table Table

CreationCreation

IBM IBM

BindingsBindings

IBMIBM

ExtensionsExtensions

EJB
DD

Installed
RAR

DD = Deployment Descriptor

This page shows the J2EE Application EAR file enhanced with the IBM Bindings and
Extensions.

These adapt the generic J2EE application to the IBM WebSphere 4.0 Application Server
environment.

Most J2EE server vendors have their own proprietary extensions to the specification.

The schema map, attributes, and table creation code provide the setup for entity
Enterprise beans to store their values in a database.

These are for entity beans that use Container Managed Persistence, or CMP.

All of these objects in the Application EAR file are packaged by the Application Assembly
Tool.

J2EECMPLICMR.ppt Page 6 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation6

EJB 2.0 Multi-vendor Interoperability

�EJB 2.0 supports interoperability among EJB
containers from different vendors

�Areas of interoperability addressed by the
specs:

• Remote method invocation
– Data type mapping
– HandleDelegate - allows portable serialization/deserialization of

EJBObject and EJBHome

• Transaction Interop
• Naming

– CORBA CosNaming APIs support

• Security
– CSIv2

J2EECMPLICMR.ppt Page 7 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation7

EJB 2.0 Local Interface

J2EECMPLICMR.ppt Page 8 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation8

EJB 2.0: Interface comparison with EJB 1.1

JVM-1 JVM-2

Session
or Entity

Beans
EJB 1.1

Session

or Entity

Beans

REMOTE

Interface

EJB

Client
(Servlet/EJB)

REMOTE

Interface

JVM-1 JVM-2

Session

or Entity

Beans

Session

or Entity

Beans

REMOTE

Interface

REMOTE

Interface

Session

or Entity

Beans

LOCAL

Interface

Local interface: Target EJB and client
located in same JVM

Most of the EJB clients in a typical
application reside in the same JVM

EJB can provide both remote and local
interface

EJB 2.0

New

EJB

Client
(Servlet/EJB)

EJB client for the remote interface can be:

•Java client

•EJB or Servlet within the same or different JVM (App Server).

EJB client for Local interface can only be EJB or Servlet within the same JVM (App
Server).

In a typical application, about 60 to 80 % of the calls to an EJB are from clients that are
local within the same App Server.

Local Interfaces are the foundation for New Container Managed Relations (CMR) among
entity beans.

Interfaces are defined in Deployment Descriptor.

Clients specify EJB Local Reference or EJB Reference (remote) as needed.

Advantages:

•Better Performance since there is no overhead of remote method call, marshaling, de-

marshalling, etc.

J2EECMPLICMR.ppt Page 9 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation9

Local and Remote Interface Comparison

This chart summarizes the differences between local and remote interfaces. It's important
to notice that, while an EJB may offer both local and remote interfaces, the choice of
using local or remote in the EJB client is NOT transparent. The client code will clearly
reflect which interface is going to be used.

J2EECMPLICMR.ppt Page 10 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation10

Local Interfaces vs. “No Local Copies”

�WebSphere 3.5.x and 4.0 already "optimize"
local EJB calls

• Through a simplified RMI/IIOP call
• Through "No Local Copies" setting

�Local Interfaces are conceptually different
• Local access is exposed at the programming model level
• NOT an administrative option
• Provide top efficiency for EJB calls, no RMI/IIOP

involved
• Local/remote transparency is not available

It's also interesting to notice that WebSphere 3.5.x and 4.x offers performance
optimizations that are similar to the those that Local Interfaces bring about (whenever the
EJB client and the EJB coexist in the same JVM, WebSphere App Server would optimize
the call path and use a simplified RMI/IIOP stack, leading to better performance - also you
could turn on "Local Copies" and have parameters passed by copy in an app server).
Although they are conducive to similar performance advantages, Local Interfaces are
technically very different from the performance optimizations provided natively by
WebSphere.

With Local Interfaces, there is no RMI/IIOP being invoked. The choice of using Local vs.

