
WASv502_WS-Security.ppt Page 1 of 46

®

© 2003 IBM Corporation

IBM WebSphere® Application Server V5.0.2

Web Services Security (WS-Security)

Updated July 9, 2003

The strategic direction for IBM is to provide product and solution based on standard
specifications. This is no different in Web Services Security. WebSphere Application
Server Version 5.0.2 supports the Web services security specification, “Web Services
Security: SOAP Message Security” , proposed by IBM, Microsoft and Verisign in April
2002. The implementation is based on the IBM Web services engine.

WASv502_WS-Security.ppt Page 2 of 46

2 Web Services Security (WS-Security) © 2003 IBM Corporation

Agenda

�WS-Security Overview
�WS-Security Architecture and Deployment Model
�WS-Security Authentication, Integrity and

Confidentiality
�Authentication Flow – J2EE and WS-Security
�WS-Security Binding File Contents
�Tooling Support
�Scenarios
�Summary

We will discuss the WS-Security overview, authentication, integrity and confidentiality.

We will discuss the authentication flow – since with WS-Security, the security information
is flowing through the SOAP message, we have two authentication flows – the J2EE
authentication flow and WS-Security authentication flow.

We will also talk about the WS-security deployment descriptors which is comprised of web
services bindings and extension files which are used exclusively for specifying the ws-
security constraints on the client and server side. We will also talk about the tooling
support and take a high level look at some scenarios.

WASv502_WS-Security.ppt Page 3 of 46

3 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

WS-Security Overview

WASv502_WS-Security.ppt Page 4 of 46

4 Web Services Security (WS-Security) © 2003 IBM Corporation

Overview

� WS-Security is a message level standard defined how to secure
SOAP messages, using

• XML Digital Signature:

• Digitally sign the SOAP XML document, providing integrity, authenticity, and
signer authentication – JSR 105 to address this programmatically

• XML Encryption:

• Process for encrypting data and representing the result in XML providing
confidentiality – JSR 106 to address this programmatically

• XML Canonicalization:

• provides normalized XML document that can be digitally signed and verified

• Credential propagation through security tokens

• Applies to SOAP/HTTP and SOAP/JMS

Web services security for WebSphere Application Server, Version 5.0.2 and above is based on standards
included in the Web services security (WS-Security) specification. Web services security is a message-level
standard, based on securing Simple Object Access Protocol (SOAP) messages through XML digital
signature, confidentiality through XML encryption and credential propagation through security tokens.

WS-Security is a message level standard which means that security information is part of the SOAP
message from the client. The client, based on the constraints in the web services binding and extension files
will insert WS-Security information in the SOAP message. And the server, based on the constraints in the
server-side web services binding and extension files will check for the security constraints in the incoming
SOAP message’s header. So, the security information is part of the message that is passed as part of the
SOAP message that goes from the client to the server.

Web services security defines the core facilities for protecting the integrity and confidentiality of a message
and provides mechanisms for associating security-related claims with the message. The security constraints
can specify XML Digital Signature (for Message Integrity), XML Encryption (for Message Confidentiality), the
credential propagation. WS-Security actually applies to both SOAP/HTTP as well as SOAP/JMS. The
structure of the SOAP message’s security constraints contents is same in both cases.

Today, there is no way to specify the security constraints programmatically. The WS-security constraints
have to be specified within the web services bindings and extensions. JSR 105 and JSR 106 allows a
programmer to specify the digital signature and Encryption programmatically.

WASv502_WS-Security.ppt Page 5 of 46

5 Web Services Security (WS-Security) © 2003 IBM Corporation

Web Services End to End Security

�Digital Signed SOAP Message

�Encrypt SOAP Message

�Credential Propagation

� J2EE role-based authorization

Web Services end-to-end security involves digital signed SOAP message, encrypting the
SOAP message, credential propagation and J2EE role-based authorization.

To realize the benefits of Web services security, it is recommended that an
implementation of the specification is integrated with underlying security mechanisms. This
implementation is fully integrated with the WebSphere Application Server, Version 5.0.2
security infrastructure. Authorization, for example, is based on the J2EE security model.
When a user ID and password are embedded in a request message, authentication is
performed with the user ID and password. If successful, a user identity is established in
the context of execution and further resource access is authorized based on that identity.
The authentication process is similar to the process for HTTP basic authentication. Once
the user ID and password are authenticated, authorization is performed by a J2EE
container.

WASv502_WS-Security.ppt Page 6 of 46

6 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

WS-Security Architecture

and

Deployment Model

WASv502_WS-Security.ppt Page 7 of 46

7 Web Services Security (WS-Security) © 2003 IBM Corporation

WS-Security Implementation in WebSphere

� WS-Security is implemented as message level system
handler and is registered to the Web Service runtime
by the Application Server

• Henceforth, the handlers will be referred to as the Security
Handlers

� At the Client: Security handler is invoked to generate the
required security headers in the SOAP message before
the message is sent out to the wire

� At the Provider (Server): Security handler is called to
enforce the declared security constraint in the
deployment descriptor prior to dispatching the request
to the Web Service Provider (EJB or Java Beans)
implementation

WS-Security Handler are similar to security interceptors for CSIv2 or SAS or Trust
Association Interceptors (TAIs).

WASv502_WS-Security.ppt Page 8 of 46

8 Web Services Security (WS-Security) © 2003 IBM Corporation

Security HandlerSecurity Handler

WS-Security High Level Architecture

Response

Request

Configuration

Deployment descriptor
and service bindings

AppServer

EJB

or

Java

Bean

Client

SOAP request +

[WS-Security headers

| transport headers]
Response

Request

Configuration

Deployment descriptor
and service bindings

�Security Token generation

�Digital Signature generation

�Encrypt message

�Decrypt message

�Digital Signature validation

�SecurityToken validation and setup security
context

�Decrypt message

�Digital Signature
validation

�Digital Signature

generation

�Encrypt message

•WS-Security is designed and implemented as message level handlers of the Web
Services engine, as a system handler. WS-Security handler is a “system handler” (called
Security Handler in the foil) and is registered to the Web Service runtime

•On the client side, the WS-Security handler is invoked to generate the required security
headers in the SOAP message before the message is send out to the wire. The security
handler generates the security constraint defined in the deployment descriptor and
package the security information (digital signature, encrypted data and security tokens) in
the SOAP message

•On the server side, the WS-Security handler is called to enforce the declared security
constraint in the deployment descriptor prior to dispatching the request to the Web Service
EJB or Java Beans implementation.

•This is similar to security interceptors for CSIv2 or SAS.

Note: The security constraints of request sender and request receiver must match. Also,
the security constraints of the response sender and response receiver must match. For
example, if you specify integrity as a constraint in the request receiver, then you must
configure the request sender to have integrity applied to the SOAP message. Otherwise,
the request is denied because the SOAP message does not include the integrity specified
in the request constraint.

WASv502_WS-Security.ppt Page 9 of 46

9 Web Services Security (WS-Security) © 2003 IBM Corporation

Specifying WS-Security - Deployment Model

� WS-Security requirements are specified as security
constraints in the deployment descriptor

• The deployment descriptor specifies the security requirements for
the deployed Web Services,

• For example, the deployment descriptors specify if the message
should be digitally signed, encrypted etc.

