
IBM Tivoli Access Manager for e-business 6.1: Writing External 
Authentication Interface Servers 
White Paper 
Ori Pomerantz (orip@us.ibm.com) 

July 2010 



   

  

   

 
 

   
  

 
 

 
 

 
 

  

 
 

  

 

   

 

  

  
 

   

   

 
  

   
 

 
    

  
  

  
     

 

Copyright Notice 

Copyright © 2010 IBM Corporation, including this documentation and all software. All rights 
reserved. May only be used pursuant to a Tivoli Systems Software License Agreement, an IBM Soft­
ware License Agreement, or Addendum for Tivoli Products to IBM Customer or License Agreement. 
No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, 
or translated into any computer language, in any form or by any means, electronic, mechanical, 
magnetic, optical, chemical, manual, or otherwise, without prior written permission of IBM Corpora­
tion. IBM Corporation grants you limited permission to make hardcopy or other reproductions of any 
machine-readable documentation for your own use, provided that each such reproduction shall carry 
the IBM Corporation copyright notice. No other rights under copyright are granted without prior writ­
ten permission of IBM Corporation. The document is not intended for production and is furnished “as 
is” without warranty of any kind. All warranties on this document are hereby disclaimed, including the 
warranties of merchantability and fitness for a particular purpose. 

Note to U.S. Government Users—Documentation related to restricted rights—Use, duplication or 
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation. 

Trademarks 

The following are trademarks of IBM Corporation or Tivoli Systems Inc.: IBM, Tivoli, AIX, Cross-Site, 

NetView, OS/2, Planet Tivoli, RS/6000, Tivoli Certified, Tivoli Enterprise, Tivoli Ready, TME. In Den­
mark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.
 

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
 
the United States, other countries, or both.
 

UNIX is a registered trademark of The Open Group in the United States and other countries.
 

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
 

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, 

other countries, or both.
 

Lotus is a registered trademark of Lotus Development Corporation.
 

PC Direct is a trademark of Ziff Communications Company in the United States, other countries, or
 
both and is used by IBM Corporation under license.
 

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel Corporation in the 

United States, other countries, or both.
 

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC. For fur­
ther information, see http://www.setco.org/aboutmark.html.
 

Other company, product, and service names may be trademarks or service marks of others.
 

Notices 

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply 
that they will be available in all countries in which Tivoli Systems or IBM operates. Any reference to 
these products, programs, or services is not intended to imply that only Tivoli Systems or IBM prod­
ucts, programs, or services can be used. Subject to valid intellectual property or other legally pro­
tectable right of Tivoli  Systems or IBM, any functionally equivalent product, program, or service can 
be used instead of the referenced product, program, or service. The evaluation and verification of 
operation in conjunction with other products, except those expressly designated by Tivoli Systems or 
IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent 
applications covering subject matter in this document. The furnishing of this document does not give 
you any license to these patents. You can send license inquiries, in writing, to the IBM Director of 
Licensing, IBM Corporation, North Castle Drive, Armonk, New York 10504-1785, U.S.A. 

Printed in Ireland. 



 
 

   

 

 

  
  

 

 
  

 

  

 
  

   

 

  
  

Table of contents
 

Introduction 

About this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  III
 
Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  III
 

White paper 

1 Reasons for using the external authentication interface . . . . . . . . . . . . . . . . .1
 
1.1 EAI process flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 
1.2 Exotic authentication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 
1.3 Extended attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 
1.4 Step-up authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 

2 Configuring WebSEAL for EAI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
 
2.1 WebSEAL configuration file modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 

2.1.1 Add the authentication mechanism library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 
2.1.2 The [eai] stanza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
 
2.1.3 The [eai-trigger-urls] stanza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
 

2.2 Server junction and access control list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
 

3 Simple EAI server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
 
3.1 The cgi-bin script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
 
3.2 Running the EAI server manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
 
3.3 Using the EAI server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
 
3.4 Automatic redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
 

4 Negotiating authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
 
4.1 The eai-mkform.pl script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 
4.2 The eai-useform.pl script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
 

4.2.1 Reading the form data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
 
4.2.2 Verifying user identities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 
4.2.3 The script itself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
 

5 Writing EAI servers in PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
 
5.1 The form, eai-form.php  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 
5.2 The log on page, eai-useform.php . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
 

6 Sending extended attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
 
6.1 Sending extended attributes from EAI to WebSEAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 
6.2 Using the extended attributes in an authorization rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 