Remote interfaces is an application design one, not an administrative option.

J2EECMPLICMR.ppt Page 11 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation11

EJB 2.0: Local Interface Example

Transfer

Session
Bean

Account

Entity
Bean

Transfer Funds

Servlet

Create Account

Servlet

Local and
Remote

Interfaces

Local
Interfaces

Remote

Local

Local

Local

J2EE Client

Web Browser

Context ic = new InitialContext();

Object tHomeObject = ic.lookup("java:comp/env/ejb/Transfer");

TransferHome tHome = (TransferHome)
javax.rmi.PortableRemoteObject.narrow(home, TransferHome.class);

Context ic = new InitialContext();

TransferLocalHome tHome = (TransferLocalHome) ic.lookup(" java:comp/env/ejb/Transfer");

•Here is an example of using Local and Remote interfaces.

•Notice that the Transfer bean offers both local and remote interfaces, while the Account
bean offers Local interfaces only.

•The servlets, since they can coexist in the same app server as the EJBs, can choose
whether to use local or remote interfaces. In this case they are using local interfaces - but
that's not a general design recommendation as there may be situations where you would
choose otherwise.

•The J2EE client can ONLY use remote interface since it will never run in the same JVM
as the EJBs.

•The bottom line is that while Local Interfaces are conducive to better performance and to

a more granular Entity EJB object model, they also "tie the hands" of the deployer, in the
sense that the EJB clients have to be installed on the same app server as the EJB they
talk to.

•The chart also shows the different coding style and the obvious differences in the casting
mechanism.

J2EECMPLICMR.ppt Page 12 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation12

EJB 2.0 Local Interface - Deployment Descriptor

Local Interface defined in EJB Deployment Descriptor (ejb-jar.xml)

...and in the EJB client DD:

<enterprise-beans>
<entity id="Transfer">

...

<home>com.ibm.examples.mybank.ejb.TransferHome</home>
<remote>com.ibm.examples.mybank.ejb.Transfer</remote>
<local-home>com.ibm.examples.mybank.ejb.TransferLocalHome</local-home>
<local>com.ibm.examples.mybank.ejb.TransferLocal</local>

...

</entity>

<ejb-local-ref id="EjbRef_1">
<description>Account Entity Bean</description>
<ejb-ref-name>bank/Account</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>com.ibm.examples.mybank.ejb.AccountLocalHome</local-home>
<local>com.ibm.examples.mybank.ejb.AccountLocal</local>

</ejb-local-ref>

•The bean provider has to make it clear to the "outside world" whether a bean is offering
local, remote, or both interfaces. The DD carries new elements <local-home> and <local>
to signify the presence of local interfaces.

•On the other hand, the EJB client developer has to specify the use of local or remote
interfaces in the deployment descriptor. This indication will allow the application deployer
to install the EJBs and their clients correctly (i.e. in the same JVM if the client uses local
interfaces).

•That's why we have a new <ejb-local-ref> element in the deployment descriptors of Web
modules and EJB modules (in addition to the existing <ejb-ref> which designates the
intention to use remote interfaces).

J2EECMPLICMR.ppt Page 13 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation13

Tooling Support for Local/Remote Interfaces

Local and/or Remote Interfaces specified when enterprise bean
created with WebSphere Studio Application Developer

Promote methods to Local or Remote existing interfaces

J2EECMPLICMR.ppt Page 14 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation14

EJB 2.0 Container-Managed
Persistence Support

J2EECMPLICMR.ppt Page 15 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation15

EJB 2.0 - New Container Managed Persistence
� In EJB 1.1, persistent data were defined by Bean's instance

variables
• Mostly not enough support persisting relationships with other beans

� EJB 2.0 introduces abstract persistence schema
• Concrete implementation up to the container tools and runtime
• Bean provider only responsible for defining abstract accessors to persistent

data
� EJB 2.0 CMP bean class

• Bean declared as abstract class
• Persistent fields and relationships defined through abstract accessor

methods (getter/setter)
• Persistence Manager generates concrete implementation of the abstract

bean class
– Based on the XML deployment descriptor and the bean class

� Container Managed Relationships (CMR)
• Allows multiple entity beans to have relationships among themselves
• Container implements and supports the relationship

