11\ (¥ software

¥d \%) -
. : i
IBM Tivoli Identity Manager 4.6 — Extending Workflows with

Java
White Paper

Ori Pomerantz

March 2006

Copyright Notice

Copyright © 2006 IBM Corporation, including this documentation and all software. All rights
reserved. May only be used pursuant to a Tivoli Systems Software License Agreement, an IBM Soft-
ware License Agreement, or Addendum for Tivoli Products to IBM Customer or License Agreement.
No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without prior written permission of IBM Corpora-
tion. IBM Corporation grants you limited permission to make hardcopy or other reproductions of any
machine-readable documentation for your own use, provided that each such reproduction shall carry
the IBM Corporation copyright notice. No other rights under copyright are granted without prior writ-
ten permission of IBM Corporation. The document is not intended for production and is furnished “as
is” without warranty of any kind. All warranties on this document are hereby disclaimed, including the
warranties of merchantability and fithess for a particular purpose.

Note to U.S. Government Users—Documentation related to restricted rights—Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks

The following are trademarks of IBM Corporation or Tivoli Systems Inc.: IBM, Tivoli, AlX, Cross-Site,
NetView, OS/2, Planet Tivoli, RS/6000, Tivoli Certified, Tivoli Enterprise, Tivoli Ready, TME. In Den-
mark, Tivoli is a trademark licensed from Kjgbenhavns Sommer - Tivoli A/S.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Lotus is a registered trademark of Lotus Development Corporation.

PC Direct is a trademark of Ziff Communications Company in the United States, other countries, or
both and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel Corporation in the
United States, other countries, or both.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC. For fur-
ther information, see http://www.setco.org/aboutmark.html.

Other company, product, and service names may be trademarks or service marks of others.

Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply
that they will be available in all countries in which Tivoli Systems or IBM operates. Any reference to
these products, programs, or services is not intended to imply that only Tivoli Systems or IBM prod-
ucts, programs, or services can be used. Subject to valid intellectual property or other legally pro-
tectable right of Tivoli Systems or IBM, any functionally equivalent product, program, or service can
be used instead of the referenced product, program, or service. The evaluation and verification of
operation in conjunction with other products, except those expressly designated by Tivoli Systems or
IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent
applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, New York 10504-1785, U.S.A.

Printed in Ireland.

Table of Contents

Introduction
About this Paper. e 11
AUIENCE. o 1"

White Paper

Using this White Paper 1
IBM Tivoli Identity Manager 4.6 Configuration i, 1
Database Configuration 1

Extension Elements 2
Writing the EXtensions 2
Preparing the Extensions for ITIM e 3

Simple EXamples 3
Complete Example — Extensions for the Recertification Policy 5
Registering the Extensions with ITIM e 14
The XML Fileo e e 14
The Application Class Path 15
Using the EXtensions e 16
Initial Certification e 16
Recertification 18
Deleting Certifications 21
Accessing ITIM Objects in Extensions et 21
Changesinthe Java 22
Changes in the Extension Registration 23
Changes inthe Workflow e 23

Extending the JavaScript Interpreter 24
Planning . ..o 24
Writing FESI EXtENSIONSot e 24

Simple FESI EXtension 25
FESI Extensions for Extending Account Schemas 27
Registering FESI Extensions with ITIM 35
Using the FESI EXtENSIONS oo e e e e 36
Initial Certification e 36
Recertification 37
Deleting Certifications e 39
SUMIMAIY . e e e e 41
RESOUICES. . . oo e 41

Table of Contents

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

©Copyright IBM Corp. 2006

Introduction

About this Paper

IBM Tivoli Identity Manager has a very flexible workflow engine. It can request additional
information, send e-mail messages, provision additional accounts, and so on. When the
default functionality is insufficient, the workflow engine can be extended using Java. This
allows workflows to store additional fields for accounts, interface with third-party
products, and access all the capabilities of the server.

This white paper presents the use of Java extensions, both directly into the workflow engine
and indirectly into the JavaScript interpreter. These extensions will be used to implement a
recertification policy that stores the last certification date for each account in a database

table. You will also learn how to use a database table to virtually extend account schemas.

Audience

This paper is for implementers and senior system administrators who need to extend
workflow functionality and know Java programming. It builds on the knowledge provided
in the Extending IBM Tivoli Identity Manager 4.6 class.

Introduction

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

©Copyright IBM Corp. 2006

White Paper

1.1

1.2

Using this White Paper

In this white paper you will learn how to use extension elements and JavaScript extensions
to implement a recertification policy. A recertification policy requires that the continuing
need for accounts will be certified periodically. To do this, it is necessary to keep track of
the last time the need for an account was certified.

To get the most out of this white paper, run IBM Tivoli Identity Manager 4.6 on a test
computer and follow along with the examples.

IBM Tivoli Identity Manager 4.6 Configuration

Install all the components of IBM Tivoli Identity Manager (ITIM) 4.6 on a single computer,
including at least one adapter. Use idsldap as the owner of IBM Tivoli Directory Server
and IBM DB2. Call the database you configure for ITIM itimdb, and configure the owner
of the database as enrole with the password object00.

Database Configuration

IBM Tivoli Identity Manager already has access to a database. For a test implementation
like this one, it is best to add tables to that database:

1. Source the database environment:
. ~idsldap/sgllib/db2profile
2. Run the SQL interpreter:
db2sql92 -d itimdb -a enrole/object00
3. Enter these SQL commands to create the tables required for this white paper:
CREATE TABLE certDates (
acctDN varChar (120),

certTime bigInt

);

White Paper

2.1

CREATE TABLE acctAttr (
globalID char(30),
name varChar (200),
value varChar (200)

);

Extension Elements

Extension elements in a workflow call Java methods. Extension elements are atomic,
meaning that each element performs its full action, and cannot be customized by the
workflow to perform part of it. For a recertification policy, the following operations are
required:

« initialCert — set the certification date for an account to the present, creating a new
row in the database.

* updateCert — recertify an account, setting the certification date in an existing row
to the present.

* checkCert — check if a certification for an account has expired.

¢ deleteCert — delete the certification information, for use when an account is
deleted.