7 Step-up authentication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
 
7.1 WebSEAL configuration file modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
 
7.2 Resource configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
 
7.3 Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 
7.4 Sending the authentication level from EAI to WebSEAL . . . . . . . . . . . . . . . . . . . . . . . . . 15
 

Conclusion 

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 

•
•
• I
•
• 



 

       

Table of contents 

• 

II	 •
•
• 

IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers©Copyright IBM Corp. 2010 
• 

Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 



 

 
     

   

Introduction 

About this paper 

This document explains the capabilities of the external authentication interface (EAI) for Tivoli® 

Access Manager for e-business, and how to write EAI servers that use that interface. 

Audience 

This paper is for people who need to write EAI servers to extend the capabilities of Tivoli Access 
Manager for e-business authentication. The assumption is that readers are programmers, but no 
knowledge of a particular programming language is assumed. The examples are in Perl and PHP, 
but the syntax is explained where it differs from other C based languages. 

A secondary audience is architects whose job includes deciding whether EAI servers can solve a 
particular problem. The first part of the white paper explains the capabilities of EAI. 

•
•
• III•
• 



      

White Paper 

•
• 

IV • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



 
 

White paper 

1	 Reasons for using the external authentication 
interface 

The external authentication interface (EAI) allows WebSEAL to outsource authentication decisions 
to a separate module. This technique enables additional functionality beyond what WebSEAL is 
designed to do. 

1.1	 EAI process flow 

EAI is a mechanism to outsource the responsibility for authentication from WebSEAL to a third ­
party product. The way it works is shown in the following diagram. 

•
•
• 1•
• 



      

  

  

    

  
 

  

  

White Paper 

Figure 1: EAI process flow 

The diagram describes the following process flow: 

1.	 The user attempts to connect to the EAI server, which may be on a separate computer from 
WebSEAL. 

2.	 WebSEAL allows unauthenticated access to the EAI server. This is necessary, because the 
user is not authenticated at this point. 

3.	 The user and the EAI server communicate. This communication can be as long and as 
involved as necessary. 

4.	 The user, based on an HTML page from the EAI server, retrieves a trigger URL, which is 
a URL that is configured in WebSEAL as one that might contain the EAI output. 

5.	 The EAI server sends back a reply, which has an HTTP header that contains the user 
identity and possibly additional information. 

6.	 WebSEAL creates the credential for the user. 

7.	 WebSEAL allows the user to access a back-end server. 

•
• 

2 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



  

 
  

 

 

 

  

  

2 

White Paper 

1.2 Exotic authentication 

IBM Tivoli Access Manager for eBusiness supports a large number of authentication mechanisms, 
such as passwords and RSA SecureID. If the organization uses a more exotic mechanism, 
negotiating with a third-party server is required. Using EAI, this mechanism can be as complex as 
necessary. 

1.3 Extended attributes 

In addition to providing the user identity, EAI can provide extended user attributes that WebSEAL 
can later use in authorization decisions. 

1.4 Step-up authentication 

EAI can also provide an authentication level. This level allows for step-up authentication, a system 
in which some web pages require a stronger authentication mechanism than others. 

Configuring WebSEAL for EAI 

This section explains the steps that are required to configure WebSEAL for EAI support. 

2.1 WebSEAL configuration file modifications 

The WebSEAL instance configuration file (/opt/pdweb/etc/webseald-default.conf for the default 
instance under UNIX and Linux) requires some modifications for EAI. 

2.1.1 Add the authentication mechanism library 

The list of libraries used for authentication is in the [authentication-mechanisms] stanza of the 
WebSEAL configuration file. To enable EAI, add the following line (all on one line): 

ext-auth-interface = /opt/pdwebrte/lib/libeaiauthn.so 

•
• 

©Copyright IBM Corp. 2010 IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers •
•
• 

3 



      

 

 

 

  

White Paper 

2.1.2
 

2.1.3
 

The [eai] stanza 

As with the other the WebSEAL authentication mechanisms, a setting within the stanza controls 
whether the mechanism can be used at all. To use EAI for HTTPS connections, use this line to set 
the eai-auth value: 

eai-auth = https 

Most of the remainder of the stanza specifies the names of fields in the HTTP header. Those fields 
are interpreted by WebSEAL when the EAI server responds with the answer. If you are writing your 
own EAI server, keeping the default values is the easiest approach. 