– One-to-One, One-to-Many and Many-to-Many relationships
– Uni- and bi-directional relationships

� Advantages:
• More versatile container managed persistence approach
• Opens the door to non-relational data stores

•In EJB 2.0, it's up to the container to implement the concrete persistence model. The
bean developer only defines the accessor abstract methods.

•This new approach offers very powerful perspectives on persistence - like the total
independence of CMP beans from the underlying persistence store, which may not even
be implemented by a relational db.

J2EECMPLICMR.ppt Page 16 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation16

EJB 2.0: CMP and CMR Example

Transfer

Session
Bean

Account

Entity
Bean

Transfer Funds

Servlet

Create Account

Servlet

Customer

Entity
Bean

Unidirectional
1-M

Relationship

Java Client

Web Browser

Database Tables:

Account & Customer

This chart shows a simple unidirectional relationship: the customer EJB "knows" its
accounts, but not vice-versa (the account doesn't provide any behavior to go back to the
customer).

J2EECMPLICMR.ppt Page 17 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation17

EJB 2.0: CMP Entity Bean Example

javax.ejb.EntityBean

(Interface)

Abstract CustomerBean
Class - provided by the Bean

Developer

Concrete Bean Class

(Generated by Persistent
Manager)

Extends

Implements

Instance Hierarchy

public abstract class CustomerBean implements EntityBean

{

...

//**** CMP fields

public abstract String getName();

public abstract void setName(String newName);

public abstract String getTaxID();

public abstract void setTaxID(String newTaxID);

public abstract void setCustomerNumber(long s);

public abstract long getCustomerNumber();

//**** CMR fields 1-many relationship to Account

public abstract Collection getAccounts();

public abstract void setAccounts(Collection accounts);

...

}

CMP Entity Bean class is ABSTRACT

No explicit CMP and CMR fields - only abstract Getter/Setter

Sample CustomerBean code

•Here is an example of CMP 2.0 EJBs. Notice the abstract nature of the EJB and of the
accessor methods.

•It's up to the container tooling and runtime to provide for a suitable implementation of
those abstract methods and ultimately for a concrete bean class that can be instantiated.

J2EECMPLICMR.ppt Page 18 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation18

EJB 2.0 CMP and CMR - Deployment Descriptor

�CMP/CMR fields defined in EJB Deployment
Descriptor (ejb-jar.xml)

CMP fields

<enterprise-beans>

<entity id="Customer">

<ejb-name>Customer</ejb-name>

...

<abstract-schema-name>Customer</abstract-schema-name>

<cmp-field id="Customer_number">

<field-name>customerNumber</field-name>

</cmp-field>

<cmp-field id="Customer_name">

<field-name>name</field-name>

</cmp-field>

<cmp-field id="Customer_taxID">

<field-name>taxID</field-name>

</cmp-field>

...

</entity>

...

</enterprise-beans>

•From a Depl Descr. standpoint, not much has changed - you still declare CMP fields as
you used to do, this time by extracting the field name from the "getter and setter" accessor
methods.

J2EECMPLICMR.ppt Page 19 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation19

EJB 2.0: CMR - Example
<relationships id="Relationships_1">

<ejb-relation id="EJBRelation_1">

<ejb-relation-name>CustomerToAccounts</ejb-relation-name>

<ejb-relationship-role id="EJBRelationshipRole_1">

<ejb-relationship-role-name>OwnerOfAccounts</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source id="RoleSource_1">

<ejb-name> Customer</ejb-name>

</relationship-role-source>

<cmr-field id="CMRField_1">

<cmr-field-name>accounts</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role id="EJBRelationshipRole_2">

<ejb-relationship-role-name>OwnedAccounts</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source id="RoleSource_2">

<ejb-name> Account</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

</relationships> One-Many Relationship between "Customer" and "Account"

One Customer can have Many Accounts

One side of the
Relation -

"Customer"

Other side of
the Relation -

"Account"

•A completely new element in the DD (<relationships>) defines EJB relationships. A
relationship can be unidirectional (like in the example) or bi-directional: in the latter case,
you would have to define two <cmr-field> elements (one for the source and one for the
target - notice that we only have one <cmr-field> in our example).

