
WAS50_Performance.ppt Page 1 of 26

© 2002, 2003 IBM Corporation

WebSphere® Application Server V5.0

Performance

Updated 3/26/2003

WAS50_Performance.ppt Page 2 of 26

Performance © 2002, 2003 IBM Corporation2

Objectives

�Highlight performance enhancements in
WebSphere Application Server 5.0

�Dynamic caching improvements
�Discuss new features in PMI
� Introduce Tivoli Performance Viewer
�Discuss HTTP Session performance information
� Investigate queuing and pool management
� Introduce V5 Technology Previews

WAS50_Performance.ppt Page 3 of 26

Performance © 2002, 2003 IBM Corporation3

Performance Enhancement Overview

� IBM Developer Kit, Java™ Technology Edition,
Version 1.3.1

• Concurrent mark process (optional)

• Multi-threaded sweep process

�EJB 2.0
• Local interfaces

See the SPEC JBB2000 for comparisons of JDK 1.3.1 vs. JDK 1.3.0

One of the major differences with IBM Developer Kit is that the mark process can now be
asynchronous. The sweep and compaction process, however, still remain synchronous
and will stop all other work in the JVM when being executed.

EJB 2.0

The benefits of local interfaces are covered in detail in another module.

WAS50_Performance.ppt Page 4 of 26

Performance © 2002, 2003 IBM Corporation4

Dynamic Caching Improvements

�Disk overflow of cached objects
�More flexible cache policy deployment

descriptor
�Cache replication using WebSphere Data

Replication Service
�External cache support for

• IBM WebSphere Edge caching using Akamai ESI

• IBM HTTP Server Fast Response Cache Accelerator
• Support for command, pattern and Web Services

caching

WAS50_Performance.ppt Page 5 of 26

Performance © 2002, 2003 IBM Corporation5

PMI Enhancements

�Modules new for WebSphere 5.0
• Dynamic Cache

• ORB
• WLM
• CPU Load
• Web Services

�Modules where new data is collected for V5.0
• EJB
• Session Manager
• JDBC

WAS50_Performance.ppt Page 6 of 26

Performance © 2002, 2003 IBM Corporation6

PMI Enhancements

� Integrated with JMX
• Data retrieval via JMX interface

– PmiClient has been updated to use JMX Connector via standard

JMX interface

– New APIs have been added to PmiClient

– Use PmiClient API or JMX API

• Supports JSR-77 statistic model

�Backward compatible with previous PMI
interface

�New client access alternative
• Java client using JMX interface

The PMI infrastructure has been updated to support the additional performance data types that
JMX provides (JSR-77). The performance data types that JMX defines are:

CountStatistic

TimeStatistic

BoundaryStatistic

RangeStatistic

BoundedRangeStatistic

PMI now provides support for all of the statistical providers in JSR-77 along with the following
providers not included in the JSR:

ORB

JNDI

WLM

Security

The existing APIs in the PmiClient wrapper have been kept the same so that vendors/customers
who have written to 4.0 PmiClient APIs do not have to change their existing applications.

The PmiClient has been updated to use the EJB JMX Connector to communicate with MBeans
through standard JMX interface. It will also call the system management API to get a list of nodes
and application servers in the domain.

Because the PMI infrastructure has been changed to utilize the JMX infrastructure, vendors and
clients now have a new alternative way to access performance information.

WAS50_Performance.ppt Page 7 of 26

Performance © 2002, 2003 IBM Corporation7

PMI Hierarchy Structure

� Modules
•Enterprise Beans

•Database Connection Pools

•J2Connectors

•JVM Runtime

•JVMPI Runtime*

•ORB

•Session Manager

•Transaction Manager

•JDBC Times
•Thread Pools

•Web Applications

•WLM

•System Data

•Web Services

•Dynamic Cache

� Instances
•Level of detail varies per

module

Node

Server

Module

Instance

The list shows all of the available modules that can be monitored through the use of the PMI. The
data metrics can then be viewed with any tool that is designed to interface with the PMI.

PerformanceServlet

Tivoli Performance Viewer

3rd Party Tools

Keep in mind that the details below each module will differ from one to the other and the

InfoCenter should be consulted to get the exact list of all counters available for each module.