Writing the Extensions

When programming extensions, it is better to test them through the command line before
using them in IBM Tivoli Identity Manager. This allows the programmer to identify and
solve problems with the extension methods before encountering problems related to
placing the extensions to the workflow.

A copy of the extensions without the ITIM specific code will not be included here. You can
compile and run the Java program in the next section. If you followed the setup instructions
in section 1, the following script will compile and execute a test to verify the extensions
work correctly:

#! /bin/sh

~idsldap/sqgllib/db2profile
CLASSPATH=SCLASSPATH: /opt/IBM/itim/lib/itim api.jar

javac CertExt.java
java CertExt

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

2.2 Preparing the Extensions for ITIM

The following changes are required in a class to make its methods usable as application
extensions in IBM Tivoli Identity Manager:

* Have the class implement the interface
com.ibm.itim.workflow.application.WorkflowInterface.

* Implement the sole method of that interface,
setContext(com.itim.workflow.applications. WorkflowExecutionContext).
The workflow engine will use this method to provide the class with information
about the current workflow.

o Ifthe class has a constructor, make sure that it is public and does not require any
parameters. If the constructor is private or protected, the workflow engine will not
be able to instantiate it.

In addition, each method that will be called from an extension has to follow these
restrictions:

* The method arguments have to be objects, not primitive types.

e The method needs to return a com.ibm.itim.workflow.model. A ctivityResult
object with the results. At a minimum, this object has to specify if the method was
successful or not. It can also contain result descriptions, as well as any values
returned by the extension.

221 Simple Examples

This section shows simple code snippets that implement only the basic functionality
required to connect to IBM Tivoli Identity Manager.

import com.ibm.itim.workflow.application.*;
import com.ibm.itim.workflow.model.*;

These lines import the classes that IBM Tivoli Identity Manager requires in application
extensions.

public class AppExtensionExample
implements WorkflowApplication

{

The class that contains the application extension methods has to implement
WorkflowApplication. Of course, it also needs to be a public class.

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

White Paper

// Workflow context, passed from the workflow
// engine
WorkflowExecutionContext ctx;

/**

* Set the workflow execution context
*

* (@param ctx context of the current activity
*/
public void setContext (WorkflowExecutionContext ctx)

{

this.ctx = ctx;

These lines implement the one function required by WorkflowApplication, which enables
the workflow engine to set the context for the application extension. This context includes
information about the current process, the reason it is running, and so on.

public AppExtensionExample ()
{
}

If there is a constructor, it has to be public, to allow the workflow engine to create new
instances of the class to run the extension methods.

public ActivityResult success (String param)

{
// Return with success, no message
return new ActivityResult();

This is a simple extension that receives a single parameter, a string. It returns an
ActivityResult that always reports success, and does not have any output parameters.

public ActivityResult failure ()
{

// Return with success, no message
return new ActivityResult (

ActivityResult.STATUS ABORT,
“Error message.”);

This is another extension, which always reports failure with an error message.

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

public ActivityResult echo (String echoMe)

{

// Create the list of values to return:

// Create a vector of objects with size 1
java.util.Vector = new java.util.Vector(1l);

// Add the string to the results vector
retVal.add (echoMe) ;

// Create the Activity Result to return
ActivityResult res = new ActivityResult();

// Add the results vector
res.setDetail (retVal) ;

// Return
return res;

This extension shows how to return parameters from an extension:

1. Create a java.util.Vector of the required size.

2. Use the add method to add the objects for the return parameters to vector.

3. Use the setDetail method of the ActivityResult object to add the vector to the

results.

2.2.2 Complete Example — Extensions for the Recertification Policy

This Java code implements the extensions that a recertification policy requires.

import
import
import
import

©Copyright IBM Corp. 2006

java.util.Date;

java.sqgl.*;
com.ibm.itim.workflow.application.*;
com.ibm.itim.workflow.model.*;

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

White Paper

*

CertExt implement IBM Tivoli Identity Manager

workflow extensions for account certification.

</P>

This code is provided as part of the IBM Tivoli Identity
Manager 4.6 - Extending Workflows with Java white paper,
and is intended for education use only.

L S T S R

~

public class CertExt
implements WorkflowApplication

// Connection to the database
Connection dbConn;

// Workflow context, passed from the workflow
// engine
WorkflowExecutionContext ctx;

/**
* Set the workflow execution context
*

* @param ctx context of the current activity

*/
public void setContext (WorkflowExecutionContext ctx)
{

this.ctx = ctx;

// A small main to check the functionality. This
// method creates a certification row, updates it,
// checks if the certification was in the last day,
// and then deletes it.
public static void main (String[] args)

throws java.io.IOException

CertExt me = new CertExt();

final String acctDN =
"erglobalild=XXXXXXXXXXXXXXXXXXX,"
+ "ou=0, ou=accounts, "
+ "erglobalid=0000000000000000000,"
+ "ou=xyz,o=xyz";

me.initialCert (acctDN) ;

System.out.println ("Check in the database that " +
"there is a cert date for " +
"XXXXX.") ;

getEnter () ;

me.updateCert (acctDN) ;

System.out.println ("Check in the database that " +
"the cert date for XXXX " +
"has been updated.");

getEnter();

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

©Copyright IBM Corp. 2006

ActivityResult res = me.checkCert (acctDN) ;
System.out.println("Is the cert valid? " +
res.getDetail () .get (0));

me.deleteCert (acctDN) ;

System.out.println ("Check in the database that " +
"the row for XXXX has been " +
"deleted.");

/**
* Get from stdin the line until an
* Enter and discard it. This is used by main to wait
* for user confirmation before it continues.
*/
static void getEnter ()
throws java.io.IOException

System.out.println ("Press Enter when you are " +
"ready to proceed.");
do
System.in.read();
while (System.in.available() > 0);
}
/**
* Connect to the database.
*/
public CertExt ()
{
try {
// Open a connection to the database
dbConn = connectDB () ;

}
catch (SQLException ex) {
System.out.println ("SQL Exception: " + ex);

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

White Paper

/**
* Close the database connection.
*/
protected void finalize ()
throws Throwable

try |
// Close the database connection
dbConn.close () ;

}

catch (SQLException ex) {
System.out.println ("SQL Exception: " + ex);

/**

* Connect to the database.