The [eai-trigger-urls] stanza 

This stanza specifies the trigger URLs. A trigger URL is a URL whose response can include the 
EAI server’s reply in HTTP headers. Trigger URLs can also be specified using a wildcard pattern. 

For example, if the junction is called /eailogin and the response that includes the authentication will 
be received from a Perl script that has a name starting with eai in the cgi-bin directory, the trigger 
may be specified as follows: 

trigger = /eailogin/cgi-bin/eai*.pl 

2.2
 

Important: After you are done editing the WebSEAL configuration file, remember to restart 
the WebSEAL instance. 

Server junction and access control list 

WebSEAL sees the EAI server as another HTTP server. To allow users to access this HTTP server, 
WebSEAL requires a junction. 

Use the following pdadmin command to create the junction. Note that the command is all one line. 

s t <instance>-webseald-<webseal computer> create -t tcp

-h <eai computer> /eailogin
 

Users are unauthenticated while they are communicating with the EAI server. To allow 
unauthenticated access, run the following pdadmin commands. Ignore error message 
HPDAC0757E about ACL permissions when you get it. 

acl create eaiacl 
acl modify eaiacl set any-other Trx
acl modify eaiacl set unauthenticated Trx
acl attach /WebSEAL/<webseal computer>-<instance>/eailogin eaiacl 

•
• 

4 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



  

 

 
 

   
 

   

 

 

3 

White Paper 

Simple EAI server 

This section explains how to write a simple EAI server, how to debug it, and how to integrate it with 
WebSEAL. 

3.1 The cgi-bin script 

This section shows a simple EAI server, written in Perl. To use this server, put it in a cgi-bin 
directory on an Apache Web server (or IBM HTTP Server). Give it a descriptive name, such as eai-
simple.pl. The file is as follows: 

#! /usr/bin/perl 

This line specifies the name of the interpreter. It is necessary for Linux scripts. 

print “Content-type: text/html\n”; 

The first output line of a cgi-bin script provides the content type. In this case, the content 
is text-encoded in HTML. 

print “am-eai-user-id: sam\n”; 

This line provides the used identity, which must be a user ID that exists in IBM Tivoli 
Access Manager for e-business. This simple script hard codes the user identity, so it is 
always sam. 

print “am-eai-redir-url: /ihs\n”; 

This line specifies the URL to redirect the user after successful authentication. This 
URL is used when the EAI server is invoked directly, rather than by redirection after an 
unauthenticated user attempts to access a URL that requires authentication. 

print “\n” 

This line results in an empty line, which separates the fields in the HTTP header from 
the HTML according to the cgi-bin specifications. 

print “<HTML><BODY>”;

print “<H2>Something Went Wrong</H2>”;

print “If the EAI was working correctly, you would not see this.”;

print “</BODY></HTML>”;
 

If the EAI server functions correctly, the user is authenticated by WebSEAL and 
redirected to a different Web page. This is HTML to display to users as an error message 
in case of error. 

•
• 

©Copyright IBM Corp. 2010 IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers •
•
• 

5 



      

 

 

   

 

 

White Paper 

3.2 Running the EAI server manually 

To check the EAI server, connect to it the way WebSEAL would. Most UNIX and Linux systems 
have the netcat command (nc) for that purpose. The syntax is as follows: 

nc <eai computer> 80 

Then, provide input similar to what a web browser or WebSEAL would provide. Make sure to send 
a blank line to signal the end of the HTTP request. 

GET /cgi-bin/<script name> HTTP/1.1

Host: whatever
 

The output is identical to the output you would get from running the program on the server itself. 

3.3 Using the EAI server 

With all the pieces in place, you may now actually test the EAI server. To do this, open a new 
browser instance and type the following URL: 

https://<webseal computer>/iealogin/cgi-bin/eai-simple.pl 

If everything is working correctly, you are logged in automatically as the user (sam, unless you 
changed it), and redirected to another URL (/ihs, unless you changed it). 

3.4 Automatic redirection 

When unauthenticated users attempt to log on to a web page, they are normally asked for 
authentication. One method to automatically ask for EAI authentication is to enable forms 
authentication, disable basic authentication, and add the following lines to the login form file (for 
the default instance, that file is usually /opt/pdweb/www-default/lib/html/C/login.html). 