The amount of detail that can be captured through the PMI has been enhanced yet again in this
release. You can now capture metrics down to a specific method, whereas before all methods
within an EJB were lumped together. This will provided one more step of granularity when

attempting to find performance bottlenecks.

* JVMPI Runtime is the only metric listed that requires additional setup in the application server to
capture the metrics. There is an advanced JVM argument that needs to be set before the
application server is started. The reason for this is because of the tremendous performance

impact on the application when JVMPI metrics are being captured.

Approximately 175 different metrics can be captured by the PMI, in order to give a holistic view of
the application performance and behavior during runtime.

WAS50_Performance.ppt Page 8 of 26

Performance © 2002, 2003 IBM Corporation8

Architecture

App Server

App Server

J2EE client

HTTP

PerfMBean

PerfMBean

RMI/IIOP or

SOAP

Deployment

Manager

PmiClient
Java
Client

PerfServlet

Tivoli
Performance

Viewer

PMI

Client

Wrapper

Performance data

collected for each node

and application server

JMX
Connector

Web
Client

JMX Java
Client

Clients using either a Java client to connect to the PmiClient or the JMX interface to gather
performance information now have the choice of using either RMI/IIOP or SOAP.

Clients access performance data through the PmiClient in the following manner:

The JMX interface is used to send the request for performance info to the appropriate
MBean on the App Server where the information needs to be collected from.

Upon receiving the performance request, the MBean will delegate the request to the
PmiCollaborator interface, which parses the parameters, converts the MBean ID to a PMI

data path, finds the requested data, and returns the data to the MBean.

The performance info is then passed back through the JMX system to the client making
the request.

The items in pink indicate the various methods of accessing performance data in
WebSphere 5.0.

WAS50_Performance.ppt Page 9 of 26

Performance © 2002, 2003 IBM Corporation9

Tivoli Performance Viewer

�Resource Analyzer 4.0 rebranded
• Bundled with WebSphere 5.0

• Does not require the Tivoli Agent

�Connects to Deployment Manager or
Application Server

�Collects application server data continuously;
retrieved as needed from within the Tivoli
Performance Viewer

Tivoli Performance Viewer connects directly to the Application Server when the Base
configuration is installed

Tivoli Performance Viewer connects to the Deployment Manager when the Network
Deployment configuration and higher are installed.

Tivoli Performance Viewer is Resource Analyzer, rebranded to fit into IBM's marketing
scheme.

WAS50_Performance.ppt Page 10 of 26

Performance © 2002, 2003 IBM Corporation10

Tivoli Performance Viewer

�Regulates the impact incurred from data
collection by setting the instrumentation level
using the Tivoli Performance Viewer or the
WebSphere Administrative Console

�Provides controls through the graphical
interface which enables you to choose the
particular resources and counters to include in
a view

�Works with all configurations of WebSphere
�Supports only V5.0
�Detailed list of all metrics listed in InfoCenter

Tivoli Performance Viewer is not backwards compatible with previous versions of
WebSphere. It will only work WebSphere 5.0.

WAS50_Performance.ppt Page 11 of 26

Performance © 2002, 2003 IBM Corporation11

Tivoli Performance Viewer - Scaling

The graphical view of the Tivoli Performance Viewer has an auto-scale feature, which can
cause confusion sometimes when looking at the data on the graph. This can be changed
manually by the user in the scale column of the data.

The select column only indicates which data is being graphed. All the metrics in the list
will actually be captured and can be displayed in the chart at any time.

WAS50_Performance.ppt Page 12 of 26

Performance © 2002, 2003 IBM Corporation12

Tivoli Performance Viewer Enhancements

�Uses either RMI/IIOP or SOAP protocol
�Summary reports for Servlets and EJBs

• Located at the server level

�XML logging and replaying
• Additional to binary mode

�Usability improvements
• Monitoring level settings (None, Standard, Custom)

– None: No monitoring
– Standard: All modules are set to High

– Custom: Specify your selection - same as v4.0

• Automatically collects data
– No Start/Stop of the collection process like v4.0

A couple of things to keep in mind when using XML log files are:

The XML logs will be larger than the binary logs, so if space is a concern for your system
you should be aware of this.