* </P>

* This method is hard-wired to connect to the itimdb
* database as enrole, with the password object00.

* Modify it for your own installation's values.

*

* @return a connection to the database

*

~

Connection connectDB()
throws SQLException

try {
// Load the JDBC driver for DB2
Class.forName ("COM.ibm.db2."+

"jdbc.app.DB2Driver") ;

}

catch (ClassNotFoundException e) {
System.out.println("Can't load JDBC driver.");
System.out.println ("Exception: " + e);
System.out.println("Source the DB2 environment”

+ " if you haven't yet.");

// Connect to the database
return DriverManager.
getConnection("jdbc:db2:" +

// Database name, as specified
// in the local catalog on the
// ITIM Server
"itimdb",
// User for the database
"enrole",
// Password for the database
"objectO0O"
)

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

©Copyright IBM Corp. 2006

L S R I S

*

~

Create the initial certification for an
account. Set the certification time to the present.

@param acctDN the DN for the account entity in the
directory

@return The result of the activity

public ActivityResult initialCert (String acctDN)

{

// The current time, in milliseconds
long now = new Date () .getTime () ;

// Write information to the database.
try {
// Create a PreparedStatement with
// the SQL command.
PreparedStatement pstmt =
dbConn.prepareStatement (
"INSERT INTO CertDates " +

" (acctDN, certTime) " +
"VALUES ('" + acctDN + "', "
+ now + ");");

// Update the database
pstmt.executeUpdate () ;

// Close the statement
pstmt.close () ;

// Return with success, no message
return new ActivityResult();
}
catch (SQLException ex) {
// Write the failure
System.out.println ("SQL Exception: " + ex);

// Return with failure

return new ActivityResult (
ActivityResult.STATUS ABORT,
"SQL Exception: " + ex);

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

10

White Paper

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

L S R I S

~

*

Update the certification for an account.
Set the certification time to the present.

@param acctDN the DN for the account entity in
the directory

@return The result of the activity

public ActivityResult updateCert (String acctDN)

{

// The current time, in milliseconds
long now = new Date () .getTime () ;

// Write information to the database.
try {
// Create a PreparedStatement with
// the SQL command.
PreparedStatement pstmt =
dbConn.prepareStatement (
"UPDATE certDates " +
"SET certTime=" + now + " " +
"WHERE acctDN='" + acctDN + "';"™);

// Update the database
pstmt.executeUpdate () ;

// Close the statement
pstmt.close () ;

// Return with success, no message
return new ActivityResult();
}
catch (SQLException ex) {
// Write the failure
System.out.println ("SQL Exception: " + ex);

// Return with failure

return new ActivityResult (
ActivityResult.STATUS ABORT,
"SQL Exception: " + ex);

©Copyright IBM Corp. 2006

White Paper

©Copyright IBM Corp. 2006

L S R I S

~

*

Create a Vector with the boolean value that
checkCert needs to return.

@param value the boolean value to return

@return A vector that has value in the first
location and nothing else.

jJava.util.Vector returnString(String value)

{

P R S S S S S S S S

~

jJava.util.Vector retVal =
new java.util.Vector(l);

retVal.add (value) ;

return retVal;

*

Check if the account certification is recent
enough to still be wvalid (in the last 45 days).

@param acctDN the DN for the account entity in the
directory

@return The result of the activity. The
ActivityResult also contains list of returned
parameters. In this case, it will have one returned
parameter - a string that specifies if the
certification is valid or not. The first character
of the string is Y for valid certifications, N for
invalid ones.

public ActivityResult checkCert (String acctDN)

{

// The current time, in milliseconds
long now = new Date () .getTime();

// Read information from the database.
// This could cause an SQL exception.
try {
// Create a PreparedStatement with
// the SQL command.
PreparedStatement pstmt =
dbConn.prepareStatement (
"SELECT certTime FROM certDates " +
"WHERE acctDN='" + acctDN + "';");

// Read from database

ResultSet rs = pstmt.executeQuery();
rs.next ();

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

11

12

White Paper

// The date from the database
long certDate = rs.getlLong(l);

// Close the statement and result set

rs.close();
pstmt.close () ;

String result;

// Notice the 1 following the 45. This
// converts the multiplication to a long
// value - otherwise it wraps around and

// becomes negative.
if (now > (certDate + 451%*

24*3600*1000)) {

result = "No, the certification is " +
(now — certDate) / (24*3600*1000) +
" days old.";
} else {
result = "Yes, the certification " +

"is just " +
(now - certDate) /
" days old.";

}

java.util.Vector retVal =

(24*3600*%1000) +

returnString (result) ;

ActivityResult res = new ActivityResult();

res.setDetail (retVal);
return res;

}
catch (SQLException ex) {

System.out.println ("SQL Exception: " + ex);

// Create the list of returned parameters

java.util.Vector retvVal =
returnString ("No, due

// Return the results
return new ActivityResult (

to SQL: " + ex);

ActivityResult.STATUS ABORT,
"SQL Exception: " + ex, "",
retval) ;

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

©Copyright IBM Corp. 2006

White Paper

©Copyright IBM Corp. 2006

*

Delete the certification for an account.

@param acctDN the DN for the account entity in
the directory

@return The result of the activity

Lo S T S I

~

public ActivityResult deleteCert (String acctDN)
{
// Delete information in the database.
try {
// Create a PreparedStatement with
// the SQL command.
PreparedStatement pstmt =
dbConn.prepareStatement (
"DELETE FROM certDates " +
"WHERE acctDN='" + acctDN + "';");

// Update the database
pstmt.executeUpdate () ;

// Close the statement
pstmt.close () ;

// Return with success, no message
return new ActivityResult();
}
catch (SQLException ex) {
// Write the failure
System.out.println ("SQL Exception: " + ex);

// Return with failure

return new ActivityResult (
ActivityResult.STATUS ABORT,
"SQL Exception: " + ex);

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

13

14

White Paper

2.3

2.3.1

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

Registering the Extensions with ITIM

You have to register the extensions with ITIM so they can be called from workflows. To
do this, add the new extensions to an XML file, place the class file in the ITIM class path,
and then restart the application server.