• Helps in Separation of Roles

• Developer of Web Service Provider/Client and the Assembler or
Deployer of Web Service

• No standard deployment model for the WS-Security defined so far

� The Security handlers act on these constraints to

enforce WS-Security requirements

The Web services security model employed by WebSphere Application Server is the
declarative model. There are no APIs in Version 5.0.2 for programmatically interacting with
Web services security, but there are Server Provider Interfaces (SPIs) for extending some
security run time behaviors. You can secure an application with Web Services Security by
defining security constraints in the IBM extension deployment descriptors and IBM
extension bindings. application with Web Services Security by defining security constraints
in the IBM extension deployment descriptors and IBM extension bindings.

The development life cycle of a Web services security-enabled application is similar to the
Java 2 Platform, Enterprise Edition (J2EE) model since it enabled separation of roles,
whereby the component provider creates the J2EE module, then the assembler adds
declarative security constraints to the J2EE module. The deployer then takes the web
service enabled J2ee application with web services security and deploys it to the runtime
environment.

The Web services security handler acts on the security constraints defined in the IBM
extension deployment descriptor and enforces the security constraints accordingly.

WASv502_WS-Security.ppt Page 10 of 46

10 Web Services Security (WS-Security) © 2003 IBM Corporation

WS-Security - Deployment Descriptor Files

� WS-Security defined in IBM extension/binding DDs
• Server:

• ibm-webservices-ext.xmi
• ibm-webservices-bnd.xmi

• Client:

• ibm-webservicesclient-ext.xmi
• ibm-webservicesclient-bnd.xmi

� These files define message interaction between Sender and
Receiver for:

• Authentication type

• Integrity

• Confidentiality

� IBM Extension files define “WHAT TO DO”

� IBM Binding files define “HOW TO DO”

The security constraints for Web services security are specified in IBM deployment
descriptor extension for Web services. The Web services security run time acts on the
constraints to enforce Web services security for the Simple Object Access Protocol
(SOAP) message. The scope of the IBM deployment descriptor extension is at the module
level (EJB or Web). There also are bindings associated with each of the following IBM
deployment descriptor extensions:

Client (Might be either a stand-alone client or Web services acting as a client)

ibm-webservicesclient-ext.xmi

ibm-webservicesclient-bnd.xmi

Server

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

The IBM extension deployment descriptor and bindings are associated with each EJB
module or Web module.

When configuring security for Web services security, the security extensions configuration
specifies what security is to be performed while the security bindings configuration
indicates how to perform what is specified in the security extensions configuration. You
can use the defaults for some elements at the cell and server levels in the bindings
configuration, including key locators, trust anchors, the collection certificate store, trusted
ID evaluators, and login mappings and reference them from the WAR and JAR binding
configurations.

WASv502_WS-Security.ppt Page 11 of 46

11 Web Services Security (WS-Security) © 2003 IBM Corporation

WS-Security SOAP Faults

� If the Security constraints requirements, as defined in
the deployment descriptor, are not satisfied, a SOAP

fault in the SOAP response will be sent to the client

� Errors could result from:

• Invalid or unsupported type of security token, signing or encryption
algorithms

• Invalid or unauthenticated or invalid security token (token that can
not be authenticated)

• Signature verification failures

• Decryption failures

• Referenced security token could not be located

There are many circumstances where an error can occur while processing security
information. For example:

Invalid or unsupported type of security token, signing, or encryption

Invalid or unauthenticated or unauthenticatable security token

Invalid signature

Decryption failure

Referenced security token is unavailable.

When a failure occurs, then the failure is reported to the client (sender) using
SOAP's Fault mechanism.

WASv502_WS-Security.ppt Page 12 of 46

12 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

WS-Security

Authentication, Integrity, Confidentiality

WASv502_WS-Security.ppt Page 13 of 46

13 Web Services Security (WS-Security) © 2003 IBM Corporation

WS-Security Security Tokens

� WS-Security support following types of security tokens that can be
passed in the SOAP message

• BasicAuth

• Generates <wsse:UsernameToken> with <wsse:Username> and
<wsse:Password>

• Signature:

• Non-XML format security tokens, like X.509 certificate and Kerberos (coming in
near future) tickets (defined in the WS-Security specification)

• Specifies binary security token as a byte array
• Generates <ds:Signature> and <wsse:BinarySecurityToken>
• Distinguished Name of a certificate is used for authentication

• IDAssertion

• Generates <wsse:UsernameToken> with <wsse:Username>

• LTPA

• Generates <wsse:BinarySecurityToken>

• Custom Token

The following authentication methods are available:

Basic Auth:

Basic authentication includes both a user name and password in the security token. The information in the token is
authenticated by the receiving server and used to create a credential.

Signature:

Used when the authentication method is signature where an X.509 certificate is sent as a security token. For Lightweight
Directory Access Protocol (LDAP) registries, the distinguished name (DN) is mapped to a credential, which is based on
the LDAP certificate filter settings. For Local OS registries, the first attribute of the certificate, usually the common name
(CN) is mapped directly to a user ID in the registry. Kerberos tokens are not supported in V5.0.2.

IDAssertion:

The purpose of identity assertion is to assert the authenticated identity of the originating client from a Web service to a
downstream Web service. Do not attempt to configure identity assertion from a pure client as it will not work. Identity
assertion works only when you configure on the client-side of a Web service acting as a client to a downstream Web
service. Identity assertion maps a trusted identity (ID) to a WebSphere credential. This authentication method only
includes a user name in the security token. An additional token is included in the message for trust purposes. Once the
additional token is trusted, the IDAssertion token user name is mapped to a credential. This is used when the
authentication method is IDAssertion.

LTPA:

Light-weight Third Party Authentication validates an LTPA token.

Custom Token:

Custom token is pluggable and allows custom-defined tokens to be inserted into the SOAP message.

NOTE: The type of tokens that may be accepted by a message received may be defined at Assembly phase. A receiver
may support one or more type of security tokens. The message sender may choose one of the token types that are
supported by the receiver when sending a message. The token type to be used by the sending

side is defined in the client descriptor extension ibm-webservicesclient-ext.xmi while the token types that are supported
by the receiver will be specified in the ibm-webservices-ext.xmi.

WASv502_WS-Security.ppt Page 14 of 46

14 Web Services Security (WS-Security) © 2003 IBM Corporation

Security HandlerSecurity Handler

Security Token Generation High-Level Architecture

Request

Response

AppServer

EJB

or

Java

Bean

Client

SOAP request+

[WS-Security headers

| transport headers]

Configuration

Deployment descriptor and
service bindings

Request

Response

Security Token generation
�SecurityToken validation

�Set Security Context

CallbackHandlerConfiguration

Security Token

JAAS Login
Configuration

Security Token

JAAS Subject

Configuration

Deployment descriptor and
service bindings

For Security token generation and validation, On the request sender side, a callback handler is invoked to
generate the security token. On the request receiver side, a Java Authentication and Authorization Service
(JAAS) login module is used to validate the security token. These two operations, token generation and
token validation are described below:

On the client (sender) side:

The client Security Handler generates a security token using a callback handler. The security token returned
by the callback handler is inserted in the SOAP message. The callback handler that is used is specified in
the <LoginBinding> element of the bindings file, ibm-webservicesclient-bnd.xmi. Some callback handler
implementations are provided with WebSphere Application Server (as discussed in later foil). You can also
add your own callback handlers that implement javax.security.auth.callback.CallbackHandler.

On the Server (receiver) side:

The request receiver retrieves the security token from the SOAP message and validates it using a JAAS
login module. If the validation is successful, the login module returns a JAAS Subject. This subject then is set
as the identity of the thread of execution. If the validation fails, the request is rejected with a SOAP fault
exception.