J2EECMPLICMR.ppt Page 20 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation20

CMP 2.0 Tool Support

�CMP fields defined with EJB creation wizard
in WebSphere Studio Application Developer

�Getters and Setters can be created for Non-
Key fields when the enterprise bean is
created

•WebSphere Studio Application Developer v5 fully supports the creation of 2.0 EJBs.

•When creating CMP entity beans with Application Developer, you can specify the Name
of the field, the type, and whether getters and setters should be promoted to the remote or
local interfaces.

•When creating the attributes, it is recommended that you use a type of the java.lang
package. This will make each attribute an object and offers more options when dealing
with collections of attributes.

J2EECMPLICMR.ppt Page 21 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation21

CMR and Local Interfaces

� "Target" EJB in a relationship must provide Local
Interfaces

•In bi-directional relationships, both EJBs must have Local Interfaces

� CMR accessor methods deal with Local Interfaces
•Must not be exposed on Remote Interfaces

•Remote clients ca not get directly to related objects
–Bean provider must add business logic to enable remote accessibility

Customer

Local

Customer

Remote

Account

Local

Account

Entity
BeanCustomer

Entity
Bean

getAccounts()

getAccounts()

The requirement of local interfaces for Container-Managed Relationships is required for
performance reasons, especially in one-to-many or many-to-many relationships.

J2EECMPLICMR.ppt Page 22 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation22

Tool Support for CMR
Relationships can only

be created between
Enterprise beans of the

same specification
(Account 2.0 EJB and

Customer 2.0 EJB)

Multiplicity settings
of One or Many

Multiplicity and
Navigability allow
access to Entity

Beans in the
relationship

Remove entity
beans in

relationship when
delete called

•WebSphere Studio Application Developer fully supports EJB 2.0 and allows you to create
Container-Managed Relationships between two entity beans. The relationship can be set
up from within the EJB Deployment Descriptor editor.

•The two entity beans in a relationship must be created prior to running the wizard.

•If an entity bean does not have local interfaces, it will only be able to have unidirectional
relationships with itself to other entity beans. Other entity beans will not be able to have a
relationship to it.

•For access the other bean in a relationship, it is recommend to make the name of the
CMR field plural if the relationship is one-to-many or many-to-many.

•The type of the CMR field can be java.util.Collection or java.util.Set. Depending on how
the information in the relationship is to be used will determine whether to use Collection or
Set.

J2EECMPLICMR.ppt Page 23 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation23

Summary

� J2EE 1.3 specification supports adding
Resource Adapter (RAR) files to EAR files

�Local Interfaces are a design decision which
offers benefits in certain situations

�CMP in EJB 2.0 specification leaves
implementation details to the Container and
reduces requirement of tight integration with
datastore

�CMR allows for interaction between entity
beans corresponding to realistic business
relationships

J2EECMPLICMR.ppt Page 24 of 24

Packaging, EJB 2.0 Local Interfaces and CMP © 2002, 2003 IBM Corporation24

Trademarks and Disclaimers
© Copyright International Business Machines Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country. The following terms are trademarks
or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries DB2 DB2 Universal Database CICS
Netfinity zSeries OS/390 IMS

Lotus, Domino, Freelance Graphics, and Word Pro are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and
the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. ActionMedia, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other
countries. Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from
publicly available information, including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your
local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to
specific levels of performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements.
The information is presented here to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future
planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Copyright International Business Machines Corporation 2003. All Rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