The XML File

All workflow extensions are registered in SITIM_HOME/data/workflowextensions.xml.
For every extension, this file contains the extension’s name, the name of the class and
method that implement it, and the input and output parameters along with their types.

The input parameters are sent as arguments to the method. The output parameters are
retrieved from the details of the com.ibm.itim.workflow.model.ActivityResult object the
method returns.

Note: Each workflow node that calls the extension has a copy of the information from
workflowextensions.xml. When you change the extension parameters in this file, edit the
nodes that implement it. Choose the extension again, and then fill the parameters.

Here are the tags to add to workflowextensions.xml for the extensions in section 2.2.2.

<ACTIVITY ACTIVITYID="initialCert" LIMIT="0">
<IMPLEMENTATION TYPE>
<APPLICATION CLASS NAME="CertExt"
METHOD NAME="initialCert"/>
</IMPLEMENTATION TYPE>
<PARAMETERS>
<IN PARAMETERS PARAM ID="acctDN" TYPE="String"/>
</PARAMETERS>
</ACTIVITY>

<ACTIVITY ACTIVITYID="updateCert" LIMIT="0">
<IMPLEMENTATION TYPE>
<APPLICATION CLASS NAME="CertExt"
METHOD NAME="updateCert"/>
</IMPLEMENTATION TYPE>
<PARAMETERS>
<IN _PARAMETERS PARAM ID="acctDN" TYPE="String"/>
</PARAMETERS>
</ACTIVITY>

©Copyright IBM Corp. 2006

White Paper

<ACTIVITY ACTIVITYID="deleteCert" LIMIT="0">
<IMPLEMENTATION TYPE>
<APPLICATION CLASS NAME="CertExt"
METHOD NAME="deleteCert"/>
</IMPLEMENTATION TYPE>
<PARAMETERS>
<IN _PARAMETERS PARAM ID="acctDN" TYPE="String"/>
</PARAMETERS>
</ACTIVITY>

<ACTIVITY ACTIVITYID="checkCert" LIMIT="0">
<IMPLEMENTATION TYPE>
<APPLICATION CLASS NAME="CertExt"
METHOD NAME="checkCert"/>
</IMPLEMENTATION TYPE>
<PARAMETERS>
<IN PARAMETERS PARAM ID="acctDN" TYPE="String"/>
<OUT_ PARAMETERS PARAM ID="result" TYPE="String"/>
</PARAMETERS>
</ACTIVITY>

2.3.2 The Application Class Path

ITIM runs under IBM WebSphere Application Server. To add a new class to ITIM’s class
path:

1. Put the new class in a Java archive (JAR) file.

2. Copy the jar file to
$SWAS_HOME/installedApps/<machine-name>/enRole.ear.

3. Add the name of the jar file to the manifest, which is located at SWAS HOME/
installedApps/<machine-name>/enRole.ear/app_web.war/META-INF/
MANIFEST.MF.

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

15

16

White Paper

24 Using the Extensions

Once the extensions are written, compiled, and registered with IBM Tivoli Identity
Manager, the final step is to create the workflows and lifecycle rules that use them.

241 Initial Certification

New accounts need to have a certification row in the database. To create it when they are
provisioned, modify the add operation. Add a relevant data variable for the account’s
distinguished name (DN), a script to fill it with the appropriate value, and then an extension
to run initialCert.

Figure 1

Operation Diagram

Operation Name add
Taruet Accourt - erLinuxAccourt

Properties Save Update Exit
"' D—Dlemnsmnp—q Seript p—qemnsmn

Start CREATEACCOUNT getDN cerlifydoct End

Fi

oo

@
v

Laoop

ST

B seipt [

E.
I;
B

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

2.4.1.1 Account’s Distinguished Name

The extension requires the DN of the account. However, the account parameter that the
add workflow receives does not have a DN yet. The CREATEACCOUNT extension
assigns a DN when it adds the account to the directory, but it does not update the parameter
in the workflow. To get the DN, the script has to read the account entity from the server.

IBM Tivoli Identity Manager does not support LDAP searches for accounts. Therefore, to
read the account, it is necessary to read all of the accounts owned by the account’s owner,
and then identify the correct one. The correct account is the one whose service and user 1D
attributes are identical to the ones of the account parameter.

The following script implements this:

var
var
var
var

for

©Copyright IBM Corp. 2006

search = new AccountSearch();
accounts = search.searchByOwner (owner.get () .dn);
serviceDN = service.get () .dn;
uid = account.get () .getProperty (“eruid”) [0];
(var i=0; i<accounts.length; i++)
if ((accounts[i].getProperty(“erservice”) [0] == servDN)
&&
(accounts[i] .getProperty (“Yeruid”) [0] == uid))
acctDN.set (accounts[i]) .dn;

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

17

White Paper

2.4.2 Recertification

This workflow implements the recertification process. It needs to be called periodically
from a lifecycle rule. Because the certification date is not an LDAP attribute, the lifecycle
rule cannot identify which accounts need to be recertified. Instead, it calls the workflow on
all accounts, or all accounts of a particular service.

The workflow then uses the checkCert extensions to identify which accounts need to be

recertified. If an account’s certification is no longer valid, the workflow uses an approval
element to ask for recertification. If the account is then recertified, it uses the updateCert
extension to change the certification date; otherwise it uses the delete operation to remove

18

it.

This workflow uses the following relevant data variables:

Variable Type Set By Used By Meaning
The account that the
. The lifecycle setDN, workflow processes,
Entity Account rule deleteAccount | and if necessary
recertifies or deletes
acctDN String setDN checkCert, The DN of the
updateCert account
The result of
The checkCert, a string
retVal String checkCert transitions out that starts W,lth vif
of checkCert the account’s
certification is still
valid, N otherwise
owner Person setApprovalVars | askRecert The owner of the
account
service Service | setApprovalVars | askRecert The service of the
account

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

©Copyright IBM Corp. 2006

White Paper

Figure 2

Operation Diagram

Operation Name checkExtCert
Target Accourt - erLinuxAccourt

Properties Save Update Exit

[

updateCert

I Approval [
ST
oo

sethpprovalvars askRecert

Operation [F
deletedccount

[o—c 5o oo B — |

Start setDN checkGert End

The workflow starts with the setDN script element. This element sets a variable with the
DN of the account. Because it is an existing account, the DN is available, and the script only
has to use it:

acctDN.set (Entity.get () .dn);

The extension element that checks the certification, checkCert, uses acctDN as input, and
retVal as output.