The JAAS login configuration is specified in the <LoginMapping> element of the bindings file. The
configuration information consists of a CallbackHandlerFactory and a ConfigName. The
CallbackHandlerFactory specifies the name of a class that is used for creating the JAAS CallbackHandler
object. WebSphere Application Server provides the
com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl CallbackHandlerFactory
implementation. The ConfigName specifies a JAAS configuration name entry. WebSphere Application Server
searches the security.xml file for a matching configuration name entry. If a match is not found, it searches the
wsjaas.conf file for a match.

WebSphere Application Server provides the WSLogin default configuration entry, which is suitable for the
BasicAuth authentication method. WebSphere Application Server similarly provides the
system.wssecurity.IDAssertion default configuration entry, which is suitable for the identity assertion
authentication method.

WASv502_WS-Security.ppt Page 15 of 46

15 Web Services Security (WS-Security) © 2003 IBM Corporation

Message Level Integrity

� Provides way to ensure message integrity of SOAP messages in
multi-hop environment

• SSL provides message integrity, but in one hop scenario (point to point)

• XML digital signature used to provide message level integrity in a multi
hop scenario

• JSR 105 proposal defines APIs to programmatically sign a XML document

� Client defines required integrity for one or more of the following in
its Extension and Binding files

• Body
• Security Token
• Timestamp

• Defined using the <Integrity> Constraint in the Extension file

� Server needs to make sure that appropriate part of the message
has required integrity as specified in its Extension and Binding
files

• Defined using the <RequiredIntegrity> Constraint in the Extension file

• Fault is generated if required integrity is not satisfied

Integrity is the property that data has not been changed, destroyed, or lost in an unauthorized or accidental manner.

Web services can be accessed by sending SOAP messages to service endpoints identified by URIs, requesting specific actions, and
receiving SOAP message responses (including fault indications). Within this context, the broad goal of securing Web services breaks
into the subsidiary goals of providing facilities for securing the integrity and confidentiality of the messages and for ensuring that the
service acts only on requests in messages that express the claims required by policies.

The Secure Socket Layer (SSL) along with the de facto Transport Layer Security (TLS) can be used to provide transport level security
for web services applications. SSL/TLS offers several security features including authentication, data integrity and data confidentiality.
However SSL/TLS enables point-to-point secure sessions. (one hop scenario)

Today's Web service application topologies include a broad combination of mobile devices, gateways, proxies, load balancers,
demilitarized zones (DMZs), outsourced data centers, and globally distributed, dynamically configured systems. All of these systems
rely on the ability for message processing intermediaries to forward messages. Specifically, the SOAP message model operates on
logical endpoints that abstract the physical network and application infrastructure and therefore frequently incorporates a multi-hop
topology with intermediate actors.

XML digital signature is used to provide integrity in a multi-hop scenario.

Signature is a value generated from the application of a private key to a message via a cryptographic algorithm such that it has the
properties of integrity, message authentication and/or signer authentication.

You can select multiple parts of a message to be digitally signed. The different parts that can be digitally signed are Body, Security
Token and Time Stamp. This is set in the Integrity constraint in the Extensions file for the client. The security handler on the client side
will act on the constraint and digitally sign the message . On the server-side, the Integrity options have to be set in the Required
Integrity constraint in the web services Extension file for the server. The signing information is specified in the binding files. The
security handler on the server side of the SOAP message enforces these security specifications.

A SOAP Fault is generated, if required SOAP message elements are not properly signed, like:

•No signature could be found in the message

•The signature / signer certificate is invalid

WASv502_WS-Security.ppt Page 16 of 46

16 Web Services Security (WS-Security) © 2003 IBM Corporation

Message Level Confidentiality (Encryption)

� Encryption provided by WS-Security is based on the XML
Encryption specification

• JSR 106 proposal defines APIs to allow application programmatically
encrypt a XML document

� Client defines required Confidentiality for one or more of the
following in its Extension and Binding files

• Body Content

• User name and password
− For Basic Authentication, ID assertion (user name)

• Defined using the <Confidentiality> Constraint in the Extension file

� Server needs to make sure that appropriate part of the message
has required Confidentiality as specified in its Extension and
Binding files

• Defined using the <RequiredConfidentiality> Constraint in the Extension
file

• Fault is generated if required confidentiality is not satisfied

Confidentiality is the process by which data is protected such that only authorized actors
or security token owners can view the data. Message Confidentiality is provided by
leveraging XML Encryption in conjunction with security tokens to keep portions of SOAP
messages confidential. In WebSphere Application Server V5.0.2, there is no way to
specify integrity and confidentiality constraints programmatically. This support is coming
down the road with support of JSR 105 and JSR 106. Again, Confidentiality refers to
encryption while integrity refers to digital signing. Confidentiality reduces the risk of
someone being able to understand the message flowing across the Internet. With
confidentiality specifications, the message is encrypted before it is sent and decrypted
when it is received at the correct target.

In WebSphere Application Server V5.0.2, confidentiality has to be specified declaratively
as constraints within the client and server web services extension files. In the client’s web
services extension file, indicate which part of the message needs to be encrypted. Body
content is the user data portion of the message. Username token is the basic
authentication information. The encryption algorithm and other encryption information has
to be specified within the binding file. On the server side, server needs to make sure that
the message is encrypted properly and should generate a SOAP fault if the required
confidentiality constraints in the deployment descriptor are not satisfied. The
server(receiver) side extensions file will specify which part of the message is to be
decrypted and the bindings file will specify how to do the decryption.

WASv502_WS-Security.ppt Page 17 of 46

17 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

Authentication Flow of Security Tokens

WASv502_WS-Security.ppt Page 18 of 46

18 Web Services Security (WS-Security) © 2003 IBM Corporation

J2EE Authentication Flow

RPC
Router

EJB
Container

EJB

SOAP/HTTP(s)

WebSphere

AppServer

SOAP

Java
Bean

RMI/IIOP

Web
Services
Engine

HTTP Basic <user1:password>

Authentication

Authentication
Mechanism

SWAM LTPA

User Registry

LocalOS

LDAP

Custom

Authenticate user1/password

user1

user1

user1

user1

user1

You can secure Web services using the existing security infrastructure of WebSphere
Application Server, J2EE role-based security, and SSL transport level security.

The Web services endpoint can be secured using J2EE role-based security. The Web
services sender can be used to send the basic authentication data in the HTTP header.
SSL (https) can used to secure the transport level. When the WebSphere Application
Server receives the SOAP message, the WebContainer authenticates the user (in this
example, is "user1") and sets the security context for the call. After this is complete, the
SOAP router servlet sends the request to the implementation of the Web services (the
implementation can be Java Beans or Enterprise Java Beans). For Enterprise Java Beans
implementations, the EJB container performs an authorization check against the identity
"user1".

The Web services endpoint can also be secured using the J2EE role. In this case the
authorization check is performed before the request is sent. This might be the only way to
get to "coarse grain authorization" for Java Bean Web services implementation.

WASv502_WS-Security.ppt Page 19 of 46

19 Web Services Security (WS-Security) © 2003 IBM Corporation

WS-Security Security Token Authentication
Flow

RPC
Router

EJB
Container

EJB

WebSphere

AppServer

SOAP

Java
Bean

SOAP/HTTP(s)

RMI/IIOP

Web
Services
Engine

Security
Handler

Deployment
Descriptor

wsse:UsernameToken

<user1:password>

Web
Services
Engine Security

Handler

Deployment
Descriptor

Authentication

Authentication
Mechanism

SWAM LTPA

User Registry

LocalOS

LDAP

Custom

Authenticate: user1/password

user1

user1

user1

user1

user1

You can also secure Web services using Web services security at the message level. In this case, you can
digitally sign or encrypt a certain part of the message. Web services security also supports security token
propagation within the SOAP message. This scenario assumes that the Web services endpoint is not
secured with J2EE role-based security and that the Enterprise Java Bean is secured with J2EE role-based
security.