<SCRIPT LANGUAGE=JavaScript>
window.location.replace(

“https://<webseal computer>/iealogin/cgi-bin/eai-simple.pl”); 
</SCRIPT> 

•
• 

6 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



  

 

  

  
  

  

 

  

4 

White Paper 

Negotiating authentication 

In real life, an EAI server cannot just specify a fixed-user identity. Users must provide their 
identities to the EAI server, usually by filling out a web form. A more realistic EAI module is one 
that asks the user for an identity and a password. It is composed of two files: 
cgi-bin/eai-mkform.pl, which creates the log on form; and cgi-bin/eai-useform.pl, which 
authenticates the user based on the response to that form. 

4.1 The eai-mkform.pl script 

This simple cgi-bin script displays a form with a list of users. Only the new parts are explained in 
this section. 

#! /usr/bin/perl 

@users = (“sam”, “joe”, “jack”); 

This line creates a list called @users, and initializes it to the three user names. 

print “Content-type: text/html\n”;

print “\n”;
 

There is no need for any HTTP header fields except the content type. 

print “<HTML><HEAD><TITLE>Log-on Form</TITLE></HEAD>\n”;

print “<BODY>\n”;

print “<H2>Log-on Form</H2>\n”;

print “<FORM ACTION=\”eai-useform.pl\” METHOD=POST>\n”;
 

The last line specifies the beginning of an HTML form. It also specifies that the form 
result should be submitted to eai-useform.pl file (in the same directory as eai-
mkform.pl file). The method is POST, meaning that the results are passed by the 
browser as HTTP header fields. The other method, GET, passes the results as part of the 
URL (that is the part after a question mark in a URL). 

The \” notation escapes the quotation mark, so the Perl interpreter can understand that 
the quotation mark is part of the string to output, rather than the string terminator. 

print “User:\n”;

foreach (@users) {
 

This line starts a foreach loop. This kind of loop iterates on all the values in a list. 

print “<INPUT TYPE=RADIO NAME=uid VALUE=\”$_\”>” 

This line specifies a radio button input, an input field that allows the user to choose 
between multiple values. The value that the browser returns in the uid field if this 
particular radio button is selected is the one stored in $_, which is the current value. In 
this case, $_ is the current value from the list in the foreach statement in the previous 
line, a member of the @users list. 

print “$_</INPUT>\n”; 

•
• 

©Copyright IBM Corp. 2010 IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers •
•
• 

7 



      

  

 

  

 
 

 

 

     
 

White Paper 

The value between the <INPUT> and </INPUT> tags is presented to the user by the 
browser. Here it is also $_, the name of the current user in the list. 

} 

Perl uses the same block syntax as C, C++, and Java. Blocks start and end with curly 
braces ({ and }). 

print “</BR>Password: <INPUT TYPE=PASSWORD NAME=pwd \></BR>\n”; 

This line is a password field. It is a text field, where the typed value is replaced with 
symbols to preserve privacy. 

print “<BUTTON TYPE=SUBMIT>Log on</BUTTON>\n”; 

When this button is clicked, the form is submitted by the browser. 

print “</FORM>\n”;

print “</BODY></HTML>”;
 

4.2 The eai-useform.pl script 

This is the script that uses the filled form to log on the user 

4.2.1 Reading the form data 

The first thing the script needs to do is read the form data. 

4.2.1.1 POST data in cgi-bin scripts 

When a form uses the POST method, the data is provided to cgi-bin scripts in their standard input, 
as one line. The various fields are separated by ampersand (&) characters, and the field name is 
separated from the value with an equal sign (=). Characters that have special meanings are encoded 
either at %<ASCII value in hexadecimal> or a plus sign (+) for space. 

For example, if the user name is joe and the password is joe’s +password, the input line is as 
follows: 

uid=joe&pwd=joe%27s+%2Bpassword 

4.2.1.2 Parsing form data in Perl 

The code fragment in this section reads and parses the form data:. 

use URI::Escape; 

This line specifies that the Perl program uses functions from the URI::Escape package. 
This line is similar to the #include directive in C. 

•
• 

8 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



  

   
 

 

 
  

 

 

 
 

 

  

White Paper 

$line = <STDIN>; 

This line reads a line from the process standard input. The line is then stored in a 
variable called $line. 

@vars = split(/&/, $line); 

This line takes the $line variable, and splits it into an array called @vars. The $line 
variable is split according to the regular expression /&/, meaning that every item of 
@vars is one of the form variables. 

foreach $var (@vars) { 

This line starts a loop. This loop is executed once for each value in @vars, with the 
value stored in $var (if you do not specify a variable, the value is stored in $_). 