If the account’s certification is still valid, the workflow is done. The transition between
checkCert and End uses the following custom condition to check the certification:

res = retVal.get();
return (res.substring(0,1l) == “Y”);

If the account’s certification is no longer valid, the workflow needs to run
setApprovalVars. The transition between checkCert and setApprovalVars uses this
custom condition to check that the certification is no longer valid:

res = retVal.get();
return (res.substring(0,1l) == “N”);

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

19

20

White Paper

Approval elements that request approval for an account, such as this one, require three
relevant data variables: the owner, the account, and the service. The account is already
available in Entity. The script setApprovalVars sets the other two variables:

var acct = Entity.get();
owner.set (new Person (acct.getProperty (Yowner”) [0]));
service.set (new Service (acct.getProperty (“erservice”) [0]));

The setApprovalVars script is followed by the approval element, askRecert. The
transitions out of the approval element use the predefined conditions: the one to
updateCert uses the Approved condition, and the other, to deleteAccount, uses the
Rejected condition.

The updateCert extension node calls the updateCert extension to update the certification
time, if the account is recertified.

The deleteAccount operation calls the delete operation workflow if the account is not
recertified. It is important to use the workflow, rather than the extension
DELETEACCOUNT, because the workflow also deletes the certification row from the
database table.

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

243 Deleting Certifications

When an account is deleted, there in no longer a need for a database row with its
certification date. The modifications to the delete workflow are similar to the ones to the
add workflow in section 2.4.1.

Figure 3

Operation Diagram

Cperation Mame delste
Target Accourt - erLinuzAccourt

Properties Save Update Exit

Ef

B Approval = E}D—Dlem nnnnnn p—q Seript p—qut nnnnnn

Start DELETEACCOUNT selDN delExdCert End

.
=
e,

The script in setDN is the same as in the recertification workflow:

acctDN.set (account.get () .dn) ;

2.5 Accessing ITIM Objects in Extensions

The extension elements in the recertification policy require the DN as input, which means
the workflows that use them have to have a relevant data variable for the DN and a script
to set it to the correct value. It would be simpler to pass the account to the extension and let
it find the DN.

This section will only show how to change the deleteCert extension to do this. The changes
in the other extensions are nearly identical.

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

21

White Paper

2.5.1 Changes in the Java

1. Import the package com.ibm.itim.dataservices.model.domain, which contains
the ITIM objects.

2. Change the parameter type to the appropriate ITIM object. In the case of
deleteCert, that would be Account.

3. Using the javadoc pages, which are installed in SITIM_HOME/extensions/api,
modify the method to use the object.

This is the modified deleteCert extension:

/**

* Delete the certification for an account.
*

* @param acct the Account

*

* @return The result of the activity

*

/

public ActivityResult deleteCert (Account acct)

{

// Get the distinguished name

String acctDN =
acct.getDistinguishedName () .toString () ;

// Delete information in the database.
try {
// Create a PreparedStatement with
// the SQL command.
PreparedStatement pstmt =
dbConn.prepareStatement (
"DELETE FROM certDates " +
"WHERE acctDN='" + acctDN + "';");
// Update the database
pstmt.executeUpdate () ;

// Close the statement
pstmt.close () ;

// Return with success, no message
return new ActivityResult();
}
catch (SQLException ex) {
// Write the failure
System.out.println ("SQL Exception: " + ex);

// Return with failure

return new ActivityResult (
ActivityResult.STATUS_ABORT,
"SQL Exception: " + ex);

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

2.5.2

253

Changes in the Extension Registration
Change parameter type in workflowextensions.xml:

<ACTIVITY ACTIVITYID="deleteCert" LIMIT="0">
<IMPLEMENTATION TYPE>
<APPLICATION CLASS NAME="CertExt"
METHOD NAME="deleteCert"/>
</IMPLEMENTATION TYPE>
<PARAMETERS>
<IN PARAMETERS PARAM ID="acct" TYPE="Account"/>
</PARAMETERS>
</ACTIVITY>

Note: Remember to restart ITIM to update the extension after you compile the modified
Java, put the jar file in the appropriate location, and modify workflowextensions.xml.

Changes in the Workflow

Remove the relevant data variable for the account DN and the script that sets it. In the
extension node, put Entity as the input parameter.

Figure 4

Operation Diagram

Operation Name celete
Target Accourt - erLinudcoournt

Froperties Save Updste Extt

El

Start DELETEACCOUNT delCert End

— 7

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

23

24

White Paper

3

3.1

3.2

Extending the JavaScript Interpreter

The Java application extensions in the previous section implement the recertification policy
correctly. However, they are not very flexible. If the policy changes to require certification
every thirty days, or different certification periods for different people, the Java code would
have to be changed.

A more flexible solution would be to extend the account schema to allow scripts to set and
get arbitrary attributes. That way, the policy can be implemented and maintained in
JavaScript. This solution also allows policy changes without restarting ITIM.

Planning

It is a bad idea to extend account schemas in the directory, because every time the profile
is imported the schema is overwritten, and the values in any additional attributes will be
lost. A better solution is to extend the schema virtually, using a database table instead of the
directory.

To implement this with single value attributes requires three functions to be implemented
in Java:

e setAttr — set an attribute for an account. If the attribute already exists, overwrite
it.

e getAttr — get the value of an account attribute.

¢ delAcct — delete all of the attributes of an account. This function will be called
when an account is deleted.

To identify the account, the functions will use the account’s erglobalid attribute. It is a
global identifier that is guaranteed to be unique inside an ITIM installation.

Writing FESI Extensions

ITIM’s JavaScript interpreter is an open source package called Free EmcaScript Interpreter
(FESI). This interpreter can be extended using Java.