In this case the Web services endpoint is not secured with J2EE role-based security. The Web services
engine processes the SOAP message before the client sends the message to the Web services endpoint.
The Web services security runtime acts on the security constraints, such as digitally signing, encrypting, or
generating (and inserting) a security token in the SOAP header. In this case <wsse:UsernameToken> is
generated using "user1" and "password". On the server-side (receiving), the Web service processes the
incoming message and Web services security enforces security constraints. This includes making sure
messages are properly signed, properly encrypted, and decrypted, authenticating the security token, and
setting up the security context with the authenticated identity. (In this case, "user1" is the authenticated
identity.) Finally, the SOAP message is sent to Web service (if the implementation is Enterprise Java Beans,
the EJB container performs an authorization check against user1).

As you can see, Web services security can complement J2EE role-based security. For example, SSL can be
enabled at the transport level to provide a secure channel, and if the Web services implementation is
Enterprise Java Bean you can leverage the EJB authorization by performing authorization checks. The Web
services security runtime leverages the security infrastructure in order to set the authenticated identity in the
security context. The authenticated identity can be used in the downstream call to J2EE resources (or other
resource types).

Note that if you use SOAP over JMS, Web services security is the only way to propagate security token from
sender to the receiver.

WASv502_WS-Security.ppt Page 20 of 46

20 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

WS-Security

IBM Extension and Binding Files

(Defines WS-Security Policies for Client and Provider)

WASv502_WS-Security.ppt Page 21 of 46

21 Web Services Security (WS-Security) © 2003 IBM Corporation

Enterprise Application - EAR

EJB Module
Web Services
implements as

EJB

Web Services
implements as

EJB

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

WS-Security Deployment Descriptor - Provider

Web Module

Routing
Servlet

Web Services
implements as

Java Beans

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

Example of WS-Security IBM Deployment Descriptors for Web Services provider

As explained earlier, the security constraints for Web services security are specified in
IBM deployment descriptor extensions and bindings for Web services. The Web services
security run time acts on the constraints to enforce Web services security for the Simple
Object Access Protocol (SOAP) message. The scope of the IBM deployment descriptor
extensions and bindings is at the module level (EJB or Web). The IBM extension
deployment descriptor and bindings are associated with each EJB module or Web module.

WASv502_WS-Security.ppt Page 22 of 46

22 Web Services Security (WS-Security) © 2003 IBM Corporation

Web Services Acting As a Client On Server

EJB Module

EJB Web
Service

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

ibm-webservicesclient-ext.xmi

ibm-webservicesclient-bnd.xmi

Security

Handler

EJB Module

EJB Web
Service

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

Security

Handler

EAR2

EAR1

Web Module

Java Bean
Web Service

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

ibm-webservicesclient-ext.xmi

ibm-webservicesclient-bnd.xmi

Security

Handler

The IBM extension deployment descriptor and bindings are associated with each EJB
module or Web module. If Web services is acting as a client, then it has the client IBM
extension deployment descriptors and bindings in the

EJB module or Web module as well. In this example, EAR1 has an EJB web service and a
Java Bean web service. Hence, the EJB module and the web module will have the server-
side binding and extension files (ibm-webservices-bnd.xmi and ibm-webservices-ext.xmi).
However these web services also act as clients to an EJB web service on EAR2. Hence,
the EJB and Web module will also have client-side binding and extension files.

The Web services security handler acts on the security constraints defined in the IBM
extension deployment descriptor and enforces the security constraints accordingly. There
are outbound and inbound configurations in both the client and server security constraints.

WASv502_WS-Security.ppt Page 23 of 46

23 Web Services Security (WS-Security) © 2003 IBM Corporation

Extension Files – Client and Server
� ibm-webservicesclient-ext.xmi (CLIENT)

<serviceRefs>

<portQnameBindings>

<clientServiceConfig>

<securityRequestSenderServiceConfig>

<securityResponseReceiverServiceConfig>

� ibm-webservices-ext.xmi (SERVER)

<wsDescExts>

<pcBinding>

<serverServiceConfig>

<securityRequestReceiverServiceConfig>

<securityResponseSenderServiceConfig>

1

4

3

2

1. Defines Service Ref and Service Provider

2. Defines each Port in the Service

3. Defines Constraints of Message Request

4. Defines Constraints of Message Response

The Extension Files define what to do. On the top is the format of the web services client
extension file and on the bottom is the web services server extension file. The arrows
point out the matching pieces of information in these two files. On the client side, the
service reference and the service provider. For each port in the service, you specify the
client service configuration. There are two bodies of information in the client service
configuration namely the Request Sender configuration and the Response Receiver
Configuration. All the security constraints that needs to be done before sending the
message to the server has to be specified in the securityRequestSenderServiceConfig
part. The matching part for this in the server extension file is the
securityRequestReceiverServiceConfig. Hence, all the message request constraints
(Integrity, Confidentiality, Login Configuration…) will be specified here.

For the message response from the server, the parts
securityResponseReceiverServiceConfig on the client side and the
securityResponseSenderServiceConfig on the server side will specify the security
constraints.

WASv502_WS-Security.ppt Page 24 of 46

24 Web Services Security (WS-Security) © 2003 IBM Corporation

Client/Server Service Configuration - Request

securityRequestSenderServiceConfig

� loginConfig
•AuthMethod

� Integrity
•Body

•SecurityToken

•TimeStamp

� Confidentiality
•BodyContent

•UserNameToken

� IDAssertion
•IDType

•valid username, DN or X509Certicate

•TrustMode

•BasicAuth or Signature

� AddCreatedTimeStamp
•True or false

•expires <time in xsd:duration>

securityRequestReceiverServiceConfig

� loginConfig
•AuthMethod

� RequiredIntegrity
•Body
•SecurityToken
•TimeStamp

� RequredConfidentiality
•BodyContent
•UserNameToken

� IDAssertion
•IDType
•valid username, DN or X509Certicate
•TrustMode
•BasicAuth or Signature

� AddReceivedTimeStamp
•True or false

Let’s look at the contents of the extensions files in more detail. On the left is the Request Sender
configuration which is a part of the ibm-webservicesclient-ext.xmi file. These constraints apply both to J2EE
application clients or when Web services is acting as a client. You can specify the following security
requirements for the request sender and apply them to the SOAP message:

loginConfig: You can specify the security token that you want to insert into the message here. Various
security token options are available here such as Basic authentication, Identity assertion, X.509 binary
security token, LTPA binary security token, Custom token.

Integrity: You can select multiple parts of a message to be digitally signed. The options are Body, Security
Token and Time Stamp.

Confidentiality: You can select multiple parts of a message to be encrypted. The options are BodyContent
and UserNameToken

IDAssertion (use only if you selected Identity Assertion as the Auth Method in the LoginConfig section): The
purpose of identity assertion is to assert the authenticated identity of the originating client from a Web service
to a downstream Web service. In order for the downstream Web service to accept the identity of the
originating client (just the user name), you must supply a special trusted BasicAuth credential that the
downstream Web service trusts and can authenticate successfully. You must specify the user ID of the
special BasicAuth credential in a trusted ID evaluator on the downstream Web service configuration.