($field, $value) = split (/=/, $var); 

This line splits $var at the equal sign (=). In contrast to the line that split $line, in this 
line, the result array is assigned into two variables: $field for the first array entry and 
$value for the second one. 

$value =~ s/\+/ /g;

$value = uri_unescape($value);
 

These two lines modify the $value variable to return to the original value submitted by 
the user. The first line changes plus signs (+) to spaces. The second uses the uri_encode 
function from the URI::Escape package to change the characters encoded as ASCII 
values back to their original form. 

$form{$field} = $value; 

This line manipulates an associative array (an array indexed by strings rather than 
integers) called %form. It sets the value for the string $field to be $value. Associative 
arrays are identified by the curly braces ({}) surrounding the index. 

} 

This line closes the foreach block. 

4.2.2 Verifying user identities 

When you write the part of the script that verifies the user identity, it is important to remember that 
the code in cgi-bin scripts runs under the same user as the web server. In the case of Apache (and 
related servers, such as IBM HTTP Server), you can view the User and Group settings in the conf/ 
httpd.conf location. The default value for both is nobody. 

Listing all the various ways that users can be authenticated and explaining how to do them in Perl 
is not possible in this paper. In many cases, the easiest way to interface with a separate system is to 
download a module from CPAN (http://www.cpan.org). 

•
• 

©Copyright IBM Corp. 2010 IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers •
•
• 

9 



      

 

  
  

  

 

White Paper 

4.2.3 The script itself 

This section shows the complete eai-useform.pl script. Only the new parts are explained here. 

#! /usr/bin/perl 

use URI::Escape; 

# Read the post data

$line = <STDIN>;

@vars = split(/&/, $line);
 

foreach $var (@vars) {
($field, $value) = split(/=/, $var);
$value =~ s/\+/ /g;
$form{$field} = uri_unescape($value); 

} 

# Verify user identity (in an extremely naive way)
if ($form{“pwd”} eq “object00”) { 

The eq operator in Perl checks for string equality. In this case, it checks whether the 
password submitted by the user is equal to object00. 

$user = $form{“uid”};
 
}
 

In Perl, a block is required after an if statement. Even if there is only one command, as 
here, that command must be enclosed in curly braces ({}). 

print “Content-type: text/html\n”;

if ($user ne “”) {


print “am-eai-user-id: $user\n”;
 
}
 

The ne operator is used to check whether strings are not equal. In this case, it checks 
that $user is not equal to the default value, which is the empty string. If it is not equal, 
the script provides a user identity to WebSEAL. If $user is still empty, then no user 
identity is provided. In such a case, WebSEAL returns the HTML to the user. 

print “am-eai-redir-url: /ihs\n”;

print “\n”;
 

# HTML header for authentication failure 

When authentication succeeds, the user is redirected to the am-eai-redir-url value and 
does not see this HTML message. 

print “<HTML><HEAD><TITLE>Authentication Failure</TITLE></HEAD>”;

print “<BODY>\n”;

print “<H2>Authentication Failure</H2>\n”;
 

print “If you really are $form{‘uid’}, “;
 

•
• 

10 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



  

   
 

  
 

 

 
 

 
 

 

5 

White Paper 

The string is enclosed in double quotation marks (“). One method to use quotation 
marks inside such a string, for example for an index to an associative array, is to use 
single quotation marks (‘). 

print “<A HREF=\”eai-mkform.pl\”> try again.</A>\n”; 

Another method is to use a backslash (\) before the double quotation mark. 

print “</BODY></HTML>\n”; 

Writing EAI servers in PHP 

PHP is a programming language that was specifically designed to develop web sites. It allows 
developers to write normal HTML, and put code for server execution between <?php and ?> 
characters. 

Important: Before testing the PHP EAI server, remember to update the triggers in the 
WebSEAL configuration file, as explained in “The [eai-trigger-urls] stanza” on page 4. 

5.1 The form, eai-form.php 

The eai-form.php file contains the logon form. It is similar to the Perl version, but considerably 
shorter. 

<HTML>
 
<HEAD><TITLE>Log-on Form</TITLE></HEAD>

<BODY>
 
<H2>Log-on Form</H2>

<FORM ACTION=”eai-useform.php” METHOD=POST>
 

Most of the file is standard HTML. Only the parts that need to be coded are interpreted 
on the server, resulting in better performance. 