To implement a new function that will be available in JavaScript, follow these steps:

1. Create a new public class that implements the interface
FESI.Extensions.Extension.

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

3.2.1

2. In this class, create an inner class that extends
FESI.Data.BuiltinFunctionObject. This class needs two methods:

a. A constructor that calls the constructor of the superclass
b. The function that implements the function for JavaScript, called callFunction

3. In the public class, write a function called initializeExtension that creates a new
object of the inner class and registers it as a property of the global object.

4. Register the public class with FESI. The exact way to do this depends on the
program that uses the interpreter. In ITIM, edit the file
SITIM_HOME/data/fesiextensions.properties.

Note: The javadocs for the FESI classes are not provided in IBM Tivoli Identity Manager.
To get them, download FESI from the Internet and install it.

Simple FESI Extension
This class implements a single function, which returns its first argument.

import FESI.Data.*;

/**
* This code is provided as part of the IBM Tivoli
* Identity Manager 4.6 - Extending Workflows with Java
* white paper, and is intended for education use only.
*/
public class SimpleFesiExt
extends FESI.Extensions.Extension

{

Every FESI extension class needs to implement the FESI.Extensions.Extension interface,
which declares the initializeExtension method.

public SimpleFesiExt ()
{
}

If you create a constructor, it has to be public, so FESI will be able to instantiate this class.

/**
* Implement the echo function.
*/
class Echo extends BuiltinFunctionObject

{

This is an inner class that implements an extension function. To implement extension
functions, extend the class FESIL.Data.BuiltinFunctionObject.

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

25

26

White Paper

public Echo(String name,
FESI.Interpreter.Evaluator evaluator,
FunctionPrototype fp)

super (fp, evaluator, name, 1);

This is the constructor for the inner class, which calls the constructor for
FESI.Data.BuiltinFunctionObject.

public ESValue callFunction (ESObject thisObject,
ESValue[] arguments)
throws FESI.Exceptions.EcmaScriptException

The callFunction method implements the function that will be accessible from JavaScript.
It takes two arguments: a FESI.Data.ESObject, which is the object for which the function
is called, if it is called as a method, and an array of FESI.Data.ESValue objects, which
contains the function’s arguments.

return new ESString(arguments[0]);

This is the function body. It takes the first argument and converts it to a
FESIL.Data.ESString, which is a subclass of FESI.Data.ESValue. There are other
subclasses for other data types, such as FESI.Data.ESInteger and FESI.Data.ESBoolean.

This is also the end of the inner class, Echo. The following method is part of the public
class, SimpleFesiExt.

public void initializeExtension(
FESI.Interpreter.Evaluator evaluator)
throws FESI.Exceptions.EcmaScriptException

This function initializes the extensions. It is called by FESI with the evaluator.

GlobalObject go = evaluator.getGlobalObject () ;
FunctionPrototype fp =
(FunctionPrototype)
evaluator.getFunctionPrototype () ;

go.putHiddenProperty ("echo",
new Echo ("echo", evaluator, fp));

This is the way to register extension functions that are not object methods. Each property
has a name, which is a string, and an object, which is its value. In the case of functions, the
value is a subclass of FESI.Data.BuiltinFunctionObject.

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

3.2.2 FESI Extensions for Extending Account Schemas
This class implements the extensions to extend account schemas.

import FESI.Data.*;
import java.sqgl.*;

/**
* FesiExt implements extensions to the FESI JavaScript
* interpreter inside IBM Tivoli Identity Manager to
* virtually extend the account schema.
* </P>
* This code is provided as part of the IBM Tivoli
* Identity Manager 4.6 - Extending Workflows with Java
* white paper, and is intended for education use only.
*/

public class FesiExt extends FESI.Extensions.Extension

{

// Connection to the database
Connection dbConn;

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

27

White Paper

/**
* Connect to the database.
*/
public FesiExt ()
{
try {
// Load the JDBC driver for DB2
Class.forName ("COM. ibm.db2."+
"jdbc.app.DB2Driver") ;

// Connect to the database
dbConn = DriverManager.
getConnection ("jdbc:db2:" +
// Database name, as
// specified in the local
// catalog on the ITIM Server
"itimdb",
// User for the database
"enrole",
// Password for the database
"objectO0O"
) ;
}
catch (ClassNotFoundException e) {
System.out.println("Can't load JDBC driver.");
System.out.println ("Exception: " + e);
System.out.println("Source the DB2 environment"
+ " if you haven't yet.");
}
catch (SQLException ex) {

System.out.println ("SQL Exception: " + ex);
}
}
/**
* Close the database connection.
*/

protected void finalize()
throws Throwable

try {
dbConn.close();

}

catch (SQLException ex) {
System.out.println ("SQL Exception: " + ex);

// This 1s the evaluation interface that uses this
// extension object.
private FESI.Interpreter.Evaluator evaluator = null;

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

©Copyright IBM Corp. 2006

/**
* FesiExt$SetAttr implements the setAttr JavaScript
* function which sets an account attribute.
*/

class SetAttr extends BuiltinFunctionObject

{

/**

* The constructor receives the parameters and
* uses them to call the constructor for the

* superclass, BuiltinFunctionObject.

*

* @param name name of the JavaScript function
* implemented by this class.

*

* @param evaluator evaluator that uses this

* function.

*

* @param fp function prototype used to create
* new functions.