AddCreatedTimeStamp: You can have a time stamp for indicating the freshness of the message.

On the right is the Request Receiver configuration which is a part of the ibm-webservices-ext.xmi file. The
request receiver configuration defines the security requirement of the SOAP message. If the incoming SOAP
message does not meet all the security requirements defined, then the request is rejected with the
appropriate fault code returned to the message. For security tokens, the token is validated using Java
Authentication and Authorization Service (JAAS) login configuration and authenticated identity is set as the
identity for the downstream invocation.

Note: The security constraint for request sender must match the security requirement of the request receiver
for the request to be accepted by the server.

WASv502_WS-Security.ppt Page 25 of 46

25 Web Services Security (WS-Security) © 2003 IBM Corporation

Client/Server Service Configuration - Response

securityResponseReceiverServiceConfig

� RequiredIntegrity

• Body

• Time Stamp

� RequiredConfidentiality

• BodyContent

� AddReceivedTimestamp

• True or false

securityResponseSenderServiceConfig

� Integrity

• Body

• Time Stamp

� Confidentiality

• BodyContent

� AddCreatedTimestamp

• True or false

• expires

Let’s look at the security constraints in the extensions files for the security response. On
the left is the Response Sender configuration which is a part of the ibm-webservices-
ext.xmi file. The response sender configuration defines the security requirements of the
SOAP response message. The security handler signs, encrypts, or generates the time
stamp for the SOAP response message before the response is sent to the caller.

In the Integrity section , you can select multiple parts of the message to be digitally signed.
In the Confidentiality section you can encrypt the body content of the message. You can
also have a time stamp for checking the freshness of the message. Also, you can specify
an expiration time for the time stamp, which helps defend against replay attacks.

On the left is the Response Receiver configuration which is a part of the ibm-
webservicesclient-ext.xmi file. The response receiver configuration defines the security
requirements of the response received from a request to a Web service. You can specify
Required Integrity, Required Confidentiality and Received TimeStamp for the
ResponseReceiver configuration

Keep in mind that the security constraints for response sender must match the security
requirements of the response receiver. If the constraints do not match, the response is not
accepted by the caller or sender.

WASv502_WS-Security.ppt Page 26 of 46

26 Web Services Security (WS-Security) © 2003 IBM Corporation

Binding Files – Client and Server
� ibm-webservicesclient-bnd.xmi (CLIENT)

<serviceRefs>

<portQnameBindings>

<securityRequestSenderBindingConfig>

<securityResponseReceiverBindingConfig>

� ibm-webservices-bnd.xmi (SERVER)

<wsdescBindings>

<pcBindings>

<securityRequestReceiverBindingConfig>

<securityResponseSenderBindingConfig>

1

4

3

2

1. Defines Service Ref and Service Provider

2. Defines each Port in the Service

3. Defines Constraints of Message Request

4. Defines Constraints of Message Response

The Binding Files describe how to execute the security specifications found in the
extensions.

On the top is the format of the web services client binding file and on the bottom is the
web services server binding file. The arrows point out the matching pieces of information
in these two files. On the client side, the service reference and the service provider have
to be specified. For each port in the service, you specify the client security bindings. There
are two bodies of information in the client security bindings namely the Request Sender
configuration and the Response Receiver Configuration. All the security constraints that
needs to be done before sending the message to the server has to be specified in the
securityRequestSenderBindingConfig part. The matching part for this in the server binding
file is the securityRequestReceiverBindingConfig.

For the message response from the server, the parts
securityResponseReceiverBindingConfig on the client side and the
securityResponseSenderBindingConfig on the server side will specify the security
constraints.

WASv502_WS-Security.ppt Page 27 of 46

27 Web Services Security (WS-Security) © 2003 IBM Corporation

WS-Security Binding - Important Elements

� TrustAnchorList: trusted root certificates for signature
verification

� CertStoreList: CRLs and non-trusted certificates
verification

� KeyLocators: locates the keys used for retrieving
signing (verification) / encryption (decryption) key

� TrustedIDEvaluators: evaluates the trust of the received
identity before identity assertion

� LoginMappings: JAAS configurations for <AuthMethod>
specified in the deployment descriptors

CRL – Certificate Revocation List

WASv502_WS-Security.ppt Page 28 of 46

28 Web Services Security (WS-Security) © 2003 IBM Corporation

Client/Server Binding Configuration - Request
securityRequestSenderBindingConfig

� SigningInfo (Reqd. for Signature)

• SignatureMethod, CanonicalizationMethod,
DigestMethod

• SigningKey or CertPathSettings

� EncryptionInfo

• DataEncryptionMethod, KeyEncryptionMethod,
EncryptionKey

� KeyLocators (0 or more)

• KeyStore, Key*

• Property

� LoginBinding

• AuthMethod, TokenValueType, CallbackHandler

securityRequestReceiverBindingConfig

� SigningInfos (Reqd. for Signature)

• SignatureMethod, CanonicalizationMethod,
DigestMethod

• SigningKey or CertPathSettings

� EncryptionInfos

• DataEncryptionMethod, KeyEncryptionMethod,
EncryptionKey

� KeyLocators (0 or more)

• KeyStore, Key, Property

� LoginMapping

• AuthMethod, TokenValueType, CallbackHandler

� TrustedIDEvaluator or TrustedIDEvaluatorRef

� TrustAnchors

• KeyStore

� CertStoreList

• LDAPCertStore or CollectionCertStore

SigningInfo: Specifies the required information for signature and its verification.

•Sender side: SigningKey must be specified. This denotes an abstract key name and this is resolved by KeyLocators.

•Receiver side: Currently only X.509 is supported. CertPathSettings must be specified. Two "ref“ attributes refer to the "name“
attribute of TrustAnchor and *CertStore element.

EncryptionInfo: Specifies a triple of DataEncryptionMethod, KeyEncryptionMethod and EncryptionKey. Here EncryptionKey refers to
a abstract "name" of the key and the name is resolved by KeyLocators. If the name is absent, locatorRef attribute must be present and
the actual key is resolved by the specified KeyLocator. If KeyEncryptionMethod is present, XML message is encrypted using a
random-generated key and the key is encrypted using the key specified in EncryptionKey. Otherwise, XML message is encrypted
using the key specified in EncryptedKey.

KeyLocator: Specifies the name of a class that chooses the key for signature/encryption using a name given as input or its internal
mechanism. This class must implement com.ibm.xml.soapsec.KeyLocator. Properties which are used for initialization of the class
can be specified as well. Some kinds of implementation are possible such as:

•Always returns a fixed (default) key

•Simply maps the recipient key name to an alias in KeyStore

•Maps an authenticated client ID to an alias in KeyStore

If the locator returns a key, the handler uses it. Otherwise, the handler tries the other locators in the list by turns in the order of their
occurrence. Most common configuration is to have keystore and key specified.

LoginBinding:

Specifies the class name of CallbackHandler implementation to provide login information, per each AuthMethod. These classes must
implement javax.security.auth.callback.CallbackHandler. LoginConfig/AuthMethod must much one of LoginBinding/AuthMethod's.
For AuthMethod's which use UsernameToken (that is, BasicAuth and IDAssertion), TokenValueType can be omitted (ignored if any).
If basic-auth element is specified, the userID and the password are passed to the CallbackHandler (it has nothing to do with
AuthMethod of BasicAuth). The Property is the catch all.

TrustedIDEvaluator orTrustedIDEvaluatorRef: Specifies the class name which evaluates whether the received ID is trusted. This
class must implement com.ibm.xml.soapsec.token.TrustedIDEvaluator.