The XML log will be able to be replayed with the TPV just like the binary files, but will also
allow you to read the data into other tools if you have the need to do further analysis.

The monitoring levels map back to similar levels in V4.

Standard - Set all the modules to the high level. The performance impact for this will be

between 1 - 3 percent.

Custom - Allows you to specify any level you desire, including the maximum metric

capturing that can result in a 5 percent impact on performance.

WAS50_Performance.ppt Page 13 of 26

Performance © 2002, 2003 IBM Corporation13

Accessing Tivoli Performance Viewer

�Run from a command line
• tperfviewer.bat/sh

• TPV opens and prompts for host, port, and connector

type
– RMI port: 2809

– SOAP port: 8877

�Not accessible from the Administrative Console

WAS50_Performance.ppt Page 14 of 26

Performance © 2002, 2003 IBM Corporation14

Request Metrics

� Measure the amount of time it takes for data requests to
travel through each WebSphere Application Server
component in the system

• Provides measurements across multiple processes and services

• Tracks requests that enter through HTTP or Enterprise Bean remote
requests

• Capture response time information for the initiating request, the

downstream enterprise bean invocations, and related JDBC calls

• Time spent at these points are written to the StdOut log to be

accessed by either Application Response Measurement (ARM)

agents or other third party tools

� Access through Administrative Console >
Troubleshooting > PMI Request Metrics

Performance Monitoring Infrastructure (PMI) Request Metrics helps identify run time and application performance problems by
capturing process hop response times in multi-tiered applications and recording the data in system logs. For requests that start from
either an HTTP or enterprise bean remote requests, Request Metrics captures response times for the initiating request and any related
downstream enterprise bean invocations and Java Database Connectivity (JDBC) calls. Request Metrics also provides the same

information on process hop response time through the Application Response Measurement (ARM) interface.

Application Response Measurement (ARM) - Provides a mechanism whereby applications can provide response time measurement to
a centralized reporting and management facility.

WebSphere Application Server does not provide an ARM agent, but can be used with agents conforming to the ARM 2.0 standard.
Current support for Tivoli ARM.

When active, Request Metrics compares each incoming request to a set of known filters. If the request matches any filter with a trace
level greater than TRACE_NONE, trace records are generated for that request.

This trace information is recorded to the StdOut system log (located in the <WAS_ROOT_INSTALL_DIR>\logs\<SERVER_NAME>
directory) for the application server that the request metrics are being monitored on. The request metric trace information will have the
following syntax in the StdOut system log (for more information on Request Metrics see the WebSphere V5 InfoCenter):

PMRM0003I: parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

- current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

type=TTT detail=some_detail_information elapsed=nnnn

Typically, requests enter the system and create processes that fan out across several nodes within a distributed system. Each process
can further fan out and call other processes. When the processes fan out, trace records are generated for each process. Then, these
trace records can be correlated together to build a sequence diagram of the response times for the request. The processes are only

recorded if they are generated through a remote enterprise bean call.

One way in which request metrics can be used to capture the current performance of your application is to use them, along with a load
generator, to drive synthetic transactions against your server. The user can then set request metric filters, so that only the HTTP
requests from the client generating the load are monitored. The trace information can then be gathered and analyzed to give a real-

world measurement of the performance of the application. This method could be used in both a development or a production
environment..

WAS50_Performance.ppt Page 15 of 26

Performance © 2002, 2003 IBM Corporation15

Request Metrics - Benefits

�High level view of application performance
allows users to quickly track down which
application components are involved in
bottlenecks and fix them

�Request metric settings to keep in mind
• Define filters for the requests that should be tracked

– Incoming HTTP requests can be filtered by IP address, URI or

both

– Incoming Enterprise Bean requests can be filtered by method

name

• Set the Request Metrics trace level to a value greater
than TRACE_NONE

Request metrics filters

Incoming HTTP requests

Client IP Address Filters: Use client IP address filters in the data center to filter known addresses and

provide a mechanism to make a request or set of requests while the system is under normal load.

URI Filters: URI filtering provides a mechanism to filter, based on the URI of the incoming HTTP request.

Incoming enterprise bean requests

Enterprise bean method name filters are specified with the fully package name qualified enterprise bean

method name.