*

~

public SetAttr (String name,
FESI.Interpreter.Evaluator evaluator,
FunctionPrototype fp)

super (fp, evaluator, name, 1);

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

29

White Paper

/**
* This function is called by the interpreter
* when a script calls setAttr. It implements
* that function. Note that setAttr always overwrites

* previous attribute values.
*
* @param thisObject the object for which this
* method is a method. Will always be the global
* object, because these extensions do not use the
* object oriented features of JavaScript.
*
* @param arguments The arguments to the function:
*
* Account erGlobalID
* Attribute Name
* Attribute Value
*
*
* @return always ESUndefined.theUndefined, the
* FESI version of NULL.
*/
public ESValue callFunction (ESObject thisObject,
ESValue[] arguments)
throws FESI.Exceptions.EcmaScriptException,

SQLException

// Delete the current value, if any.
PreparedStatement pstmt =
dbConn.prepareStatement (
"DELETE FROM acctAttr " +

"WHERE " +
"globalID='" + arguments[o] + LS
"AND name='" + arguments[l] + "';");

pstmt.executeUpdate () ;
pstmt.close () ;

// Create a row with the new value
pstmt = dbConn.prepareStatement (
"INSERT INTO acctAttr " +

"(globallD, name, value) " +
"VALUES ('" + arguments[0] + "', '" +
arguments([1] + "', '" +

arguments[2] + "');");
pstmt.executeUpdate () ;
pstmt.close () ;

// Undefined return value
return ESUndefined.theUndefined;

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

©Copyright IBM Corp. 2006

/**
* FesiExt$GetAttr implements the getAttr JavaScript
* function which gets an account attribute.
*/

class GetAttr extends BuiltinFunctionObject

{

/**

* The constructor receives the parameters and
* uses them to call the constructor for the

* superclass, BuiltinFunctionObject.

*

* @param name name of the JavaScript function
* implemented by this class.

*

* @param evaluator evaluator that uses this

* function.

*

* @param fp function prototype used to create
* new functions.

*

~

public GetAttr (String name,
FESI.Interpreter.Evaluator evaluator,
FunctionPrototype fp)

super (fp, evaluator, name, 1);

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

31

32

White Paper

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

/**

P S R S S . S S . S I

This function is called by the interpreter
when a script calls getAttr. It implements
that function.

@param thisObject the object for which this
method is a method. Will always be the global

object, because these extensions do not use the

object oriented features of JavaScript.

@param arguments The arguments to the function:

 Account erGloballID
 Attribute Name
</0L>

@return value of the attribute, a string

public ESValue callFunction (ESObject thisObject,

ESValue[] arguments)
throws FESI.Exceptions.EcmaScriptException,
SQLException

// Read the value from the database
PreparedStatement pstmt =
dbConn.prepareStatement (
"SELECT value FROM acctAttr " +

"WHERE " +
"globalID='" + arguments[o] + LS
"AND name='" + arguments[l] + "';");

ResultSet rs = pstmt.executeQuery();
rs.next ();
String value

rs.getString (1) ;

// Cleanup
rs.close();
pstmt.close () ;

// Undefined return value
return new ESString(value);

©Copyright IBM Corp. 2006

White Paper

©Copyright IBM Corp. 2006

/**
* FesiExt$DelAcct implements the delAcct JavaScript
* function which deletes all the attributes associated
* with an account.
*/
class DelAcct extends BuiltinFunctionObject

{

/**

* The constructor receives the parameters and
* uses them to call the constructor for the

* superclass, BuiltinFunctionObject.

*

* @param name name of the JavaScript function
* implemented by this class.

*

* @param evaluator evaluator that uses this

* function.

*

* @param fp function prototype used to create
* new functions.

*

~

public DelAcct (String name,
FESI.Interpreter.Evaluator evaluator,
FunctionPrototype fp)

super (fp, evaluator, name, 1);

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

33

White Paper

/**

This function is called by the interpreter
when a script calls delAcct. It implements
that function.

@param thisObject the object for which this
method is a method. Will always be the global
object, because these extensions do not use the
object oriented features of JavaScript.

@param arguments The arguments to the function:

 Account erGlobalID

</0L>

@return always ESUndefined.theUndefined, the
FESI version of NULL.
/
public ESValue callFunction (ESObject thisObject,
ESValue[] arguments)
throws FESI.Exceptions.EcmaScriptException,
SQLException

P S R S S . S S . S I

// Delete the attributes of this account
PreparedStatement pstmt =
dbConn.prepareStatement (

"DELETE FROM acctAttr " +

"WHERE " +

"globalID="'" + arguments[0] + "';");
pstmt.executeUpdate () ;
pstmt.close();

// Undefined return value
return ESUndefined.theUndefined;

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

Register the extensions functions as attributes
of the global object. This makes them accessible
using function calls in JavaScript.

@param evaluator evaluator that uses these functions.

/

public void initializeExtension (
FESI.Interpreter.Evaluator evaluator)

throws FESI.Exceptions.EcmaScriptException

Xk X X ok X %

// Set the class variable. Not used in these
// extensions, but might be used in a later version.
this.evaluator = evaluator;

// Get the global object of the evaluator.
GlobalObject go = evaluator.getGlobalObject();

// Get the function prototype used by the evaluator.
FunctionPrototype fp =
(FunctionPrototype)
evaluator.getFunctionPrototype () ;

// Register the functions as hidden properties.
go.putHiddenProperty ("setAttr",

new SetAttr ("setAttr", evaluator, fp));
go.putHiddenProperty ("getAttr",

new GetAttr ("getAttr", evaluator, fp));
go.putHiddenProperty("delAcct",

new DelAcct ("delAcct", evaluator, fp));

3.3 Registering FESI Extensions with ITIM

The FESI extensions are registered SITIM_HOME/data/fesiextensions.properties. Any
property that starts with fesi.extension.Workflow is interpreted as a workflow extension.
The value of the property is treated as an extension class by FESI.

For example, this line adds the FesiExt class to the JavaScript language used by workflows:

fesi.extension.Workflow.siteExtl=FesiExt

Note: Java properties can only have one value. Therefore, to add multiple extensions, use
1N multiple properties with different names:

fesi.extensions.Workflow.siteExtl=FesikExtl
fesi.extensions.Workflow.siteExt2=FesikExt2

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

36

White Paper

3.4 Using the FESI Extensions

We are now ready to modify the workflows created in section 2.4 to use the FESI
extensions.

3.41 Initial Certification

Use this workflow for the add operation:

Figure 5

Operation Diagram
Cperation Mame add
Target Account - erLinuxAccourt

Properties Sawe Uodate; Ext

| =
[= [—{Emm— o o—{]

Start CREATEACCOUNT inftial Certification End

,
z
3
E
&

.H
\'4

o[z

!