TrustAnchor: Trusted root certificates for signature verification

CertStoreList: CertStores are the place to look for CRLs and non-trusted certificates. LDAPCertStore is very experimental

WASv502_WS-Security.ppt Page 29 of 46

29 Web Services Security (WS-Security) © 2003 IBM Corporation

Client/Server Binding Configuration - Response

securityResponseReceiverBindingConfig

� SigningInfo (Reqd. for Signature)
• SignatureMethod,

CanonicalizationMethod, DigestMethod

• SigningKey or CertPathSettings

� EncryptionInfo
• DataEncryptionMethod,

KeyEncryptionMethod, EncryptionKey

� KeyLocator (0 or more)
• KeyStore, Key*

• Property

� TrustAnchor
• KeyStore

� CertStoreList
• LDAPCertStore or CollectionCertStore

securityResponseSenderBindingConfig

� SigningInfo (Reqd. for Signature)
• SignatureMethod,

CanonicalizationMethod, DigestMethod

• SigningKey or CertPathSettings

� EncryptionInfo
• DataEncryptionMethod,

KeyEncryptionMethod, EncryptionKey

� KeyLocator (0 or more)
• KeyStore, Key*

• Property

WASv502_WS-Security.ppt Page 30 of 46

30 Web Services Security (WS-Security) © 2003 IBM Corporation

WebSphere provided Callback Handlers

� com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

• This prompts for user name and password in a GUI panel.

� com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

• This prompts for user name and password in stdin.

� com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

• This does not prompt for user name and password, but it returns the
username and password defined in <BasicAuth> binding information.

� com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

• Generates LTPA token in the Web Services Security header as binary
security token

The JAAS CallbackHandler APIs is used for token generation by the request sender. This can be extended
to generate custom token to be inserted in the Web services security header. If BasicAuth is configured as
the required security token, specify the CallbackHandler in the binding file to collect the basic authentication
data. The following are the default implementations provided by WebSphere Application Server:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler

The implementation prompts for BasicAuth information (user name and password) in a GUI panel. Use this
implementation in the client environment only.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler: Collects the basic authentication data
in the standard in (stdin). Use this implementation in the client environment only.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation reads the BasicAuth information from the binding file. This might be used on the server
side to generate a user name token.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler:

Generates LTPA token in the Web services security header as binary security token. If there is basic
authentication data defined in the application binding file, it is used to perform a login, extract the LTPA token
from the WebSphere credentials, and insert the token in the Web services security header. Otherwise, it will
extract the LTPA security token from the invocation credentials (run as identity) and insert the token in the
Web services security header.

Call Back Handler information has to be specified in the client’s web services bindings file. To configure the
login binding information, click Applications > Enterprise Applications > application_name. Under Related
Items, click Web Module > URI_file_name Web Services: Client Security Bindings. Under Request Sender
Bindings, click Edit > Login Binding. If the web services client is a J2EE application client, then use the ATK
to modify the client web services bindings.

WASv502_WS-Security.ppt Page 31 of 46

31 Web Services Security (WS-Security) © 2003 IBM Corporation

WebSphere WS-Security Default Binding

My Cell

My
Node

server1

ws-security.xml

(Server Level)

EJB Module

Web Services
implements as

EJB

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

WebSphere WS-Security Default Bindings

ws-security.xml

(Cell Level)

For Network Deployment Only

overrides

overrides

Some of the binding information could be shared between applications, for example, the trust stores, key
stores, authentication method (token validation) and etc..

WebSphere Application Server provides support for default binding information. Administrators can define
binding information at the server level and cell level (Network Deployment only) and applications can refer to
the binding information. The default binding information is defined in ws-security.xml and can be
administered by the Admin Console or scripting.

In the Base Application Server, each server has a copy of ws-security.xml (default binding information for
Web services security). There is no cell level copy of

ws-security.xml which is only available on the Network Deployment installation. To navigate to the server
level of default binding in the Admin Console, "Servers > Application Servers > server1" and click the link
"Web Services: Default bindings for Web Services Security" link in the "Additional Properties“ section.

The Web services security runtime uses the binding information in the application EJB or Web module
binding file (ibm-webservices-bnd.xmi or ibm-webservicesclient-bnd.xmi if Web services is acting as client in
the server) if the binding information is defined in the application level binding file. For example, if key locator
"K1" is defined in both the application level binding file and the default binding (ws-security.xml), then the
"K1" in the application level binding file is used.

When the Base Application Server is federated to a Network Deployment cell, the default binding file (ws-
security.xml) of the server is added along with other server level configuration to the new cell. If the desire is
to use the cell level default binding, then the entries of the server level default binding has to be removed.
There is a cell level default binding (ws-security.xml) for Network Deployment installation. In Network
Deployment installation, server level binding is optional. To navigate to the cell level of default binding in the
Admin Console, "Security > Web Services“.

WASv502_WS-Security.ppt Page 32 of 46

32 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

Scenarios

WASv502_WS-Security.ppt Page 33 of 46

33 Web Services Security (WS-Security) © 2003 IBM Corporation

High Level Scenario Example

SOAP/HTTP(s)

wsse:UsernameToken

<user1:password>

Client 1

RMI/IIOP
user1

Web Service 1

EJB 2

Web Service 3

SOAP/HTTP(s)

wsseBinarySecurityToken

<LTPA token bytes of user2>

Web Service 4

SOAP/HTTP(s)

wsseBinarySecurityToken

<LTPA token bytes of user2>

Client 2

SOAP/HTTP(s)

wsse:UsernameToken

<user2:password>

RunAs
user2

In the above figure, client 1 invokes Web service 1. Then Web Service 1 calls EJB 2. EJB 2 calls Web
Service 3 and Web Service 3 calls Web Service 4. The Client 2 also calls web service 4.

The above scenario shows how to propagate security tokens using Web services security, the security
infrastructure of the WebSphere Application Server, and Java 2 Platform, Enterprise Edition (J2EE) security.
Web service 1 is configured to accept <wsse:UsernameToken> only and use the BasicAuth authentication
method. However, Web services 4 is configured to accept either <wsse:UsernameToken> using the
BasicAuth authentication method or Lightweight Third-party Authentication (LTPA) as
<wsse:BinarySecurityToken>.

Client 1 sends a Simple Object Access Protocol (SOAP) message to Web services 1 with user1 and
password in the <wsse:UsernameToken> element. The user1 and password values are authenticated by the
Web services security run time and set in the current security context as the Java Authentication and
Authorization Service (JAAS) Subject. Web services 1 invokes EJB2 using the Remote Method Invocation
over the Internet Inter-ORB Protocol (RMI/IIOP) protocol. The user1 identity is propagated to the
downstream call. The EJB container of EJB2 performs an authorization check against user1. EJB2 calls Web
services 3 and Web services 3 is configured to accept LTPA tokens. The RunAs role of EJB2 is set to user2.
The LTPA CallbackHandler implementation extracts the LTPA token from the current JAAS Subject in the
security context and Web services security run time inserts the token as <wsse:BinarySecurityToken> in the
SOAP header. The Web services security run time in Web service 3 calls the JAAS Login Configuration to
validate the LTPA token and set it in the current security context as the JAAS Subject.

Web service 3 is configured to send LTPA security to Web service 4. In this case, assume that RunAs is not
configured for Web services 3. The LTPA token of user2 is propagated to Web services 4. Client 2 uses the
<wsse:UsernameToken> element to propagate the basic authentication data to Web services 4.