<?php 

This line starts the PHP code. 

$users = array(“sam”, “joe”, “jack”); 

This line creates an array called $users, and initializes it to a list of three users. Notice 
that the syntax is similar to Perl, but not identical. If you are used to Perl syntax, make 
sure to review the PHP documentation for the differences. 

foreach ($users as $user) { 

This is a foreach loop, similar to the same construct in Perl. The variable $user gets 
each of the values in the $users array. 

print “<INPUT TYPE=RADIO NAME=uid VALUE=\”$user\”>”;
print “$user</INPUT>”; 

•
• 

©Copyright IBM Corp. 2010 IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers • 11 
•
• 



      

 

 

  

 

  

White Paper 

} 

This part is nearly identical to the way it would be written in Perl. 

?> 

This line ends the PHP code. 

</BR>

Password: <INPUT TYPE=PASSWORD NAME=pwd \>

</BR></BR>

<BUTTON TYPE=SUBMIT>Log on</BUTTON>

</FORM></BODY></HTML>
 

5.2 The log on page, eai-useform.php 

The eai-useform.php file processes the form data to either log the user on, or reject the log on. It is 
also similar to the Perl version. 

<?php 

This line starts the PHP code. The PHP code has to appear in the beginning of the file 
here because after the HTML starts it is impossible to add header fields, such as the 
fields used for EAI log on. 

$user = $_POST[“uid”];

$password = $_POST[“pwd”];
 

$_POST is an associative array that includes all the form fields. In contrast to Perl, PHP 
handles the input processing automatically for the programmer. These lines read the 
user name and password and assign them to variables. 

if ($password == “object00”) {

header(“am-eai-user-id: $user”);

header(“am-eai-redir-url: /ihs”);
 

} 

These lines check whether the password is object00. If so, the header() function adds 
the appropriate lines to the HTTP header. 

?>
 

<HTML>
 
<HEAD><TITLE>Authentication Failure</TITLE></HEAD>

<BODY>
 
<H2>Login Error</H2>

If you are really

<?php print $user ?>,
 

This is another PHP code fragment. Notice that the variables from one PHP code 
fragment are available in all the other fragments in the same file. 

<A HREF=”eai-form.php”>try again</A>.</BR> 

</BODY></HTML> 

•
• 

12 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



  

   

 

 

 

6 

White Paper 

Sending extended attributes 

EAI can send WebSEAL extended attributes, which are attributes that are added to the credential 
stored in WebSEAL. These extended attributes can then affect authorization decisions made by 
authorization rules. 

6.1 Sending extended attributes from EAI to WebSEAL 

EAI servers send extended attributes to WebSEAL in the HTTP header. By default, the list of HTTP 
header fields to use as extended attributes is provided in the HTTP header field am-eai-xattr. The 
attributes and their values are also provided in the HTTP header. For example, this portion of an 
HTTP header specifies two attributes, clearance and rank, along with their values 

am-eai-xattr: clearance, rank

clearance: secret
 
rank: captain
 

6.2 Using the extended attributes in an authorization rule 

For extended attributes to affect authorization decisions, a rule must exist that uses them. Those 
rules are called authorization rules, and they are written in XSL. You can learn how to write 
authorization rules at the following URL: 

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/ 
com.ibm.itame.doc_6.1/am61_admin232.htm. 

To create a rule that requires the clearance attribute to be secret or top, create a text file with the 
following content: 

<xsl:if test=’clearance=secret’>!TRUE!</xsl:if>
<xsl:if test=’clearance=top’>!TRUE!</xsl:if> 

Then, run the following pdadmin commands to create the rule and attach it: 

authzrule create secret -rulefile <name of rule file> 
authzrule attach <object name> secret 

•
• 

©Copyright IBM Corp. 2010 IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers •
•
• 

13 

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc_6.1/am61_admin232.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc_6.1/am61_admin232.htm


      

 

 
 

   

 

White Paper 

7 Step-up authentication 

WebSEAL allows for web resources to require different authentication levels. This technique is 
useful, for example, if a particular application is very sensitive and requires two-factor 
authentication. An EAI server can report the level at which it authenticated a user. 

7.1 WebSEAL configuration file modifications 

To enable step -up authentication, edit the WebSEAL configuration file. Open the 
[authentication-levels] stanza. The first level, level zero, is normally unauthenticated. After that, 
set as many levels as you need for password. Then, you can use redirection from the login form to 
the EAI server. 