To enable request metrics in WebSphere do the following:

Click Troubleshooting > PMI Request Metrics in the administrative console navigation tree.

Select the check box in the enable field under the Configuration tab.

Click Apply or OK.

Save the changes.

The performance of the application server may be significantly impacted if no filters are set for the request

metrics (meaning that the information will be collected on all of the available activity on the server).

WAS50_Performance.ppt Page 16 of 26

Performance © 2002, 2003 IBM Corporation16

HTTP Session Information

� Potential HTTP Session Issues
• Avoid large HTTP Sessions

– Java heap is not unlimited
– Significant performance impacts with session sizes larger than 16K

• Explicitly invalidate HTTP Sessions
– Default is 30 minutes
– Slows performance & causes delays

� Monitored Metrics
• Number of sessions
• Serializable session object size
• Room for session failure

– Allow overflow turned off

� PMI Value Add
• Understand heap and concurrent session requirements
• Identify affects of persistence
• Verify invalidation time out

It is still common to see performance problems with HTTP Sessions. Two of the major issues are the size of
the session and how long the session is being held in memory.

According to the WebSphere Performance Team, performance drops off considerably when your sessions
are larger than 16k. The decline is even more dramatic if you are using persistent sessions.

The length of time the session is held in memory is also a key factor in how much memory is being
consumed by your application. If sessions in your application are hanging around for 30 minutes after a
session is completed you could possibly create a memory constraint for your server.

30 minutes tends to be longer than most customers require and is the default value in WebSphere
Application Server. Be sure to base the value that you set on your application's requirements.

The "Room for session failure" metric is used to store the number of sessions that are denied by the
application server. Results in this column can come from one of two things: either you have disabled the
"Allow for overflow" setting in Administrative console or the system is out of the physical resources to handle
any more new sessions.

The "Number of sessions" metrics was part of PMI for v4. The "Serializable session object size" metric is
new for V5.

The number of metrics being monitored through the PMI has been greatly increased with this version of
WebSphere Application Server, therefore giving system administrators a much better view of what is
happening with the application sessions.

WAS50_Performance.ppt Page 17 of 26

Performance © 2002, 2003 IBM Corporation17

WebSphere Queue Settings

Web
Container

EJB

Container

Network

Web

Server

Database

Data

Source
Min & Max Connection Pool Size

Thread Pool Size

Max Connections

Max Client Connections

traditional clients

other clients

EJB clients

You have the ability to set a maximum threshold for the following areas.

Web Server Connections

Web Container

Data Source Connection Pool

Database Agents

It is not recommended to use the Database agents as a funneling or limiting area. Your

Database agents should always be greater then the total number of data sources in your
environment.

If you have a Workload Management enabled environment, your Database agent number
should be larger than all the data sources across all the application servers.

WAS50_Performance.ppt Page 18 of 26

Performance © 2002, 2003 IBM Corporation18

WebSphere Upstream Queuing

� Upstream queuing attempts to allow more work to be
done by limiting the number of connections at each tier
of the application

Network

Database

Web
Container

Web
Server

EJB
Container

Data
Source

Network
Database

Web Container

n = 50

Web Server

n = 75
Data Source

n = 25

Waiting Requests 125 25 25

Arriving Requests 200 75 50

Upstream Queuing

WebSphere Queuing

There are several different levels to set up a funneling affect of the work being done by
WebSphere.

Design the pooling system to allow as much work on the database and application server
as possible without over-stressing each area.

ORB Thread pool size in the EJB container is a soft limit, whereas all other connections
can be implemented as a hard limit.

The use of the different pools can be used to funnel the work in order to allow the
resources to be used by the proper processes.

It is important not to overload any one tier because then you will have poor performance
due to waiting threads. This is one of the most difficult things to do during performance

For instance, if a database is being overworked and causing slow response time, you may
need to lower the number of connections. This allows those active connections the
resources needed to perform the needed queries.

Most of these settings can be monitored by the Tivoli Performance Viewer and changed
through the Administrative Console.

The objective is to achieve maximum throughput within the environment or solution.