Web services security compliments the WebSphere Application Server security run time and the J2EE role-
based security. In this case, it demonstrates how to propagate security tokens across multiple resources
such as Web services and EJB files.

WASv502_WS-Security.ppt Page 34 of 46

34 Web Services Security (WS-Security) © 2003 IBM Corporation

High Level Scenario – Security Token propagation
SOAP/HTTP(s)
wsse:UsernameToken

<user1:password>

Client 1

RMI/IIOP
user1

EJB
Container

EJB 1

Security
Handler

Deployment
Descriptor

user1

user1

Web Service 1
receiver 1

Security
Handler

Deployment
Descriptor

sender 2

EJB
Container

EJB 2

EJB 2

user1

SOAP

runAs
user2

Security
Handler

Deployment
Descriptor

sender 2

EJB
Container

EJB 3

user2

user2

Web Service 3

Security
Handler

Deployment
Descriptor

receiver 3
SOAP/HTTP(s)
wsseBinarySecurityToken

<LTPA token bytes of user2>

Security
Handler

Deployment
Descriptor

sender 3

SOAP
user2

EJB
Container

EJB 4

Web Service 4

user2

Security
Handler

Deployment
Descriptor

receiver 4

user2

SOAP/HTTP(s)
wsseBinarySecurityToken

<LTPA token bytes of user2>

Client 2

Security
Handler

Deployment
Descriptor

sender 2

SOAP/HTTP(s)
wsse:UsernameToken

<user2:password>

The same scenario as in previous page is depicted in more detail here. Again, client 1
invokes Web service 1. Then Web Service 1 calls EJB 2. EJB 2 calls Web Service 3 and
Web Service 3 calls Web Service 4. When the client1 calls web service1 , since security is
passed through the SOAP message, the client-side security handler will insert the
necessary basic authentication information as specified in the client web services security
extension and binding files. The security handler on webservice 1 will authenticate the
request and then calls the EJB1. The EJB will do the necessary role-based authorization.
If the user1 is authorized to access the EJB method, then the EJB call is made. EJB1
makes an RMI/IIOP call to EJB2. EJB2 is the web service client to web service 3. Hence,
the security handler will insert the security information by introspecting the web service
client extension and binding files in EJB2’s EJB Module. In this case, a binary security
token is send to web service 3. The security handler on web service 3 authenticates the
request and then passes the request to web service 4

Client2 is a simple scenario whereby the security handler introspects the client web
services extension and binding files and adds the integrity, confidentiality etc to the SOAP
message. On the server side for the web service 4, the security handler will introspect the
server side web services extension and binding files and authenticate the incoming
request. Also, note that the request receiver on web service 4 can accept either Binary
Security Tokens or Basic Authentication token. Client 2 uses the Basic Auth token where
as web service3 (acting as client to web service 4) uses the Binary Security token

WASv502_WS-Security.ppt Page 35 of 46

35 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

Tools

WASv502_WS-Security.ppt Page 36 of 46

36 Web Services Security (WS-Security) © 2003 IBM Corporation

Tools to specify WS-Security Constraints

�Application Server Toolkit and WebSphere
Studio V5.1

• Specify WS-Security bindings

• Specify WS-Security extensions

�Admin Console

• Create/Update application WS-Security bindings

• Create/Update default WS-Security bindings

• View/Update server-side default WS-Security bindings

Use either the Application Server Toolkit or WebSphere Studio Application Developer V5.1
to specify the security constraints. XML editors are available for editing the ibm-
webservices-bnd.xmi, ibm-webservices-ext.xmi, ibm-webservicesclient-bnd.xmi and ibm-
webservicesclient-ext.xmi files. The WebSphere Application Server Administrative
Console can be used to view the web services security extensions and the bindings for the
client and server. The Administrative Console can be used to update the webservices
security client and server-side bindings. However , note that this is not applicable to J2EE
application clients. For J2EE application clients, you will have to use the Application
Server Toolkit itself to create all the bindings. For clients residing in the server (servlets
etc), we can use the Admin Console to create the bindings.

The Admin Console can also be used to view and update the default web services security
bindings. So, an administrator can define binding information at the server level and
applications can refer to this binding information.

WASv502_WS-Security.ppt Page 37 of 46

37 Web Services Security (WS-Security) © 2003 IBM Corporation

Application Server Toolkit – Web Services Editor
� Specify server-side WS-Security constraints

•Security Extensions (ibm-webservices-ext.xmi)

•Binding Configurations (ibm-webservices-bnd.xmi)

� Same editor available in WebSphere Studio V5.1

The server side web services security constraints can be specified using the Application
Server Toolkit. Import the web service application to the tool. If it is an EJB web service,
then expand ejbmodule > META-INF. Double click webservices.xml. The web services
security extensions can be edited in the Security Extensions page. Any editions made in
this page will be reflected in the ibm-webservices-ext.xmi file. The web services binding
configuration can be specified in the Binding Configuration page. Any editions made in this
page will be reflected in the ibm-webservices-bnd.xmi file.

WASv502_WS-Security.ppt Page 38 of 46

38 Web Services Security (WS-Security) © 2003 IBM Corporation

Application Server Toolkit – Web Services Client editor
� Specify client-side WS-Security constraints

•Security Extensions (ibm-webservicesclient-ext.xmi)

•Port Bindings (ibm-webservicesclient-bnd.xmi)

� Same editor available in WebSphere Studio V5.1

The client side web services security constraints can be specified using the Application
Server Toolkit. Import the application to the tool. If it is a J2EE application client, then
expand appClientModule > META-INF. Double click webservicesclient.xml. The web
services client security extensions can be edited in the Security Extensions page. Any
editions made in this page will be reflected in the ibm-webservicesclient-ext.xmi file. The
web services binding configuration can be specified in the Port Binding page. Any editions
made in this page will be reflected in the ibm-webservicesclient-bnd.xmi file.

WASv502_WS-Security.ppt Page 39 of 46

39 Web Services Security (WS-Security) © 2003 IBM Corporation

Application WS-Security Bindings – Admin Console

� Admin Console can be used to view and update security
bindings in an EJB/Web Module’s Additional Properties

•Server security bindings

•Client security bindings

•Only for Clients that reside on the server

The web services server security bindings and web services client security bindings can
be updated within the WebSphere administrative console. Expand Applications >
Enterprise Applications. Select the Application and then select the EJB/Web Module. The
EJB/Web Module’s additional properties is shown above. Hence the bindings need not be
applied at assembly stage in the Application Server Toolkit or in Web Sphere Studio. The
web services security binding configuration can be specified at deployment stage.
However, keep in mind that this updating the client security bindings in the Administrative
Console applies only to clients that reside on the server. For J2EE application client, the
bindings have to be configured in the application server toolkit (or WebSphere Studio
Application Developer V5.1).

WASv502_WS-Security.ppt Page 40 of 46

40 Web Services Security (WS-Security) © 2003 IBM Corporation

Default bindings for WS-Security
� Update using Admin Console

•Servers > Application Servers > server1 > Web Services: Default
Bindings for Web Services security

Use this page to manage the default bindings for trust anchors, the collection certificate store, key locators, trusted ID
evaluators, and login mappings. The default binding configuration provides a central location where reusable binding
information is defined. The application binding file can reference the information contained in the default binding
configuration.

It contains:

•Trust Anchors: trusted root certificates for signature verification

The "Trust Anchor Name" is used in the binding file (ibm-webservices-bnd.xmi and ibm-
webservicesclient-bnd-xmi when Web services is running as client) to refer to the trust anchor defined
in the default binding information.

