
rsar_writing_custom_files.ppt

This module covers the topic on how to write a custom rule for IBM Rational® Software 

Analyzer versions 7.0 and higher. 

Page 1 of 14



rsar_writing_custom_files.ppt

This course covers eight topics. The first three topics provide you with information 
about a Rule Check, an introduction to AST Nodes and Parsing Nodes. The next 
few topics outline writing the rule, the Analyze Method, getting the Rational 
Software Analyzer resource, getting the AST Nodes and doing the work. When you 
complete this module, you will understand what an AST Node is and how it relates 
to Rational Software Analyzer. You will also be able to write a custom rule for 
Rational Software Analyzer.

Page 2 of 14



rsar_writing_custom_files.ppt

This slide will cover three points. The first point lets you know that Rational Software 

Analyzer does not have its own code parser, rather is uses the existing Eclipse parsers. 

Secondly, Rational Software Analyzer uses the results of the parser pass to determine if a 

rule has passed or failed. And thirdly, you need to write your Java class to look for 

particular patterns in the code file to make a decision as to whether the file passes the 

rule.

Page 3 of 14



rsar_writing_custom_files.ppt

This slide gives an Introduction to AST Nodes. Abstract Syntax Tree (AST) is the data 

structure that is the result of the Eclipse parser pass. The data structure itself is a product 

of the Eclipse project, but its purpose is to break code files down into a tree structure that 

represents the file fully. The tree will start at the highest, broadest scope and through the 

children of that top level node, create gradually narrower scoped nodes. These nodes will 

have different types for different parts of the code file, however everything that the parser 

encounters is represented somehow in this tree.

Page 4 of 14



rsar_writing_custom_files.ppt

Rational Software Analyzer uses this Abstract Syntax Tree to check its rule syntax. So 

when you are defining your rule for Rational Software Analyzer, what you are really doing 

is specifying a particular AST structure that will either be acceptable or unacceptable. So 

in fact checking the rule will involve traversing the tree and looking for a specific pattern.

Page 5 of 14



rsar_writing_custom_files.ppt

In the previous set of slides, you have set up the custom plug-in, but you did not create the 

Java class. You already have all the plug-in blocks in place, but you need to write the 

actual steps to check the code. The Java class needs to extend the 

AbstractCodeReviewRule object. This Rational Software Analyzer object contains the 

analyze method which is what Rational Software Analyzer will call to start the scan. 

Therefore you are putting all of your analysis code there.

Page 6 of 14



rsar_writing_custom_files.ppt

The analyze method will pass in an AnalysisHistory object. This will tell the analyze 

method what the previous history of the rule scan is. The first action you should always 

take when you are implementing the rule is to acquire the historyID, so you know where to 

put the results of this rule. You will reference this later on when you decide whether to add 

something to your history for this rule.

Page 7 of 14



rsar_writing_custom_files.ppt

You now have the historyID, but you need more from Rational Software Analyzer. You 

need to get access to the Rational Software Analyzer API and its associated objects. The 

way to do this is through the getProvider method. By using the syntax here you are able to 

get the Rational Software Analyzer CodeReviewResource object which is your window into 

all things Rational Software Analyzer.

Page 8 of 14



rsar_writing_custom_files.ppt

The resource reference is set up and ready to go. The last thing you need to do is set up 

the code to check the pattern to verify if the rule passes or fails. First you need to collect 

the AST Nodes that are of interest to you. In the example here you are gathering an array 

of nodes of the ASTDeclaration type. From the array you can sift through looking for 

particular declaration nodes of interest.

Page 9 of 14



rsar_writing_custom_files.ppt

At this point you have the arrays of AST Nodes. Now you have all the parts you need to 

start checking rules. By checking for particular patterns of nodes in the arrays you collect, 

you can decide what actions to take to determine the success or failure of your custom 

rule.

Page 10 of 14



rsar_writing_custom_files.ppt

Rational Software Analyzer provides an additional filter method on top of those provided 

through the ASTNode methods. The IRuleFilter allows not only the particular type of 

ASTNode to be filtered but it can get more specific implementations of the ASTNode. For 

example, both Struct and Union declarations are ASTDeclaration ASTNode types. Without 

iterating through the entire array of Declaration Nodes you do not know what 

implementations there were. By using the satisfy method with the IRuleFilter array you can 

check that the collection either inclusively or exclusively contains those particular nodes.

Page 11 of 14



rsar_writing_custom_files.ppt

This module provided an overview of writing custom rules in Rational Software Analyzer. 

You should now be familiar with knowing what an AST Node is and how it relates to 

Rational Software Analyzer. You are now able to write your own custom rule.

Page 12 of 14



rsar_writing_custom_files.ppt

Additional resources can be found on the ibm.com Web site and in the Whitepaper on 

“Static analysis IBM Rational Software Analyzer: Getting started”.

Page 13 of 14



rsar_writing_custom_files.ppt Page 14 of 14