For example, if a system uses three authentication levels, the [authentication-levels] stanza 
includes the following lines: 

level=unauthenticated
 
level=password

level=password

level=password
 

Important: After you are done editing the WebSEAL configuration file, remember to restart 
the WebSEAL instance. 

7.2 Resource configuration 

To require a higher level of authentication for a particular resource, create a protected object policy 
(POP) that requires it, and then apply the POP to the object. To set the authentication level of a 
resource to 2, run the following pdadmin commands: 

pop create authlvl2 
pop modify authlvl2 set ipauth anyothernw 2
pop attach <object name> authlvl2 

•
• 

14 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



  

 
  

 

White Paper 

7.3 Redirection
 

Step -up authentication uses a logon form that differs from regular authentication. You can modify 
the step-up logon form to point at the EAI server as well. For the default instance, the file to modify 
is usually /opt/pdweb/www-default/lib/html/C/stepuplogin.html. Modify it as follows: 

<SCRIPT LANGUAGE=JavaScript>
window.location.replace(

“https://<webseal computer>/iealogin/<login form>”);
</SCRIPT> 

7.4 Sending the authentication level from EAI to WebSEAL 

To send the authentication level from an EAI server to WebSEAL, use the am-eai-auth-level HTTP 
header. For example, the following line in the HTTP header sets the authentication level to two: 

am-eai-auth-level: 2 

•
• 

©Copyright IBM Corp. 2010 IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers •
•
• 

15 



      

White Paper 

•
• 

16 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 



 

 

 

Conclusion
 

Summary 

You should now be able to write EAI servers to use exotic authentication mechanisms, send 
additional attributes to WebSEAL, and combine step-up authentication with an EAI server. 

Resources 

The following resources are available for further information: 

•	 To learn more about the Perl programming language, see the tutorials at the following 
website: 

http://perldoc.perl.org/index-tutorials.html 

•	 To download Perl modules to interface with various systems, for example LDAP, go to the 
Comprehensive Perl Archive Network website: 

http://www.cpan.org 

•	 Authorization rules are explained in the product documentation: 

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/ 
com.ibm.itame.doc_6.1/am61_admin232.htm . 

•	 The IBM developerWorks® website has an article that explains how to write an EAI server 
in Java: 

http://www.ibm.com/developerworks/tivoli/library/t-tamebeaicar/index.html 

•	 To learn PHP, view the PHP documentation: 

http://www.php.net/manual/en 

•
•
• 	 17•
• 

http://www.ibm.com/developerworks/tivoli/library/t-tamebeaicar/index.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc_6.1/am61_admin232.htm.
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc_6.1/am61_admin232.htm.
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc_6.1/am61_admin232.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame.doc_6.1/am61_admin232.htm


   

White Paper 

•
• 

18 • IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers ©Copyright IBM Corp. 2010 
•
• 


	IBM Tivoli Access Manager for e-business 6.1: Writing External Authentication Interface Servers
	Introduction
	White paper
	1 Reasons for using the external authentication interface
	1.1 EAI process flow
	1.2 Exotic authentication
	1.3 Extended attributes
	1.4 Step-up authentication

	2 Configuring WebSEAL for EAI
	2.1 WebSEAL configuration file modifications
	2.1.1 Add the authentication mechanism library
	2.1.2 The [eai] stanza
	2.1.3 The [eai-trigger-urls] stanza

	2.2 Server junction and access control list

	3 Simple EAI server
	3.1 The cgi-bin script
	3.2 Running the EAI server manually
	3.3 Using the EAI server
	3.4 Automatic redirection

	4 Negotiating authentication
	4.1 The eai-mkform.pl script
	4.2 The eai-useform.pl script
	4.2.1 Reading the form data
	4.2.2 Verifying user identities
	4.2.3 The script itself


	5 Writing EAI servers in PHP
	5.1 The form, eai-form.php
	5.2 The log on page, eai-useform.php

	6 Sending extended attributes
	6.1 Sending extended attributes from EAI to WebSEAL
	6.2 Using the extended attributes in an authorization rule

	7 Step-up authentication
	7.1 WebSEAL configuration file modifications
	7.2 Resource configuration
	7.3 Redirection
	7.4 Sending the authentication level from EAI to WebSEAL


	Conclusion