•Collection Certificate Store: CRLs and non-trusted certificates verification.

The "Certificate Store Name" is used in binding files (ibm-webservices-bnd.xmi and ibm-webservicesclient-bnd-
xmi when Web services is running as client) to refer to the certificate store defined in the default binding
information.

•Key Locators: locates the keys for digital signature and encryption.

The "Key Locator Name" is used in binding file (ibm-webservices-bnd.xmi and ibm-webservicesclient-bnd-xmi
when Web services is running as client) to refer to the key locator defined in the default binding information.

•TrustedID Evaluators: evaluates the trust of the received identity before identity assertion.

The "Trusted ID Evaluator Name" is used in binding file (ibm-webservices-bnd.xmi) to refer to the trusted
identity evaluator defined in the default binding information.

Login Mappings: This defines mappings of AuthMethod of security token to JAAS Login Configuration. The
mapping is used to authenticate the incoming security token embedded in the Web services security SOAP
header of the message. WebSphere Application Server provides definition of BasicAuth (authenticate
username and password), Signature (map the subject DN in the certificate to a WebSphere Credential),
IDAssertion (map the identity to a WebSphere Credential) and LTPA (authenticate a LTPA token)
AuthMethods. After the identity is authenticated then it's Credential is used in the down stream call.

When there is LoginConfig (AuthMethod) defined in the IBM extension deployment descriptor (ibm-
webservices-ext.xmi), but no LoginMapping bindings (ibm-webservices-bnd.xmi) defined for the AuthMethod,
then the Web services security runtime tries to use the LoginMapping defined in the default binding information.

WASv502_WS-Security.ppt Page 41 of 46

41 Web Services Security (WS-Security) © 2003 IBM Corporation

Sample Configurations

�Sample key stores with WebSphere Application
Server V5.0.2

• Available in {install_root}/etc/ws-security/samples

• Use for samples and testing, do NOT use in production

�Sample configuration of Trust Anchors, Key
Locators, Cert Stores, Trusted ID Evaluators and
Login Mappings

• Available in WebSphere Application Server Default web
services security Bindings

• {install_root}/config/cells/<hostname>/nodes/<nodename>/serv
ers/server1/ws-security.xml

• Edit in Admin Console

WebSphere application server include some sample key stores and sample configuration of trust anchor,
certificate store, key locators, trusted identity evaluators and login mappings.

The sample key stores are:

{USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks (key store password is "client")

{USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks (key store password is "server")

{USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks (key store password is "storepass")

{USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks (key store password is
"storepass")

{USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer, the intermediatory "Int CA2".

NOTE: Refer the InfoCenter for more details on these sample key stores. The above sample key stores are
for testing and sample purpose only, do not use them in production environment.

Websphere application server provides the following default binding information in ws-security.xml. These
can be viewed from the Admin Console as shown in previous foil:

The Trust Anchors SampleClientTrustAnchor and SampleServerTrustAnchor and the Collection Certificate
Store SampleCollectionCertStore are available. Also available are the Key Locators
:SampleClientSignerKey, SampleServerSignerKey, SampleSenderEncryptionKeyLocator ,
SampleReceiverEncryptionKeyLocator and SampleResponseSenderEncryptionKeyLocator.

Refer to the InfoCenter for a detailed list of all the default security configurations that are available.

NOTE that the default bindings for Trust Anchors, Collection Certificate Store and Key Locators are for
testing or sample purpose only, they should not be used for production. However you can create your own
key locators ,trust anchors etc within the Default web services security binding and use it within your
application’s bindings. You can do this in the Admin Console as shown in previous foil.

WASv502_WS-Security.ppt Page 42 of 46

42 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

Problem Determination

WASv502_WS-Security.ppt Page 43 of 46

43 Web Services Security (WS-Security) © 2003 IBM Corporation

WS-Security Problem Determination

� Make sure that the client and sender request and response
configurations match

• Request Sender and Request Receiver

• Response Sender and Response Receiver

� Use TCPIP monitor to see the SOAP Request and
Response

• Included with WebSphere Studio

� Use WebSphere Log and Trace facilities

• Trace String:

• com.ibm.xml.soapsec.*=all=enabled:com.ibm.ws.webservices.*=all=en
abled: com.ibm.wsspi.wssecurity.*=all=enabled
:com.ibm.ws.security.*=all=enabled:SASRas=all=enabled

• FFDC output

Troubleshooting Web services security is best done by reviewing the configurations in the Application Server
Toolkit so that you can match up the client and server request and response configurations in the extensions
file. These configurations must match. A client request sender configuration must match a server request
receiver configuration. Also, a server response sender configuration must match a client response receiver
configuration.

Also, verify that the client security bindings and server security bindings are correctly configured. When the
client authentication method is signature, make sure that the server has a login mapping to handle it. When
the client uses the public key cn=Bob,o=IBM,c=US to encrypt the body, verify that this Subject is a personal
certificate in the server key store so that it can decrypt the body with the private key. You can configure the
security bindings using either the Application Server Toolkit or the WebSphere Application Server
Administrative Console.

The TCP/IP monitor that is available with WebSphere Studio Application Developer can be used to see the
SOAP request and response. For example if Encryption is specified, then this tool can be used to make sure
that the SOAP message is encrypted properly.

Check the SystemOut.log file in the ${USER_INSTALL_ROOT}/logs/server1 directory for messages that
might provide information about the problem.

Enable trace for Web Services Security by using the following trace specification:
com.ibm.xml.soapsec.*=all=enabled:com.ibm.ws.webservices.*=all=enabled:
com.ibm.wsspi.wssecurity.*=all=enabled:com.ibm.ws.security.*=all=enabled:
SASRas=all=enabled
Type the previous three lines as one continuous line.

WASv502_WS-Security.ppt Page 44 of 46

44 Web Services Security (WS-Security) © 2003 IBM Corporation

Section

Summary

WASv502_WS-Security.ppt Page 45 of 46

45 Web Services Security (WS-Security) © 2003 IBM Corporation

Summary

� WS-Security Architecture in WebSphere

� Security Token creation and validation

� Authentication Flow for J2EE and Message based

� WS-Security IBM Extension and Binding Files

� Some Scenarios and Examples

� Problem Determination

References:

WebSphere Application Server, Version 5.0.2 provides an implementation of the key
features of Web services security based on the following specifications:

Specification: Web Services Security (WS-Security) Version 1.0 05 April 2002

(http://www-106.ibm.com/developerworks/webservices/library/ws-secure/)

Web Services Security Addendum 18 August 2002

(http://www-106.ibm.com/developerworks/webservices/library/ws-secureadd.html)

Web Services Security: SOAP Message Security Working Draft 12, Monday, 21 April
2003

(http://www.oasis-open.org/committees/download.php/1686/WSS-
SOAPMessageSecurity-12-04021.pdf).

WASv502_WS-Security.ppt Page 46 of 46

46 Web Services Security (WS-Security) © 2003 IBM Corporation

Trademarks and Disclaimers
© Copyright International Business Machines Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country. The following terms are trademarks
or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries DB2 DB2 Universal Database CICS
Netfinity zSeries OS/390 IMS

Lotus, Domino, Freelance Graphics, and Word Pro are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and
the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. ActionMedia, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other
countries. Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from
publicly available information, including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your
local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to
specific levels of performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements.
The information is presented here to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future
planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Copyright International Business Machines Corporation 2003. All Rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