WAS50_Performance.ppt Page 19 of 26

Performance © 2002, 2003 IBM Corporation19

Tech Previews

WAS50_Performance.ppt Page 20 of 26

Performance © 2002, 2003 IBM Corporation20

WebSphere Thread Analyzer

�Provides a snapshot of each thread in the
Application Server

�Analyzes thread status for patterns
• Threads bottlenecked
• Threads waiting on work

• Many threads waiting on locks

�Usage Techniques
• Interactive with running WebSphere Application Server

– Forces thread dumps within server

• Independent of running WebSphere Application Server
– Read existing thread dumps

– Dumps taken through wsadmin (Dr. Admin in v4)

Thread Analyzer takes thread dumps from the JVM and analyzes them to help determine
the cause of slowdowns or hangs in WebSphere

Only provides a snapshot of a single point in time, and doesn't provide application context
flow

This was done manually before, but now is an automated process with a GUI interface.

Thread Analyzer can be used in both the production or run-time environment. The thread

dump puts only a small performance hit on the Java process and does not bring it
completely down.

Should only be used with WebSphere - highly specialized tool with WebSphere specific
knowledge.

Thread Analyzer can be useful even if it isn't installed on the deployment system, by
utilizing it to analyze manually forced thread dumps from any production or test application
server JVM.

WAS50_Performance.ppt Page 21 of 26

Performance © 2002, 2003 IBM Corporation21

WebSphere Thread Analyzer - Features

� Project Level Organization
• Contains XX number of thread dumps

• Offers features to add, delete, and save projects

� Graphical or Command Line User Interface
• Command line interface

• Retrieve "coredump" equivalent from running application server

• Analyzes state of threads
• Produces summary report and detailed analysis

� Provides recommendations
• Summary of threads

• Top of stack analysis

• Monitor analysis

• Recommendations

WAS50_Performance.ppt Page 22 of 26

Performance © 2002, 2003 IBM Corporation22

WebSphere Thread Analyzer - Breakdown

This screen shot shows the overall breakdown graphic of the threads in the snapshot.

WAS50_Performance.ppt Page 23 of 26

Performance © 2002, 2003 IBM Corporation23

WebSphere Thread Analyzer - Analysis

In this snapshot you can see that a majority of the threads are currently waiting to execute
against the database, while only a few are actually doing commit work against the
database. You can also see that by selecting a row in the table at the top, more detailed
information is displayed in the bottom left panel. You can then select one of the thread in
this panel and additional information is displayed in the panel on the bottom right.

WAS50_Performance.ppt Page 24 of 26

Performance © 2002, 2003 IBM Corporation24

Tivoli Performance Viewer - Advisor

�Analyze performance data and provide report
on which parameter needs tuning

• Advise on
– Pool size

– Cache size

– Size of session (in memory)

– JVM heap analysis

Rules
Engine

PMI
Data

rules.xml

Analysis

Output

Tivoli
Performance

Viewer

Auto tuning Infrastructure

The rules.xml file will be determined by IBM and will provide the guidelines by which the
Advisor will behave. In the future, additional measures may be taken to allow customers
to define their own rules.xml file for the Rules Engine.

WAS50_Performance.ppt Page 25 of 26

Performance © 2002, 2003 IBM Corporation25

Summary

� Many Performance Enhancements in WebSphere 5.0
� Enhancements made to dynamic caching
� PMI is now integrated with JMX infrastructure
� Resource Analyzer has been rebranded as the Tivoli

Performance Viewer
� Common problems and metrics to check for HTTP

Session performance
� Use upstream queuing to enhance performance
� Performance tech previews in WebSphere 5.0

• Thread Analyzer

• Tivoli Performance Viewer - Advisor

WAS50_Performance.ppt Page 26 of 26

Performance © 2002, 2003 IBM Corporation26

Trademarks and Disclaimers
© Copyright International Business Machines Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country. The following terms are trademarks
or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries DB2 DB2 Universal Database CICS
Netfinity zSeries OS/390 IMS

Lotus, Domino, Freelance Graphics, and Word Pro are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and
the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. ActionMedia, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other
countries. Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from
publicly available information, including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your
local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to
specific levels of performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements.
The information is presented here to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future
planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Copyright International Business Machines Corporation 2003. All Rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