Loop

S

‘
v

E

[
B
=

As with the distinguished name, the erglobalid property is not available in the account
parameter. The initialCertification script, therefore, has to read the accounts and identify
the correct one before it sets the attribute:

var search = new AccountSearch():;

var accounts = search.searchByOwner (owner.get () .dn);
var servDN = service.get () .dn;

var uid = account.get () .getProperty ("eruid") [0];

var globallD;

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

3.4.2

©Copyright IBM Corp. 2006

for (var i1=0; i<accounts.length; i++) {

if ((accounts[i].getProperty("erservice") [0] == servDN) &&
(accounts[i] .getProperty ("eruid") [0] == uid))
globalID = accounts[i].getProperty("erglobalid") [0];

var now = new Date ()

// The attribute certDate for this account is

// the number of milliseconds since the beginning
// of the epoch

setAttr (globalID, "certDate", now.valueOf());

Recertification

The recertification workflow is similar to the one used with application extensions in
section 2.4.2, but it is considerably simpler. In addition to the Entity relevant data variable,
which is provided by the lifecycle rule, the workflow needs to have owner, which is a
Person, and service, which is a Service. The approval element requires all three.

Figure 6

Operation Diagram

Operation Name checkExtCert
Target Accourt - erLinuxccoount

Froperties Save Updste Extt

E

E

[Asproval |-

F|

>EE=TP [Jo—e e |

Start checkCert End

v
1
E

o[oo o

updateCert

[cprae]
askRecert deleteAccount

o
v

Loop

[|

'
ES
v

[
E.
=
B

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

37

38

White Paper

The checkCert script checks if the certification is still valid. If it is, then it sets the result
to activity. Approved. If the certification is not valid, checkCert sets the result of
activity. REJECTED and sets the relevant data variables that are required for the approval.

// Read the certification date

var acct = Entity.get();

var globalID = acct.getProperty(“erglobalid”) [0];
var certDate getAttr (globalID, “certDate”);

// Get the current time
var now = new Date();
now = now.valueOf ();

// Check if the certification is still valid
if ((now - certDate) > 45*24*3600*1000) {
// Need to recertify
activity.setResult (activity.REJECTED) ;
owner.set (new Person (acct.getProperty (Yowner”) [0]));
service.set (

new Service (acct.getProperty (“Yerservice”) [0]));
} else {
// Account still valid
activity.setResult (activity.APPROVED) ;

The transitions from checkCert check the activity results. The transition to End has the
Approved condition, so the workflow will end if the account’s certification is still valid.
The transition to askRecert has the Rejected condition, so the workflow will ask for
approval for the account if the certification is no longer valid.

Similarly, the transition from askRecert to updateCert, which updates the certification
date if the account is recertified, also has the Approved condition. The transition to
deleteAccount has the Rejected condition. Both askRecert and deleteAccount are
identical to the ones used in section 2.4.2.

This is the script in updateCert, which updates the certification date:

var globalID = Entity.get().getProperty("erglobalid") [0];
var now = new Date ()

setAttr (globalID, "certDate", now.valueOf());

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java ©Copyright IBM Corp. 2006

White Paper

3.4.3 Deleting Certifications

When an account is deleted, its attributes are no longer relevant. To save database storage
space and improve database performance, it is best to delete those attributes.

Figure 7

COperation Diagram

Cperation Name delete
Target Account - erLinuzAccount

Properties Sawe Lpdate; Exit

d |

Start DELETEACCOUNT deleteAtiributes End
F

o[

2
v

Loop

o[l
o s

E.
?I;
.

This is the deleteAttributes script:

delAcct (Entity.get () .getProperty ("erglobalid") [0]);

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

39

40

White Paper

IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

©Copyright IBM Corp. 2006

White Paper

Conclusion

Summary

You should now be able to integrate your own Java modules into IBM Tivoli Identity
Manager workflows. This lets you extend workflow functionality to anything the computer
can do.

Resources

» David Saucier, IBM Tivoli Identity Manager, Version 4.5: Defining and Extending
Workflows with JavaScript and Application Extensions Field Guide.

* IBM Tivoli Identity Manager Extensions, IBM Publication Number SC32-1683-
00. The content of this publication are available on the ITIM Server, at
$ITIM_HOME/extensions/doc and SITIM_HOME/extensions/examples.

©Copyright IBM Corp. 2006 IBM Tivoli Identity Manager 4.6 — Extending Workflows with Java

41

Copyright and trademark information

© Copyright IBM Corporation 2000 - 2006. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

IBM web site pages may contain other proprietary notices and copyright information which should be observed.

For the latest listing of IBM trademarks and fair use guidelines for use and
reference of IBM trademarks, see:

http://lwww.ibm.com/legal/copytrade.shtml

http://www.ibm.com/
http://www.ibm.com/legal/copytrade.shtml

	IBM Tivoli Identity Manager 4.6 - Extending Workflows with Java
	Table of Contents

	Introduction
	About this Paper
	Audience

	White Paper
	1 Using this White Paper
	1.1 IBM Tivoli Identity Manager 4.6 Configuration
	1.2 Database Configuration

	2 Extension Elements
	2.1 Writing the Extensions
	2.2 Preparing the Extensions for ITIM
	2.2.1 Simple Examples
	2.2.2 Complete Example - Extensions for the Recertification Policy

	2.3 Registering the Extensions with ITIM
	2.3.1 The XML File
	2.3.2 The Application Class Path

	2.4 Using the Extensions
	2.4.1 Initial Certification
	2.4.2 Recertification
	2.4.3 Deleting Certifications

	2.5 Accessing ITIM Objects in Extensions
	2.5.1 Changes in the Java
	2.5.2 Changes in the Extension Registration
	2.5.3 Changes in the Workflow

	3 Extending the JavaScript Interpreter
	3.1 Planning
	3.2 Writing FESI Extensions
	3.2.1 Simple FESI Extension
	3.2.2 FESI Extensions for Extending Account Schemas

	3.3 Registering FESI Extensions with ITIM
	3.4 Using the FESI Extensions
	3.4.1 Initial Certification
	3.4.2 Recertification
	3.4.3 Deleting Certifications

	Conclusion
	Summary
	Resources

	copyright.pdf
	Local Disk
	Copyright and Trademark Information

